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Supported metal hydrides are key reactive intermediates in various catalytic processes, such as hydrogenation
and dehydrogenation, but are often challenging to characterize spectroscopically. Here, deuterium solid state
nuclear magnetic resonance spectroscopy is used to understand the structure of the corresponding silica-
supported zirconium hydrides after H/D exchange as an illustrative example of supported metal hydrides, which
have been shown to display notable reactivity towards small molecules (e.g., CO2 and N2O) and to activate both
C� H and C� C bonds, hence their use in to the conversion of hydrocarbons (alkanes, polyolefins etc.)

Keywords: H/D exchange, hydrides, metal hydrides, solid-state NMR, solid-state structures.

Introduction

Supported transition-metal hydrides (M� H) are key
intermediates in hydrocarbon conversion processes,
such as hydrogenation and dehydrogenation.[1,2]

When isolated on an oxide support, early transition
metal hydrides participate in low temperature hydro-
genolysis and alkane metathesis processes, which
involve C� H and C� C activation (through σ-bond
metathesis), as key (elementary) steps.[1–5] In partic-
ular, these early transition metal hydrides, such as
supported Zr hydrides,[6–8] have attracted a renewed
interest in recent years in the context of polyolefin
reprocessing as they are known to activate C� H bonds
and to participate in the conversion of polyethylene
into diesel or lower range hydrocarbons.[8–11]

While key intermediates for these reactions, M� H
bonds are often challenging to characterize spectro-
scopically in heterogeneous catalysts due to various
experimental limitations.[1] For example, Infrared (IR)

spectroscopy can be used to identify M� H, but their
bands can have weak intensity and/or be buried in the
IR fingerprint region.[1,12] Furthermore, X-ray-based
characterization methods are of limited value because
of the low X-ray scattering factors of lighter
elements.[13,14] Conversely, neutron-based techniques,
such as inelastic neutron scattering (INS) are well
suited to the analysis of M� H species and their
structural features, though large amounts of sample
and access to a spallation source are required.[15–19]

In contrast, nuclear magnetic resonance (NMR)
spectroscopy is a particularly powerful tool for identi-
fying metal hydrides that display a broad range of 1H
chemical shifts (δ, varying from +35 to � 60 ppm)
depending on the configuration of the metal sites and
its ligands.[20–22] Nonetheless, the interpretation of the
1H chemical shift is challenging as the chemical shift is
often dominated by the ‘spin-orbit heavy-atom effect
on the light-atom’ (SO-HALA effect).[20,23–25] In that
context, the use of 2H ssNMR is noteworthy since
deuterium, as a quadrupolar nucleus (I=1), interacts
with the electric field gradient (EFG), providing insights
into the distribution of charge about the nucleus.[26,27]

Thus, the 2H ssNMR signal can provide insights into
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the ionicity of a metal hydrogen bond based on the
deuteride isotopologue (M� D) because the magnitude
of the quadrupolar coupling constant (CQ) decreases
for more polarized M� D bonds.[26,27] Further insights
into the binding mode of an M� D bond are obtained
by looking at the asymmetry parameter (η), where η=

0 is characteristic of a terminal M� D, while η>0.1 is
indicative of bridging M� D.[26–30]

Here, we investigate the 2H ssNMR of supported
M� D species, derived from silica-supported zirconium
hydrides (Zr(H)@SiO2, Figure 1,a), prepared through
Surface Organometallic Chemistry (SOMC).[26,27,29,31]

These materials, that are able to convert hydrocarbons
and polymers under mild conditions,[6–8,32–35] have
been shown to contain two distinct surface species,
the mono-hydride (�SiO)3Zr� H and the bis-hydride
(�SiO)2Zr(H)2. In this work, the NMR signatures of the
corresponding deuteride species are measured and
compared to molecular zirconocene analogues, which
are used to better understand the factors influencing
the EFG parameters of M� D bonds in early-transition
metal deuterides,[26,27,29,31] and to benchmark Density
Functional Theory (DFT) calculations (Figure 1,b).

Results and Discussion

The low natural abundance of deuterium (0.012%)
necessitates isotopic enrichment of samples to enable
acquisition of high quality 2H-NMR spectra.[36] Thus, we
first synthesized the deuteride analog of Schwartz’s
Reagent [(Cp)2ZrCl(μ2-D)]2 (Cp� =cyclopentadienyl), a
widely used reagent in organic synthesis, and the
corresponding bis-deuteride [(Cp)2ZrD(μ2-D)]2 as
benchmark systems (For synthesis, see Supporting
Information S2).

Despite widespread use, to the best of our knowl-
edge, there is no reported X-ray crystal structure for
[(Cp)2ZrCl(μ2-H)]2. However, its dimeric structure has
been confirmed by microcrystal electron diffraction
(MicroED),[37] and analysis of the 35Cl solid-state NMR
signature,[38] paralleling the structure of the corre-
sponding substituted zirconocene equivalents.[39,40]

Similarly, for [(Cp)2ZrH(μ2-H)]2, no single-crystal X-ray
crystal structure has been reported. However, by
analogy with related structures containing substituted
Cp rings, this compound likely contains both a
terminal hydride ligand on each Zr, and two bridging
hydrides (μ2-H).[41–46]

The magic-angle spinning (MAS) 2H-NMR spectrum
of [(Cp)2ZrCl(μ2-D)]2, measured at 14.1 T and 107 K,
gives a spinning sideband manifold consistent with a
single species with isotropic chemical shift (δiso) of
0 ppm (Figure 2,a). Fitting of this signal gives a CQ and
η equal to 50 kHz and 0.38, respectively. The CQ value
matches the previously reported values for Zr� D
motifs,[30,31] while the value of η is consistent with the
values expected for a bridging μ2-D species.[26,27,47]

Analysis of the 2H MAS spectrum of [(Cp)2ZrD(μ2-D)]2
(Figure 2,b), gives two spinning sideband manifolds
with δiso of +3.8 and � 3.5 ppm, consistent with the
reported chemical shifts in solution.[48] Fitting of the
signal at 3.8 ppm gives a CQ and η of 47 kHz and 0.00,
respectively. Again, the CQ is close to previously
reported values for Zr� D motifs,[30,31] while η is
consistent with that of a terminal deuteride.[26–29,47] By
contrast, the signal at � 3.5 ppm is associated with
CQ=46 kHz and η=0.37, consistent with a μ2-D
species (vide supra).[41–46] In both cases, the magnitude
of the CQ indicates the presence of a relatively ionic
M� D bond (i. e. Mδ+-Dδ� ), with a CQ lower than that of
more covalent M� D bonds of late transition metals
(typically>50 kHz).[27–29,49]

To confront the experimental EFG parameters, we
turned to calculations of NMR parameters using DFT
(Supporting Information S4). The calculated NMR
parameters of [(Cp)2ZrCl(μ2-D)]2 with two equivalent
μ2-D (CQ=48.9 kHz and η=0.31) match experimental
values (CQ=50 kHz and η=0.38). Notably, the calcu-
lated values for a monomeric zirconocene deuteride
chloride structure (CQ=44.0 kHz, η=0.12), akin to that
reported for Cp� derivatives with bulky
substituents,[50] are not consistent with the experimen-
tal line shape, further supporting the dimeric structure
and illustrating the dependence of η on the mode of
M� D bonding (Supporting Information S4). For
[(Cp)2ZrD(μ2-D)]2, calculated CQ values for the terminal
(D) and bridging (μ2-D) hydrides (Figure 3) are 44.2 and

Figure 1. Overview of work. a) Proposed Zr� H species in silica-
supported zirconium hydrides (Zr(H)@SiO2), and b) molecular
Zr-hydrides as benchmark.
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41.7 kHz, respectively. These values offer good agree-
ment with the experimentally determined CQ for
terminal and bridged hydrides (47 and 46 kHz, resp.).
The values of η for the terminal and bridged species
also reflect those obtained from experiment (0.00
(calc.) vs. 0.00 (expt.) and 0.30 (calc.) vs. 0.37 (expt.),
resp.), showing that while terminal and bridging Zr� D
have similar CQ, they are easily distinguished by η.[26]

The calculated EFG tensors for [(Cp)2ZrCl(μ2-D)]2 are
visualized in Figure 3,b. From the EFG tensor of the
dimeric structure the largest component (jVZZ j) lies on
the M� D� M plane parallel to the Zr� Zr axis. The
second largest component of the calculated tensor
(jVYY j) lies perpendicular to the M� D� M plane, and is
appreciably larger than the 3rd component (jVXX j) –
accounting for the observed non-zero value of η. For
[(Cp)2ZrD(μ2-D)]2, the orientation of the EFG tensor for
the bridged deuteride is similar to that of [(Cp)2ZrCl-
(μ2-D)]2 (Figure 3,c). By contrast, for the terminal
deuteride, VZZ lies along the M� D bond, and the tensor
is axially symmetric about the M� D bond (i. e. VYY�

VXX), as previously reported.
[27] In sum, calculations and

experiment offer good agreement for these bench-
mark systems, illustrating that CQ and η provide
insights into the ionicity of M� D bonds and enable
distinction of terminal/bridged M� D species, respec-
tively.

Thus, the approach was extended to surface
hydride species, focusing on well-defined zirconium
deuterides. Zirconium hydride species (Zr(H)@SiO2)
were generated by grafting Zr(CH2

tBu)4 on a silica
partially dehydroxylated at 500 °C (SiO2–500) followed
by a treatment under H2, as previously described
(Supporting Information S3).[6–8,32–35] Analysis of Zr(H)-

Figure 2. 2H-NMR of molecular zirconium deuterides. (a)
[(Cp)2ZrCl(μ2-D)]2 (i) fit of experimental data, (ii) experimental
data (14.1 T, MAS 4 kHz, 107 K). (b) [(Cp)2ZrD(μ2-D)]2 (i) fit of
experimental data (Site 1, red; site 2, blue) (ii) experimental data
(14.1 T, MAS 2 kHz, 107 K), inset shows isotropic region.

Figure 3. Visualization of EFG tensors for M� D species in
zirconocene hydrides. a) Top-view of core motifs for dimeric
zirconocene hydrides. b) Projection of EFG tensor for bridging
deuteride in [(Cp)2ZrCl(μ2-D)]2; c) i) EFG tensor for bridging
deuteride in [(Cp)2ZrD(μ2-D)]2, ii) EFG tensor for terminal
deuteride in [(Cp)2ZrD(μ2-D)]2. Orientation of VZZ represented by
blue axis, VYY by red, and VXX by green.
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@SiO2 by infrared (IR) spectroscopy reveals bands
assigned to Si� H and Zr� H.[51–53] The two bands at
2262 and 2194 cm� 1 are attributed to Si� H species,
while three distinct Zr� H bands are observed and are
attributed to Zr(H) (1638 cm� 1) and Zr(H)2 (1650 and
1623 cm� 1), based on earlier literature (Supporting
Information S3).[52] The 1H-NMR of Zr(H)@SiO2–500
shows peaks at 12 ppm, 10 ppm, 4.3 ppm and 0.7 ppm
(Supporting Information S3), that correspond to Zr-(H)2,
Zr� H, Si� H and C� H, respectively, based on previous
studies.[53,54]

Subsequently, H/D exchange was performed using
D2 on Zr(H)@SiO2, to introduce the deuterium to the
exchangeable sites on the surface (full experimental
details in the Supporting Information S3). Analysis of
the H/D exchanged material (henceforth referred to as
Zr(H/D)@SiO2), using IR spectroscopy suggests that
both Si� H and Zr� H species are partially exchanged
during the reaction, as illustrated by the partial
depletion of bands between 2260–2200 cm� 1 and
1650–1620 cm� 1, respectively. The partial exchange of
Zr� H is also evidenced by 1H-NMR, with remaining
resonance at 12 and 10 ppm.[53] Notably, while the
bands at 1650 and 1623 cm� 1 in the IR spectrum,
previously assigned to Zr(H)2, are depleted more
rapidly than the central band at 1638 cm� 1, attributed
to Zr(H) (Supporting Information S3),[52] the inverse is
observed in 1H-NMR where a more extensive depletion
of the peak at 10 ppm (Zr(H)) vs. 12 ppm (Zr(H)2), is
observed (Supporting Information S3).[53,54] This appa-
rent discrepancy likely shows that the attribution of IR
bands is more complex than previously proposed.

Analysis of Zr(H/D)@SiO2–500 by means of 2H-NMR
at low temperature (ca. 110 K) reveals the presence of
multiple resonances (Figure 4,a and 4,b, Supporting
Information S3). The dominant peaks (at 5.2 and
4.3 ppm) are assigned to Si� D, formed through
exchange with Si� H, as indicated previously by
analysis of IR, the observed CQ (CQ(Obs)) values for these
species (58 and 42 kHz) are lower than calculated
values from fluoride-terminated SiO2 cluster models
(88–94 kHz, see Supporting Information S4), or re-
ported values for Si� D in molecular systems (90–
95 kHz),[55–57] suggesting residual dynamics for these
species that decrease the observed CQ.

[58–60] Two
smaller peaks are also present – a peak at 1.5 ppm,
which is assigned to C� D resonances of the remaining
alkyl groups, which again has a reduced CQ(Obs)
(96 kHz) relative to typical values for a C� D bond
(likely as a result of residual dynamics).[58–61] In
addition, a peak centered at 9.8 ppm, which is
assigned to Zr� D species, is observed. Fitting of the

Figure 4. (a) 2H ssNMR of Zr(H/D)@SiO2 (14.1 T, 111 K,
MAS:5 kHz). (b) Decomposition of fit for Zr(H/D)@SiO2, site 2
rescaled for clarity. (c) Visualization of EFG tensors for fluoride-
terminated SiO2 cluster models of i) (�SiO)3Zr(D)) and ii)
(�SiO)2Zr(D)2. Orientation of VZZ represented by blue axis, VYY
by red, and VXX by green.
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site at 9.8 ppm gives a value of η of 0.09 and CQ of
42 kHz (Figure 4,b), consistent with terminal Zr� D (vide
infra).[53] We note that low temperatures (<200 K) are
required to observe the full spinning sideband mani-
fold for M� D surface species in Zr(H)@SiO2, while the
CQ(obs) for Si� D and C� D bonds in the same material
are lower than expected for the respective bonds. This
is likely due to residual dynamics that average
quadrupolar interactions.

Notably, under the conditions employed it was not
possible to observe multiple distinct resonances in the
range 12–10 ppm (i. e., the range expected for Zr� D).
However, based on the 1H-NMR it is likely that the site
at 12 ppm is not reacting readily with the D2 gas under
the conditions explored. The incomplete exchange of
Zr� H upon exposure to D2 is consistent with earlier
studies on silica-supported metal hydrides, suggesting
a distribution of Zr� H sites, whose reactivities depends
on the local coordination environment, e.g., presence
of additional interaction with adjacent siloxane
bridges.[62,63]

Calculations of NMR parameters (δiso and EFG
tensors) of the proposed surface deuteride species, for
both (�SiO)3Zr(D) and (�SiO)2Zr(D)2, were also eval-
uated, using models based on fluoride-terminated
SiO2 clusters (Figure 4,c). Consistent with earlier studies
by 1H ssNMR, the chemical shift of (�SiO)3Zr(D)) and
(�SiO)2Zr(D)2, were calculated to be 10.8 and
11.6 ppm, respectively.[53,54] In both cases, the CQ of
the corresponding deuteride was found to be ca.
40 kHz (Supporting Information S4), indicating a rela-
tively ionic Zr� D bond as in the zirconocene homo-
logues. As expected for a terminal hydride, η is close
to zero (0.00 and 0.01) in both cases. Visualization of
the calculated EFG tensors for the (�SiO)3Zr(D) and
(�SiO)2Zr(D)2 models are shown in Figure 4,c. In both
cases, VZZ is oriented along the M� D bond, as
observed for the molecular zirconocene models. Both
calculated and experimental structures are consistent
with the presence of terminal M� D.

Conclusions

To conclude, 2H ssNMR is shown to be a powerful tool
to probe the structure of supported M-D/H species,
here focusing on the prototypical silica-supported
zirconium hydrides prepared through SOMC. The Zr-
deuteride species detected at the surface of Zr(H/
D)@SiO2–700 correspond to terminal M� D as indicated
by the low value of η (η�0), while the magnitude of
the CQ (ca. 40 kHz) highlights the rather ionic Zr� D

bonds, as observed in the zirconocene homologues –
contrasting what is known for late transition metal
hydrides. We are currently extending this approach to
study a broad range of molecular and oxide-supported
metal hydrides.

Experimental Section

Synthesis of Molecular Compounds

[(Cp)2Zr(H)Cl]2 and [(Cp)2ZrH2]2 were synthesized using
an adapted literature procedure.[64] The corresponding
deuterides were synthesized analogously, using LiAlD4
in place of LiAlH4. Tetrakis(2,2-dimethylpropyl)-zirco-
nium (ZrNp4) was synthesized using an adapted
literature procedure.[35] Further details for the syn-
thesis and characterization of the molecules used are
provided in the Supporting Information.

Synthesis of Supported Zr Species

ZrNpx@SiO2, Zr(H)@SiO2–500 and Zr(H/D)@SiO2–500
were synthesized using an adapted literature proce-
dure starting from silica partially dehydroxylated at
500 °C (SiO2–500) and ZrNp4.

[53] Further details for the
synthesis and characterization of the molecules used
are provided in the Supporting Information.

Computational Details

Geometry optimization was performed using a hybrid
PBE0/TZ2P level of theory including the extra basis set
Stuttgart/Dresden ECPs (SDD) for Zr atoms using
Gaussian09.[65–68] NMR and EFG calculations were
performed for geometry optimized structures using a
hybrid PBE0/TZ2P[65,69–71] level of theory that included
contributions from spin-orbit coupling using the
zeroth-order regular approximation (ZORA)[72–75] by
ADF2022.[76]

Supporting Information

The authors have cited additional references within
the Supporting Information.[77–86]
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