
DISS. ETH NO. 29820

Co-Design of Complex Systems: From
Autonomy to Future Mobility Systems

A dissertation submitted to attain the degree of

DOCTOR OF SCIENCES OF ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

GIOELE ZARDINI
MSc ETH in Mechanical and Process Engineering, ETH Zurich

born on February 3, 1993

accepted on the recommendation of

Prof. Dr. Emilio Frazzoli (ETH Zurich)
Dr. Andrea Censi (ETH Zurich)

Prof. Dr. Marco Pavone (Stanford University)

2023

to So

Acknowledgments

Over the past years, I have been incredibly fortunate, and there is a lengthy list of individuals I would like to
express my gratitude to.

First of all, I want to thank the doctoral thesis committee. These three individuals have played pivotal roles
in my journey, and I consider each of them a stroke of luck in my life. I consider Emilio, Andrea, and Marco
phenomenal, complementary advisors, and at the same time trustworthy friends.

My introduction to Emilio occurred through his inaugural seminar at ETH, and I was immediately captivated
by his crystal-clear vision, charm, and friendliness. I instantly decided I wanted to work with him, and since
that day, he has been a constant source of guidance and inspiration, both academically and in life. His words
“don’t be afraid of taking the road less travelled” resonated in my head throughout this journey. He has always
believed in me and supported me, and I owe him a lot of what I have achieved. Also, I wish to someday
master travels and jet lag as he does. The second stroke of luck was my encounter with Andrea. He not only
imparted academic rigor and a sophisticated approach to scienti�c writing and exposure but also instilled in
me the importance of asking the right questions, scienti�c integrity, and the need to operate “one level up”.
His perspectives have always been very refreshing and he is de�nitely the jolly in the card deck of engineering
research, when the game happens during the day in paci�c time (“mornings don’t exist”). I learned so much
from him. My third stroke of luck was working with Marco. I met him during my visit to his lab at Stanford
in early 2019 and we have been interacting since. I have been fascinated by his ability to convey big-picture
concepts across a wide range of topics (breadth) while simultaneously developing intricate and e�ective
tools that are challenging to explain (depth). He is as wise as a 60 years old person, and as energic as a 20
years old one, all while being around 40. He was also the �rst to advise me on improving my writing, or as
he puts it, writing “up to standards”, and our interactions have been incredibly enriching. Joining his group
for a (very short) postdoc promises to unveil more magic.

This journey would have not been the same without Nicolas Lanzetti and Alessandro Zanardi, who are not
only excellent co-authors, but also dear friends for life. Nicolas has been a fantastic companion of adventures
(mostly food-related ones) since the early undergrad days, and I admire his pure soul, kindness, and positive
attitude. If he will not get lost in a Wasserstein space, I’m sure that even more adventures will be possible.
Alessandro has been a true “Ph.D. buddy”: we shared the Ph.D. exeprience, inside and outside the lab, and,
although working on di�erent topics and having di�erent characters, we have enriched each other’s research
and personal life in multiple ways.

A deep thanks goes to the other lab members and colleagues who made everyday special, including Jonathan
Lorand, Dejan Milojevic, Marc Albert, Ezzat Elokda, Claudio Ruch, Julian Zilly, Maurilio Di Cicco, Jacopo
Tani, Mingjia He, Matteo Penlington, Annina Fattor, Marc Neumann, Elena Arcari, Carlo Sferrazza, Saverio
Bolognani, Florian Dör�er, Riccardo Bonalli, Dario Paccagnan, and Maximilian Schi�er.

Now it’s time to thank the category theory gang. I want to thank Dr. David Spivak for having introduced me
to the magic world of category theory. In the beginning of the Ph.D. I had the chance to spend some time

with him at MIT, working on ideas on event-based systems [1], and his mentorship (made of long discussions
at the blackboard, a lot of co�ee, and many questions) allowed me to fall in love with the subject. This indeed
served as an “ice-breaker” for the thesis. I want to thank the “Applied Category Theory Adjoint School” team,
including Vincent Wang, Bryce Clarke, Maurine Songa, Emma Chollet, and Michael Johnson, who bring
dear memories. During this project (which converged in an awarded paper on lenses [2]), we met regularly
online, from three (at times four) di�erent continents, keeping up the spirits in di�cult pandemic times.

During my time at ETH, I had the great opportunity of mentoring students for semester and masters theses.
This experience was exceptional and enriching at various levels. In order of completion, I want to thank
Richard Von Moos, Johannes Conradi, David Gerber, Aleksandar Petrov, Gianmarco Bernasconi, Laura
Guerrini, Yannik Glauser, Giulio Carassai, Sirish Srinivasan, Claudia Godignon, Marius Furter, Alessio Mina,
Zelio Suter, Rohan Flogel-Shetty, Christian Hartnik, Sylvain Fricker, Leon Zueger, Carla Paillardon, Luca
Autunno, Ryan Mukherjee, Luca Sandel, Yujun Huang, Alessandro Cecconi, Manuel Schneider, and Pjeter
Berisha.

I want to thank my parents Gian Anton and Giordana, and my brother Giona, for their unconditional support
and love over the past years (and if you are wondering, yes, we are the “G’s”). Finally, but most importantly,
I want to extend my deepest gratitude to my wife Sonia. The past 13 years with you have been phenomenal,
and I feel like the luckiest person alive. This is just the beginning.

Abstract

The contemporary era struggles with the intricate challenge of designing “complex systems”. These systems
are characterized by intricate webs of interactions that interlace their components, giving rise to multifaceted
complexities, springing from at least two sources.

First, the co-design of complex systems (e.g., a large network of cyber-physical systems) demands the
simultaneous selection of heterogeneous components (e.g., hardware vs. software parts), while satisfying
system constraints and accounting for multiple objectives. Second, di�erent components are interconnected
through interactions, and their design cannot be decoupled (e.g., within a mobility system).

Navigating this complexity necessitates innovative approaches, and this thesis responds to this imperative
by focusing on the theory of co-design. Our exploration extends from the design of individual platforms,
such as autonomous vehicles, to the orchestration of entire mobility systems built upon such platforms. In
particular, we delve into the theoretical foundations of a monotone theory of co-design, establishing a robust
mathematical framework, leveraging category theory to elucidate key concepts, including compositionality
and functorial solution schemes in co-design.

Notably, this thesis o�ers not only an understanding of the theoretical underpinnings, but also practical
guidance for applying them to a diverse array of real-world problems, revolving around the domain of
embodied intelligence. The presented toolbox empowers e�cient computation of optimal design solutions
tailored to speci�c tasks and, in its novelty, paves the way for several possibilities for future research.

Zusammenfassung

Die heutige Zeit ist mit der schwierigen Herausforderung konfrontiert, “komplexe Systeme” zu entwerfen.
Diese Systeme sind durch komplizierte Netze von Wechselwirkungen gekennzeichnet, die ihre Komponenten
miteinander ver�echten, was zu einer vielschichtigen Komplexität führt, die mindestens zwei Ursachen
hat.

Erstens erfordert die Mitgestaltung komplexer Systeme (z.B. eines grossen Netzes cyber-physischer Systeme)
die gleichzeitige Auswahl von Komponenten heterogener Natur (z.B. Hardware- und Softwareteile), während
gleichzeitig die Systembeschränkungen erfüllt und mehrere Ziele berücksichtigt werden müssen. Zweitens
sind verschiedene Komponenten durch Interaktionen miteinander verbunden, und ihr Design kann nicht
entkoppelt werden (z.B. innerhalb eines Mobilitätssystems).

Die Beherrschung dieser Komplexität erfordert innovative Ansätze, und diese Arbeit reagiert auf diese
Notwendigkeit, indem sie sich auf die Theorie des Co-Designs konzentriert. Unsere Untersuchung erstreckt
sich vom Design einzelner Plattformen, wie z.B. autonomer Fahrzeuge, bis hin zur Orchestrierung ganzer Mo-
bilitätssysteme, die auf solchen Plattformen aufbauen. Insbesondere befassen wir uns mit den theoretischen
Grundlagen einer monotonen Theorie des Co-Designs und scha�en einen robusten mathematischen Rah-
men, indem wir die Kategorientheorie nutzen, um Schlüsselkonzepte wie Kompositionalität und funktionale
Lösungsschemata im Co-Design zu erläutern.

Diese Arbeit bietet nicht nur ein Verständnis der theoretischen Grundlagen, sondern auch praktische
Anleitungen für deren Anwendung auf eine Vielzahl von realen Problemen, die sich um den Bereich der
verkörperten Intelligenz drehen. Der vorgestellte Werkzeugkasten ermöglicht die e�ziente Berechnung
optimaler, auf spezi�sche Aufgaben zugeschnittener Designlösungen und erö�net in seiner Neuartigkeit
eine Fülle von Möglichkeiten für zukünftige Forschung.

Contents

Dedication i

Acknowledgments i

Abstract iv

Zusammenfassung v

Contents ix

1 Introduction 1
1.1 What is (automated) “design”? . 2
1.2 Desiderata and challenges . 4
1.3 Related work . 7
1.4 Outline and contributions . 13

A A M������� T����� �� C� -������ 17

2 Background on orders and monotonicity 19
2.1 Trade-o�s . 19
2.2 Ordered sets . 22
2.3 Examples of posets . 25
2.4 Chains and Antichains . 28
2.5 Poset constructions . 29
2.6 Monotonicity . 30
2.7 Poset bounds . 32
2.8 Lattices . 36

3 Co-design 39
3.1 Basic concepts of formal engineering design . 39
3.2 Queries in design . 41
3.3 Design Problems with Implementation . 42
3.4 Queries, more precisely . 45
3.5 Co-design problems . 47

4 Feasibility 51
4.1 DPs as monotone maps . 51
4.2 Populating feasibility relations . 54

4.3 Example: Linear Quadratic Gaussian Control . 55
4.4 Example: Convex Optimization Problems . 63
4.5 Example: Assume-Guarantee Contracts . 65
4.6 Example: Electric vehicle design . 68

5 Interconnecting design problems 71
5.1 Series composition of design problems . 71
5.2 Union and intersection of design problems . 72
5.3 Parallel composition . 73
5.4 Feedback . 74
5.5 Example: co-design of an autonomous drone . 74

6 A categorical perspective 79
6.1 The category of design problems DP . 79
6.2 DP is a symmetric monoidal category . 82
6.3 DP is a traced monoidal category . 87
6.4 More structure . 88

7 Solving co-design problems 93
7.1 Solution concept . 93
7.2 Categories of solutions . 95
7.3 Queries as functors from statements to solutions . 100
7.4 Finite co-design problems . 103
7.5 Domain theory and �xed points . 104
7.6 Handling loops . 108
7.7 Example: Optimizing over the natural numbers . 111
7.8 Example: co-designing an autonomous drone . 113

B F��� �������� �� ������ �������� 117

8 Systematic process for the co-design of complex systems 119
8.1 De�ning the task . 119
8.2 Functional decomposition . 121
8.3 From functional decompositions to co-design diagrams . 122
8.4 Finding feedback loops . 126

9 Implementation 129
9.1 Writing a skeleton . 129
9.2 Populating the models . 132
9.3 Expressivity and properties of the framework . 133
9.4 Developer vs. user viewpoints . 135

10 Co-design of autonomy 139
10.1 Co-design of an autonomous vehicle . 139
10.2 Co-design of an autonomous vehicle 2.0 . 145

11 Co-design of mobility systems 157
11.1 Motivation . 157
11.2 Intermodal Mobility Framework . 159
11.3 Co-Design Framework . 164
11.4 Results . 173

12 From autonomy to mobility via compositionality 183
12.1 Models . 183
12.2 Results . 184

C O��� ���������� ��� ����������� 187

13 Explicitly accounting for strategic interactions 189
13.1 Need for co-design games . 189
13.2 Games with partially ordered payo�s . 190
13.3 Simultaneous and sequential decisions . 193

14 Extending modeling capabilities and solution algorithms 197
14.1 Extending modeling techniques . 197
14.2 Extending solution techniques . 197
14.3 New applications . 198

15 Conclusions 199

D B��� ������ 201

16 Proofs 203
16.1 Proofs related to Part A . 203
16.2 Proofs related to Part B . 244

R��������� 255

Introduction 1
The proper study of mankind is the science of design.

—Herbert A. Simon1

The design of “complex systems” stands out as one of the paramount challenges of
this century. Such systems are labeled as “complex” not only due to the intricacies
of their individual components, but also because their functioning hinges on
complex interactions among these components. An illustrative case in point for
the complexity is the domain of cities.

Over the past few decades, cities worldwide have witnessed an unprecedented
wave of urbanization. Presently, a staggering 55% of the global population calls ur-
ban areas their home, and by 2050 the proportion is expected to reach 68% [3]. As
a direct consequence of the population density growth, urban travel has surged,
causing a series of associated externalities [4]. In this dynamic landscape, ur-
ban planners are confronted with the formidable challenge of adapting their
transportation systems to accomodate the escalating demands of society.

This task is inherently intricate for a multitude of reasons. First, cities must not
only anticipate and cater to the evolving travel needs of their population [5],
but also strive for equity and fairness in their transportation strategies [6]. Sec-
ond, these strategies necessitate a careful consideration of their impact on other
mobility providers, such as private mobility service providers (e.g., ride-hailing
companies, micromobility services, and, in the future, Autonomous Mobility-
on-Demand (AMoD) systems). Such services have witnessed remarkable growth
in recent years, exempli�ed by the 1,000% increase in daily trips made by ride-
hailing companies in New York City from 2012 to 2019 [7]. While extending more
travel options to commuters, these systems operate while capitalizing on public
resources such as roads and public spaces. They operate with a pro�t-oriented
approach, and, at times, generate potentially disruptive consequences for both
the e�ciency of the transportation network, and society at large [8]–[10].

Third, these policies must be devised in alignment with global sustainability
objectives, and mindful of their implications for other interconnected systems. It
is a well-documented fact that cities bear a signi�cant responsibility, contributing
to 78% of the world’s energy consumption and over 60% of global greenhouse
gas emissions, with transportation accounting for a substantial 30% of this total
in the United States [11]. Sustainability has taken center stage in policymaking
worldwide, as evidenced by initiatives such as New York City’s plan to elevate
sustainable transportation from 68% to 80% [7] and the European Union’s ambi-
tious aim to slash emissions by 90% by 2050 [12]. New decisions and technologies
1 Simon is the winner of the 1978 Nobel Prize in Economics.

2 1 Introduction

promise to introduce profound changes to a series of other vital systems, including
existing energy systems, infrastructure planning, urban development, employ-
ment patterns, lifestyle choices, and more. How should we invest for the next
century’s infrastructure? Which technologies should we develop to �ght climate
change? How can automation help? How will power grids deal with mobility
systems of the future? These questions are deeply intertwined, rendering the
comprehension of their complexity a seemingly insurmountable challenge, both
for human minds and computer algorithms.

In light of these considerations, it becomes evident that tackling these socio-
technical design problems necessitates innovative approaches. The complexity of
these intertwined systems underscores the urgency for methods which enable
their collaborative design – an imperative call for co-design methodologies. In
this thesis, we will focus on a theory of co-design and its application to embodied
intelligence, all the way from the design of a single platform (i.e., an autonomous
vehicle (AV)) to the design of an entire mobility system leveraging such plat-
forms.

In Section 1.1 we will explain what we mean by automated design. We will then
present the desiderata and challenges for a co-design framework (Section 1.2),
related work for the co-design of embodied intelligence (Section 1.3), and contri-
butions of this thesis (Section 1.4).

1.1 What is (automated) “design”?
We take a broad view of what it means to “design”, that is not limited to engineer-
ing. Citing Hebert Simon’s The sciences of the arti�cial ([13], Chapter 5):

Engineers are not the only professional designers. Everyone designs
who devises courses of action aimed at changing existing situations into
preferred ones. The intellectual activity that produces material artifacts
is no di�erent fundamentally from the one that prescribes remedies for
a sick patient or the one that devises a new sales plan for a company
or a social welfare policy for a state. Design, so construed, is the core of
all professional training; it is the principal mark that distinguishes the
professions from the sciences. Schools of engineering, as well as schools
of architecture, business, education, law, andmedicine, are all centrally
concerned with the process of design.

The metaphors employed in this thesis are biased towards the engineering per-
spective. Indeed, it is easy for everybody to imagine creating a physical machine
out of simple components, and to grasp the inherent decisions and trade-o�s that
must be navigated in such a process.

However, the theory to be discussed is applicable to other disciplines, if one
takes a more abstract view of what is a system and a component. For example,

1.1 What is (automated) “design”? 3

in urban transportation planning, the components are roads, mobility options,
travel demand modeling, etc. In other disciplines, “components” can be logical
instead of physical. For example, a public transit authority might ask how to
design an incentive scheme such that such scheme (a “component”) will move
the system to a more desirable set of states (e.g., demand shift from private cars
to public transit). In this context, another component could be a “simulator” or
model of the “reaction” of the population to be analyzed.

Automated design

In this thesis, we are interested in methodologies which, given a complex system
to create, facilitate and automate the design process, allowing the designer to
smoothly navigate the complexity of the task. In particular, we want to:

� Structure the process of specifying a design problem, all the way from the
architecture of the design, to the objectives and functions it has to ful�ll;

� Automate the process of �nding solutions to the design problem;

� Simplify the process of analyzing the obtained designs, and re-iterate, changing
speci�cations.

In other words, we want a set of tools which, given a certain task speci�cation,
knowledge of principles from multiple domains, and a set of design options
between which we need to choose, produces optimal designs, based on some
performance metrics we care about (Fig. 1).

“automated designer”
multi-domain knowledge

design options

task speci�cation

optimal design(s)

Figure 1: Vision for the “automated designer”.

Let’s look at a couple of examples to gain intuition.

Example 1.1 (Robotics). In the context of co-designing a robot’s autonomy stack,
a typical scenario involves several key steps. First, there’s the de�ned task, often
a speci�c mission such as scanning an area for gas leakages. Then, one has the
foundational principles governing robot autonomy, coupled with a thorough
description of the robot’s dynamics and its interactions with its sorroundings.
Additionally, we are equipped with an assortment of components to pick from,
which feature a range of choices including sensors, actuators, algorithms, and
related parameters.

The essence of the design process lies in its ability to generate a set of optimal
design decisions. Such desicions are guided by a set of performance metrics, tai-
lored to the speci�c context. For instance, one might consider a trade-o� between

4 1 Introduction

Figure 2: Vision for the “automated designer” in
the context of autonomous systems.

Autonomy design
robot autonomy, dynamics

components, algorithms

task

optimal design(s)
errors

en
er

gy �
�
� �

Figure 3: Vision for the “automated designer” in
the context of mobility systems.

Mobility design
networks, operations, infrastructure

mobility services, policies

travel demand

optimal design(s)
investment

tim
e �

�
� �

energy consumption and the cumulated errors while executing the prescribed
task (Fig. 2).

Example 1.2 (Mobility). Similarly, when designing a mobility system, we are
given a certain demand (i.e., people at di�erent locations, willing to move to
certain destinations, with certain preferences for their trips), principles of network
science, operations research, and infrastructure design, and a set of mobility
services to design (e.g., �eet size, �eet distribution), or policies to be chosen (e.g.,
taxes on a certain mobility service). Again, the design process should produce a
set of optimal design choices, in terms of of e.g., investments and average travel
time one can reach in an entire city (Fig. 3).

1.2 Desiderata and challenges
How should the “automated designer” implement the vision detailed in Sec-
tion 1.1? We will introduce the term “co-design”, and describe it through the need
for the design process to exhibit certain properties, listed in the following. Note
that some are partially echoed in previous literature [14]–[16].

Formal Complex systems are made of heterogeneous components, and the
abstraction one chooses to formulate the design exercise must transcend par-
ticular domains (i.e., it must be cross-domain [14]). For instance, when tasked
with designing a �eet of AVs providing mobility services in a city, we require a
toolbox to describe principles of autonomy, operations research, transportation
policy, and economics. At the same time, to be tangible, the abstraction has to
be mathematically precise, avoiding vague/controversial statements about the
problem at hand. Typically, we also want to characterize all the objectives of the

1.2 Desiderata and challenges 5

design problem, without sacri�ces.

Compositional, hierarchical This means a number of things. The �rst mean-
ing, has to do with composition:

co-design = design everything together

We use the word “co-design” to refer to any decision procedure that has to do
with making simultaneous choices about the components of a system to achieve
system-level goals. This includes the choice of components, the interconnection
of components, and the con�guration of components. We will see that in most
cases, choices that are made at the level of components without looking at the
entire system are doomed to be suboptimal.

Slightly modifying a quote from Howard Aiken2

A system is composed of components;
a component is something you understand,

we choose the following as our quote:

A system is composed of components;
a component is something you understand how to design.

We refer to this �rst composition idea as horizontal composition.

The second meaning is given by the principle “your system is a component of
somebody else’s system”. For the example of the �eet of AVs, one could think
about designing a single AV, considering interconnected hardware components
(actuators, sensors, computers) and software ones (control, perception, planning).
When designing an entire mobility system, this interconnection of components
can be considered a component, embedded into the larger set of interconnected
components at the city level (e.g., including the design of a �eet of such vehicles,
design of public transit, design of the network, etc.). We refer to this kind of
composition as vertical composition.

Collaborative

co-design = design everything, together

There are two types of collaborations. First, there is the collaboration between
human and machine, in the de�nition and solution of design problems. Second,
and most importantly, is the collaboration among di�erent experts or teams of
experts in the design process.

The typical situation is that the system design is suboptimal because every expert
only knows one component and there are rigid interfaces/contracts designed

2 Aiken was an american physicist and a pioneer in computing, being the original designer behind
IBM’s Harvard Mark I computer.

6 1 Introduction

early on. The problem here is sharing of knowledge across teams, speci�cally,
knowledge about the design of systems.

In this case, this is the slogan:

A system is composed of components;
a component is something that somebody understands how to design.

There is a tight link between the “composition” and “collaboration” aspects.

As Conway3 �rst observed for software systems:

Organizations which design systems [. . .] are constrained to produce
designs which are copies of the communication structures of these or-
ganizations.

This “mirroring” hypothesis between system and organization was explored
formally and found to hold [17]. The ultimate reason is that “the organization’s
governance structures, problem-solving routines and communication patterns
constrain the space in which it searches for new solutions”. This appears to be
true for generic systems in addition to software.

In the end, civilization is about dividing up the work, and so we must choose
where one’s work ends and the other’s work begins. But we need to keep talking
if we want that everything works together.

Computationally tractable We need to be able to compute solutions to the
design problems e�ciently. Therefore, we strive to create not only a qualitative
modeling for co-design, but also a formal and quantitative description that will
be suitable for setting up an optimization problem that can be solved to obtain
an optimal design.

Our slogan can be further modi�ed:

A system is composed of components;
a component is something that somebody understands how to design
well enough to teach a computer.

Continuous We look at designs not as something that exists as a single decision
in time, but rather as something that continuously exists and evolves, indepen-
dently from the designer. The designer should be able to smoothly characterize
this evolution within a framework of co-design. In the literature, this is often
referred to as temporality [18].

Manipulable Strictly connected to continuity, is manipulability. Not only we
want the designer to be able to specify models for design problems, and to do
3 John Horton Conway (1937–2020) was a mathematician. Probably the most popular idea of his was

the invention of the Game of Life, which inspired countless works on cellular automata.

1.3 Related work 7

that over time, but we also want the whole problem “manipulation” process to be
simple. For instance, if we might need to ignore certain objectives, or merge others
(e.g., merging emissions and costs, via emissions penalties). Another important
feature in this sense, is the ability to answer di�erent questions, given the same
co-design architecture. More on that in Chapter 3.

Intellectually tractable The design process and its formalisms should not
be exclusively accessible to system architects, and specialists: they should be
truly collaborative. Oftentimes, when developing design optimization tools, one
confuses the developer’s and the user’s viewpoints. While we want the co-design
formalism to possess the above properties (i.e., being formal, compositional, col-
laborative, computationally tractable, and continuous), we also want stakeholders
of the design exercise to take an active role, and to be able to smoothly interact
with the framework. This requires a simple, cross-domain user interface.

1.3 Related work
The literature on engineering design is very broad, and contributions stem from
several �elds. In this thesis, we will focus on (co-) designing embodied intelli-
gence, ranging from a single platform (e.g., AVs) to mobility systems leveraging
such platforms (e.g., within the context of AMoD systems). This kind of prob-
lems naturally draws inspiration from several �elds, each contributing in various
ways to the process of designing new technologies. For instance, in mechanical
engineering, design optimization and design automation are part of the disci-
pline of formal engineering design. In aeronautics and astronautics, instead, such
methodologies fall under the umbrella of systems engineering. Notable reviews of
the state of the art in these �elds are [18]–[20].

Although they feature a vaste literature, these disciplines contributed to some
megatrends, as well as to some general design methodologies, which we report
brie�y in the following.

In mechanical engineering, a large part of design optimization problems relate
to topology optimization, which poses the question “how to employ a certain
material within a design, to obtain certain structural performances?” See [21]
for a survey and [22] for recent work in the area. Problems in this area, rele-
vant for instance to soft robotics as well, are typically solved by either employing
standard optimization techniques (e.g., convex optimization) or heuristic-based
approaches. This discipline also gave birth to some general design techniques,
such as the “A-design approach”, by Campbell, Cagan, and Kotovsky [23], [24].
This agent-based methodology contrasts ad-hoc optimization problems formula-
tions by introducing a user-friendly learning framework to input speci�c criteria
in the design process. The framework allows for limited computation in the back-

8 1 Introduction

Figure 4: Information �ows for computer-aided
design of robots [16].

ground, but it is intuitive on the surface, allowing the user to specify optimization
criteria. Other general toolboxes are proposed as the “General design theory”, by
Yoshikawa [25], [26], and as the “Theory of Technical Systems”, by Hubka and
Eder [27]. The former framework is formal (based on set theory), and the latter is
more conceptual. Finally, it is worth mentioning the “Axiomatic Design theory
for Systems” from Suh [28], [29]. This theory provides a notable reference for
functional decomposition of complex tasks, and features some sort of formality
and computation, even if it remains at the conceptual level for many applications.
We will discuss the shortcomings of this theory later in this thesis, in particular
when compared to the presented theory of co-design.

In systems engineering, a lot of methodologies have been developed to organize
architectures of complex systems. Several examples are provided in [18] and later
in this thesis. Design optimization problems are typically approached from the
point of view of multi-objective optimization. These are formulated in terms of
classic problems (e.g., weighted convex optimization), ad-hoc problems solved
with heuristics, and Pareto optimization [30]–[32]. In general, the formulations
lack intuitivity and generalizability, and are very di�cult to manipulate.

If we consider the �elds of electrical engineering and computer science, as well as
robotics, the literature on the co-design of complex systems is more prominent,
and particular applications to embodied intelligence are more common.

Embodied intelligence

Designing embodied intelligence involves the choice of material parts, such as
sensors, computing units, and actuators, and software components, including
perception, planning, and control routines. In the last decade, research on au-
tonomous systems has witnessed signi�cant developments. While researchers
have mostly focused on speci�c problems in robotics, there is glaring gap in
our understanding of the optimal co-design of autonomous robots as a whole.
Traditionally, the design of embodied intelligence has been approached in a com-
partmentalized manner, hindering interdisciplinary collaboration and design
automation. In particular, such compartmentalization has treated the design op-
timization of components as separate entities, failing to capture the interconnec-
tions between physical and software components. In this context, interconnected
designs have broad implications, ranging from power-constrained robot design
to the design of AV �eets integrated into urban transportation systems.

Unresolved questions include: What is the simplest sensor that a robot can use
to obtain a speci�c performance in a given task? How much computation is
really needed? What control scheme should one choose to solve a speci�c task?
What are the trade-o�s between robot safety and task performance? How can
one optimally design a robotic platform by minimizing resource usage?

1.3 Related work 9

The literature on design automation techniques and the associated challenges
has been widely acknowledged and discussed in serveral sources [14]–[16], [33]–
[38]. For instance, [14] identi�es the unique characteristics of cyber-physical
systems, including their hybrid nature (combining computational and physical
elements), heterogeneity (including various types of components, di�erent mod-
els), distributed networked structure, large-scale complexity, dynamic behavior,
and human involvement. Similarly, [39] provides a comprehensive review of
existing co-design methodologies for complex cyber-physical systems, and high-
lights synthesis challenges, such as functional complexity, intricate architectures,
component interdependencies, con�icting system objectives, and the presence of
humans in the design loop. Furthermore, Nilles et al. emphasize the importance
of information �ows in the design process (as reported in Fig. 4) and articulate
four key challenges for modern robotics: formalization, minimality, automation,
and integration [16].

The realm of embodied intelligence co-design primarily revolves around the
exploration of trade-o�s within robotics, encompassing (combinations of) as-
pects such as sensor and actuator selection, planning and control synthesis, and
morphology and motion design.

Trade-o�s within the �eld of robotics have been extensively studied [16], [34],
[40]–[54]. [40] introduces a formulation for optimizing the design of serial manip-
ulators, while [34], [53], [54] discuss the role of formal methods when synthesizing
speci�cations and behaviors for autonomous robots performing complex tasks.
Resource-performance trade-o�s in mobile robotics are explored in [41], energy-
e�cient design techniques for legged robots are detailed in [42], and [43] delves
into trade-o�s between robot sensing and actuation for worst-case scenarios. Fur-
thermore, [44], [45] provide insights into performance limits for robotics tasks
and their relation to environmental complexity, while [55] examines informa-
tion requirements for robot tasks through the concept of information invariants.
Additionally, [50]–[52] o�er a framework for interactive exploration of design
trade-o�s in manufacturing using CAD models.

In the context of co-designing autonomous systems, the literature predominantly
focuses on sensing and control/actuation. While the sensor selection problem
often lacks a closed-form solution, speci�c cases have been shown to exhibit
su�cient structure for e�cient optimization schemes [56]–[59] [60] investi-
gates sensing-constrained task-driven LQG control, [46], [47], [61], [62] con-
centrate on perception architectures for AV navigation, and [63]–[65] explore
large-scale sensor/actuator networks. Furthermore, while in [66] researchers
provide a framework to jointly optimize sensor selection and control, by mini-
mizing the information a sensor needs to acquire, authors of [67], [68] propose
techniques for optimal control with communication constraints, and [69] studies
a hierarchical multi-rate control architecture for actuation and planning. An

10 1 Introduction

Gradient-based
optimizer

�task��shape

�task��control

�task��act.
optimal

design(s)

Figure 5: Working principle of gradient-based de-
sign co-optimization based on di�erentiable simu-
lation.

intriguing line of work led by Shell, O’Kane, and their collaborators explores
the design of minimal robots capable of solving planning problems, studying
various trade-o�s in sensing, actuation, and path planning [70]–[76]. The authors
of [68] and [77] introduce approaches for the co-design of control algorithms
and platforms, applied to lane keeping and HVAC systems, respectively. [39],
[78] focus on performance and security of cyber-physical systems, [79] investi-
gates co-learning of task and sensor placement for soft robotics, and [80] studies
computation-communication trade-o�s and sensor selection

Another prominent line of research stemming from computer graphics, robotics,
and computer science, centers around morphology and actuation/motion de-
sign for (soft, articulated) robots. Researchers frequently leverage gradient-based
optimization algorithms informed by di�erentiable simulations, typically consid-
ering material parameters, shapes, and actuation as in�uential factors [81]–[83].
These algorithms leverage the di�erentiable simulator’s ability to provide rapid,
di�erentiable relationships between design parameters changes and task perfor-
mance, as demonstrated in scenarios such as robot swimming [82]. The nature
of these simulators allows for the incorporation of such structural insights into
gradient-based optimization algorithms, as illustrated in Fig. 5. Similar concepts
have been applied to the design of AV architectures [84]. Within this line of
research, authors have developed methodologies to design (soft) robots based on
multiple objectives in computationally e�cient manners [85]–[90], and created
end-to-end frameworks, capable of starting from functional speci�cations and
creating new robots from scratch, leveraging formal methods [91]–[93] and evo-
lutionary algorithms [94]–[97]. Furthermore, researchers were able formulate
ad-hoc optimization problems for the computational design of robots performing
complex tasks [98]–[108].

Another notable research e�ort revolves around assume-guarantee contracts, and
design techniques leveraging them (see [37], [109] for excellent explanations).
Such contracts are expressed as formal speci�cations attached to components in a
system, stating what is assumed from the environment, and what is required from
the component in case the environment meets the speci�cations. In the context
of designing a complex system, contracts can be embedded in the techniques
of platform-based design [110]–[115], contract-based design [109], [116], [117],
and compositional behavior generation and veri�cation [118]–[121]. All of these
methods have been successfully applied to a wide range of systems, ranging from
AV to HVAC systems [77].

Summary

None of the methods described above is driven by the purpose of automating the
design of an entire system, as described in Section 1.1. Rather, the developed tools

1.3 Related work 11

Intellectual tractability

C
om

pu
ta

tio
na

lt
ra

ct
ab

ili
ty

M
HE

D

G

C

Q

Figure 6: Intellectual vs. computational tractabil-
ity.

focus on particular aspects of that purpose, partially addressing the challenges
reported in Section 1.2. To visualize this better, we can categorize the methods in
the following groups:

� General design techniques, which are mostly conceptual. Let’s denote them
by G .

� General design techniques, which are also quite quantitative, such as the “Ax-
iomatic Design Theory”, the “General Design Theory”, or the “A-design ap-
proach” [23], [26], [29]. Let’s denote them by Q ;

� Ad-hoc (multi-objective) optimization problems, with classic structure and
solution techniques. Typically they require some strong assumptions to �t the
problem to the particular structure at hand. Let’s denote them by H ;

� Ad-hoc (multi-objective) “exotic” optimization problems, often requiring heuris-
tics/evolutionary approaches to be solved. Typically, there are no guarantees
that a solution can be found. Let’s denote them by M ;

� Gradient-based methods employed in the context of system design, leveraging
di�erentiable simulation tools. Let’s denote them by D ;

� End-to-end approaches, denoted by E ;

� Methods based on contract theory, such as platform-based and contract-based
design [109], [110] Let’s denote them by C ;

In the spirit of analyzing trade-o�s (more on that in Chapter 2), we now want
to compare the aforeintroduced macro categories based on some representative
desiderata introduced in Section 1.2. We report them in Fig. 6 to Fig. 8.

Intellectual vs. computational tractability When designing complex sys-
tems, there exists a signi�cant trade-o� to consider: the balance between intellec-
tual tractability (i.e., how easy it is to work with the framework and formulate and
solve design problems) and computational tractability (i.e., the e�ciency with
which the framework can actually address the problem, and the complexities it
can handle). Let’s explore the extremes in both directions.

On one hand of the spectrum, we have historical and general design techniques
which possess inherent intellectual tractability due to their conceptual nature. If
these methods involve quantitative aspects, they rely on straightforward princi-
ples which are easy to grasp (e.g., minimizing the number of joints in a mechanical
system). However, when applied to the type of problems associated with em-
bodied intelligence, these frameworks tend to impose rigid structures that are
ill-suited for these challenges both formally and computationally. Often, these
methods focus solely on feasibility, rather than minimality, and they don’t involve
optimization.

On the other end of the spectrum, some aspects of co-design problems are framed

12 1 Introduction

Formality

C
om

pu
ta

tio
na

lt
ra

ct
ab

ili
ty

M
HE D

G

C

Q

Figure 7: Formality vs. computational tractability.

M

H

E
D

G

C

Q

Intellectual tractability

Fo
rm

al
ity

Figure 8: Intellectual tractability vs. formality.

as standard optimization problems (e.g., sensor selection through convex opti-
mization [56]), which o�er excellent computational properties. However, this
computational e�ciency comes at the cost of reduced intellectual tractability,
and ease of manipulation. Designers may �nd themselves constrained in de�ning
performance metrics (e.g., they must adhere to properties like di�erentiability
and convexity), express constraints in non-intuitive ways through various refor-
mulations, and require di�erent tools when altering the problem’s parameters.

In the context of co-designing embodied intelligence, end-to-end and heuristic-
driven approaches tend to be less intellectually tractable, often excluding the
designer from the process. In contrast, di�erential simulation-driven methods
provide more �exibility, while remaining computationally tractable, particularly
for simpli�ed instances of the problem.

Lastly, methods based on contract theory aim to strike a balance between both
worlds. They maintain intellectual tractability (indeed, understanding set-based
contracts is relatively simple) while o�ering computational e�ciency. It’s im-
portant to note that these methods prioritize feasibility and veri�cation, rather
than looking for minimal solutions. Furthermore, the tools around them are
often focused on particular types of systems (e.g., embedded systems, dynamical
systems, etc.).

Formality vs. computational tractability Another signi�cant trade-o� to
consider relates to the balance between formality and computational tractability.
Often, when tackling a design problem, a speci�c technique is applied, but the
process of using it and how to extend its application to future scenarios lacks a
formal structure.

For instance, one might design a component in the autonomy stack of a robot by
�xing various parameters, de�ning a reward function, and exploring the design
space using a speci�c heuristic. While this approach may yield interesting solu-
tions, it often falls short in providing insights into their quality, dependencies with
other parameters, and how these solutions change when assumptions are slightly
adjusted. In such cases, conceptual design frameworks prove to be lacking in
both formalism and computational tractability, making them less suitable for
such types of problems.

In contrast, contract-based methods o�er a high level of generalizability and can
be applied across various applications, as evident in the existing literature [37].
On the other hand, standard (multi-objective) optimization techniques have solid
formal foundations but often lack formalism and generalizability when employed
in design optimization tasks.

1.4 Outline and contributions 13

Formality vs. intellectual tractability Finally, combining the previous plots
one can investigate the trade-o� between formality and intellectual tractability.
Typically, intellectual tractability comes at the cost of having a framework which
is not really formal. This is true in the analyzed intuitive and at times quantita-
tive general design methods. On the other hand, optimization schemes which
can be well formalized, are not intuitive to use in the context of co-design, and
interfaces might be complicated. Contract-based methods �nd a good balance
between the two desiderata, being both formally clear, but also understandable
and manipulable.

All in all, the previous observations highlight a gap in the research of engineering
design methods. In particular, a toolbox which is at the same time formal (hence,
generalizable to multiple disciplines), computationally tractable, but also easy
to use, is missing. In this thesis we will present a monotone theory of co-design,
which will address such concerns.

1.4 Outline and contributions
In this thesis, our focus revolves around the intricate process of co-designing
comlpex systems. We embark on this journey by delving into the theoretical
underpinnings of a monotone theory of co-design, a theory initially developed by
Censi [122]. Our objective is to provide a comprehensive understanding of this
concept by placing it within a rigorous mathematical framework, complete with
illustrative examples elucidating each key concept.

To navigate the features of this framework, we draw upon the tools of category
theory, o�ering insights into features such as compositionality and the application
of functorial solution schemes to co-design problems. This approach serves as a
powerful lens through which we explore the world of co-design.

The thesis not only equips the reader with a deep comprehension of the theoretical
foundation, but also o�ers a practical roadmap for applying the monotone theory
of co-design to a diverse array of real-world problems. These span a wide spectrum,
ranging from the co-design of an AV autonomy stack to the task of designing the
infrastructure for an intermodal mobility system.

This �rst-of-a-kind toolbox uni�es disparate disciplines under a single model-
ing framework. It is designed to facilitate the e�cient computation of optimal
design solutions tailored to speci�c tasks. Its novelty not only enhances our un-
derstanding of co-design processes, but also paves the way for a multitude of
future research endeavors, promising to expand the horizons of this �eld.

14 1 Introduction

Table 1: Use of colors

sets �,�
posets �,�
categories C,D
objects �,�
morphisms �� � � �
functors �� C� D

Organization of the manuscript

The manuscript is subdivided in three parts. First, we introduce a mathematical
theory of co-design (Part A). To do so, we get the reader up to speed with a back-
ground on orders and monotonicity, and explain the basics of design problems,
providing theoretical and practical examples for all concepts introduced. We then
show how one can interconnect di�erent design problems, and provide a formal
explanation of why one can do so, via category theory. Finally, we show how to
solve co-design problems.

In the second part (Part B), we propose a systematic process for the co-design of
complex systems, providing a recipe for the employment of the presented theory.
We then show how the proposed framework can deal with co-design problems all
the way from a single platform (i.e., an AV) to an entire mobility system leveraging
that platform.

The �nal part features interesting venues for future research, as well as conclu-
sions (Part C).

Hacks to read this thesis

Use of colors

� We use colors to aid in the parsing of formulas and diagrams (Table 1). We
also color the operations between these elements. In this way it is easy to see
the types at �rst glance: � # �, � # �, etc.

� Color is not necessary to infer meaning. The choice of colors is colorblind-
friendly for red-green color blindness. (The author of this thesis is red-green
color blind.) Please let me know if this is not the case.

Proofs To facilitate the reading, most proofs are reported in Chapter 16. Each
time this is the case, there is a hyperlink which allows you to navigate to the
proof, and then back to the main text.

Sequent notation We will often employ the sequent notation to represent
implications and equivalences. For instance, the statement “if � and �, then �”
(�,� � �) is represented as

� �
.

�

Furthermore, the statement “� if and only if �” (� � �) is represented as

�
.

�

1.4 Outline and contributions 15

Book Part of the technical notions are adapted from our work-in-progress
book [123]. We will provide related references whenever it is the case.

A M������� T�����
�� C� -������ P��� A

2 Background on orders and monotonicity 19

3 Co-design 39

4 Feasibility 51

5 Interconnecting design problems 71

6 A categorical perspective 79

7 Solving co-design problems 93

18

Good

Fast

C
he

ap

Sa
fe Ideal

system

Figure 9: The four quantities of system architects
from Rechtin and Maier [124].

Background on orders and
monotonicity 2

There are no solutions, only trade-o�s.
—Thomas Sowell4

Engineering is about trade-o�s, and when designing a system, there is seldom
a best outcome out of all quantities of interest. In this chapter, we introduce
concepts to reason about uncomparable attributes. Speci�cally, we �rst present the
notion of trade-o�s (Section 2.1), and make it more precise by presenting partially
ordered sets (posets) (Section 2.2). Posets are the mathematical structure to reason
about trade-o�s, and will be crucial for the understanding of the mathematical
theory of co-design we introduce in this part. We will then provide a broad list of
examples (Section 2.3), as well as tools to construct new posets starting from old
(Section 2.5). Finally, we will present the concepts of monotonicity (Section 2.6),
poset bounds (Section 2.7), and lattices (Section 2.8).

2.1 Trade-o�s
Trade-o�s characterize all engineering disciplines, and can be literally found
everywhere.5

For instance, during your morning commute, you might be interested in the cost
of your trip, and the time needed to get to your destination. Typically, getting
a taxi will be more expensive than choosing public transit, but it will generally
result in a quicker trip. This is a trade-o�. The role of trade-o�s in engineering
has been widely discussed in the literature.

Example 2.1 (The Art of Systems Architecting). Rechtin and Maier, in their “Art
of Systems Architecting” [124], state that the process of designing any system
creates trade-o�s between four fundamental quantities: performance (e.g., quality
of a product), schedule (e.g., time needed to produce it), cost, and risk (e.g., system’s
probability of failure). Balancing the con�icts between performance, schedule,
and cost, is typically the business of project managers. Usually, core engineers
deal with trade-o�s in performance and risk. In general, if you want to build
something, an ideal system is done well, quickly, is safe, and is cheap. However,
in reality, you typically need to trade-o� some of these quantities (Fig. 9).

Example 2.2 (The “-ILITIES”). De Weck and co-authors present common desired
properties of systems one has to trade-o� as the “ilities” [18, Chapter 4]. These
include quality, reliability, safety, �exibility, robustness, durability, scalability,
4 Sowell is an american economist, recipient of the National Humanities Medal, and author of over

45 books.
5 Everywhere in this thesis, everywhere in your �eld, and everywhere in your daily life.

20 2 Background on orders and monotonicity

cost 2

cost 1

feasible

(a) Costs.

functionality 2

functionality 1

feasible

(b) Functionalities.

how good the thing is

how much you pay

feasible

(c) Functionality vs. costs.

Figure 11: Achievable accuracy plots.

It is free Expensive

(a) Requirements/costs.

Does nothing Does it well

(b) Functionality.

Figure 10: Illustration of functionalities and
resources.

adaptability, usability, interoperability, sustainability, maintainability, testabil-
ity, modularity, resilience, extensibility, agility, manufacturability, repairability,
evolvability.

To characterize engineering trade-o�s, we will use the mathematical structure
of partial orders. But �rst, let’s explore some examples, to better contextualize
trade-o�s.

Functionality and resources

In this section, we introduce concepts which will be important when talking about
theories of co-design. We distinguish semantically between functionalities and
requirements/costs. In general, you prefer functionalities to be “large” (Fig. 10b)
and requirements/costs to be “small” (Fig. 10a).

Throughout this thesis, we will mainly use three kinds of achievable accuracy
plots (Fig. 11):

� In Fig. 11a we plot trade-o�s in costs and add a “feasibility” curve. Everything
above this curve is feasible and will cost more than what is on the curve.

� In Fig. 11b we plot trade-o�s in functionalities and add a “feasibility” curve.
Everything below the curve is feasible, but is below the “standards” required
by the curve.

� In Fig. 11c we plot functionality and resource together, representing the trade-
o� between “how good a product is” and “how much one needs to pay for it”.
Feasible pairs are represented via the feasibility curve. Everything above the
curve will be feasible (by paying more).

It is a good exercise to open any engineering book, �nd the graphs talking about
“achievable” performance and “resources” needed, and classify them into one of
the ones reported in Fig. 11. Note that functionalities and requirements are not
absolute, and depend from the context.

2.1 Trade-o�s 21

endurance

speed

feasible

Usain Bolt

Eliud Kipchoge

Gioele

Figure 12: Speed vs. strength trade-o� in sports.

endurance

training
Usain Bolt Eliud Kipchoge

Figure 13: Training vs. strength trade-o�.

pr
ot

ec
ts

w
ea

re
r

fr
om

vi
ru

s

FFP 3

FFP 2

FFP 1

Surgical Mask

Fashion masks

Figure 14: Ordering masks by protection levels.

Trade-o�s for the human body

The human body is a great example of trade-o�s and adaptability. Consider sports:
when looking at di�erent disciplines, various physical abilities are desired and
athletes are characterized by trade-o�s between them.

For instance, we can think about trade-o�s between speed and endurance for
humans (Fig. 12). These are functionalities, which di�erent athletes might want to
maximize. Consider Usain Bolt, who owns the 100 meters, 200 meters, and 4◊100
meters relay world records. Without doubts, in the human speed-endurance trade-
o� curve he positions himself close to the highest achievable speeds. At the same
time, however, Usain Bolt is not among the men with the best endurance in the
world. To see the other end of the curve, we need to introduce Eliud Kipchoge,
twice Olymptic marathon champion. Similarly to Bolt, he is among the best in his
discipline, reaching very high endurance. Again, the speed-endurance trade-o�
implies that Kipchoge cannot be among the fastest men in the world, if he wants
to be among the ones with best endurance. For reference, on the bottom left side
of the plot, it’s me.

In this case, the resource needed to obtain speed or endurance is the amount
of training (Fig. 13). If we want to relate the invested training and the resulting
endurance reached by the athletes, we will notice that with a lot of training,
Kipchoge will improve his results, approaching perfection. On the other hand,
the kind of training Bolt undergoes is not optimizing endurance, and therefore
his results will be less e�ective towards maximizing endurance.

Protective masks

Orders give us a rich way to describe designs under various lenses. Recently, we
all needed to become experts of protective masks. In this section, we will show
various ways in which we can order the latter by functionality.

By �rst thinking about the e�ectiveness of the mask in protecting the wearer
from a virus, we can order masks as in Fig. 14. In general masks are classi�ed
following their �lter abilities and inward leakages. The FFP1 class �lters at least
80 % of airborne particles and allows less than 22 % inward leakage. The FFP2
class �lters at least 96 % of airborne particles and allows less than 8 % inward
leakage, and the FFP3 class �lters at least 99 % of airborne particles and allows
less than 2 % inward leakage.

Obviously, based on the protection level, the most performant in Fig. 14 is FFP3,
and the worst is the fashion one. However, this is not the only way in which we
can classify masks. If, for instance, we want to consider a functionality “how
much does the mask say about the wearer”, we can order the masks di�erently.
Arguably, the ordering could look like the one in Fig. 15a.

22 2 Background on orders and monotonicity

Indeed, choosing a fashion mask might say that the wearer cares more about
aesthetics than safety, and choosing a FFP3 highlights responsible behaviors,
care, and research in masks models.

Similarly, we could order masks based on di�erent performance criteria, adding
the functionality “how much does it protect others?” (Fig. 15b).

On the other hand, we could think about the trade-o�s between the mask perfor-
mance and its cost, presenting a functionality-resource plot (Fig. 15c).

More performant masks are typically more expensive, and the fashion mask will
probably have the least performance and most expensive.

This example once again highlights the �exibility and richness of the “orders
approach”.

By considering all the aforementioned characteristics together no product domi-
nates another. This is the law of successful products. At equilibrium, in an e�cient
and free market, no product completely dominates another by both functionality
and requirements. Otherwise, the dominated product would not sell. Once we
specify the design purpose and the related constraints, we can (partially) order
products.

pr
ot

ec
ts

w
ea

re
r

fr
om

vi
ru

s

says something about the wearer

(a) Self-protection vs. expressitivity.

pr
ot

ec
ts

w
ea

re
r

fr
om

vi
ru

s

protects others

(b) Self-protection vs. protection of others.

pr
ot

ec
ts

w
ea

re
r

fr
om

vi
ru

s

price

(c) Self-protection vs. price.

Figure 15: Ordering masks by other considerations.

2.2 Ordered sets
So far, the discussion has been purely qualitative. We would like to be able to
formally describe preferences/priorities over a number of functionalities and
resources. For instance, in the context of a morning commute, one might prefer
the cost of the ride over the time needed to reach a destination, and the number

2.2 Ordered sets 23

�

� �

Figure 16: A pre-order represented as a graph.

�

� �

Figure 17: A partial order represented as a graph.

of mode changes (e.g., bus and tram) involved in the trip, and that one might not
prefer time over mode changes, or mode changes over time.

In this section, we present the mathematical structures to quantitatively reason
about these trade-o�s. We introduce pre-orders, partial orders, and total orders.
While we report the most important concepts in this text, Davey and Priestley [125]
and Roman [126] are excellent reference texts for the subject. This part builds on
the notion of relations and their properties, which are covered in our book [123].

We introduce these concepts by adding levels of speci�city.

Pre-orders

A pre-order is a set together with a re�exive and transitive relation.

De�nition 2.3 (Pre-ordered set)
A pre-ordered set is a tuple � = ��, ���, where � is a set, called the carrier set
or underlying set, together with a relation �� that is re�exive and transitive.

An example of a pre-ordered set represented as a graph is shown in Fig. 16. In
the graph representation of a pre-order �, we draw an arrow between � and �
if � �� �.

Example 2.4. The reachability relationship in any directed graph (potentially
including cycles) is a pre-order. The pre-order � is de�ned as follows. The set �
is the set of nodes of the graph. Take any two nodes �, � � �. One has � �� �
if and only if there is a path from � to � in the directed graph. There is always
a path from a node to itself (re�exivity), and given a path from � to �, and one
from � to �, we know that there is a path from � to � (transitivity).

Partial orders

By adding the condition of antisymmetry to a pre-order, we obtain a partially-
ordered set.

De�nition 2.5 (Partially ordered set)
A pre-ordered set � = ��, ��� is a partially-ordered set (poset) if the rela-
tion �� is antisymmetric.

An example of a poset represented as a graph is shown in Fig. 17. By comparing
this with Fig. 16, we notice that the double-headed arrow is not allowed anymore
(indeed, its existence would imply that source and target of the arrow are the
same element in the poset).

24 2 Background on orders and monotonicity

�

�

�

Figure 18: A total order.

� �

� �

� �
��

(a) � as a relation.

�

�

�
�

(b) � as a graph.

� �

� �

� �
�

(c) � as a Hasse diagram.

Figure 19: Three di�erent representations for a
poset.

Example 2.6. The reachability relationship in any directed graph does not de�ne
a poset. As a simple counterexample, take a graph with nodes {�, �, �} and paths
� to �, � to �, and � to �. From transitivity, one has � � �, but from reachability
we also have � � �. Therefore, per antisymmetry one should have � = �, but
these are actually distinct nodes. To make things work, one needs to consider
only acyclic graphs.

Example 2.7. The following de�nes a partial order � on the set of natural
numbers �. De�ne, for all �, � � �,

� � � if, and only if � divides �.

By de�nition, a natural number � divides another natural number � if there exists
some natural number � such that �� = �. The notation for “� divides �” is ���.

Total order

De�nition 2.8 (Totally ordered set)
A partially ordered set � = ��, ��� is a totally ordered set if the relation ��
is total.

An example of a totally ordered set represented as a graph is reported in Fig. 18.

Example 2.9 (Reals). The real numbers � form a totally ordered poset ��, ��
with order relation given by the usual ordering.

Hasse diagrams

We can represent partial orders in various ways. We now take a proxy poset and
represent it using di�erent conventions. Consider � = ��, ���, where � = {�,
�, �} and � �� �, � �� �. First, we could represent this using the standard
visualization for relations (Fig. 19a).

However, this is quite heavy, and does not exploit the fact that partial orders
are endorelations. Therefore, we could think to only draw the carrier set once
(Fig. 19b).

However, both the re�exivity arrows and the arrow from � to � is implicit in
partial orders, because of transitivity.

A Hasse6 diagram is an economical (in terms of arrows) way to visualize a poset.
In a Hasse diagram elements are points, and if � �� � then � is drawn lower
than � and with an edge connected to it, if no other point is in between (Fig. 19c).
Hasse diagrams are directed graphs.
6 Named after the German mathematician Helmut Hasse, who according to Garret Birkho� (an

American mathematician working on lattice theory), made e�cient use of them.

2.3 Examples of posets 25

{�}

�

��� {�}

(a) ��� {�}.

{�, �}

{�} {�}

�

��� {�, �}

(b) ��� {�, �}.

{�, �, �}

{�, �} {�, �} {�, �}

{�} {�} {�}

�

��� {�, �, �}

(c) ��� {�, �, �}.

Figure 20: Power set as a poset.

Example 2.10 (Discrete posets). We can see every set � as a discrete poset � =
��, =� using equality as the partial order. Notice that equality is symmetric,
transitive, and antisymmetric. When visualized as a Hasse diagram, discrete
posets are a collection of points.

Example 2.11 (Bool). The set of booleans Bool = {�, �} can be made into a
poset by choosing the order � �Bool �. This is equivalent to using “�” as a
relation. We obtain the poset Bool �= �Bool,��.

2.3 Examples of posets

Power poset

A classic poset is the one on the power set of a set (i.e., the set of subsets of the
set). There is a natural order on subsets, given by set inclusion.

De�nition 2.12 (Power poset)
Given a set �, de�ne the power poset ���� = �����, �� by ordering the
subsets in its power set ���� by inclusion.

A subset � precedes � if � � �:

� ����� �
.

� � �

This is illustrated in Fig. 20 for sets of 1, 2, 3 elements. One can formally check
that the power poset is a set. Consider a set �. Clearly, given � � ����, we
have � � �. Furthermore, given also � � ����, we have

� � � � � �
.

� = �

Finally, given also � � ����, we have

� � � � � �
.

� � �

Positive de�nite matrices

De�nition 2.13 (Positive (semi-) de�nite matrix)
A symmetric matrix � � ��◊� is positive de�nite if ���� > 0 for all non-
zero � � ��. It is positive semi-de�nite if ���� � 0 for all � � ��. We call
the set of all positive de�nite matrices ���(�), and the one of all positive

26 2 Background on orders and monotonicity

�1

�2

������ = 1

������ = 1

������ = 1

(a) Ellipses representing positive de�nite ma-
trices.

�
�

� �
� ��

(b) Order between positive de�nite matrices.

Figure 21: Poset of positive (semi-) de�nite matri-
ces.

14121086420
0

2

4

6

8

10

12

�

�

�

Figure 22: Three di�erent polyhedra.

� �� �

�
�

Figure 23: Poset of polyhedra.

semi-de�nite matrices ����(�).

Positive de�nite matrices have real, positive eigenvalues, which can be interpreted
as axes lengths of ellipsoids. Any matrix� � ���(�) describes an ellipsoid, which
can be written as a quadratic equation:

���� = 1, � � ��.

We can de�ne a partial order on ���(�) as

� ����(�) �
.

���� � ���� �� � ��

This can be interpreted as an inclusion of ellipsoids. Take for instance the matri-
ces

� = �
1 0
0 1

� , � = �
3�4 �1�8
�1�8 3�4

� , � = �
1�2 0
0 2

� .

The order � on the set {�, �, �} is reported in Fig. 21b, and it is easily explained
via Fig. 21a. The ellipse representing � (in red) is included by the one repre-
senting matrix � (in blue), but not by the one representing matrix � (in green).
Furthermore, the one representing � includes the one representing �.

Convex sets

Ordering ellipsoids via inclusion can be made more precise, by de�ning posets of
convex sets.

De�nition 2.14 (Convex set)
A set � � �� is convex if, for every �, � � �, and � � [0, 1]:

�� + (1 � �)� � �.

Examples of convex sets include polyhedra, a�ne spaces, ellipsoids, etc. We can
create a poset of convex sets, by taking the set of all convex sets � � �� as the
carrier set, and the inclusion � as the order. Let’s look at a particular example
when considering polyhedra, i.e., sets of the form

� = {� � �� � �� �� �,� � ��◊�, � � ��},

where �� is the vector ordering (point wise) on �-dimensional vectors.

To visualize this kind of orders, consider for instance three di�erent polyhedra
(Fig. 22), and the order they create (Fig. 23).

2.3 Examples of posets 27

Sensor Performance Curves FP Poset

FN Poset

Accuracy Poset

Sensor
Performance

Poset

Ace13gm, faster R-CNN1 (day)

Ace251gm, faster R-CNN3 (day)
Ace5gm, faster R-CNN3 (night)

Pointgrey, faster R-CNN3 (day) Ace13gm

Ace13gm

Ace13gm

Ace251gm

Ace251gm

Ace251gm

Ace5gm

Ace13gm

Ace251gm
Ace5gm Ace5gm

Ace5gm

PointgreyACC

ACC

ACC

ACC

FN

FN FN

FN

FP

FP FP

FP

PointgreyPointgrey

Pointgrey

Figure 24: Sensor performance curves, in terms of
false positives, true positives, and accuracy rates.

Ace13gmFP

Ace251gmFP Ace5gmFP

PointgreyFP

(a) False positives.

Ace13gmFN Ace5gmFN

PointgreyFN Ace251gmFN

(b) False negatives.

Ace13gmACC

Ace251gmACC

Ace5gmACC

PointgreyACC

(c) Accuracy.

Figure 25: Hasse diagrams for the sensor perfor-
mance curves.

Sensor/algorithm pairs

Another nice example of partial orders is related to the need of ordering sensor-
algorithms pairs (by preference) in the context of autonomous systems design
(e.g., an AV). In general, a robot is equipped with sensors, which produce obser-
vations from which one can detect obstacles (through algorithms) in the scene to
be explored. It has already been observed that sensors can be ordered by their
ability to discriminate states of the robot [127]. Here, instead, we characterize
sensors-algorithm pairs by the so-called “sensing performance” curves, expressed
in terms of a false positives map FP� ��0 � �[0,1] (i.e., given an environment,
the probability of detecting an obstacle at distance �, if there is no obstacle), a false
negatives map FN� ��0 � �[0,1] (i.e., assuming the presence of an obstacle at
distance�, the probability of not detecting it), and an accuracy map ACC� ��0 �
��0, denoting the sensing accuracy (range) as a function of distance from the
obstacles. These curves can be obtained through various sensor benchmarking
techniques, which we detail in [128] and references therein. As an example, we
report some of these maps in Fig. 24, for di�erent sensor-algorithm pairs.

To order these, one can leverage a poset of maps, assessing the point-wise domi-
nance of functions.

De�nition 2.15 (Poset of maps)
Consider posets �,�, and consider the set of functions � � �, denoted
by ��. Given any two functions �, �� �� �, we de�ne

� ��� � � �(�) �� �(�), �� � �.

Lemma 2.16. Def. 2.15 indeed de�nes a poset.

See proof on page 203.

Given this poset, we can order the curves presented in Fig. 24 for each of the three
quantities of interest, false positives, false negatives, and accuracy (Fig. 25)7. For
instance, when looking at false positives, the camera Pointgrey is dominated by
Ace5gm, Ace251gm, and, by transitivity, by Ace13gm. Instead, Ace251gm and
Ace5gm are not comparable.

Interestingly, the posets are di�erent for the three quantities, meaning that to
make a decision on which sensor-algorithm pair is the best one, one will have
to choose a particular way of combining posets into a new one (more on that in
Section 2.5).

7 For simplicity, we refer here only to the sensor names, omitting the algorithm names, since we have
four di�erent sensors.

28 2 Background on orders and monotonicity

{�, �, �}

{�, �} {�, �} {�, �}

{�} {�} {�}

�

��� {�, �, �}

(a) A chain.

{�, �, �}

{�, �} {�, �} {�, �}

{�} {�} {�}

�

��� {�, �, �}

(b) A chain.

{�, �, �}

{�, �} {�, �} {�, �}

{�} {�} {�}

�

��� {�, �, �}

(c) An antichain.

{�, �, �}

{�, �} {�, �} {�, �}

{�} {�} {�}

�

��� {�, �, �}

(d) An antichain.

Figure 26:Examples of chains (a-b) and antichains
(c-d) in the poset ��� {�, �, �}.

2.4 Chains and Antichains
There are two special types of subsets of a poset: chains and antichains. Their
de�nitions are dual.

De�nition 2.17 (Chain and antichain in a poset)
Given a poset � = ��, ���, a chain is a subset � � � such that any two
elements of � are comparable:

�, � � �
.

(� �� �) � (� �� �)

An antichain is a subset � of a poset where no two distinct elements are
comparable:

�, � � � � �� � .
� = �

We denote the set of antichains of a poset � by �����.

Example 2.18 (Chains and antichains in a power poset). Consider the power
poset on {�, �, �}. Examples of chains are

{�, {�}} and {�, {�}, {�, �}, {�, �, �}},

depicted in Fig. 26a and Fig. 26b, respectively.

Examples of antichains are

{{�}, {�}} and {{�, �}, {�, �}, {�, �}},

depicted in Fig. 26c and Fig. 26d, respectively.

Example 2.19. Imagine you need to choose a battery based on its mass and
cost. Ideally, you want both to be small (Fig. 27). The black markers represent an
antichain of choices

{�cheap, heavy�, �expensive, light�}.

Note that in multi-objective optimization, the standard terminology for this is
Pareto8 front. It is a set of pairs because they do not dominate each other: one
is cheaper, but is heavier, and the other is more expensive, but lighter, making
them incomparable. If a battery with the properties as the red marker existed
(very expensive, between light and heavy), that would be an element that cannot
be part of the antichain, since it would be dominated by �expensive, light�.
8 From Vilfredo Pareto, italian polymath.

2.5 Poset constructions 29

heavy

light

cheap expensive cost

m
as

s

Figure 27: Example of discrete antichains.

500

250

10 20 cost [CHF]

m
as

s[
g]

Figure 28: Example of continuous antichains.

Similarly, we could think of a continuous law which relates battery cost and mass.
Assume that cheap means 10CHF, expensive means 20CHF, light means 250 g,
and heavy means 500 g. For instance, consider the antichain given by mass =
500 � 25 � cost, with maximum possible cost 20CHF (Fig. 28).

2.5 Poset constructions
In this section, we look at a few standard recipes on how we can construct posets
from other posets.

Product of posets

Just like the product of sets, we can construct the product of posets. That is a
poset with the underlying set being the product of the underlying sets.

De�nition 2.20 (Product of posets)
Given posets � = ��, ��� and � = ��, ���, the product poset

� ◊� =
�
� ◊�, ��◊�

�
,

is the set � ◊� equipped with the order ��◊� given by

��1, �1� ��◊� ��2, �2�
.

(�1 �� �2) � (�1 �� �2)

Example 2.21. Recall the example of sensor performance curves, presented in
Section 2.3. By taking the product of the three posets characterizing false positives,
false negatives, and accuracy, one obtains the poset reported in Fig. 29. Here, you
can see that Ace13gm and Ace5gm dominate all the other sensors, forming an
antichain (they are not comparable).

Ace13gmFP

Ace251gmFP Ace5gmFP

PointgreyFP

(a) False positives.

Ace13gmFN Ace5gmFN

PointgreyFN Ace251gmFN

(b) False negatives.

Ace13gmACC

Ace251gmACC

Ace5gmACC

PointgreyACC

(c) Accuracy.

Ace13gm Ace5gm

Ace251gm

Pointgrey

(d) Product poset.

Figure 29: Hasse diagrams for the sensor performance curves posets, and their product.

30 2 Background on orders and monotonicity

� �� �

�
��

���

� �
�� ���op

Figure 30: Opposite of a poset.

Opposite of a poset

De�nition 2.22 (Opposite of a poset)
The opposite of a poset � = ��, ��� is the poset denoted �op = ��, �op

� �. It
has the same elements as �, but is equipped with the reverse ordering, in
the sense that, for all �, � � �,

� �� �
.

� �op
� �

For a given � � �, we will sometimes write �� do denote its corresponding copy
in �op, in order to emphasize that � and �� belong to distinct posets. However,
often we will not be so pedantic with our notation.

Example 2.23 (Credit and debt). Let us de�ne the set

� = {0.00, 0.01, 0.02, …} � �

of all CHF monetary quantities approximated to the cent. From this set we can
de�ne two posets, �+ = ��, �� and �� = ��, ��, that are the opposite of each
other. If the context is that, given two quantities 1 CHF and 2 CHF, we prefer
1 CHF to 2 CHF (for example because it is a cost to pay to acquire a component),
then we are working in �+, otherwise we are working in �� (for example because
it represents the price at which we are selling our product).

2.6 Monotonicity

Monotone maps

A monotone map is the generalization to posets of a “non-decreasing” function
on real numbers. The function � � max(0, 42�) is non-decreasing on the real
numbers because

� � �
.

max(0, 42�) � max(0, 42�)

Note that we use “�” and not “<”. “Non-decreasing” is a weaker condition than
“increasing”.

The de�nition of monotone function on a poset is the direct generalization of this
concept; the only change is that we use the partial orders at hand, rather than
the total order on the reals.

De�nition 2.24 (Monotone map)
A monotone map between two posets � = ��, ��� and � = ��, ��� is a

2.6 Monotonicity 31

{�, �, �} 3

{�, �} {�, �} {�, �} 2

{�} {�} {�} 1

� 0

��� {�, �, �} ��, ��

Figure 31: ���� is a monotone map.

function �� � � � that is compatible with the partial-orderings on its
source and target in the sense that

� �� � .
�(�) �� �(�)

Example 2.25 (The identity is monotone). Given a poset �, the identity func-
tion id� � � � � is a monotone map, since if � �� �, then id�(�) = � �� � =
id�(�).

Example 2.26 (Constant functions). Every constant function is a monotone
map.

Example 2.27 (Cardinality map). Consider the power poset (Def. 2.12) ���� of
a �nite set �. The cardinality map

���� � ����� �

is monotone when considered as a map from the poset ���� to the poset ��, ��.
Figure 31 shows a visualization of this map for the set � = {�, �, �}. To prove
this, recall that in the power poset subsets are ordered by inclusion. Therefore,
we need to show that

� � �
.

����(�) � ����(�)

It is easy to see that, because all elements of � are also in �, the cardinality of �
cannot be more than the cardinality of �. Monotonicity depends on the partial
order used on the domain and the codomain. To indicate that a map is monotone,
we write it indicating the two posets as the domain/codomain:

����� �����, ��� ��, ��.

Lemma 2.28. Any map �� �� � is monotone, when � is a discrete poset.

Antitone maps

Dually to monotone functions, we can de�ne antitone maps as order reversing
functions.

De�nition 2.29 (Antitone map)
An antitone map between two posets � = ��, ��� and � = ��, ��� is a

32 2 Background on orders and monotonicity

number of widgets

unit cost

(a) Unit cost vs. number of
widgets.

number of widgets

total cost

(b) Total cost vs. number of
widgets.

Figure 32: Unit and total costs vs. number of wid-
gets.

map � that reverses the ordering, in the sense that

� �� � .
�(�) �� �(�)

Example 2.30 (Unit cost, total cost). Assume that you want to produce some
widgets, and that the manufacturing cost depends on the number of widgets.
The function describing the total cost �� �� ��0 is a map between the ordered
sets � and ��0, and maps each quantity of widgets to a total manufacturing
cost (Fig. 32b). Clearly, � is a monotone function. Conversely, the unit cost func-
tion �� �� ��0 is antitone (Fig. 32a).

It is easy to see that an antitone map � � �� � is the same thing as a monotone
map � � �op � �.

Lemma 2.31. An antitone map � � � � � is a monotone map � � �op � �
and a monotone map � � �� �op.

Monotonicity is a compositional property: the composition of two monotone
maps is monotone.

Lemma 2.32. Given posets �,�,� and two monotone maps. �� � � � and
�� �� �, the composite map � # �� �� � is monotone as well.

See proof on page 203.

Remark 2.33 (Order on monotone maps). Fixed two posets � and �, the set of
monotone maps �� � form a poset themselves. We can order them point wise,
using the same order we de�ned for general maps. The example related to the
ordering of sensor-algorithm performance curves is an example of this order.

2.7 Poset bounds
In co-design, it will be important to identify poset bounds.

Minimal and maximal elements

You know already the operators min/max that give the minimum/maximum
values of a set of real numbers. If the set is �nite, the minimum and maximum
always exist. But for in�nite sets, the minimum and maximum might not exist. For
example, consider the set of real numbers contained between 0 and 1, excluding
the boundaries:

� = {� � �� 0 < � < 1}.

This set does not have a minimum or a maximum.

2.7 Poset bounds 33

� �

�

� �

� � �
�

��� �

Figure 33: Example of upper bounds and least up-
per bound for �.

For a total order, if the minimum and maximum exist, then they are unique. In a
partial order, this is not the case. We introduce the operators Min and Max that
are the generalization to partial orders of min �max.

De�nition 2.34 (Minimal and maximal elements)
Min� ���� � ����� is the map that sends a subset � of a poset to the
minimal elements of that subset (those elements � � � such that � �� � for
all � � �). In formulas:

Min� ���� ������,

� �
�

�
�

� � �� � � � � �� �

� = �

�

�
�

.

Max � ���� � ����� is the map that sends a subset � of a poset to the
maximal elements of that subset (those elements � � � such that � �� � for
all � � �). In formulas:

Max � ���� ������,

� �
�

�
�

� � �� � � � � �� �

� = �

�

�
�

.

Note that Min(�) and Max(�) could be empty.

Upper/lower bounds

De�nition 2.35 (Upper bounds in a poset)
The upper bounds of a subset � of a poset � are, if they exist, the elements
of � which dominate all elements in �. In other words, the upper bounds
of � are the elements of the set

���� � �= {� � � � �� � �� � �� �}.

De�nition 2.36 (Least upper bound / join / supremum)
A least upper bound of � � �, if it exists, is the least element among the upper
bounds of �. It is denoted �� or ��� �, and also called the join or supremum
of �.

So, given � � � and � � �, � = �� if and only if

1. � �� �, �� � �, and

2. � �� �, �� � � � � �� �.

34 2 Background on orders and monotonicity

� �

� � �

� �
�

Figure 34: Example of lower bounds of �.

� �

� � �

�
�

Figure 35: Example of lower bounds and greatest
lower bounds of �.

500

250

10 20 cost [CHF]

m
as

s[
g]

(a)

500

250

10 20 cost [CHF]

m
as

s[
g]

(b)

Figure 36: Examples of upper and lower sets.

Lemma 2.37. Let � be a poset and � � � a subset of the underlying set of �.
If �� exists, then it is unique.

See proof on page 203.

Example 2.38. Consider the poset � and its subset � depicted in Fig. 33. The red
markers � represent the upper bound of �. For this speci�c case, there is a single
least upper bound.

Example 2.39. Least upper bounds need not necessarily exist even in total orders.
For instance, the subset

�>� = {� � �� � > 0}

of the poset � (with the usual ordering) does not have a least upper bound.

Analogously to the case of (least) upper bounds, we can de�ne lower bounds and
greatest lower bounds.

De�nition 2.40 (Lower bounds in a poset)
The lower bounds of a subset � of a poset � are, if they exist, the elements
which are dominated by all elements in �. In other words, the lower bounds
of � are the elements of the set

���� � �= {� � � � �� � �� � �� �}.

De�nition 2.41 (Greatest lower bound / meet / in�mum)
The greatest lower bound, if it exists, is the greatest among the lower bounds
of �. This is denoted �� or ��� � and also called the meet or in�mum of �.

Example 2.42. It is easy to come up with an example of a subset � of a poset �
which has lower bounds but no greatest lower bound.

In Fig. 34 you �nd an example of a subset � of a poset � which has incomparable
lower bounds. In Fig. 35 instead, there is a greatest lower bound.

Upper and lower sets

De�nition 2.43 (Upper and lower set)
An upper set � is a subset of a poset � such that, if � � �, then all elements
of � that are above � are also in �. In other words:

� � � � �� � .
� � �

2.7 Poset bounds 35

���1�1500

250

10 20 cost [CHF]

m
as

s[
g]

(a)

�� {�1, �2}�1

�2

500

250

10 20 cost [CHF]

m
as

s[
g]

(b)

�� �

�

500

250

10 20 cost [CHF]

m
as

s[
g]

(c)

Figure 37: Example of upper closure for di�erent
sets of battery choices.

A lower set � is a subset of a poset � such that, if � � �, then all elements
of � that are below � are also in �. In other words:

� � � � �� � .
� � �

We call ������ the set of upper sets of � and ������ the set of lower sets of �.

Given the battery choices {�10CHF, 500 g�, �20CHF, 250 g�}, we can represent
an upper set as in Fig. 36a. The upper set can be interpreted as all the potential
battery choices which are dominated by at least one of the two choices we have
(in case we want to minimize mass and cost). Similarly, the lower set in Fig. 36b
can be interpreted as all the potential battery choices which dominate at least
one of the choices we have. Here when considering “the choices we have” in
Fig. 36b, we not only consider the two choices directly presented to us, but also
any convex combination of them.

Upper and lower closure

De�nition 2.44 (Upper closure operator)
The upper closure operator �� maps a subset to the smallest upper set that
includes it:

��� ���� �������,

� � {� � � � �� � �� � �� �}.

Remark 2.45. Note that, by de�nition, an upper set is closed to upper closure.

Lemma 2.46. For any � � ����, �� � is in fact an upper set.

See proof on page 203.

Lemma 2.47. The upper closure operator �� is an antitone map.

See proof on page 203.

In the example of battery choices (in the numerical case), �rst, consider the upper
closure of a single element of the poset, for instance �1 = �10CHF, 500 g� (Fig. 37,
left). Second, we can look at the upper closure when we add the choice �2 =
�20CHF, 250 g� (Fig. 37, center).

Note that the upper set of the subset formed by the two elements is the union of
the upper sets of the single elements. Finally, we can also de�ne the set

� = {�cost, mass� � mass = 750 � 25 � cost, � cost � [0, 20]},

and �nd its upper closure (Fig. 37, right).

36 2 Background on orders and monotonicity

���1

�1

10

1000

cost [CHF]

m
as

s[
g]

(a)

�� {�1, �2, �3}

�1

�2
�3

10 20 30

1000

500
250

cost [CHF]

m
as

s[
g]

(b)

�� �

�

10 20 30

1000

500
250

cost [CHF]

m
as

s[
g]

(c)

Figure 38: Example of lower closure for di�erent
sets of battery choices.

De�nition 2.48 (Lower closure operator)
The lower closure operator �� maps a subset to the smallest lower set that
includes it:

��� ���� � ������,

� � {� � � � �� � �� � �� �}.

Lemma 2.49. The lower closure operator �� is a monotone map.

See proof on page 203.

Consider the battery example, and the antichain given by the battery models �1 =
�10CHF, 1000 g�, �2 = �20CHF, 500 g�, and �3 = �30CHF, 250 g� (Fig. 38, left).
The lower closure operator �� {�1, �2, �3} represents all the battery models which,
if existing, would dominate {�1, �2, �3}. We could instead consider linear maps
between the points getting a poset �, and obtain the lower closure depicted in
Fig. 38 on the right.

Antichains and upper sets

Lemma 2.50. Let � and � be subsets of � that are antichains. Then

��� = ���
.

� = �

See proof on page 204.

De�nition 2.51 (Downward and upward closed sets)
An upper set � is downward-closed in a poset � if

� = ��Min �.

A lower set � is upward-closed in a poset � if

� = ��Max �.

The set of downward-closed upper sets of � is denoted �������, and the one
of upward-closed lower sets of � is denoted ��������.

2.8 Lattices
De�nition 2.52 (Lattice)
A lattice is a poset � = ��, ��� with the additional property that, for any
two-element subset {�, �} � �, both the join �{�, �} and the meet �{�, �}

2.8 Lattices 37

� � �

� �

� � �

Figure 39: Lattice structure.

6

2 3

1

(a) A lattice.

2 3

1

(b) Not a lattice.

Figure 40: Examples of a lattice and a non-lattice.

� � � � � � � � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Table 2: Properties of the Bool poset. Note
that ���.

exist. Usually these are written using in�x notation as � � � and � � �,
respectively.

De�nition 2.53 (Top and bottom)
If there is a least upper bound for the entire lattice �, it is called the top (�).
If a greatest lower bound exists, it is called the bottom (�).

De�nition 2.54 (Bounded lattices)
If both a top and a bottom exist, we call the lattice bounded, and denote it
by � = ��, ��, �, �, �, ��.

Example 2.55. In Def. 2.12 we presented the poset arising from the power
set ���� of a set � and ordered via subset inclusion. This is a lattice, bounded
by � and by the empty set �. Note that this lattice possesses two (dual) monoidal
structures �����, �, �, �� and �����, �,�, ��.

Example 2.56. Consider the poset Bool, in which �1 �Bool �2 i� �1 � �2, that
is, in addition to the operation

�� Bool ◊ Bool� Bool,

called implication, there are also the familiar and (�) and or (�) operations. Note
that � and � are commutative (� � � = � � �, � � � = � � �), whereas � is not.
Furthermore, � and � correspond to the meet and the join, respectively.

Example 2.57. Consider the set {1, 2, 3, 6} ordered by divisibility. For instance,
since 2 divides 6, we have 2 � 6. This is a lattice. However, the set {1, 2, 3} ordered
by divisibility is not, since 2 and 3 lack a meet (Fig. 40).

Lemma 2.58. �� is a bounded lattice (Def. 2.52) with

����= �, ��� �= �, ��� �= �, ��� �= �, ��� �= �.

See proof on page 204.

Lemma 2.59. �� is a bounded lattice (Def. 2.52) with:

����= �, ��� �= �, ��� �= �, ��� �= �, ��� �= �.

See proof on page 205.

Co-design 3
One of the �rst rules of science is if somebody delivers a secret weapon

to you, you better use it.
—Herbert A. Simon

In this chapter we start introducing the theory of co-design which will be lever-
aged in the rest of the thesis. Starting from basic concepts of formal engineering
design (Section 3.1), we will then talk about queries in design, �rst in a general
context (Section 3.2), then precisely, in the context of co-design problems with im-
plementations (Section 3.3 and Section 3.4). We will then introduce the notion of
“co-design problems with implementations”, showing how one can interconnect
multiple design problems (Section 3.5).

3.1 Basic concepts of formal engineering design
In this section, we introduce some basic concepts of formal engineering design.

Functionality and functional requirements You are an engineer in front
of an empty whiteboard, ready to start designing the next product. The �rst
question to ask is: What is the purpose of the product to be designed [18]? The
purpose of the product is expressed by the functional requirements, sometimes
called functional speci�cations (e.g., in formal methods), desired behavior (e.g., in
robotics), objectives (e.g., in optimization), guarantees (e.g., in contract theory),
conclusions (e.g., in proof theory), or simply function.

Unfortunately, the word “function” con�icts with the mathematical concept.
Therefore, we will talk about functionality.

Example 3.1. These are a few examples of functional requirements:

� A car must be able to transport at least � � 4 passengers.

� A battery must store at least 100 kJ of energy.

� An autonomous vehicle should reach at least 40 km�h while guaranteeing
safety.

� A refrigerator must maintain a certain temperature [29].

Resources and resource constraints We call resources what we need to pay
to realize the given functionality. In some contexts, these are better called costs,
requirements, dependencies, or assumptions.

Example 3.2. These are a few examples of resource constraints:

40 3 Co-design

�

�

Figure 41: An implementation � is a particular
point in the implementation space �.

� A car should not cost more than 15,000 CHF.

� A battery should not weigh more than 1 kg.

� A process should not take more than 10 s.

Duality of functionality and resources There is an interesting duality be-
tween functionality and resources. When designing systems, one is given func-
tional requirements, as a lower bound on the functionality to provide, and one is
given resource constraints, which are an upper bound on the resources to use.

As far as design objectives go, most can be understood as eitherminimize resource
usage or maximize functionality provided.

This duality between functionality and resources will be at the center of the
co-design formalization.

Non-functional requirements Functionality and resources do not cover
all the requirements– there is, for example, a large class of non-functional re-
quirements [18] such as the extensibility and the maintainability of the system.
Nevertheless, functionality and resources can express most of the requirements
which can be quantitatively evaluated, at least prior to designing, assembling,
and testing the entire system.

Implementation space The implementation space, also known as the design
space, is the set of all possible design choices that could be chosen; by imple-
mentation, or the word “design”, used as a noun, we mean one particular set of
choices. Implementations are also known as plans, blueprints, or decision vari-
ables. The implementation space � is the set over which we are optimizing; an
implementation � � � is a particular point in that set (Fig. 41).

The interconnection between functionality, resources, and implementation spaces
is as follows. We will assume that, given one implementation, we can evaluate it
to know the functionality and the resources spaces (Fig. 42).

Figure 42: Evaluation of speci�c implementations
to get functionality and resources spaces. implementationsfunctionality requirements

Functional interfaces and interconnection Components are interconnected
to create a system. This implies that we have de�ned the interfaces of components,

3.2 Queries in design 41

which have the dual function of delimiting when one component ends and an-
other begins, and also to describe exactly what is the nature of their interaction.

We will develop a formalism in which the functionality and resources are the in-
terfaces used for interconnection: two components are connected if the resources
required by the �rst correspond to the functionality provided by the second.

Abstraction By abstraction, we mean that it is possible to “zoom out”, in the
sense that a system of components can be seen as a component itself, which can
be part of larger systems. For instance, imagine the components composing a
complex electronic circuit building a vision sensor. Now, imagine the components
of the autonomy stack of a robot (e.g., perception, planning, control). In this
context, the vision sensor is an interconnection of small components, and at the
same time a component in the autonomy stack.

Compositionality A compositional property is a property that is preserved by
interconnection and abstraction; assuming each component in a system satis�es
that property, also the system as a whole satis�es the property. For instance, one
can compose two electronic circuits by joining their terminals to obtain another
electronic circuit. We would say that the property of being an electronic circuit is
compositional.

3.2 Queries in design
Suppose that we have a model with a functionality space �, a requirements
space �, and an implementation space �.

There are several queries we can ask of a model. They all look at the same phe-
nomenon from di�erent angles, so they look similar; however the computational
cost of answering each one might be very di�erent.

The �rst kind of query is one that asks if the design is feasible when �xed all
variables.

Problem (Feasibility problem). Given a triplet of implementation � � �, func-
tionality � � �, requirements � � �, determine if the design is feasible.

The second type of query is that which �xes the boundary conditions of func-
tionality and requirements, and asks to �nd a solution.

Problem (Find implementation). Given a pair of minimal requested functional-
ity � � � and maximum allowed requirements � � �, determine if there is an
implementation � � � that is feasible.

A di�erent type of query is the one in which the design objective (the functional-
ity) is �xed, and we ask what are the least resources necessary.

42 3 Co-design

�� �

���� ���

Figure 43: Design problems with implementation.

Problem (������������). Given a certain functionality � � �, �nd the set of
“minimal” resources in � that are needed to realize it (along with the implemen-
tations), or provide a proof that there are none (a certi�cate of infeasibility).

Dually, we can ask, �xed the resources available, what are the functionalities that
can be provided.

Problem (������������). Given a certain requirement � � �, �nd the set of
“maximal” functionalities that can realize it (along with the implementations),
or provide a proof that there are none (a certi�cate of infeasibility).

It is very natural to talk about the “minimal” requirements and “maximal” func-
tionalities; after all, we always want to minimize costs and maximize performance.
In the next chapter we start to put more mathematical sca�olding in place, starting
from de�ning functionality and requirements as posets.

3.3 Design Problems with Implementation
We start by de�ning a “design problem with implementation”, which is a tuple of
“functionality space”, “implementation space”, and “resources space”, together
with two maps that describe the feasibility relations between these three spaces
(Fig. 43).

De�nition 3.3 (Design problem with implementation)
A design problem with implementation (DPI) is a tuple

��,�, �, ����, ����,

where:

� � is a poset, called functionality space;

� � is a poset, called requirements space;

� � is a set, called implementation space;

� ����� �� � maps an implementation to the functionality it provides;

� ���� �� � maps an implementation to the resources it requires.

Example 3.4. Suppose we need to choose a motor for a robot from a given set. The
functionality of a motor can be parametrized by torque and speed. The resources
could include the cost [USD], the mass [g], the input voltage [V], and the input
current [A]. The map ����� � � � assigns to each motor its functionality, and
the map ���� �� � assigns to each motor the resources it needs (Fig. 44).

Graphical notation

3.3 Design Problems with Implementation 43

speed [rad/s]
torque [Nm]

cost [CHF]
mass [g]
voltage [V]
current [A]

���� ���

�� �

Figure 44: Design problem of an eletric motor.

design
problem

�1

��

�1

��
� �n� n�

Figure 45:Graphical notation for design problems.

Motor

cost [CHF]
mass [kg]

voltage [V]

current [A]

speed [rad/s]

torque [Nm]

Figure 46: Design problem for an electric motor.

Gearbox
�� [Nm]
�� [rad/s]�� [rad/s]

�� [Nm]

Figure 47: Design problem for a gearbox.

Road
time [s]

capacity [veh]
nr. veh [veh]

Figure 48: Design problem for the design of a road.

A graphical notation will help reasoning about composition. A DPI is represented
as a box with n� green edges and n� red edges (Fig. 45). This means that the
functionality and resources spaces can be factorized in n� and n� components:

� =
n��

�=1
����� , � =

n��

�=1
����� ,

where “���” represents the projection to the �-th component. If there are no green
(respectively, red) edges, then n� (respectively, n�) is zero, and � (respectively, �)
is equal to � = {� �}, the set containing one element, the empty tuple � �.

These co-design diagrams are not to be confused with signal �ow diagrams, in
which the boxes represent oriented systems and the edges represent signals. More
on that in Section 8.3.

Examples of design problems

We now present a list of design problems for di�erent disciplines, to showcase the
universality of the approach. Throughout the manuscript, we will often introduce
new examples.

Example 3.5 (Electric motor). An electric motor provides speed and torque,
and requires cost, mass, voltage, and current. The implementations are given by
di�erent motor models/technologies, for instance available in catalogues.

Example 3.6 (Gearbox). A gearbox (Fig. 47) provides a certain output torque ��
and speed ��, given a certain input torque �� and speed �� . For an ideal gearbox
with a reduction ratio � � �+ and e�ciency ratio �, 0 < � < 1, the constraints
among those quantities are �� � � �� and ���� � � ����. With this simple model,
the set of implementations are given by the possible values of reduction and
e�ciency ratio.

Example 3.7 (Congested roads). In classic transportation science, when design-
ing a road, one leverages a key relationship between number of vehicles which
access the road, the capacity of the road, and the travel time needed to traverse it
(Fig. 48). A common way of relating these quantities is via the Bureau of Public

44 3 Co-design

Energy
control

time [s]

initial state
initial fuel

lap

�nal state
�nal mass [g]

Figure 49: Design problem for the energy man-
agement of a formula 1 car.

Bin packing

content
shapes

container
shape

Figure 50: Design problem for bin packing

GMappingaccuracy

robustness
nr. particles

Figure 51: Design problem for SLAM.

Progr. stereo
resolution latency [s]

Figure 52: Design problem for progressive stereo
reconstruction.

Roads (BPR) function

�(�) = �nom �1 + � ��
�
�
�
� ,

where � is the time needed to traverse the road, �nom is the nominal time in case
of no congestion, � is the capacity of the road, � is the number of vehicles on the
road (congestion), and �, � are positive parameters, which, for instance, could
de�ne di�erent implementations.

Example 3.8 (Formula 1 hybrid electric power unit). When designing the hybrid
electric power unit of a formula 1 car, one can think of a design problem to
represent the energy management for completing one lap. In this context, the
energy management must ensure a minimum battery state at the end of the lap,
as well as a minimum mass. In racing scenarios, one cares about minimizing
lap time, initial battery state and fuel (Fig. 49). The implementations are given by
di�erent control strategies to manage the energy during the lap, and relationships
can be obtained by solving optimization problems [129].

Example 3.9 (Bin packing). Suppose that each internal component occupies
a volume bounded by a parallelepiped, and that we must choose the minimal
enclosure in which to place all components (Fig. 50). What is the minimal size of
the enclosure? This is a variation of the bin packing problem, which is in NP for
both 2D and 3D [130]. It is easy to see that the problem is monotone, by noticing
that, if one the components shapes increases, then the size of the enclosure
cannot shrink. The implementations, in this case, are the con�gurations which
one can choose to place all components in the container (one of the possible
con�gurations is shown in the picture).

Example 3.10 (SLAM). One issue with particle-�lter-based estimation proce-
dures, such as the ones used in the popular GMapping [131] suite, is that the
�lter might diverge if there aren’t enough particles. Although the relation might
be hard to characterize, there is a monotone relation between the robustness (1 -
probability of failure), the accuracy, and the number of particles (Fig. 51). Here,
the implementation space contains the other choices of parameters for the �lter:
�xed the number of particles, by changing the tuning of the �lter, we can explore
the trade-o� of accuracy and robustness.

Example 3.11 (Stereo reconstruction). Progressive reconstruction systems [132],
which start with a coarse approximation of the solution that is progressively
re�ned, are described by a smooth relation between the resolution and the la-
tency to obtain the answer (Fig. 52). A similar relation characterizes any anytime
algorithms in other domains, such as robot motion planning. Here, the imple-
mentations could be a list of di�erent algorithms (or algorithm parameters) to

3.4 Queries, more precisely 45

swarm
operations

area [m2]
nr. agents
speed [m/s]
time [s]

(a)

� speed

nr. agents

execution time
area

(b)

Figure 53: Design problem for swarm operations
and sketch of functionality-resources trade-o�.

CPU
power [W]computation [�ops]

Figure 54: Design problem for a CPU.

act. power
sen. power
accuracy

task compl. prob.

1/coll. prob.

Figure 55: Design problem for joint sensor
scheduling and control synthesis problem.

energy [J/fr.]
accuracy

through. [fr./s]

Figure 56: Design problem for SLAM benchmark-
ing.

perform the task at hand, and the speci�c relationships might be obtained by
benchmarking.

Example 3.12. In a multi-robot system there is always a trade-o� between the
number of robots and the capabilities of the single robot. Suppose we need to
create a swarm of agents whose functionality is to sweep an area. If the func-
tionality is �xed, one expects a three-way trade-o� between the three resources:
number of agents, the speed of a single agent, and the execution time (Fig. 53).
For example, if the time available decreases, we have to increase either the speed
of an agent or the number of agents (Fig. 53b).

Example 3.13. The trivial model of a CPU is as a device that provides computa-
tion, measured in �ops, and requires power (in W). Clearly there is a monotone
relation between the two (Fig. 54).

Example 3.14. Svorenova et al. [41] consider a joint sensor scheduling and
control synthesis problem, in which a robot can decide to not perform sensing
to save power, given performance objectives on the probability of reaching the
target and the probability of collision. The method outputs a Pareto frontier of all
possible operating points. This can be cast as a design problem with functionality
equal to the probability of reaching the target and (the inverse of) the collision
probability, and with resources equal to the actuation power, sensing power, and
sensor accuracy (Fig. 55).

Example 3.15. Nardi et al. [133] describe a benchmarking system for visual
SLAM that provides the empirical characterization of the monotone relation
between the accuracy of the visual SLAM solution, the throughput [frames/s]
and the energy for computation [J/frame]. The implementation space is the
product of algorithmic parameters, compiler �ags, and architecture choices, such
as the number of GPU cores active. This is an example of a design problem whose
functionality-resources map needs to be experimentally evaluated (Fig. 56).

3.4 Queries, more precisely
A DPI is a model to which we can associate a family of optimization problems.
While in previous examples we covered the problem “feasibility”, we still miss
������������, ������������, and �����������.

The �rst can be translated to “Given a lower bound on the functionality �, what
are the implementations that have minimal resource usage?” (Fig. 57).

Problem (������������). Given � � �, �nd the implementations in � that
realize the functionality � (or higher) with minimal resources, or provide a proof

46 3 Co-design

Figure 57: Graphical representation of
������������.

implementationsfunctionality requirements

�� �

���� ���
�

that there are none:
�
�
�

�
�
�
�

using � � �,

Min�� �,

s.t. � = ���(�),

� �� ����(�).

(1)

Remark 3.16 (Minimal vs. least solutions). Note the use of Min�� in (1), which
indicates the set of minimal (non-dominated) elements according to ��, rather
than min�� , which would presume the existence of the least element. In all
problems in this paper, the goal is to �nd the optimal trade-o� of resources
(“Pareto front”). So, for each �, we expect to �nd an antichain � � �����. We
will see that this formalization allows an elegant way to treat multi-objective
optimization problems. The algorithm to be developed will directly solve for the
set �, without resorting to techniques such as scalarization, and therefore is able
to work with arbitrary posets, possibly discrete.

In an entirely symmetric fashion, we could �x an upper bound on the resource
usage, and then maximize the functionality provided (Fig. 58). The formulation is
entirely dual, in the sense that it is obtained from (1) by swapping Min with Max,
� with �, and ���� with ���.

Problem (������������). Given � � �, �nd the implementations in � that
requires � (or lower) and provide the maximal functionality, or provide a proof
that there are none:

�
�
�

�
�
�
�

using � � �,

Max�� �,

s.t. � = ����(�),

� �� ���(�).

Another type of query is: “Given a lower bound on the functionality � and an
upper bound on the costs �, what are the feasible implementations?

3.5 Co-design problems 47

implementationsfunctionality requirements

�� �

���� ���
�

Figure 58: Graphical representation of
������������.

Problem (�����������). Given � � � and � � �, �nd the implementations in �
that requires � (or lower) and provide � (or higher)

�
�

�
�
�

using � � �,

s.t. � �� ����(�),

s.t. ����(�) �� ���(�),

(2)

Another variation is to �nd only whether there are feasible solutions or not.

Problem (�����������). Given � � � and � � �, �nd if (2) is feasible.

3.5 Co-design problems
A “co-design problem” is de�ned as a multigraph of design problems.

De�nition 3.17 (Co-design problem with implementation)
A co-design problem with implementation (CDPI) is a tuple ��,�, ��,���,
where � and � are two posets, and ��,�� is a multigraph of DPIs. Each
node � � � is a DPI � = ���,��, ��, �����, �����. An edge is a tuple
���1, �1�, ��2, �2��, where �1,�2 � � are two nodes and �1 and �2 are the
indices of the components of the functionality and resources to be con-
nected, and it holds that ��1��1 = ��2��2 (Fig. 59).

�1 �2
��1��1 ��2��2�

���1, �1�, ��2, �2��

��

Figure 59: Co-design problem as a multigraph of
design problems.

A CDPI is equivalent to a DPI with an implementation space � that is a subset of the
product of implementation spaces of each design problem

�
��� ��, and contains

only the tuples that satisfy the co-design constraints. An implementation tuple �
�
�

��� �� belongs to � i� it respects all functionality–resources constraints on

48 3 Co-design

Figure 60: Example of interconnection of 3 DPs

�
�

�

��
��

��
��

�� ��,�
�

��,�

�
��,2

��,1

Motor

cost [CHF]
mass [kg]

voltage [V]

current [A]

speed [rad/s]

torque [Nm]

Figure 61: Design problem for the electric motor.

chassis cost [CHF]

mass [g]

mot. speed [rad/s]

torque [Nm]payload [g]

speed [m/s]

Figure 62: Design problem for the chassis.

the edges, in the sense that, for all edges ���1, �1�, ��2, �2�� in �, it holds that

��1 ����1 (��1 �) � ��2�����2 (��2 �).

The posets �,� for the entire CDPI are the products of the functionality and
resources of the nodes that remain unconnected. For a node �, let ��� and ��� be
the set of unconnected functionalities and resources. Then � and � for the CDPI
are de�ned as the product of the unconnected functionality and resources of all
DPIs: � =

�
���

�
�����

���� and � =
�

���
�

�����
����. The maps ����

and ��� return the values of the unconnected functionality and resources:

����� � �
�

���

�

�����

�������(���),

���� � �
�

���

�

�����

������(���).

Example 3.18. The CDPI in Fig. 60 is the interconnection of 3 DPs �, �, �. The
implementation space is a subset of the product

�� ◊ �� ◊ ��.

The elements ���, ��, ��� that are feasible are the ones that respect the following
constraints:

1. Functionality and resources of each DPI are given by their implementation:

�� = ���(��), �� = ����(��),

�� = ���(��), �� = ����(��),

�� = ���(��), �� = ����(��).

2. Wiring constraints:

���1 , ��2� = ��,

��,� =
�
��, ��

�
,

��,� =
�
��, ��

�
.

3.5 Co-design problems 49

+
�1
�2

�

Figure 64: Sum design problem.

chassis + motor

cost [CHF]
mass [g]

voltage [V]

current [A]

speed [m/s]

payload [g]

Figure 65: Abstraction of “chassis plus motor”
design problem.

3. Co-design constraints:

��,� � ��2 ,

�� � ��,�.

Recursive constraints

Consider the co-design of chassis plus motor. The design problem for a motor has
speed and torque as the provided functionality (what the motor must provide),
and cost, mass, voltage, and current as the required resources (Fig. 61).

For the chassis (Fig. 62), the provided functionality is parameterized by the mass of
the payload and the cost, total mass, and what the chassis needs from its motor(s),
such as speed and torque.

The two design problems can be connected at the edges for torque and speed, as
in Fig. 63. The semantics is that the chassis needs at least the torque and speed
provided by the motor.

chassis

motorpayload [g]

velocity [m/s] cost [CHF]
total mass [g]

mass [g]

voltage [V]
current [A]

cost [CHF]
torque

�
torque

speed
�

Figure 63: Series interconnection of chassis and motor design problems.

Resources can be summed together using a trivial design problem corresponding
to the relation:

�1 + �2 � �.

A co-design problem might contain recursive co-design constraints. For example,
if we set the payload to be transported to be the sum of the motor mass plus some
extra payload, a cycle appears in the graph (Fig. 66).

Abstraction This formalism makes it easy to abstract away the details in which
we are not interested. Once a diagram like Fig. 66 is obtained, we can draw a box
around it and consider the abstracted problem (Fig. 65). The idea of interconnec-
tions and abstraction will be made more precise in Chapter 5.

50 3 Co-design

chassis motor

+

+

�

velocity [m/s]
extra

payload [g]

�
total mass [g]

total cost [CHF]

voltage [V]
current [A]

�
torque

� speed
�

�mass [g]
cycle in the co-design graph

Figure 66: Example of cycle in a co-design diagram.

Feasibility 4
Nature uses as little as possible for anything.

—Johannes Kepler9

In the previous chapter we have introduced design problems with implementations.
Those describe relations among three quantities: functionalities, resources, and
implementations.

For the sake of computation, one can simplify the model and directly obtain a
feasibility relation between functionality and resources. In this chapter, we �rst
present the concept of design problems as monotone maps (Section 4.1), and
then show how one can practically populate the related feasibility relations (Sec-
tion 4.2). We close the chapter with a series of exampels from di�erent domains.

4.1 Design problems as monotone maps
A DPI (Def. 3.3) describes a relation between three entities: �,�, �. In this chapter,
we show how one can consider a DPI just in the relation between � and � (a
“DP”).

Recall how the problem ����������� was de�ned in Section 3.4. Given a particular
functionality � and resource �, we would like to know whether they are feasible.

This is a function from � ◊� to Bool:

�� � ◊�� Bool.

The value �(�, �) is the answer to the question “is the functionality � feasible
with resources �?”. Due to how the problem is de�ned, we know that

1. If � is feasible with �, then any �� �� � is feasible with �.

2. If � is feasible with �, then � is feasible with any �� �� �.

Therefore, we can conclude that � is monotone in the second argument �, and
antitone in the �rst argument �.

It is going to be convenient to have functions that are monotone in both argu-
ments, and not mixed monotone/antitone. Instead of considering a map from �◊
� to Bool, we can turn things around and look at a map � from �op ◊� to Bool,
de�ned as �(�, �) = �(��, �). Because we use �op rather than �, the map � is
monotone.

The feasibility map � has now forgotten everything about implementations;

9 Kepler was a german astronomer, mathematician, astrologer, and philosopher, and a key �gure of
the 17th century Scienti�c Revolution.

52 4 Feasibility

however, it does contain all the information we need to solve co-design feasibility
problems.

De�nition 4.1 (Design Problem)
A design problem (DP) is a tuple ��,�, ��, where �,� are posets and � is a
monotone map of the form

�� �op ◊��Pos Bool.

The notation �Pos means “a morphism in Pos”, and will be clear in Chapter 6.

We will also use the notation �� � �� � for design problems, in order to em-
phasize how we think of them as morphisms in a category. This will be explained
in Chapter 6.

Remark 4.2. Given a DPI ��,�, �, ����, ���� it is always possible to obtain the
following DP:

�� �op ◊� �Pos Bool,

���, �� � �� � �� (� �� ����(�)) � (���(�) �� �).

Evaluating this DP is the same as asking whether the set

{� � �� (� �� ����(�)) � (���(�) �� �)}

is empty or not.

Lemma 4.3. Given any monotone map �� � �Pos �, we can turn it into a
design problem

�� � �op ◊��Pos Bool

via the following recipe. Set

��(��, �) = � if and only if �(�) � �.

��, as de�ned above, is indeed a design problem when � is a monotone map.

See proof on page 206.

DPs as upper sets

De�nition 4.4 (Feasible set of a design problem)
We de�ne the feasible set �� of a design problem

�� �op ◊��Pos Bool

4.1 DPs as monotone maps 53

�� ����

Figure 67: Diagrammatic representation of a de-
sign problem.

as the subset of �op ◊� for which � is the indicator function, that is

�� = {���, �� � �op ◊� � �(��, �) = �}.

Note that the feasibility set �� of a design problem �� �op ◊��Pos Bool is a
binary relation �� � �op ◊ �. There is a one-to-one correspondence between
functions �� � ◊ �� Bool and binary relations �� �� �.

An analogous correspondence holds in the context of design problems:

Lemma 4.5. There is a one-to-one correspondence between DPs �� �op ◊
��Pos Bool and upper sets �� � �op ◊�.

See proof on page 206.

The Boolean-valued design problems we are considering in this section do not
distinguish between particular implementations: they only tell us if any imple-
mentation or solution exists for given functionality and resources.

Diagrammatic notation We represent design problems using a diagram-
matic notation. One design problem �� � �� � is represented as a box with
functionality � on the left and resources � on the right (Fig. 67).

Querying design problems

Equation Remark 4.2 on the one hand, and Remark 4.2 on the other hand, give
two perspectives on the mathematical de�nition of what we are calling a de-
sign problem. When thinking about querying design problems, a correspondent
de�nition will be important.

Let �� �op ◊ � �Pos Bool be a design problem. We can represent the query
������������ of this design problem as a monotone function

�� ������ (�), ��,

and the query ������������ as a monotone function

�� ������ (�), ��.

Here ����� (�) denotes the set of upper sets of � and ����� (�) denotes the set of
lower sets of �. The queries, and the associated optimization problems, will be
made more precise in Chapter 7.

54 4 Feasibility

Drone

mass [kg]

cost [USD]

�ight time [min]
top speed [km/h]

range [km]

Figure 68: Design problem for a drone.

4.2 Populating feasibility relations
Feasibility relations o�er a formidable tool to reason about design. But how can
we populate them? We think of mainly three classes of models:

� Population via catalogues of o�-the-shelf designs;

� Population via �rst principles, analytical relations;

� Population via data-driven methods, on-demand.

We now provide some intuition for each of them.

Catalogues

Catalogues are a very intuitive way of populating feasibility relations. Given
a discrete set of components, one can identify functionalities and resources of
interest, and consider the feasibility relations provided by all the components.

For instance, consider a catalogue of drones produced by DJI, as the one reported
in Table 3

Table 3: Selection of drones produced by DJI. Spark Phantom 3 Std Phantom 4 Adv Phantom 4 Pro Mavic Inspire
Flight time [min] 16.0 25.0 30.0 30.0 27.0 27.0
Top speed [km/h] 50.0 58.0 72.0 72.0 65.0 94.0
Range [km] 2.0 1.0 7.0 7.0 7.0 7.0
Takeo� weight [kg] 0.33 1.2 1.4 1.4 0.74 4.0
Price [USD] 499.0 499.0 1,349 1,499 999,0 2,999

We now want to come up with a design problem, and therefore need to classify
the di�erent quantities as functionalities or resources. Depending on the context,
there might be multiple classi�cations which make sense. In this case, we want
a drone to provide �ight time, at a certain top speed, with a certain range, by
requiring a certain takeo� weight and price. In other words, we can come up
with a design problem � as in Fig. 68, where each feasibility relation between
functionality and resources is reported in the catalogue. In particular, we can
query the design problem for combinations of functionalities and resources. For
instance:

�(
�
20min, 50 km�h, 0.5 km

��,
�
1.0 kg, 1, 000USD

�
) = �,

since no model satis�es the properties. For instance, by increasing the allowed
takeo� weight, one has:

�(
�
20min, 50 km�h, 0.5 km

��,
�
1.5 kg, 1, 000USD

�
) = �,

since now Spark and Mavic satisfy the requirements.

4.3 Example: Linear Quadratic Gaussian Control 55

Drone
energy [J]

duration [s]
power [W]

Figure 69: Design problem for the energy con-
sumption of a drone.

First principles

Sometimes one does not just have a discrete list of components with some prop-
erties, but rather an analytical law governing the properties. In engineering this
is particularly the case with physical laws. For instance, when designing a drone,
we know that:

mission energy � mission duration � power consumption.

Therefore, one could come up with a design problem to represent the energy
consumption calculation, as in Fig. 69.

First principle relations also include closed-form solutions of complex problems.
In Section 4.3, we show how to populate a feasibility relation in the context of
designing control systems.

Data-driven

Finally, an important, an extremely timely approach to populate feasibility re-
lations is the data-driven one. In practice, one creates a catalogue, but not one
of existing o�-the-shelf designs, but rather experiments, black-box simulations,
or solutions of optimization problems. In the course of this manuscript, we will
show various examples for which this procedure is adequate.

4.3 Example: Linear Quadratic Gaussian Control
When controlling linear systems, a classical tool is Linear Quadratic Gaussian
(LQG) control. In this example, adapted from our work [134], we will show how
one can embed this popular method in the language of co-design. As we will see
in the remainder of the section, LQG problems can be solved in closed-form, by
solving speci�c equations (the so-called Riccati equations), making the arising
co-design problems a case of the “�rst principles” ones.

Background on continuous-time LQG control

First, we recall the de�nition of in�nite-horizon LQG control.

De�nition 4.6 (Continuous-time LQG control)
Given the continuous-time stochastic dynamics

d�� = ���d� + ���d� + �d��

d�� = ���d� + �d��,
(3)

56 4 Feasibility

LQG

�track

�e�ort

obs. noise �

sys. noise �

Figure 70:Co-design theorem for continuous-time
LQG problems.

where �� and �� are two standard Brownian processes, let �,�,�, �, � be
matrices of compatible dimensions and � = ���, � = ��� be the e�ec-
tive noise covariances. The continuous-time in�nite-horizon LQG problem
consists of �nding a control law �� minimizing the quadratic cost

� = lim
���

1
��{�

�

0

��
������

�
+
�
������

��
d�},

with � � �, � � � (i.e., positive semi-de�nite and positive de�nite matrices,
respectively).

Hereafter, we use the poset of Hermitian matrices introduced in Section 2.3.

Lemma 4.7. The optimal control law for the LQG problem in Def. 4.6 is ��� =
�� ��� = ���1�� �� ���, where ��� is the unbiased minimum-variance estimate of
�� given previous measurements and �� � � solves the Riccati equation

�� +��� � ����1��� +� = �. (4)

The minimum cost �� achieved by the optimal control is10:

�� = ��
� �� ������1� �� + ���

�

= ��
�
�� �����1�� �� + ���

�
,

where �� � � is the solution of the Riccati equation

�� + ��� � �����1�� +� = �. (5)

Co-design formalization

To formalize the LQG control problem as a design problem we �rst de�ne two
performance metrics. From a continuous-time LQG problem, we de�ne the
stationary tracking error �track and control e�ort �e�ort:

�track = lim
���

�{������},

�e�ort = lim
���

�{������}.

We are now ready to state the �rst central result of this example.

Theorem 4.8. The LQG problem of Def. 4.6 can be formulated as a design
problem with diagrammatic form as in Fig. 70.

10 Note that [135] contains a typo at p.188 (one extra��1 factor). Instead, [136] has a cleaner derivation
and exposition.

4.3 Example: Linear Quadratic Gaussian Control 57

To prove Theorem 4.8, we show that there exists a design problem, relating
functionalities�,� and resources �track,�e�ort. First, by writing �track and�e�ort
explicitly (Lemma 4.9), we prove their monotonicity with respect to cost weighting
(Lemma 4.10). Second, we show the monotone relation characterizing the design
problem (Lemma 4.12 and Lemma 4.13).

Lemma 4.9. The metrics �track and �e�ort can be written as

lim
���

�{����0��} = �� (�0 (� + �)) ,

lim
���

�{����0��} = ��
�
�����1�0��1���

�
,

where � solves (5), � solves the Lyapunov equation

(� � ��)� + � (� � ��)� + ���� = �, (6)

� solves (4) and � = �����1 is the Kalman gain.

See proof on page 207.

Given explicit forms, we can now show that they are characterized by monotonic
relations.

Lemma 4.10. Let �(�) = ��0 and �(�) = 1
�
�0, � � �+. Let ��(�) be the

solution of the LQG problem with �(�) and �(�). Then, under optimal control
one has:

� �track(�) is decreasing with � increasing.
� �ef fort(�) is increasing with � increasing.

See proof on page 207.

Intuitively, by increasing � we increase the penalty for the tracking error of the
control. For this reason, �track decreases and �e�ort increases. We now want to
assess the e�ect of the system and observation noises on the optimal control.

Lemma 4.11 (Lemma 3, [137]). Let �,� � �, � � � � �. Then, ��1,��1 � �
and ��1 � ��1 � �.

Lemma 4.12. The solution of (5) is monotonic in � and �, i.e., ��,�� ��
��,��� � �(�,�) � �(��,��).

See proof on page 208.

Lemma 4.13. Consider the situation of Lemma 4.10:

� Fix �track. �ef fort is monotonic in � and in �.
� Fix �ef fort. �track is monotonic in � and in �.

58 4 Feasibility

LQG

�track

�e�ort

obs. noise �

sys. noise �

delay

Figure 71:Co-design theorem for continuous-time
LQG problems with delays.

See proof on page 208.

This shows that the more uncertain the observations and the system dynamics
are, the larger the control e�ort and tracking error will be, and concludes the
proof of Theorem 4.8.

The presented DPI precisely assesses the feasibility relation between control e�ort,
tracking error, system noise, and the observation noise. This design problem can
be manipulated by taking the “op” of a quantity, and moving it on the other side
of the diagram. For instance, we can think of the observation noise as resource, by
switching its meaning to information (i.e., from noise to information matrix).

Dealing with delays We now show the ability of our formalism to capture the
in�uence of delays on the system.

Theorem 4.14. A continuous-time LQG problem with observation and compu-
tation delays (�obs, �comp) can be formulated as a design problem with diagram
as in Fig. 71.

To establish the e�ect of a nuisance, we follow what we call the substitution
principle. If in the case in which the nuisance was “lower” the controller could
simulate a “higher” nuisance, then we have monotonicity. If we had a smaller
delay, we could simulate a larger one by adding it arti�cially. Hence, control e�ort
and tracking error of the optimal control strategy cannot decrease with larger
delay.

Visualization via Pareto fronts We want to give a visual interpretation of the
presented results. For the scalar case of Def. 4.6 we can derive �track and �e�ort in
closed-form:

�track(�0) = �0 � �� +
(���)2

2�
�
�2 + �2�0�2��0

� ,

�e�ort(�0) =
�0 ��2�2

2�2�

�
� +

�
�2 + �2�2�0��0

�2

�
�2 + �2�2�0��0

,

where variables are in lower case since they represent scalar quantities. We can
compute their limits, by �xing � and �:

lim
��0

�track(�0) = �0 � �� +
(���)2

2�� � , lim
���

�track(�0) = �0 ��,

lim
��0

�e�ort(�0) =
2�0�(� ��)2

�2�
, lim
���

�e�ort(�0) =�.

We can plot instances of the Pareto front ��track, �e�ort� (Fig. 75). This is the

4.3 Example: Linear Quadratic Gaussian Control 59

d�� = ���d� + ���d� + �d��

d�� = ���d� + �d��,

� = ���,� = ���

ZOH�

Delay �obs

Sampling�
�

Discrete
Controller

�,�

Delay �comp

��

����obs

��

�������obs

�����comp

�c

Figure 72: LQG digital control with observation
and computation delays, sampling and ZOH.

query in which we “�x functionalities and minimize resources”, where the Pareto
fronts represent the best achievable control performances, given speci�c � and
�. Alternatively, we could ask to “�x resources and maximize functionalities”.
This is the query in which we �x �track and �e�ort, and observe a Pareto front of
system and observation noises at which the given performance can be provided.
Monotonicity is easy to see. By choosing ��1, �1� � ��2, �2� (i.e., �1 � �2 and
�1 � �2), we see that both �track and �e�ort increase, and hence that the Pareto
fronts dominate each other. We can derive similar results also for the digital
case.

Background on digital LQG

We de�ne the in�nite-horizon discrete-time LQG control problem.

De�nition 4.15 (Discrete-time LQG control)
Consider the discrete-time stochastic dynamics

�� = �d�� + �d�� + �d��

�� = �d�� + �d��,

where �� and �� are two standard Brownian processes and �d = ���,
�d = ��� the noise covariances. The discrete-time in�nite-horizon LQG
problem consists of �nding a control law �� which minimizes the quadratic
cost

�d = lim���
1
�
�{
���1

�=0
�
����d�� + ����d��

�
},

where �d � �, �d � �.

We want to show that the relations found in the previous section hold for the
case of digital LQG control, where we want to control a continuous-time system
using a digital controller.

Lemma 4.16. Consider a continuous-time LQG problem, where observations are
sampled with period � and processed by a digital controller to produce a control
input (Fig. 72). The input is reconstructed using ZOH with period �. We can �nd:

�d = ���,�d =�
�

0
����d�,�d = �,�d =�

�

0
��������d�,

�d =�
�

0

�
�
�
��

�

0
����d��� ��

�

0
����d��

�

+�
�
�
�
d�.

such that the optimal cost of this controller coincides with the optimal cost �d in
Def. 4.15.

60 4 Feasibility

See proof on page 208.

Lemma 4.17. The optimal control law for a digital LQG problem is ��� =

��d ��� = �
�
��d ���d +�d

��1
��d ���d ���, where �� � � is the solution of the Ric-

cati equation

� = ��
d��d � (��

d��d)(�d + ��d��d)
�1(��d��d) +�d. (7)

The minimum cost ��d achieved by the optimal control is11:

��d = �� (�� +�d)�d
�
�d ����d +�d

�
��d +�d ��

= ��
�
(�d + ��)�d + ����

d

�
�d + ��d(�d + ��)�d

�
�d

�
,

where �� � � is the solution of the Riccati equation

� = �d���
d ��d���(���� +�d)�1����

d +�d. (8)

Co-design formalization

We are now ready to state the result for digital LQG.

Theorem 4.18. The LQG problem of Def. 4.15 with �xed sampling period � can
be formulated as a design problem with diagrammatic form as in Fig. 71.

To prove the theorem, we proceed as we did for the continuous-time case.

Lemma 4.19. One can write

lim
���

�{������} = ���(� + �),

lim
���

�{������} = ����
d��d�,

where � solves (8) and � solves the Lyapunov equation

� = �d (���� +�d)�
�
d + (�d � �d�d)�(�d � �d�d)�, (9)

with �d = ���(���� +�d)�1 discrete Kalman gain.

Lemma 4.20. Consider the LQG problem of Lemma 4.16. Let �(�) = ��0 and
�(�) = 1

�
�0, � � �+. Let ��(�) be the solution of the LQG problem with �(�)

and �(�). Then, under optimal control one has:

� �dtrack(�) is decreasing with � increasing.

� �de�ort(�) is increasing with � increasing.

11 Note that also [138] contains a typo at p. 476 (- instead of + in Eq. 7.199).

4.3 Example: Linear Quadratic Gaussian Control 61

LQG

�track

�e�ort

obs. noise �d

sys. noise �d

delay

drop probability

sampling period

Figure 73: Co-design theorem for digital LQG
problems.

Proof. The proof is analogous to the one of Lemma 4.10.

Lemma 4.21. Consider the situation of Lemma 4.20. One has:

� Fix �dtrack. �de�ort is monotonic in �d and in �d.

� Fix �de�ort. �
d
track is monotonic in �d and in �d.

See proof on page 209.

We can further extend our models for the digital case to capture di�erences in
sampling periods and intermittent observations [139], [140].

De�nition 4.22 (LQG with intermittent observations)
The LQG problem with intermittent observations di�ers from the original
problem by the observations ��� = ����, where �� � {0, 1} is a random
sequence.

Theorem 4.23. The LQG problem of Def. 4.15 with sampling of the form � =
2��0 and intermittent observations can be formulated as a design problem with
diagrammatic form as in Fig. 73.

To prove all cases, we can use the substitution principle. Assuming a sampling
period � = 2��0, �track and �e�ort are monotonic with �.12 On the other hand, if
the controller is given a set of observations, it can simulate having less (i.e., an
higher drop probability�), by arti�cially deleting selected observations. Therefore,
the control e�ort and tracking error cannot decrease with increasing �.

Practical considerations

In this section, we have seen how one can embed both continuous-time and
digital LQG in the language of co-design. In particular, we were able to formulate
co-design theorems involving important quantities in control theory, which hold
for a generic class of systems. But how do we use these concepts in practice, when
populating the respective feasibility relations? Let’s see these tools at work with
the example of a drone.

Controlling a drone Let’s consider the case in which one wants to design
a control strategy for a drone which needs to align itself with a goal (Fig. 74).
We de�ne the state of the robot as ���, ���, where �� is its heading and �� its
angular speed. The heading of the goal at time � is denoted by �g� . The control is
12 Note that using � of this form corresponds to the case where the information available is a subset

decreasing with �. We are not stating this result in general. This would require a deeper discus-
sion and several assumptions about the system (e.g., about oscillatory behavior). This is an open
problem [141], [142].

62 4 Feasibility

Figure 75: Monotonic relation between function-
alities and upper-sets of resources.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

h

et et
g-Battery

Actuation

Computer

Vision sensor

Figure 74: Drone which needs to align with a goal.

the resulting torque �� . The dynamics of the heading are given by the di�erential
equations

d�� = ��d�,

d�� =
��
� d� + d��,

where � is the moment of inertia of the drone about its rotational axis, and �� is
a Brownian process with intensity �2�.

We assume Gaussian observations of the relative bearing of drone and goal �� =
(�� � �g�) + ��, where �� is white Gaussian noise with intensity �2�, describing
measurement uncertainty. Assuming that the goal is far away, �g� is approximately
constant, and w.l.o.g. we can assume it to be 0 (�� = ��+��). We pose the stationary
problem of minimizing the objective

lim
���

1
� �

�

0
���0�2� +

�0
� �

2
� � d�.

This is a LQG problem with � = diag(0,��0), � = �0��, for the continuous-time
system given by the system matrices:

� = �
0 1
0 0

� , � = 1
� �

0
1
� , � =

�
1 0

�
,� = �

0 0
0 �2���

� , � = �2�.

As shown previously, we can formalize this as a design problem, which provides
stability of the system up to a given system noise, requiring observations at a spe-
ci�c frequency and with given precision. The control law has to be implemented
at a given frequency, resulting in speci�c control e�ort and tracking error. Im-
plementations are given by the di�erent cost weights, parametrized by �. One
obtains the relationships between functionalities and resources (i.e., the model)
by solving speci�c Riccati equations via numerical simulations (Fig. 75).

4.4 Example: Convex Optimization Problems 63

4.4 Example: Convex Optimization Problems
We can formalize the relationships characterizing convex optimization problems
as design problems. In this section, we sketch the main idea behind this, and
focus on the intuitions. The complete mathematical formulation of the ideas goes
beyond the scope of this chapter, and is left out for brevity.

First, recall the de�nition of convex function:

De�nition 4.24 (Convex function)
A function �� �� � � is convex if, for all �,� � �� and � � [0, 1]:

�(�� + (1 � �)�) � ��(�) + (1 � �)�(�).

Furthermore, we recall the notion of convex optimization problem.

De�nition 4.25 (Convex optimization problem)
A convex optimization problem in standard form is given by:

minimize
����

�0(�)

subject to ��(�) � 0, � = 1,… ,�

�� = �,

with � � ��◊�, � � ��, and �0 � �
� � �, �� � �

� � � convex functions.

So how to relate this to design problems? The key insight will be to de�ne a convex
optimization problem as a monotone map between three particular posets.

First, denote by � the poset of convex functions, where the order is given as:

�1 �� �2 � �2(�) � �1(�),�� � ��,�1,�2 convex functions.

Furthermore, consider the poset of convex sets � introduced in Section 2.3 (or-
dered by inclusion).

Then, one can state the following statement.

Lemma 4.26. A convex optimization problem as in Def. 4.25 is an antitone map

�� � ◊� � ��, ��,
�
�� , �0

�
� ��,

where �� = inf���� and �� = {� � �� � ��(�) � 0, � � {1, …,�},�� = �}.

The intuition is as follows. �� is the feasible set of the optimization problem,
and lives in the poset of convex sets. �0 lives in the poset of convex functions,

64 4 Feasibility

and represents the objective function. �� is the minimizer for the problem. By
choosing a larger feasible set, one could potentially �nd a better (and not worse)
solution. One can reason analogously for the objective function. We can visualize
this explicitly for an example. Let’s consider a linear program (a particular case
of convex optimization problem):

minimize
����

��� �

subject to ��� � �� , � = 1, 2,

For the sake of the example, consider the following parameters.

�1 =

�
�
�
�
�
�
�
�
�
�
�
�
�

1 1
1 3
1 0
�1 3
1 �2
�2 �1
�1 0
0 �1

�
�
�
�
�
�
�
�
�
�
�
�
�

, �2 =

�
�
�
�
�
�
�
�
�

�15 �2
1 �10
0 1
5 3
�1 0
0 �1

�
�
�
�
�
�
�
�
�

, �1 =

�
�
�
�
�
�
�
�
�
�
�
�
�

16
36
10
30
5
�2
0
0

�
�
�
�
�
�
�
�
�
�
�
�
�

, �2 =

�
�
�
�
�
�
�
�
�

�30
�20
9
50
0
0

�
�
�
�
�
�
�
�
�

, �3 =

�
�
�
�
�
�
�
�
�
�
�
�
�

15
36
9
26
3
�4
0
0

�
�
�
�
�
�
�
�
�
�
�
�
�

, �1 = �
�2
�1

� , �2 = �
�1
1
�

The solutions for di�erent combinations of parameters, and the relative size of
sets are reported in Fig. 76.

First, we write the feasible sets:

�1 = {� � �� � �1� � �1},

�2 = {� � �� � �2� � �2},

�3 = {� � �� � �1� � �3}.

Starting from Fig. 76a, we observe �2 � �1. Solving the linear program with �1
in the objective in the two cases, returns �19.4 (using �2) and �26 (using �1),
showing one aspect of the monotonicity. Moving to Fig. 76b, we observe �3 � �1.
Solving the linear program with �1 in the objective in the two cases, returns
�24 (using �3) and �26 (using �1), showing monotonicity. Finally (Fig. 76c), by
consdering the feasible set �1, and two di�erent objectives parametrized by �1
and �2 (with �1 � �2), obtain�26 and�7.5, respectively, showing the other aspect
of monotonicity.

4.5 Example: Assume-Guarantee Contracts 65

10

8

6

4

2

0

0 2 4 6 8 10

���1

���2

�2

�1

�1

(a) Choose �1, solve the LP with �1.

10

8

6

4

2

0

0 2 4 6 8 10

���3
���1

�3

�1

�1

(b) Choose �1 and �1, solve the LP with �1.

10

8

6

4

2

0

0 2 4 6 8 10

�1

�2

�1

���1

���2

(c) Choose �1 and �1, solve the LP with �1 and �2.

Figure 76: Solutions of di�erent linear programs to showcase monotonicity.

cvx
��, ��

�op

�op

Figure 77: Design problem for a convex optimiza-
tion problem.

Co-design formalization

Given the above, we can de�ne a design problem

�� � (� ◊�) ◊ ��, �� �Pos Bool,
��
�� , �0

��, �
�

� �(�� ,�0) � �.

giving rise to a design problem as in Fig. 77.

If, in addition, the objective function �0 is monotone, we can consider objective
functions as functionalities.

In this context, implementations can be obtained by solving speci�c instances of
convex optimization problems. This result sets the stage for further investigations,
given the abundance of convex optimization problems in engineering, and the
ability to embed them as design problems. Furthermore, while not explicitly
veri�ed formally, the same reasoning can be applied to other sorts of optimization
problems.

4.5 Example: Assume-Guarantee Contracts
This example is based on the literature on assume-guarantee contracts. We will
speci�cally refer to [37], and other relevant references are [115], [117]–[119],
[121], [143], [144].

66 4 Feasibility

Background on assume-guarantee contracts

Assume-guarantee contracts are speci�cations for components in complex sys-
tems, with typical applications are in cyber-physical systems. Their de�nition
leverages set-based behavioural modeling.

De�nition 4.27 (Behavior)
Let �, elements of which are called behaviors.

Given a set of behaviors, we can identify components and properties, as subsets
of �. The di�erence between components and properties lies in their usage:

� Components: sets containing behaviors which a design can display;

� Properties: collection of behaviors displaying a quality of interest.

Components and properties are connected by satisfaction.

De�nition 4.28 (Satisfaction)
Given a component � and a property �, we say that � satis�es �, denoted
� � �, when � � �. In words, � satis�es � when all of its behaviors have
a quality of interest.

Given these notions, one can de�ne the notion of subcomponent.

De�nition 4.29 (Subcomponent)
Let ��,�� be components. We say that �� is a subcomponent of ��, de-
noted �� ���, when �� ���, i.e., when �� satis�es all the properties
of ��.

Note that this de�nes a poset on the set of all components.

De�nition 4.30 (Composition of components)
Let ��,�� be components. The composition of �� and ��, denoted �� �
��, is given by

�� ��� =�� ���.

De�nition 4.31 (Assume-guarantee contract)
An assume-guarantee contract is � = ��, ��, where �,� are properties.

We now introduce the concept of environment and implementation.

De�nition 4.32 (Environment)
We say that a component � is an environment for a contract �, denoted

4.5 Example: Assume-Guarantee Contracts 67

� �� �, if � � � (i.e., if the environment satis�es the assumptions of the
contract).

De�nition 4.33 (Implementation)
We say that a component � is an implementation for a contract �, denoted
� �� �, if it satis�es the guarantees of the contract, provided that it operates
in an environment of the contract, i.e., if:

� � � � � for all � � �.

Co-design formalization

Given a contract � = ��, ��, one can generate a design problem leveraging the
partial orders of power sets, introduced in Section 2.3:

�� � �����, ��op ◊ �����, ���Pos Bool
�
��,�

�
� ��,� �� � � � � for all � � �.

(10)

Since a contract assumes the existence of such a pair of environment/component
in the literature, one can technically populare the design problem by taking the
upperset in �����, ��op ◊ �����, �� generated by ��,��.

(10) provides a valid design problem de�nition. In general, this is veri�ed intu-
itively:

� A smaller set of guarantees will not require more assumptions;

� A larger set of assumptions will not provide a smaller set of guarantees.

In practice, take ��(�,�) = �. Let �� � � and �� � �. Then ��(��,�) = � and
��(�,��) = �.

Note that depending on the interpretation of assumptions and guarantees, one
might also decide to locate both of them as resources/functionalities.

Practical considerations

For instance, assume-guarantee contracts are used in [117] to characterize the
autonomy stack of an AV. The contract for the control of the vehicle involves
assumptions about the environment it has to drive in, and provides safety guaran-
tees. The implementations are given by di�erent controllers, or di�erent param-
eters/executions of the control laws. The speci�c feasibility relationships can be
obtained by leveraging and querying dedicated software, called PACTI, developed
by Incer and collaborators.

68 4 Feasibility

Motor
power pro�le

speed pro�le

acc. pro�le

Figure 78: Design problem for the power genera-
tion process for an electric vehicle.

4.6 Example: Electric vehicle design
In the context of designing the powertrain for an electric vehicle, a crucial step is
to map a particular vehicle type, together with a prescribed drive cycle, to some
power request. Typically, the power is then provided by a DC/AC converter [145],
[146]. Let’s take an exemplary model. At each time instant � the power request
can be expressed as the product of torque and angular velocity:

�(�) = �(�) � �(�).

The torque, can be expressed as a relation of force and radius of the wheels:

�(�) = �(�) � �,

where the force can be computed as

�(�) = � � �(�) +� � � � sin(�(�)) + 1
2�air � �(�)

2 � �D � �F,

where � is the mass of the vehicle, and �(�), �(�) represent the speed and accel-
eration provided by the drive cycle, respectively, � the gravity constant, �(�) the
current inclination of the cycle,�air the air density,�D the aerodynamic coe�cient
of the car, and �F the frontal area of the vehicle. Now, given that �(�) = �(�)��,
one �nds the following expression relating power, velocity, and acceleration at
each time instant:

�(�) = �(�) � �� � (�(�) + � � sin(�)) + 1
2�air � �(�)

2 � �D � �F� .

Again, by considering the partial order on maps for the signals �, �,�, one can
de�ne a design problem as in Fig. 78.

To visualize this, consider for instance the classic World Light-Duty Test Pro-
cedure (WLTP) drive cycle, including portions of urban, exurban, and highway
driving. By considering an Astom Martin Cygnet, one might have speed and
acceleration pro�les as in Fig. 79a. Clearly, dominating pro�les (for both speed
and acceleration), lead to dominating power pro�les (Fig. 79b).

4.6 Example: Electric vehicle design 69

0 50 100 150 200 250
Time [s]

0

50

100

S
p

ee
d

 [
k

m
/h

]

0 50 100 150 200 250
Time [s]

1

2

3

4

A
cc

el
er

at
io

n
 [

m
/s

2
]

0

(a) Speed and acceleration pro�les of the drive cycle.

0 50 100 150 200 250

Time [s]

0

1

2

3

4

5

6

7

8

P
o

w
er

 [
W

]

104

(b) Power pro�le of the drive cycle.

Figure 79: Monotone relationship between acceleration, speed, and power pro�le in the context of powertrain design.

Interconnecting design problems 5
The internal machinery of life, the chemistry of the parts, is something
beautiful. And it turns out that all life is interconnected with all other

life.
—Richard P. Feynman13

In this chapter, we will de�ne several ways to connect design problems together.
We will present series composition (Section 5.1), union and intersection (Sec-
tion 5.2), parallel composition (Section 5.3), and feedback (Section 5.4). Finally,
we will present a case study featuring the co-design of a drone, leveraging the
de�ned interconnection operations (Section 5.5).

5.1 Series composition of design problems
The �rst and most basic way is series composition. In the rest of this thesis, we
will refer to it as just “composition”, for reasons that will be clear once we will
have presented the categorical structure of design problems (Chapter 6).

De�nition 5.1 (Series composition)
Let �� � �� � and �� � �� � be design problems. We de�ne their series
composition (� # �)� � �� � as:

(� # �)� �op ◊� �Pos Bool,

���, �� �
�

���
�(��, �) � �(��, �). (11)

The series composition (� # �) judges a pair ���, �� as feasible if and only if there
exists a � � � such that �(��, �) and �(��, �) are feasible.

Given a set � and a map �� � � Bool, we can de�ne the boolean
�

��� �(�)
by

�

���
�(�) �=

�

�
�

� if there exists � � � for which �(�) = �,

� if there exists no � � � for which �(�) = �.

In (11) we could have written “����” instead of “
�

���”:

���� �(��, �) � �(��, �).

Using
�

form highlights the connection with an integration operation ��.

13 Feynman was an American theoretical physicist, who received the Nobel Prize in Physics in 1965
for his contributions to quantum electrodynamics.

72 5 Interconnecting design problems

� ��

(� # �)

Figure 80: Series composition of design problems.

� � �� �

(� # �) ��

� (� # �)�

Figure 81: Associativity of the composition of de-
sign problems.

�

�

�

�

�

�

�� �

� � � ��

Figure 82: Diagrammatic representation of the
union of design problems

.

We use the same diagrammatic notation for DPs as for DPIs. We represent series
composition as in Fig. 80.

One can notice the “co-design constraint” �, which can be interpreted as follows.
The resource required by a component is limited by the functionality produced
by another component. This is an intuitive notion, which applies both to physical
and non-physical quantities. For instance, in the context of designing a robot,
one could think of an electric motor, requiring at most the power provided by a
battery. Similarly, an estimator requires data of quality at most as the one provided
by the used sensor.

Remark 5.2. When viewing compositions (and larger diagrams) formed from
these boxes, it is tempting to interpret the boxes as input-output processes. How-
ever, that would be misleading. The arrows do not represent information �ow,
materials �ow, or energy �ow. Design problems do not represent input-output
processes but rather a calculus of requirements–a requirements �ow.

Let us check that, given design problems � and �, their series composition (� # �)
is in fact a design problem.

Lemma 5.3. Series composition as in (11) is monotone in � and �.

See proof on page 209.

Importantly, the “#” operation is associative.

Lemma 5.4. The series composition operation as in (11) is associative:

(� # �) # � = � # (� # �).

See proof on page 209.

Because of associativity, we can write � # � # � without ambiguity (Fig. 81).

5.2 Union and intersection of design problems

Union of design problems

Let �� � �� � and �� � �� � be design problems. We de�ne the union � � �
to be the design problem which is feasible whenever either � or � is feasible. This
models � and � as interchangeable technologies. For instance, to provide motion
at the cost of energy, you might choose di�erent mobility options.

De�nition 5.5 (Union of design problems)
Given two design problems �� � �� � and �� � �� �, their union � �

5.3 Parallel composition 73

�

�

�

�

�

�

�� �

� � � ��

Figure 83: Diagrammatic representation of the
intersection of design problems.

�

�

�

�

�

�

���� �
� ◊ �� ◊�

Figure 84: Monoidal product of design problems.

�� � �� � is de�ned by

(� � �)� �op ◊� �Pos Bool,

���, �� � �(��, �) � �(��, �).

The union of design problems is represented as in Fig. 82.

Intersection of design problems

Given two design problems �, �� � �� �, we can de�ne a design problem � � �
that is feasible if and only if � and � are both feasible. We call � � � the inter-
section of � and �. One interpretation of � � � is that � and � are two slightly
di�erent models of the same process, and we want to make sure that the design
is conservatively feasible for both models.

De�nition 5.6 (Intersection of design problems)
Given design problems �� � �� � and �� � �� �, their intersection is
denoted (� � �)� � �� �, de�ned by:

(� � �)� �op ◊� �Pos Bool,

���, �� � �(��, �) � �(��, �).

The intersection of design problems is represented as in Fig. 83.

We can directly generalize the intersection � � � by allowing � and � to have
di�erent domain and codomains, �� � �� � and �� � �� �. We call this
putting two design problems “in parallel”.

5.3 Parallel composition
De�nition 5.7 (Parallel composition of DPs)
Given two design problems �� � �� � and �� � �� �, their monoidal
product ���� �� � ◊� �� � ◊ � is their conjunction:

���� �� (� ◊�)op ◊ (� ◊ �)�Pos Bool,

���, ���, ��, ���� �(��, �) � �(��, �).

We represent the parallel composition as in Fig. 84.

Remark 5.8. For �� � �� � and �� � �� �, the monoidal product

(���� �) (���, ���, ��, ��)

is true if both �(��, �) and �(��, �) are true, and false otherwise.

74 5 Interconnecting design problems

� �
�

�
�

Figure 85: Design problem with a resource and a
functionality of the same type.

� ��

��
�

Figure 86: Closing the loop in the design problem.

et et
g-Battery

Actuation

Computer

Vision sensor

Figure 87: We consider a drone which needs to
perform search-and-rescue tasks, and control its
alignment with a given goal.

5.4 Feedback
Suppose that we are given a design problem with a resource and a functionality
of the same type � (Fig. 85). Can we “close the loop”, as in the diagram reported
in Fig. 86?

It turns out that we can give a well-de�ned semantics to this loop-closing opera-
tion, which coincides with the notion of a trace in category theory (Chapter 6).

The following is the formal de�nition of the feedback operation for design prob-
lems.

De�nition 5.9 (Trace of a design problem)
Given a design problem �� ����� �� �����, its trace

Tr��,�(�)� � �� �

is de�ned as follows:

Tr��,�(�)� �
op ◊��Pos Bool,

���, ���
�

���
�(��, ���, ��, ��).

Think of drawing a loop as a way of writing down the following requirement:
Something that produces � should not use up more of � than it produces.

5.5 Example: co-design of an autonomous drone
At this point, we have seen what a design problem is, and we have seen how
to interconnect multiple design problems. In this section, we want to show the
abilities of this structure in practice, in the context of co-designing an autonomous
drone. To do so, we will leverage one of the �rst non-trivial design problems we
introduced: the LQG control one (Section 4.3).

In particular, we want to model an autonomous drone (Fig. 87) capable of per-
forming search-and-rescue missions, where it must e�ciently align itself with
a prede�ned goal, such as tracking an object. While we recognize that one key
element of this co-design process involves control using LQG techniques, it is
important to pinpoint the other critical components and identify their logical
connections within the system. In practice, when designing such a system, we
need to consider several factors:

� Actuators, which are responsible for lifting and maneuvering the drone;

� A vision sensor, which will give the drone the ability to perceive its environ-
ment. It provides essential data to to a feature extraction algorithm, allowing
the drone to detect and track targets;

5.5 Example: co-design of an autonomous drone 75

Actuation

speed [m/s]
lift [N]

control e�ort

power [W]
cost [CHF]
mass [g]

Figure 88: Design problem for the actuation.

Vision
sensor

resolution [px/sterad]

acq. frequency [Hz]

power [W]
cost [CHF]
mass [g]

Figure 89: Design problem for the vision sensor.

Feature
extr.

obs. freq [Hz]

precision
acq. freq. [Hz]

reso. [px/sterad]

impl. freq. [Hz]

Figure 90: Design problem for feature extraction.

LQG
control

system noise

control e�ort
obs. freq. [Hz]

information
impl. freq [Hz]

tracking error

Figure 91: Design problem for LQG control.

� A controller, bringing the system to the desired state;

� A computing unit, providing the system with the computation needed;

� A battery, powering the entire operation of the robot;

� The actual implementation of all algorithms involved;

� A logic to plan the mission. Parameters such as mission speed, the number of
missions to complete, and the allotted mission time all contribute the overall
mission strategy.

For each of these components, we must address speci�c design problems, in-
cluding formulating them accurately, and determining how to populate them, as
detailed in the following.

Actuation The total mass of the system is lifted thanks to actuation, which pro-
vides lift, control e�ort and speed by requiring cost, mass and power (Fig. 88).

Obtaining themodel: Models can be obtained from catalogues. For instance, power
consumption can be modeled as a monotone function of lift and control e�ort,
as in [122].

Vision sensor The observations required by the drone are provided by a vision
sensor at a given acquisition frequency and with a speci�c resolution (typically in
px/sterad). Such sensors have a cost, mass and power consumption (Fig. 89).

Obtaining the model: This is obtained from sensor catalogues (e.g., for cameras).

Feature Extraction Sensor measurements are processed by a feature extraction
algorithm, providing the LQG control design problem with observations at a
certain frequency and accuracy, limited by sensor properties (Fig. 90).

Obtaining the model: This can be obtained by answering photogrammetry ques-
tions such as “what resolution is needed to achieve a certain detection accuracy?”

LQG Control As shown in Section 4.3 we can formalize an LQG control
problem as a design problem, which provides stability of the system up to a
given system noise, requiring observations at a speci�c frequency and with given
precision. The control law has to be implemented at a given frequency, resulting
in speci�c control e�ort and tracking error (Fig. 91).

Obtaining the model: Given the task of aligning itself with the goal, we de�ne the
state of the robot as ���, ���, where �� is its heading and �� its angular speed. The
heading of the goal at time � is denoted by �g� . The control is the resulting torque
��. The dynamics of the heading are given by the di�erential equations d�� =
��d�, d�� =

��
�
d� + d��, where � is the moment of inertia of the drone about

its rotational axis, and �� is a Brownian process with intensity �2�. We assume

76 5 Interconnecting design problems

Computing
unit

computation [op/s]
cost [CHF]
power [W]
mass [g]

Figure 92: Design problem for the computing unit.

Battery
energy [J] cost [CHF]

mass [g]

Figure 93: Design problem for the battery.

Impl.
algorithm

impl. freq. [Hz] comp. [op/s]

Figure 94:Design problem for the implementation
of algorithms.

Mission
planning

tracking error

nr. missions
mission time [s]

speed [m/s]

Figure 95: Design problem for mission planning.

Gaussian observations of the relative bearing of drone and goal �� = (����
g
�)+��,

where �� is white Gaussian noise with intensity �2�, describing measurement
uncertainty. Assuming that the goal is far away, �g� is approximately constant, and
w.l.o.g. we can assume it to be 0 (�� = �� + ��). We pose the stationary problem of
minimizing the objective lim���

1
� �

�
0

�
��0�2� +

�0
�
�2�
�
d�. This is a LQG problem

with � = diag(0,��0), � = �0��, for the continuous-time system given by the
system matrices:

� = �
0 1
0 0

� , � = 1
� �

0
1
� , � =

�
1 0

�
,

� = �
0 0
0 �2���

� , � = �2�.

Implementations are given by the di�erent cost weights, parametrized by �. As
explained in Section 4.3, the design problem can be obtained by solving speci�c
Riccati equations via numerical simulations.

Computing unit The computing unit needs to provide computation required
by all the processes we have presented, and requires power and has a mass and a
monetary cost (Fig. 92).

Obtaining the model The computing unit can be modeled through computer
catalogues.

Battery The battery provides energy to the system, requiring cost and mass
(Fig. 93).

Obtaining the model: Di�erent battery technologies can be extracted from cata-
logues. An example is provided in [122].

Algorithms implementation We actually need to implement the control and
feature detection algorithms. The related design problems operate at a speci�c
frequency, and require computation (Fig. 94).

Obtaining the model: Models are obtained via catalogues of algorithms, the per-
formance of which can be found via benchmarking. An example is SLAM-
Bench [147].

Mission planning The mission planning design problem evaluates the perfor-
mance of the system, measured by tracking error, the mission time, the number
of missions and the detected drone speed (Fig. 95).

Obtaining the model: This is a simple list of requirements for speci�c scenarios.

5.5 Example: co-design of an autonomous drone 77

Interconnecting the full diagram

The single components introduced above are interconnected to form a co-design
diagram as follows. First, the total power required by the system arises from the
sum of the power required by actuation, by the sensors and by the computing
unit. Given the mission time, one can determine the energy which needs to be
provided by the battery. This is the �rst feedback loop in the co-design diagram.
Second, the computation required by both the control and feature extraction
implementations needs to be provided by the computing unit. Third, the mass of
the system is given by the masses of the sensors, battery, actuators and computing
unit, and determines the lift needed from actuation. This is the second feedback
loop in the co-design diagram. The other interconnections arise logically, from
the need of the control design problem for observations, produced by the feature
extraction design problem, which in turn needs a sensor. Also, the algorithms
need to be implemented, requiring computation.

As you can see, here we are using most of the composition operations introduced
in this chapter. The interesting thing, is that we are using them “graphically”,
while meaning it “formally”. The next chapter introduces the magic behind this,
which ensures that one can work at the graphical level, and things will work out
at the formal one. Spoiler alert: it’s category theory!

Actuation

Feature
Extraction

Mission
Planning

LQG
Control

Vision
Sensor

Implement
Feature

Implement
Control

Battery

+

+

Computing

+

×

×g

speed
[m/s]

lift [N]

impl. feature
 at b��Hz]

resolution
[px/sterad]

acquisition
frequency [Hz]

impl. control
 at b��Hz]

energy stored [J]

control effort

power [W]

power [W]
cost [CHF]

cost [CHF]

mass [g]

mass [g]

power [W]

total computation [op/s]

mission time [s]

computation [op/s]

computation [op/s]

number of missions

cost [CHF]
mass [g]

cost [CHF]

mass [g]

total
power [W]

total mass
[g]

tracking error

precision

observe
at b��Hz]

+

system
noise W

total cost
[CHF]

Figure 96: Co-design diagram for the design of an
autonomous drone that needs to execute an ideal-
ized search-and-rescue mission. The functionali-
ties are task characteristics and the environment.
We choose costs as the resources to minimize.

A categorical perspective 6
Mathematics is the art of giving the same name to di�erent things.

—Henri Poincaré14

In this chapter, we make the structure and the interconnections de�ned in Chap-
ter 4 and Chapter 5 precise mathematically. Category theory allows one to for-
mulate co-design problems elegantly and compactly. In particular, we show that
there exists a category of design problems DP, which is symmetric monoidal,
traced, an locally posetal. This structure will be extremely helpful also when for-
mulating the solution of co-design problems. In this chapter we will provide basic
de�nitions for the various proved properties. For a primer on category theory,
as well as the thorough and pedagogical descriptions of the properties proved in
this chapter, please refer to our work-in-progress book [123].

Going back to the desiderata, this chapter shows two essential properties of the
co-design framework. First, it is at the same time formal and intuitive. On one
hand, one can specify and interconnect design problems in various ways at the
“graphical” level, and on the other hand such interconnections have a formal
meaning, and are not �eld-speci�c. Second, it is compositional and hierarchical
by nature, able to deal with various forms of composition and abstraction.

6.1 The category of design problems DP
We �rst brie�y recall the de�nition of category.

De�nition 6.1 (Category)
A category C is speci�ed by:

Constituents

1. Objects: A collection ObC whose elements are called objects.

2. Morphisms: For every pair of objects �,� in ObC, there is a set called a
“hom-set” and indicated as HomC(�;�), elements of which are called
morphisms and denoted �� � � �.

For such an �, we call � its source and � its target.

3. Composition operations: For every three objects �,�,� in ObC there is a
composition map

#�,�,� � HomC(�;�) ◊ HomC(�;�)� HomC(�;�). (12)

14 Poincaré was a French mathematician, theoretical physicist, engineer, and philosopher of science.

80 6 A categorical perspective

We usually just write # instead of #�,�,� :

�� � � � �� � � �
.

(� # �)� � � � (13)

The morphism � # � is called the composition of � and �.

4. Identity morphisms: For each object � of C, a morphism

id� � � � �,

called the identity morphism.

Conditions

1. Unitality: it holds that
�� � � �

,
� # id� = � (14)

and
�� � � �

.
id� # � = � (15)

2. Associativity: it holds that

�� � � � �� � � � �� � � �
.

(� # �) # � = � # (� # �) (16)

Remark 6.2. We denote composition of morphisms using the symbol “#” (pro-
nounced “then”). This is in contrast to the more common notation for com-
position, namely � � �, or simply ��, which reads as “� after �”. As usual, �2

denotes � # �, �3 denotes � # � # �, and so on.

Remark 6.3. When we want to emphasize which category we are working with,
we will sometimes write

�� � �C � (17)

to indicate
� � HomC(�;�). (18)

Example 6.4 (Classic categories). Some classic examples of categories are:

� Set: the category of sets and functions;

� Rel: the category of sets and binary relations;

� Pos: the category of posets and monotone functions. We will leverage this
one a lot, and will specify a monotone map as a morphism in Pos, by writ-
ing �� ��Pos �.

6.1 The category of design problemsDP 81

id� ��

Figure 97: Identity design problem.

id� � id�� �

�

Figure 98: Left and right unitality for DP.

We are now ready to de�ne the category DP, which has design problems as
morphisms. To do so, we recall the de�nition of series composition of design
problems, and de�ne an identity for it. We de�ne the identity id� � � �� � as
follows.

De�nition 6.5 (Identity design problem)
For any poset �, the identity design problem id� � � �� � is a monotone map

id� � �
op ◊ � �Pos Bool,

���1 , �2� � �1 �� �2.
(19)

Remark 6.6 (Monotonicity of the identity). Let’s consider �1
� �� �1. If it

holds �1 �� �2, then it also holds �1
� �� �2. Similarly, now consider �2 �� �2

�.
If it holds �1 �� �2, then it also holds �1 �� �2

�.

In diagrammatic notation, we represent id� as in Fig. 97.

Lemma 6.7. The series composition operation as in (11) satis�es the left and
right unit laws (Fig. 98).

See proof on page 210.

We are now ready to de�ne the category of design problems DP.

De�nition 6.8 (Category of design problems DP)
The category of design problems DP consists of the following constituents:

1. Objects: The objects of DP are posets.

2. Morphisms: The morphisms of DP are design problems (Def. 4.1).

3. Identity morphism: The identity morphism id� � � �� � is given by
Def. 6.5.

4. Composition operation: Given morphisms �� � �� � and �� � �� �,
their composition � # �� � �� � is given by Def. 5.1.

We have already shown that the composition operator “#” is associative and unital,
and that the composition of two design problems is a design problem (closure).
Therefore, DP is a category.

DP is called Feas in [148].

Remark 6.9 (Relation betweenDPI andDP). One can come up with a de�nition
of a category of design problems with implementation DPI. We have already
seen in Remark 4.2 that we can obtain a DP from a DPI. One can make this
more formal and say that there exists a forgetful semifunctor from DPI to DP.
Similarly, in the other direction, we can take a DP and �nd a corresponding DPI,
via another semifunctor. For brevity, we refer the reader to [123]

82 6 A categorical perspective

6.2 DP is a symmetric monoidal category

DP is a monoidal category

Let’s recall the notion of monoidal category. To do so, we �rst need to de�ne the
notion of functor.

De�nition 6.10 (Functor)
Given categories C and D, a functor �� C� D from C to D is de�ned by:

Constituents

1. A map
�� � ObC � ObD. (20)

2. For every pair of objects �,� � ObC a map

�� � HomC(�;�)� HomD(��(�);��(�)). (21)

Conditions

1. Functor application to morphisms is compatible with the respective cat-
egory composition operations:

�� � �C � �� � �C � .
��(� #C �) = ��(�) #D ��(�) (22)

2. Functor application is compatible with identities:

��(id�) = id��(�) (23)

for all objects � in C.

This situation is depicted graphically in Fig. 99a. It is common to overload the
notation and use � to mean both �� and ��. The diagram with this overloaded
“synthetic notation” is in Fig. 99b.

We are now ready to de�ne monoidal categories.

De�nition 6.11 (Monoidal category)
A monoidal structure on a category C is speci�ed by:

Constituents

1. A functor���� C ◊ C� C, called the monoidal product.

2. An object � � ObC, called the monoidal unit.

3. A natural isomorphism, called the associator, whose components are of

6.2 DP is a symmetric monoidal category 83

�

� �

��(�)

��(�) ��(�)

��(�) ��(�)

��(� # �)

� �

� # �

�

C

D
(a) Functor diagram

�

� �

�(�)

�(�) �(�)

�(�) �(�)

�(� # �)

� �

� # �

�

C

D
(b) Synthetic notation

Figure 99: Commuting diagrams for semifunctors, with verbose notation (left) and synthetic notation (right).

the type

���,�,� � (�����)����
�
�� ���� (���� �) �,�,� � ObC. (24)

4. A natural isomorphism, called the left unitor, whose components are of
the type

��� � �����
�
�� � � � ObC. (25)

5. A natural isomorphism, called the right unitor, whose components are of
the type

��� � ���� �
�
�� � � � ObC. (26)

Conditions
For all �,�,�,� � ObC, the following diagrams must commute:

1. Triangle identities.

(���� �)���� ���� (�����)

�����

���,�,�

��� ��� id� id� ��� ���
(27)

2. Pentagon identities.

84 6 A categorical perspective

(�����)��� (� ����)

((�����)����)���� (���� (���� (� ����)))

(���� (���� �))���� ���� ((���� �)����)

���,�,�����

���,�,� ��� id�

�������,�,�

���,�����,�

id� ��� ���,�,�

(28)
A category equipped with a monoidal structure is called a monoidal cate-
gory. If the components of the associator, left unitor, and right unitor are all
equalities, one calls the category strict monoidal.

Remark 6.12. Note that in the constituents listed in Def. 6.11 we speci�ed natural
isomorphisms ��, ��, and �� simply in terms of their components. You may be
wondering: which functors are the respective source and target of these natural
transformations? Since it is a mouthful to write, this information is often left to
be inferred from the components given. Let us quickly illustrate how to see, from
the components, which functors are involved. Take, for example, the left unitor.
Its components are

��� � �����
�
�� � � � ObC, (29)

so, if � and � denote the functors which are the source and target of ��, the
functor � must act on objects by �(�) = ���� � and � must act by �(�) = �.
The “obvious” or “canonical” choice then (given that we are considering any
monoidal category) is that� is the identity functor and that� is the functor which
acts on morphisms by mapping �� � � � to

id���� �� ����� � �����. (30)

Note that the components of the left unitor �� are indexed by one variable �
� ObC, while the associator �� is indexed by three variables! The associator is
therefore a natural transformation between two functors of the type

C ◊ C ◊ C� C. (31)

Armed with this knowledge, we can now de�ne the monoidal structure onDP. In
Def. 5.7 we have de�ned the parallel composition operation for design problems,
which we refer to as monoidal product, in category theory terms.

Lemma 6.13. The monoidal product��� is functorial in DP.

See proof on page 211.

Now, we can identify the constituents of the monoidal structure on DP, with

6.2 DP is a symmetric monoidal category 85

monoidal product��� and monoidal unit �.

We identify the left and right unitors ���, ���, for any � � ObDP, given by:

��� � (� ◊ �)op ◊ � �Pos Bool,

���, �1��, �2� � �1 �� �2,

��� � (� ◊ �)op ◊ � �Pos Bool,

���1, ���, �2� � �1 �� �2.

Clearly, both the left and right unitors are valid design problems (monotonicity),
and hence

��� � HomDP(� ◊ �;�), ��� � HomDP(� ◊ �;�).

We prove that both these constructions are valid isomorphisms.

Lemma 6.14. The left and right unitors for DP are valid isomorphisms.

See proof on page 211.

We now identify the associator ���,�,�, for any �,�,� � ObDP, given by:

���,�,� � ((� ◊�) ◊�)op ◊ (� ◊ (� ◊�)) �Pos Bool,

���1, �1�, �1��, ��2, ��2, �2�� � (�1 � �2) � (�1 � �2) � (�1 � �2).

Clearly, this is a valid design problem:

���,�,� � HomDP((� ◊�) ◊�;� ◊ (� ◊�)), �,�,� � ObDP.

Lemma 6.15. The associator for DP is a valid isomorphism.

See proof on page 212.

Lemma 6.16. �DP,���, �, ��, ��, ��� is a monoidal category.

See proof on page 213.

DP is a symmetric monoidal category One can de�ne further structure on
a category, to make it symmetric monoidal.

De�nition 6.17 (Braided monoidal category)
A braided monoidal category is a monoidal category �C,���, �, ��, ��, ��� eq-
uipped with a braiding, which is speci�ed by

Constituents

86 6 A categorical perspective

1. A natural isomorphism ��, called the braiding, whose components are of
the type

���,� � (�����)
�
�� (�����), �,� � ObC. (32)

Explicitly, this means that for any �1 � �1 � �1 and �2 � �2 � �2, the
following diagram commutes:

�1����2 �1����2

�2����1 �2����1

�1��� �2

���1,�2 ���1,�2

�2��� �1

(33)

Conditions

1. Hexagon identities: Given any objects �,�,� � ObC, the following dia-
grams must commute.

(�����)���� (�����)���� ���� (���� �)

���� (���� �) (���� �)���� ���� (� ����)

���,� ��� id�

���,�,�

���,�,�

id� ��� ���,�

���,����� ���,�,�
(34)

���� (���� �) ���� (� ����) (���� �)����

(�����)���� ���� (�����) (� ����)����

id� ��� ���,�

���1�,�,�

���1�,�,�

���,� ��� id�

�������,� ���1�,�,�
(35)

Remark 6.18. If �C,���, �, ��, ��, ��, ��� is a braided monoidal category, we can
show that the following diagram commutes for all � � ObC.

����� ���� �

�

���,�

��� ���

(36)

De�nition 6.19 (Symmetric monoidal category)
A symmetric monoidal category is a braided monoidal category �C,���, �, ��,

6.3 DP is a traced monoidal category 87

��, ��, ��� for which the braiding satis�es the symmetry condition

���,� # ���,� = id����� (37)

for all �,� � ObC.

Remark 6.20. If �� is a natural isomorphism such that it is a candidate to be a
braiding on a given monoidal category, and if, additionally, it satis�es (37), then
the two hexagon identities are equivalent, and so only one of them needs to be
checked.

We now identify the structure for the de�ned monoidal category to be symmetric.
The braiding operator ���,�, for any �,� � ObDP is given by:

���,� � (� ◊�)op ◊ (� ◊ �) �Pos Bool,

��1, �2��, ��2, �2� � �1 � �2 � �1 � �2.

Clearly, this is a valid design problem: ���,� � HomDP(� ◊�;� ◊ �).

Lemma 6.21. The braiding for DP is a valid natural isomorphism.

See proof on page 215.

We are now ready to state that DP can be equipped with structure to form a
symmetric monoidal category.

Lemma 6.22. �DP,���, �, ��, ��, ��, ��� is a symmetric monoidal category.

See proof on page 215.

6.3 DP is a traced monoidal category
Finally, we introduce more structure and de�ne the notion of traced monoidal
category.

De�nition 6.23 (Traced monoidal category)
We say that a symmetric monoidal category �C,���, �, ��, ��, ��, ��� is traced
if it is equipped with a family of functions

Tr��,� � HomC(���� �;���� �)� HomC(�;�), (38)

satisfying the following axioms:

1. Naturality in�: For any morphisms �� ����� � ����� and �� �� � �,

Tr���,�((���� id�) # �) = � # Tr��,�(�) (39)

88 6 A categorical perspective

�

�

Figure 100: The design problem � implies the de-
sign problem �.

2. Naturality in �: For any morphisms �� ����� � ����� and �� � � ��,

Tr��,��(� # (���� id�)) = Tr��,�(�) # � (40)

3. Dinaturality in �: For any morphisms �� ����� � ������ and �� �� �
�,

Tr��,�(� # (id� ��� �)) = Tr�
�

�,�((id� ��� �) # �). (41)

4. Vanishing I: For any morphisms �� ���� �� ���� � in C,

Tr��,�(�) = ���1� # � # ��� . (42)

5. Vanishing II: For any morphism �� (���� �)���� � (���� �)���� in C,

Tr��,�
�
Tr������,�����(�)

�
= Tr������,� (���,�,� # � # ���1�,�,�). (43)

6. Superposing: For any morphism �� ���� � � ���� � in C,

Tr������,�����(���,�,� # id� ��� � # ���1�,�,�) = id� ��� Tr��,�(�). (44)

7. Yanking:
Tr��,�

�
���,�

�
= id� . (45)

DP is actually a traced monoidal category, with the trace being the “feedback”
operator de�ned in Section 5.4.

Lemma 6.24. �DP,���, �, ��, ��, ��, ��� is a traced monoidal category.

See proof on page 217.

6.4 More structure
First, DPs can be ordered, and their hom-sets form a bounded lattice.

Ordering DPs

De�nition 6.25 (Order on DP)
Suppose that � and� are posets, and that �, �� � �� � are design problems.
We de�ne the order as follows:

� �DP �
,

�(��, �) �Bool �(��, �) for all � � �, � � �.

6.4 More structure 89

Remark 6.26. Recall that design problems are monotone functions, and note
that the order de�ned in Def. 6.25 is just the usual order on monotone functions.

We diagrammatically represent the relation � �DP � as in Fig. 100.

Lattice structure of sets of DP

Given the de�nitions of � and � in the previous sections, we can prove that
hom-sets of DP have a lattice structure.

This lattice is bounded by a “true” and a “false” DP.

De�nition 6.27 (False and true DPs)
Given any two partial orders �,�, we can de�ne a false DP as

��,� � �
op ◊� �Pos Bool,

���, �� � �.

We can de�ne a true DP as

��,� � �
op ◊� �Pos Bool,

���, �� � �.

For any functionality-resource pair �,�, these represent the design problem
which is never (respectively always) feasible.

Lemma 6.28. HomDP(�;�) is a bounded lattice with union � as join, intersec-
tion � as meet, top ��,� and bottom ��,�.

See proof on page 221.

We show that a DP hom-set is a complete lattice.

De�nition 6.29 (Complete Lattice)
A poset � = ��, ��� is a complete lattice if every subset � of � has both a
greatest lower bound (often referred to as the in�mum,meet) and a least upper
bound (often referred to as the supremum, join).

Example 6.30. Consider the power set of any given set, ordered by inclusion.
The supremum of any two subsets is given by their union. The in�mum of any
two subsets is given by their intersection.

Lemma 6.31 (DP hom-sets are complete lattices). Hom-sets of DP are complete
lattices.

See proof on page 221.

90 6 A categorical perspective

� � � �� �
�� �

(� # �) � (� # �)� �

Figure 101: Diagrammatic statement.

De�nition 6.32 (Distributive Lattice)
A lattice � = ��, �, �� is a distributive lattice if for all �, �, � � �:

� � (� � �) = (� � �) � (� � �). (46)

Remark 6.33. Note that condition (46) is equivalent to its dual:

� � (� � �) = (� � �) � (� � �),

for all �, �, � � �.

Lemma 6.34. Consider �, �, � � HomDP(�;�). We have

(� � �) � � = (� � �) � (� � �).

See proof on page 222.

Lemma 6.35. Consider �, �, � � HomDP(�;�). We have

(� � �) � � = (� � �) � (� � �).

See proof on page 222.

Lemma 6.36 (DP hom-sets are distributive lattices). Hom-sets of DP are dis-
tributive lattices.

Proof. Either Lemma 6.34 or Lemma 6.35 prove the statement.

Interaction with composition

Furthermore, we show that all composition operations preserve joins, and all
composition operations except trace preserve meets.

Lemma 6.37. Consider �, � � HomDP(�;�) and � � HomDP(�;�). We have

(� � �) # � = (� # �) � (� # �).

This is diagrammatically represented in Fig. 101.

See proof on page 223.

Remark 6.38. Consider �, � � HomDP(�;�) and �,� � HomDP(�;�). In
general, we have:

(� � �) # (� � �) � (� # �) � (� # �).

6.4 More structure 91

� � � �� �
�� �

(� # �) � (� # �)� �

Figure 102: Diagrammatic statement.

Indeed, consider � = ��,�, � = ��,�, � = ��,�, and � = ��,�. Clearly:

((� � �) # (� � �))(��, �) =
�

���
(� � �)(��, �) � (� � �)(��, �)

= �,

but
((� # �) � (� # �))(��, �)

=
�
�
�

�

���
�(��, �) � �(��, �)

�
�
�
�
�
�
�

�

���
�(��, �) � �(��, �)

�
�
�

=� � �

=�.

Lemma 6.39. Consider �, � � HomDP(�;�) and � � HomDP(�;�). We have

(� � �) # � = (� # �) � (� # �).

This is diagrammatically represented in Fig. 102.

See proof on page 223.

DP is locally posetal

Let’s recall the de�nition of enriched category.

De�nition 6.40 (V-enriched category)
Let �V,���, �, ��, ��, ��� be a monoidal category. A V-enriched category E is:

Constituents

1. A collection of objects ObE.

2. For every pair of objects ��, �� of E, a hom-object

E(�,�) � ObV (47)

3. For every triple of objects ��, �, �� of E, a morphism of V

���,�,� � E(�,�)��� E(�,�)�V,E(�,�), (48)

called composition morphism.

4. For each object � of E, a morphism of V

��� � ��V E(�,�), (49)

92 6 A categorical perspective

called identity-choosing morphism.

Conditions

1. Associativity: for any �,�,�,� � ObC, the diagram in Fig. 103a com-
mutes.

2. Neutrality: for any �,�,� � ObC the diagram in Fig. 103b commutes.

E(�,�)��� (E(�,�)��� E(�,�)) (E(�,�)��� E(�,�))��� E(�,�)

E(�,�)��� E(�,�) E(�,�) E(�,�)��� E(�,�)

��

idE(�,�)��� ���,�,� ���,�,� ��� idE(�,�)

���,�,� ���,�,�

(a) Associativity

E(�,�)��� E(�,�) E(�,�) E(�,�)��� E(�,�)

E(�,�)��� � ���� E(�,�)

���,�,� ���,�,�

��idE(�,�)��� ��� ��
��� ��� idE(�,�)

(b) Neutrality

Figure 103: Coherence diagrams for enriched categories

In this section, we will show that DP is locally posetal (i.e., enriched in the
category of posets Pos).

First, we prove a preliminary result.

Lemma 6.41. The map

���,�,� � HomDP(�;�) ◊ HomDP(�;�) � HomDP(�;�),

��, �� � � # �.

is monotone.

See proof on page 223.

Lemma 6.42. DP is enriched in Pos.

See proof on page 224.

Solving co-design problems 7
If I had an hour to solve a problem I’d spend 55 minutes thinking

about the problem and 5 minutes thinking about solutions.
—Albert Einstein15

In this chapter, we present the methodology to compute the solution of co-design
problems. Starting from the solution concept (Section 7.1), we will present a
categorical interpretation, in which there is a category of problems, a category of
solutions (Section 7.2), and a functor between them (Section 7.3). We will then
present in more practical terms how to solve co-design problems (Section 7.4 to
Section 7.6), reporting early results from [122], and �nally present two examples
(Section 7.7 and Section 7.8).

7.1 Solution concept
In this and the following sections we are going to build towards the solution of
co-design problems.

Formulation as an optimization problem

We will consider an arbitrary multigraph of design problems, in which nodes
are design problems and edges are arbitrary interconnections between func-
tionality and resources, obtained through the operations of a traced monoidal
category (series, parallel, feedback) plus the lattice structure (and, or) of design
problems. On this structure we want to solve the query ������������ or, symmet-
rically, ������������ (Section 3.4). For the sake of narrative, we now consider
������������, and organize the problem statement as in classic optimization.

Data An arbitrary multigraph of design problems �� � �� �� ��. Variables
are functionalities �� � �� and resources �� � ��. Functionalities are speci�ed
by the user (for ������������, the user speci�es the resources). Let’s denote the
product of functionalities and resources by � and �, respectively.

Constraints We have two types of constraints.

15 Einstein was a German-born theoretical physicist, who received the Nobel Prize in Physics in 1921.
Notably, he was both a student and a faculty at ETH Zürich.

94 7 Solving co-design problems

� For each node, we need component feasibility, i.e., ��(���, ��) = �:

�� ����

� For each edge between �� and �� , we need co-design constraints, i.e., �� � ��:

�� ��
�� ��

�

Objective The objective is to minimize resources:

Min
��

�

Remark 7.1 (Expressivity of design problems). We are not assuming properties
like convexity, or even weaker properties such as di�erentiability or continuity of
the constraints. In fact, we are not even assuming that functionality and resources
are continuous spaces; they could be arbitrary discrete posets.

Sketch of the solution procedure

We look at the solution procedure from a compositional point of view. We will
assume that we know the solution to ������������ for each of the components.
We think of the components as primitive blocks, because they are given in a
catalogue format as a DPI, or they are special cases (+,���, etc.) which we will
solve as special cases. Given the solution for the primitive blocks, we want to
know what is the solution for ������������ for the entire diagram.

What is the form of the solution that we expect? Given a DP �� � �� � we
expect the solution to ������������ to be a function that, given a �xed function-
ality � � �, returns the minimal resources, which form an upper set. We call this
function ��.

De�nition 7.2
Given a DP �� � �� � we denote by �� � � �Pos �� the map that
associates to each functionality � the set of minimal resources su�cient to
realize �:

�� � ��Pos ��,

� � {� � �� �(��, �)}.

If a certain functionality � is infeasible, then �(�) = �.

Symmetrically, the solution to ������������ is given by a function that we call��.

7.2 Categories of solutions 95

Pos�

DP

Pos�

�

����������������

������������

������������

�

����������������

Figure 104: In this chapter, we show that the
queries ������������ and ������������ can be
seen as functors from DP to two new categories,
Pos� and Pos� . We show that DP is equivalent to
these categories: a DP is univocally de�ned by the
answers to the two queries.

De�nition 7.3
Given a DP ��,�, �, ����, ����, de�ne the map �� � � �Pos �� that asso-
ciates to each resource � the set of functionalities which can be realized
with �:

�� � ��Pos ��,

� � {� � �� �(��, �)}.

If a certain resource � only leads to infeasible functionalities, then �(�) = �.

Both maps are indeed monotone.

Lemma 7.4. Both � and � are monotone maps.

See proof on page 225.

A question that arises naturally is whether the map�� is su�cient to reconstruct
the original DP. The answer is yes. We will prove that �� de�nes a morphism
in a category called Pos� , and that this category is equivalent to DP, therefore
being traced monoidal, with a lattice structure. In fact, ������������ can be seen
as a functor from DP to Pos� . Symmetrically, �� is a morphism in a category
Pos� equivalent to DP and ������������ can be seen as the functor from DP to
Pos�. This situation is represented in Fig. 104.

In the course of this chapter, by de�ning the two functors ������������ and
������������, we e�ectively have solved the problem of optimization for DPs in
the “mathematical” way. However, this is only the �rst step, because it does not
say anything about whether the functor is actually computable. Further along
this chapter we will look at �nite approximations of DPs and the computational
complexity of the solution.

7.2 Categories of solutions
One can see the previous sections as a de�nition of the category of design prob-
lems DP, together with its structure. We can de�ne a category of solutions, and
eventually show that the two categories are connected by a functor. The no-
tion of solution, in the context of co-design problems, is the one of a map from
functionalities to uppersets of resources, or, to antichains of resources.

De�nition 7.5 (Category Pos�)
The category Pos� consists of:

1. Objects: objects are posets;

2. Morphisms: given posets �,�, morphisms from �� �� � are monotone
maps of the form �� � ��Pos ��.

3. Composition of morphisms: Given morphisms �� � � �, �� � � �,

96 7 Solving co-design problems

their composition � # �� �� � is given by

(� # �)� � ��Pos ��

� �
�

����(�)
��(�);

4. Identity morphism: given an object � � ObPos� , the identity morphism
id� � �� � is given by the application of the upper closure operator:

id�� (�) �= �� {�}.

Analogously, we can de�ne the Pos� category.

De�nition 7.6 (Category Pos�)
The category Pos� consists of:

1. Objects: objects are posets;

2. Morphisms: given posets�,�, morphisms �� �� � are monotone maps
of the form �� � ��Pos ��.

3. Composition of morphisms: Given morphisms �� � � �, �� � � �,
their composition � # �� �� � is given by

(� # �)� � ��Pos ��

� �
�

����(�)
��(�);

4. Identity morphism: given an object � � ObPos� , the identity morphism
id� � �� � is given by the application of the lower closure operator:

id�� (�) �= �� {�}.

We now show that Pos� and Pos� are indeed categories.

Lemma 7.7. Pos� and Pos� are categories.

See proof on page 225.

We can show that Pos� and Pos� are equivalent categories.

Lemma 7.8. Pos� and Pos� are isomorphic: there exists a pair of functors

�� Pos� � Pos�,

�� Pos� � Pos� ,

such that � # �= idPos� and � # �= idPos� , where idPos� and idPos� are the
identity functors on Pos� and Pos�, respectively.

See proof on page 226.

7.2 Categories of solutions 97

Pos� and Pos� are symmetric monoidal categories

We can show that Pos� and Pos� are monoidal categories (and will eventually
show that they are symmetric monoidal). We show the construction for Pos� ,
and the one for Pos� is analogous. First, we want to identify the constituents for
the monoidal structure on Pos� . On objects, the monoidal product corresponds
to the product of posets. Given two morphisms �� � � � and �� � � �, we
have ���� �� � ◊�� � ◊ �, with

(���� �)� � � ◊��Pos �(� ◊ �)

��, ��� ��(�) ◊ ��(�).

Note that the product of upper sets is an upper set.

Lemma 7.9. The product of upper sets is an upper set. The product of lower
sets is a lower set.

See proof on page 227.

The monoidal unit is the singleton poset �. First of all, we check that the monoidal
product is functorial.

Lemma 7.10. The monoidal product de�ned for Pos� is functorial.

See proof on page 227.

We now identify left and right unitors. The left unitor ��� � � ◊ � � � is given
by

���� � � ◊ � �Pos ��,

��, �� � �� {�}.

The right unitor ��� � � ◊ �� � is given by

���� � � ◊ � �Pos ��,

��, �� � �� {�}.

Lemma 7.11. The left and right unitors for Pos� are valid isomorphisms.

See proof on page 228.

Furthermore, the associator ���,�,� � (� ◊�) ◊�� � ◊ (� ◊�) is given by:

���,�,�� � (� ◊�) ◊� �Pos �� ◊ (�� ◊��),

���, ��, �� � �� {�} ◊ (�� {�} ◊ �� {�}).

Lemma 7.12. The associator for Pos� is a valid isomorphism.

See proof on page 228.

98 7 Solving co-design problems

Lemma 7.13. �Pos� ,���, �, ��, ��, ��� is a monoidal category.

See proof on page 229.

We now want to show thatPos� can be equipped to become a symmetric monoidal
category. The braiding isomorphism for Pos� is given by:

����,� � � ◊� �Pos �(� ◊ �),

��, �� � �� {�} ◊ �� {�}.

Lemma 7.14. The braiding for Pos� is a valid natural isomorphism.

See proof on page 231.

Lemma 7.15. �Pos� ,���, �, ��, ��, ��, ��� is a symmetric monoidal category.

See proof on page 232.

Pos� and Pos� are traced monoidal categories

De�nition 7.16 (Trace in Pos�)
Given a morphism �� � ◊�� � ◊� in Pos� , its trace in is de�ned as a
morphism Tr��,�(�)� �� �, given by

Tr��,�(�)
�
� �� ��

� �
�

�
�

� � � �
�

���
��, �� � ��(�, �)

�

�
�

.

Lemma 7.17. �Pos� ,���, �, ��, ��, ��, ��� equipped with the trace operation de-
�ned in Def. 7.16 is a traced monoidal category.

See proof on page 232.

Pos� and Pos� also have bounded lattice structure

First of all, we can order morphisms inPos� andPos�, carrying the same meaning
as the order introduced for morphisms in DP.

De�nition 7.18 (Order on morphisms in Pos� and Pos�)
Given any two morphisms�, �� �� � inPos� , we de�ne an order between
them as

� �Pos� �
.

��(�) ��� ��(�), �� � �

7.2 Categories of solutions 99

Given any two morphisms �, �� �� � inPos�, we de�ne an order between
them as

� �Pos� � .
��(�) ��� ��(�), �� � �

We can also de�ne union and intersection of morphisms analogously to the DP
case.

De�nition 7.19 (Intersection of morphisms in Pos� and Pos�)
Given two morphisms �, �� � � � in Pos� , their intersection (meet) is a
morphism � � �� �� �, given by

(� � �)� � �� ��

� � ��(�) � ��(�).

Given two morphisms �, �� � � � in Pos�, their intersection (meet) is a
morphism � � �� �� �, given by

(� � �)� � �� ��

� � ��(�) � ��(�).

De�nition 7.20 (Union of morphisms in Pos� and Pos�)
Given two morphisms �, �� � � � in Pos� , their union (join) is a mor-
phism � � �� �� �, given by

(� � �)� � �� ��

� � ��(�) � ��(�).

Given two morphisms �, �� � � � in Pos�, their union (join) is a mor-
phism � � �� �� �, given by

(� � �)� � �� ��

� � ��(�) � ��(�).

Lemma 7.21. Given any �,� � ObPos� , HomPos� (�;�) is a bounded lattice
with union � of morphisms in Pos� as join, intersection � of morphisms in Pos�
as meet, least upper bound �HomPos� (�;�)

� �� � given by

�HomPos� (�;�)
� � �� ��

� � �,

100 7 Solving co-design problems

and greatest lower bound �HomPos� (�;�)
� �� � given by

�HomPos� (�;�)
� � �� ��

� � �.

See proof on page 237.

Lemma 7.22. Given any �,� � ObPos� , HomPos� (�;�) is a bounded lattice
with intersection � of morphisms in Pos� as meet, union � of morphisms in Pos�
as join, least upper bound �HomPos� (�;�)

� �� � given by

�HomPos� (�;�)
� � �� ��

� � �,

and greatest lower bound �HomPos� (�;�)
� �� � given by

�HomPos� (�;�)
� � �� ��

� � �.

Proof. The proof is analogous to the one of Lemma 7.21. Note that meet-
s/joins and top/bottom are switched in meaning, because of the di�erence
in order between �� and ��.

7.3 Queries as functors from statements to
solutions

We are now ready to prove the functoriality from problem statements to solu-
tions.

Lemma 7.23. There is a functor

������������� DP� Pos� (50)

that maps:

1. An object (poset) in DP to the same object (poset) in Pos� .

2. A morphism � � HomDP(�;�) to the morphism�� � HomPos� (�;�), where:

��
� � ��Pos ��

� � {� � � � �(��, �)}.

See proof on page 237.

7.3 Queries as functors from statements to solutions 101

Pos�

DP

Pos�

�

����������������

������������

������������

�

����������������

Figure 105: From DP to Pos� and Pos� , and back.

Lemma 7.24. There is a functor

������������� DP� Pos�

which maps:

1. An object (poset) of DP to the same object (poset) in Pos�.

2. A morphism � � HomDP(�;�) to the morphism�� � HomPos� (�;�), where:

��
� � ��Pos ��

� � {� � � � �(��, �)}.

Proof. The proof is analogous to the one of Lemma 7.23.

Lemma 7.25. There is a functor ����������������� Pos� � DP which maps:

1. An object (poset) in Pos� to the same object (poset) in DP.

2. A morphism � � HomPos� (�;�) to the morphism �� � HomDP(�;�), where:

�� � �op ◊��Pos Bool

���, ��� � � ��(�).

See proof on page 238.

Lemma 7.26. There is a functor ����������������� Pos� � DP which maps:

1. An object (poset) in Pos� to the same object (poset) in DP.

2. A morphism � � HomPos� (�;�) to the morphism �� � HomDP(�;�), where:

�� � �op ◊��Pos Bool

���, ��� � � ��(�).

Proof. The proof is analogous to the one of Lemma 7.25.

Lemma 7.27. The pair of functors ������������ and ���������������� together
with the natural isomorphisms

������������ # ���������������� � idDP,

and
���������������� # ������������ � idPos� ,

form an equivalence for DP and Pos� .

See proof on page 239.

102 7 Solving co-design problems

Lemma 7.28. ������������ preserves the bounded lattice structure.

See proof on page 239.

Lemma 7.29. ������������ preserves traces.

See proof on page 240.

The introduced functors actually have more structure. Let’s recall the notion of
strong monoidal functor.

De�nition 7.30 (Strong monoidal functor)
Let �C,���C, �C� and �D,���D, �D� be two monoidal categories.
A strong monoidal functor between C and D is given by:

1. A functor
�� C� D; (51)

2. An isomorphism
iso� �D � �(�C); (52)

3. A natural isomorphism �

��,� � �(�)���D �(�)� �(����C �), ��,� � C, (53)

satisfying the following conditions:

(a) Associativity: For all objects�,�,� � C, there are associators ��C and ��D

such that the diagram in Fig. 106a commutes.

(b) Unitality: For all � � C, there exist left and right unitors ��C and ��C, the
diagram in Fig. 106b commutes.

We can now prove the following result.

Lemma 7.31. ������������ and ������������ are strong monoidal functors.

See proof on page 241.

7.4 Finite co-design problems 103

(�(�)���D �(�))���D �(�) �(�)���D (�(�)���D �(�))

�(����C �)���D �(�) �(�)���D �(����C �)

�((����C �)���C �) �(����C (����C �))

��D�(�),�(�),�(�)

��,� ���D id(�(�)) id(�(�))���D ��,�

�����D�,� ��,����D�

�(��C�,�,�)

(a) Natural associativity

�D���D �(�) �(�C)���D �(�)

�(�) �(�C���C �)

iso���D id�(�)

��D ��C,�

�(��C�)

�(�)���D �D �(�)���D �(�C)

�(�) �(����C �C)

��D

id�(�)���D iso

��,�C

�(��C�)

(b) Natural unitality

Figure 106: Commuting diagrams used in Def. 7.30

7.4 Finite co-design problems
If we want a computable algorithm for solving co-design queries, it is necessary
that the solution can be �nitely representable. One way to do this is to zero-in
on those design problems that are guaranteed, by construction, to have a �nite
solution. This is what we do in this section. For other cases, we refer to [123].

In the ������������ queries, the solution lives in an upper set of resources. We
now look at upper sets that can be represented as the upper closure of �nite
antichains.

De�nition 7.32 (Finitely-supported upper sets)
Given a poset �, we call an upper set � � �� �nitely supported if it can be
written as the upper closure of a �nite antichain:

� = (���), for � � �����, ����(�) <�.

We call �f� the set of �nitely-supported upper sets of a poset �.
We call ����f � the set of �nite antichains.

For brevity, in the following we denote ������������(�) by ��.

104 7 Solving co-design problems

De�nition 7.33 (Finite design problems)
We call a design problem �� � �� � �nite if, in its representation�� � ��
��, ��(�) � �f� for all � � �.

We show that �nite co-design problems form a subcategory of DP that is also
monoidal and locally posetal. (Note that we are leaving out “traced” for now.) To
show this, we just need to check that all the ways to compose �nite DPs result in
�nite DPs. The formulas that we derive also describe an algorithm to compute
the solution to the queries.

De�nition 7.34 (Category of �nite design problems Pos�f
)

The category of �nite design problems Pos�f
consists of the following con-

stituents:

1. Objects: The objects are posets.

2. Morphisms: The morphisms are �nite design problems (Def. 7.33).

3. Identity morphism: The identity morphism id� � � �� � is as in DP.

4. Composition operation: Given morphisms �� � �� � and �� � �� �,
their composition � # �� � �� � is as in DP.

Lemma 7.35. The series composition of �nite design problems gives a �nite
design problem.

See proof on page 241.

Lemma 7.36. The parallel interconnection of �nite design problem gives a �nite
design problem.

See proof on page 241.

Lemma 7.37. The intersection and union of �nite design problems gives �nite
design problems.

Proof. The proof follows simply from the fact that union and intersection of
�nite upper sets returns �nite upper sets.

7.5 Domain theory and �xed points
In this section we recall some fundamentals of domain theory. It is used in
computer science for de�ning denotational semantics (see e.g., [149]). It is used
in embedded systems for de�ning the semantics of models of computation (see,
e.g., [150]). What we need from domain theory is the least necessary to de�ne
least �xed points and to use Kleene’s theorem.

7.5 Domain theory and �xed points 105

Domain theory builds on order theory by de�ning “directed” and “complete”
partial orders. These attributes play the same role as compactness in analysis:
they will be used to make sure that certain sequences can converge to a �xed
point.

Directed and complete partial orders

De�nition 7.38 (Directed set)
In a poset � = ��, ���, we say that a set � � � is directed if each pair of
elements in � has an upper bound: for all �, � � �, there exists � � � such
that � � � and � � �.

De�nition 7.39 (Completeness)
A poset is a directed complete partial order (DCPO) if each of its directed
subsets has a supremum (least of upper bounds). It is a complete partial order
(CPO) if it also has a bottom.

Example 7.40 (Completion of ��0 to ��0). The poset ��, �� is not a CPO,
because it lacks a bottom.

The non-negative reals ��0 = {� � �� � � 0} have a bottom � = 0, however,
they are not a DCPO because some of their directed subsets do not have an upper
bound. For example, take ��0, which is a subset of ��0. Then ��0 is directed,
because for each �, � � ��0, there exists � = max {�, �} � ��0 for which � � �
and � � �.

One way to make ���0, �� a CPO is by adding an arti�cial top element � that we
think as “a point at in�nity”. We can de�ne then the completion

��0 �= ��0 � {�},

and extending the partial order � so that � � � for all � � ��0.

Example 7.41. Any lattice is a DCPO.

Example 7.42. For any poset �, �� is a CPO, because it is a bounded lattice.

Scott continuity

Scott continuity is a property of maps on DCPOs that is slightly stronger than
monotonicity.

106 7 Solving co-design problems

�

���

� � �

�

�

�

0 1 2 3

1

2

3

Figure 107: The ceiling function is Scott continu-
ous.

De�nition 7.43 (Scott continuity)
A map �� ��Pos � between DCPOs is Scott continuous i� for each directed
subset � � �, the image �(�) is directed, and

�(��� �) = ����(�). (54)

Lemma 7.44. Scott continuity implies monotonicity.

See proof on page 242.

Remark 7.45. Scott continuity is not the same as the notion of continuity as
used in analysis you might be familiar with. A map from the CPO ���0, �� to
itself is Scott continuous i� it is nondecreasing and left-continuous. For example,
the ceiling function � � ��� is not continuous in the usual sense, but it is Scott
continuous (Fig. 107).

However, the name “continuity” for this property is aptly chosen. In analysis, a
function is continuous if it preserves limits, in the sense that

lim
���

�(��) = �(lim
���

��),

which is, in spirit, the same as (54).

Least �xed points

De�nition 7.46 (Fixed points)
A �xed point of �� ��Pos � is a point � such that �(�) = �.

De�nition 7.47 (Least �xed points)
A least �xed point of �� ��Pos � is the minimum (if it exists) of the set of
�xed points of �:

lfp(�) �= min
�

{� � �� �(�) = �}. (55)

In general, a function need not have a �xed point. It also might have multiple
�xed points; and also it that case there are might not be a least �xed point.

However, the conditions for a least �xed point to exist are quite weak. Mono-
tonicity of the map � plus completeness is su�cient to ensure existence.

Lemma 7.48. If � is a CPO and �� � �Pos � is monotone, then lfp(�) exists
and is unique.

7.5 Domain theory and �xed points 107

Gioele Andrea

Emilio

Alessandro Jonathan

Figure 108: Party invite relation.

This is given as CPO Fixpoint Theorem II, 8.22 in [125].

With the additional assumption of Scott continuity, Kleene’s algorithm is a sys-
tematic procedure to �nd the least �xed point.

Lemma 7.49 (Kleene’s �xed-point theorem). Assume� is a CPO, and�� ��Pos
� is Scott continuous. Then the least �xed point of � is the supremum of the
Kleene ascent chain

� � �(�) � �(�(�)) �� � �(�)(�) �� . (56)

This is given as CPO �xpoint theorem I, 8.15 in [125].

Example: party invite

Consider the case in which a subset � � � of people decide to throw a party. They
then proceed to call all their friends, who accept, and, if they were not invited
already, enthusiastically call their friends to extend the invite. We want to �nd
out what is the �nal group of people that will show up at the party. We call this
map �� ����� ����, so that if � is the initial group, �(�) is the complete set
of invites.

Note that this is related to the transitive closure operation, but we are only inter-
ested in the transitive closure from a certain initial set �.

For example, consider the case in which the relation is as in Fig. 108. In this case,
we would have

�(�) = �,

which means that, if nobody starts a party, no party takes place. Jonathan does
not invite anybody, so we would have

�({Jonathan}) = {Jonathan}

If Gioele and Alessandro start the party, everybody will get invited:

�({Alessandro, Gioele}) = everybody.

We can show that

1. The function � can be computed as a �xed point.

2. The recursive invite strategy corresponds to Kleene’s iteration.

We summarize the properties that we want the function � to have. Given an
initial subset �, we would like to �nd the set of people � = �(�) such that:

1. � contains the initial set �:
� � �

108 7 Solving co-design problems

2. � is closed with respect to a certain invite relation �� �� �. If ���, then �
invites � to the party. De�ne the function

�� ���� � ����,

� � � �
�

���
{� � �� ���}.

This represents one iteration of the invite process: given a set �, we add to �
all invitees of each of the elements of �.

We are looking for a set � such that it is a �xed point of the invite function:

� = �(�).

3. �(�) is the smallest among all such sets that satisfy the two conditions above.

Let � be the upper principal set of �: given Item 1, we know that we want sets
that contain at least �:

� = �� � = {� � ����� � � �}.

The poset � is a sublattice of ����. Note also that the bottom of � is �.

In summary, we are looking for the smallest point of � that is closed to �:

�(�) = min
�

{� � �� � = �(�)}

Comparing this with (55), we see that �(�) is the least �xed point of �:

�(�) = lfp(�).

Take Kleene’s iteration in (56):

� � �(�) � �(�(�)) �� � �(�)(�) �� .

Because the bottom of � = �� � is �, we can rewrite it as:

� � �(�) � �(�(�)) � �(�(�(�))) … .

Each element of the sequence corresponds to one iteration of the invite algo-
rithm.

7.6 Handling loops
We are close to having a complete solution. The only part that is missing is dealing
with loops (trace).

7.6 Handling loops 109

The feedback operator has signature

����� (� ◊ � �� �)� (� �� �)

The following theorem establishes a closed form for �����(�) as a least �xed point
(note that we use � the map which maps to antichains, and not upper sets). Here
on we consider ����f � as a poset with the order given by

�1 �����f � �2
.

���1 ��f�
���2

Theorem 7.50 (From Thm. 2 in [122]). For any DP � of the right shape, we can
compute �����(�) as follows:

�����(�) � �1 � �� lfp(��1),

that is, as the least �xed point of a map ��1 de�ned as

��1 � ����f � � ����f �, (57)

� � Min
��

�
���

��(�1, �) � �� �.

See proof on page 242.

Lemma 7.51. Let � be an antichain in �. Then

� � �
.

{�} = � � ���

Lemma 7.52. For �,� � ����f �, and � � �, � �����f � � implies � �� �����f �
� ��.

Lemma 7.53. For �,�,�,� � ����f �, � �����f � � and � �����f � � implies � �
� �����f � � ��.

Lemma 7.54. Let �� �◊��Pos � be Scott continuous. For each � � �, de�ne
the map

�� � � � �(�, �)

Then the map
�† � � � lfp(��)

is Scott continuous.

110 7 Solving co-design problems

Proof. Davey and Priestly [125] leave this as Exercise 8.26. A proof is found
in Gierz et al. [151, Exercise II-2.29].

Guarantees of Kleene ascent

Solving an CDP with cycles reduces to computing a Kleene ascent sequence ��.
At each instant � we have some additional guarantees.

For any �nite �, the resources “below” �� (the set � � ����,) are infeasible.

If the iteration converges to a non-empty antichain ��, the antichain �� di-
vides � in two. Below the antichain, all resources are infeasible. However, above
the antichain, it is not necessarily true that all points are feasible, because there
might be holes in the feasible set. Note that this method does not compute the
entire feasible set, but rather only the minimal elements of the feasible set, which
might be much easier to compute.

Finally, if the sequence converges to the empty set, it means that there are no
solutions. The sequence �� can be considered a certi�cate of infeasibility.

Complexity of the solution

Consider �rst the case of a DP that can be described as � = ����(�0), where �0 is
an DP that is described only using the ������ and ��� operators. Suppose that �0
has resource space �. Then evaluating � for � is equivalent to computing a
least �xed point iteration on the space of antichains �����. This allows to give
worst-case bounds on the number of iterations.

Proposition 7.55 (Prop. 5 in [122]). Suppose that � = ����(�0) and �0 has
resource space �0 and evaluating �0 takes at most � computation. Then we can
obtain the following bounds for the algorithm’s resources usage:

memory �(�����(�0))
number of steps �(������(�����0))

total computation �(�����(�0) � ������(�����0) � �)

See proof on page 243.

Remark 7.56 (Considering relations with in�nite cardinality). In [152], Censi
presents a solution for the case in which�����(�0) is in�nite, so that one needs to
represent a continuum of solutions. For instance, suppose that the platform to be
designed must travel a distance � [m], and we need to choose the endurance � [s]
and the velocity � [m/s]. The relation among the quantities is � � � �. This is a
design problem described by the map

� � ��0 � ������0 ◊��0,

7.7 Example: Optimizing over the natural numbers 111

� � {��, �� � ��0 ◊��0 � � = � �}.

For each value of �, there is a continuum of solutions. One approach to solving
this problem would be to discretize the functionality � and the resources � by
sampling and/or coarsening. However, sampling and coarsening makes it hard
to maintain completeness and consistency. One e�ective approach (described in
the paper) is to approximate the design problem itself, rather than the spaces �,�,
which are left as possibly in�nite. The basic idea is that an in�nite antichain can
be bounded from above and above by two antichains that have a �nite number
of points. This idea leads to an algorithm that, given a prescribed computation
budget, can compute an inner and outer approximation to the solution antichain.

7.7 Example: Optimizing over the natural
numbers

This is a simple example, adapted from [122], that can show two interesting
properties of CDPIs:

1. the ability to work with discrete posets; and

2. the ability to treat multi-objective optimization problems.

Consider the family of optimization problems indexed by � � �:

�

�
�

Min��◊� ��, ��,

s.t. � + � � �
�
� � + �

�
� � + �.

(58)

One can show that this optimization problem is a CDP by producing a co-design
diagram with an equivalent semantics, such as the one in Fig. 109.

�2
�
�
� �

�2
�
�
� �

�1
+

�3
+

�
�

�
�

�
�
� �
�

�
�
� �
�

�
�
�
� � + �

�
� � + �� + �

���

Figure 109: Co-design diagram equivalent to (58)

The diagram contains three primitive DPIs: �1, �2 (used twice), and �3. Their �
maps are:

�1 � � ◊ � ◊ � � ����f �,

��1, �2, �3� � {�1 + �2 + �3},

112 7 Solving co-design problems

����

������

������ �1

�3 ���

�2 �2

Figure 110: Tree decomposition of the problem.

�2 � � � ����f �,

� � {�
�
� �},

�3 � � � ����f (� ◊ �),

� � {��, �� � � ◊ �� � + � = �}.

The tree decomposition (Fig. 110) corresponds to the expression

� = ����(������(���(�2,�2), ������(�1,�3))). (59)

From (59) we obtain an expression for �:

� = ((�2 ✏ �2)� �1 � �3)
†. (60)

This problem is small enough that we can write down an explicit expression for �.
By substituting in (60) the de�nitions for ✏, †,�, we obtain that evaluating �(�)
means �nding the least �xed point of a map ��:

� � � � lfp(��).

The map�� � ����f (� ◊ �)� ����f (� ◊ �) can be obtained from Theorem 7.50
as follows:

�� � � � Min
�

��, ����
����, ���

�
�
��, �� � �2 � (� + � � �

�
� � + �

�
� � + �)

�
.

Kleene’s algorithm is the iteration ��+1 = ��(��) starting from

�0 = �����f (�◊�) = {�0, 0�}.

For � = 0, the sequence converges immediately:

�0 = {��, ��} = �(0).

For � = 1, the sequence converges at the sixth step; however, some solutions (in

7.8 Example: co-designing an autonomous drone 113

bold) converge sooner:

�0 = {�0, 0�},

�1 = {�0, 1�, �1, 0�},

�2 = {�0, 2�, �1, 1�, �2, 0�},

�3 = {��, ��, �1, 2�, �2, 1�, ��, ��},

�4 = {��, ��, �2, 2�, ��, ��},

�5 = {��, ��, ��, ��} = �(1).

For � = 2, the sequence converges at the �fth step; however, some solutions (in
bold) converge sooner:

�0 = {�0, 0�},

�1 = {�0, 2�, �1, 1�, �2, 0�},

�2 = {��, ��, �1, 3�, �2, 2�, �3, 1�, ��, ��},

�3 = {��, ��, �3, 2�, �2, 3�, ��, ��}

�4 = {��, ��, ��, ��, ��, ��} = �(2).

The next values in the sequence are:

�(3) = {��, ��, ��, ��, ��, ��, ��, ��},

�(4) = {��, ��, ��, ��, ��, ��, ��, ��, ��, ��}.

7.8 Example: co-designing an autonomous drone

Actuation

Feature
Extraction

Mission
Planning

LQG
Control

Vision
Sensor

Implement
Feature

Implement
Control

Battery

+

+

Computing

+

×

×g

speed
[m/s]

lift [N]

impl. feature
 at b��Hz]

resolution
[px/sterad]

acquisition
frequency [Hz]

impl. control
 at b��Hz]

energy stored [J]

control effort

power [W]

power [W]
cost [CHF]

cost [CHF]

mass [g]

mass [g]

power [W]

total computation [op/s]

mission time [s]

computation [op/s]

computation [op/s]

number of missions

cost [CHF]
mass [g]

cost [CHF]

mass [g]

total
power [W]

total mass
[g]

tracking error

precision

observe
at b��Hz]

+

system
noise W

total cost
[CHF]

Figure 111: Co-design diagram for the design of
an autonomous drone that needs to execute an ide-
alized search-and-rescue task. The functionalities
are task characteristics and the environment. We
choose costs as the resources to minimize.

114 7 Solving co-design problems

Recall the co-design problem of an autonomous drone introduced in Section 5.5.
We now want to show how the proposed framework is able to solve the co-design
problem of an autonomous drone, co-designing the controller synthesis together
with the rest of the platform. We consider the design problem reported in Fig. 111
and provide design insights in terms of cost, power consumption, tracking error,
missions duration and number of missions. We list the design variables in Ta-
ble 4. Speci�cally, they include the selection of sensors, control parameters, battery
technologies, computing units and actuators.

Table 4: Variables, options and sources for the
drone co-design problem.

Variable Options Source
Actuators Type 1, 2, 3 [122]
Computer RaspPi 4B, Jetson Nano/TX1/TX2 [153]
Control 0.2-50.0 Hz, � � [10�4, 104] -
Sensor Basler Ace251gm/222gm/13gm/7gm/5gm/15um [154]

Flir Pointgrey/Black�y/Black�yBoard [155]
Battery LCO, LFP, LiPo, LMO, NiCad, NiH2, NiMH, SLA [122]

Cost and performance trade-o�

We consider a variation of the co-design problem in Fig. 111 in which the resources
are the total cost, and the tracking error (i.e., an indicator of performance). In
practice, we are dealing with a design problem �� ����(2) ◊ ��0 ◊ ��0 ��
��0◊��0, where the functionalities are the system noise, the number of missions,
and the mission duration, and the resources are the total cost and the tracking
error. In the following, we bound the system noise and �x �0 = �0 = 1, to propose
a sample of design insights that the framework can produce.

We query (using ������������) the optimal design solutions which enable the
drone to perform 5,000 missions lasting 40 minutes (Fig. 112). The red dots
represent the elements belonging to the antichain of optimal design solutions,
expressed in terms of the platform cost and the tracking error. The solutions
are not comparable, since no instance leads simultaneously to lower cost and
tracking error. The upper set of resources (not necessarily optimal, but making
the design problem feasible) is given in solid red. Furthermore, we report imple-
mentations corresponding to speci�c optimal solutions. For instance, the solution
with the lowest cost (and the highest tracking error), consists in using a Nano
computer, a control frequency of 6.25 Hz, � = 3.73, an LCO battery, the �rst kind
of actuators, and a Pointgrey camera. As can be gathered from the plot, a budget
increase for the drone reduces the tracking error. For instance, an investment
from 900 CHF to 1,100 CHF reduces the tracking error by 90 %. This kind of
plots helps the stakeholders involved in the design process making decisions.
For instance, a 27 % investment from 1,100 CHF to 1,400 CHF only reduces the
tracking error by 5 %, and one might think that such investment is not a good

7.8 Example: co-designing an autonomous drone 115

idea for most applications.

Sensor: Pointgrey

Battery: LCO

Actuator: 1

Sensor: Ace222gm

Battery: NiH2

Actuator: 2

Sensor: Ace251gm

Battery: LCO

Actuator: 3

Drone cost [CHF]

Tr
ac

ki
ng

 e
rro

r

Frequency: 6.25 Hz
Computer: Nano

_������

Frequency: 12.5 Hz
Computer: TX1

_������

Frequency: 25 Hz
Computer: TX2

_�������

Figure 112: Pareto front of cost and tracking error
(performance) in the design of a drone, able to
complete 5,000 missions of 40 minutes. The �g-
ure shows the antichain of optimal solutions for
the given scenario. Red dots characterize optimal
design solutions and the colored area describes up-
per sets of resources for which functionalities are
feasible. Selected implementations corresponding
to speci�c points in the antichain are reported.

Power and performance trade-o�

We consider a variation of the co-design problem in Fig. 111 in which the re-
sources are the total power needed, and the tracking error (i.e., an indicator of
performance). In practice, we are dealing with a design problem �� ����(2) ◊
��0 ◊ ��0 �� ��0 ◊ ��0, where the functionalities are the system noise,

the number of mission, and the mission duration, and the resources are the to-
tal power needed and the tracking error. We query the co-design problem in
a similar way, now looking at the trade-o�s between power consumption and
tracking error for the case in which the drone must complete 1,000 missions last-
ing 10 minutes (Fig. 113). When more power is available, better sensors and more
performing computers, batteries and actuators can be used, reducing the tracking
error. Interestingly, solutions needing beyong 16 W do not seem to substantially
reduce the tracking error.

Monotonocity in the co-design problem of the drone

We consider increasing mission time and number of missions and assess the evo-
lution in trade-o�s in platform power consumption and tracking error. Fig. 114
shows multiple co-design queries. In particular, for each functionality (left plot),
we compute the map ��, which maps a functionality to the minimum antichain
of resources which provide it. Monotonicity can be seen in the dominance of
subsequent Pareto fronts (right plot), illustrated in increasing red tonality.

116 7 Solving co-design problems

Figure 113: Pareto front of power consumption
and tracking error (performance) in the design of
a drone, able to complete 1,000 missions of 10 min-
utes. Power consumption [W]

Tr
ac

ki
ng

 e
rro

r

Frequency: 6.25 Hz
Computer: Nano

Sensor: Blackfly

Battery: LCO

Actuator: 1

Sensor: BlackflyBoard

Battery: NiH2

Actuator: 1

Sensor: Ace251gm

Battery: LCO

Actuator: 3

_���

Frequency: 12.5 Hz
Computer: TX1

_�������

Frequency: 25 Hz
Computer: TX2

_�����

Figure 114: Monotonicity of the drone design
problem with implementation (DPI). Higher
mission time and number of missions requires
higher power and tracking error.

h

F��� �������� ��
������ �������� P��� B

8 Systematic process for the co-design of complex systems 119

9 Implementation 129

10 Co-design of autonomy 139

11 Co-design of mobility systems 157

12 From autonomy to mobility via compositionality 183

The Polybahn is an autonomous funicular railway that connects the Central square with the terrace by the main building of ETH Zürich. It was opened in
1889 and it is owned by the banking group UBS AG.

Systematic process for the
co-design of complex systems 8

Divide each di�culty into as many parts as is feasible and necessary to
resolve it.

—René Descartes16

In the previous part, we have presented a theory of co-design and have shown
some examples motivating its potential in dealing with complex design problems.
However, all the examples we provided so far, while compelling, were de�ned
deductively, as opposed to inductively. In this chapter, we will present a systematic
process to employ the presented theory to come up with task-driven co-design
models for complex systems. We will start by showing how to de�ne a function/-
task (Section 8.1), and how to decompose it into simpler pieces (Section 8.2).
Given the functional decomposition, we will then explain the procedure to turn
it into a co-design diagram (Section 8.3), and to identify circular constraints
(Section 8.4).

8.1 De�ning the task
When designing a complex system, the �rst thing one needs to do is to identify the
reason for the system to exist in the �rst place: its function. In the remainder of
this manuscript, we will refer to “functions” (typical in the systems engineering
jargon) as “tasks”, since the term “function” clashes with the co-design term
“functionalities”.

Why are we designing the system? In his popular paper “The structure of in-
vention”, Arthur says that humans develop technology as a means to ful�ll a
purpose [156]. For instance, we design a mobility system (e.g., a �eet of AVs pro-
viding robotaxi services) to satisfy a certain demand (i.e., people willing to move
from certain origins to certain destinations), or an autonomous drone to monitor
a certain area (e.g., in the context of gas leak detections). But how do we go about
identifying these crucial functions or tasks? At �rst sight, it might seem that the
universe of things we care about when designing a complex system is too large to
be characterized. However, there are structured ways in which one can identify
key tasks, which transcend domains.

Example 8.1 (Complex systems classi�cation). For instance, De Weck and col-
laborators identify a list of basic tasks, characterized by the “process” at play, and
whatever the process is acting on (denoted as “operands”) [18], [157]. The three
basic operands are “matter” (e.g., vehicles, water, oil, packages), “energy” (in
various forms), and “information” (e.g., a signal, an e-mail). The three basic pro-
16 Descartes was a French philosopher, scientist, and mathematician.

120 8 Systematic process for the co-design of complex systems

Task

environment

performance

cost [CHF]

power [W]

computation [op/s]

mass [g]

Figure 115: General design problem for a robotic
task.

Gas
detect.

obstacles

area to cover

agents’ speed [m/s]

nr. agents

time [s]

cost [CHF]

Figure 116: Design problem for a swarm of drones
which need to detect gas leakages.

cesses acting on the operands are “transforming”, “transporting”, and “storing”.
Table 5 exempli�es these concepts with practical cases. De Weck also explains
how one can extend operands and processes (e.g., adding money as operand, and
exchange as process).

Table 5: Processes and operands examples [18,
Table 2.2], [158].

Process Matter Energy Information

Transforming Furnace Engine, electric motor Calculator
Transporting Train,car, airplane Power grid Cables, internet
Storing Warehouse Battery Book, disk

Example 8.2 (Functional speci�cations for cyber-physical systems). In formal
robotics, one often refers to tasks as “functional speci�cations”, and typically
speci�ed using some sort of language (e.g., via temporal logic formulas, assume-
guarantee contracts, etc.). Given the speci�cations, one then designs algorithms
that lead to behaviors which comply to the speci�cations (e.g., generating tra-
jectories which satisfy certain constraints on the dynamics, and promote certain
performance metrics). Examples works in this area include [37], [92], [109],
[159]–[162] and references therein.

In this chapter, we take robots as a proxy for complex systems involving com-
ponents arising from heterogeneous domains. In the context of co-designing
such a system, we care about identifying a task for each component (physi-
cal or virtual) to be designed. In particular, each task is a design problem, in
which functionalities are the environment to which one has to be robust to,
and task-speci�c performance metrics. Usually, providing these functionalities
comes at several costs (resources), which vary depending on the context.

Example 8.3 (Robotics). The characterization of environments and function-
speci�c performances varies depending on the particular application. For in-
stance, in the context of designing a swarm of drones which need to cover a
particular area to detect gas leakages, the environment might be characterized by
the topology of the area to be covered (e.g., outdoor vs. indoor, presence of static/-
dynamic obstacles, weather conditions). In this case, one could characterize the
task-speci�c performance metric via the area to be covered (the higher, the more
complex), or via the probability of detecting a leakage, given that there is one. For
what concerns the resources, typical ones in robotics include the shape (of the
robot), weight (which adds to the payload), power needs, computation needs, and
monetary costs. On top of these, one might have task-speci�c ones. For instance,
when designing a swarm of drones, one might care about the speed limitations of
each agent, the time needed to cover a particular area, or the number of agents
needed to cover it. Fig. 115 and Fig. 116 represent a general and speci�c design
problems for the aforementioned robotic tasks.

8.2 Functional decomposition 121

Mobility
system

demand
investments [CHF]
externalities [kg]

Figure 117: Design problem for a mobility system.

FR

FR1 FR2

FR11 FR12 FR13 FR21 FR22

Figure 118: Functional decomposition for the re-
frigerator example.

Examples treated in this chapter go beyond robotics.

Example 8.4 (Mobility). When designing a mobility option (e.g., a �eet of robo-
taxis), the environment could be characterized by the mobility network and its
status (e.g., roads), and the task could be speci�ed in form of demand (i.e., people
willing to move from certain origins to certain destinations). The task-speci�c
performance by the average travel time in the system. Typical resources in this
context are externalities (e.g., emissions), and investment costs (e.g., to buy and
maintain a �eet) Fig. 117.

Example 8.5 (Powertrain design). When designing the powertrain of an electric
vehicle, the environment could be characterized by the actual inclination pro�le
of the roads to be navigated (e.g., a �at highway in southern Italy, vs. the steep
and curvy Lombard Street in San Francisco). The task is typically speci�ed by
a drive cycle (usually provided in terms of required acceleration/velocity), and
the performance is measured in terms of power consumption, motor e�ciency,
comfort. In racing cases (e.g., Formula 1), one cares about driving time.

Once the task is clear, it is time to decompose it unto speci�c sub-tasks.

8.2 Functional decomposition
Once the main task has been identi�ed, one needs to perform a functional de-
composition exercise. In other words, one needs to decompose the main task in
sub-tasks, each of which we can model as design problems.

In the literature, this is often referred to as “function structure” or “functional
requirements”. For instance, Pahl explains how to decompose the function of a
system in subsystems which exchange signals, materials, and energy [163], and
Shankar et al. presents an overview of functional requirements in engineering
design [164].

Here, we are interested in a hierarchical decomposition of the main task [18].
Following the “V model” for system design, originally developed by the Ger-
man department of defense [116], this section deals with the “development of a
functional architecture”.

Example 8.6 (Refrigerator design [29]). In [29], Suh presents a principle to
decompose the design of a complex systems, following functional requirements
(FR). For instance, a refrigerator needs to freeze food for long-term preservation
(FR1), and keep some food at cold temperature without freezing for short-term
preservation (FR2). For FR1, we can further decompose the task into controlling
the temperature of the freezer in a particular range (FR11), mantain a uniform
temperature (FR12), control humidity of the freezer at a certain level (FR13).
Similarly, the second requirement can be further decomposed into controlling the

122 8 Systematic process for the co-design of complex systems

urban driving

follow lane

lateral control longitudinal control
maintain lane
position

brake in case
of obstacles

Figure 119: Functional decomposition for the task
of urban driving.

C

C1 C2

C11 C12 C13 C21 C22

Figure 120: Decomposition in components for the
refrigerator example.

temperature of the chiller in a particular range (FR21), and maintaining a uniform
temperature in the chiller (FR22). This decomposition is depicted in Fig. 118.
Note that Suh states the “independence axiom” by saying that di�erent functional
requirements should not in�uence each other, creating couplings, calls designs
violating this principle “�awed”. This is not a problem for our formulation. Rather,
violating this axiom is what makes a system interesting. We discuss this concept
more in Section 8.4.

The resulting decomposition should not have a notion of the actual implemen-
tation needed to solve a particular task, but rather only focus on the sub-tasks
involved. This idea, referred to as orthogonalization of concerns (see [110]) is cen-
teral to this theory, and separates what the system is supposed to do (function),
from how the system does it (implementation). More discussions related to this
concept are provided in Section 9.1.

As a guiding example, we consider the need for designing an AV (Fig. 119). In this
context, the main task is the one of “urban driving”. It can be decomposed into
various sub-tasks, for instance handling intersections, following a lane, picking up
passengers, etc. For the sake of the narrative, we focus on “lane following”. This
sub-task, can be further decomposed into two more specifc tasks: “lateral control”
(i.e., maintaing the lane position), and “longitudinal control” (i.e., accelerate and
brake in presence of obstacles).

8.3 From functional decompositions to co-design
diagrams

A big drawback of function decompositions as the ones presented in [163] is that
while intuitive, they do not lead to formal representations. We have presented a
theory of co-design which is at the same time intuitive and practical, and formal,
and we now want to map a functional decomposition produced as described in
Section 8.2 to a formal co-design diagram. To do so, starting from a functional
decomposition, we need to �nd the components, express them as design problems,
and interconnect them via functionalities and resources constraints, by identifying
common patterns.

Example 8.7 (Refrigerator design). In the language of Suh, this step is equiv-
alent to �nding components in the “physical domain” (although we also allow
non-physical components) [29]. Continuing Example 8.6, one can identify the
components “freezer section” (C1) and “chiller section” (C2). Given the task of
controlling the temperature of the freezer/chiller, we need a sensor-compressor
system which turns the compressor on (o�) when the air temperature is higher
(lower) than the set temperature in the freezer/chiller section (C11/C21). Simi-
larly, maintaining a uniform temperature in the freezer/chiller happens via a air

8.3 From functional decompositions to co-design diagrams 123

function

task

sub-task 1 sub-task 1

Figure 122: Functional decomposition schemat-
ics.

circulation system which blows air into the freezer/chiller section (C12/C22), and
a condenser condenses the moisture to maintain the desired humidity (C13). For
a graphical representation, see Fig. 120.

Finding components

We �rst have to implement a paradigm shift, from data �ow, to logical dependen-
cies. For instance, when thinking about decision making for autonomous robots,
we usually adopt a data �ow reasoning: some sensor produces sensing data,
which is elaborated by an estimation algorithm, which produces a state estimate,
with is fed into a control algorithm, which in turn produces a command for the
actuators (Fig. 121a). Co-design diagrams are not data �ow diagrams, but rather
highlight logical dependencies. In this context, decision making requires state
estimation, which requires sensing data, algorithms, and computation, which in
turn require a sensor, programmers, and a computer, respectively (Fig. 121b).

Now, given a functional decomposition, we want to identify the components at
play. Slightly modifying Haiken’s famous quote, our slogan is

A system is composed of components;
a component is something you understand how to design.

In other words, we want to identify the design problems for which we know
how to express the implementation space (via the di�erent modeling techniques
presented before).

computer

sensorestimation
node

estimation
algorithm

controller
node

controller
algorithm

state
estimatecommand

sensing
data

(a)Data �ow between sensing data, state estimation, and decision
making.

decision
making

state
estimation algorithm programmers

computation

sensing
data sensor

computer

requires requires requires

requires

requires

requires

requires

(b) Logical dependency between decision making, state estimation, and
sensing data.

Figure 121: Data �ow vs. logical dependencies.

When this process is over, it is time to interconnect the components.

Interconnecting the components

Given the decomposition of a task in speci�c sub-tasks, we feed the speci�c
scenarios/environments into each sub-task, and a general task performance is
assigned to the problem (Fig. 123). In particular, the functional decomposition de-
sign problem has knowledge of the task decomposition logic, and knows for each

124 8 Systematic process for the co-design of complex systems

Lane
cameras

resolution [px/sterad]
frequency [Hz]

environment

cost [CHF]

power [W]
mass [g]

Figure 124: Design problem for lane cameras.

task performance level which combinations of performance levels are required.
The resources required by di�erent sub-tasks are generated independently and
then merged via an associative operation (e.g.,max or+). In robotics, these would
be the resources presented in Example 8.3. Note the compositionality property of
this formalization: the resulting diagram has the same interface as the one of a
task, meaning that a composite task is a task.

Figure 123: Functional decomposition provides
us with sub-tasks, each of which can be modeled
as a design problem.

+

total
resources

resources 1

resources 2

subtask 1

subtask 2

task
performance

environment
functional

decomposition
implement
sub-task 2

implement
sub-task 1

Example: lateral control

Going back to the functional decomposition for urban driving (Fig. 119), we now
show the aforementioned steps in practice for the sub-task of lateral control.
We �rst want to identify the components involved. Subsequently, we want to
interconnect them in a coherent co-design diagram.

To perform lateral control, one needs several ingredients. Essentially, one needs
to:

� Employ lane cameras to observe the lane;

� Feed such information to a control algorithm to maintain the lane position;

For each of these processes, we need to ask ourselves the question: “do we know
how to design it?”. In practice, simple sentences like the above, hide multiple
processes, which might feature separate design exerices. For instance, a new
iteration would result in:

� Employ lane cameras to produce raw observations of the lanes;

� Extract information from the data produced by the lane cameras (feature
extraction) via an algorithm;

� Feed such information to a control algorithm, designed to maintain the lane
position;

� Actually implement the algorithms (control, and feature extraction).

At this point, we are ready to identify the components.

Lane cameras Lane cameras exist to provide measurements at a speci�c
frequency, with a speci�c resolution (usually measured in px/sterad), in a spe-
ci�c environment (e.g., rainy vs. sunny, day vs. night). The burden they bring

8.3 From functional decompositions to co-design diagrams 125

Feature
extr.

obs. freq. [Hz]

precision

impl. freq. [Hz]
reso. [px/sterad]
acq. freq. [Hz]

Figure 125: Design problem for feature extraction.

Lane
control

system noise

obs. freq. [Hz]

information
tracking error

control e�ort
impl. freq. [Hz]

Figure 126: Design problem for lane control.

Impl.
algorithm

impl. freq. [Hz] comp. [op/s]

Figure 127: Design problem for the implementa-
tion of algorithms.

is typically expressed in terms of their monetary cost, their mass, and power
consumption. This gives rise a design problem as the one in Fig. 124.

Feature extraction Usually, a feature extraction algorithm processes the mea-
surements provided by the cameras, producing observations which are fed to
the control algorithm at a certain frequency and with a certain precision (e.g.,
as expressed as covariance matrix). These quantities depend on the frequency at
which the feature extraction algorithm actually is operating, the actual resolution
of the raw images, and the acquisition frequency of the cameras. This gives rise
to a design problem as the one in Fig. 125

Lane control Given the task of the AV to align itself with the lane, typically one
will consider a system with some noise (to which the controller should be robust
to), and de�ning the control law will require observations at a certain frequency
and carrying certain information. Furthermore, one usually tries to minimize
tracking error and control e�ort, and is limited by the frequency at which the
control law can be generated. This gives rise to a design problem as the one in
Fig. 126.

Algorithms implementation Both feature detection and lane control algo-
rithms need to be actually implemented. Typically, implementing an algorithm
can be done at a certain frequency, and costs computation. This gives rise to two
analogous design problems, as the one in Fig. 127.

Interconnecting the diagram Once we have identi�ed all the components,
and de�ned the structure of the respective design problems, it is inevitable to
interconnect them. The lane control design problem requires the observations
provided by the feature extraction algorithm (at a certain frequency and with a
certain precision), which in turn require the raw sensing data provided by the
lane cameras (at a certain frequency, and resolution). Both the lane control and
feature extraction algorithms are implemented at a certain frequency, requiring a
certain computation, which can be summed. All the other unconnected function-
alities and resources are the ones of the resulting interconnected design problem:
lateral control is robust to a speci�c system noise and environment, and requires
monetary cost, mass, power and computation, together with tracking error and
control e�ort. If the reader agrees that each block is a design problem, then their
composition is a design problem.

126 8 Systematic process for the co-design of complex systems

Figure 128: We consider lateral control as design
problem, involving the design of control strategies
and feature detection algorithms, together with
sensor selection. Resources are cost, mass, power,
computation, control e�ort and tracking error.

Lane
control

Implement
lane control

resolution
[px/sterad]

acquisition
frequency [Hz]

+

system
noise

information observation

observe at
 b��Hz�

en
vi

ro
nm

en
t

cost [CHF]

tracking error

implement lane
control at b�[Hz]

control effort

power [W]
mass [g]

computation [op/s]

computation [op/s]
computation

[op/s]

Lane
cameras

Implement
feature

detection
Feature

extraction

implement feature
extraction at b�[Hz]

drone actuatorsbattery

drone requires
actuators to move

drone must
carry battery

battery must power motor

Figure 129: Recursive constraints when designing
a drone.

component behaviorbudget

component must
support behaviors

burdget must
be su�cient

for components

behaviors should justify the cost

Figure 130: Recursive constraints between engi-
neering problems and business cases.

8.4 Finding feedback loops
When designing complex systems, the computational complexity arises mainly
from recursive constraints. Historically, some design methodologies explicitly
avoided handling such constraints. For instance, in Suh’s theory of axiomatic
design, the �rst axiom dictates to keep the design functional requirements or-
thogonal (i.e., do not introduce cycles) [28], [29]. In particular, when looking
at Example 8.6 and Example 8.7, this means there cannot interdependencies
between di�erent requirements/components. For instance, in case of limited
power budget, the choice of design for the temperature control of the freezer
might in�uence the other processes.

The theory of co-design not only embraces the complexity arising from recursive
constraints, but also deals with them in a formal way. Below, some examples of
physical and abstract feedback loops are reported.

Physical interpretation

Physical recursive constraints are easy to identify. For instance, in the context of
designing an autonomous drone, the drone requires actuators to move, which are
powered by a battery, which must be carried by the drone. Here, a larger battery
provides more power, but it also increases the payload, increasing power needs
(Fig. 129).

When looking at the design of the controllers for the drone, typically a better
state estimate requires better sensors, which cost more and increase the payload,
or require more computation, increasing the power needs.

Abstract interpretation

At a more abstract level, we can �nd recursive constraints between an engineering
problem and its business case. In practice, any designed component must support
certain behaviors, which should be implemented in a way that justi�es the cost

8.4 Finding feedback loops 127

(i.e., pro�tability for the system). At the same time, however, the budget must be
su�cient to produce the component (Fig. 130).

An example of this concept can be found in designing mobility systems, where the
infrastructural investments should be justi�ed (i.e., covered) by an improvement
in ridership and system performance.

Implementation 9
In theory, theory and practice are the same. In practice, they are not.

—Albert Einstein

So far, we have presented a formal framework in which one can formulate and
solve co-design problems. While intuitive, the formalism might seem heavy to
understand, featuring relationships between posets, interconnections of several
problems, and interpretations in category theory. In this chapter, we will show
that the “scary” part is the developer viewpoint, and that there exists a user one,
which is very friendly. In particular, we will �rst guide the reader through the
creation of co-design problems (via co-design skeletons and their populations),
show some examples, and present a user-friendly interface.

9.1 Writing a skeleton
When implementing the lessons learned so far to co-design a system, the �rst
step is to write a skeleton of a co-design diagram. The skeleton acknowledges the
logical dependencies between di�erent components, and ideally transcends mod-
eling details which populate the feasibility relations. For instance, consider the
skeleton expressing the logical dependencies of the design of a chassis, requiring
torque to move, provided by an electric motor (Fig. 131).

Chassis Motor

speed [m/s]
payload [kg]

torque [Nm]
�

cost [CHF]
mass [g]

Figure 131: Co-design skeletons transcend model
implementations.

This diagram represents the relationships between the two design problems, but
does not specify how one should populate them. For the population, one might
simply use catalogues of existing chassis and motors. At a more granular level,
instead, one might consider complex FEM simulations for the design of a chassis,
and more complex designs for electric motors.

Following this principle allows the designer to separate dependencies reason-
ing and actual model implementations, and hence avoid to fall into the trap of
“starting from the solution and not from the problem”. Notably, this principle
was already introduced by Ferrari and Sangiovanni-Vincentelli in 1999 [110].

The trap of starting from the solution instead of the problem

When delving into the co-design of a complex system, our initial focus should
be on formulating the problem itself, setting aside preconceived notions of solu-

130 9 Implementation

Gas
Det.

size [m3]

environment

type of gas

cost [CHF]

time [s]

MPC error

nr. stations

Figure 132: Designing a system to detect gas leak-
ages in a factory-like environment.

Gas
Det.

size [m3]

environment
type of gas

cost [CHF]

time [s]

Figure 133: Designing a system to detect gas leak-
ages in a factory-like environment.

tions.

Consider the scnario of designing a system tasked with detecting gas leaks in a
factory-like environment. Our primary concerns are to minimize both the overall
system cost and the average time required to detect a gas leak. In your laboratory,
you have developed a setup utilizing drones that e�cient carry out exploration
tasks. These drones make use of visual sensors and employ model predictive con-
trol to navigate their sorroundings e�ectively. Given this capability, it is natural
to conceptualize the co-design problem as in Fig. 132. We identify key function-
alities, such as the size of the gas plume to be detected, the speci�c environment
in which the system will operate, and the type of gas to be detected. Additionally,
we consider various resources, including system cost, time required to detect the
leaks, the accuracy of the controller, and the number of charging stations required
for the drones. You populate the design problems with the components of the
usual autonomy stack you use, and consider as design parameters the number of
drones needed, as well as some speci�c control parameters.

While these choices may seem valid at �rst glance, the inadvertently steer us
towards starting with a predetermined solution in mind. We assume that the
optimal system must necessarily involve a swarm of drones utilizing vision-based
model predictive control, with an inherent need for charging stations. This limited
perspective may inadvertently narrow the solution space, preventing us from
exploring potentially superior alternatives.

In reality, the solution space for this problem is far more expansive than our
initial assumptions suggest. We should consider alternative approaches, such
as ground-based robots equipped with onboard sensors, di�erent types of �ying
robots (like the concept of “robo�ies” charging via Wi-Fi stations [165], [166]), or
even hybrid �eets combining multiple robot types. Another option might involve
stationary sensors, strategically placed within the environment, without the need
for any mobile robots. Additionally, exploring di�erent control schemes, such as
learning-based approaches, could yield innovative solutions.

The key takeaway here is that by prematurely prescribing speci�c components
and strategies, we risk overspecifying our problem model. To address this issue
e�ectively, our aim should be to identify the common ground shared by all po-
tential solutions. In this context, this common ground would lead us to formulate
a more encompassing design problem, as reported in Fig. 133. In this revised
problem formulation, we focus primarily on initial performance metrics that are
applicable to all heterogeneous solutions. Parameters like the number of charging
stations (if necessary) and the controller error are now integrated into the total
cost calculation, and they play a role in determininig the average time required
to detect the gas leaks. By taking this broader approach, we open the door to a
more �exible and comprehensive exploration of potential solutions, ultimately
enabling us to arrive at a more robust and e�ective system for detecting gas leaks

9.1 Writing a skeleton 131

AV
speed [m/s]

�x cost [CHF]
op. cost [CHF/km]

Figure 134: Designing an AV in the context of co-
designing a mobility system.

AV

speed [m/s]

tasks

environment

�x cost [CHF]
op. cost [CHF/km]
power [W]
emissions [kg]

danger

discomfort

Figure 135: Designing an AV in the context of co-
designing the autonomy stack.

in a factory-like environment.

Context informs the level of detail

The importance of context becomes clear when we contemplate the intricacies of
co-design. Some might inquire: “Ok, your theory appears sound, but isn’t the real
magic in the art of selecting these wires and their interconnections? How does one
make these critical choices?”. As we progress through the upcoming chapters, we
will introduce a diverse array of co-design models, each representing a spectrum
of systems, ranging from individual AVs to entire mobility ecosystems. Within
these design scenarios, the level of detail we employ for the interfaces varies, and
this variation is informed by the context in which the design problem arises.

Let’s delve into the example of designing an AV to illustrate the signi�cance of
context in co-design. When tackling the challenge of co-designing a mobility
system which utilizes a �eet of such vehicles, our primary focus might be on a few
crucial aspects, such as the attainable speed of a single AV and its associated �xed
and operational costs (Fig. 134). In this context, these are the wires that matter
most, the essential components of the design that directly impact the system’s
overall performance and cost-e�ectiveness, from the point of view of a mobility
solutions designer.

Now, let’s pivot to a di�erent context: co-designing the autonomy stack of the AV
itself. In this scenario, our considerations become more intricate and multifaceted.
Beyond merely considering speed and cost, we now need to go into the nitty-gritty
details. We are concerned with precisely de�ning the tasks, such as the AV’s ability
to follow a speci�c trajectory at a particular speed, navigating through curves
with a particular curvature. We are also attentive to speci�cs of the environment,
such as the distribution of dynamic obstacles within the scene. Additionally,
we expand our resource palette to include parameters like power consumption,
emissions produced, and metrics related to safety and passenger comfort.

The overarching lesson here is that the level of detail and the selection of func-
tionalities/resources and connections in a co-design problem are in�uenced by
the context within which the problem is framed.

Example: lane control

Going back to the example of urban driving, we can show explicitly the production
of the skeleton for the case of lateral control.

Recall that we had identi�ed a co-design diagram as in Fig. 136, including lane
control, feature extraction, their implementation, and the selection of lane cam-
eras. As you have noticed, we were able to identify the logical dependencies
between these components without actually specifying the details of their actual

132 9 Implementation

Figure 136: We consider lateral control as de-
sign problem, involving the design of control
strategies and feature detection algorithms, to-
gether with sensor selection. R Resources are
cost, mass, power, computation, control e�ort and
tracking error.

Lane
control

Implement
lane control

resolution
[px/sterad]

acquisition
frequency [Hz]

+

system
noise

information observation

observe at
 b��Hz�

en
vi

ro
nm

en
t

cost [CHF]

tracking error

implement lane
control at b�[Hz]

control effort

power [W]
mass [g]

computation [op/s]

computation [op/s]
computation

[op/s]

Lane
cameras

Implement
feature

detection
Feature

extraction

implement feature
extraction at b�[Hz]

models. Once we have this skeleton, we can start thinking about populating the
design problems (feasibility relations).

9.2 Populating the models
Once the skeleton has been created, one can populate the models. To do so, one
can use catalogues, analytical relationships, and data-driven methods. Note that
the process of populating the models can be dynamic. More on that in Part C.

We now provide an exemplary population scheme for the models of lateral control,
starting from the diagram in Fig. 136

Example: lateral control

Lane control Given the task of the AV to align itself with the lane, we de�ne
the vehicle con�guration as �� = ���, ���, where �� is the heading of the AV and ��
is its relative lateral position with respect to the center of the lane. The desired
lane-aligned con�guration at time � is denoted by �g� =

�
�g� , �

g
�
�

and the control
input is the steering torque ��. We assume that from the sensor observations we
can have Gaussian observations of the state �� = �� � �g� + ��, where �� is white
Gaussian noise with covariance ��. As we show in [134], this problem can be
solved with LQG control, by choosing to minimize the objective

lim
���

1
��{�

�

0

��
��� ��0��

�
+
�
�0�2� ��

��
d�}.

We formalized this as the lane control design problem, for which the functionality
is the ability of the control to handle a given system noise and the resources are
the needs to obtain the observations at a certain frequency with given precision
and to implement the optimal control law at a speci�c frequency, requiring
control e�ort �ef f = lim��� �{�0�2� } and tracking error �track = lim��� �{����0��}.
In this case, the implementations the designer can choose are the di�erent cost
weights, parametrized by �. We show in [134] how the nature of the problem

9.3 Expressivity and properties of the framework 133

allows one to obtain the optimal solutions for the design problem by solving
speci�c Riccati equations. Hence, the model can be populated in a data-driven
fashion.

Lane cameras To populate the model for lane cameras, we need to de�ne
a relation between the accuracy of the sensing and the physical sensors. Mea-
surements are provided at a given frequency and with a speci�c resolution (in
px/sterad) by lane cameras, which have a cost, mass and power consumption.
Such data is obtained straight from camera catalogues.

Feature detection A feature detection algorithm processes the measurements
providing the lane control design problem with observations at a certain frequency
and with a certain precision. Obtaining the model for this is the realm of pho-
togrammetry. In practice, we need to answer questions such as “what resolution
(in px/sterad) is needed to achieve a certain feature detection accuracy?”.

Algorithms implementation Finally, it is necessary to choose the implemen-
tation of the actual feature detection and lane control algorithms. For each of
these we have a design problem, characterized by a catalogue of algorithms, each
requiring di�erent computation. To obtain the model, one needs to perform a
benchmarking exercise. An excellent example of how to create benchmarking
catalogues for algorithms, going as deep as to also search over the compiler �ags,
is given by SLAMBench [147] and the successive papers by Nardi and collabora-
tors. For perception problems which cannot be adequately modeled by analytical
photogrammetry relations, it also makes sense to not only vary implementa-
tion details (e.g., compiler �ags) but also algorithm parameters. In that case,
benchmarking would include the scope of the last two blocks together.

9.3 Expressivity and properties of the framework
When populating the models, it is important to consider some properties of the
presented framework, listed below.

Uncertainty In co-design, there are instances where we grapple with uncer-
tainties sorrounding the feasibility of speci�c components. Take, for instance,
the design of a battery. A particular technology may promise a certain level of
power performance while guaranteeing a range of life cycles, say, between 500
and 700 cycles. The question then arises: how do we characterize and handle this
kind of uncertainty e�ectively?

To address this challenge, Censi developed an extension to the co-design theory
which takes into account the introduction of tolerances and upper and lower

134 9 Implementation

bounds for design problems, ordering them [152]. Interestingly, one can then
interconnect the “uncertain versions” of the design problems, and the uncertainty
propagates at the level of the interconnected co-design problem.

When querying an uncertain co-design problem, instead of receiving a single
Pareto front of solutions, we obtain two distinct fronts: a lower bound and an
upper bound. For instance, when designing an autonomous drone performing
search-and-rescue missions, one solution might indicate that the drone, meeting
all task speci�cations, will cost between 1,000 and 2,000 CHF. Another solution
could reveal that, in the best-case scenario, the cost will be 1,000 CHF, but in the
worst-case scenario, the design might not be feasible at all.

Dealing with parametric uncertainty is just one of the features of this extension.
Other interesting ones include relaxing certain relations (via lower and upper
bounds) for a reduced number of solution iterations, and relaxing relations with
in�nite cardinality (which need to be relaxed in this framework). From the cate-
gorical point of view, this structure de�nes a new category of uncertain design
problems, leveraging the twisted arrow construction [123].

Temporality Co-design is often perceived as a static exercise, but in reality,
many complex systems are dynamic and undergo changes over time. The time-
frames involved in such changes can vary signi�cantly, spanning from hours and
days to months and even years, depending on the particular system. This aspect
of systems engineering, known as temporality [18], plays a crucial role in our
framework, and it can manifest in various forms.

In the simplest case, temporality entails considering how di�erent components
within the system might evolve in the future. It involves making predictions or
assumptions about their behaviors and examining the resulting system-level im-
pacts. For instance, a company focused on developing sensors of AVs might pose
the question “If we can manufacture a sensor with speci�c sensing capabilities
at a particular cost and power consumption level, how will it a�ect the state of
the art in sensor technology? In which applications will it excel?”

Taking a more advanced perspective, one could try to de�ne dynamic design
problems. Although this area is a work in progress, we can provide an intuitive
understanding. In dynamic design problems, the relationships governing fea-
sibility become dynamic, and the availability of resources and functionalities
evolves with time. Queries in this context revolve around the temporal aspects
of functionalities and resources. E�ciently addressing such queries requires an
analysis of the dynamic systems at play. More on that in Chapter 14.

Decentralization So far, we have presented co-design problems for which
we have speci�ed all the models personally. Nevertheless, as soon as the system

9.4 Developer vs. user viewpoints 135

interfaces are established, the process of populating the feasibility relations can
become a decentralized e�ort. This introduces various levels of collaboration,
aligning with one of the key desiderata for our framework. Furthermore, it opens
the door to the active involvement of humans in the design process.

To illustrate one of the collaborative modes, consider the co-design of the au-
tonomy stack for a robotic system. In this case, di�erent teams, such as those
responsible for perception, planning and control, mapping, and liability consider-
ations, can each contribute their expertise to address speci�c co-design problems
tailored to their domain. This collaborative approach enables cross-functional
teams to collectively shape the design of the system, ensuring that various aspects
harmoniously integrate with one another.

This particular facet of co-design gives rise to several intriguing challenges and
opportunities for further investigation. We will explore some of these ideas in
Chapter 13.

9.4 Developer vs. user viewpoints
At this point, it is clear that developer and user viewpoints are di�erent. From the
point of view of the user, one only has to:

� Identify the design problems (i.e., the “blocks”), which means:

• Identify the posets at play;

• Assign them to functionalities or resources;

� Identify the co-design diagram (i.e., the interconnection of various design
problems);

� Actually populate the feasibility relations of every design problem, while mak-
ing sure that they respect the monotonicity assumption;

� Finally, solve speci�c queries (i.e., ������������ or ������������).

Thanks to the formal framework we have presented, interconnecting di�erent
problems in the various ways introduced can be thought of as a mere “graphical”
exercise (all the formal things hold in the background).

Starting from the steps outlined above, it is clear that we need two kind of tools
to use the framework in practice: a modeling language to express the speci�ca-
tions for the �rst three points, and a solver/interpreter to solve the problem, once
speci�ed.

Language Censi developed a modeling language called MCDPL17, which can
be used to specify co-design problems, describing posets and systems of relations
between them. Whenever co-design assumptions are violated, syntax errors are

17 See more at co-design.science/software/

https://co-design.science/software/

136 9 Implementation

�1

�2

������ = 1

������ = 1

������ = 1

(a) Ellipses representing positive de�nite ma-
trices.

�
�

� �
� ��

(b) Order between positive de�nite matrices.

Figure 137: Poset of positive (semi-) de�nite ma-
trices.

triggered.

For instance, one can create a co-design problem focusing on the actuation of a
drone:

mcdp {

provides endurance [s]
provides payload [kg]
battery = instance template

mcdp {

provides capacity [J]
requires mass [kg]

}

actuation = instance template

mcdp {

provides lift [N]
requires power [W]

}

capacity provided by battery >= endurance * (power required by actuation)

g = 9.81 m/s2

lift provided by actuation >= (mass required by battery + payload) * g

}

The language automatically produced the co-design problem reported in Fig. 138.

Note two aspects. First, all the posets employed in this examples are standard, and
pre-built in MCDPL (i.e., ��0 associated to particular units). One can very easily
de�ne custom posets. For instance, designing a poset for covariance matrices (e.g.,
borrowing a previous example in Fig. 137), one can create a �le cov.mcdp_poset
as follows.

poset {

A B C

A <= B

}

Second, note that in the drone example all the feasibility relations were explicitly
speci�ed in analytic form. One can also borrow catalogues. For instance, for
lateral control one could specify the design problem as follows:

Figure 138: Design problem of the actuation of a drone, produced by MCDPL.

9.4 Developer vs. user viewpoints 137

dp {
provides system_noise [`cov]
requires tracking_error [dimensionless]
requires observation_noise [`cov]
requires implement_lane_keeping_at_delta [Hz]
requires control_effort [dimensionless]
requires observe_at_delta [Hz]
implemented-by code

mcdp_importers.read_yaml(fn="catalogue_lateral_control.dpc.yaml")�

}

Here, the last line is a reference to a piece of code which imports speci�c imple-
mentations from a YAML �le, which could be generated out of simulations, or
any other process.

Solution Once de�ned, co-design problems can be queried, via a dedicated
solver. The solver can interpret the co-design models, and, at will, report antichain
of solutions and lists of related implementations.

Back to the desiderata Going back to the desiderata, the presented interface
makes the framework user-friendly, intellectually tractable, and easy to manipu-
late. Furthermore, it allows multiple designers to work together in a collaborative
environment, each specifying di�erent design problems (e.g., di�erent �les),
asynchronously, promoting temporality. In a sense, this contributes to the de-
mocratization of design processes. For instance, think of a challenge in which
di�erent teams have to work on models (e.g. physical components, algorithms)
to optimally design a robot for a particular set of tasks. Here, each would be
contributing to a number of models for design problems, and the solver would be
able to constantly tell which components correspond to optimal solutions for the
entire system design.

Co-design of autonomy 10
When I look out in the future, I can’t imagine a world, 500 years from

now, where we don’t have robots everywhere.
—Rodney Brooks18

In this chapter we continue the exposition of the co-design problem for AVs in a
urban driving context. In particular, we �rst propose a basic model, completing
the ones presented in previous chapters (Section 10.1). Further, we present a
modeling with more advanced autonomy models (Section 10.2). For both prob-
lems, we provide compelling case studies, showing the properties of the co-design
framework.

10.1 Co-design of an autonomous vehicle
We recall the urban driving problem and its functional decomposition, introduced
in Section 8.2, and now provide the entire co-design formulation of the problem.
Then, we show interesting solutions by means of trade-o�s of quantities of inter-
est. This section is based on authored works [128], [134]. The two main functions
involved in this co-design problem were lateral and longitudinal control, and we
have provided a co-design formalization for lateral control in Section 8.3, as well
as its actual implementation. We can therefore now proceed with the rest of the
models.

Modeling longitudinal control

As highlighted above, lateral control can be modeled as a co-design problem using
analytical solutions of optimal control problems. For the longitudinal control
sub-task, however, we want to showcase the ability of the framework to handle
cases in which co-design relations are not directly available in analytical form, to
the point at which one has to rely on numerical simulation (Fig. 141).

The AV is required to brake in time in the presence of obstacles and to guar-
antee a desired cruise speed. The AV is characterized by a dynamic perfor-
mance ��max , �max , �min�, where �max is the maximum vehicle’s achievable speed
and �max , �min are its maximum acceleration and deceleration. These parameters
depend on the chosen vehicle type (e.g., on the propulsion system). The vehicle’s
longitudinal dynamics are d�� = ��d�, d�� = ��d�, where �� and �� represent the
vehicle’s acceleration and velocity.

18 Brooks is an Australian roboticist, former MIT faculty. Among others, he is a founder and former
CTO of iRobot.

140 10 Co-design of autonomy

Long.
sensing

environment

ack. freq. [Hz]

sens. performance

cost [CHF]

power [W]

mass [g]

latency [s]

Figure 139: Design problem for longitudinal sens-
ing.

Brake
control

environment

latency [s]

speed [m/s]

sens. performance

acq. freq. [Hz]

dyn. performance

danger [kg�m/s]

discomfort
impl. freq. [Hz]

Figure 140: Design problem for longitudinal sens-
ing.

In practice, to perform longitudinal control, one needs to:

� Employ sensors to measure the environment (i.e., presence of obstacles);

� Feed the information about obstacles to a reactive brake controller;

� Actually implement the brake controller.

This allows one to identify the following key components.

Longitudinal sensing The AV is equipped with sensors, which provide obsta-
cle detections along the road. It has already been observed that sensors can be or-
dered by their ability to discriminate states [127]. In our work, each sensor is char-
acterized by its sensing performance, expressed as a tuple ���(�), ��(�), ACC(�)�,
where ��, ��� ��0 � �[0,1] represent false positives (i.e., given an environment
without obstacles, the probability of detecting one) and false negatives (i.e., as-
suming the presence of an obstacle, the probability of not detecting it) curves as
a function of distance from the obstacle and with ACC� ��0 � ��0 denoting
the sensing accuracy (range) as a function of distance from the obstacle. These
curves can be obtained in di�erent ways, as explained in Section 2.3. Note that to
consider the curves as functionalities in the longitudinal sensing design problem,
we compare them in posets using the point-wise order, and combine the posets
by taking their product, resulting in the sensor performance poset. The detec-
tions also depend on the environment in which the task needs to be solved. This
could include the time of the day as well as the density of obstacles on the road.
Furthermore, a sensor provides measurements at a certain acquisition frequency
and has speci�c latency (in s), cost, mass and power.

This gives rise to a design problem as the one in Fig. 139.

Obtaining the model: One obtains sensor speci�cations from catalogues and
detection properties from benchmarking routines.

Brake control Based on the generative model of the measurements, we produce
a Bayesian estimate of the probability of having a pedestrian at each distance �
and denote it by �(�). Because it is not possible to derive a closed form solution
for this POMDP, we choose the following parametrized control law. Starting
from the current speed of the vehicle �� and the Bayesian estimate �(�), we
want to compute the control input �� � {�min, �max , 0}. The critical braking
distance is given by �crit,� = �2� �(2 � �min). By �xing a certain threshold �, if
��crit,�0 �(�)d� � �, then �� = �min. Else, in case we are slower than the desired
speed (i.e., �� < �������), �� = �max . If none of these cases applies, then one
chooses �� = 0.

Doing so, we can write the brake control problem as a design problem in which
functionalities are the provided cruise speed (i.e., the performance, in km/h) and
the handled sensing latency and environment. The resources are the sensing performance,

10.1 Co-design of an autonomous vehicle 141

the sensing acquisition frequency, the computation power needed to execute the
control law and the dynamic performance of the vehicle. Furthermore, we mea-
sure the performance of the longitudinal control action by means of discomfort
and danger, de�ned as follows. Given a time horizon �, discomfort is expressed as
��� = ��0 ����d� and penalizes changes in acceleration [167]. Danger captures both
the probability and the impact of failures and is expressed as the product of the
probability of hitting an obstacle and the momentum of the collision (in kg�m/s).
This gives rise to a design problem as the one in Fig. 140 (the monotonicity can
be assessed empirically).

Obtaining the model: Given the sensing model and the controller parameters, the
brake control design problem can be modeled by running numerical simulations.
This approach has two fundamental advantages. First, the simulations can be run
in parallel, as they do not depend on each other. Second, the general co-design
optimization can be run with incomplete simulation results, obtaining reduced
levels of accuracy for the co-design solutions. It can actually be shown that the
accuracy of the solutions of the co-design problem is monotone with the number
of simulations one has [152].

Implementation brake control Brake control needs to be actually imple-
mented at a certain frequency, requiring computation.

Obtaining the model: A catalogue of di�erent algorithms (which may di�er in
nature, or just in the choice of some parameters).

Entire longitudinal control diagram By interconnecting the aforementioned
blocks, one obtains the co-design diagram for the longitudinal control of an AV
(Fig. 141). In particular, the brake control design problem requires sensing in-
formation from the longitudinal sensing design problem, and also requires to
be implemented. The general longitudinal control co-design diagram is sub-
ject to the environment and desired cruise speed and requires cost, mass, power,
dynamic performance, danger, discomfort and computation.

Composing the full diagram

In the previous sections we detailed the modeling of the lateral control and longi-
tudinal control design problems. Following the principle of functional decomposi-
tion, we can now interconnect these two components with the rest of the system,
obtaining the general co-design diagram reported in Fig. 144. In particular, in
addition to lateral and longitudinal control, we actually need:

� A vehicle to be automated, providing power to the whole system;

� A computing unit providing computation to the system;

142 10 Co-design of autonomy

Figure 141: The longitudinal control design prob-
lem consists of a brake control, a longitudinal
sensing and an implementation block. It provides
the AV with the ability of reaching a cruise speed
in a given environment, requiring cost, mass,
power, dynamic performance, danger, discomfort
and computation.

Brake
control

Longitudinal
sensing

Implement
brake control

environment

latency [s]

cost [CHF]

power [W]
mass [g]

dynamic
performance

u�m/sm/s 2 u m/s 2]

discomfort brake
danger [kg u m/s]speed

cruise [m/s]
implement brake
control at b�[Hz]

sensing performance acquisition
frequency [Hz]

computation
[op/s]

Vehicle

range [m]

capacity [pax/car]

power [W]

mass [g]

dyn. performance

op. cost [CHF/m]

�x cost [CHF]

externalities [g/m]

system noise

Figure 142: Design problem for the vehicle.

Computing
unit

computation [op/s]
cost [CHF]
power [W]
mass [g]

Figure 143: Design problem for computing unit.

� A model for the discomfort of passengers;

This observation allows one to identify three other components, which we detail
in the following.

Vehicle We start from a vehicle to be automated, which represents the mechani-
cal part of the system. This can be formulated as a design problem which provides
certain dynamic performance and range (in m) and has a certain capacity (in
pax/car), requiring both operational and �x costs and energy externalities (e.g.,
emissions, in g/km). Speci�cally, the vehicle has the ability to provide power
which allows computing, longitudinal control and lateral control to happen, and to
carry extra mass, arising from the sum of the mass of the sensors and computing
unit. Both increased mass and power reduce the vehicle range. Each vehicle is
characterized by a system noise, which is fed into the lateral control block. This
gives rise to a design problem as in Fig. 142.

Obtaining the model: This model can be extracted from catalogues (e.g., by switch-
ing propulsion systems and chassis).

Computing unit The computing unit needs to provide computation required
by all the processes we have presented, and requires power and has a mass and a
monetary cost. This gives rise to a design problem as the one in Fig. 143.

Obtaining the model The computing unit can be modeled through computer
catalogues.

Discomfort Finally, a discomfort design problem joins the discomfort metrics
arising from the longitudinal control and from the lateral control (in terms of
control e�ort) to produce the total discomfort performance metric.

Obtaining the model: One can combine discomfort metrics arising from lateral
and longitudinal controls using di�erent assumptions, generating particular dis-

10.1 Co-design of an autonomous vehicle 143

Longitudinal
control

Vehicle

danger [kg u�m/s]

dynamic performance [m/s u m/s2 u m/s2]

cost [CHF]

cost [CHF]

power [W]

total
power [W]

power [W]

mass [g]

total
mass [g]mass [g]

control effort

computation [op/s]
discomfort brake

computation [op/s]

cost [CHF]
power [W]

computation [op/s]

computation
[op/s]

system
noise

sp
ee

d
cr

ui
se

[m
/s

]

mass [g]

energy externalities
[g/m]

fix cost [CHF]

Lateral
control

Computing

+

+

+

+

operational cost
 [CHF/m]

discomfort

Discomfort

en
vi

ro
nm

en
t

power [W]
mass [g]

capacity [pax/car]
range [m]

bound

Figure 144: Co-design diagram for the design of
an AV which needs to drive safely in a given envi-
ronment, at a given cruise speed, and following a
lane, without hitting obstacles. We choose costs,
externalities, discomfort and danger as resources
to minimize.

comfort models.

Fulldiagram The interconnection in a full diagram is reported in Fig. 144 and is
quite intuitive. The dynamic properties of the vehicle required by the longitudinal
control design problem are provided by the vehicle one, the computing required by
all the processes at play are provided by the computing unit, and (total) power and
mass are provided by the vehicle. Furthermore, the discomfort design problem
merges the discomfort metrics for longitudinal and lateral control.

Co-design results

We now showcase the abilities of the proposed framework to solve the co-design
problem of an AV. By considering the design problem proposed in Fig. 144, we
optimize the design of an AV by means of cost, danger, discomfort, emissions,
robustness to environment and cruise speed. In particular, the design options,
listed in Table 7, include the selection of longitudinal and lateral sensors, control

Variable Options Source
Vehicle Sedan Small, Large, BEV, SUV, Minivan [168]
Computers Xavier, AGX, Nano, XavierNX [153]
Control update Brake: 1.0-50.0 Hz, Lane: 0.1-100.0 Hz -
Sensors
Lidars Puck, HDL32E/64E [169]

OS032/64/128, OS232/64/128 [170]
Cameras Ace251gm/222gm/13gm/5gm/15um [154]

Flir Pointgrey [155]
Algorithms Cameras: R-CNN1, R-CNN3 [171], [172]

Lidars: KDE, STM-RBNN, STM-KDE [173]

Table 6: Variables, options and sources for the AV
co-design problem.

144 10 Co-design of autonomy

parameters, vehicles, computers and detection algorithms.
D

is
co

m
fo

rt
In

de
x

AV cost [CHF]

6

5

4

3

2

1

20,500 20,550 20,600 20,650 20,700 20,750 20,800 20,90020,850

Sedan small

Pointgrey
Ace251gm
Computer: Nano
Long. control update: 7.5 Hz
Lat. control update: 4.5 Hz
Algorithm: R-CNN1

Sedan small

Ace222gm
Ace222gm
Computer: Xavier NX
Long. control update: 40.0 Hz
Lat. control update: 22.0 Hz
Algorithm: R-CNN1

(a) Trade-o� (antichain) of cost and discomfort in the design
of an AV able to drive during the day at 55.0 km/h, with corre-
sponding design choices.

C
ru

is
e

sp
ee

d
[k

m
/h

]

D
is

co
m

fo
rt

In
de

x

AV cost [CHF]
20,500

6

5

4

3

h
2

1

70

55

40

25

20,550 20,600 20,650 20,700 20,750 20,800 20,90020,850

(b) Monotonicity of the design problem: Higher cruise speed
requires higher cost and discomfort.

Figure 145: Trade-o�s of cruise speed, cost and discomfort in the design of an AV. (a) The �gure shows the antichain of optimal design solutions. The red
dots represent the optimal design solutions and the colored area represents the upper sets of resources for which the cruise speed of 55.0 km/h is feasible.
One can see selected highlighted implementations corresponding to speci�c points in the antichain. (b) Pareto fronts of resources (expressed in terms of
cost and discomfort) as a function of the provided cruise speed. Monotonicity is expressed via inclusion of the drawn upper sets.

We assume obstacles to be distributed following a spatial Poisson process and
generate sensor performance curves for the 16 sensors listed in Table 7 using the
results from [171], [173]. The authors of [171] compare the pedestrian camera de-
tection performance during day- and night-time at two di�erent operating points
of a Faster R-CNN object detection algorithm. The performance in terms of recall
and precision is investigated against object distances and object heights in px. We
leveraged these results to interpolate the performance of the object detection with
di�erent sensors, using sensor resolution and angle of view [174]. For the camera
accuracy we used the stereo depth error for a �xed baseline, assuming monocu-
lar camera depth estimation [175], [176]. Lidar sensor performance curves are
generated using the results of [173], who show that the 3D pedestrian detection
e�ciency decreases as the distance between lidar and objects increases. This
e�ect can be explained by the decrease in number of re�ected points available
per obstacle as the distance increases. Recall and precision performances are
presented for di�erent distances for three di�erent algorithms (KDE-based, STM-
RBNN and STM-KDE). The authors trained and validated their models on the
KITTI dataset [177], originating from measurements of a Velodyne HDL-64 lidar.
We estimated the measurement points per object at di�erent distances and used
them to interpolate for other lidars, generating curves similar to the ones pre-
sented in [172]. Finally, we assumed a constant accuracy for the lidars, extracting
it from sensor catalogues. Note that the framework can accommodate arbitrary
sensor curves, enabling us to test non-existent sensor performances as well. Given
this setting, we simulated both the longitudinal and lateral control of the AV,
creating numerical catalogues for the design problem. As previously explained,
these simulations can be run in parallel, and build a database on which the solver

10.2 Co-design of an autonomous vehicle 2.0 145

urban driving

follow trajectory

lateral control longitudinal control
path tracking

emergency brakingspeed tracking

Figure 146: New functional decomposition for the
task of urban driving.

can operate.

Solutions which guarantee a certain speed (Fig. 145a) We assume an
obstacle density of 5.0 obstacles/km during the day and query the optimal design
solutions which enable the AV to reach 55.0 km/h (Fig. 145a). The dashed line
represents the antichain of optimal solutions for the co-design problem, consisting
of cost and discomfort. These solutions are not comparable, meaning that there is
no instance which yields simultaneously lower discomfort and cost. In solid red
we represent the upper set of resources. Attached, one can �nd selected design
implementations, corresponding to speci�c optimal solutions. In general, as the
budget for the AV increases, one is able to reduce the discomfort. For instance,
with a cost of of 20,630 CHF one can obtain a discomfort index of 4.49, buying
a small Sedan, equipping it with Pointgrey lateral cameras and an Ace251gm
longitudinal camera paired with the R-CNN1 detection algorithm, together with
a Nano computer. The vehicle is controlled at 7.5 Hz longitudinally and at 4.5 Hz
laterally. Notably, investing only 150 CHF more per AV improves the discomfort
by 250 %, requiring a Xavier NX computing unit, which controls the AV at 40.0 Hz
and 22 Hz longitudinally and laterally, respectively, using measurements of two
Ace222gm cameras.

Monotonicity of the AV design problem (Fig. 145b) We consider increasing
cruise speeds and analyze the evolution in trade-o�s in cost and discomfort.
As can be gathered from Fig. 145b, we query the co-design solver for multiple
performances, given arbitrary environments (here 5.0 obstacles/km during the
day). Speci�cally, for each functionality, we compute the map � which maps to
the minimum antichain of resources which provide it. Note that by increasing
the desired cruise speed, one increases the required resources, as can be observed
from the dominating upper sets in increasing red tonality. Given such trade-o�s
and the discrete nature of our tool, one can reason about the design problem by
distinguishing the desired objectives.

10.2 Co-design of an autonomous vehicle 2.0
In this section, based on the authored paper [178] and work-in-progress exten-
sions, we report another case study on the co-design of autonomous vehicle,
employing more granular autonomy models. In particular, we focus on more
detailed control models, extending the functional decomposition of the problem,
by including speed tracking (Fig. 146). Furthermore, we extend existing models
to consider state-of-the-art dynamic models and control techniques. We start by
describing the updated model of the vehicle.

146 10 Co-design of autonomy

Vehicle model

We consider the kinematic single-track model from [179], [180] and extend it by
considering model uncertainty. Consider �� = [�r, �r] and �f = [�f , �f] as the
positions of the rear and front wheel with respect to the inertial coordinate frame.
The heading � describes the vehicle’s orientation (the angle between �f � �� and
the inertial frame). The steering angle � describes the front wheel orientation
with respect to the vehicle’s one. Finally � is the distance between front and
rear axles. We can write the no-slip condition for the wheels with the following
non-holonomic constraints:

� ��� sin(�) + ��� cos(�) = 0,

� ��� sin(� + �) + ��� cos(� + �) = 0.

We compute the rear velocity as

�r = ���(�f � ��)���f � ���.

By considering the state space � = [�r, �r, �, �, �r], and control inputs � = [�s, �r],
the dynamics read

�� = �(�,�) +� =

�
�
�
�
�
�
�

�r cos(�)
�r sin(�)
�r tan(�)��

�s
�r

�
�
�
�
�
�
�

+�, (61)

where �s � [��min, ��max] and�r � [��r,min, ��r,max] are control inputs, � � [�min, �max] �
[���2,��2], �r � [�r,min, �r,max], and � is a standard Brownian process with

e�ective noise covariance �. The motion of the front wheel is then:

��f = �f cos(� + �),

��f = �f sin(� + �),

�f = �r� cos(�).

Furthermore, the angular velocity is � = �f sin(�)��.

Measurement model We consider the discrete-time measurement model

�� = ��(�� + ��), (62)

where �� � {0, 1} represents an intermittent observations process (e.g., linear
Gaussian Bernoulli, linear Gaussian Markov, and linear Gaussian semi-markov [140]),
and�� is a standard Brownian process with e�ective noise covariance� (parametriz-

10.2 Co-design of an autonomous vehicle 2.0 147

ing the �delity of the measurement, i.e., the quality of the sensor).

State estimation

Following the literature, we consider an extended Kalman �lter (EKF) with
the discrete-time measurement model in (62). We summarize the estimation
procedure.
Initialization:

��(�0) = � [�(�0)] , �0�0 = �[(�(�0) � ��(�0))(�(�0) � ��(�0))�].

Prediction update: Solve

���(�) = �(��(�),�(�)),

��(�) = �(�)�(�) + �(�)�(�)� +�(�), �(�) =
��
��
���� ��(�),�(�),

with ��(���1) = ����1���1, and�(���1) = ���1���1, to obtain ������1 = ��(��) and�����1 =
�(��).

Measurement update: Compute

�� = �����1(�����1 +�)�1,

����� = ������1 +��(�� � ������1),

���� = (� ���)�����1,

where � represents the covariance estimate.

Given this model, one can prove the monotonicity of the covariance estimate
with respect to the noise and measurement covariances, and to the probability of
losing observations. These results will be important when building the control
design problems.

Lemma 10.1. The sequence of covariance estimates � produced by the EKF is
monotone in � and �. In other words:

��,�� �
�
��,��� � �(�,�) � �(��,��).

See proof on page 244.

Lemma 10.2. The sequence of covariance estimates � is monotone in the prob-
ability of dropping observations.

See proof on page 244.

148 10 Co-design of autonomy

��

��

Figure 147: Stanley control.

�
�

��t, �t�

Figure 148: Pure pursuit control.

Control

We instantiate the functional decomposition approach for the self-driving task of
an autonomous vehicle. In particular, one can decompose this task into lateral
and longitudinal control (Fig. 146). Longitudinal control can be then split into
speed tracking and emergency braking.

Lateral control The lateral control action can be formulated as choosing the
steering velocity to track a given reference path. The vehicle’s speed is typically
considered constant at each time step (decoupling the longitudinal and lateral
control problems). Controllers consider the �rst four states/equations of (61) (de-
noted by �) and receive a state estimate at discrete times ��� = ��+��, where�� is a
standard Brownian process with e�ective noise covariance �� (as per state estima-
tion procedure and measurement model). The control error �(�) =

�
��(�) ��(�)

��

is generally expressed as the distance between the vehicle’s front axle and the
reference point on the path, and the angle between the vehicle’s heading and the
tangent to the path at the reference point. In the following, we list the standard
lateral control techniques we considered, and their properties [179], [181].

Stanley control: This is a geometric type of vehicle control based on the single-
track bicycle model (i.e., the orientation and position of the front wheel with
respect to the reference path are considered for generating control actions). Given
the error, one can write the desired steering angle at any time as �(�) = ��(�) +
arctan(���(�)��f), where � is the Stanley gain (Fig. 147). We denote by ��,tot the
total control positional error and by �tot the total control e�ort along a path.

Lemma 10.3. The total Stanley control lateral tracking error ��,tot is monotonic
in � and the sequence of estimate covariances �.

See proof on page 244.

Lemma 10.4. The total Stanley control e�ort �tot is monotonic in � and the
sequence of estimate covariances �.

See proof on page 244.

Pure Pursuit: Given a reference path, the control law �ts a semi-circle through
the vehicle’s current con�guration to a point on the reference path, which has a
distance (called “lookahead”) � from the car (Fig. 148). We consider the algo-
rithm presented in [182], and extend it by requiring the vehicle’s heading to be
tangent to the circle. The curvature of the semi-circle is � = 2 sin(�)��. Given a
constant rear velocity �r, the angular velocity of a vehicle following the semi-circle
is �� = 2�r sin(�)��. From (61), one has � = arctan(2� sin(�)��), where � is the
angle between the vehicle’s orientation and the vector from the current con�gura-
tion ��, �� and the target one ��t, �t�. Again, the control error �(�) = [��(�), ��(�)]

10.2 Co-design of an autonomous vehicle 2.0 149

is expressed as the distance between the vehicle’s front axle and the reference
point on the path, and the angle between the vehicle’s heading and the tangent
to the path at the reference point. The control procedure is then: a) Find current
location of the vehicle, b) �nd the path-point closest to the vehicle, c) �nd the
goal point, d) transform it to the vehicle coordinates, e) calculate the curvature
and set the steering angle accordingly, f) update vehicle’s position [181].

Lemma 10.5. The total pure pursuit control lateral tracking error ��,tot is mono-
tonic in � and in the sequence of estimate covariances �.

See proof on page 244.

Lemma 10.6. The total pure pursuit control e�ort �tot is monotonic in � and
in the sequence of estimate covariances �.

See proof on page 244.

LQR with adaptive state space control: The error is given by �(�) = [��, ��],
where �� is the positional error perpendicular to the path tangent, and �� is
the di�erence between the path tangent and the vehicle orientation. The method
linearizes the error dynamics around [0, 0] at every time instant, and solves an in-
�nite horizon optimization problem for the linearized system. The error dynamics
for small errors can be formulated as

��(�) = �
0 �r
0 0

� �(�) + �
0
�r��

� �(�),

and the quadratic cost function to minimize takes the form

�(�) =�
�

0
�(�)���(�) + �2(�)�d�.

Lemma 10.7. The total LQR control lateral tracking error ��,tot is monotonic
in � and in the sequence of estimate covariances �.

Lemma 10.8. The total LQR control e�ort �tot is monotonic in � and in the
sequence of estimate covariances �.

See proof on page 244.

Nonlinear Model Predictive Control (NMPC): The NMPC method with receding
horizon strategy aims at minimizing the positional error �� (expressed with
respect to the point on the path which is closest to the vehicle’s center of mass
at instant �) and control e�ort � over �h � � steps. The formulation of the

150 10 Co-design of autonomy

optimization problem is as follows:

��� = argmin
��

�h+1�

�=0
���+����+� + ���+����+� ,

�� = {��,… ,��+�h�1},

�� = ��(��),

��+� =�
�+�

�+��1
�f sin(��(�) � �(�))d�,

where ��� follows Section 16.2, and where one only applies ��0 each time. This
technique is characterized by di�erent path approximation techniques (e.g.,
linear, quadratic, and cubic), integration techniques, and by di�erent lateral error
reference points on the vehicle (e.g., rear or center of gravity).

Lemma 10.9. The total NMPC lateral control tracking error is monotonic in �
and the sequence of estimate covariances �.

Lemma 10.10. The total NMPC lateral control e�ort is monotonic in � and the
sequence of estimate covariances �.

See proof on page 245.

Speed control The control goal is to track a certain target velocity �t. From
(61), the velocity dynamics are ��r = �r + ��r . The system receives an esti-
mation of the current velocity through the measurement model at each time
instant �: ��r,� = �r,� +��, where �� is a standard Brownian process with e�ective
noise covariance �� (as per state estimation procedure and measurement model).
The control input is typically formulated via a PID control scheme (i.e., just by
choosing speci�c tuning parameters �p, �i, �d):

�(�) = �p(�t � ��(�)) + �i�
�

0
(�t � ��(�))d� � �d

� ��
��
.

Lemma 10.11. The total PID control tracking error is monotonic in � and the
sequence of estimate covariances �.

See proof on page 245.

Lemma 10.12. The total PID control e�ort is monotonic in � and the sequence
of estimate covariances �.

See proof on page 245.

10.2 Co-design of an autonomous vehicle 2.0 151

Lateral
control

environment

task

system noise

max. steering

sensing performance

acq. freq. [Hz]

e�ort

error

discomfort

impl. freq. [Hz]

time [s]

Figure 149: Design problem for lateral control.

Lateral
sensing

sensing performance

acq. freq [Hz]

cost [CHF]
mass [g]

power [W]

Figure 150: Design problem for lateral sensing.

Brake control The topic of (emergency) braking has been treated in detail
in [128], where longitudinal sensors (ordered by their performance, expressed via
false positives, false negatives, and accuracy curves) were used to detect potential
obstacles. Clearly, the more uncertain the obstacle detection, the more potentially
dangerous will the braking maneuver be. We delay the treatment of this particular
topic to future works, and refer the interested reader to [128].

Co-design diagrams for lateral control

To perform lateral control, one has to:

� Employ sensors to estimate the lateral positions (e.g., cameras);

� Design a lateral controller;

� Implement the control action.

Therefore, we identify the following design problems.

Lateral control Lateral control provides the ful�llment of a task (e.g., per-
forming a maneuver at a certain speed, or with a certain curvature), in a specifc
environment (e.g., characterized by the time of the day, or the density of obstacles
on the road), and with robustness to particular uncertainty in the vehicle model.
The vehicle is characterized by its dynamic performance (e.g., parametrized by
the reachable speed, acceleration, and steering angle). For the control law to be
implemented, observations (with particular precision) from sensors are required
(to estimate position and heading), which are received at particular frequency.
Control techniques will need to be implemented at certain frequencies and will
cause speci�c control e�orts and errors (expressed in terms of lateral deviation),
as well as discomfort (e.g., intensity of the steering) and dangerous situations.
This gives rise to a design problem as in Fig. 149.

Obtaining themodel:Depending on the control technique, models can be obtained
analytically and via numerical simulations.

Lateral sensing Lateral sensing provides observation at a certain acquisition
frequency and with a certain sensing performance (e.g., via the poset of sensor-
algorithms pairs). This comes at a monetary cost, and consumes power and
computation (Fig. 150).

Obtaining the model: Models are obtained by sensor catalogues, photogrammetry,
and simulations (as explained for previous examples). Particular observation
schemes can also be arti�cially perturbed, and observations dropping schemes
can be applied [140].

152 10 Co-design of autonomy

Long.
control

environment

task

system noise

dyn. perf.

sen. performance

acq. freq. [Hz]

sen. performance

acq. freq. [Hz]

e�ort

error

discomfort

impl. freq. [Hz]

time [s]

Figure 151: Design problem for longitudinal con-
trol.

Implementing algorithms Implementing algorithms can be formulated as a
design problem, which have seen often in previous examples.

Co-design diagrams for longitudinal control

To perform longitudinal control, one has to:

� Employ sensors to estimate the longitudinal speed and the presence of obsta-
cles;

� Design a longitudinal controller;

� Implement the control action.

Therefore, we identify the following design problems.

Longitudinal control Longitudinal control provides the ful�llment of a task
(e.g., performing a maneuver at a certain speed, or with a certain curvature), in
a specifc environment (e.g., characterized by the time of the day, or the density
of obstacles on the road), and with robustness to particular uncertainty in the
vehicle model. The vehicle is again characterized by its dynamic performance.
For the control law to be implemented, observations (with particular precision)
from sensors are required (to estimate speed and presence of obstacles), which
are received at particular frequency. Control techniques will need to be imple-
mented at certain frequencies and will cause speci�c control e�orts and errors
(expressed in terms of velocity deviation), as well as discomfort (e.g., gravity of
the accelerations) and dangerous situations (Fig. 151).

Obtaining themodel:Depending on the control technique, models can be obtained
analytically and via numerical simulations.

Longitudinal and speed sensing, as well as algorithm implementations, can be
formulated as design problems, analogously to what we have shown for lateral
control.

Interconnecting the full diagram

We now have de�ned both lateral and longitudinal control co-design problems,
and we are ready to build the full diagram for the co-design of an autonomous
vehicle (Fig. 152). As we did in Section 10.1, we introduce a computer, and a design
problem to account for discomfort. Additionally, we now include design problems
which account for control error and control e�ort, merging the contributions of
the di�erent control techniques. Furthermore, we introduce a design problem for
the vehicle to be automated, which provides mass, dynamic performance, and
power, and requires monetary cost, as well as system noise.

10.2 Co-design of an autonomous vehicle 2.0 153

system
noise

system
noise

Vehicle

Speed sensing

Long. sensing

Effort

Longitudinal
control

Lateral
control

+

dynamic performance [m/s um/s 2 um/s2]

max. steering

sens. performance cost

cost

cost [CHF]

cost

total
effort

total
error

total
disc.

total
mass [g]

total
power
[W]

mass

mass

mass

mass [g]
power [W]

power

power

power

acquisition freq. [Hz]
sens. performance
acquisition freq. [Hz]
effort
error
discomfort

effort
error
discomfort

control freq. [Hz]
time [s]

control freq. [Hz]
time [s]

Speed sensing
sens. performance
acquisition freq. [Hz]

Impl. control

+

+

+

Discomfort

Error

Computing

computation
[op/s]

computation
[op/s]

comp.
[op/s]

Impl. control

total

cost

[CHF]
en

vi
ro

nm
en

t

task

Figure 152: Co-design problem of an AV.

Once all of these design problems have been introduced, the interconnection is
logical.

Co-Design results

We consider urban scenarios, extending and customizing the ones proposed in
the CommonRoads framework [183]. We implemented the mentioned autonomy
pipelines in our own simulator. While the proposed approach has been tested
on several scenarios (e.g., racing, pursue-evasion, exploration), for exposition
purposes we focus on two examples. We �rst look at the case in which an AV
needs to perform a 90� degrees, and then look at a lane change example (Fig. 153,
Fig. 154). The task of the AV consists in following a trajectory (with customized
curvature severity) at a desired speed. By �xing a particular task we want to �nd
the autonomy pipeline for the AV to minimize selected resource usages.

We now solve the co-design problem presented in the previous section focusing
on a selection of queries. By �xing a task (i.e., a desired scenario, speed, and
average curvature), we can characterize optimal design solutions in terms of
monetary cost, control e�ort, control error, danger, and discomfort. The design
space is characterized by the controllers presented above and their parameters,

154 10 Co-design of autonomy
Table 7: Variables and options for the AV co-design problem.

Variable Options
PP � � {0.01, 0.05, 0.5, 1.0, 2.0}
Stanley � � {0.05, 0.1, 0.5, 1.0, 1.5, 2.0}
LQR � � {0.001, 0.05, 0.5, 1.0, 10.0}, � � {0.1 � �, 1.0 � �, 10.0 � �, 0.2 � (� � 0.9�3), 1.0 � (� � 0.9�3), 5.0 � (� � 0.9�3)}
NMPC �h � {10.0, 15.0, 20.0, 25.0}, � � {0.05, 0.5, 1.0, 5.0}, � � {0.01 � �, 0.1 � �, 1.0 � �, 10.0 � �}
PID �p � {0.1, 0.5, 1.0, 2.0}, �I � {0.01, 0.1, 0.5, 1.0}, �d � {0.01, 0.05, 0.1, 1, 0}
Computers RPi 4B, Jetson Nano/TX1,2/AGX Xavier, Xavier NX
Sensors Basler Ace251gm/222gm/13gm/7gm/5gm/15um, Flir Pointgrey, KistlerSMotion, OS032/128, OS232/128, HDL 32/64

Figure 153: Trade-o� (antichain) of total control
error and e�ort for a 90� turn, with low curvature
at 8 m/s, with corresponding design choices.

NMPC linear, no rear
� = 0.01 � �
� = 5.0, �h = 20.0
�p = 0.1, �I = 0.01, �d = 0.05
OS2128, Ace13gm
Nvidia Xavier

NMPC cubic, no rear
� = 0.1 � �
� = 1.0
�p = �I = 0.1, �d = 0.01
OS0128, Ace22gm
Jetson TX1

various sensors for the di�erent perception blocks, and computer models, all
listed for convenience in Table 7. For simplicity of exposition, we do not consider
obstacle detection modeling (already treated in depth in Section 10.1), and focus
on path tracking and speed control. Note that this represents just a sample of the
designs we can look at. (For instance, we neglect control frequencies).

Control e�ort and control error trade-o�s We �rst consider a case in which
we want the vehicle to perform a 90� turn with a low curvature, at 8 m/s, with a
standard battery electric vehicle. By solving the co-design problem, we obtain
a Pareto front of optimal designs, which we can interpret by looking at its 2D-
projections. We �rst look at the trade-o�s between total control e�ort and total
control error (Fig. 153). In red, the Pareto front of optimal solutions, which are
not comparable since no instance leads simultaneously to lower control error and
control e�ort. The upper set of feasible resources is given in solid red. Further-
more, for each point lying on the Pareto front, we are able to report details about
the optimal designs, including the chosen control technique and its parameters, as
well as considered sensors and computer. As one can see in Fig. 153, low control
e�ort (discomfort) can be achieved with a speci�c combination of controllers
and parameters, at the cost of an important control error. Similarly, low control
error can be achieved by another design, with increased control e�ort.

10.2 Co-design of an autonomous vehicle 2.0 155

NMPC cubic, rear
� = 10.0 � �
� = 1.0, �h = 10.0
�p = 2, �I = �d = 0.01
OS2128, KistlerSMotion
Jetson TX1

Stanley, � = 0.05
�p = 2.0, �I = �d = 0.01
Ace7gm, Ace22gm
Jetson Nano

Figure 154: Trade-o� (antichain) of cost and con-
trol error for lane change with high curvature at
15 m/s, with corresponding design choices.

Average curvature
low high

Sp
ee

d
[m

/s
]

h
h

h
h

Figure 155: Monotonicity of the co-design prob-
lem: higher cruise speed or curvature will require
higher control error and e�ort.

Monetary cost and control error trade-o�s We look at the task of lane
changing, choosing a high curvature and a speed of 15 m/s. We can now solve
the co-design problem with the updated task. To showcase the richness of the
insights we can produce, we now report the trade-o�s between monetary costs
and control error for the AV (Fig. 154). Clearly, to achieve lower control error one
needs to pay more. Interestingly, investing 39,000 CHF instead of 54,000 CHF
only deteriorates the error by 10%.

Monotonicity We consider the task of lane changing, now showcasing the
monotonicity properties of the developed framework. We look at varying tasks,
starting from a low speed of 8 m/s and low curvature and increasing speed to
15 m/s and high curvature. Fig. 155 shows multiple co-design queries. In partic-
ular, for each functionality (left plot), we report the Pareto front and the upper
set of optimal resources (right plot). Monotonicity can be seen in the dominance
of subsequent Pareto fronts (right plot), illustrated in increasing red tonality via
inclusion of the upper sets.

Co-design of mobility systems 11
We can’t direct the wind but we can adjust the sails.

—Aristotle19

In this chapter, we climb the abstractions, and and model the co-design problem
of a mobility system, where the design problem of an AV is only one of the many
interconnected components at play. The chapter refers to authored papers [184]–
[186].

First, we will motivate the example (Section 11.1). Second, we will present an
intermodal mobility framework (Section 11.2), as well as the connected co-design
framework for future mobility systems (Section 11.3). Finally, we will present
extensive results, based on the real world case study of Washington D.C., USA
(Section 11.4).

11.1 Motivation
While the motivation for co-design in the context of autonomy is clear, and has
been covered in Chapter 1, the same ideas in the context of mobility systems need
contextualization.

The present landscape of transportation systems is experiencing profound trans-
formations driven by the implementation of innovative mobility solutions, such
as AVs and micromobility (�M) systems. These emerging mobility paradigms
hold the potential to substantially mitigate the adverse impacts traditionally as-
sociated with transportion systems, including emissions, travel time, parking
space allocation, and, crucially, road fatalities (for a review on the subject, refer
to [187]).

Nevertheless, practical experience in the industrial sector reveals a recurring
challenge in the development of these new mobility solutions: the absence of
well-de�ned, precise requirements in terms of the services they are intended to
o�er [188]. Yet, knowledge about their intended service (e.g., last-mile versus
point-to-point travel) might dramatically impact how vehicles are designed and
signi�cantly ease their development process. For instance, if it were known that,
for a particular city, an e�ective on-demand mobility system with AVs only ne-
cessitates operations at speeds of up to 30mph on relatively simple roads, this
knowledge would considerably simplify AV design and hasten their deployment.
Furthermore, from a holistic transportation management perspective, insights
into the trajectory of technological advancements in new mobility solutions would
certainly a�ect decisions regarding future infrastructure investments and service
19 Aristotle was an Ancient Greek philospher and polymath.

158 11 Co-design of mobility systems

provisions. In other words, the design of future mobility solutions and the design
of a mobility system leveraging them are intimately intertwined.

This calls for methods to reason about such a coupling, and in particular to co-
design the invidual mobility solutions and the associated mobility systems. An
essential requirement in this context is the ability to accomodate a spectrum
of diverse objectives that are often challenging to directly compare (consider,
for instance, travel time, public expenditure, and externalities). It also involves
formulating hierarchical design challenges spanning various disciplines, and
devising computationally tractable solutions.

Accordingly, the goal of this line of research is to lay the foundations for a frame-
work through which one can systematically co-design future mobility systems.
The framework is instantiated in the setting of co-designing intermodal mobility
systems [189], whereby �eets of self-driving vehicles provide on-demand mobility
jointly with �eets of micromobility vehicles (�MVs) such as e-scooters (ESs),
shared bikes (SBs), mopeds (Ms) and fuel-cell mopeds (FCMs), and public transit.
Aspects that are subject to co-design include �eet sizes, vehicle-speci�c charac-
teristics for AVs and �MVs, and service features, such as public transit service
frequency, prices, and serviced networks.

Related Literature This research stream lies at the intersection of two crit-
ical domains: the design of public transportation services and the creation of
innovative mobility solutions.

The �rst research stream, reviewed in [190]–[192], primarily focuses on strategic,
long-term infrastructure modi�cations and operational short-term scheduling
within the realm of public transportation. Notably, joint design e�orts targeting
tra�c network topology and control infrastructure have been explored in [193],
[194]. Research into public transportation scheduling has yielded valuable in-
sights, including optimization of passenger and operator costs in [195], satisfaction
of demand in [196], and energy consumption management of the system in [197].
However, these investigations often concentrate on individual infrastructures,
such as the road network or public transportation, and lack consideration for
their integrated design alongside emerging mobility solutions.

The research on novel mobility solutions mainly pertains to AVs, AMoD systems,
and�M. The research on design of AMoD systems is thoroughly reviewed in [187]
and references therein, and mainly concerns their �eet sizing. In this regard,
existing studies range from simulation-based approaches [198]–[203] to analytical
methods [204]. For instane, in [205], the �eet size and the charging infrastruc-
ture of an AMoD system are jointly designed, and the arising design problem is
formulated as a mixed integer linear program. In [206], the �eet sizing problem is
solved together with the vehicle allocation problem. Furthermore, [207] presents
a framework for the integrated design of AMoD �eet size and composition. More

11.2 Intermodal Mobility Framework 159

Figure 156: The intermodal AMoD network con-
sists of road (AVs and �MVs), public transporta-
tion, and walking digraphs. The labeled circles rep-
resent stops or intersections and the black arrows
denote road links, public transit arcs, or pedestrian
pathways. The grey arrows represent the mode-
switching arcs connecting them.

recently, the joint design of multi-modal transit networks and AMoD systems was
formulated in [208] as a bilevel optimization problem and solved with heuristics,
and coupled with infrastructure design in [209], using multi-objective linear
optimization. Overall, the problem-speci�c structure of existing design methods
for AMoD systems is often not amenable to a modular and compositional prob-
lem formulation. Furthermore, key AV characteristics, such as the achievable
speed, are not considered. Research on the design and impact of �M solutions
has been reviewed in [210], with a particular focus on the urban deployment of
SBs and ESs. In particular, [211] presents a comprehensive design framework for
a multi-modal public transportation system, including various �M solutions and
buses, optimizing user preferences and social costs. Fleet deployment models are
analyzed in [212]–[215]. The optimal allocation of SBs in a city is studied through
mathematical programming models in [212], and solved through stochastic op-
timization in [213], [214]. Finally, [216] explores the impact of �M on urban
planning and identi�es strategies to increase �MVs utilization.

In summary, existing design frameworks for mobility systems often possess rigid,
problem-speci�c structures that hinder modular and compositional co-design
of mobility infrastructure. Moreover, previous works frequently fail to capture
crucial aspects of future mobility systems, such as the interplay among various
transportation modes, and the speci�c design parameters of emerging mobil-
ity solutions, such as the autonomy levels and serviced networks of AVs, in a
computationally tractable and compositional manner.

11.2 Intermodal Mobility Framework

Multi-Commodity FlowModel

The transportation system and its di�erent modes are modeled using the edge-
labeled digraph � = ��,�, ��, sketched in Figure 156. It is described through
a set of nodes � and a set of arcs � � � ◊ �, labeled with metrics � � � � �.
Speci�cally, ��� �= �(��, ��) � � are the metrics associated to arc ��, �� � �.
Metrics of interest include edge length, travel time, energy consumption prop-
erties, and congestion models. � is composed of four layers: The road network
layer �R = ��R ,�R , �R�, consisting of an AVs layer �R,V =

�
�R,V ,�R,V , �R,V

�

and a �MVs layer �R,M =
�
�R,M,�R,M, �R,M

�
, the public transportation layer

�P = ��P,�P, �P�, and a walking layer �W = ��W,�W, �W�. The AVs and the
�MVs networks are characterized by intersections � � �R,V , � � �R,M and road
segments ��, �� � �R,V , ��, �� � �R,M, respectively. Similarly, public transporta-
tion lines are modeled through station nodes � � �P and line segments ��, ��
� �P. The walking network describes walkable streets ��, �� � �W, connecting

160 11 Co-design of mobility systems

intersections � � �W. Mode-switching arcs are modeled as

�C ��R,V ◊�W � �W ◊�R,V ��R,M ◊�W ��W◊

�R,M ��P ◊�W � �W ◊�P,

connecting the AVs, the �MVs, and the public transportation layers to the walking
layer. To these arcs, we associate metrics �C.

Consequently, � = �W ��R,V ��R,M ��P and � = �W ��R,V ��R,M ��P �
�C. Consistently with structural properties of transportation networks in urban
environments, we assume � to be strongly connected.

We now characterize the partial order of edge labeled graphs, which will be
instrumental when modeling the monotone design problem with implementation
(MDPI) of the mobility system.

De�nition 11.1 (Poset of edge-labeled multigraphs)
Consider the set of edge-labeled multigraphs, denoted by �. Given �1,�2 �
�, with �1 = ��1,�1, �1�, �2 = ��2,�2, �2�, �1 � �1 � �, �2 � �2 � � we
de�ne the order:

�1 �� �2 � (�1 � �2) � (�1 � �2) � (�1 ���1 �2��1),

where �2��1 is the restriction of �2 onto the domain of �1.

Intuitively, a labeled multigraph dominates another if it includes its nodes and
edges, and if the labels are dominating in their respective spaces.

Lemma 11.2. De�nition 11.1 de�nes a poset.

See proof on page 245.

We represent customer movements by means of travel requests. A travel request
refers to a customer �ow starting its trip at a node � � � and ending it at a node
� � �.

De�nition 11.3 (Travel demand)
A travel demand � is a triple ��, �, �� � � ◊� ◊��0, described by an origin
node � � �, a destination node � � �, and the request rate � > 0 (i.e., the
number of customers who want to travel from � to � per unit time).

Without loss of generality, we can assume that in a set of requests origin-destination
pairs are not repeated, and denote the set of all possible set of requests � �
���(� ◊� ◊��0). This set can be ordered as follows.

11.2 Intermodal Mobility Framework 161

De�nition 11.4 (Poset of travel demand)
Consider the set of sets of travel requests �. Given any �1, �2 � �, one has:

�1 �= {
�
�1� , �

1
� , �

1
�
�
}�1
�=1 �� {

�
�2� , �

2
� , �

2
�
�
}�2
�=1 =� �2

i� for all
�
�1, �1, �1

�
� �1 there is some

�
�2, �2, �2

�
� �2 with �1 = �2, �1 =

�2, and �2� � �1� . In other words, �1 �� �2 if every travel request in �1 is
in �2 as well.

Lemma 11.5. De�nition 11.4 de�nes a poset.

See proof on page 245.

To ensure that a customer is not biased to use a given transportation mode,
we assume all requests to appear on the walking digraph, i.e., ��, �� � �W
for all � � � �= {1,… ,�}. The �ow �� (�, �) � 0 describes the number of
customers per unit time traveling on arc ��, �� � � and satisfying a travel request
�. Furthermore, �0,V (�, �) � 0 and �0,M (�, �) � 0 denote the �ow of empty AVs
and �MVs on AVs arcs ��, �� � �R,V and �MVs arcs ��, �� � �R,M, respectively.
This accounts for rebalancing �ows of AVs and �MVs between a customer’s
drop-o� and the next customer’s pick-up. Assuming AVs and �MVs to carry one
customer at a time, the �ows satisfy

�

����, ����
�� (�, �) + ��=�� � �� =

�

����, ����
�� (�, �) + ��=�� � ��

�� ��, � � � (63a)
�

����, ����R,V

�tot,V (�, �) =
�

����, ����R,V

�tot,V (�, �) �� � �R,V (63b)

�

����, ����R,M

�tot,M (�, �) =
�

����, ����R,M

�tot,M (�, �) �� � �R,M, (63c)

where ��=� denotes the boolean indicator function, �tot,V (�, �) �= �0,V (�, �) +�
��� ��(�, �), and �tot,M (�, �) �= �0,M (�, �)+

�
��� ��(�, �). Speci�cally, (63a)

guarantees �ows conservation for every transportation demand, (63b) preserves
�ow conservation for AVs on every road node, and (63c) preserves �ow conser-
vation for �MVs on every road node. Combining conservation of customers (63a)
with the conservation of AVs (63b) and �MVs (63c) guarantees rebalancing AVs
and �MVs to match the demand.

Remark 11.6. The demand is assumed to be time-invariant and �ows are allowed
to have fractional values. This assumption is in line with the mesoscopic and
system-level planning perspective of the proposed study. We allow AVs and �MVs
to transport one customer at a time [217].

162 11 Co-design of mobility systems

Labeling Graphs with Relevant Attributes

In the following, we specify how to label the graphs composing the full mobility
network. Speci�cally, edge-labeling maps will be of the form �� �� �, where � =�
�5
�0, ��

�
represents link length, time needed to traverse it, its speed limit, related

emissions, and capacity, and the order the product order on �5
�0.

Walking arcs We infer arc lengths ��� from geographical data and, assuming
constant walking speed �W, travel time results from ��� = �����W.

As speeds limits, congestion, and energy consumption do not apply to walking
graphs, we set �L,�� =�, ��� =�, ��� = 0. Accordingly,

�W � �W � �

��, ���
�
��� , ��� , �L,�� , ��� , ���

�
.

Public transit arcs We infer arc lengths ��� from public transit network data.
Furthermore, assuming that the public transportation system at node � operates
with the frequency ��, travel time results from ��� = �nom�� + �WS + 1�(2��),
where �nom�� is the in-vehicle travel time (inferred from public transit schedules)
and �WS is a constant sidewalk-to-station travel time. We ignore capacity and speed
limits, so that ��� = �L,�� =�. For the public transportation system we assume a
constant energy consumption per unit time. This approximation is reasonable in
urban environments, where the operation of the public transportation system is
independent from the number of customer serviced, and its energy consumption
is therefore invariant. Therefore, we write ��� = ���� , � > 0. Accordingly,

�P � �P � �

��, ���
�
��� , ��� , �L,�� , ��� , ���

�
.

Road arcs for AVs Each road arc is characterized by a length ���, a speed
limit �L,��, and a capacity ���, all derived from road network data. We consider
AVs driving at speed �V , so that travel time reads

��� =
���

min{�V , �L,��}
.

We compute the energy consumption of AVs via an urban driving cycle. In par-
ticular, the cycle is scaled so that its average speed �avg,cycle matches the free-�ow
speed on the link. The energy consumption of road link � is scaled as

��� = �cycle �
���
�cycle

.

11.2 Intermodal Mobility Framework 163

Collectively,
�R,V � �R,V � �

��, ���
�
��� , ��� , �L,�� , ��� , ���

�
.

Road arcs for �MVs Each road arc is characterized by a length ��� and a speed
limit �L,��, derived from road network data, while we neglect arc capacity (i.e.,
��� =�). Assuming �MVs driving at speed �M, travel time reads

��� =
���

min{�M, �L,��}
.

For �MVs we consider a distance-based energy consumption, i.e. ��� = ����,
with � > 0. Overall,

�R,M � �R,M � �

��, ���
�
��� , ��� , �L,�� , ��� , ���

�
.

Transfer arcs We de�ne travel time ��� as follows: we assume that the average
waiting time for AVs is �WV , the average time needed to reach a �MV is �WM, and
switching from the AVs graph, the �MVs graph, and the public transit graph to
the pedestrian graph takes the transfer times �VW, �MW, and �SW, respectively. For
each arc, we set length and energy consumption to zero (i.e., ��� = ��� = 0) and
ignore capacity and speed limit (i.e., ��� = �L,�� =�). Overall,

�C � �C � �

��, ���
�
��� , ��� , �L,�� , ��� , ���

�
.

Road congestion

We assume that road arcs are subject to a normalized capacity ��� , which could
arise from the di�erence of the nominal road capacity and the exogenous road
usage:

�tot,V (�, �) � ��� . (64)

We assume that the central authority operates the AMoD �eet such that vehicles
travel at free-�ow speed throughout the road network of the city, meaning that
the total �ow on each road link must be below the link’s capacity. Therefore, we
capture congestion e�ects with the threshold model. Finally, we assume �M to
not signi�cantly contribute to congestion [218].

Remark 11.7 (Threshold model for congestion). We model congestion e�ects
using a threshold model. This approach can be interpreted as a municipality
preventing mobility solutions to exceed the critical �ow density on road arcs.

164 11 Co-design of mobility systems

AVs and �MVs can therefore be assumed to travel at free �ow speed [219]. This
assumption is realistic for an initial low penetration of new mobility systems in
the transportation market, especially when the AV and �MV �eets are limited in
size.

11.3 Co-Design Framework
We integrate the intermodal framework presented in the previous sections in the
co-design formalism, allowing the decoupling of the entire co-design problem
of a complex system in the design problems of its individual components. To
achieve this, we decouple the co-design problem in the design of the individual
AV, the AVs �eet, the individual �MV, the �MVs �eet, and the public transporta-
tion system. We then look at their interconnection, where we propose multiple
model versions, showcasing the �exibility of the developed framework. We aim
at computing the antichain of resources, quanti�ed in terms of costs, average
travel time per trip, and emissions required to provide the mobility service to a
set of customers. For each model, we provide descriptions and formal proofs of
integration in the co-design framework.

The AV design problem

The AV design problem selects the labeled graph on which the AV provider wants
to operate. The selection happens via the choice of the achievable speed of the
AVs as follows. AVs safety protocols impose a maximum achievable velocity �V .
Furthermore, in order to prevent too slow and therefore dangerous driving be-
haviors [220], we only consider AVs arcs through which the AVs can drive at least
at a fraction � of the speed limit. Speci�cally, AVs can drive on arc ��, �� � �R,V
if and only if

�V � � � ��L�R,V(�, �), (65)

where � � (0, 1], and ��L projects the part of �R,V(�, �) related to �L. The elimi-
nation of forbidden arcs given an achievable speed can be achieved through the
following map (mnemonics for reduction):

redR,V � ��0 � ��, ���

�V �
�
�R,V ,�, �

�
,

where

� = {��, �� � �R,V � (65) holds},

� =
�
���R,V ,

���R,V
min{�V ,��L�R,V}

, ��L�R,V , ���R,V , ���R,V
�
.

(66)

11.3 Co-Design Framework 165

AVnetwork
�x cost [CHF]
op. cost [CHF/m]

Figure 157: Design problem for an AV.

We can now state the following fact.

Lemma 11.8. The map redR,V is monotone.

See proof on page 245.

In other words, the graph on which the AVs can operate is limited by the AV
achievable speed.

Under the rationale that driving safely at higher speed requires more advanced
sensing and algorithmic capabilities [128], we model the achievable speed of the
AVs �V as a monotone function of the vehicle �xed costs �V,f (resulting from
the cost of the vehicle �V,v and the cost of its automation �V,a) and the mileage-
dependent operational costs �V,o (accounting for maintenance, cleaning, energy
consumption, depreciation, and opportunity costs [221]).

Co-design formulation The AV design problem, denoted �AV , provides the
functionality �AV � � (i.e., the functionality of servicing a speci�c network with
a speci�c performance) and requires the resources �V,f ,�V,o � ��0 (Fig. 157).
The implementations space �AV consists of models of the AVs.

Lemma 11.9. �AV is a well-de�ned design problem.

Proof. �V,f ,�V,o are monotone functions of the AV’s achievable speed. Lever-
aging Lemma 11.8, we know that the serviced network is a monotone func-
tion of the speed.

Remark 11.10. At this point you might be impatient to substitute this simple
model of an AV with more complex ones developed in previous sections. Indeed,
here we lump the AV’s autonomy in its achievable velocity. Hold on! We will do
this in Chapter 12.

The �MV design problem

The �M design problem comprises the selection of the labeled graph on which
to operate, again resumed in the maximal speed achievable by �MVs. Given an
achievable speed �M, one obtains the resulting graph as follows:

redR,M � ��0 �
�
�, ��

�

�M �
�
�R,M,�R,M, �

�
,

where

� =
�
���R,M,

���R,M
min{�M,��L�R,M}

, ��L�R,M, ���R,M, ���R,M
�
.

166 11 Co-design of mobility systems

�MVnetwork
�x cost [CHF]
op. cost [CHF/m]

Figure 158: �MV design problem.

Lemma 11.11. The map redR,M is monotone.

See proof on page 245.

Following the rationale that di�erent �MVs can reach di�erent speeds and have
di�erent prices, we model the achievable speed of the �MV �M as a monotone
function of the �MV �xed costs �M,f and the mileage-dependent operational
costs �M,o.

Co-design formalization Therefore, the �M design problem, denoted �MM,
provides the functionality �MM � � (i.e., the functionality of servicing a speci�c
network with a speci�c performance) and requires the resources�M,f ,�M,o � ��0
(Fig. 158). The implementations space �M consists of instances of the �MVs.

Lemma 11.12. �MM is a well-de�ned design problem.

Proof. �M,f ,�M,o are monotone functions of the �MV’s achievable speed.
Leveraging Lemma 11.11, we know that the serviced network is a monotone
function of the speed.

The Subway design problem

The public transit design problem comprises the selection of the labeled network
on which to operate, now resumed in the choice of �eet size for the subway
system. Speci�cally, we assume the service frequency �� to scale monotonically
with the size of the train �eet �S. In the linear case, one has:

��
��,base

=
�S

�S,base
,

where ��,base and �S,base are respective existing baselines. Given a train �eet size,
one obtains the resulting network as follows:

redP �
�
�, �

�
�

�
�, ��

�

�S � ��P,�P, ��,

where
� =

�
���P, �WS +

�S,base
2�S��,base

, ��L�P, ���P, ���P
�
.

Lemma 11.13. The map redP is monotone.

See proof on page 245.

We relate a train �eet of size �S to the �xed costs �S,f (accounting for train
and infrastructural costs) and to the operational costs �S,o (accounting for en-
ergy consumption, vehicles depreciation, and train operators’ wages). Given the

11.3 Co-Design Framework 167

PTnetwork
�x cost [CHF]

emissions [kg/s]

Figure 159: �MV design problem.

passengers-independent public transit operation in today’s cities, we assume the
operational costs �S,o to be mileage independent and to only vary with the size
of the �eet. Assuming an average train’s life of �S, and a baseline subway �eet of
�S,baseline trains, costs are

�S =
�S,f
�S

� �S,a + �S,o.

Moreover, operating a �eet of trains entails the CO2 emissions

�CO2,S,tot = �CO2,S � �S.

Co-design formalization The public transit design problem, denoted �P, pro-
vides the functionality �P � � (i.e., the functionality of servicing a speci�c
network with a speci�c performance) and requires the resources �S � ��0
and �CO2,S,tot � ��0. The implementations space �P consists of di�erent train

acquisition choices. Formally: �P � � �� �
2
�0 (Fig. 159).

Lemma 11.14. �P is a well-de�ned design problem.

Proof. First, notice that �S and �CO2,S,tot are monotone functions of �S.
Furthermore, leveraging Lemma 11.13, we know that the serviced network
relates monotonically to �S.

The Intermodal Mobility System design problem (Version 1)

The �rst version of the intermodal mobility system design problem considers
demand satisfaction as a functionality, and does not consider micromobility.

To successfully satisfy a given set of travel requests, we require the following
resources:

� the network resulting from the design of AVs, �AV = ��AV ,�AV , �AV�,

� the network resulting from the design of public transit �P = ��P,�P, �P�,

� the number of available AVs per �eet �V,max ,

� the average travel time of a trip

�avg �=
1
�tot

�

���,
��, ����W��AV��P��C

���(�, �) � �� (�, �) ,

with
�tot �=

�

���
��, (67)

168 11 Co-design of mobility systems

� the total distance driven by the AVs per unit time

�V,tot �=
�

��, ����AV

���AV(�, �) � �tot,V (�, �) , (68)

� the total AVs CO2 emissions per unit time

�CO2,V,tot �= � �
�

��, ����AV

���AV � �tot,V (�, �) . (69)

We assume that AVs are routed to maximize the customers’ welfare, de�ned with-
out loss of generality as the average travel time �avg. Hence, we link functionality
and resources of the mobility system design problem through the optimization
problem:

min
{��}�
�0,V

�avg

s.t. Eq.(63),

Eq.(64) ���, �� � �AV ,�

��, ����AV

�tot,V (�, �) � ���AV(�, �) � �V,max ,

(70)

where we express the number of vehicles on arc ��, �� as the multiplication of the
total vehicles �ow on the arc and its travel time.

Co-design formalization The intermodal mobility system design problem
has as functionality the satis�ed requests � � � and the mentioned resources.
Furthermore, �O consists of speci�c intermodal scenarios.

Lemma 11.15. �IAMOD,1 is a well-de�ned design problem.

See proof on page 246.

The Intermodal Mobility System design problem (Version 2)

The second version of the intermodal mobility system design problem still con-
siders demand satisfaction as a functionality, now including �M options. To
successfully satisfy a given set of travel requests, we require the following re-
sources:

� �AV = ��AV ,�AV , �AV� as in Section 11.3,

� �P = ��P,�P, �P� as in Section 11.3,

� the network resulting from the design of �Ms �MM = ��MM,�MM, �MM�,

� �V,max as in Section 11.3,

� the number of available �MVs per �eet �M,max ,

11.3 Co-Design Framework 169

� the (adapted) average travel time of a trip

�avg �=
1
�tot

�

���,
��, ����W��AV��MM��P��C

���(�, �) � �� (�, �) ,

with �tot as in (67),

� �V,tot as in (68),

� the total distance driven by the �MVs per unit time

�M,tot �=
�

��, ����MM

���MM(�, �) � �tot,M (�, �) ,

� �CO2,V,tot as in (69),

� the total �MVs CO2 emissions per unit time

�CO2,M,tot �= � �
�

��, ����MM

���MM � �tot,M (�, �) ,

where � relates energy consumption and CO2 emissions.

We assume that AVs and �MVs are routed to maximize the customers’ welfare,
de�ned without loss of generality as the average travel time �avg. Hence, we link
functionality and resources of the mobility system design problem through the
following optimization problem, extending (70):

min
{��}�
�0,V
�0,M

�avg

s.t. Eq.(63),

Eq.(64) ���, �� � �AV ,�

��, ����AV

�tot,V (�, �) � ���AV(�, �) � �V,max ,

�

��, ����MM

�tot,M (�, �) � ���MM(�, �) � �M,max ,

(71)

where we express the number of vehicles on arc ��, �� as the multiplication of the
total vehicles �ow on the arc and its travel time.

Co-design formalization The intermodal mobility system design problem has
as functionality � � � and the mentioned resources. Furthermore, �O consists of
speci�c intermodal scenarios.

Lemma 11.16. �IAMOD,2 is a well-de�ned design problem.

170 11 Co-design of mobility systems

Proof. The proofs is parallel the proof of Lemma 11.15.

The Intermodal Mobility System design problem (Version 3)

We extend the setting presented in Section 11.3 by including a new functionality.
Speci�cally, the intermodal mobility system design problem not only provides
demand satisfaction as a functionality, but also provides the revenue � arising
from the mobility o�er, which reads:

� = �AV�V,tot + �P
�

��, ����C��W◊�P

�� (�, �) ,

where �AV is a distance-based price to use AVs and �P is a �xed entry price for
the subway system. Accordingly, we modify the optimization problem to account
for both average travel time and average cost of fare:

min
{��}�
�0,V

�T�avg +
1
�tot

�

s.t. Eq.(63),

Eq.(64) ���, �� � �AV ,�

��, ����AV

�tot,V (�, �) � ���AV(�, �) � �V,max ,

(72)

where �T is the value of time.

Co-design formalization This new version of the intermodal mobility system
design problem has as functionality the satis�ed requests � � � and the total
revenue � � ��0 and the mentioned resources. Furthermore, �O consists of
speci�c intermodal scenarios (including speci�c price choices).

Lemma 11.17. �IAMOD,3 is a well-de�ned design problem.

Proof. The proofs is parallel the proof of Lemma 11.15.

TheMobility design problem (Version 1)

The functionality of the system is to satisfy the customers’ demand. Formally, the
functionality provided by the co-design problem with implementation (CDPI) is
the set of travel requests and coincides with the functionalities of �I1 . To provide
the mobility service, three resources are required. First, on the customers’ side, we
require the average travel time de�ned in Section 11.3. Second, on the side of the
central authority, the resource is the total transportation cost of the intermodal

11.3 Co-Design Framework 171

Mobility
network

operation

served
travel

requests

Public
transit

AV costs +

+

AV network

AV distance [m]

AV externalities [kg]

PT network

number AVs
fix cost [CHF]
cost operation [CHF/m]

externalities [kg]

total cost
[CHF]

cost [CHF]

×

AV

total
externalities

[kg]

average
travel

time [s]

Figure 160: Design problem for the mobility system (version 1).

mobility system. Assuming an average AV’s life of �V , an average �MV’s life of
�M, we express the total costs as

�tot = �V + �S,

where �V is the AVs-related cost

�V =
�V,f
�V

� �V,max + �V,o � �V,tot,

and �S is the public transit-related cost. Third, on the environmental side, we
consider the total CO2 emissions

�CO2,tot = �CO2,V,tot +�CO2,S,tot.

Co-design formalization The formal diagram, following the logical intercon-
nections, is reported in Fig. 160.

Lemma 11.18. �Mob1 is a well-de�ned design problem.

Proof. The design problem is valid, since they consist of the valid composi-
tion of design problems [122].

TheMobility design problem (Version 2)

As in Section 11.3, the functionality provided by the design problem is the set
of travel requests. To provide the mobility service, three resources are required.
First, on the customers’ side, we require an average travel time, de�ned in (11.3).
Second, on the side of the central authority, the resource is the total transportation

172 11 Co-design of mobility systems

Mobility
network

operation

served
travel

requests

average
travel

time [s]

Public
transit

AV costs +

+

AV network

AV distance [m]

AV externalities [kg]

+M externalities [kg]

PT network

number AVs
fix cost [CHF]
cost operation [CHF/m]

externalities [kg] total
externalities

[kg]

total cost
[CHF]

cost [CHF]

×

AV

μMV costs

+M�network

+M distance [m]

number +MVs
fix cost [CHF]
cost operation [CHF/m]

×

Micromobility

Figure 161: Design problem for the mobility system (version 2).

cost of the intermodal mobility system. To the cost de�ned in Section 11.3, we
add the cost related to �M. Assuming an average �MV’s life of �M we get

�tot = �V + �M + �S,

where �M is the �MV-related cost

�M =
�M,f
�M

� �M,max + �M,o � �M,tot,

Third, we add the �M-related emissions to the ones computed in Section 11.3:

�CO2,tot = �CO2,V,tot +�CO2,M,tot +�CO2,S,tot.

Co-design formalization Formally: �Mob2 � � �� ��0
3
. The MDPI is re-

ported in Fig. 161.

Lemma 11.19. �Mob2 is a well-de�ned design problem.

TheMobility design problem (Version 3)

We now extend the setting presented in Section 11.3 by including the structure
presented in Section 11.3. Speci�cally, the functionality provided by the design
problem coincides with the functionalities of �I3 (i.e., includes travel requests and

11.4 Results 173

Mobility
network

operation

Public
transit

AV costs Return
revenue [CHF]

+

+

AV network

AV distance [m]

AV externalities [kg]
PT networkserved

travel
requests

number AVs
fix cost [CHF]
cost operation [CHF/m]

externalities [kg] total
externalities

[kg]

total cost
[CHF]

cost [CHF]

×

AV

average
travel

time [s]

Figure 162: Design problem for the mobility system (version 3).

total revenue). Furthermore, to provide the functionalities the three resources
introduced in Section 11.3 are required: �avg �tot, and �CO2,tot. We introduce a
feedback loop, by requiring the total revenue � to at least cover a fraction � of
the total costs, i.e., � � � � �tot.

Co-design formalization Formally: �Mob3 � � �� ��0
2
. The MDPI is re-

ported in Fig. 162.

Lemma 11.20. �Mob3 is a well-de�ned design problem.

Remark 11.21. Note that the intermodal mobility framework is only one of
the many feasible ways to map total demand to travel time, costs, and emis-
sions. Speci�cally, practitioners can replace the corresponding design problem
(here speci�ed via a multi-commodity �ow model and an optimization prob-
lem) with di�erent models (e.g., MATSim [222]), as long as the light condition of
monotonicity of the design problem is preserved. In this sense, the framework is
user-friendly, allowing users to plug in di�erent models and analyze the results.

11.4 Results
In this section, we showcase the co-design framework on the case of Washington
D.C., USA, leveraging real mobility data.

Design of Experiments

Our example study is based on the urban area of Washington D.C., USA. The city
road network and its features are imported from OpenStreetMap [223], whilst the
public transit network together with its schedules are extracted from GTFS [224].

174 11 Co-design of mobility systems

Original demand data is obtained by merging origin-destination pairs of the morn-
ing peak of May �rst, 2017, provided by taxi companies [225] and the Washington
Metropolitan Area Transit Authority (WMATA) [226]. On the public transporta-
tion side, we focus our studies on the MetroRail system and its design. To take
account of the recently increased presence of ride-hailing companies, the taxi de-
mand rate is scaled by a factor of 5 [227]. The complete demand dataset includes
16,430 distinct origin-destination pairs, describing travel requests. To account
for congestion e�ects, the nominal road capacity is computed as in [228] and an
average baseline usage of 93% is assumed, in line with [229]. We assume an AV
�eet composed of battery electric BEV-250 mile AVs [230]. We summarize the
main parameters characterizing our case studies together with their bibliographic
sources in Table 8.

In the remainder of this section, we solve the co-design problems. Beside our
basic setting (S1), we evaluate the sensitivity of the design strategies to di�erent
models of automation costs of AVs (S2–S4) assess the impact of emerging �M
solutions, showing how one can easily include new modes of transportation in
the framework (S5), and investigate pricing strategies in (S6). We summarize the
considered mobility solutions and their complementarity in Table 9.

S1 - Basic setting: We consider the co-design of the mobility system by means of
AMoD and public transportation systems (Section 11.3), and do not include
�M solutions (cf. S5). Speci�cally, we co-design the system by means of
the AV �eet size, achievable free-�ow speed (see Lemma 11.8), and subway
service frequency (see Lemma 11.13): The municipality is allowed to (i)
deploy an AV �eet of size �V,max � {0, 500, 1,000,… , 5,000} vehicles, (ii)
choose the single AV achievable speed (determining the serviced mobility
network) �V � {20mph, 25mph,… , 50mph}, and (iii) increase the subway
service frequency �� by a factor of 0%, 50%, or 100%. In line with recent
literature [231]–[235], [247], we assume an average achievable-velocity-
independent cost of automation.

S2 - Speed-dependent automation costs: To relax the potentially unrealis-
tic assumption of a velocity-independent automation cost, we consider
a performance-dependent cost structure, detailed in Table 8. The large
variance in sensing technologies available on the market and their perfor-
mances suggests that AV costs are, in fact, performance-dependent [128],
[248]. Indeed, the technology currently required to safely operate an au-
tonomous vehicle at 50mph is substantially more sophisticated, and there-
fore more expensive, than the one needed at 20mph. Furthermore, the
frenetic evolution of automation techniques will inevitably reduce automa-
tion costs: Experts forecast a massive automation cost reduction (up to
90%) in the next decade, principally due to mass-production of AVs sensing
technology [249], [250]. Therefore, we perform our studies with current

11.4 Results 175
Table 8: Parameters, variables, numbers, and units for the case studies.

Parameter Variable Value Units Source

Road usage ��� 93 % [229]

S1 S2 (2022) S2 (2025) S3 S4 S5 (2022) S5 (2025), S6
AVs operational cost �V,o 0.084 0.084 0.062 0.084 0.50 0.084 0.062 USD�mile [230], [231]
Vehicle cost �V 32 32 26 32 32 32 26 kUSD�car [230]

AV automation cost

20mph

�V,a

15 20 3.7 500 0 20 3.7 kUSD�car [231]–[235]
25mph 15 30 4.4 500 0 300 4.4 kUSD�car [231]–[235]
30mph 15 55 6.2 500 0 55 6.2 kUSD�car [231]–[235]
35mph 15 90 8.7 500 0 90 8.7 kUSD�car [231]–[235]
40mph 15 115 9.8 500 0 115 9.8 kUSD�car [231]–[235]
45mph 15 130 12 500 0 130 12 kUSD�car [231]–[235]
50mph 15 150 13 500 0 150 13 kUSD�car [231]–[235]

AV life �V 5 5 5 5 5 5 5 year [230]
CO2 per Joule � 0.14 0.14 0.14 0.14 0.14 0.14 0.14 g�kJ [236]
Time �W to �R,V �WV 300 300 300 300 300 300 300 s -
Time �R,V to �W �VW 60 60 60 60 60 60 60 s -
Speed limit fraction � 1�1.3 1�1.3 1�1.3 1�1.3 1�1.3 1�1.3 1�1.3 � [220]

ES SB M FCM
�MV operational cost �M,o 0.79 1.58 2.05 1.20 USD�mile [237]–[239]
�MV cost �M,f 550 8,860 1,000 3,000 USD��MV [238]–[240]
�MV achievable speed �M,�� 15 10 15 15 mph -
�MV life �M 0.085 7.0 10.0 10.0 year [238]–[240]
�MV emissions �CO2 ,M,tot 0.101 0.033 0.158 0.033 kg�mile [238], [241]–[243]
Time from �W to �R,M �WM 60 60 60 60 s -
Time from �R,M to �W �MW 60 60 60 60 s -

Subway operational cost
100%

�S,o
148,000,000 USD�year [244]

150% 222,000,000 USD�year [244]
200% 295,000,000 USD�year [244]

Subway �xed cost �S,f 14,500,000 USD�train [245]
Train life �S 30 year [245]
Subway emissions per train �CO2 ,S,tot 140,000 kg�year [246]
Train �eet baseline �S,base 112 train [245]
Subway service frequency ��,baseline 1�6 1�min -
Time �W to �P �WS 60 s -

(2022) automation costs as well as with their projections for the upcoming
years (2025) [230], [247], [250].

S3 - High automation costs: We assess the impact of high automation costs.
In particular, we assume a performance-independent automation cost of
0.5MilUSD�car, capturing the extremely high research and development
costs that AVs companies are facing today [251], as well as insurance costs
and infrastructural investments. The latter, often referred to as “autonomy-
enabling infrastructure”, would allow high driving speeds, and could consist
of dedicated roads, equipped with sensors and cloud computing capabilities,
enhancing the performance of AVs.

S4 - MoD setting: We analyze the current Mobility-on-Demand (MoD) case.
The cost structure of MoD systems is characterized by lower vehicle costs
(due to lack of automation) and higher operation costs, mainly due to
drivers’ salaries.

S5 - Impact of new transportation modes: We show the modularity of our
framework by evaluating the impact of �M solutions on urban mobil-
ity (Section 11.3). We consider ESs (e.g., Lime in DC), SBs (e.g., Capi-

176 11 Co-design of mobility systems
Table 9: Comparison of the considered mobility solutions.

Mobility Type Emissions Cost Speed Reliability

Taxi Point-to-point High High operational cost, medium �xed cost High Up to availability and congestion
AV Point-to-point High Low operational cost, high �xed cost High Up to availability and congestion
�MV Point-to-point Medium Medium operational cost, low �xed cost Low/Medium Up to availability
Walking Point-to-point No emissions Free Low High
Subway Fixed hubs and routes Low Low Medium High

tal Bikeshare in DC), Ms (e.g., Revel in DC), and FCMs. In addition to
the design parameters introduced in the basic setting, we design the spe-
ci�c �M solution � � {ES,SB,M,FCM} and the �M �eet size �M,max �
{0, 500, 1,000 ,… , 5,000 } vehicles (see Lemma 11.11). We study the joint
deployment of �M solutions and AVs, and therefore consider the extended
settings of 2022 and 2025.

S6 - Pricing: We show another extension of our framework to capture pricing
strategies and infrastructure-contributing revenues (Section 11.3) in the
2022 setting. We consider AMoD service providers that choose from an
exemplary set of prices {0.8, 1.2, 1.6, 2.4, 3.2} (expressed in USD/mile) and
public transit authorities choosing fare prices from the set {1.0, 2.0, 4.0, 6.0}
(expressed in USD per ride). Furthermore, we consider a municipality
willing to cover 50% (just a particular choice) of the investment cost through
the revenues of mobility services. (i.e., the revenue gained from travelers
paying for the trips should at least be enough to cover 50% of the investment
costs).

Basic setting

Fig. 163a reports the solution of the co-design problem through the antichain
consisting of the total CO2 emissions, average travel time, and total transportation
cost. The design solutions are rational (and not comparable), since there exists
no instance which simultaneously yields lower emissions, average travel time,
and cost.

In the interest of clarity, we prefer a two-dimensional antichain representation,
where emissions are included in the costs via a conversion factor of 40 USD/kg
[252]. Note that this transformation preserves the monotonicity of the CDPI and
therefore integrates in our framework. The two-dimensional antichain and the
corresponding central authority’s decisions are reported in Fig. 163b.

In general, as the municipality budget increases, the average travel time per trip
required to satisfy the given demand decreases, reaching a minimum of about
20.7 min, with a monthly public expense of around 36 mil USD/month. This
con�guration corresponds to a �eet of 4,000 AVs able to drive at 50 mph, and
to the doubling of the current MetroRail train �eet. Furthermore, the smallest

11.4 Results 177

rational investment of 13 mil USD/month leads to a 22% higher average travel
time, corresponding to the current situation, i.e., to a non-existent AVs �eet, and
an unchanged subway infrastructure. Notably, an expense of 18 mil USD/month
(50% lower than the highest rational investment) only increases the minimal
required travel time by 8%, requiring a �eet of 3,000 AVs able to drive at 45 mph
and no acquisition of trains. Conversely, an expense of 15 mil USD/month (just
2 mil USD/month higher than the minimal rational investment) provides a 2 min
shorter travel time.

Finally, it is rational to improve the subway system starting from a budget of
23 mil USD/month, leading to a travel improvement of just 8%. This trend can
be explained with the high train acquisition cost and increased operation costs,
related to the reinforcement of the subway system. This phenomenon is expected
to be even more marked for other cities, considering the moderate operation costs
of the MetroRail subway system, due to its automation and related bene�ts.

(a) Left: Three-dimensional representation of antichain elements and
their projection in the cost-time space. Right: Two-dimensional pro-
jections.

0 AVs
0 trains

1500 AVs at 25 mph
0 trains

1000 AVs at 30 mph
56 trains

4000 AVs at 50 mph
112 trains

4000 AVs at 50 mph
56 trains

(b) Results for constant automation costs. We report the two-
dimensional representation of the antichain elements: The pareto
front is represented in dark red, and the upper set is the area above. We
also report selected implementations corresponding to the highlighted
antichain elements, in this case quanti�ed in terms of achievable ve-
hicle speed, AVs �eet size, and train �eet size.

Figure 163: Solution of the CDPI: Basic setting.

Speed-dependent automation costs

2022 We report the results in Fig. 164a. A comparison with our basic setting
(cf. Fig. 163) con�rms the trends concerning public expense. Indeed, a public
expense of 26 mil USD/month (43% lower than the highest rational expense) only
increases the average travel time by 5%, requiring a �eet of 2,000 AVs able to
reach 30 mph and a subway reinforcement of 50%. Nevertheless, our comparison
shows two substantial di�erences. First, the budget required for an average travel
time of 13 min is 25% higher compared to S1. Second, the higher AV costs result
in an average AVs �eet growth of 9%, an average velocity reduction of 15%, and

178 11 Co-design of mobility systems
0 AVs

0 trains

1500 AVs at 35 mph
0 trains

2000 AVs at 30 mph
56 trains 4000 AVs at 50 mph

112 trains

1500 AVs at 45 mph
112 trains

(a) Speed-dependent automation costs in 2022.

0 AVs
0 trains

2500 AVs at 35 mph
0 trains

1000 AVs at 30 mph
56 trains

4000 AVs at 50 mph
56 trains

4000 AVs at 50 mph
112 trains

(b) Speed-dependent automation costs in 2025.

Figure 164: Results for the speed-dependent automation costs.

an average train �eet growth of 14%. The latter suggests a shift towards poorer
AVs performance in favor of �eets reinforcements.

2025 The maximal rational budget is 23% lower than in the case of immediate
deployment (Fig. 164b). Further, the reduction in autonomy costs incenti�es the
acquisition of more performant AVs, increasing the average vehicle speed by 14%.
Hence, AVs and train �eets are 10% and 13% smaller.

High automation costs analysis

0 AVs
0 trains 500 AVs at 20 mph

56 trains

1500 AVs at 35 mph
56 trains

4000 AVs at 50 mph
112 trains

2500 AVs at 40 mph
112 trains

(a) Results for large automation costs.

0 vehicles
0 trains

500 vehicles
56 trains

1000 vehicles
112 trains

2000 vehicles
112 trains

4000 vehicles
112 trains

(b) Results for the MoD case.

Figure 165: Results for large automation costs, and for the MoD case.

Fig. 165a shows the results for high automation costs. First, we observe a sub-
stantial shift towards larger train �eet sizes (65% larger than in S1) and smaller
AVs �eets (55% smaller than in S1). Second, minimizing the average travel time
entails an expense of approximately 68MilUSD�month, basically doubling the
investments observed in the basic setting.

11.4 Results 179

MoD setting

We summarize the results for the MoD scenario in Fig. 165b. In particular, by
comparing the MoD case with the 2025 setting, we can notice the game-changing
properties that AVs introduce in the mobility ecosystem. In particular, the average
train �eet size and the average vehicle �eet sizes increase by 130% and 66%,
suggesting a clear transition in investments from public transit to AVs, and testi�es
to the interest in AMoD systems developed in the past years.

Impact of new transportation modes

0 AVs
0 ESs

0 trains

2000 AVs at 30 mph
1000 FCMs

0 trains

1500 AVs at 40 mph
2000 FCMs

56 trains 4000 AVs at 50 mph
4000 FCMs

112 trains

2000 AVs at 45 mph

56 trains
4000 ESs

(a) Impact of micromobility in 2022.

0 ESs
0 trains

2500 AVs at 35 mph

0 trains
500 ESs

2500 AVs at 40 mph

0 trains
2500 ESs

2500 AVs at 50 mph
4000 FCMs

56 trains

4000 AVs at 50 mph
4000 FCMs

112 trains

(b) Impact of micromobility in 2025.

Figure 166: Results for the impact of micromobility.

To assess the impact of �M solutions, we compare the arising design solutions,
reported in Fig. 166, with their counterpart in S2 (cf. Fig. 164).

2022 Fig. 166a, together with Fig. 164a, demonstrates an overall bene�t from �M
solutions. For instance, the most time-e�cient solution in S2 yields an average
travel time of 20.7 min at an expense of 45 mil USD/month. The deployment of
�M solutions lowers the average travel time achievable with the same expense
by 10% (18.8 min) and allows for even lower average travel times, with a time-
e�cient solution of 17.6 min at an investment plan of 84 mil USD/month. Overall,
the average AVs �eet size and the average train �eet size are 35% and 6% smaller,
in favor of an average �M �eet of 2,280 �MVs.

2025 Fig. 166b, together with Fig. 164b, shows that the bene�t of�M solutions is
less marked than in 2022. For instance, an expense of 35 mil USD/month (same as
the maximal expense in Fig. 164b) results in an average travel time of 19.5 min, i.e.,
only 6% lower than in the case without �M. Furthermore, we observe an average
AVs �eet size enlargement of 17%, and an average train �eet size reduction of
27%. Finally, the comparison with the 2022 case highlights a �MVs �eet reduction
of 23%, which suggests the comparative advantage of AVs in the future. Indeed,

180 11 Co-design of mobility systems

the stronger the reduction of the cost of automation, the more investments in
AVs are rational. The bene�ts of employing �M solutions could therefore just be
temporary, and gradually vanish as the costs of automation of AVs decrease.

Pricing

We report the results in Fig. 167. In particular, we report the Pareto front between
system performance and emissions (the two resources of the considered MDPI), as
well as design choices for selected Pareto-optimal solutions, now including prices
for AMoD and public transit services. We report three key observations. First,
the most performing solution (which satis�es the cost-contributing constraint)
features the usage of 4,000 AVs able to drive at 45 mph and an increment of
50% of the public transit �eets. The large usage of AVs is not only due to their
e�ciency, but also to the low price of 0.8 USD/mile. While this choice does not
fully exploit the action space of the municipality (one could have larger �eets,
more performant AVs, and more trains), it is the last one for which the weighted
costs do not exceed the revenue. Second, we observe fewer solutions featuring
an augmented train �eet, mainly because of the related onerous investments
related (i.e., more AVs, not necessarily very performing, can bridge the system
performance gap). Finally, comparing the emissions in Fig. 167 and in Fig. 163a
suggests that bounding the allowed mobility system costs also prevents design
options which are more pollutant from being chosen.

Figure 167: Pricing and revenues case study. The
Pareto front is in terms of system performance (av-
erage travel time) and produced externalities.

0 AVs
0 trains 3000 AVs at 35 mph

0 trains
2.4 USD/mile

1 USD/ride

4000 AVs at 45 mph
56 trains

0.8 USD/mile
1 USD/ride

3500 AVs at 45 mph
56 trains

2.4 USD/mile
2 USD/ride

3000 AVs at 40 mph
0 trains

1.2 USD/mile
1 USD/ride

Discussion

First, the presented case studies showcase the ability of our framework to extract
the set of rational design strategies for a future mobility system, including AVs,
�MVs, and public transit. This way, stakeholders such as mobility providers, trans-
portation authorities, and policy makers can get transparent and interpretable
insights on the impact of future interventions, inducing further re�ection on

11.4 Results 181

this complex socio-technical problem. Note that this kind of results is only one
of the many factors a�ecting negotiations when interacting with stakeholders.
Second, we perform a sensitivity analysis through the variation of autonomy cost
structures, and show the capacity of our framework to capture various models.
On the one hand, this reveals a clear transition from small �eets of fast AVs (in
the case of low autonomy costs) to large �eets of slow AVs (in the case of high
autonomy costs). On the other hand, our studies highlight that investments in the
subway infrastructure are rational only when large budgets are available. Indeed,
the high train acquisition and operation costs lead to a comparative advantage
of AV-based mobility. Finally, our case studies suggest that the deployment of
�M solutions is rational primarily on a short-term horizon: The lowering of au-
tomation costs could eventually make AVs the predominant actor in the future
of urban mobility.

From autonomy to mobility via
compositionality 12

The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.

—Edsger Dijkstra20

Following the principle “your system is just a component in somebody else’s
system”, in this chapter we embed the complex autonomy co-design models
developed in Chapter 10 in the co-design models of a mobility system developed
in Chapter 11 First, we will present the updated models (Section 12.1), and then
we will show sample results for Washington D.C., USA (Section 12.2).

12.1 Models
In the mobility co-design problem we started from a simple model of an AV. We
assumed a single vehicle to be represented by a relationship between achievable
speed, �x and operational costs. We can now do better, by embedding a more
sophisticated model of autonomy, as introduced in Chapter 10. There are multiple
ways to perform this extension.

A �rst, naive way, could be to consider the design problem of an AV as in Sec-
tion 10.2, and forget all the functionalities/resources but achievable speed and
�x/operational costs. In a sense, this would �t the sophisticated model of au-
tonomy to the mobility needs. However, we might miss important aspects of
autonomy, such as the extra power consumption due to the autonomy stack.

Another way, could be to take the AV design problem in the mobility co-design
problem, and enhance it with functionalities and resources from the design prob-
lem in Section 10.2. For instance, one can take into account the power consump-
tion of the entire autonomy stack of one AV, as well as the related emissions
produced. At the mobility system level, one can then account for them, in addi-
tion to the emissions already considered before (e.g., operations of the vehicles
and subway system). This can be visualized as in Fig. 168, where we enhanced
the last mobility co-design problem discussed in Chapter 11.

In this context, another interesting study would include diverse �eets, performing
di�erent tasks. For instance, think of a city like San Francisco, featuring both
�at, and hilly topologies. To achieve this, one could modify the mobility model,
to account for heterogeneous �eets of AVs, and frame the optimization problem
as a search for optimal �eet compositions given speci�c demand patterns [253].
Nevertheless, this is beyong the scope of this chapter, and we leave such problems

20 Dijkstra was a Dutch computer scientist, recipient of the 1972 Turing Award for his contributions
to structured programming languages.

184 12 From autonomy to mobility via compositionality

Mobility
network

operation

Public
transit

AV costs Return
revenue [CHF]

+

+

AV network

AV distance [m]

AV externalities [kg]
PT networkserved

travel
requests

number AVs
fix cost [CHF]
cost operation [CHF/m]

externalities [kg]
total

externalities
[kg]

total cost
[CHF]

cost [CHF]

×

AV

average travel time [s]

urbandriving

follow trajectory

control longitudinal control
path tracking

emergency brakingspeed tracking
system
noise

system
noise

environment

task

Vehicle

Speed sensing

Long. sensing

E�ort

Longitudinal
control

Lateral
control

+

dynamic performance [m/s u m/s2 u m/s2]

max. steering

sens. performance cost

cost

cost [CHF]

cost

total
cost
[CHF]

total
e�ort

total
error

total
disc.

total
mass [g]

total
power
[W]

mass

mass

mass

mass [g]
power [W]

power

power

power

acquisition freq. [Hz]
sens. performance
acquisition freq. [Hz]
e�ort
error
discomfort

e�ort
error
discomfort

control freq. [Hz]
time [s]

control freq. [Hz]
time [s]

Speed sensing
sens. performance
acquisition freq. [Hz]

Impl. control

+

+

+

Discomfort

Error

Computing

computation
[op/s]

computation
[op/s]

comp.
[op/s]

Impl. control

lateral

Figure 168: Compositionality of the co-design framework at work. We can take the co-design problem for the autonomy stack of an AV and embed it into
the co-design problem of a mobility system.

to future investigations.

12.2 Results
Results can be produced in the very same way as we did so far. For instance,
consider merging the case studies in Section 10.2, and the pricing case study in
Chapter 11. Here, we can query the co-design problem for the mobility system
with a speci�c travel demand for Washington, D.C., as well as task speci�cations
for the autonomy stack. The resources to be minimized are, again, the average
travel time in the mobility system, and the emissions produced by the mobility
options. In a sense, this is a trade-o� between the performance of the system and
its sustainability.

The resulting Pareto front of solutions is reported in Fig. 169. Notably, one obtains
the same kind of trade-o�s presented in Chapter 11, but now eliciting more
insights about the actual design of a single AV. Indeed, now not only we are

12.2 Results 185

500 AVs at 20 mph
0 trains
NMPC lin., �h = 10.0
� = 0.01 � �, � = 0.5
TX1, HDL164, Ace15

4,000 AVs at 30 mph
56 trains
Stanley, � = 0.05
Nano, Ace22gm
Ace22gm

Figure 169: Pareto front for the optimal design of
a mobiltiy system featuring AVs and public transit.
The pareto front is in terms of system performance
(average travel time) and produced externalities.

able to identify �eet sizes, speeds, and prices for every point on the antichain of
optimal solutions, but we can also speci�cally identify details about the autonomy
stack of a single AV composing the AMoD �eet. For instance, the �rst solution
on the left consists in acquiring no extra trains and just 500 AVs, capable of
driving at 20 mph. The AVs in this �eet will leverage a PID controller with certain
parameters for longitudinal control, as well as a NMPC controller with other
parameters for lateral control. They will be equipped with particular computing
units and sensors. For the solution depicted on the right, instead, 4,000 AVs and 56
extra trains will be bought. The vehicles will be able to drive at 30 mph, featuring
di�erent controllers, computing units, and sensors. Here, the pricing strategy
for the rides is 0.8 USD/mile for the AMoD service, and 1.0 USD/ride for public
transit.

O��� ���������� ���
����������� P��� C

13 Explicitly accounting for strategic interactions 189

14 Extending modeling capabilities and solution algorithms 197

15 Conclusions 199

Explicitly accounting for strategic
interactions 13

Human beings are born solitary, but everywhere they are in chains –
daisy chains – of interactivity. Social actions are makeshift forms, often
courageous, sometimes ridiculous, always strange. And in a way, every
social action is a negotiation, a compromise between “his”, “her” or

“their” wish and yours.
—Andy Warhol21

13.1 Need for co-design games
Up to this point, our discussion has revolved around intricate engineering design
challenges and the ways in which our co-design theory has proven invaluable in
the pursuit of optimal design solutions. These solutions often involve navigating
a complex landscape of competing objectives. Within this co-design framework,
we have emphasized its collaborative and decentralized nature. However, it is
essential to acknowledge a fundamental assumption that underpinned our pre-
vious applications: the presumption that while multiple designers may model
di�erent components within a complex architecture, they all share a common
interest in minimizing a prede�ned set of objectives. This assumption holds great
signi�cance and �nds numerous practical applications in the �eld of engineer-
ing.

Consider, for instance, a team of engineers working on distinct facets of the
autonomy stack of an AV. Their collective goal is to harmonize their e�orts and
discover the most e�cient design policies for each component. This cooperative
approach aligns well with the co-design concept: each expert can specify particular
design problems within a complex diagram, and their expertises can be combined.
However, when we shift our focus to a co-design problem within the context of a
mobility system, the situation becomes more intricate. In this scenario, we have
examined the issue from a municipal standpoint, but the stakeholders involved
are multiple, each possessing diverse and, at times, con�icting objectives. These
stakeholders encompass policy makers, mobility service providers, and customers,
among others.

This observation underscores a critical point: the co-design theory we have pre-
sented is suitable for a speci�c subset of engineering design problems. Still, it
necessitates further re�nement to accomodate other categories of challenges
involving multiple stakeholders engaged in strategic design interactions. To tackle
such problems e�ectively, we must extend and modify the co-design theory to
21 Warhol was an American visual artist, �lm director, producer, and leading �gure in the pop art

movement.

190 13 Explicitly accounting for strategic interactions

accomodate multiple participants with both shared and con�icting objectives. In
this context, the conventional notion of a “problem” and a “solution” must un-
dergo adaptation. Instead of merely optimizing outcomes, we must now consider
a quest for equilibria – states in which no player has an incentive to alter their
strategies.

The formal toolbox to address these types of challenges is rooted in game theory.
However, it is important to note that existing methodologies cannot be readily
applied “o�-the-shelf” to address the speci�c issues highlighted above. These
“new” games possess unique properties that set them apart.

Gameswith a co-design structure In this thesis, we recognized the versatility
and expressivity of co-design problems. In the game theoretic setting, di�erent
players can take decisions which in�uence one or more design problems. One
can essentially see two kinds of settings for interactions (the second generalizes
the �rst one):

� Given a co-design diagram, players compete to design a particular component;

� Given a co-design diagram, players can take decisions which in�uence one or
more design problems, and the payo�s of the players depend on (a subset) of
the functionalities/resources of those design problems;

Handling these cases requires a theory of co-design games, which is yet to be
developed. In the following, we present two preliminary steps took in this direc-
tion. First, we present the notion of games with partially ordered preferences,
applied to multi-agent motion planning. Second, we present mobility games,
to deal with the sequential nature of certain stakeholders’ interactions. In both
cases, we provide a synoptic description of the contributions. For details, please
refer to the reported references.

13.2 Games with partially ordered payo�s
We have seen how posets play an important role in describing trade-o�s in co-
design. However, in game theory, their utilization has been somewhat limited,
and the development of a comprehensive theory for games with partially ordered
payo�s is missing. To address this gap, we have taken an initial step in our work
on posetal games [254].

In this line of work, we delve into the study of games where players express
preferences that are partially ordered with respect to speci�c metrics of interest.
To illustrate this, consider the scenario of AVs navigating through urban envi-
ronments (e.g., at intersections), where they must make trajectory choices based
on their preferences over performance metrics. Fig. 170 provides a simpli�ed
example to visualize this concept within the context of urban driving. In this

13.2 Games with partially ordered payo�s 191

scenario, every vehicle prioritizes collision avoidance as its top objective. Sub-
sequently, an ambulance emphasizes minimization of travel time as its primary
goal, while adhering strictly to tra�c rules and ensuring a comfortable ride are
secondary considerations. In contract, an elderly driver, while also desiring colli-
sion avoidance, places a higher value on obeying tra�c regulations and ensuring
a comfortable ride.

collision

rules

time comfort

collision

rules comfort

time

collision

time

rules comfort

Figure 170: Cartoon representation of posetal
games applied to AVs navigating an intersection.

The preferences regarding performance metrics naturally translate into prefer-
ences over the actions taken by the players. For instance, consider the scenario
outlined in Fig. 171. Here, the AV0s top priority is to minimize its collision cost,
which typically involves mitigating kinetic energy transfers during interactions.
This takes precedence over the risk of a sever violation of tra�c rules, such as
cumulative time spent beyond the double lines, and the potential minimum clear-
ance cost, related to violations of safety distance norms. In this speci�c context,
trajectories �, �, and �, are preferred over trajectory �. Even though � and � are two
di�erent trajectories, they evaluate to be indi�erent since they lead to the same
outcomes. Both share the same collision, area violation, and clearance values.
Finally, trajectory � has a worse area violation, but a better clearance than �, �. It
is therefore uncomparable with respect to �, �, and constitutes an antichain with
them.

Posetal games In this context, a posetal game is speci�ed as follows:

� There is a �nite set of players;

� Each player possesses a decision space.

� Given the action pro�le of all players, an outcome of the game can be deter-

192 13 Explicitly accounting for strategic interactions

Figure 171: Example of priorities over metrics,
which induce priorities over trajectories.

�

�

�

�collision

area violation clearance

mined (e.g., what happens in an intersection if all players follow their chosen
trajectories);

� Each player speci�es a posetal preference over their actions.

Results

Formally, we analyzed the presented class of games, providing the following
theoretical contributions:

� We provide two su�cient conditions for the existence of a pure Nash Equilibria
in posetal games with �nite action sets. Interestingly, this depends on properties
of the single metrics over which the agents specify a preference, but also on
the combined preference structure of the players.

� We show that the set of equilibria of such a game is intimately related to the
operations one performs on the preference structures. Particularly, any re�ning
operation of a player’s preference re�nes the set of equilibria.

To provide some intuition, consider Fig. 172.

Here, we consider an intersection with three di�erent vehicles, each which
can choose between various trajectories. For di�erent preference structures
(Fig. 172a), we can compute the equilibria of the game. From left to right, we ob-
serve the same game played with re�ned preferences. Di�erent kind of equilibria
(refer to the paper for technicalities) are depicted using di�erent colors. Inter-
estingly, one of of the demonstrated properties is that re�ning the preferences
in the game, actually re�nes (shrinks) the equilibria of that game. This can be
visualized observing the plots from left to right.

13.3 Simultaneous and sequential decisions 193

collision

area violation clearance

time long. comfort lat. comfort

dev. heading + dev. lateral

collision

area violation clearance

time

long. comfort lat. comfort

dev. heading + dev. lateral

collision

area violation + clearance

time

lat. comfort + long. comfort

dev. heading + dev. lateral

collision

area violation

time + progress clearance

dev. heading + dev. lateral

long. comfort lat. comfort

collision

area violation

clearance + time + progress

dev. heading + dev. lateral

long. comfort + lat. comfort

A

D

B C

E

priority re�nement
priority re�nement and

aggregation

aggregation

(a) Preferences used in the case study and their re�nement.

D

D

A

(b) Preference in Fig. 172a yields 28 weak Nash
equilibria, no strong Nash equilibria, and 17 ad-
missible Nash equilibria.

D

D

B

(c) Preference in Fig. 172a yields 16 weak Nash
equilibria, 1 strong Nash equilibria, and 10 ad-
missible Nash equilibria.

E

E

C

(d) Preference in Fig. 172a yields no weak Nash
equilibria, 7 strong Nash equilibria, and 3 admis-
sible Nash equilibria.

Figure 172: Sample solution of a series of posetal games, in the setting of an intersection with three AVs.

13.3 Simultaneous and sequential decisions
In the problems considered so far, stakeholders engage in interactions which can
occur simultaneously or sequentially, often exhibiting intricate and evolving pat-
terns, depending on the speci�c time horizon being considered. To illustrate this
dynamic, let’s examine the interactions within an intermodal mobility system,
involving key actors such as a municipality, a public transit agency, private mobil-
ity service providers, and the customers they serve (Fig. 173). The nature of these
interactions can very signi�cantly based on the time frame under consideration,

194 13 Explicitly accounting for strategic interactions

Figure 173: Scheme of interactions for sequential
mobility games.

whether it be on a daily, monthly, yearly, or other temporal basis.

For instance, on a daily cycle customers make choices about where they need
to go, when they need to travel, and how they plan to reach their destinations.
Simultaneously, mobility service providers, operating within this daily context,
are tasked with making real-time decisions, such as dynamically adjusting pric-
ing structures (consider, for instance, the surge pricing during rainy weather
in Singapore) and implementing operational strategies. These strategies might
involve determining which vehicles should halt for recharging or maintenance
to ensure smooth service delivery despite �uctuations in demand.

Conversely, when we extend our viewpoint to an annual time frame, the dynamics
of interaction among stakeholders undergo a signi�cant transformation. Cus-
tomers, instead of making daily choices, might opt for longer-term commitments,
such as signing up for annual travel plans, or subscription services which o�er
various travel bene�ts. Mobility service providers, instead, have the opportunity
to strategically adjust their �eets and services to align with anticipated long-term
demand patterns, customer preferences, and changing market conditions. Addi-
tionally, municipalities may come into play at this level, modifying regulations,
or introducing tax incentives and policies which have a more profound impact
on the broader mobility landscape.

Mobility games

In this line of work, we leverage game theory to formulate and solve problems
involving strategic (both simultaneous and sequential) interactions of the stake-
holders of mobility systems [255]–[257]. At the heart of our methodology is the
formulation of a sequential game which unfolds in a carefully orchestrated man-
ner. In this game, the municipality assumes the leading role, making pivotal
decisions that set the stage for the entire system. These decisions may encompass
choices regarding taxes, incentives, pricing structures for public transit, or the es-
tablishment of regulations which shape the mobility landscape. Subsequently, all
mobility service providers operating within the jurisdiction respond strategically.
They must navigate through a complex decision space, making choices about
their vehicle �eets, service o�erings, and pricing strategies. Finally, customers,
as the ultimate bene�ciaries and decision-makers within this ecosystem, react to
the choices made by the municipality and mobility providers.

It is crucial to highlight that each stakeholder within this strategic game is driven
by distinct objectives and priorities, which add layers of complexity to the decision-
making process. For instance, the municipality’s primary concern may revolve
around minimizing externalities, such as emissions, or optimizing the overall so-
cial welfare and performance of the mobility system. In contract, mobility service
providers are inherently pro�t-driven, focusing on strategies that maximize their

13.3 Simultaneous and sequential decisions 195

0.911.11.21.31.4
2

4
6

8
10

0

0.5

1

1.5

2

Cost for customers [100k EUR /h] Cost emissions [100k EUR /h]

R
ev
en
u
e
[1
00
k
E
U
R
/
h
]

Revenue-oriented city
5,000 AVs, ICEV, �M: ES
Base price �M: 1.2 EUR
Var. �M: 0.6 EUR/km

SDP 3 EUR, LDP 5 EUR
Tax 0.8 EUR/km

Empty Tax 0.8 EUR/km

Green city
0 AVs, �M: SB

Base price �M: 1.2 EUR
Var. �M: 0.75 EUR/km

SDP 0 EUR, LDP 0 EUR
Any Tax
Any Tax

Customer-oriented city
5,000 AVs, ICEV, �M: EX
Base price �M: 1.2 EUR
Var. �M: 0.75 EUR/km

SDP 0 EUR, LDP 0 EUR
Tax 0 EUR/km

Empty Tax 0 EUR/km
Figure 174: Equilibria of the game with respect
to cost for customers, cost of emissions, and pub-
lic revenue. Each point is a Nash equilibrium of
the simultaneous game between mobility service
providers. The equilibrium of the sequential game
directly results from the weights of the three met-
rics in municipality’s social welfare.

return on investment and competitiveness within the market.

Sample results for Berlin, Germany Here, we present a glimpse of the results
obtained from one the case studies we conducted, focusing on the dynamic urban
landscape of Berlin, Germany. The stakeholders feature a municipality, an AMoD
operator, a micromobility operator, and a standard taxi company.

The municipal authority can determine pricing structures for public transit, as
well as implement taxes on the AMoD operator. Meanwhile mobility providers,
including the AMoD operator, micromobility service provider, and the traditional
taxi company, have their unique spheres of in�uence. They make strategic deci-
sions regarding the speci�cs of their services, such as determining �eet sizes and
types. For instance, they can choose the combustion type of vehicles, or choosing
among options like e-scooters, shared bikes, and electric mopeds for micrmobil-
ity. These providers also set pricing strategies which cater to the demands of the
market and customer preferences.

Our analysis takes into account a rich dataset of 130,000 realistic travel requests,
re�ecting the preferences of customers who aim to minimize their personal costs,
which include both fares and the value of their time. Furthermore, we integrate
the actual road network of Berlin, factoring in calibrated congestion e�ects to
ensure the realism and accuracy of our simulations.

Given the framework, we can for instance compute the Nash equilibria of the
simultaneous game between mobility providers, and report them with respect to
three metrics de�ning social welfare: cost for the customers, emissions, and public
revenue. Given this plot, one can then select speci�c pro�les for the municipality,

196 13 Explicitly accounting for strategic interactions

ending in one particular equilibrium. Then, for each equilibrium, we can provide
the corresponding strategies for all the players involved. There are numerous
trade-o�s. For instance, a municipality minimizing emissions incurs in emission
costs of 4,711 EUR/h, and should make public transport free and ban AMoD
vehicles. A customer-centric city also opts for free public transport, and does not
introduce taxes, at the price of no public revenue.

Extending modeling capabilities
and solution algorithms 14

I’ve always been more interested in the future than in the past.
— Grace Hopper22

We have shown how the current co-design framework helps in solving complex
co-design problems in di�erent �elds. In the following, we brie�y mention a
sample of the extensions to be developed in the future. In particular, we focus on
new modeling techniques, solution techniques, and new applications.

14.1 Extending modeling techniques
Spatio-temporal resources So far, we have not attributed a time-related as-
pect to resources and functionalities. For instance, imagine a factory, consisting
of many di�erent machines, transforming materials, with performance metrics
which depend on time, kind of job, etc. In this context, one could think about
expressing dynamic feasibility relations, between temporal sequences of func-
tionalities and resources. This would extend the notion of query as well. For
instance, one could be interested in the minimal sequences of resources, such
that a certain functionality is achieved by a certain time instant (e.g., when con-
sidering a particular order that has to be shipped out). Alternatively, one might
care about the frequency at which a functionality is produced. Similar arguments
can be made for “spatiality”.

Connection to “classic” optimization problems In this thesis, we have ex-
plored the concept of modeling speci�c types of optimization problems, such as
convex optimization problems, as design problems. This approach holds signi�-
cant promise as it enables us to integrate established optimization techniques
into the co-design framework, facilitating their interconnection. Looking for-
ward, our aim is to delve deeper into this area of study. We plan to examine a
range of “classic” optimization problems and their co-design formulations, with a
keen interest in understanding how these formulations might in�uence solution
techniques.

14.2 Extending solution techniques
Computation-aware solutions Up to this point, our approach has involved
creating a speci�c co-design diagram, determining how to populate each indi-
vidual design problem within it, and then addressing a particular query. In the

22 Hopper was an American computer scientist, mathematician, and USA Navy rear admiral.

198 14 Extending modeling capabilities and solution algorithms

future, it would be interesting to conduct this process with a computation-aware
approach. This would involve designing algorithms that autonomously determine
which model to sample based on the existing partial solution. Such an approach
holds particular signi�cance for design problems where obtaining speci�c imple-
mentations is resource-intensive, as seen in simulation- or optimization-driven
design challenges. This research direction also encompasses the enhancement of
speci�c solutions through the utilization of techniques like di�erentiable simu-
lation.

Negative design problems In the past, we have established a framework
that deals with negative outcomes in category theory, in contrast to the existing
positive results, as documented in our previous work [258]. One noteworthy
application of this framework pertains to negative design problems, which are
essentially situations where infeasibility relations exist, much like their positive
counterparts in design problems. An intriguing avenue of exploration lies in
leveraging these negative design problems for the creation of more e�cient
computational strategies. This could involve harnessing both positive and negative
results to enhance the e�ciency of computations.

14.3 New applications
Throughout this thesis, our primary focus has centered on the co-design of em-
bodied intelligence and mobility systems. In these speci�c applications, our aim
is to expand upon the existing models that underpin them. For instance, in the
context of autonomy design, we are keen on delving deeper into the intricate
relationship between perception and decision-making, potentially incorporating
planning considerations into our co-design models. However, it’s important to
note that these applications represent just a subset of the domains that stand to
bene�t from our approach. Looking ahead, we �nd it intriguing to explore novel
areas. These may encompass various �elds, such as space systems (with deep
historical ties to traditional engineering design literature), broader infrastructure
systems (for instance, within the realms of energy and mobility ecosystems),
and even the automotive sector (including the design of hybrid-electric engines),
among others.

Conclusions 15
A ship in harbor is safe, but that is not what ships are built for.

—John A. Shedd23

Within this thesis, we have introduced the challenges associated with the design
of complex systems, and we have underscored the pressing need for novel tools
that can e�ectively frame and tackle these intricate design problems. In particular,
we have introduced a monotone theory of co-design, a framework with a well-
formalized structure rooted in the language of category theory. This framework
boasts a range of compelling attributes: it is formal, compositional, modular, and
computationally manageable, all while remaining user-friendly and intellectually
tractable.

Our exploration has extended to the application of this framework in the context of
co-designing embodied intelligent systems, spanning from the individual domain
of autonomous vehicles to the orchestration of entire mobility systems. Through
a series of case studies, we have showcased the framework’s capacity to yield
actionable insights for designers. Furthermore, we have furnished a structured
procedure that facilitates reasoning about the intricacies of the design process.

While our �ndings are certainly promising and exciting, we acknowledge that
there is room for improvement in the methodology. This realization has led us to
identify a plethora of intriguing research avenues that deserve exploration in the
future.

23 Shedd was an American writer.

B��� ������ P��� D

Proofs 16
16.1 Proofs related to Part A
Proof of Lemma 2.16. Consider partial orders�,� and any three maps �, �,�� �� �. Clearly � ��� �.
Furthermore, if � ��� � and � ��� � (i.e., �(�) �� �(�) and �(�) �� �(�), �� � �), then �(�) ��
�(�) �� � �, implying � ��� �. Finally, if � ��� � and � ��� �, one has � = �.

Proof of Lemma 2.32. Consider �1,�2 � �, �1, �2 � �. By assuming that � and � are monotone, we
have

�1 �� �2

�(�1) �� �(�2)

and
�1 �� �2

.
�(�1) �� �(�2)

By substituting the above in the map composition formula, we have

�1 �� �2 ,
(� # �)(�1) �� (� # �)(�2)

which is the monotonicity condition for the composite map (� # �).

Proof of Lemma 2.37. Assume that � and � are both least upper bounds of � � �. In other words, one
knows � �� � and � �� � for all � � �. However, one also has � �� � and � �� � (from �, � assumed
to be both least upper bounds). Because of antisymmetry, this implies � = � and proves the uniqueness
of least upper bounds in a poset.

Proof of Lemma 2.46. Suppose � � �� � and � � �, and suppose � �� �. By de�nition there exists a �
such that � �� �, meaning that � �� �. Thus, � � �� �, as was to be shown.

Proof of Lemma 2.47. Consider the posets �����, �� and �������, ��, and two sets of sets ��, �� �
����. It is clear that given �� � ��, we have

{� � � � �� � �� � � �� �} � {� � � � �� � �� � � �� �}.

Therefore, �� �� � �� ��, satisfying the antitone map property for ��.

Proof of Lemma 2.49. Consider the posets �����, �� and �������, ��, and let ��, �� � ����. It is clear

204 16 Proofs

that given �� � ��, we have

{� � � � �� � �� � � �� �} � {� � � � �� � �� � � �� �}.

Therefore, �� �� � �� ��, satisfying the monotonicity property for ��.

Proof of Lemma 2.50. Fix an element � � �. From ��� = ��� we know that in particular � � ���.
This means that for our �xed � � � there exists � � � such that � � �. From ��� = ��� it also
follows that � � ���, so to the � � � given above, there exists �� � � such that �� � �. In total, we
have �� � � � �, and since � is an antichain, we must have �� = �. This implies that �� = � = �. In
particular, we have � � �.

The above shows that� � �. To show � � �, we can �x any � � � and repeat the above argumentation,
now with the roles of � and � exchanged.

Proof of Lemma 2.58. Consider the poset �� =
�
������, ���

�
and �,� � ������.

First, we need to show that � �� � ������. To this extent, we need to show that, for all � � � �� and
for all � �� �, it holds � � � � �. We have � � ������ and � � ������, meaning that by de�nition,
if � � � � �, we have � � � � � � �. It follows that � � ������ and � � ������. Therefore, � �
������ � � and, thus, � � � � ������. Furthermore, we need to show that � � � is the least upper
bound of � and �. Let � � ������ such that

� ��� � ��� (� � �) � � � � � (� � �)

and
� ��� � ��� (� � �) � � � � � (� � �).

Using the fact that intersection preserves inclusions, we have

(� � �) � (� � �) � (� � �)

� (� � �) � � � (� � �)

� � = (� � �).

Therefore, � � � is the least upper bound of � and �.

Second, we need to show that � � � � ������, meaning that for all � � � � �, � �� � implies � �
���. We have� � ������ and � � ������, meaning that by de�nition, if � � ���, we have either �
� � or � � �. If � � �, then � � ������. If � � �, then � � ������. Either way, � � � � � and, thus,
� � � � ������. Furthermore, we need to show that � � � is the greatest lower bound of � and �.
Let � � ������ such that

� � � ��� � ��� � � � � � � � � �

16.1 Proofs related to Part A 205

and
� � � ��� � ��� � � � � � � � � �.

Using the fact that union preserves inclusions, we have

(� � �) � (� � �) � (� � �) � (� � �)

� � � � � � � (� � �)

� � = (� � �).

Therefore, � � � is the greatest lower bound of � and �.

We have therefore proved that �� =
�
������, ���

�
is a lattice. To show that it is bounded, we notice

that � � � for any � � ������, meaning that � is the top. Furthermore, we notice that � � � for any �
� ������, meaning that � is a bottom. Therefore, the lattice is bounded.

Proof of Lemma 2.59. Consider the poset �� = �������, ���� and �,� � ������.

First, we need to show that � � � � ������. That is, � �� � implies � � � � �. We have � � ������
and � � ������, meaning that by de�nition, if � � � � �, either � � � or � � �. If � � �, then � � �.
If � � �, then � � ������. It follows that � � � � � and, thus, all � � �������. Furthermore, we need
to show that � � � is the least upper bound of � and �. Consider � � ������ such that

� ��� � ��� � � � � � � � � � � �

and
� ��� � ��� � � � � � � � � � � �.

Using the fact that union preserves inclusions, we have

(� � �) � (� � �) � (� � �)

� (� � �) � � � (� � �)

� � = (� � �).

Therefore, � � � is the least upper bound of � and �.

Second, we need to show that ��� � ������. That is, � �� � implies � � ���. We have � � ������
and � � ������, meaning that by de�nition, if � � � � �, we have � � � � � � �. Since �,� �
������, this implies � � � � � � � and, thus, � � � � �. Consider � � ������ such that

� � � ��� � ��� � � � � � � � � �

and
� � � ��� � ��� � � � � � � � � �.

206 16 Proofs

Using the fact that intersection preserves inclusions, we have

(� � �) � (� � �) � (� � �) � (� � �)

� � � � � � � (� � �)

� � = (� � �).

Therefore, � � � is the greatest lower bound of � and �.

We have therefore proved that �� = �������, ���� is a lattice. To show that it is bounded, we notice
that � � � for any � � ������, meaning that � is the bottom. Furthermore, we notice that � � � for
any � � ������, meaning that � is a top. Therefore, the lattice is bounded.

Proof of Lemma 4.3. We need to prove that �� is a monotone map. For this, consider ���, �� � �op ◊�
and

� ���, ��
�
� �op ◊� with ���, �� �

� ���, ��
�
. In other words, we have �� � � and � � ��.

� Case 1: ��(��, �) = �.

In this case, ��(��, �) � ��(��
�, ��) holds, no matter which value ��(��

�, ��) takes.

� Case 2: ��(��, �) = �.

In this case, it follows that �(�) � �. Using this, we observe that

�(��) � �(�) � � � ��,

so in particular �(��) � ��, which means that ��(��
�, ��) = �. In particular we then have ��(��, �) �

��(��
�, ��).

Proof of Lemma 4.5. We prove the two directions

1. Let’s de�ne �� � � �. Given a design problem �� �op ◊ � �Pos Bool, we de�ne �� �= �(�) �
�op ◊� via

���, �� � �� � �(��, �) = �.

Now we need to prove that �� = �(�) is indeed an upperset. For this, consider ���, �� � ��
and

� ���, ��
�
� �op ◊� with ���, �� �

� ���, ��
�
. Because � is monotone, we have �(��, �) � �(

� ���, ��
�
).

Since �(��, �) = �, it follows that �(
� ���, ��

�
) = � must also hold, since the only element in Bool

which is larger or equal to � is � itself. But �(
� ���, ��

�
) = � means precisely that

� ���, ��
�
� ��, as was

to be shown.

2. Let’s de�ne �� � � �. Given an upperset � � �op ◊ �, we de�ne �� �= �(�)� �op ◊ � �Pos
Bool via

�� (��, �) = �� ���, �� � � .

Now we need to prove that �� is a monotone map. For this, consider ���, �� � �op ◊� and
� ���, ��

�

� �op ◊� with ���, �� �
� ���, ��

�
.

16.1 Proofs related to Part A 207

� Case 1: �� (��, �) = �.

In this case, �� (��, �) � �� (
� ���, ��

�
) holds, no matter which value �� (

� ���, ��
�
) takes.

� Case 2: �� (��, �) = �.

In this case, we have that ���, �� � � . Since � is an upper set and ���, �� �
� ���, ��

�
, it follows

that also
� ���, ��

�
� � , which means that �� (��

�, ��) = �. In particular, we thus have �� (��, �) �
�� (

� ���, ��
�
).

3. We prove that � and � are inverse to one another.

� Given a design problem �, we have

((� # �)(�))(��, �) = �� ���, �� � �(�)� �(��, �) = �.

Thus, (� # �)(�) = �.

� Given an upperset � , we have

���, �� � �(�(�))� �(�)(��, �) = �� ���, �� � � .

Thus, (� # �)(�) = � .

Proof of Lemma 4.9. One can derive this starting from Theorem 5.4 in [136]. With �� = �� � ��� repre-
senting the estimation error one has:

lim
���

�{����0��} = lim
���

��
�
�0�{���

�
� }
�

= lim
���

�� (�0�{(��� + ��)(��� + ��)�})

= lim
���

��
�
�0�{ ��� ��

�
� + ���

�
� }
�

= �� (�0(� + �)) ,

where � can be computed using the closed-loop dynamics in (6). By applying the optimal control ��� ,
we have:

lim
���

�{����0��} = lim
���

�{ �����
��0� ���}

= ��
�
�����1�0��1���

�
.

Proof of Lemma 4.10. First, � � �� implies � = ��0 � ���0 = �� and � = �0�� � �� = �0���. For
the �rst part, following Lemma 4.9, we need to prove that

� � �� � �� (�0 (� + �)) ��� �� (�0 (� + �)) ��� .

208 16 Proofs

� is independent from �. From (6) it is clear that � � �� � �1 � �2, which con�rms the statement. For
the second part, following Lemma 4.9, it is easy to prove that

� � �� � ��
�
���2��1

0 ����
�
��� ��

�
����2��1

0 ����
�
��� .

Proof of Lemma 4.12. First, we know that �� satis�es (5) :

�� + ��� � �����1�� +� �=�(�,�).

By letting ��1,�1� � ��2,�2�, and using the notation �� =�(�� ,��), � � {1, 2}, from Theorem 3
in [137] we know that �2 ��1 � � � ��(�1,�1) � ��(�2,�2). We have:

�2 ��1 = ����
�
��1
2 ���1

1
�
�� +�2 ��1 � �,

where we use that ��1
1 � ��1

2 � � and �2 ��1 � � (Lemma 4.11). Therefore, �� is monotone in �
and �.

Proof of Lemma 4.13. We need to prove:

��,�� �
�
��,��� � �e�ort(�,�) � �e�ort(��,��),

��,�� �
�
��,��� � �track(�,�) � �track(��,��).

From Lemma 4.12, we know �(�,�) � �(��,��). Since � solves (6), we know �(�,�) � �(��,��).
As no other term of �e�ort or �track depends on �,�, we are done.

Proof of Lemma 4.16. We consider the continuous-time dynamics given in Def. 4.6, and sample this
process with sampling period �. The input �� is constant over the sampling period. We can write the
solution of the dynamics as

�� = �(�, ��)��� + �(�, ��)���, (73)

where �(�, ��) satis�es
d
d�
�(�, ��) = ��(�, ��), �(��, ��) = �, (74)

and

�(�, ��) =�
�

��
�(�, �)�d�. (75)

The sampled version of the dynamics is

���+� = �(�, ��)��� + �(�, ��)��� +���

��� = ���� + ���,

16.1 Proofs related to Part A 209

with covariances �d = ��0 �
�������d�, and �d. We can now manipulate the continuous-time cost

provided in Def. 4.6:

� = lim
���

1
��{�

�

0

��
������

�
+
�
������

��
d�}

= lim
���

1
��{

��1�

�=0
�

��+�

��

��
������

�
+
�
������

��
d�}.

(76)

We can now use (73) to get:

�
��+�

��

��
������

�
+
�
������

��
d� = �����d��� + �����d���,

�d =�
��+�

��
��(�, ��)��(�, ��)d�,

�d =�
��+�

��
(��(�, ��)��(�, ��) +�) d�.

Hence, (76) is lim
���

1
�
�{
���1

�=0 �
�
���d���+�

�
���d���}, which indeed corresponds to the cost of a discrete-

time LQG (Def. 4.15). Solving (74) one �nds �d = �(�, ��) = ���, and one can hence write (75) as
�d = �(�, 0) = ��0 �

���d�.

Proof of Lemma 4.21. Consider ��d,�d� �
�
��
d,�

�
d

�
. From the Comparison Theorem in [259], we

know that the solution �� of (8) is monotonic in both �d and �d. Furthermore, the solution of (7)
does not depend on �d,�d. Finally, �d solves the discrete Lyapunov equation (9) and analogously to
Lemma 4.13, one can prove �(�d,�d) � �(��

d,�
�
d).

Proof of Lemma 5.3. We need to show that (� # �)(��, �) is monotone in �� and �. Because � represents
a design problem, �(��, �) is monotone in ��, and similarly �(��, �) is monotone in �. The conjunction
“�” is monotone in both variables, and likewise the “�” operation.

Proof of Lemma 5.4. Consider �� � �� �, �� � �� �, �� � �� �. To show that the operation is

210 16 Proofs

associative, we can use distributivity and commutativity in Bool:

((� # �) # �)(��, �) =
�

���

�
�
�

�

���
�(��, �) � �(��, �)

�
�
�
� �(��, �)

=
�

���

�
�
�

�

���
�(��, �) � �(��, �) � �(��, �)

�
�
�

=
�

���
�(��, �) �

�
�
�

�

���
�(��, �) � �(��, �)

�
�
�

= (� # (� # �))(��, �).

Proof of Lemma 6.7. Given �� � �� �, we need to show:

id� # � = � = � # id�.

In the following, we prove id� # � = �. Proving � # id� = � is similar. Consider the poset Bool. Since
for �, � � Bool,

� � �
,

� = �

(also referred to as skeletality [148]), we just need to show that � � id� # � and id� # � � �. Here, � � �
means �(��, �) �Bool �(��, �) for all � � �, � � �. We have

�(��, �) = � � �(��, �)

= id�(��,�) � �(��, �)

�
�

����
id�(��,��) � �(���, �)

= (id� # �)(��, �).

For the other direction, we need to show that id� # � � �:

�

����
id�(��,��) � �(���, �) � �(��, �).

This holds if and only if id�(��,��) � �(���, �) � �(��, �) for some �� � �. If there is no such ��, then
the inequality holds (� � � and � � �). If there is such an element ��, it means that id�(��,��) = �
and �(���, �) = �. We know that

id�(��,��) = �

� � ��

16.1 Proofs related to Part A 211

and hence �(��, �) = �.

Proof of Lemma 6.13. First, consider posets �,� � ObDP. We show that id���� id� = id�◊�. It holds

�
id���� id�

�
(��1, �1��, ��2, �2�) = id�(�1�,�2) � id�(�1�, �2)

= (�1 �� �2) �
�
�1 �� �2

�

= ��1, �1� ��◊� ��2, �2�

= id�◊� (��1, �1��, ��2, �2�) .

Furthermore, consider the design problems

�1 � �1 �� �1, �2 � �2 �� �2, �1 � �1 �� �1, �2 � �2 �� �2.

We need to show that
((�1 # �1)��� (�2 # �2))���������������

�

= ((�1��� �2) # (�1��� �2)) .

It holds
� (��1, �2��, ��1, �2�) = (�1 # �1)(�1�, �1) � (� # �2)(�2�, �2)

=
�
�
�

�

�1��1

(�1(�1�, �1) � �1(�1�, �1))
�
�
�
�
�
�
�

�

�2��2

(�2(�2�, �2) � �2(�2�, �2))
�
�
�

=
�

�1��1

�

�2��2

(�1(�1�, �1) � �1(�1�, �1) � �1(�2�, �2) � �2(�2�, �2))

=
�

��1, �2���1◊�2

(�1(�1�, �1) � �2(�2�, �2) � �1(�1�, �1) � �2(�2�, �2))

= ((�1��� �2) # (�1��� �2)) (��1, �2��, ��1, �2�) .

Therefore,��� is functorial in DP.

Proof of Lemma 6.14. We prove this for ���, for any � � ObDP. The proof for ��� is analogous. De�ne
the inverse of the left unitor:

���1� � �op ◊ (� ◊ �) �Pos Bool,

��1�, ��, �2�� � �1 �� �2.

212 16 Proofs

Clearly, this is a valid design problem, i.e., ���1� � HomDP(�; � ◊ �). We have:

(���1� # ���)(�1�,�2) =
�

���
���1� (�1�, ��, ��) � ���(��, ���,�2)

=
�

���
(�1 �� �) � (� �� �2)

= �1 �� �2
= id�(�1�,�2),

and
(��� # ���1�)(�1�,�2) =

�

���
���(��, �1��,�) � ��

�1
� (��, ��, �2�)

=
�

���
(�1 �� �) � (� �� �2)

= �1 �� �2
= id�◊�(�1�,�2)

� id�(�1�,�2).

Proof of Lemma 6.15. We de�ne the inverse of the associator. For brevity, we omit the pedix, and denote
the condition ���, ��, �� � (� ◊�) ◊� by † and the condition ��, ��, ��� � � ◊ (� ◊�) by ‡:

���1 � (� ◊ (� ◊�))op ◊ ((� ◊�) ◊�) �Pos Bool,

��1, ��1, �1���, ���2, �2�, �2� � �1 � �2 � �1 � �2 � �1 � �2.

We have: �
���1 # ��

�
(��1, ��1, �1���, ��2, ��2, �2��)

=
�

†
���1(��1, ��1, �1���, ���, ��, ��) � ��(���, ��, ���, ��2, ��2, �2��)

=
�

†
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= (�1 � �2) � (�1 � �2) � (�1 � �2)

= id(�◊�)◊�(���1, �1�, �1��, ���2, �2�, �2�).

16.1 Proofs related to Part A 213

and �
�� # ���1

�
(���1, �1�, �1��, ���2, �2�, �2�)

=
�

‡
��(���1, �1�, �1��, ��, ��, ���) � ���1(��, ��, ����, ���2, �2�, �2�)

=
�

‡
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= (�1 � �2) � (�1 � �2) � (�1 � �2)

= id�◊(�◊�)(��1, ��1, �1���, ��2, ��2, �2��)

� id(�◊�)◊�(���1, �1�, �1��, ���2, �2�, �2�).

Proof of Lemma 6.16. We have already checked functoriality of the monoidal product, and that the
other constituents are valid. We therefore just need to check the triangle and the pentagon identities
(Fig. 175).

Triangle identity We want to show that

���,�,� # (id���� ���) = ������ id�.

We start by looking at the left-hand side of the equation. One has (by dropping the pedix of the associator
for brevity, and by denoting the condition ��, ��, ��� � � ◊ (� ◊�) by †):

(�� # (id���� ���))(���1, ��, �1��, ��2, �2�)

=
�

†
��(���1, ��, �1��, ��, ��, ���) � (id���� ���)(��, ��, ����, ��2, �2�)

=
�

†
�1 � � � �1 � � � � � �2 � � � �2

= �1 � �2 � �1 � �2
= (������ id�)(���1, ��, �1��, ��2, �2�),

proving the identity.

Pentagon identity We want to show that

���◊�,�,� # ���,�,�◊� = (���,�,���� id�) # ���,�◊�,� # (id���� ���,�,�).

These are a bit of a mouthful, so let’s spell out their signatures for clarity:

214 16 Proofs

���◊�,�,� � (((� ◊�) ◊�) ◊ �) �� ((� ◊�) ◊ (� ◊ �)),

���,�,�◊� � ((� ◊�) ◊ (� ◊ �)) �� (� ◊ (� ◊ (� ◊ �))),

���,�,���� id� � (((� ◊�) ◊�) ◊ �) �� (� ◊ (� ◊ (� ◊ �))),

���,�◊�,� � ((� ◊ (� ◊�)) ◊ �) �� (� ◊ ((� ◊�) ◊ �)),

id���� ���,�,� � (� ◊ ((� ◊�) ◊ �)) �� (� ◊ (� ◊ (� ◊ �))).

One has, by denoting the condition ���, ��, ��, ��� � (� ◊�) ◊ (� ◊ �) by †:

(���◊�,�,� # ���,�,�◊�)(����1, �1�, �1�, �1��, ��2, ��2, ��2, �2���)
=
�

†
���◊�,�,�(����1, �1�, �1�, �1��, ���, ��, ��, ���) � ���,�,�◊�(���, ��, ��, ����, ��2, ��2, ��2, �2���)

=
�

†
�1 � � � �1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2 � �1 � �2,

given the associativity of �.

Furthermore, one has, by denoting the condition ���, ��, ���, �� � (� ◊ (� ◊�)) ◊ � as ‡:

((���,�,���� id�) # (���,�◊�,�))(����1, �1�, �1�, �1��, ��2, ���2, �2�, �2��)
=
�

‡
(���,�,���� id�)(����1, �1�, �1�, �1��, ���, ��, ���, ��)�

(���,�◊�,�)(���, ��, ���, ���, ��2, ���2, �2�, �2��)

=
�

‡
�1 � � � �1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2 � �1 � �2,

and the second composition of the right-hand side works similarly. Therefore, �DP,���, �, ��, ��, ��� is a
monoidal category.

(� ◊ �) ◊� � ◊ (� ◊�)

� ◊�
������ id�

���,�,�

id���� ���

(a) Triangle identity for DP.

(� ◊�) ◊ (� ◊ �)

((� ◊�) ◊�) ◊ � (� ◊ (� ◊ (� ◊ �)))

(� ◊ (� ◊�)) ◊ � � ◊ ((� ◊�)) ◊ �)

���,�,�◊����◊�,�,�

���,�,���� id�
���,�◊�,�

id���� ���,�,�

(b) Pentagon identity for DP.

Figure 175: Identities for the monoidal structure on DP.

16.1 Proofs related to Part A 215

Proof of Lemma 6.21. The inverse of ���,� is ���,�. To show the isomorphism, one has:

(���,� # ���,�)(��1, �1��, ��2, �2�)
=

�

��, ����◊�
���,�(��1, �1�, ��, ���) � ���,�(��, ���, ��2, �2�)

=
�

��, ����◊�
�1 � � � �1 � � � � � �2 � � � �2

= �1 � �1 � �2 � �2
= id�◊�
� id�◊�
= (���,� # ���,�)(��1, �1��, ��2, �2�).

For naturality, consider �� �1 �� �1, �� �2 �� �2. We �rst evaluate ((���� �) # ���1,�2)� �1 ◊ �2 ��
�2 ◊ �2. One has:

((���� �) # ���1,�2)(��1, �2
�, ��2, �1��)

=
�

��, �����1◊�2

(���� �)(��1, �2��,
�
�, ��

�
) � ���1,�2 (

�
�, ��

��, ��2, �1�)

=
�

��, �����1◊�2

�(�1�, �) � �(�2�, ��) � � � �1 � �� � �2

We now evaluate (���1,�2 # (���� �))� �1 ◊ �2 �� �2 ◊ �2. One has:

(���1,�2 # (���� �))(��1, �2��, ��2, �1�)

=
�

���, ����2◊�1

���1,�2 (��1, �2�
�,
�
��, �

�
) � (���� �)(

�
��, �

��, ��2, �1�)

=
�

���, ����2◊�1

�1 � � � �2 � �� � �(��, �2) � �(�, �1).

Given the monotonicity properties of �, �, the above equations are equivalent, proving naturality.

Proof of Lemma 6.22. Lemma 6.21 also shows the symmetry condition. We start by showing the Hexagon
identities. For the �rst, we need to prove:

���,�,� # ���,�◊�
�����������

1

#���,�,�

�����������������
2

= (���,���� id�) # ���,�,�
���������������

3

#(id���� ���,�)

���������������������������
4

.

First of all, both maps share the signature (� ◊ �) ◊ � �� � ◊ (� ◊ �). We have, by denoting the

216 16 Proofs

condition ��, ��, ��� � � ◊ (� ◊�) by †:

1 (���1, �1�, �1��, ���2, �2�, �2�)

=
�

†
���,�,�(���1, �1�, �1��, ��, ��, ���) � ���,�◊�(��, ��, ����, ���2, �2�, �2�)

=
�

†
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2.

Furthermore, by denoting the condition ���, ��, �� � (� ◊�) ◊ � by ‡, one has:

2 (���1, �1�, �1��, ��2, ��2, �2��)

=
�

‡
1 (���1, �1�, �1��, ���, ��, ��) � ���,�,�(���, ��, ���, ��2, ��2, �2��)

=
�

‡
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2.

Similarly, by denoting the condition ���, ��, �� � (� ◊ �) ◊� by � one has:

3 (���1, �1�, �1��, ��2, ��2, �2��)

=
�

�
(���,���� id�)(���1, �1�, �1��, ���, ��, ��) � ���,�,�(���, ��, ���, ��2, ��2, �2��)

=
�

�
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2.

Furthermore, by denoting the condition ��, ��, ��� � � ◊ (� ◊�) by � one has:

4 (���1, �1�, �1��, ��2, ��2, �2��)

=
�

�
3 (���1, �1�, �1��, ��, ��, ���) � (id���� ���,�)(��, ��, ����, ��2, ��2, �2��)

=
�

�
�1 � � � �1 � � � �1 � � � � � �2 � � � �2 � � � �2

= �1 � �2 � �1 � �2 � �1 � �2,

proving the original statement. The other Hexagon identity follows analogously. To show the �rst

16.1 Proofs related to Part A 217

triangle identity, we write

(���◊� # ���) (��, �1��,�2)
=

�

��, ����◊�
���◊� (��, �1��, ��, ��) � ��� (��, ���,�2)

=
�

��, ����◊�
(� � �) � (�1 � �) � (� � �2)

= �1 � �2
= ��� (��, �1��,�2) .

Proof of Lemma 6.24. We prove the trace axioms one-by-one.

Naturality in � Consider �� � ◊� �� � ◊� and �� � �� �. We need to show:

Tr��,�((���� id�) # �
�������

1

)

�������������
2

= � # Tr��,�(�).

We start by 1 . We have:

1 (��, �1��, ��, �2�)

=
�

��, ����◊�
(���� id�)(��, �1��, ��, ��) � �(��, ���, ��, �2�)

=
�

��, ����◊�
�(��,�) � �1 � � � �(��, ���, ��, �2�).

Consequently:
2 (���, ��) =

�

���
1 (��, ���, ��, ��)

=
�

���

�

��, �����◊�
�(��,�) � � � �� � �(

�
�, ��

��, ��, ��).

We now look at the right-hand side of the original equation. One has:

(� # Tr��,�(�))(���, ��)
=
�

���
�(��,�) �

�

���
�(��, ���, ��, ��),

which is equivalent to the previous one due to the monotonicity of �.

218 16 Proofs

Naturality in � Consider �� � ◊� �� � ◊� and �� � �� �. We need to show:

Tr��,�(� # (���� id�)�������
1

)

�������������
2

= Tr��,�(�) # �

We start by 1 . We have:

1 (��, �1��, ��, �2�)

=
�

��, ����◊�
�(��, �1��, ��, ��) � (���� id�)(��, ���, ��, �2�)

=
�

��, ����◊�
�(��, �1��, ��, ��) � �(��, �) � � � �2.

We can therefore evaluate 2 . We have:

2 (��, �) =
�

���
1 (��, ���, ��, ��)

=
�

���

�

��, �����◊�
�(��, ���,

�
�, ��

�
) � �(��, �) � �� � �.

We can look at the right-hand side of the original statement to prove. We have:

(Tr��,�(�) # �)(��, �) =
�

���

�

���
�(��, ���, ��, ��) � �(��, �),

which, again, is equivalent to the previous equation due to monotonicity of �.

Dinaturality in � Given �� � ◊� �� � ◊ �, �� � �� �, we want to prove

Tr��,�(� # (id���� �)) = Tr��,�((id���� �) # �). (77)

We start by elaborating the inner part of the left-hand side of (77). One has:

(� # (id���� �))(��, �1��, ��, �2�)

=
�

���, ����◊�
�(��, �1��

�
��, �

�
) � (id���� �)(

�
��, �

��, ��, �2�)

=
�

���, ����◊�
�(��, �1��

�
��, �

�
) � �� � � � �(��, �2).

16.1 Proofs related to Part A 219

The complete evaluation of the left-hand side of (77) reads:

Tr��,�(� # (id���� �))(��, �)

=
�

���
(� # (id���� �))(��, ���, ��, ��)

=
�

���

�

���, ����◊�
�(��, ���

�
��, �

�
) � �� � � � �(��, �).

We now evaluate the inner part of the right-hand side of (77):

((id���� �) # �)(��, �1��, ��, �2�)
=

�

���, ����◊�
(id���� �)(��, �1��,

�
��, �

�
) � �(

�
��, �

��, ��, �2�)

=
�

���, ����◊�
� � �� � �(�1�, �) � �(

�
��, �

��, ��, �2�).

The complete evaluation of the right-hand side of (77) gives:

Tr��,�((id���� �) # �)(��, �)
=
�

���
((id���� �) # �)(��, ���, ��, ��)

=
�

���

�

���, ����◊�
� � �� � �(��, �) � �(

�
��, �

��, ��, ��)

The equivalence of the expressions comes from the monotonicity of �.

Vanishing I For any design problem �� � ◊ � �� � ◊ �, we want to prove:

Tr��,�(�) = ���1� # � # ���.

By developing the right-hand side, one has:

(���1� # � # ���)(�1�, �1)
=

�

��, ����◊�
���1� (�1�, ��, ��) � (� # ���)(��, ���, �1)

=
�

��, ����◊�
�1 � � �

�

��, ����◊�
�(��, ���, ��, ��) � ���(��, ���, �1)

=
�

��, ����◊�,��, ����◊�
�1 � � � � � �1 � �(��, ���, ��, ��)

= �(��1, ���, �1)

= Tr��,�(�)(�1�, �1),

220 16 Proofs

by monotonicity of �.

Vanishing II Given �� (� ◊�) ◊ � �� (� ◊�) ◊ �, we want to prove:

Tr��,�(Tr
�
�◊�,�◊�(�)) = Tr�◊��,� (��

�1
�,�,� # � # ���,�,�). (78)

We start by evaluating the left-hand side of (78). We have:

Tr��,�(Tr
�
�◊�,�◊�(�))(��, �) =

�

���

�

���
�(���, ��, ���, ���, ��, ��)

Furthermore, the inner part of the right-hand side of (78) reads:

(���1�,�,� # � # ���,�,�)(��1, ��1, �1���, ��2, ��2, �2��)

=
�

���, ��, ���(�◊�)◊�
���1�,�,�(��1, ��1, �1��

�, ���, ��, ��) � (� # ���,�,�)(���, ��, ���, ��2, ��2, �2��)

=
�

���, ��, ���(�◊�)◊�
�1 � � � �1 � � � �1 � � �

�

���, ���, ����(�◊�)◊�
�(���, ��, ���,

��
�, ��

�
, ��
�
)

� � � �2 � �� � �2 � �� � �2.

Therefore, the right-hand side of (78) reads:

Tr�◊��,� (��
�1
�,�,� # � # ���,�,�)(�1�, �1)

=
�

��, ����◊�
(���1�,�,� # � # ���,�,�)(��1, ��, ����, ��1, ��, ���)

By pluggin-in previous results, and leveraging the monotonicity of �, one obtains the desired result.

Superposing Given �� � ◊� �� � ◊� we want to prove:

Tr��◊�,�◊�(��
�1
�,�,� # id���� � # ���,�,�) = id���� Tr��,�(�).

The proof is very similar in style to the one of Vanishing II.

Yanking We want to prove:
Tr��,�(���,�) = id�.

16.1 Proofs related to Part A 221

By developing the left-hand side further, once has:

Tr��,�(���,�)(�1�, �2) =
�

���
���,�(��1, ���, ��2, ��)

=
�

���
�1 � � � � � �2

= �1 � �2
= id�(�1�, �2).

Proof of Lemma 6.28. First, we need to prove that HomDP(�;�) is a poset. To prove this, we check the
following:

� Re�exivity: Given � � HomDP(�;�):
�

;
� �DP �

� Antisymmetry: Given �, � � HomDP(�;�):

� �DP � � �DP � ;
� = �

� Transitivity: Given �, �, � � HomDP(�;�):

� �DP � � �DP � .
� �DP �

Therefore, HomDP(�;�) is a poset. Furthermore, consider two design problems �, � � HomDP(�;�).
Their greatest lower bound (meet) is �� �, since it is the greatest design problem implying both � and �.
Their least upper bound (join), instead, is � � �, since it is the least design problem implied by both �
and �. This proves that HomDP is a lattice. To prove that it is bounded, we identify the top element
as ��,� (it is implied by all other design problems) and the bottom element as ��,� (it implies by all the
other design problems).

Proof of Lemma 6.31. Consider any �,� � ObDP and HomDP(�;�). We have already shown that
� = HomDP(�;�) is a bounded lattice (Lemma 6.28). Now, take any subset � of �. We de�ne the
following two design problems:

�

���
�� �op ◊� �Pos Bool,

��, �� � �� � �� �(��, �),

222 16 Proofs

and �

���
�� �op ◊� �Pos Bool,

���, �� � �� � �� �(��, �).

These are clearly design problems (given that � is a design problem) and given their signature they
belong to �. We will now argue that

�
��� � is the supremum of � and

�
��� � is the in�mum of �.

�
��� � is the supremum of �: First, for any � � �, we know that � �DP � �

�
����� � =

�
��� �,

proving that
�

��� � is an upper bound of �. We now want to show that
�

��� � is the least upper bound
of �: for any upper bound � of �, we need to show

�
��� � �DP �. In other words, for any pair ���, ��

� �op ◊ �, we need to show (
�

��� �)(�
�, �) �Bool �(��, �). Fix any ���, ��. If (

�
��� �)(�

�, �) = �, the
condition is trivially satis�ed.

If, instead, (
�

��� �)(�
�, �) = �, there exists a � � � such that �(��, �) = �. Given that � is an upper

bound of �, this implies � = �(��, �) �Bool �(��, �) = �, proving the condition.

�
��� � is the in�mum of �: First, for any � � �, we know that � �

�
����� � =

�
��� � �DP �,

proving that
�

��� � is a lower bound of�. We now want to show that
�

��� � is the greatest lower bound
of �: for any lower bound � of �, we need to show � �DP

�
��� �. In other words, for any pair ���, ��

� �op ◊ �, we need to show �(��, �) �Bool (
�

��� �)(�
�, �). Fix any ���, ��. If (

�
��� �)(�

�, �) = �,
the condition is trivially satis�ed. If, instead, (

�
��� �)(�

�, �) = �, there is at least one � � � for
which �(��, �) = �. Given that � is a lower bound of �, this implies � = �(��, �) �Bool �(��, �) = �,
proving the condition.

Proof of Lemma 6.34. We have:

((� � �) � �)(��, �)

= (� � �)(��, �) � �(��, �)

= (�(��, �) � �(��, �)) � �(��, �)

= (�(��, �) � �(��, �)) � (�(��, �) � �(��, �))

= ((� � �) � (� � �))(��, �).

16.1 Proofs related to Part A 223

Proof of Lemma 6.35. We have:

((� � �) � �)(��, �)

= (� � �)(��, �) � �(��, �)

= (�(��, �) � �(��, �)) � �(��, �)

= (�(��, �) � �(��, �)) � (�(��, �) � �(��, �))

= ((� � �) � (� � �))(��, �).

Proof of Lemma 6.37. We have:

((� � �) # �)(��, �)
=
�

���
(� � �)(��, �) � �(��, �)

=
�

���
(�(��, �) � �(��, �)) � �(��, �)

=
�

���
(�(��, �) � �(��, �)) � (�(��, �) � �(��, �))

= ((� # �) � (� # �))(��, �).

Proof of Lemma 6.39. We have:

((� � �) # �)(��, �)
=
�

���
(� � �)(��, �) � �(��, �)

=
�

���
(�(��, �) � �(��, �)) � �(��, �)

=
�

���
(�(��, �) � �(��, �)) � (�(��, �) � �(��, �))

= ((� # �) � (� # �))(��, �).

Proof of Lemma 6.41. We want to prove the following:

��, �� �
�
��, ��

�

(� # �) �DP (�
� # ��)

224 16 Proofs

This is easy to show. Let’s start from � �DP �
�, � �DP ��. We have:

(� # �)(��, �) =
�

���
�(��, �) � �(��, �)

�Bool
�

���
��(��, �) � ��(��, �)

= (�� # ��)(��, �).

Proof of Lemma 6.42. We �rst de�ne the identity-choosing morphism as:

��� � � �Pos HomDP(�;�),

� � id�.

This is trivially monotone and hence a valid morphism in Pos. Furthermore, we de�ne the composition
morphism as:

���,�,� � HomDP(�;�) ◊ HomDP(�;�) �Pos HomDP(�;�),

��, �� � � # �.
,

which a valid morphism in Pos. We now want to check neutrality and associativity commuting diagrams,
and in the following, we denote HomDP(�;�) by DP(�,�) We start by neutrality, and we do this
graphically:

�
�, id�

�
� �id�, ��

DP(�,�) ◊DP(�,�) DP(�,�) DP(�,�) ◊DP(�,�)

DP(�,�) ◊ � � ◊DP(�,�)

��, �� ��, ��

���,�,� ���,�,�

��idDP(�,�) ◊ ��� ��
��� ◊ idDP(�,�)

Similarly, for associativity one has:

�
�,
�
�, �

�� �
��, ��, �

�

DP(�,�) ◊ (DP(�,�) ◊DP(�, �)) (DP(�,�) ◊DP(�,�)) ◊DP(�, �)

DP(�,�) ◊DP(�, �) DP(�, �) DP(�,�) ◊DP(�, �)
�
�, � # �

�
� # � # �

�
� # �, �

�

��

idDP(�,�) ◊ ���,�,� ���,�,� ◊ idDP(�,�)

���,�,� ���,�,�

16.1 Proofs related to Part A 225

Proof of Lemma 7.4. Consider a design problem �� � �� � and � � ��. We know

��(�) = {� � �� �(��, �)}

� {� � �� �(���, �)}

= ��(��),

showing monotonicity of �. Analogously, consider a DP �� � �� � and � � ��. We know

��(�) = {� � �� �(��, �)}

� {� � �� �(��, ��)}

= ��(��),

showing monotonicity of �.

Proof of Lemma 7.7. We prove thatPos� is a category. The proof forPos� is analogous. In the following,
we show unitality and associativity.

Unitality: Given �� �� �, we have:

�
� # id�

��
(�) =

�
����(�)

id�
�(�)

=
�

����(�)
�� {�}

=
�

����(�)
{�� � �� � �� ��}.

We know that ��(�) is an upper set:

��(�) =
�

����(�)
{�}

=
�

����(�)
{�� � �� � �� ��}.

Therefore,
�
� # id�

��
(�) = ��(�) for all � � �. Similarly, we have:

(id� # �)�(�) =
�

���id�
�(�)

��(��)

=
�

����� {�}
��(��)

= ��(�),

where the last equality holds since �� is a monotone function and ��(��) � ��(�) for all �� � �� {�}.

226 16 Proofs

Associativity: Consider three morphisms �� �� �, �� �� �, and �� �� �. We have:

((� # �) # �)�(�) =
�

���
�
����(�)�

�(�)�
��(�)

=
�

����(�)

�
����(�)

��(�)

= (� # (� # �))�(�).

Therefore, Pos� is a category.

Proof of Lemma 7.8. To prove this, we need to de�ne the needed functors and to show that they satisfy
the listed properties. We choose the functors to be the ones that map a poset � in a category to its
opposite version �op in another category. Given a morphism �� �� � in Pos� , we have:

(� (�))� � �op �Pos ��
op

� � ��(�).

Given a morphism �� �� � in Pos�, we have:

(� (�))� � �op �Pos ��
op

� � ��(�).

� and� are functors:

� Preservation of identities: Given � � ObPos� , we have:

(� (id�))
� = ��� {�}

= ���op {�}

= id�op
�,

where id� is an identity morphism in Pos� , and id�op is an identity morphism in Pos�. Similarly,
given � � ObPos� we have:

(� (id�))
� = ��� {�}

= ���op {�}

= id��op .

� Preservation of composition: This can be easily seen as follows. Given any � � HomPos� (�;�), � �
HomPos� (�;�):

(� (� # �))� = (� # �)�

= (� (�)# � (�))�.

16.1 Proofs related to Part A 227

Similarly, given any � � HomPos� (�;�), � � HomPos� (�;�):

(� (� # �))� = (� # �)�

= (� (�)# � (�))�.

Compositions return identity functors: We want to show that by composing the two functors we
obtain the identity functors in Pos� and Pos�, respectively. Clearly, composing the two functors returns
the identity on the objects, since for any poset �, we have (�op)op = �. The functors act on morphisms
by “�ipping the context’’, and “�ipping’’twice is the “same’’as not �ipping.

Proof of Lemma 7.9. Consider two posets �,� and two respective upper sets �,�. We have

� � � � �� �� ,
�� � �

and
� � � � �� ��

.
�� � �

Therefore:
��, �� � � ◊ � ��, �� ��◊�

�
��, ��

�

,�
��, ��

�
� � ◊ �

which proves that � ◊ � is an upper set. The proof for the product of lower sets is analogous.

Proof of Lemma 7.10. First, we prove that id���� id� = id�◊�. We have:

(id���� id�)
�(�, �) = id�

� ◊ id�
�

= {���} ◊ {�� �}

= id�◊�
�.

Now consider �1 � �1 � �1, �2 � �2 � �2, �1 � �1 � �1, �2 � �2 � �2. We want to prove:

(�1 # �1)��� (�2 # �2) = ((�1��� �2) # (�1��� �2)).

By expanding the left-hand side, we have:

((�1 # �1)��� (�2 # �2))
�(�1,�2) = (�1 # �1)

�(�1) ◊ (�2 # �2)
�(�2)

=
�

���1
�(�1)

�1(�) ◊
�

���2
�(�2)

�2(�)

228 16 Proofs

By expanding the right-hand side, we have:

((�1��� �2) # (�1��� �2))
�(�1,�2) =

�
��, ����(�1����2)

�(�1,�2)
(�1��� �2)(�, ��)

=
�

���1
�(�1)

�
����2

�(�2)
�1�(�) ◊ �2�(��),

which con�rms functoriality.

Proof of Lemma 7.11. First, we need de�ne their inverses:

���1�
�
� � �Pos �(� ◊ �),

� � � ◊ �� {�},

and
���1�

�
� � �Pos �(� ◊ �),

� � �� {�} ◊ �.

We prove the isomorphism for the left unitor. The proof for the right unitor is analogous. We have:

(��� # ���1�)
�
(��, ��) =

�
������ (��, ��)

���1�
�
(�)

= � ◊ �� {�}

= id�◊�.

Furthermore, we have:
(���1� # ���)

�
(�) =

�
�����1�

�
(�)
���

�(�)

= �� {�}

= id�
� id�◊�.

Proof of Lemma 7.12. We �rst de�ne its inverse:

���1�,�,�
�
� � ◊ (� ◊�) �Pos (�� ◊��) ◊��,

��, ��, ��� � (�� {�} ◊ �� {�}) ◊ �� {�}.

16.1 Proofs related to Part A 229

We have:
(���,�,� # ���1�,�,�)

�
(���, ��, ��)

=
�

���, ���, ��������,�,��(���, ��, ��)
���1�,�,�

�
(
�
��,

�
��, ��

��
)

= �� {�} ◊ �� {�} ◊ �� {�}

= id(�◊�)◊�(���, ��, ��)

� id�◊(�◊�)(��, ��, ���)

= (���1�,�,� # ���,�,�)
�
(��, ��, ���)

Proof of Lemma 7.13. We have already proved that the monoidal product is functorial, and that the
provided constituents are of valid form. We now show the triangle and pentagon identities.

Triangle identity We want to show:

���,�,� # (id���� ���) = ������ id�.

This clearly follows from:

(���,�,� # (id���� ���))
�(���, ��, ��)

=
�

��, ������,�,��(���, ��, ��)
id�

�(�) ◊ ���
�(�)

= �� {�} ◊ �� {�}

= (������ id�)
�(���, ��, ��).

Pentagon identity We want to show:

���◊�,�,� # ���,�,�◊� = (���,�,���� id�) # ���,�◊�,� # (id���� ���,�,�).

For the left-hand side, we have:

(���◊�,�,� # ���,�,�◊�)
�(����, ��, ��, ��)

=
�

����, ���, ���, �����(�� {�}◊�� {�})◊(�� {�}◊�� {�})
(�� {��} ◊ (�� {��} ◊ (�� {��} ◊ �� {��})))

= �� {�} ◊ (�� {�} ◊ (�� {�} ◊ �� {�})).

For the right-hand side, we have:

(���,�,���� id�)
�(����, ��, ��, ��) = (�� {�} ◊ (�� {�} ◊ �� {�})) ◊ �� {�},

230 16 Proofs

and
(id���� ���,�,�)

�(��, ���, ��, ���) = �� {�} ◊ (�� {�} ◊ (�� {�} ◊ �� {�})).

Therefore, the �rst piece evaluates to:

((���,�,���� id�) # ���,�◊�,�)
�(����, ��, ��, ��)

=
�

����, ���, ����, ����(�� {�}◊(�� {�}◊�� {�}))◊�� {�}
(�� {��} ◊ ((�� {��} ◊ �� {��}) ◊ �� {��}))

= �� {�} ◊ ((�� {�} ◊ �� {�}) ◊ �� {�}).

Finally, we have:

((���,�,���� id�) # ���,�◊�,� # (id���� ���,�,�))
�(����, ��, ��, ��)

= �� {�} ◊ (�� {�} ◊ (�� {�} ◊ �� {�})),

con�rming the pentagon identity.

Lemma 16.1. Given posets �,�, a monotone maps �� � � �, and a family of singleton sets {��}��� ,
with �� = {��}, �� � �, the following equality holds:

���
�

����
�
�����

{�(�)}� = ��
��

���
{�(��)}

�
. (79)

Proof. We �rst want to show that:

���
�

����
�
�����

{�(�)}�
���������������

�

� ��
��

���
{�(��)}

�

���������
�

. (80)

Take a
� � ���

�
����

�
�����

{�(�)}�.

If we have such a �, it means that there exists a

�� �
�

����
�
�����

{�(�)}

such that �� �� �, and hence there is a �� � ��
�

����� such that �� = �(��). Consequently, there must
exist an �� � � such that ��� �� ��. The monotonicity of � implies:

�(���) �� �(��) = �� �� �.

We know that ��� � � and any �� � � satisfying �(���) �� �� belongs to �� �. Therefore, � � �� �, which
proves the validity of (80).

16.1 Proofs related to Part A 231

We now want to show that:

���
�

����
�
�����

{�(�)}� � ��
��

���
{�(��)}

�
. (81)

By now taking a
� � ��

��
���
{�(��)}

�
,

we know that there is an �� � � such that �(���) �� �. Furthermore, we know that �(���) � �. Therefore,
any �� �� �(���) must be in �� �, meaning that � � �, and proving the validity of (81).

The validity of (80) and (81) implies (79).

Remark 16.2. Given posets �,� and a monotone maps �� �� �, we have:

���
�

����� {�}
{�(��)}� = �� {�(�)}.

This follows from Lemma 16.1, by considering a family of singleton sets consisting solely of the set {�}.

Proof of Lemma 7.14. We �rst show that the braiding de�nes an isomorphism. In other words, we want
to show

(���,� # ���,�)
� = id�◊�

�.

We have
(���,� # ���,�)

�(�, �)

=
�

���, �������,�
�(�,�)

���,�
�(��, ��)

=
�

���, ������ {�}◊�� {�}
�� {��} ◊ �� {��}

= �� {�} ◊ �� {�}

= id�◊�
�(�, �).

Note that this comes from the fact that �� is an involution. We now show naturality. Consider �� ��
�, �� �� �. We have

�
(���� �) # ���,�

��
(�, �)

=
�
��(�), ��(�)

�
���,�

=
��

�����(�)
�� ��,

�
�����(�)

����
�
.

(82)

On the other hand: �
���,� # (���� �)

��
(�, �)

= ��� {�}, �� {�}� # (���� �)�

=
��

����� {�}
��(��),

�
����� {�}

��(��)
�
.

(83)

Clearly, from Lemma 16.1 and Remark 16.2 we know that (82) and (83) are equivalent, proving naturality.

232 16 Proofs

Proof of Lemma 7.15. We now just need to show hexagon identities. First, we want to show that

(���,���� id�) # ���,�,� # (id���� ���,�) = ���,�,� # ���,����� # ���,�,� (84)

To do so, we �rst look at the left-hand side of (84). We have

((���,���� id�) # ���,�,�)
�(��, ��, �)

=
�

����, ���, ����(���,����id�)
�(��, ��,�)

����,�,�(�
�,��, ��)

=
�

����, ���, ����(�� {�}◊�� {�})◊�� {�}
�� {��} ◊ (�� {��} ◊ �� {��})

= �� {�} ◊ (�� {�} ◊ �� {�}).

Furthermore, we have

((���,���� id�) # ���,�,� # (id���� ���,�))
�(��, ��, �)

=
�

���, ���, ������� {�}◊(�� {�}◊�� {�})
(id���� ���,�)

�(��,
�
��, ��

�
)

=
�

���, ���, ������� {�}◊(�� {�}◊�� {�})
�� {��} ◊ (�� {��} ◊ �� {��})

= �� {�} ◊ (�� {�} ◊ �� {�}).

(85)

We now look at the right-hand side of (84). We have

���,�,� # ���,������(��, ��, �)
=
�

���, ���, ���������,�,�(��, ��,�)
����,�����(��,

�
��, ��

�
)

=
�

���, ���, ������� {�}◊(�� {�}◊�� {�})
(�� {��} ◊ �� {��}) ◊ �� {��}

= (�� {�} ◊ �� {�}) ◊ �� {�}.

Furthermore, we have

(���,�,� # ���,����� # ���,�,�)
�(��, ��, �)

=
�

����, ���, ����(�� {�}◊�� {�})◊�� {�}
����,�,�(

�
��, ��

�
,��)

=
�

����, ���, ����(�� {�}◊�� {�})◊�� {�}
�� {��} ◊ (�� {��} ◊ �� {��})

= �� {�} ◊ (�� {�} ◊ �� {�}).

(86)

Clearly, since (85) and (86) are equal, the �rst hexagon identity is checked. The second hexagon identity
can be checked analogously.

Proof of Lemma 7.17. We have already checked that the constituents form a symmetric monoidal cate-
gory. First, we check that the trace indeed returns a valid morphism in Pos� . Given any posets �,�,�

16.1 Proofs related to Part A 233

and morphisms �� � ◊�� � ◊�, and any � � �� � �, we need to prove that

Tr��,�(�)(�) �Pos� Tr��,�(�)(��)

Tr��,�(�)
�
(�) � Tr��,�(�)

�
(��)

We know that �� is a monotone map, meaning that

��, �� � ��(��, �)

��, �� � ��(�, �)

Therefore:
� � Tr��,�(�)

�
(��)

� � Tr��,�
�
(�)(�)

proving that Tr��,�(�)
�

is a monotone function. Furthermore, due to the monotonicity of ��, for any � �
�� � �, � � �, � � �, we have:

��, �� � ��(�, �)
�
��, �

�
� ��(�, �)

proving that Tr��,�(�)
�
(�) is an upper set for all � � �. We now check the trace axioms one by one.

Naturality in � Given �� � ◊�� � ◊� and �� �� �, we want to prove:

Tr��,�((���� id�) # �) = � # Tr��,�(�).

One has:
Tr��,�((���� id�) # �)

�
(�)

=
�

�
�

� � � �
�

���
��, �� � ((���� id�) # �)�(�, �)

�

�
�

=
�

�
�

� � � �
�

���
��, �� �

�
��, ������(�)◊�� {�}

��(�, ��)
�

�
�

=
�

�
�

� � � �
�

���
��, �� �

�
����(�)

��(�, �)
�

�
�

.

(87)

234 16 Proofs

On the other hand, we have

(� # Tr��,�(�))
�
(�) =

�
����(�)

Tr��,�(�)
�
(�)

=
�

����(�)

�

�
�

� � � �
�

���
��, �� � ��(�, �)

�

�
�

=
�

�
�

� � � �
�

���
��, �� �

�
����(�)

��(�, �)
�

�
�

.

(88)

Clearly (87) and (88) are equivalent, proving the �rst naturality condition.

Naturality in � Given �� � ◊�� � ◊� and �� �� �, we want to prove:

Tr��,�(� # (���� id�)) = Tr��,�(�) # �.

One has:
Tr��,�(� # (���� id�))

�
(�)

=
�

�
�

� � � �
�

���
��, �� � (� # (���� id�))

�(�, �)
�

�
�

=
�

�
�

� � � �
�

���
��, �� �

�
��, �����(�,�)

��(�) ◊ �� {�}
�

�
�

On the other hand

(Tr��,�(�) # �)
�
(�) =

�
���{����

�
�����, ����

�(�, �)}
��(��),

showing the equivalence.

Vanishing I Given �� � ◊ �� � ◊ �, we want to prove:

Tr��,�(�) = ���1� # � # ���.

Tr��,�(�)
�
(�) = {� � � � ��, �� � (���� id�)

�(�, �)}

= ��(�),

which trivially proves the statement.

16.1 Proofs related to Part A 235

Vanishing II Given �� (� ◊�) ◊ �� (� ◊�) ◊ �, we want to prove:

Tr��,�(Tr
�
�◊�,�◊�(�)) = Tr�◊��,� (���,�,� # � # ���1�,�,�).

We have:
Tr�◊��,� (���,�,� # � # ���1�,�,�)

�
(�)

=
�

�
�

� � � �
�

��, ����◊�
����, ��, ��� � ��(���, ��, ��)

�

�
�

(89)

Furthermore, we have:

Tr��◊�,�◊�(�)
�
(�, �) =

�

�
�

��, �� � � ◊� �
�

���
����, ��, ��� � ��(���, ��, ��)

�

�
�

.

Therefore, we can write:

�
Tr��,�

�
Tr��◊�,�◊�(�)

���
(�)

=
�

�
�

� � � �
�

���
��, �� � Tr��◊�,�◊�(�)

�
(�, �)

�

�
�

=
�

�
�

� � � �
�

���
��, �� �

�

�
�

�
��, ��

�
� � ◊� �

�

���

��
��, ��

�
, �
�
� ��(

��
�, ��

�
, �
�
)
�

�
�

�

�
�

=
�

�
�

� � � �
�

� � �
�
�
�

�

���
���, ��, �� � ��(���, ��, ��)

�
�
�

�

�
�

=
�

�
�

� � � �
�

��, ����◊�
���, ��, �� � ��(���, ��, ��)

�

�
�

.

(90)

Clearly, (89) and (90) are equivalent, proving the second vanishing axiom.

Superposing Given �� � ◊�� � ◊�, we want to prove:

Tr��◊�,�◊�(���,�,� # id���� � # ���1�,�,�) = id���� Tr��,�(�).

236 16 Proofs

Tr��◊�,�◊�(���,�,� # id���� � # ���1�,�,�
�
(�,�)

=
�

�
�

��, �� � � ◊� �
�

���
��, �, �� � (id���� �)�(�, �, �)

�

�
�

=
�

�
�

��, �� � � ◊� �
�

���
(� � id�

�(�)) � (��, �� � ��(�, �))
�

�
�

=
�

�
�

��, �� � � ◊� �
�

���
(� � �� {�}) � (��, �� � ��(�, �))

�

�
�

=
�

�
�

��, �� � �� {�} ◊� �
�

���
��, �� � ��(�, �)

�

�
�

= �� {�} ◊
�

�
�

� � � �
�

���
��, �� � ��(�, �)

�

�
�

(91)

On the other hand, we have:

(id���� Tr��,�(�))
�
(�,�) = �� {�} ◊

�

�
�

� � � �
�

���
��, �� � ��(�, �)

�

�
�

. (92)

Clearly, (91) and (92) are equivalent, proving the superposing axiom.

Yanking We want to prove:
Tr��,�(���,�) = id�.

We have
Tr��,�(���,�)

�
(�)

= {�� � � �
�

�����

�
��, ���

�
� ����,�(�, ���)}

= {�� � � �
�

�����

�
��, ���

�
� �� {���} ◊ �� {�}}

= {�� � � �
�

�����
(�� � �� {���}) � (��� � �� {�})}

= {�� � � � �� � �� {�}}

= �� {�}

= id�� (�),

16.1 Proofs related to Part A 237

proving the yanking axiom.

Proof of Lemma 7.21. First, we need to prove that HomPos� (�;�) forms a poset. To prove this, we check
the following, using the order de�ned previously:

� Re�exivity: Given � � HomPos� (�;�), we can write

��(�) � ��(�), �� � �,

which implies � �Pos� �.

� Antisymmetry: Consider
�, � � HomPos� (�;�)

with � �Pos� � and � �Pos� �. We know

(� �Pos� �) � ��(�) � ��(�), �� � �,

but also
(� �Pos� �) � ��(�) � ��(�), �� � �,

implying � = �.

� Transitivity: Consider
�, �,� � HomPos� (�;�)

with � �Pos� � and � �Pos� �. We have, for all � � �,

(��(�) � ��(�)) � (��(�) � ��(�)) � ��(�) � ��(�)

� � �Pos� �.

Consider now �, � � HomPos� (�;�). Their least upper bound (join) is � � �, since it is the least
morphism such that � �Pos� (� � �) and � �Pos� (� � �). Their greatest lower bound (meet) is � � �,
since it is the greatest morphism such that (� � �) �Pos� � and (� � �) �Pos� �. Furthermore, for any �
� HomPos� (�;�), one will have, for all � � �

��(�) � � = �HomPos� (�;�)
�(�),

implying that for all� � HomPos� (�;�)we have� �Pos� �HomPos� (�;�)
. Finally, for any� � HomPos� (�;�),

one will have, for all � � �
�HomPos� (�;�)

�(�) = � � ��(�)

implying that for all � � HomPos� (�;�) we have �HomPos� (�;�)
�Pos� �.

Proof of Lemma 7.23. We prove the two conditions.

238 16 Proofs

Preservation of identities We have

������������(idDP�)
�
(�) = {� � � � idDP� (��, �)}

= {� � � � � � �}

= �� {�}

= idPos��

�
(�).

Preservation of composition On one hand, we have

������������(� #DP �)
�(�) = {� � � � (� # �)(��, �)}

= {� � � �
�

���
�(��, �) � �(��, �)}. (93)

On the other hand:
(������������(�) #Pos� ������������(�))

�(�)

=
�

��������������(�)�(�)
������������(�)�(�)

=
�

��{�����(��, �)}
{� � � � �(��, �)}

= {� � � � (� � �) � �(��, �) � �(��, �)}

= {� � � �
�

���
�(��, �) � �(��, �)}.

(94)

Clearly, (93) and (94) coincide.

Proof of Lemma 7.25. We prove the two conditions.

Preservation of identities We have

����������������(idPos��)(��, �) = � � idPos��

�

= � � �� {�}

= idDP� (��, �).

Preservation of composition On one hand, we have

����������������(� #Pos� �)(�
�, �) = � � (� #Pos� �)

�(�)

= � �
�

����(�)
��(�).

(95)

16.1 Proofs related to Part A 239

On the other hand:

(����������������(�) #DP ����������������(�))(��, �)
=
�

���
(� � ��(�)) � (� � ��(�))

= � �
�

����(�)
��(�).

(96)

Clearly, (95) and (96) coincide.

Proof of Lemma 7.27. First, consider any morphism in HomDP(�;�). We have

(������������ # ����������������)(�)(��, �)

= � � ������������(�)�(�)

= � � {�� � � � �(��, �)}

= �(��, �)

= idDP(�)(��, �).

Now consider any morphism �� � HomPos� (�;�). We have

(���������������� # ������������)(��)(�)

= {� � � � � � ��
�(�)}

= {� � � � �(��, �)}

= idPos�
�(��)(�).

These are clearly natural, proving the statement.

Proof of Lemma 7.28. Given �,� � ObDP and �, � � HomDP(�;�), we want to check the following
properties.

Order reversing We want to check

� �DP � .
������������(�) �Pos� ������������(�)

We have:
������������(�)�(�) = {� � � � �(��, �)}

� {� � � � �(��, �)}

= ������������(�)�(�),

implying ������������(�) �Pos� ������������(�).

240 16 Proofs

Meet and join preservation We want to check

������������(� � �) = ������������(�) �Pos� ������������(�),

and
������������(� � �) = ������������(�) �Pos� ������������(�).

We have
������������(� � �)�(�)

= {� � � � (� � �)(��, �)}

= {� � � � (�(��, �) �DP �(��, �))}

= {� � � � �(��, �)} � {� � � � �(��, �)}

= ������������(�)�(�) �Pos� ������������(�)
�(�).

Similarly:
������������(� �DP�)�(�)

= {� � � � (� � �)(��, �)}

= {� � � � (�(��, �) �DP �(��, �))}

= {� � � � �(��, �)} � {� � � � �(��, �)}

= ������������(�)�(�) �Pos� ������������(�)
�(�).

Top and bottom preservation We want to check

������������(�HomDP(�;�)) = �HomPos� (�;�)
,

and
������������(�HomDP(�;�)) = �HomPos� (�;�)

.

We have
������������(�HomDP(�;�))

�(�) = �

= �HomPos� (�;�)
�(�)

Similarly
������������(�HomDP(�;�))

�(�) = �

= �HomPos� (�;�)
�(�).

Proof of Lemma 7.29. We want to show that

������������(Tr��,�(�)) = Tr��,�(������������(�)),

16.1 Proofs related to Part A 241

for all � � HomDP(� ◊�;� ◊�), and �,�,� � ObDP. On one hand, we have

������������(Tr��,�(�))
�
(�) = {� � � � Tr��,�(�)(��, �)}

= {� � � �
�

���
�(��, ���, ��, ��)}

On the other hand, we have

Tr��,�(������������(�))
�
(�)

= {� � � �
�

���
��, �� � ������������(�)�(�, �)}

= {� � � �
�

���
��, �� � {��, �� � � ◊� � �(��, ���, ��, ��}}

= {� � � �
�

���
�(��, ���, ��, ��)}.

Proof of Lemma 7.31. On the objects, we have:

������������(�)���Pos� ������������(�) = ����Pos� �

= � ◊�

= ����DP �

= ������������(����DP �)

Hence, showing associativity and unitality is equivalent to showing such properties for a category with
posets as objects, as DP is monoidal.

Proof of Lemma 7.35. Given the �nite design problems �� � �� �, �� � �� �, recall from Def. 7.5
that the representations compose as follows:

(�� #��)(�) =
�

����(�)
��(�).

From the above expression, � � �f� by �niteness of �, and ��(�) � �f� by �niteness of �.

Proof of Lemma 7.36. Given the �nite design problems �� � �� �, �� � �� �, recall from Section 7.2
that the representations compose as follows:

(�������)(�, �) = ��(�) ◊��(�),

which clearly belongs to �f� ◊�f�.

242 16 Proofs

Proof of Lemma 7.44. Consider a map �� ��Pos � that is Scott continuous. Take two elements �, � �
� such that � � �. The set � = {�, �} is directed. From (54), we know that

�(��� �) = �(�) = ��� {�(�), �(�)},

which implies that �(�) � �(�). Therefore, � is monotone.

Proof of Theorem 7.50. This proof is adapted from [122]. The map �����(�) can be described as:

�����(�) � �1 � ����f �, (97)

�1 �

�
�
�

�
�
�
�

using �,�2 � �,

Min�� �,

s.t. � � ��(�1,�2),

� �� �2.

(98)

Denote by ��1 the map �� with the �rst element �xed:

��1 � �2 � ��(�1,�2).

Rewrite � � ��(�1,�2) in (97) as
� � ��1 (�2). (99)

Let � be a feasible solution, but not necessarily minimal. Lemma 7.51 implies that the constraint (99)
can be rewritten as

{�} = ��1 (�2) � �� �.

Because �2 � �, and ��1 is Scott continuous, it follows that ��1 (�2) �����f � ��1 (�). Therefore, by
Lemma 7.52, we have

{�} �����f � ��1 (�) � �� �. (100)

This is a recursive condition that all feasible � must satisfy.

Let � � ����f � be an antichain of feasible resources, and let � be a generic element of �. Tautologically,
rewrite � as the minimal elements of the union of the singletons containing its elements:

� = Min
��

�
���

{�}. (101)

Substituting (100) in (101) we obtain (cf Lemma 7.53)

� �����f � Min
��

�
���

��1 (�) � �� �. (102)

Converse: It is also true that if an antichain � satis�es (102) then all � � � are feasible. The con-

16.1 Proofs related to Part A 243

straint (102) means that for any �0 � � on the left side, we can �nd a �1 on the right side so that �0 �� �1.
The point �1 needs to belong to one of the sets of which we take the union; say that it comes from �2 �
�, so that �1 � ��1 (�2) � �� �2. Summarizing:

��0 � �� ��1 � (�0 �� �1) � (��2 � �� �1 � ��1 (�2) � �� �2). (103)

Because �1 � ��1 (�2) � �� �2, we can conclude that �1 � �� �2, and therefore �1 �� �2, which together
with �0 �� �1, implies �0 �� �2. We have concluded that there exist two points �0, �2 in the antichain �
such that �0 �� �2; therefore, they are the same point: �0 = �2. Because �0 �� �1 �� �2, we also
conclude that �1 is the same point as well. We can rewrite (103) by using �0 in place of �1 and �2 to
obtain ��0 � �� �0 � ��1 (�0), which means that �0 is a feasible resource.

We have concluded that all antichains of feasible resources � satisfy (102), and conversely, if an an-
tichain � satis�es (102), then it is an antichain of feasible resources.

Equation (102) is a recursive constraint for �, of the kind

��1 (�) �����f � �,

with the map ��1 de�ned by

��1 � ����f � � ����f �, (104)

� � Min
��

�
���

��1 (�) � �� �.

If we want the minimal resources, we are looking for the least antichain:

min
�����f �

{� � ����f �� ��1 (�) �����f � � },

which is equal to the least �xed point of ��1 . Therefore, the map �����(�) can be written as

�����(�) � �1 � lfp(��1).

Lemma 7.54 shows that lfp(��1) is Scott continuous in �1.

Proof of Prop. 7.55. This proof is extracted from [122]. The memory utilization is bounded by �����(�0),
because the state is an antichain, and�����(�0) is the size of the largest antichain. The iteration happens
in the space �����0, and we are constructing an ascending chain, so it can take at most ������(�����0)
steps to converge. Finally, in the worst case the map �0 needs to be evaluated once for each element of
the antichain for each step.

244 16 Proofs

16.2 Proofs related to Part B
Proof sketch of Lemma 10.1. One can prove the statement by induction. The monotonicity holds in
the initialization. To prove the induction step, one can �rst write the prediction update, and leverage
properties of the di�erential Lyapunov equation involved. Finally, one uses the results of the induction
step in the measurement update, to prove the result.

Proof sketch of Lemma 10.2. The statement can be proven by following the substitution principle [134].
If the estimator is given a set of observations, it can simulate having less (i.e., having a higher dropping
probability) by arti�cially ignoring selected samples. This can also be proven analytically, by comparing
measurement updates in the EKF in the two cases.

Proof sketch of Lemma 10.3. First, one can derive the error dynamics

���(�) = �f sin(��(�) � �(�)) + ��(�),
���(�) = ��f sin(�(�))�� +��,

where �� and �� are Brownian processes as per given models. By leveraging properties of the system
and measurement noises, one can then show that at any time instant, by larger � or �, one cannot
obtain a smaller expected total lateral error (to parity of initial condition).

Proof sketch of Lemma 10.4. The expected lateral positional and orientation errors converging more
rapidly to zero imply a commanded steering angle converging more rapidly to zero in expectation. This
can be formally proven by taking the expectation of the steering angle formulation as presented in the
Stanley part.

Proof sketch of Lemma 10.6. This can be shown by following the procedure in Lemma 10.5 and looking
at the behavior of �(�).

Proof sketch of Lemma 10.5. First, one can derive the lateral error dynamics

��� = ��r�along(�) sin(�(�))�� + ��(�),

where �� is a Brownian process and

�along(�) =
�
�t � �(�) �t � �(�)

�
� �
cos(�(�))
sin(�(�))

� .

Then, one can leverage properties of the system and measurement noises to prove the statement.

Proof sketch of Lemma 10.7 and Lemma 10.8. One can derive the expected error dynamics for the orig-
inal, nonlinear system, and leveraging properties of the noise perturbations, one can derive both mono-
tonicity results.

16.2 Proofs related to Part B 245

Proof sketch of Lemma 10.9 and Lemma 10.10. First, one can derive the error dynamics, which are equiv-
alent to Section 16.2. One can prove that at each step, the map describing the dependency of the optimal
(initial) control input on the initial lateral error is s-shaped (for positive de�nite �). Furthermore, in
the presence of heading error, the s-shaped curve is translated proportionally along the input axis. From
these facts, one can prove the statements.

Proof sketch of Lemma 10.11. One can easily write the expression for the expected value of the speed
tracking error between any two control steps. Given the properties of the perturbations in the system
model and in the measurement model, one can show that this expression is monotonic in system noise
and state estimation uncertainty.

Proof sketch of Lemma 10.12. By explicitly looking at the expression for the expected value of the accel-
eration resulting from the control, one proceed as for Lemma 10.11 and show the monotonicity.

Proof of Lemma 11.2. Consider �1,�2,�3 � � with �� = ��� ,�� , ���, and �� � �� � �. Clearly �1 ��
�1, since �1 � �1, �1 � �1, and �1 ���1 �1. Furthermore, given �1 �� �2 and �2 �� �3 (i.e., �1 �
�2 � �3, �1 � �2,�2 � �3, �1 ���1 �2��1 , and �2 ���2 �3��2), one has �1 � �3,�1 � �3,

and �1 ���1 �3��1 , implying �1 �� �3. Finally, it is easy to see that �1 �� �2 and �2 �� �1 implies �1 =
�2.

Proof of Lemma 11.5. Consider �1, �2, �3 � �. Clearly �1 �� �1. Let �1 �� �2 and �2 �� �3, and let�
�1, �1, �1

�
� �1. Since �1 �� �2, there is

�
�2, �2, �2

�
� �2 such that �1 = �2, �1 = �2, and �2 � �1.

Since �2 �� �3, there is
�
�3, �3, �3

�
� �3 such that �2 = �3, �2 = �3, and �3 � �2. So, �1 = �3,

�1 = �3, �3 � �1, proving that �1 �� �3. Finally, �1 �� �2 and �2 �� �1 implies �1 = �2 (given that
origin-destination pairs are not repeated).

Proof of Lemma 11.8. We need to prove that for �1, �2 � ��0 one has: �1 � �2 � redR,V(�1) ��
redR,V(�2). Following the de�nition, redR,V(�1) and redR,V(�2) will share the same set of vertices (satis-
fying the vertex condition). Furthermore, �1 � �2 implies that the arcs�1 of redR,V(�1)will be a subset of
the set of arcs �2 of redR,V(�2). Finally, the edge colors remain unchanged, except for speed-related one.
Let �1, �2 the colors associated to redR,V(�1) and redR,V(�2), respectively. Clearlymin{�1,�} � min{�2,�}
for any � � ��0. This, together with (66), gives �1 ���1 �2, proving monotonicity.

Proof of Lemma 11.11. We need to prove that given �1, �2 � ��0, one has: �1 � �2 � redR,M(�1) ��
redR,M(�2). First, notice that sets of vertices and arcs are preserved by redR,M. Second, the argument for
the edge attributes is analogous to the one in the proof of Lemma 11.8. The two facts together prove
monotonicity.

Proof of Lemma 11.13. We need to prove that given �1,�2 � ��0, one has: �1 � �2 � redP(�1) ��
redP(�2). Again, we notice that the set of vertices and arcs are preserved by redP. Furthermore, �1 � �2

implies that �WS +
�S,base

2�1��,base
� �WS +

�S,base
2�2��,base

, proving monotonicity.

Proof of Lemma 11.15. Let � �
�2◊ ��◊�

3
�0
��. Since all feasible solutions of (70) with � remain feasible

with ��, ��IAMOD(��, �) � ��IAMOD(��, ��) for all � � �. Similarly, let �� �� �. Since all feasible solutions of
(70) remain feasible (possibly by replacing demand with empty vehicles and by arti�cially adding loops

to the graph), ��IAMOD(��, �) � ��IAMOD(�, �) for all � � �2 ◊ �� ◊��0
3
. This proves monotonicity.

List of Figures

1 Vision for the “automated designer”. 3
2 Vision for the “automated designer” in the context of autonomous

systems. 4
3 Vision for the “automated designer” in the context of mobility systems. 4
4 Information �ows for computer-aided design of robots [16]. 8
5 Working principle of gradient-based design co-optimization based on

di�erentiable simulation. 10
6 Intellectual vs. computational tractability. 11
7 Formality vs. computational tractability. 12
8 Intellectual tractability vs. formality. 12

9 The four quantities of system architects from Rechtin and Maier [124]. 19

11 Achievable accuracy plots. 20
10 Illustration of functionalities and resources. 20
12 Speed vs. strength trade-o� in sports. 21
13 Training vs. strength trade-o�. 21
14 Ordering masks by protection levels. 21
15 Ordering masks by other considerations. 22
16 A pre-order represented as a graph. 23
17 A partial order represented as a graph. 23
18 A total order. 24
19 Three di�erent representations for a poset. 24
20 Power set as a poset. 25
21 Poset of positive (semi-) de�nite matrices. 26
22 Three di�erent polyhedra. 26
23 Poset of polyhedra. 26
24 Sensor performance curves, in terms of false positives, true positives,

and accuracy rates. 27
25 Hasse diagrams for the sensor performance curves. 27
26 Examples of chains (a-b) and antichains (c-d) in the poset ��� {�, �, �}. 28
27 Example of discrete antichains. 29
28 Example of continuous antichains. 29
29 Hasse diagrams for the sensor performance curves posets, and their

product. 29
30 Opposite of a poset. 30
31 ���� is a monotone map. 31

248 List of Figures

32 Unit and total costs vs. number of widgets. 32
33 Example of upper bounds and least upper bound for �. 33
34 Example of lower bounds of �. 34
35 Example of lower bounds and greatest lower bounds of �. 34
36 Examples of upper and lower sets. 34
37 Example of upper closure for di�erent sets of battery choices. . . . 35
38 Example of lower closure for di�erent sets of battery choices. 36
39 Lattice structure. 37
40 Examples of a lattice and a non-lattice. 37

41 An implementation � is a particular point in the implementation space �. 40
42 Evaluation of speci�c implementations to get functionality and re-

sources spaces. 40
43 Design problems with implementation. 42
44 Design problem of an eletric motor. 43
45 Graphical notation for design problems. 43
46 Design problem for an electric motor. 43
47 Design problem for a gearbox. 43
48 Design problem for the design of a road. 43
49 Design problem for the energy management of a formula 1 car. . . 44
50 Design problem for bin packing . 44
51 Design problem for SLAM. 44
52 Design problem for progressive stereo reconstruction. 44
53 Design problem for swarm operations and sketch of functionality-

resources trade-o�. 45
54 Design problem for a CPU. 45
55 Design problem for joint sensor scheduling and control synthesis prob-

lem. 45
56 Design problem for SLAM benchmarking. 45
57 Graphical representation of ������������. 46
58 Graphical representation of ������������. 47
59 Co-design problem as a multigraph of design problems. 47
60 Example of interconnection of 3 DPs 48
61 Design problem for the electric motor. 48
62 Design problem for the chassis. 48
64 Sum design problem. 49
65 Abstraction of “chassis plus motor” design problem. 49
63 Series interconnection of chassis and motor design problems. . . . 49
66 Example of cycle in a co-design diagram. 50

67 Diagrammatic representation of a design problem. 53
68 Design problem for a drone. 54

List of Figures 249

69 Design problem for the energy consumption of a drone. 55
70 Co-design theorem for continuous-time LQG problems. 56
71 Co-design theorem for continuous-time LQG problems with delays. 58
72 LQG digital control with observation and computation delays, sam-

pling and ZOH. 59
73 Co-design theorem for digital LQG problems. 61
75 Monotonic relation between functionalities and upper-sets of resources. 62
74 Drone which needs to align with a goal. 62
76 Solutions of di�erent linear programs to showcase monotonicity. . 65
77 Design problem for a convex optimization problem. 65
78 Design problem for the power generation process for an electric vehicle. 68
79 Monotone relationship between acceleration, speed, and power pro�le

in the context of powertrain design. 69

80 Series composition of design problems. 72
81 Associativity of the composition of design problems. 72
82 Diagrammatic representation of the union of design problems . . . 72
83 Diagrammatic representation of the intersection of design problems. 73
84 Monoidal product of design problems. 73
85 Design problem with a resource and a functionality of the same type. 74
86 Closing the loop in the design problem. 74
87 We consider a drone which needs to perform search-and-rescue tasks,

and control its alignment with a given goal. 74
88 Design problem for the actuation. 75
89 Design problem for the vision sensor. 75
90 Design problem for feature extraction. 75
91 Design problem for LQG control. 75
92 Design problem for the computing unit. 76
93 Design problem for the battery. 76
94 Design problem for the implementation of algorithms. 76
95 Design problem for mission planning. 76
96 Co-design diagram for the design of an autonomous drone that needs

to execute an idealized search-and-rescue mission. The functionalities
are task characteristics and the environment. We choose costs as the
resources to minimize. 77

97 Identity design problem. 81
98 Left and right unitality for DP. 81
99 Commuting diagrams for semifunctors, with verbose notation (left)

and synthetic notation (right). 83
100 The design problem � implies the design problem �. 88
101 Diagrammatic statement. 90

250 List of Figures

102 Diagrammatic statement. 91
103 Coherence diagrams for enriched categories 92

104 In this chapter, we show that the queries ������������ and������������
can be seen as functors fromDP to two new categories,Pos� andPos�.
We show that DP is equivalent to these categories: a DP is univocally
de�ned by the answers to the two queries. 95

105 From DP to Pos� and Pos�, and back. 101
106 Commuting diagrams used in Def. 7.30 103
107 The ceiling function is Scott continuous. 106
108 Party invite relation. 107
109 Co-design diagram equivalent to (58) 111
110 Tree decomposition of the problem. 112
111 Co-design diagram for the design of an autonomous drone that needs

to execute an idealized search-and-rescue task. The functionalities
are task characteristics and the environment. We choose costs as the
resources to minimize. 113

112 Pareto front of cost and tracking error (performance) in the design of a
drone, able to complete 5,000 missions of 40 minutes. The �gure shows
the antichain of optimal solutions for the given scenario. Red dots
characterize optimal design solutions and the colored area describes
upper sets of resources for which functionalities are feasible. Selected
implementations corresponding to speci�c points in the antichain are
reported. 115

113 Pareto front of power consumption and tracking error (performance)
in the design of a drone, able to complete 1,000 missions of 10 minutes. 116

114 Monotonicity of the drone DPI. Higher mission time and number of missions
requires higher power and tracking error. 116

115 General design problem for a robotic task. 120
116 Design problem for a swarm of drones which need to detect gas leak-

ages. 120
117 Design problem for a mobility system. 121
118 Functional decomposition for the refrigerator example. 121
119 Functional decomposition for the task of urban driving. 122
120 Decomposition in components for the refrigerator example. 122
122 Functional decomposition schematics. 123
121 Data �ow vs. logical dependencies. 123
124 Design problem for lane cameras. 124
123 Functional decomposition provides us with sub-tasks, each of which

can be modeled as a design problem. 124
125 Design problem for feature extraction. 125

List of Figures 251

126 Design problem for lane control. 125

127 Design problem for the implementation of algorithms. 125

128 We consider lateral control as design problem, involving the design of
control strategies and feature detection algorithms, together with sen-
sor selection. Resources are cost, mass, power, computation, control e�ort
and tracking error. 126

129 Recursive constraints when designing a drone. 126

130 Recursive constraints between engineering problems and business
cases. 126

131 Co-design skeletons transcend model implementations. 129

132 Designing a system to detect gas leakages in a factory-like environment. 130

133 Designing a system to detect gas leakages in a factory-like environment. 130

134 Designing an AV in the context of co-designing a mobility system. 131

135 Designing an AV in the context of co-designing the autonomy stack. 131

136 We consider lateral control as design problem, involving the design
of control strategies and feature detection algorithms, together with
sensor selection. R Resources are cost, mass, power, computation,
control e�ort and tracking error. 132

137 Poset of positive (semi-) de�nite matrices. 136

138 Design problem of the actuation of a drone, produced by MCDPL. 136

139 Design problem for longitudinal sensing. 140

140 Design problem for longitudinal sensing. 140

141 The longitudinal control design problem consists of a brake control, a
longitudinal sensing and an implementation block. It provides the AV
with the ability of reaching a cruise speed in a given environment, re-
quiring cost, mass, power, dynamic performance, danger, discomfort
and computation. 142

142 Design problem for the vehicle. 142

143 Design problem for computing unit. 142

144 Co-design diagram for the design of an AV which needs to drive safely
in a given environment, at a given cruise speed, and following a lane,
without hitting obstacles. We choose costs, externalities, discomfort
and danger as resources to minimize. 143

252 List of Figures

145 Trade-o�s of cruise speed, cost and discomfort in the design of an AV.
(a) The �gure shows the antichain of optimal design solutions. The
red dots represent the optimal design solutions and the colored area
represents the upper sets of resources for which the cruise speed of
55.0 km/h is feasible. One can see selected highlighted implemen-
tations corresponding to speci�c points in the antichain. (b) Pareto
fronts of resources (expressed in terms of cost and discomfort) as a
function of the provided cruise speed. Monotonicity is expressed via
inclusion of the drawn upper sets. 144

146 New functional decomposition for the task of urban driving. 145
147 Stanley control. 148
148 Pure pursuit control. 148
149 Design problem for lateral control. 151
150 Design problem for lateral sensing. 151
151 Design problem for longitudinal control. 152
152 Co-design problem of an AV. 153
153 Trade-o� (antichain) of total control error and e�ort for a 90� turn,

with low curvature at 8 m/s, with corresponding design choices. . . 154
154 Trade-o� (antichain) of cost and control error for lane change with

high curvature at 15 m/s, with corresponding design choices. . . . 155
155 Monotonicity of the co-design problem: higher cruise speed or curva-

ture will require higher control error and e�ort. 155

156 The intermodal AMoD network consists of road (AVs and �MVs), pub-
lic transportation, and walking digraphs. The labeled circles represent
stops or intersections and the black arrows denote road links, public
transit arcs, or pedestrian pathways. The grey arrows represent the
mode-switching arcs connecting them. 159

157 Design problem for an AV. 165
158 �MV design problem. 166
159 �MV design problem. 167
160 Design problem for the mobility system (version 1). 171
161 Design problem for the mobility system (version 2). 172
162 Design problem for the mobility system (version 3). 173
163 Solution of the CDPI: Basic setting. 177
164 Results for the speed-dependent automation costs. 178
165 Results for large automation costs, and for the MoD case. 178
166 Results for the impact of micromobility. 179
167 Pricing and revenues case study. The Pareto front is in terms of system

performance (average travel time) and produced externalities. . . . 180

List of Figures 253

168 Compositionality of the co-design framework at work. We can take
the co-design problem for the autonomy stack of an AV and embed it
into the co-design problem of a mobility system. 184

169 Pareto front for the optimal design of a mobiltiy system featuring AVs
and public transit. The pareto front is in terms of system performance
(average travel time) and produced externalities. 185

170 Cartoon representation of posetal games applied to AVs navigating an
intersection. 191

171 Example of priorities over metrics, which induce priorities over tra-
jectories. 192

172 Sample solution of a series of posetal games, in the setting of an inter-
section with three AVs. 193

173 Scheme of interactions for sequential mobility games. 194
174 Equilibria of the game with respect to cost for customers, cost of emis-

sions, and public revenue. Each point is a Nash equilibrium of the
simultaneous game between mobility service providers. The equilib-
rium of the sequential game directly results from the weights of the
three metrics in municipality’s social welfare. 195

175 Identities for the monoidal structure on DP. 214

List of Tables

1 Use of colors . 14

2 Properties of the Bool poset. Note that ���. 37

3 Selection of drones produced by DJI. 54

4 Variables, options and sources for the drone co-design problem. . . 114

5 Processes and operands examples [18, Table 2.2], [158]. 120

6 Variables, options and sources for the AV co-design problem. 143
7 Variables and options for the AV co-design problem. 154

8 Parameters, variables, numbers, and units for the case studies. . . . 175
9 Comparison of the considered mobility solutions. 176

Bibliography

[1] G. Zardini, D. I. Spivak, A. Censi, and E. Frazzoli, “A compositional sheaf-
theoretic framework for event-based systems,” in Proceedings of the 3rd
Annual International Applied Category Theory Conference 2020, Cam-
bridge, USA, 6-10th July 2020, ser. Electronic Proceedings in Theoretical
Computer Science, vol. 333, Open Publishing Association, 2020, pp. 139–
153. ���: 10.4204/EPTCS.333.10.

[2] E. Chollet, B. Clarke, M. Johnson, M. Songa, V. Wang, and G. Zardini,
“Limits and colimits in a category of lenses,” in Proceedings of the Fourth
International Conference on Applied Category Theory, Cambridge, United
Kingdom, 12-16th July 2021, K. Kishida, Ed., ser. Electronic Proceedings
in Theoretical Computer Science, vol. 372, Open Publishing Association,
2022, pp. 164–177. ���: 10.4204/EPTCS.372.12.

[3] D. o. E. a. S. A. United Nations, “68% of the world population projected
to live in urban areas by 2050, says un,” UN, Tech. Rep., 2021. [Online].
Available: https://www.un.org/development.

[4] M. Czepkiewicz, J. Heinonen, and J. Ottelin, “Why do urbanites travel
more than do others? A review of associations between urban form and
long-distance leisure travel,” Environmental Research Letters, vol. 13, no. 7,
p. 073 001, 2018. ���: 10.1088/1748-9326/aac9d2.

[5] C. Calastri, S. Borghesi, and G. Fagiolo, “How do people choose their
commuting mode? An evolutionary approach to travel choices,”Economia
politica, vol. 36, no. 3, pp. 887–912, 2019. ���: 10.1007/s40888-018-
0099-1.

[6] S. Ranchordás, “Smart mobility, transport poverty and the legal framework
of inclusive mobility,” in Smart Urban Mobility: Law, Regulation, and
Policy. Springer Berlin Heidelberg, 2020, pp. 61–80. ���: 10.1007/978-
3-662-61920-9_4.

[7] T. city of New York, “Onenyc 2050 report,” NYC, Tech. Rep., 2021. [On-
line]. Available: http://onenyc.cityofnewyork.us/strategies.

[8] T. Berger, C. Chen, and C. B. Frey, “Drivers of disruption? Estimating
the uber e�ect,” European Economic Review, vol. 110, pp. 197–210, 2018.
���: 10.1016/j.euroecorev.2018.05.006.

[9] B. Rogers, “The social costs of Uber,” U. Chi. L. Rev. Dialogue, vol. 82,
p. 85, 2015.

https://doi.org/10.4204/EPTCS.333.10
https://doi.org/10.4204/EPTCS.372.12
https://www.un.org/development
https://doi.org/10.1088/1748-9326/aac9d2
https://doi.org/10.1007/s40888-018-0099-1
https://doi.org/10.1007/s40888-018-0099-1
https://doi.org/10.1007/978-3-662-61920-9_4
https://doi.org/10.1007/978-3-662-61920-9_4
http://onenyc.cityofnewyork.us/strategies
https://doi.org/10.1016/j.euroecorev.2018.05.006

258 Bibliography

[10] T. Yigitcanlar, M. Wilson, and M. Kamruzzaman, “Disruptive impacts
of automated driving systems on the built environment and land use:
An urban planner’s perspective,” Journal of Open Innovation: Technol-
ogy, Market, and Complexity, vol. 5, no. 2, p. 24, 2019. ���: 10.3390/
joitmc5020024.

[11] U. Nations, “Cities and pollution,” UN, Tech. Rep., 2021. [Online]. Avail-
able: https://www.un.org/en/climatechange.

[12] E. C. for Mobility and Trasport, “Sustaiable and smart mobility strategy,”
EU, Tech. Rep., 2021. [Online]. Available: https://ec.europa.eu/
transport/sites/transport/files/2021-mobility-strategy-

and-action-plan.pdf.

[13] H. A. Simon, The Sciences of the Arti�cial (3rd Ed.) Cambridge, MA, USA:
MIT Press, 1996. ���: 10.7551/mitpress/12107.001.0001.

[14] S. A. Seshia, S. Hu, W. Li, and Q. Zhu, “Design automation of cyber-
physical systems: Challenges, advances, and opportunities,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 36, no. 9, pp. 1421–1434, 2017. ���: 10.1109/TCAD.2016.2633961.

[15] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), 2008, pp. 363–369. ���: 10.1109/
ISORC.2008.25.

[16] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot Design: Formalisms,
Representations, and the Role of the Designer,” 2018. [Online]. Available:
http://arxiv.org/abs/1806.05157.

[17] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality be-
tween product and organizational architectures: A test of the "mirror-
ing" hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309–1324, Oct. 2012.
���: 10.1016/j.respol.2012.04.011. [Online]. Available: http:
//dx.doi.org/10.1016/j.respol.2012.04.011.

[18] O. L. de Weck, D. Roos, and C. L. Magee, Engineering Systems: Meeting
Human Needs in a Complex Technological World. The MIT Press, Oct.
2011. ���: 10.7551/mitpress/8799.001.0001. [Online]. Available:
https://doi.org/10.7551/mitpress/8799.001.0001.

[19] E. Antonsson and J. Cagan, Formal Engineering Design Synthesis. 2001.
���: 10.1017/cbo9780511529627.

[20] K. K. Fu, M. C. Yang, and K. L. Wood, “Design principles: Literature
review, analysis, and future directions,” Journal of Mechanical Design,
Transactions of the ASME, vol. 138, no. 10, pp. 1–13, 2016. ���: 10.1115/
1.4034105.

https://doi.org/10.3390/joitmc5020024
https://doi.org/10.3390/joitmc5020024
https://www.un.org/en/climatechange
https://ec.europa.eu/transport/sites/transport/files/2021-mobility-strategy-and-action-plan.pdf
https://ec.europa.eu/transport/sites/transport/files/2021-mobility-strategy-and-action-plan.pdf
https://ec.europa.eu/transport/sites/transport/files/2021-mobility-strategy-and-action-plan.pdf
https://doi.org/10.7551/mitpress/12107.001.0001
https://doi.org/10.1109/TCAD.2016.2633961
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
http://arxiv.org/abs/1806.05157
https://doi.org/10.1016/j.respol.2012.04.011
http://dx.doi.org/10.1016/j.respol.2012.04.011
http://dx.doi.org/10.1016/j.respol.2012.04.011
https://doi.org/10.7551/mitpress/8799.001.0001
https://doi.org/10.7551/mitpress/8799.001.0001
https://doi.org/10.1017/cbo9780511529627
https://doi.org/10.1115/1.4034105
https://doi.org/10.1115/1.4034105

Bibliography 259

[21] O. Sigmund and K. Maute, “Topology optimization approaches: A com-
parative review,” Structural and multidisciplinary optimization, vol. 48,
no. 6, pp. 1031–1055, 2013. ���: 10.1007/s00158-013-0978-6.

[22] J. L. Jewett and J. V. Carstensen, “Topology-optimized design, construction
and experimental evaluation of concrete beams,” Automation in Construc-
tion, vol. 102, pp. 59–67, 2019. ���: 10.1016/j.autcon.2019.02.001.

[23] M. I. Campbell, J. Cagan, and K. Kotovsky, “A-Design: An agent-based
approach to conceptual design in a dynamic environment,” Research in
Engineering Design - Theory, Applications, and Concurrent Engineering,
vol. 11, no. 3, pp. 172–192, 1999. ���: 10.1007/s001630050013.

[24] M. I. Campbell, J. Cagan, and K. Kotovsky, “The A-design approach to
managing automated design synthesis,” Research in Engineering Design,
vol. 14, no. 1, pp. 12–24, 2003. ���: 10.1007/s00163-002-0025-x.

[25] H. Yoshikawa, “General design theory and a cad system,” Man-machine
Communication in CAD/CAM, vol. 35, 1981.

[26] Y. Reich, “A Critical Review of General Design Theory,” vol. 7, pp. 1–18,
1995. ���: 10.1007/BF01681909.

[27] V. Hubka and W. E. Eder,Theory of technical systems: a total concept theory
for engineering design. Springer Science & Business Media, 2012. ���:
10.1007/978-3-642-52121-8.

[28] N. P. Suh, “Axiomatic Design Theory for Systems,”Research in Engineering
Design, vol. 10, pp. 189–209, 1998. ���: 10.1007/s001639870001.

[29] N. P. Suh, Axiomatic design: advances and applications. Oxford university
press New York, 2009. ���: 10.1016/S0142-694X(02)00058-3.

[30] J. S. Arora, “Multi-objective optimum design concepts and methods,”
Introduction to optimum design, pp. 657–679, 2012. ���: 10.1016/B978-
012064155-0/50017-3.

[31] I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for mul-
tiobjective optimization: A new method for pareto front generation,”
Structural and multidisciplinary optimization, vol. 31, no. 2, pp. 105–116,
2006. ���: 10.1007/s00158-005-0557-6.

[32] O. L. de Weck, “Multiobjective optimization: History and promise,” 2004.

[33] A. Prorok, M. Malencia, L. Carlone, G. S. Sukhatme, B. M. Sadler, and V.
Kumar, “Beyond robustness: A taxonomy of approaches towards resilient
multi-robot systems,” arXiv preprint arXiv:2109.12343, 2021.

[34] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for Robots:
Guarantees and Feedback for Robot Behavior,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 211–236, 2018. ���: 10.
1146/annurev-control-060117-104838.

https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1016/j.autcon.2019.02.001
https://doi.org/10.1007/s001630050013
https://doi.org/10.1007/s00163-002-0025-x
https://doi.org/10.1007/BF01681909
https://doi.org/10.1007/978-3-642-52121-8
https://doi.org/10.1007/s001639870001
https://doi.org/10.1016/S0142-694X(02)00058-3
https://doi.org/10.1016/B978-012064155-0/50017-3
https://doi.org/10.1016/B978-012064155-0/50017-3
https://doi.org/10.1007/s00158-005-0557-6
https://doi.org/10.1146/annurev-control-060117-104838
https://doi.org/10.1146/annurev-control-060117-104838

260 Bibliography

[35] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative representations
for the automated design of modular physical robots,” IEEE Transactions
on Robotics and Automation, vol. 19, no. 4, pp. 703–719, 2003. ���: 10.
1109/TRA.2003.814502.

[36] H. Lipson and J. B. Pollack, “Automatic design and manufacture of robotic
lifeforms,” Letters to Nature, vol. 406, no. August, 2000. ���: 10.1038/
35023115.

[37] I. Incer, “The Algebra of Contracts,” Ph.D. dissertation, 2022.

[38] E. Kolberg, Y. Reich, and I. Levin, “Designing winning robots by careful
design of their development process,” Research in Engineering Design,
vol. 25, no. 2, pp. 157–183, 2014. ���: 10.1007/s00163-014-0171-y.

[39] Q. Zhu and A. Sangiovanni-Vincentelli, “Codesign methodologies and
tools for cyber–physical systems,” Proceedings of the IEEE, vol. 106, no. 9,
pp. 1484–1500, 2018. ���: 10.1109/JPROC.2018.2864271.

[40] J.-P. Merlet, “Optimal design of robots,” in Robotics: Science and systems,
2005. ���: 10.15607/RSS.2005.I.041.

[41] M. Lahijanian, M. Svorenova, A. A. Morye, et al., Resource-performance
tradeo� analysis for mobile robots, 2018. ���: 10 . 1109 / LRA . 2018 .
2803814.

[42] S. Seok, A. Wang, M. Y. Chuah, et al., “Design principles for energy-
e�cient legged locomotion and implementation on the mit cheetah robot,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1117–1129,
2014. ���: 10.1109/TMECH.2014.2339013.

[43] J. M. O’Kane and S. M. LaValle, “Comparing the power of robots,” The
International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23, Jan.
2008. ���: 10.1177/02783649070820.

[44] S. Karaman and E. Frazzoli, “High-speed motion with limited sensing
range in a poisson forest,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), 2012, pp. 3735–3740. ���: 10.1109/CDC.2012.
6426047.

[45] G. Bravo-Palacios, A. Del Prete, and P. M. Wensing, “One robot for many
tasks: Versatile co-design through stochastic programming,” IEEERobotics
and Automation Letters, vol. 5, no. 2, pp. 1680–1687, 2020. ���: 10.1109/
LRA.2020.2969948.

[46] F. Ramos, A. S. Vázquez, R. Fernández, and A. Olivares-Alarcos, “On-
tology based design, control and programming of modular robots,” In-
tegrated Computer-Aided Engineering, vol. 25, no. 2, pp. 173–192, 2018.
���: 10.3233/ICA-180569.

https://doi.org/10.1109/TRA.2003.814502
https://doi.org/10.1109/TRA.2003.814502
https://doi.org/10.1038/35023115
https://doi.org/10.1038/35023115
https://doi.org/10.1007/s00163-014-0171-y
https://doi.org/10.1109/JPROC.2018.2864271
https://doi.org/10.15607/RSS.2005.I.041
https://doi.org/10.1109/LRA.2018.2803814
https://doi.org/10.1109/LRA.2018.2803814
https://doi.org/10.1109/TMECH.2014.2339013
https://doi.org/10.1177/02783649070820
https://doi.org/10.1109/CDC.2012.6426047
https://doi.org/10.1109/CDC.2012.6426047
https://doi.org/10.1109/LRA.2020.2969948
https://doi.org/10.1109/LRA.2020.2969948
https://doi.org/10.3233/ICA-180569

Bibliography 261

[47] A. A. C. Collin, “A systems architecture framework towards hardware
selection for autonomous navigation,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2019.

[48] A. Censi, E. Mueller, E. Frazzoli, and S. Soatto, “A Power-Performance
Approach to Comparing Sensor Families, with application to comparing
neuromorphic to traditional vision sensors,” in Proceedings - IEEE In-
ternational Conference on Robotics and Automation, vol. 2015-June, May
2015, pp. 3319–3326. ���: 10.1109/ICRA.2015.7139657.

[49] J. Ichnowski, J. Prins, and R. Alterovitz, “Cloud-based motion plan com-
putation for power-constrained robots,” in Algorithmic Foundations of
Robotics XII, Springer, 2020, pp. 96–111. ���: 10.1007/978-3-030-
43089-4_7.

[50] A. Schulz, J. Xu, B. Zhu, C. Zheng, E. Grinspun, and W. Matusik, “Inter-
active design space exploration and optimization for CAD models,” ACM
Transactions on Graphics, vol. 36, no. 4, 2017. ���: 10.1145/3072959.
3073688.

[51] A. Schulz, H. Wang, E. Grinspun, J. Solomon, and W. Matusik, “Interactive
exploration of design trade-o�s,” ACM Transactions on Graphics, vol. 37,
no. 4, 2018. ���: 10.1145/3197517.3201385.

[52] A. Schulz, “Computational Design for the Next Manufacturing Revolu-
tion,” Ph.D. dissertation, 2018.

[53] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “Accomplishing high-level
tasks with modular robots,” Autonomous Robots, vol. 42, pp. 1337–1354,
2018. ���: 10.1007/s10514-018-9738-1.

[54] T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, “Computer-aided compo-
sitional design and veri�cation for modular robots,” Springer Proceedings
in Advanced Robotics, vol. 2, pp. 237–252, 2018. ���: 10.1007/978-3-
319-51532-8-15.

[55] B. R. Donald, “On information invariants in robotics,” Arti�cial Intelli-
gence, vol. 72, no. 1-2, pp. 217–304, 1995. ���: 10.1016/0004-3702(94)
00024-U.

[56] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2008. ���:
10.1109/TSP.2008.2007095.

[57] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006. ���:
10.1016/j.automatica.2005.09.016.

https://doi.org/10.1109/ICRA.2015.7139657
https://doi.org/10.1007/978-3-030-43089-4_7
https://doi.org/10.1007/978-3-030-43089-4_7
https://doi.org/10.1145/3072959.3073688
https://doi.org/10.1145/3072959.3073688
https://doi.org/10.1145/3197517.3201385
https://doi.org/10.1007/s10514-018-9738-1
https://doi.org/10.1007/978-3-319-51532-8-15
https://doi.org/10.1007/978-3-319-51532-8-15
https://doi.org/10.1016/0004-3702(94)00024-U
https://doi.org/10.1016/0004-3702(94)00024-U
https://doi.org/10.1109/TSP.2008.2007095
https://doi.org/10.1016/j.automatica.2005.09.016

262 Bibliography

[58] C. Giraud and B. Jouvencel, “Sensor selection: A geometrical approach,” in
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Human Robot Interaction and Cooperative Robots, vol. 2,
1995, 555–560 vol.2. ���: 10.1109/IROS.1995.526271.

[59] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection: Lever-
aging submodularity,” in 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 2572–2577. ���: 10.1109/CDC.2010.5717225.

[60] V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Lqg control and
sensing co-design,” IEEE Transactions on Automatic Control, vol. 66, no. 4,
pp. 1468–1483, 2021. ���: 10.1109/TAC.2020.2997661.

[61] A. Collin, A. Siddiqi, Y. Imanishi, Y. Matta, T. Tanimichi, and O. de Weck,
“A multiobjective systems architecture model for sensor selection in
autonomous vehicle navigation,” in International Conference on Com-
plex Systems Design & Management, Springer, 2020, pp. 141–152. ���:
10.1007/978-3-030-34843-4_12.

[62] A. Collin, A. Siddiqi, Y. Imanishi, E. Rebentisch, T. Tanimichi, and O. L.
de Weck, “Autonomous driving systems hardware and software architec-
ture exploration: Optimizing latency and cost under safety constraints,”
Systems Engineering, vol. 23, no. 3, pp. 327–337, 2020. ���: 10.1002/
sys.21528.

[63] B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, “Actuator placement
for optimizing network performance under controllability constraints,”
in 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019,
pp. 7140–7147. ���: 10.1109/CDC40024.2019.9030204.

[64] B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, “Actuator place-
ment under structural controllability using forward and reverse greedy
algorithms,” IEEE Transactions on Automatic Control, vol. 66, no. 12,
pp. 5845–5860, 2020. ���: 10.1109/TAC.2020.3044284.

[65] D. Golovin, M. Faulkner, and A. Krause, “Online distributed sensor se-
lection,” in Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, 2010, pp. 220–231. ���:
10.1145/1791212.1791239.

[66] T. Tanaka and H. Sandberg, “Sdp-based joint sensor and controller de-
sign for information-regularized optimal lqg control,” in 2015 54th IEEE
Conference on Decision and Control (CDC), IEEE, 2015, pp. 4486–4491.
���: 10.1109/CDC.2015.7402920.

[67] S. Tatikonda and S. Mitter, “Control under communication constraints,”
IEEE Transactions on automatic control, vol. 49, no. 7, pp. 1056–1068,
2004. ���: 10.1109/TAC.2004.831187.

https://doi.org/10.1109/IROS.1995.526271
https://doi.org/10.1109/CDC.2010.5717225
https://doi.org/10.1109/TAC.2020.2997661
https://doi.org/10.1007/978-3-030-34843-4_12
https://doi.org/10.1002/sys.21528
https://doi.org/10.1002/sys.21528
https://doi.org/10.1109/CDC40024.2019.9030204
https://doi.org/10.1109/TAC.2020.3044284
https://doi.org/10.1145/1791212.1791239
https://doi.org/10.1109/CDC.2015.7402920
https://doi.org/10.1109/TAC.2004.831187

Bibliography 263

[68] D. Soudbakhsh, L. T. Phan, O. Sokolsky, I. Lee, and A. Annaswamy, “Co-
design of control and platform with dropped signals,” in Proceedings of the
ACM/IEEE 4th international conference on cyber-physical systems, 2013,
pp. 129–140. ���: 10.1145/2502524.2502542.

[69] U. Rosolia, A. Singletary, and A. D. Ames, “Uni�ed multirate control:
From low-level actuation to high-level planning,” IEEE Transactions on
Automatic Control, vol. 67, no. 12, pp. 6627–6640, 2022. ���: 10.1109/
TAC.2022.3184664.

[70] D. A. Shell, J. M. O’Kane, and F. Z. Saberifar, “On the design of minimal
robots that can solve planning problems,” IEEE Transactions on Automa-
tion Science and Engineering, pp. 1–12, 2021. ���: 10.1109/TASE.2021.
3050033.

[71] S. Ghasemlou, J. M. Okane, and D. A. Shell, “Delineating boundaries
of feasibility between robot designs,” IEEE International Conference on
Intelligent Robots and Systems, pp. 422–429, 2018. ���: 10.1109/IROS.
2018.8593811.

[72] S. Ghasemlou and J. M. O’Kane, “Accelerating the Construction of Bound-
aries of Feasibility in Three Classes of Robot Design Problems,” IEEE
International Conference on Intelligent Robots and Systems, pp. 2532–2538,
2019. ���: 10.1109/IROS40897.2019.8968258.

[73] S. Ghasemlou, “Algorithmic Robot Design: Label Maps, Procrustean
Graphs, and the Boundary of Non-destructiveness,” Ph.D. dissertation,
2020, p. 14. [Online]. Available: https : / / all3dp . com / 2 / fused -
deposition-modeling-fdm-3d-printing-simply-explained/.

[74] F. Z. Saberifar, J. M. O’Kane, and D. A. Shell, “The Hardness of Minimiz-
ing Design Cost Subject to Planning Problems,” Springer Proceedings in
Advanced Robotics, vol. 14, pp. 868–883, 2020. ���: 10.1007/978-3-
030-44051-0-50.

[75] M. Erdmann, “Understanding Action and Sensing by Designing Action-
Based Sensors,” International Journal of Robotics Research, pp. 483–509,
1995. ���: 10.1177/027836499501400506.

[76] F. Z. Saberifar, S. Ghasemlou, D. A. Shell, and J. M. O’Kane, “Toward a
language-theoretic foundation for planning and �ltering,” International
Journal of Robotics Research, vol. 38, no. 2-3, pp. 236–259, 2019. ���:
10.1177/0278364918801503.

[77] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-Vincentelli,
“Co-design of control algorithm and embedded platform for building hvac
systems,” in Proceedings of the ACM/IEEE 4th International Conference
on Cyber-Physical Systems, 2013, pp. 61–70. ���: 10.1145/2502524.
2502533.

https://doi.org/10.1145/2502524.2502542
https://doi.org/10.1109/TAC.2022.3184664
https://doi.org/10.1109/TAC.2022.3184664
https://doi.org/10.1109/TASE.2021.3050033
https://doi.org/10.1109/TASE.2021.3050033
https://doi.org/10.1109/IROS.2018.8593811
https://doi.org/10.1109/IROS.2018.8593811
https://doi.org/10.1109/IROS40897.2019.8968258
https://all3dp.com/2/fused-deposition-modeling-fdm-3d-printing-simply-explained/
https://all3dp.com/2/fused-deposition-modeling-fdm-3d-printing-simply-explained/
https://doi.org/10.1007/978-3-030-44051-0-50
https://doi.org/10.1007/978-3-030-44051-0-50
https://doi.org/10.1177/027836499501400506
https://doi.org/10.1177/0278364918801503
https://doi.org/10.1145/2502524.2502533
https://doi.org/10.1145/2502524.2502533

264 Bibliography

[78] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-layer
codesign for secure cyber-physical systems,” IEEETransactions onComputer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp. 699–711,
2016. ���: 10.1109/TCAD.2016.2523937.

[79] A. Spielberg, A. Amini, L. Chin, W. Matusik, and D. Rus, “Co-learning of
task and sensor placement for soft robotics,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 1208–1215, 2021. ���: 10.1109/LRA.2021.
3056369.

[80] L. Ballotta, L. Schenato, and L. Carlone, “Computation-communication
trade-o�s and sensor selection in real-time estimation for processing
networks,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 4, pp. 2952–2965, 2020. ���: 10.1109/TNSE.2020.3008337.

[81] Y. Hu, J. Liu, A. Spielberg, et al., “ChainQueen: A real-time di�erentiable
physical simulator for soft robotics,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2019-May, pp. 6265–6271,
2019. ���: 10.1109/ICRA.2019.8794333.

[82] P. Ma, T. Du, J. Z. Zhang, et al., “Di�Aqua: A Di�erentiable Computational
Design Pipeline for Soft Underwater Swimmers with Shape Interpolation,”
ACM Transactions on Graphics, vol. 40, no. 4, 2021. ���: 10 . 1145 /
3450626.3459832.

[83] M. Dubied, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann, “Sim-
to-Real for Soft Robots Using Di�erentiable FEM: Recipes for Meshing,
Damping, and Actuation,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 5015–5022, 2022. ���: 10.1109/LRA.2022.3154050.

[84] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Di�stack: A di�eren-
tiable and modular control stack for autonomous vehicles,” in Proceedings
of The 6thConference on Robot Learning, K. Liu, D. Kulic, and J. Ichnowski,
Eds., ser. Proceedings of Machine Learning Research, vol. 205, PMLR,
2023, pp. 2170–2180.

[85] J. Xu, A. Spielberg, A. Zhao, D. Rus, and W. Matusik, “Multi-Objective
Graph Heuristic Search for Terrestrial Robot Design,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2021-May,
no. Icra, pp. 12 759–12 765, 2021. ���: 10 . 1109 / ICRA48506 . 2021 .
9561818.

[86] A. Zhao, J. Xu, M. Konakovi�-Lukovi�, et al., “RoboGrammar: Graph gram-
mar for terrain-optimized robot design,” ACM Transactions on Graphics,
vol. 39, no. 6, 2020. ���: 10.1145/3414685.3417831.

https://doi.org/10.1109/TCAD.2016.2523937
https://doi.org/10.1109/LRA.2021.3056369
https://doi.org/10.1109/LRA.2021.3056369
https://doi.org/10.1109/TNSE.2020.3008337
https://doi.org/10.1109/ICRA.2019.8794333
https://doi.org/10.1145/3450626.3459832
https://doi.org/10.1145/3450626.3459832
https://doi.org/10.1109/LRA.2022.3154050
https://doi.org/10.1109/ICRA48506.2021.9561818
https://doi.org/10.1109/ICRA48506.2021.9561818
https://doi.org/10.1145/3414685.3417831

Bibliography 265

[87] A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus, “Functional co-
optimization of articulated robots,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2017, pp. 5035–5042. ���:
10.1109/ICRA.2017.7989587.

[88] A. Spielberg, A. Zhao, T. Du, Y. Hu, D. Rus, and W. Matusik, “Learning-
in-the-loop optimization: End-to-end control and co-design of soft robots
through learned deep latent representations,” Advances in Neural Infor-
mation Processing Systems, vol. 32, no. NeurIPS, 2019.

[89] A. Schulz, C. Sung, A. Spielberg, et al., “Interactive robogami: An end-to-
end system for design of robots with ground locomotion,” International
Journal of Robotics Research, vol. 36, no. 10, pp. 1131–1147, 2017. ���:
10.1177/0278364917723465.

[90] C. R. Sung, “Computational design of foldable robots via composition,”
no. 2011, p. 192, 2016. [Online]. Available: https://dspace.mit.edu/
handle/1721.1/113734.

[91] A. M. Mehta and D. Rus, “An end-to-end system for designing mechanical
structures for print-and-fold robots,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 1460–1465, 2014. ���: 10.
1109/ICRA.2014.6907044.

[92] A. M. Mehta, J. DelPreto, K. W. Wong, S. Hamill, H. Kress-Gazit, and D.
Rus, “Robot Creation from Functional Speci�cations,” Springer Proceed-
ings in Advanced Robotics, vol. 3, pp. 631–648, 2018. ���: 10.1007/978-
3-319-60916-4-36.

[93] A. M. Mehta, J. Delpreto, B. Shaya, and D. Rus, “Cogeneration of mechan-
ical, electrical, and software designs for printable robots from structural
speci�cations,” IEEE International Conference on Intelligent Robots and
Systems, no. Iros, pp. 2892–2897, 2014. ���: 10 . 1109 / IROS . 2014 .
6942960.

[94] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution: Towards ef-
�cient automatic robot design,” 7th International Conference on Learning
Representations, ICLR 2019, pp. 1–17, 2019.

[95] M. Römmerman, D. Kühn, and F. Kirchner, “Robot design for space mis-
sions using evolutionary computation,” 2009 IEEE Congress on Evolution-
ary Computation, CEC 2009, pp. 2098–2105, 2009. ���: 10.1109/CEC.
2009.4983200.

[96] I. Tanev, T. Ray, and A. Buller, “Automated evolutionary design, robust-
ness, and adaptation of sidewinding locomotion of a simulated snake-like
robot,” IEEE Transactions on Robotics, vol. 21, no. 4, pp. 632–645, 2005.
���: 10.1109/TRO.2005.851028.

https://doi.org/10.1109/ICRA.2017.7989587
https://doi.org/10.1177/0278364917723465
https://dspace.mit.edu/handle/1721.1/113734
https://dspace.mit.edu/handle/1721.1/113734
https://doi.org/10.1109/ICRA.2014.6907044
https://doi.org/10.1109/ICRA.2014.6907044
https://doi.org/10.1007/978-3-319-60916-4-36
https://doi.org/10.1007/978-3-319-60916-4-36
https://doi.org/10.1109/IROS.2014.6942960
https://doi.org/10.1109/IROS.2014.6942960
https://doi.org/10.1109/CEC.2009.4983200
https://doi.org/10.1109/CEC.2009.4983200
https://doi.org/10.1109/TRO.2005.851028

266 Bibliography

[97] C. Leger and J. Bares, “Automated synthesis and optimization of robot
con�gurations,” Proceedings of the ASME Design Engineering Technical
Conference, vol. 1A-1998, 1998. ���: 10.1115/DETC98/MECH-5945.

[98] S. Ha, S. Coros, A. Alspach, et al., “Computational Design of Robotic
Devices From High-Level Motion Speci�cations,” IEEE Transactions on
Robotics, vol. 34, no. 5, pp. 1240–1251, 2018. ���: 10.1109/TRO.2018.
2830419.

[99] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro, E. Grinspun, and M.
Gross, “Computational design of linkage-based characters,” ACM Trans-
actions on Graphics, vol. 33, no. 4, pp. 1–9, 2014. ���: 10.1145/2601097.
2601143.

[100] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros, “Skater-
bots: Optimization-based design and motion synthesis for robotic crea-
tures with legs and wheels,” vol. 37, no. 4, 2018. ���: 10.1145/3197517.
3201368.

[101] V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and S. Coros,
“Interactive design of 3d-printable robotic creatures,” ACM Transactions
on Graphics, vol. 34, no. 6, pp. 1–9, 2015. ���: 10 . 1145 / 2816795 .
2818137.

[102] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Joint optimization of
robot design and motion parameters using the implicit function theorem,”
Robotics: Science and Systems, vol. 13, 2017. ���: 10.15607/rss.2017.
xiii.003.

[103] G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, and H. P�s-
ter, “Computational design of walking automata,” Proceedings - SCA 2015:
14th ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion, pp. 93–100, 2015. ���: 10.1145/2786784.2786803.

[104] J. H. Park and H. Asada, “Concurrent design optimization of mechanical
structure and control for high speed robots,” Journal of Dynamic Sys-
tems, Measurement and Control, Transactions of the ASME, vol. 116, no. 3,
pp. 344–356, 1994. ���: 10.1115/1.2899229.

[105] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “Scalable co-optimization
of morphology and control in embodied machines,” Journal of the Royal
Society Interface, vol. 15, no. 143, 2018. ���: 10.1098/rsif.2017.0937.

[106] N. Cheney, J. Bongard, V. Sunspiral, and H. Lipson, “On the Di�culty of
Co-Optimizing Morphology and Control in Evolved Virtual Creatures,”
2013.

[107] O. Magnussen, M. Ottestad, and G. Hovland, “Multicopter design opti-
mization and validation,” Modeling, Identi�cation and Control, vol. 36,
no. 2, pp. 67–79, 2015. ���: 10.4173/mic.2015.2.1.

https://doi.org/10.1115/DETC98/MECH-5945
https://doi.org/10.1109/TRO.2018.2830419
https://doi.org/10.1109/TRO.2018.2830419
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.15607/rss.2017.xiii.003
https://doi.org/10.15607/rss.2017.xiii.003
https://doi.org/10.1145/2786784.2786803
https://doi.org/10.1115/1.2899229
https://doi.org/10.1098/rsif.2017.0937
https://doi.org/10.4173/mic.2015.2.1

Bibliography 267

[108] J. Ziglar, R. K. Williams, and A. Wicks, “Context-aware system synthesis,
task assignment, and routing,” Autonomous Robots, vol. 47, no. 2, pp. 193–
210, 2023. ���: 10.1007/s10514-022-10076-3.

[109] A. Benveniste, B. Caillaud, D. Nickovic, et al., “Contracts for system de-
sign,” Foundations and Trends® in Electronic Design Automation, vol. 12,
no. 2-3, pp. 124–400, 2018. ���: 10.1561/1000000053.

[110] A. Ferrari and A. Sangiovanni-Vincentelli, “System design: Traditional
concepts and new paradigms,” in Proceedings 1999 IEEE International
Conference on Computer Design: VLSI in Computers and Processors (Cat.
No.99CB37040), 1999, pp. 2–12. ���: 10.1109/ICCD.1999.808256.

[111] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, “System-
level design: Orthogonalization of concerns and platform-based design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, no. 12, pp. 1523–1543, 2000. ���: 10.1109/43.898830.

[112] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi,
“Bene�ts and challenges for platform-based design,” in Proceedings of
the 41st Annual Design Automation Conference, New York, NY, USA: As-
sociation for Computing Machinery, 2004, pp. 409–414. ���: 10.1145/
996566.996684.

[113] A. Sangiovanni-Vincentelli, “Quo vadis, sld? reasoning about the trends
and challenges of system level design,” Proceedings of the IEEE, vol. 95,
no. 3, pp. 467–506, 2007. ���: 10.1109/JPROC.2006.890107.

[114] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T.
Villa, “A platform-based design methodology with contracts and related
tools for the design of cyber-physical systems,” Proceedings of the IEEE,
vol. 103, no. 11, pp. 2104–2132, 2015. ���: 10 . 1109 / JPROC . 2015 .
2453253.

[115] P. Nuzzo, J. Li, A. L. Sangiovanni-Vincentelli, Y. Xi, and D. Li, “Stochas-
tic assume-guarantee contracts for cyber-physical system design,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. 1, 2019. ���:
10.1145/3243216.

[116] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming dr.
frankenstein: Contract-based design for cyber-physical systems*,” Euro-
pean Journal of Control, vol. 18, no. 3, pp. 217–238, 2012. ���: 10.3166/
ejc.18.217-238.

[117] I. Incer, A. Badithela, J. Graebener,et al., “Pacti: Scaling Assume-Guarantee
Reasoning for System Analysis and Design,” pp. 1–22, 2023. [Online].
Available: http://arxiv.org/abs/2303.17751.

https://doi.org/10.1007/s10514-022-10076-3
https://doi.org/10.1561/1000000053
https://doi.org/10.1109/ICCD.1999.808256
https://doi.org/10.1109/43.898830
https://doi.org/10.1145/996566.996684
https://doi.org/10.1145/996566.996684
https://doi.org/10.1109/JPROC.2006.890107
https://doi.org/10.1109/JPROC.2015.2453253
https://doi.org/10.1109/JPROC.2015.2453253
https://doi.org/10.1145/3243216
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.3166/ejc.18.217-238
http://arxiv.org/abs/2303.17751

268 Bibliography

[118] S. Liu, A. Saoud, P. Jagtap, D. V. Dimarogonas, and M. Zamani, “Compo-
sitional Synthesis of Signal Temporal Logic Tasks via Assume-Guarantee
Contracts,” Proceedings of the IEEE Conference on Decision and Con-
trol, vol. 2022-Decem, no. Cdc, pp. 2184–2189, 2022. ���: 10.1109/
CDC51059.2022.9992715.

[119] K. Ghasemi, S. Sadraddini, and C. Belta, “Compositional synthesis via
a convex parameterization of assume-guarantee contracts,” HSCC 2020
- Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control ,part of CPS-IoT Week, no. 1, 2020. ���: 10.
1145/3365365.3382212.

[120] A. Saoud, P. Jagtap, M. Zamani, and A. Girard, “Compositional abstraction-
based synthesis for interconnected systems: An approximate composition
approach,” IEEE Transactions on Control of Network Systems, vol. 8, no. 2,
pp. 702–712, 2021. ���: 10.1109/TCNS.2021.3050123.

[121] M. Sharf, B. Besselink, A. Molin, Q. Zhao, and K. H. Johansson, “As-
sume/Guarantee Contracts for Dynamical Systems: Theory and Com-
putational Tools,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 25–30, 2021.
���: 10.1016/j.ifacol.2021.08.469. [Online]. Available: https:
//doi.org/10.1016/j.ifacol.2021.08.469.

[122] A. Censi, “A mathematical theory of co-design,” arXiv preprint arXiv:1512.08055v7,
2015.

[123] A. Censi, J. Lorand, and G. Zardini, Applied Category Theory for Engineer-
ing. 2023, Work in progress book. [Online]. Available: https://bit.ly/
3H6pwMo.

[124] E. Rechtin and M. W. Maier, The Art of Systems Architecting. USA: CRC
Press, Inc., 1997. ���: 10.1201/9781420079142.

[125] B. Davey and H. Priestley, Introduction to Lattices and Order, 2nd ed.
Cambridge University Press, 2002. ���: 10.1017/CBO9780511809088.

[126] S. Roman, Lattices and Ordered Sets. Springer, 2008. ���: 10.1007/978-
0-387-78901-9.

[127] S. M. LaValle et al., “Sensing and �ltering: A fresh perspective based on
preimages and information spaces,” Foundations and Trends® in Robotics,
vol. 1, no. 4, pp. 253–372, 2012.

[128] G. Zardini, D. Milojevic, A. Censi, and E. Frazzoli, “Co-design of embodied
intelligence: A structured approach,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021, pp. 7536–7543.
���: 10.1109/IROS51168.2021.9636513.

https://doi.org/10.1109/CDC51059.2022.9992715
https://doi.org/10.1109/CDC51059.2022.9992715
https://doi.org/10.1145/3365365.3382212
https://doi.org/10.1145/3365365.3382212
https://doi.org/10.1109/TCNS.2021.3050123
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://bit.ly/3H6pwMo
https://bit.ly/3H6pwMo
https://doi.org/10.1201/9781420079142
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1007/978-0-387-78901-9
https://doi.org/10.1007/978-0-387-78901-9
https://doi.org/10.1109/IROS51168.2021.9636513

Bibliography 269

[129] P. Duhr, D. Buccheri, C. Balerna, A. Cerofolini, and C. H. Onder, “Minimum-
race-time energy allocation strategies for the hybrid-electric formula 1
power unit,” IEEE Transactions on Vehicular Technology, vol. 72, no. 6,
pp. 7035–7050, 2023. ���: 10.1109/TVT.2023.3237388.

[130] A Lodi, S Martello, and M Monaci, “Two-dimensional packing problems:
A survey,” European Journal of Operational Research, vol. 141, no. 2,
pp. 241–252, 2002. ���: https://doi.org/10.1016/S0377-2217(02)
00123-6.

[131] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao blackwellized particle �lters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, Feb. 2007. ���: 10.1109/TRO.2006.
889486.

[132] A. Locher, M. Perdoch, and L. Van Gool, “Progressive prioritized multi-
view stereo,” IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[133] M. Z. Zia, L. Nardi, A. Jack, et al., “Comparative design space exploration
of dense and semi-dense slam,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 1292–1299. ���: 10.1109/
ICRA.2016.7487261.

[134] G. Zardini, A. Censi, and E. Frazzoli, “Co-design of autonomous systems:
From hardware selection to control synthesis,” in 2021 European Control
Conference (ECC), 2021, pp. 682–689. ���: 10.23919/ECC54610.2021.
9654960.

[135] M. H. Davis, “Linear estimation and stochastic control,” 1977.

[136] H. Kwakernaak and R. Sivan,Linearoptimal control systems. Wiley-interscience
New York, 1972, vol. 1.

[137] P. De Leenheer and E. D. Sontag, “A note on the monotonicity of matrix
riccati equations,” Tech. Rep., 2004.

[138] E. Hendricks, O. Jannerup, and P. H. Sørensen, Linear systems control:
deterministic and stochastic methods. Springer.

[139] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S.
Sastry, “Kalman �ltering with intermittent observations,” IEEE Trans-
actions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004. ���:
10.1109/TAC.2004.834121.

[140] A. Censi, “Kalman �ltering with intermittent observations: Convergence
for semi-markov chains and an intrinsic performance measure,” IEEE
Transactions on Automatic Control, 2011. ���: 10.1109/TAC.2010.
2097350.

https://doi.org/10.1109/TVT.2023.3237388
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/ICRA.2016.7487261
https://doi.org/10.1109/ICRA.2016.7487261
https://doi.org/10.23919/ECC54610.2021.9654960
https://doi.org/10.23919/ECC54610.2021.9654960
https://doi.org/10.1109/TAC.2004.834121
https://doi.org/10.1109/TAC.2010.2097350
https://doi.org/10.1109/TAC.2010.2097350

270 Bibliography

[141] S. M. Melzer and B. C. Kuo, “Sampling period sensitivity of the optimal
sampled data linear regulator,” Automatica, vol. 7, no. 3, pp. 367–370,
1971. ���: 10.1016/0005-1098(71)90129-4.

[142] E. Bini and G. M. Buttazzo, “The optimal sampling pattern for linear
control systems,” IEEE Transactions on Automatic Control, vol. 59, no. 1,
pp. 78–90, 2013. ���: 10.1109/TAC.2013.2279913.

[143] A. Benveniste, D. Nickovic, B. Caillaud, et al., Contracts for system design.
2018, vol. 12, pp. 124–400. ���: 10.1561/1000000053.

[144] E. S. Kim, M. Arcak, and S. A. Seshia, “A small gain theorem for para-
metric assume-guarantee contracts,” HSCC 2017 - Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control
(part of CPSWeek), pp. 207–216, 2017. ���: 10.1145/3049797.3049805.

[145] L. Sandel, G. Zardini, S. Mitrova, et al., “Enhancing e�ciency and re-
liability of electric vehicles via adaptive e-gear control,” in 2023 IEEE
International Intelligent Transportation Systems Conference (ITSC), IEEE,
2023.

[146] A. Rezaeizadeh, G. Zardini, E. Frazzoli, and S. Mastellone, “Reliability-
aware control of power converters in mobility applications,” 2024 Euro-
pean Control Conference, 2024.

[147] L. Nardi, B. Bodin, M. Z. Zia, et al., “Introducing slambench, a performance
and accuracy benchmarking methodology for slam,” in 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2015, pp. 5783–
5790. ���: 10.1109/ICRA.2015.7140009.

[148] B. Fong and D. I. Spivak, An invitation to applied category theory: seven
sketches in compositionality. Cambridge University Press, 2019.

[149] E. Manes and M. Arbib, Algebraic approaches to program semantics.
Springer-Verlag, 1986. ���: 10.1007/978-1-4612-4962-7.

[150] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-
Physical Systems Approach, 1st ed. 2010, Available for download on the
authors’ website http://leeseshia.org/.

[151] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott, Continuous Lattices and Domains. Cambridge University Press,
2003. ���: 10.1017/cbo9780511542725.

[152] A. Censi, “Uncertainty in monotone codesign problems,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1556–1563, 2017. ���: 10.1109/
LRA.2017.2674970.

[153] NVIDIA. “Nvidia products.” available online: https://www.nvidia.
com. (2020).

https://doi.org/10.1016/0005-1098(71)90129-4
https://doi.org/10.1109/TAC.2013.2279913
https://doi.org/10.1561/1000000053
https://doi.org/10.1145/3049797.3049805
https://doi.org/10.1109/ICRA.2015.7140009
https://doi.org/10.1007/978-1-4612-4962-7
http://leeseshia.org/
https://doi.org/10.1017/cbo9780511542725
https://doi.org/10.1109/LRA.2017.2674970
https://doi.org/10.1109/LRA.2017.2674970
https://www.nvidia.com
https://www.nvidia.com

Bibliography 271

[154] Basler. “Basler cameras.” available online: https://www.baslerweb.
com. (2020).

[155] Flir. “Flir cameras.” available online: https://www.flir.com. (2020).

[156] W. B. Arthur, “The structure of invention,” Research policy, vol. 36, no. 2,
pp. 274–287, 2007.

[157] C. L. Magee and O. L. de Weck, “3.1. 3 complex system classi�cation,” in
INCOSE International Symposium, Wiley Online Library, vol. 14, 2004,
pp. 471–488.

[158] R. J. Van Wyk, “Management of technology: New frameworks,” Techno-
vation, vol. 7, no. 4, pp. 341–351, 1988.

[159] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic speci�cations,” IEEE Transactions on
Automatic Control, vol. 53, no. 1, pp. 287–297, 2008. ���: 10.1109/TAC.
2007.914952.

[160] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal logic motion plan-
ning for mobile robots,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005, pp. 2020–2025. ���: 10.
1109/ROBOT.2005.1570410.

[161] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion plan-
ning with temporal goals,” in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 2689–2696. ���: 10.1109/ROBOT.
2010.5509503.

[162] E. M. Wol�, U. Topcu, and R. M. Murray, “Optimization-based trajectory
generation with linear temporal logic speci�cations,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp. 5319–
5325. ���: 10.1109/ICRA.2014.6907641.

[163] G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote, “Engineering design:
A systematic approach,” MRS Bulletin, vol. 71, 1996. ���: 10.1557/
S0883769400035776.

[164] P. Shankar, B. Morkos, D. Yadav, and J. D. Summers, “Towards the for-
malization of non-functional requirements in conceptual design,” Re-
search in Engineering Design, vol. 31, no. 4, pp. 449–469, Oct. 2020. ���:
10.1007/s00163-020-00345-6.

[165] Z. Yu, G. Zardini, A. Censi, and S. Fuller, “Visual con�ned-space navi-
gation using an e�cient learned bilinear optic �ow approximation for
insect-scale robots,” in 2022 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2022, pp. 4250–4256. ���: 10.1109/
IROS47612.2022.9981585.

https://www.baslerweb.com
https://www.baslerweb.com
https://www.flir.com
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ICRA.2014.6907641
https://doi.org/10.1557/S0883769400035776
https://doi.org/10.1557/S0883769400035776
https://doi.org/10.1007/s00163-020-00345-6
https://doi.org/10.1109/IROS47612.2022.9981585
https://doi.org/10.1109/IROS47612.2022.9981585

272 Bibliography

[166] Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “Robo�y: An insect-
sized robot with simpli�ed fabrication that is capable of �ight, ground,
and water surface locomotion,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 2025–2040, 2021. ���: 10.1109/TRO.2021.3075374.

[167] A. Reschka, J. R. Böhmer, F. Saust, B. Lichte, and M. Maurer, “Safe, dy-
namic and comfortable longitudinal control for an autonomous vehicle,”
in 2012 IEEE Intelligent Vehicles Symposium, IEEE, 2012, pp. 346–351.
���: 10.1109/IVS.2012.6232159.

[168] A. A. Association et al., Aaa’s your driving costs, 2018.

[169] Velodyne. “Velodyne lidars.” available online: https://velodynelidar.
com. (2020).

[170] Ouster. “Ouster lidars.” available online: https://ouster.com. (2020).

[171] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “Eurocity persons: A novel
benchmark for person detection in tra�c scenes,” IEEE transactions on
pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1844–1861,
2019. ���: 10.1109/TPAMI.2019.2897684.

[172] B Borgmann, M Hebel, M Arens, and U Stilla, “Pedestrian detection and
tracking in sparse mls point clouds using a neural network and voting-
based approach,” ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. 2, pp. 187–194, 2020. ���: 10 .
5194/isprs-annals-V-2-2020-187-2020.

[173] K. Liu, W. Wang, and J. Wang, “Pedestrian detection with lidar point
clouds based on single template matching,” Electronics, vol. 8, no. 7, 2019.
���: 10.3390/electronics8070780. [Online]. Available: https://
www.mdpi.com/2079-9292/8/7/780.

[174] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[175] D. Gallup, J.-M. Frahm, P. Mordohai, and M. Pollefeys, “Variable base-
line/resolution stereo,” in 2008 IEEE Conference on Computer Vision and
Pattern Recognition, 2008, pp. 1–8. ���: 10.1109/CVPR.2008.4587671.

[176] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of
depth and ego-motion from video,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 1851–1858.

[177] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” International Journal of Robotics Research (IJRR), vol. 32,
pp. 1231–1237, 11 2013. ���: 10.1177/0278364913491297.

https://doi.org/10.1109/TRO.2021.3075374
https://doi.org/10.1109/IVS.2012.6232159
https://velodynelidar.com
https://velodynelidar.com
https://ouster.com
https://doi.org/10.1109/TPAMI.2019.2897684
https://doi.org/10.5194/isprs-annals-V-2-2020-187-2020
https://doi.org/10.5194/isprs-annals-V-2-2020-187-2020
https://doi.org/10.3390/electronics8070780
https://www.mdpi.com/2079-9292/8/7/780
https://www.mdpi.com/2079-9292/8/7/780
https://doi.org/10.1109/CVPR.2008.4587671
https://doi.org/10.1177/0278364913491297

Bibliography 273

[178] G. Zardini, Z. Suter, A. Censi, and E. Frazzoli, “Task-driven modular co-
design of vehicle control systems,” in 2022 IEEE 61st Conference on Deci-
sion and Control (CDC), 2022, pp. 2196–2203. ���: 10.1109/CDC51059.
2022.9993107.

[179] B. Paden, M. �áp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.
���: 10.1109/TIV.2016.2578706.

[180] J. Kong, M. Pfei�er, G. Schildbach, and F. Borrelli, “Kinematic and dy-
namic vehicle models for autonomous driving control design,” in 2015
IEEE intelligent vehicles symposium (IV), IEEE, 2015, pp. 1094–1099. ���:
10.1109/IVS.2015.7225830.

[181] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Review
and performance evaluation of path tracking controllers of autonomous
vehicles,” IET Intelligent Transport Systems, vol. 15, no. 5, pp. 646–670,
2021. ���: 10.1049/itr2.12051.

[182] R. C. Coulter, “Implementation of the pure pursuit path tracking algo-
rithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech. Rep.,
1992.

[183] M. Altho�, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in 2017 IEEE Intelligent
Vehicles Symposium (IV), 2017, pp. 719–726. ���: 10.1109/IVS.2017.
7995802.

[184] G. Zardini, N. Lanzetti, M. Salazar, A. Censi, E. Frazzoli, and M. Pavone,
“On the co-design of av-enabled mobility systems,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC),
2020, pp. 1–8. ���: 10.1109/ITSC45102.2020.9294499.

[185] G. Zardini, N. Lanzetti, M. Salazar, A. Censi, E. Frazzoli, and M. Pavone,
“Towards a co-design framework for future mobility systems,” in Annual
Meeting of the Transportation Research Board, Washington D.C., United
States, Jan. 2020.

[186] G. Zardini, N. Lanzetti, A. Censi, E. Frazzoli, and M. Pavone, “Co-design
to enable user-friendly tools to assess the impact of future mobility solu-
tions,” IEEE Transactions on Network Science and Engineering, vol. 10,
no. 2, pp. 827–844, 2023. ���: 10.1109/TNSE.2022.3223912.

[187] G. Zardini, N. Lanzetti, M. Pavone, and E. Frazzoli, “Analysis and control
of autonomous mobility-on-demand systems,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, no. 1, 2022. ���: 10.1146/
annurev-control-042920-012811.

https://doi.org/10.1109/CDC51059.2022.9993107
https://doi.org/10.1109/CDC51059.2022.9993107
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1049/itr2.12051
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1109/ITSC45102.2020.9294499
https://doi.org/10.1109/TNSE.2022.3223912
https://doi.org/10.1146/annurev-control-042920-012811
https://doi.org/10.1146/annurev-control-042920-012811

274 Bibliography

[188] T. Yigitcanlar, M. Wilson, and M. Kamruzzaman, “Disruptive impacts
of automated driving systems on the built environment and land use:
An urban planner’s perspective,” Journal of Open Innovation: Technol-
ogy, Market, and Complexity, vol. 5, no. 2, p. 24, 2019. ���: 10.3390/
joitmc5020024.

[189] M. Salazar, N. Lanzetti, F. Rossi, M. Schi�er, and M. Pavone, “Inter-
modal autonomous mobility-on-demand,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 21, no. 9, pp. 3946–3960, 2020. ���:
10.1109/TITS.2019.2950720.

[190] R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, and H. Rashidi, “A review
of urban transportation network design problems,” European Journal
of Operational Research, vol. 229, pp. 281–302, 2013. ���: 10.1016/j.
ejor.2013.01.001.

[191] V. Guihaire and J.-K. Hao, “Transit network design and scheduling: A
global review,” Transportation Research Part B: Methodological, vol. 42,
pp. 1251–1273, 2008. ���: 10.1016/j.tra.2008.03.011.

[192] A. Loder, M. C. Bliemer, and K. W. Axhausen, “Optimal pricing and
investment in a multi-modal city — introducing a macroscopic network
design problem based on the mfd,” Transportation Research Part A: Policy
and Practice, vol. 156, pp. 113–132, 2022. ���: https://doi.org/10.
1016/j.tra.2021.11.026.

[193] Z. Cong, B. De Schutter, and R. Babuska, “Co-design of tra�c network
topology and control measures,”TransportationResearchPartC: Emerging
Technologies, vol. 54, pp. 56–73, 2015. ���: 10.1016/j.trc.2015.01.
031.

[194] Q. Luo, S. Li, and R. C. Hampshire, “Optimal design of intermodal mobility
networks under uncertainty: Connecting micromobility with mobility-on-
demand transit,” EURO Journal on Transportation and Logistics, vol. 10,
p. 100 045, 2021. ���: 10.1016/j.ejtl.2021.100045. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S2192437621000170.

[195] R. O. Arbex and C. B. da Cunha, “E�cient transit network design and
frequencies setting multi-objective optimization by alternating objec-
tive genetic algorithm,” Transportation Research Part B: Methodological,
vol. 81, pp. 355–376, 2015. ���: 10.1016/j.trb.2015.06.014.

[196] L. Sun, J. G. Jin, D.-H. Lee, K. W. Axhausen, and A. Erath, “Demand-
driven timetable design for metro services,” Transportation Research Part
C: Emerging Technologies, vol. 46, pp. 284–299, 2014. ���: 10.1016/j.
trc.2014.06.003.

https://doi.org/10.3390/joitmc5020024
https://doi.org/10.3390/joitmc5020024
https://doi.org/10.1109/TITS.2019.2950720
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/https://doi.org/10.1016/j.tra.2021.11.026
https://doi.org/https://doi.org/10.1016/j.tra.2021.11.026
https://doi.org/10.1016/j.trc.2015.01.031
https://doi.org/10.1016/j.trc.2015.01.031
https://doi.org/10.1016/j.ejtl.2021.100045
https://www.sciencedirect.com/science/article/pii/S2192437621000170
https://www.sciencedirect.com/science/article/pii/S2192437621000170
https://doi.org/10.1016/j.trb.2015.06.014
https://doi.org/10.1016/j.trc.2014.06.003
https://doi.org/10.1016/j.trc.2014.06.003

Bibliography 275

[197] S. Su, X. Li, T. Tang, and Z. Gao, “A subway train timetable optimization
approach based on energy-e�cient operation strategy,” IEEETransactions
on Intelligent Transportation Systems, vol. 14, no. 2, pp. 883–893, 2013.
���: 10.1109/TITS.2013.2244885.

[198] J. A. Barrios and J. D. Godier, “Fleet sizing for �exible carsharing systems:
Simulation-based approach,” Transportation Research Record: Journal
of the Transportation Research Board, vol. 2416, pp. 1–9, 2014. ���: 10.
3141/2416-01.

[199] D. J. Fagnant and K. M. Kockelman, “Dynamic ride-sharing and �eet
sizing for a system of shared autonomous vehicles in austin, texas,” Trans-
portation, vol. 45, no. 1, pp. 143–158, 2018. ���: 10.1007/s11116-016-
9729-z.

[200] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti, “Address-
ing the minimum �eet problem in on-demand urban mobility,” Nature,
vol. 557, no. 7706, p. 534, 2018. ���: 10.1038/s41586-018-0095-1.

[201] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle �eet
sizes required to serve di�erent levels of demand,” Transportation Re-
search Record: Journal of the Transportation Research Board, vol. 2542,
no. 1, pp. 111–119, 2016. ���: 10.3141/2542-13.

[202] M. Meghjani, S. D. Pendleton, K. A. Marczuk, et al., “Multi-class �eet
sizing and mobility on demand service,” in International Conference on
Complex Systems Design & Management, Springer, vol. 878, 2018, pp. 37–
49. ���: 10.1007/978-3-030-02886-2_4.

[203] J. Narayan, O. Cats, N. van Oort, and S. P. Hoogendoorn, “Fleet size deter-
mination for a mixed private and pooled on-demand system with elastic
demand,” Transportmetrica A: Transport Science, vol. 17, no. 4, pp. 897–
920, 2021. ���: 10.1080/23249935.2020.1819910.

[204] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone,
“Toward a systematic approach to the design and evaluation of automated
mobility-on-demand systems: A case study in singapore,” in Road vehicle
automation, Springer, 2014, pp. 229–245. ���: 10.1007/978-3-319-
05990-7_20.

[205] H. Zhang, C. J. Sheppard, T. E. Lipman, and S. J. Moura, “Joint �eet
sizing and charging system planning for autonomous electric vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 11,
pp. 4725–4738, 2020. ���: 10.1109/TITS.2019.2946152.

[206] G. J. Beaujon and M. A. Turnquist, “A model for �eet sizing and vehicle
allocation,” Transportation Science, vol. 25, no. 1, pp. 19–45, 1991. ���:
10.1287/trsc.25.1.19.

https://doi.org/10.1109/TITS.2013.2244885
https://doi.org/10.3141/2416-01
https://doi.org/10.3141/2416-01
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1038/s41586-018-0095-1
https://doi.org/10.3141/2542-13
https://doi.org/10.1007/978-3-030-02886-2_4
https://doi.org/10.1080/23249935.2020.1819910
https://doi.org/10.1007/978-3-319-05990-7_20
https://doi.org/10.1007/978-3-319-05990-7_20
https://doi.org/10.1109/TITS.2019.2946152
https://doi.org/10.1287/trsc.25.1.19

276 Bibliography

[207] A. Wallar, W. Schwarting, J. Alonso-Mora, and D. Rus, “Optimizing multi-
class �eet compositions for shared mobility-as-a-service,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), 2019, pp. 2998–3005.
���: 10.1109/ITSC.2019.8916904.

[208] H. K. Pinto, M. F. Hyland, H. S. Mahmassani, and I. Ö. Verbas, “Joint
design of multimodal transit networks and shared autonomous mobility
�eets,” Transportation Research Part C: Emerging Technologies, vol. 113,
pp. 2–20, 2020. ���: 10.1016/j.trc.2019.06.010.

[209] T. Seo and Y. Asakura, “Multi-objective linear optimization problem for
strategic planning of shared autonomous vehicle operation and infras-
tructure design,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 4, pp. 3816–3828, 2022. ���: 10.1109/TITS.2021.3071512.

[210] S. Shaheen and A. Cohen, “Shared micromoblity policy toolkit: Docked
and dockless bike and scooter sharing,” 2019.

[211] M. Ghamami and M. Shojaei, “Introducing a design framework for a
multi-modal public transportation system, focusing on mixed-�eet bike-
sharing systems,” Transportation Research Record: Journal of the Trans-
portation Research Board, vol. 2672, no. 36, pp. 103–115, 2018. ���: 10.
1177/0361198118799.

[212] C.-C. Lu, “Robust multi-period �eet allocation models for bike-sharing
systems,” Networks and Spatial Economics, vol. 16, no. 1, pp. 61–82, 2016.
���: 10.1007/s11067-013-9203-9.

[213] S. Yan, C.-C. Lu, and M.-H. Wang, “Stochastic �eet deployment models
for public bicycle rental systems,” International Journal of Sustainable
Transportation, vol. 12, no. 1, pp. 39–52, 2018. ���: 10.1080/15568318.
2017.1324586.

[214] Q. Luo, S. Li, and R. C. Hampshire, “Optimal design of intermodal mobility
networks under uncertainty: Connecting micromobility with mobility-on-
demand transit,”EUROJournal onTransportation andLogistics, p. 100 045,
2021.

[215] J. Y. Chow and H. R. Sayarshad, “Symbiotic network design strategies
in the presence of coexisting transportation networks,” Transportation
Research Part B: Methodological, vol. 62, pp. 13–34, 2014. ���: 10.1016/
j.trb.2014.01.008.

[216] D. Kondor, X. Zhang, M. Meghjani, P. Santi, J. Zhao, and C. Ratti, “Esti-
mating the potential for shared autonomous scooters,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1–12, 2021. ���: 10.1109/
TITS.2020.3047141.

https://doi.org/10.1109/ITSC.2019.8916904
https://doi.org/10.1016/j.trc.2019.06.010
https://doi.org/10.1109/TITS.2021.3071512
https://doi.org/10.1177/0361198118799
https://doi.org/10.1177/0361198118799
https://doi.org/10.1007/s11067-013-9203-9
https://doi.org/10.1080/15568318.2017.1324586
https://doi.org/10.1080/15568318.2017.1324586
https://doi.org/10.1016/j.trb.2014.01.008
https://doi.org/10.1016/j.trb.2014.01.008
https://doi.org/10.1109/TITS.2020.3047141
https://doi.org/10.1109/TITS.2020.3047141

Bibliography 277

[217] A. Henao and W. E. Marshall, “The impact of ride-hailing on vehicle
miles traveled,” Transportation, vol. 46, no. 6, pp. 2173–2194, 2019. ���:
10.1007/s11116-018-9923-2.

[218] P. Blackwell, K. Carter-Cram, E. Pape, and S. Islam, “E-scooter impact on
tra�c congestion,” 2019.

[219] C. F. Daganzo and N. Geroliminis, “An analytical approximation for
the macroscopic fundamental diagram of urban tra�c,” Transportation
Research Part B: Methodological, vol. 42, no. 9, pp. 771–781, 2008. ���:
10.1016/j.trb.2008.06.008.

[220] D. Dahl. “If you’re annoyed at drivers going under the speed limit, the
problem isn’t them, it’s you.” available online, The Bellingham Herald.
(2018).

[221] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic Theory.
Oxford Univ. Press, 1995.

[222] A. Horni, K. Nagel, and K. W. Axhausen, Eds., The Multi-Agent Transport
Simulation MATSim. Ubiquity Press, 2016.

[223] M. Haklay and P. Weber, “OpenStreetMap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008. ���: 10.1109/
MPRV.2008.80.

[224] GTFS. “GTFS: Making public transit data universally accessible.” avail-
able online at https://gtfs.org/. (2019).

[225] ODDC. “Taxicab trips in 2016.” available online at https://opendata.
dc.gov/search?q=taxicabs, Open Data DC. (2017).

[226] PIM. “Metrorail ridership by origin and destination.” available online
at https : / / planitmetro . com / 2012 / 10 / 31 / data - download -
metrorail-ridership-by-origin-and-destination/, Plan It Metro.
(2012).

[227] F. Siddiqui. “As ride hailing booms in d.c., it’s not just eating in the taxi
market – it’s increasing vehicle trips.” available online, The Washington
Post. (2018).

[228] DoA, Ed., Military Police Tra�c Operations. Department of the Army,
1977.

[229] S. Dixon, H. Irshad, and V. White, “Deloitte city moblity index – wash-
ington d.c.,” Deloitte, Tech. Rep., 2018.

[230] N. Pavlenko, P. Slowik, and N. Lutsey, “When does electrifying shared
mobility make economic sense?” The International Council on Clean
Transportation, Tech. Rep., 2019.

https://doi.org/10.1007/s11116-018-9923-2
https://doi.org/10.1016/j.trb.2008.06.008
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://gtfs.org/
https://opendata.dc.gov/search?q=taxicabs
https://opendata.dc.gov/search?q=taxicabs
https://planitmetro.com/2012/10/31/data-download-metrorail-ridership-by-origin-and-destination/
https://planitmetro.com/2012/10/31/data-download-metrorail-ridership-by-origin-and-destination/

278 Bibliography

[231] P. M. Boesch, F. Becker, H. Becker, and K. W. Axhausen, “Cost-based anal-
ysis of autonomous mobility services,” Transport Policy, vol. 64, pp. 76–91,
2018. ���: 10.1016/j.tranpol.2017.09.005.

[232] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: Opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167–181, 2015.
���: 10.1016/j.tra.2015.04.003.

[233] G. S. Bauer, J. B. Greenblatt, and B. F. Gerke, “Cost, energy, and environ-
mental impact of automated electric taxi �eets in manhattan,” Environ-
mental Science & Technology, vol. 52, no. 8, pp. 4920–4928, 2018. ���:
10.1021/acs.est.7b04732.

[234] T. Litman, “Autonomous vehicle implementation predictions – implica-
tions for transport planning,” Victoria Transport Policy Institute, Tech.
Rep., 2019.

[235] Z. Wadud, “Fully automated vehicles: A cost of ownership analysis to in-
form early adoption,” Transportation Research Part A: Policy and Practice,
vol. 101, pp. 163–176, 2017. ���: 10.1016/j.tra.2017.05.005.

[236] W. Time. “Carbon footprint data.” Available at https://api.watttime.
org, Wired. (Mar. 2018).

[237] D. Schellong, P. Sadek, C. Schaetzberger, and T. Barrack, “The promise
and pitfalls of e-scooter sharing,” Boston Consulting Group, Tech. Rep.,
2019.

[238] D. C.-H. Chao, P. J. van Duijsen, J. J. Hwang, and C.-W. Liao, “Modeling
of a taiwan fuel cell powered scooter,” in 2009 International Conference
on Power Electronics and Drive Systems (PEDS), 2009, pp. 913–919. ���:
10.1109/PEDS.2009.5385788.

[239] G. of the District of Columbia, “District of columbia, capitel bikeshare
development plan,” District of Columbia, Tech. Rep., 2015.

[240] S. Korus. “Electric scooters: The unit economics may spell trouble.” avail-
able online, ARK Invest. (2019).

[241] J. Hollingsworth, B. Copeland, and J. X. Johnson, “Are e-scooters pol-
luters? the environmental impacts of shared dockless electric scooters,”
Environmental Research Letters, vol. 14, no. 8, p. 084 031, 2019. ���: 10.
1088/1748-9326/ab2da8.

[242] Z. Kou, X. Wang, S. F. A. Chiu, and H. Cai, “Quantifying greenhouse
gas emissions reduction from bike share systems: A model considering
real-world trips and transportation mode choice patterns,” Resources,
Conservation and Recycling, vol. 153, p. 104 534, 2020. ���: 10.1016/j.
resconrec.2019.104534.

https://doi.org/10.1016/j.tranpol.2017.09.005
https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.1021/acs.est.7b04732
https://doi.org/10.1016/j.tra.2017.05.005
https://api.watttime.org
https://api.watttime.org
https://doi.org/10.1109/PEDS.2009.5385788
https://doi.org/10.1088/1748-9326/ab2da8
https://doi.org/10.1088/1748-9326/ab2da8
https://doi.org/10.1016/j.resconrec.2019.104534
https://doi.org/10.1016/j.resconrec.2019.104534

Bibliography 279

[243] P. Van Zyl, P. van Mensch, N. Ligterink, R. Droege, and G. Kadijk, “Update
emission model for two wheeled mopeds,” TNO report, TNO, R11088,
2014.

[244] WMATA, “Fy2018 proposed budget,” Washington Metropolitan Area
Transit Authority, Tech. Rep., 2017.

[245] L. Aratani. “Metro to debut �rst of its 7000-series cars on blue line on
april 14.” available online, The Washington Post. (2015).

[246] WMATA, “Sustainability report 2018,” Washington Metropolitan Area
Transit Authority, Tech. Rep., 2018.

[247] H. Becker, F. Becker, R. Abe, et al., “Impact of vehicle automation and
electric propulsion on production costs for mobility services worldwide,”
Transportation Research Part A: Policy and Practice, vol. 138, pp. 105–126,
2020. ���: 10.1016/j.tra.2020.04.021.

[248] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington, and K.
Hyung Chul, “Life cycle assessment of connected and automated vehi-
cles: Sensing and computing subsystem and vehicle level e�ects,” En-
vironmental Science & Technology, vol. 52, pp. 3249–3256, 2018. ���:
10.1021/acs.est.7b04576.

[249] WCP, “The automotive lidar market,” Woodside Capital Partners, Tech.
Rep., 2018.

[250] P. Lienert. “Cost of driverless vehicles to drop dramatically: Delphi ceo.”
available online, Insurance Journal. (2019).

[251] K. Korosec. “Uber spent usd 457 million on self-driving and �ying car
r&d last year.” available online, TechCrunch. (2019).

[252] P. Howard and D. Sylvan, “Expert consensus on the economics of climate
change,” Institute for Policy Integrity – New York University School of
Law, Tech. Rep., 2015.

[253] T Etezadi and J. Beasley, “Vehicle �eet composition,” Journal of the Oper-
ational Research Society, vol. 34, pp. 87–91, 1983. ���: 10.1057/jors.
1983.11.

[254] A. Zanardi, G. Zardini, and S. Srinivasan, S. Bolognani, A. Censi, F. Dör-
�er, E. Frazzoli, “Posetal games: E�ciency, existence, and re�nement of
equilibria in games with prioritized metrics,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 1292–1299, 2022. ���: 10.1109/LRA.2021.
3135030.

[255] N. Lanzetti, G. Zardini, M. Schi�er, M. Ostrovsky, and M. Pavone, “Do self-
driving cars swallow public transport? a game-theoretical perspective on
transportation systems,” en, in INFORMS Annual Meeting 2019, Informs,
2019-10-22.

https://doi.org/10.1016/j.tra.2020.04.021
https://doi.org/10.1021/acs.est.7b04576
https://doi.org/10.1057/jors.1983.11
https://doi.org/10.1057/jors.1983.11
https://doi.org/10.1109/LRA.2021.3135030
https://doi.org/10.1109/LRA.2021.3135030

280 Bibliography

[256] G. Zardini, N. Lanzetti, L. Guerrini, E. Frazzoli, and F. Dör�er, “Game the-
ory to study interactions between mobility stakeholders,” in 2021 IEEE In-
ternational Intelligent Transportation Systems Conference (ITSC), Best Pa-
per Award (1st place), 2021, pp. 2054–2061. ���: 10.1109/ITSC48978.
2021.9564501.

[257] G. Zardini, N. Lanzetti, G. Belgioioso, C. Hartnik, S. Bolognani, F. Dör�er,
E. Frazzoli, “Strategic interactions in multi-modal mobility systems: A
game-theoretic perspective,” in 2023 IEEE International Intelligent Trans-
portation Systems Conference (ITSC), IEEE, 2023.

[258] A. Censi, E. Frazzoli, J. Lorand, and G. Zardini, “Categori�cation of neg-
ative information using enrichment,” in Proceedings Fifth International
Conference on Applied Category Theory, Glasgow, United Kingdom, 18-22
July 2022, J. Master and M. Lewis, Eds., ser. Electronic Proceedings in
Theoretical Computer Science, vol. 380, Open Publishing Association,
2023, pp. 22–40. ���: 10.4204/EPTCS.380.2.

[259] G. Freiling and A. Hochhaus, “Properties of the solutions of rational
matrix di�erence equations,”Computers &Mathematics withApplications,
vol. 45, no. 6-9, pp. 1137–1154, 2003.

https://doi.org/10.1109/ITSC48978.2021.9564501
https://doi.org/10.1109/ITSC48978.2021.9564501
https://doi.org/10.4204/EPTCS.380.2

	Dedication
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	What is (automated) ``design''?
	Desiderata and challenges
	Related work
	Outline and contributions

	A Monotone Theory of Co-design
	Background on orders and monotonicity
	Trade-offs
	Ordered sets
	Examples of posets
	Chains and Antichains
	Poset constructions
	Monotonicity
	Poset bounds
	Lattices

	Co-design
	Basic concepts of formal engineering design
	Queries in design
	Design Problems with Implementation
	Queries, more precisely
	Co-design problems

	Feasibility
	DPs as monotone maps
	Populating feasibility relations
	Example: Linear Quadratic Gaussian Control
	Example: Convex Optimization Problems
	Example: Assume-Guarantee Contracts
	Example: Electric vehicle design

	Interconnecting design problems
	Series composition of design problems
	Union and intersection of design problems
	Parallel composition
	Feedback
	Example: co-design of an autonomous drone

	A categorical perspective
	The category of design problems DP
	DP is a symmetric monoidal category
	DP is a traced monoidal category
	More structure

	Solving co-design problems
	Solution concept
	Categories of solutions
	Queries as functors from statements to solutions
	Finite co-design problems
	Domain theory and fixed points
	Handling loops
	Example: Optimizing over the natural numbers
	Example: co-designing an autonomous drone

	From autonomy to future mobility
	Systematic process for the co-design of complex systems
	Defining the task
	Functional decomposition
	From functional decompositions to co-design diagrams
	Finding feedback loops

	Implementation
	Writing a skeleton
	Populating the models
	Expressivity and properties of the framework
	Developer vs. user viewpoints

	Co-design of autonomy
	Co-design of an autonomous vehicle
	Co-design of an autonomous vehicle 2.0

	Co-design of mobility systems
	Motivation
	Intermodal Mobility Framework
	Co-Design Framework
	Results

	From autonomy to mobility via compositionality
	Models
	Results

	Open challenges and conclusions
	Explicitly accounting for strategic interactions
	Need for co-design games
	Games with partially ordered payoffs
	Simultaneous and sequential decisions

	Extending modeling capabilities and solution algorithms
	Extending modeling techniques
	Extending solution techniques
	New applications

	Conclusions

	Back matter
	Proofs
	Proofs related to part:codesign
	Proofs related to part:applications

	References

