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Discovering Process Dynamics for Scalable Perovskite Solar
Cell Manufacturing with Explainable AI

Lukas Klein,* Sebastian Ziegler,* Felix Laufer, Charlotte Debus, Markus Götz,
Klaus Maier-Hein, Ulrich W. Paetzold,* Fabian Isensee, and Paul F. Jäger

Large-area processing of perovskite semiconductor thin-films is complex
and evokes unexplained variance in quality, posing a major hurdle for the
commercialization of perovskite photovoltaics. Advances in scalable
fabrication processes are currently limited to gradual and arbitrary
trial-and-error procedures. While the in situ acquisition of photoluminescence
(PL) videos has the potential to reveal important variations in the thin-film
formation process, the high dimensionality of the data quickly surpasses the
limits of human analysis. In response, this study leverages deep learning (DL)
and explainable artificial intelligence (XAI) to discover relationships between
sensor information acquired during the perovskite thin-film formation process
and the resulting solar cell performance indicators, while rendering these
relationships humanly understandable. The study further shows how gained
insights can be distilled into actionable recommendations for perovskite
thin-film processing, advancing toward industrial-scale solar cell
manufacturing. This study demonstrates that XAI methods will play a critical
role in accelerating energy materials science.

1. Introduction

Perovskite solar cells (PSCs) have been established as one of
the most promising candidates for next-generation photovoltaics.
Since the emergence of hybrid organic–inorganic metal halide
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perovskite semiconductors, power conver-
sion efficiencies (PCEs) of PSCs have im-
proved vastly, exceeding 30% PCE in per-
ovskite/silicon tandem photovoltaics.[1] De-
spite numerous advantages,[2–4] the tech-
nology has not reached the market yet
due to insufficient device stability and the
lack of cost-effective and reliable large-
scale production.[5,6] Large-area perovskite
thin-films can be deposited using ther-
mal sublimation in vacuum[7–9] or scal-
able solution-based deposition techniques
like blade coating,[10,11] slot-die coating,[12,13]

and ink-jet printing.[14,15] State-of-the-art
solution-processed multi-cation perovskite
thin-films require fast solvent extraction to
rapidly reach the level of supersaturation
and initiate prompt crystallization.[16,17] The
crystallization process heavily affects the
perovskite thin-film formation process and
is the key step in producing high-quality
perovskite thin-films. In practice, this crys-
tallization process is very difficult to control,

as it is heavily dependent not only on the layer stack, deposition,
and materials but also on external process parameters such as
temperature, as well as lab-specific equipment. Optimal param-
eters cannot be easily transferred between setups and have to be

S. Ziegler, K. Maier-Hein, F. Isensee
Division of Medical Image Computing
German Cancer Research Center
69120 Heidelberg, Germany
F. Laufer, U. W. Paetzold
Light Technology Institute
Karlsruhe Institute of Technology
76131 Karlsruhe, Germany
E-mail: ulrich.paetzold@kit.edu
C. Debus, M. Götz
Steinbuch Centre for Computing
Karlsruhe Institute of Technology
76344 Eggenstein-Leopoldshafen, Germany
C. Debus, M. Götz
Helmholtz AI
Karlsruhe Institute of Technology
76344 Eggenstein-Leopoldshafen, Germany
U. W. Paetzold
Institute of Microstructure Technology
Karlsruhe Institute of Technology
76344 Eggenstein-Leopoldshafen, Germany

Adv. Mater. 2024, 36, 2307160 2307160 (1 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

http://www.advmat.de
mailto:lukas.klein@dkfz.de
mailto:sebastian.ziegler@dkfz.de
https://doi.org/10.1002/adma.202307160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:ulrich.paetzold@kit.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadma.202307160&domain=pdf&date_stamp=2023-12-07


www.advancedsciencenews.com www.advmat.de

re-determined for each manufacturing site following a trial-and-
error procedure.[18–20] However, even when nominally identical
process parameters are applied, the PSC quality varies due to de-
viating real-world process parameters resulting from small hu-
man or technical inconsistencies infeasible to measure. Conse-
quently, the entire thin-film formation process is hard to opti-
mize for specific setups, leading to poor reproducibility. Hence,
a standardized and quantitative way of determining optimal pro-
cess parameters is lacking to reduce the significant volatility in
PSC quality.

Machine learning (ML) has recently been applied to specific
optimization problems in various fields, including materials sci-
ences, as it outperforms humans in finding correlations and
clues in highly complex data.[21–23] Specifically, in perovskite re-
search, ML has been used to optimize specific parameters on
tabular data, e.g., material choice,[24] bandgaps,[25] compositional
ionic radii,[26] or optimizing specific characteristics like the mor-
phology or crystal structure utilizing scanning electron micro-
scope (SEM)[27] and grazing incidence x-ray diffraction (GIXD)
images.[28] However, the current application of ML in perovskite
research is only working with low-dimensional ex situ data, look-
ing exclusively at the final thin-film, but not the perovskite for-
mation process itself. We argue, that only by understanding the
full process in a data-driven manner we can discover new in-
sights about the underlying mechanisms that lead to volatility in
PSC quality.

We address this challenge by introducing a data-driven concept
for knowledge discovery. This concept combines deep learning
(DL) with multiple explainable artificial intelligence (XAI) meth-
ods. While DL is able to find patterns in complex data that would
be infeasible to find through traditional analyses, we use XAI to
render the found patterns to human-understandable concepts,
which can be translated by material scientists into actionable con-
clusions. To our knowledge, it is the first time that XAI is used to
such an extent on high-dimensional data for knowledge discov-
ery as well as PSC fabrication. Based on this setup, we are not
only able to find evidence in favor or against existing hypotheses
but also uncover unprecedented insights leading to the establish-
ment of new hypotheses regarding reliable large-scale PSC man-
ufacturing. These insights are generated on the basis of a unique
high-dimensional dataset, containing in situ photoluminescence
(PL) intensity videos of the perovskite thin-film formation (see
our previous study by ref. [29]). While the process parameters in
this dataset are nominally identical, the video data captures the
real-world process parameters by showing the thin-film forma-
tion process they produce. By doing so, we do not limit ourselves
to prior assumptions regarding high-impact parameters but en-
able an unbiased inclusion of all possible real-world process pa-
rameters. This methodology offers two main advantages: First,
we do not limit our prior set of information and allow the iden-
tification of unanticipated findings. Second, we can also discover
multiple distinct process parameters that cause the same finding,
as changes in the thin-film formation process can be achieved by
several different actions, which vary in suitability depending on
the specific setup.

In the following sections, we first describe the experimental
setup leveraging ML and XAI to gain a deeper understanding
of thin-film formation processes leading to high-quality PSCs.
Based on this setup, we present four key findings derived from

the XAI analysis. These findings ultimately allow us to formulate
action recommendations on the fabrication process. Concluding,
we discuss the limitations and future potential of our approach.

2. A Data-Driven Approach for Knowledge
Discovery Facilitates the Experimentation Process

2.1. Dataset

This study builds on our publicly available dataset published
by ref. [29] that contains in situ PL video data of 1,129 PSCs
(Figure 1). The videos were acquired using PL imaging, which
is a non-invasive, easily accessible, versatile measurement tech-
nique capable of monitoring the perovskite crystallization in
situ on large areas with spatial resolution as well as sub-second
temporal resolution. The PL videos were recorded during the
vacuum-based quenching of blade-coated perovskite thin-films
distributed over 38 substrates using nominally the exact same
process conditions. Consequently, the video data depicts the dry-
ing and crystallization of the blade-coated perovskite thin-films.
Four filters were used to capture the characteristic PL of the
underlying processes: a neutral density filter (RND), measuring
the reflectance, two longpass filters, capturing the PL with wave-
lengths longer than 725nm (PLLP725) and 780nm (PLLP780), respec-
tively, and a 775nm shortpass capturing short-wave PL (PLSP775)
combined with a longpass to remove the excitation light.[30] All
solar cells were fabricated incorporating a double cation per-
ovskite absorber layer with the composition Cs0.17 FA0.83Pb(I0.91
Br0.09)3. Subsequent to the processing of the perovskite thin-film,
the full device stack of the PSC was completed. The PCE of the
PSCs as well as the mean thickness (mTh) of the perovskite thin-
film serve as labels for our neural network (NN) training, allow-
ing them to learn a relationship between the videos and the qual-
ity of a PSC. This ultimately allows the prediction of PSC qual-
ity, i.e., PCE, before completing the perovskite thin-film into a
functional solar cell device. A detailed description of the data ac-
quisition process can be found in Subsection SA.2 (Supporting
Information).

Figure 2 depicts a characteristic PL signal in a point timeseries
(Point TS) data representation, where each line represents the av-
erage PL per filter over the whole dataset. Characteristic features
of the PL signal can be attributed to different phases during the
perovskite thin-film formation, which we extend from ref. [6]: In
Phase I, the evacuation of the vacuum chamber leads to an ac-
celerated drying of the wet-film due to increased solvent evapo-
ration rates. No PL signal is detected yet as the precursor mate-
rials are still dissolved in the ink and no perovskite semiconduc-
tor material is formed. With the nucleation onset of perovskite
crystallites in Phase II, perovskite nuclei and small grains start to
emit a strong PL signal. During crystallization (Phase III) larger
grains are formed by coalescing and ripening of smaller ones.
Non-radiative recombination at grain boundaries and a reduced
outcoupling of luminescence photons emitted from the solid per-
ovskite thin-film - due to total internal reflection - reduce the over-
all emitted PL signal. Phase IV starts with the venting of the vac-
uum chamber creating the final film surface morphology. The
evolution of the PL signal during that phase remains not fully
understood but is hypothesized to correlate with the thin-film’s
final morphology, i.e., surface roughness.[31]
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Figure 1. Overview of the Experiment Setup Process diagram of the experimental setup. Leads from dataset acquisition to the interpretation of the
findings by scientists. Dataset abstractly visualizes the acquisition of the videos and labels. Neural network training showcases the different representa-
tions and neural network architectures used to predict the labels. Explainable AI lists XAI methods and XAI evaluation approaches. Finally, quantitative
findings are interpreted by scientists to connect them to actionable recommendations, with the possibility of leveraging them for constructing a new
enhanced dataset and closing the circle. Abbreviations: NN: neural network, PL: photoluminescence.

2.2. Neural Network Training and Explainable AI Methods

The DL models employed in this work are trained on differ-
ent representations of the high-dimensional data as shown in
Figure 1: the original video, image, point timeseries (Point TS),
and vector timeseries (Vector TS). Detailed descriptions of each
representation and their respective data preprocessing are avail-
able in Section 8. The DL models, specialized for each repre-
sentation, are trained to predict the labels, i.e., PCE or mTh.
Model architectures for each representation are described in Sec-
tion 8 (Neural Network Architectures) and chosen hyperparame-
ters and augmentation techniques can be found in Section SE
(Supporting Information). Building on these models, multiple
XAI methods are used to render the ML mapping between PL

input data and predicted PCE or mTh humanly interpretable. To
understand which input features and phases are most important
to our models, we apply attribution methods[32,33] to compute ei-
ther local explanations, i.e., explaining a model’s behavior on a
single observation (i.e., single sample), or global explanations,
i.e., explaining patterns that are present in general. However, the
computed attribution maps only indicate the importance of in-
dividual features without revealing the underlying reasons and
causal effects leading to the importance. To answer this question
we deploy counterfactual explanations (CEs)[34–36] and the Test-
ing of Concept Activation Vectors (TCAV).[37] CEs alter the input
observation to receive a specific counterfactual outcome and sim-
ulate “what if” -scenarios. For TCAV, on the other hand, building
on the CE analysis we define concepts that occur in the data, e.g.,

Figure 2. Description of utilized data a) The figure shows the four different thin-film formation phases based on the average Point TS PL and reflectance
intensity for each of the four filters. Below, the simultaneous change of the air pressure in mbar is depicted. b) Distribution of both labels, separated
into train and testset. Abbreviations: Point TS: point timeseries, PL: photoluminescence.

Adv. Mater. 2024, 36, 2307160 2307160 (3 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 3. NN model performance and XAI explanations about the temporal progression a) NN performance is measured in standardized mean ab-
solute error (sMAE) to compare between labels. The mean baseline is computed by calculating the label’s mean on the training set and using it as
prediction for every case in the testset. b) Attribution-map showing which timesteps (over all four filters) of the Point TS attribute either positive (blue)
or negative (red) to the prediction of each label. The scale of the attribution differs between both labels, as it depends on the scale of the labels.
c) Attribution-map for the video data of label PCE and filter PLLP725 (left), and label mTh and filter PLLP780 (right). Both graphics show four frames
and their attribution-maps, selected based on the aggregated absolute attribution per timestep to their right. Abbreviations: NN: neural network, TS:
timeseries, PL: photoluminescence, PCE: power conversion efficiency, mTh: mean thickness, MAE: mean absolute error.

a high PL peak, and test the importance of each concept to spe-
cific layers of the DL model (detailed description is provided in
methods Section 8).

In the following sections, we present our key findings derived
from the multi-dimensional in situ PL dataset by XAI. Since all
the different data representations, labels, and XAI methods yield
various combinations, we show only the most relevant results.
A comprehensive overview of the DL and XAI results obtained
during this study can be found in Section SB (Supporting Infor-
mation).

3. Temporal Progression of In Situ
Photoluminescence Contains More Information
Compared to the Spatial Dimension

While 2D data (e.g., images) and correlations therein can be cap-
tured and processed reasonably well by human experts, correla-
tions in 3D data (e.g., videos) are hardly accessible. In fact, our
XAI analysis shows that the temporal progression of the PL data
contained in in situ videos recorded during the perovskite thin-
film formation, i.e., the vacuum-based quenching step, contains
much more information about the device performance and per-
ovskite thin-film thickness compared to single ex situ PL images.

DL models trained on representations containing time infor-
mation outperform DL models trained on spatial information
alone (Figure 3a). When limiting the data to only one frame (im-
age representation), thereby neglecting the temporal dimension,

choosing the timestep influences the prediction performance dif-
ferently for each label. While for PCE using the frame at max-
imum PL intensity (in situ) yields better performance than the
final frame (ex situ) of the thin-film formation, it is vice versa
for mTh. This suggests that mTh is more dependent on pro-
cess phases after the maximum PL intensity frame, while this
timestep contains substantial information for PCE prediction.
The significant variation in PCE and mTh prediction perfor-
mance results from the fact that the PCE label, other than the
mTh label, encompasses effects and correlations of the subse-
quent layer processing on top of the perovskite thin-film, given
that the PCE is determined for the full PSC. Parity plots, showing
the correlation between predicted and ground truth labels, can
be found in Figure S14 (Supporting Information). Attribution-
maps showing how important each timestep for the DL model
is (Figure 3b) reveal that the models neither identify single dom-
inant timesteps nor consider each timestep as equally relevant,
but rather highlights distinct time periods of high relevance for
the models trained on either the PCE label or the mTh label. Im-
portantly, these periods are also reflected in the video represen-
tation when aggregating attribution per frame, while the spatial
attribution within frames does not show recognizable patterns
(Figure 3c).

Our analysis highlights that the model focuses on time peri-
ods that coincide with the defined phases. The model leverages
the information in these phases to successfully differentiate be-
tween sequences resulting in high- or low-performing PSCs. The
predictive performance of the models extensively increases when

Adv. Mater. 2024, 36, 2307160 2307160 (4 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202307160 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 4. Diverse XAI results highlight the importance of Phase II (nucleation onset) a) Absolute attribution-map for PCE averaged over 100 observations.
b) Generated CEs of the LP filters yielding either high or low PCE prediction. See Figure S8 (Supporting Information) for the other two filters and Figures
S9 and S10 (Supporting Information) for the CEs of the same observation’s other representations. The original predicted PCE for this observation is
shown in the header and the PCE predicted based on the artificially computed CEs are presented behind the label. c) For TCAV, we test the last eight layers
of the NN, as they capture more semantic information than earlier layers. For each of the eight layers, we observe whether the layer is more sensitive to
the concepts “High Peak” or “Low Peak” of the concept class “Early Peak Height”, or whether there is no significant difference (ns, based on proportion
z-test with a significance level (𝛼) of 0.05). This is done based on selecting contrasting data subsets, to see the difference in importance of the concepts
to e.g., high and low PCE observations (see Section SB, Supporting Information for high mTh observations). Abbreviations: NN: neural network, TS:
timeseries, PL: photoluminescence, PCE: power conversion efficiency, mTh: mean thickness, TCAV: Testing of Concept Activation Vectors.

including temporal information, and for in situ data is always
substantially better than the mean baseline. This emphasizes the
successful learning of non-trivial relationships, which represents
a requirement for the subsequent XAI analysis. The findings sug-
gest that the temporal dimension provides crucial characteristics
for understanding the perovskite thin-film formation, such as the
timing of the different phases during thin-film formation, which
is not present in individual images. Thus, not only the acquisition
of in situ data compared to ex situ but also the inclusion of a tem-
poral dimension is vitally important for PSC process monitoring
and optimization.

4. High Photoluminescence Peak Intensity at
Nucleation Onset Induces Higher Quality
Perovskite Films

We show and quantify that the quality of blade-coated per-
ovskite thin-films strongly correlates with the PL intensity close

to the onset of the nucleation and crystallization phase. This
onset is apparent at the start of Phase II. When visualiz-
ing the global importance over 100 observations, i.e., PL data
recorded from 100 PSCs, we observe that models predicting
PCE (Figure 4a) and mTh (Figure 6a) both show the highest
absolute attribution to Phase II. Figure 5 indicates the impor-
tance of each of the four filters by their mean absolute attri-
bution |AF|, as they contribute in different extends to the final
prediction.

To substantiate our analysis, we artificially generate CEs (de-
tailed description is provided in methods Section 8) of the PL
intensity curves (Figure 4b, see Section SB, Supporting Infor-
mation for the other two filters), such that the model predicts
substantially higher or lower PCE compared to the original ob-
servation. These CEs reveal that when moderately increasing the
nucleation onset peak the model predicts higher PCE values and
vice versa (Figure 4b), thereby confirming our initial observation.
These results are further reaffirmed for mTh, as a decreased PL

Adv. Mater. 2024, 36, 2307160 2307160 (5 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 5. The importance of each filter differs between labels a) Both figures show the mean absolute attribution of each filter (|AF|) over n = 100
observations with standard deviation, in order to assess the importance of each filter. Higher is always more important. F-Test to determine the difference
between all filters and only between the PL filters. The difference between all three PL filters is not significant (𝛼 ⩾ 0.1) b) Two sample T-Test to determine
the difference between ND and SP775 filter and LP725 and SP775 filter. Both are significantly different from each other.

intensity of the nucleation onset results in higher mTh predic-
tion (Figure 6b). To predict a lower mTh, however, no substantial
change in the PL intensity is required, suggesting that lower mea-
sured mTh values in our dataset still fall into an optimal range,
and only for higher values the PL intensity course is substan-
tially different.

To further reinforce the findings of the CE analysis, we deploy
TCAV to determine the extent to which the concepts of high and
low nucleation onset peaks affect the model prediction. We split
the whole dataset via quantiles (Qx) into two subsets for both la-
bels, to not only observe the general importance of the concepts
to the model, but specifically when predicting observation sub-
sets with properties, we are interested in: high PCE (>Q0.9) and
low PCE (<Q0.1) observations, and optimal (Q0.45 < x < Q0.55),
and high (>Q0.9) mTh observations (∀Qx: n = 113). We do not
use low mTh observations, as the data shows the highest, thus
optimal, PCE around 800nm (Section SA, Supporting Informa-
tion), and the CE analysis revealed that lower mTh values do
not necessarily result from substantially different PL intensity
curves. Figure 4c shows that when predicting high PCE observa-
tions the concept of “High Peak” is more important to the model
whereas when predicting low PCE observations the concept of
“Low Peak” is more important. Equivalently, in the case of mTh,
the concept of “High Peaks” is more important than “Low Peaks”
for the optimal and high mTh subset (only optimal is shown
in Figure 4c, see Section SB, Supporting Information for high
mTh observations). Both TCAV findings reconfirm the CE-based
conclusions.

In summary, our data-driven approach shows that a higher
peak in Phase II leads to improved PSC quality. Consequently,
practical guidelines for future experimental work are derived
from XAI analysis: Process parameters and ink formulations
shall be optimized toward maximizing the PL peak height dur-
ing Phase II. This data-driven finding complements experimen-
tal trial-and-error analysis in literature, where it was shown that
changes in the rate of evacuating the vacuum chamber impact
not only the PL onset time and the PL peak height but also the
perovskite thin-film quality.[38] The actionable recommendation
for future processes is to increase the evacuation rate to achieve
higher PL peaks, which is indicative of higher solar cell perfor-
mance.

5. High Photoluminescence Peak Intensity at the
Start of the Chamber Venting Induces Thick and
Rough Perovskite Thin-Films

To fabricate high-quality perovskite thin-films, a homogenous
layer morphology is critical. Our study shows that increased thin-
film thickness and roughness (the latter is highly correlated with
the thickness measurement, see Section SA, Supporting Infor-
mation) can be inferred from the XAI analysis of in situ PL data.
The vacuum quenching of the perovskite material and the subse-
quent venting (starting at around t = 505) strongly affect the crys-
tallization and the morphology of the perovskite layer.[38] Indeed,
our DL models predicting mTh show besides the high absolute
attribution to Phase II also attribution to Phase IV (Figure 6a).
Specifically, there is first a small attribution peak at around t =
510, before the dip in PL intensity, and then a large attribution
concentration after the dip. For PCE observations, only a smaller
attribution spike at t = 510 can be observed (Figure 4a). The CEs
for mTh observations in Figure 6b (see Section SB, Supporting
Information for the other two filters) reveal that along with a low
PL peak in Phase II, a high PL intensity during Phase IV leads to
higher mTh. Alterations leading to lower mTh are only very mi-
nor.

After determining the importance of Phase IV, we compare
the two concepts “Phase II Peak” and “Phase IV Peak” to fur-
ther distinguish between the two most important time periods
to the NN. While both concepts are equally important for high
PCE observations, “Early Peak” is more important for low PCE
observations (Figure 6c). The results refine the conclusion that
especially for low PCE values, Phase II is more important than
Phase IV. Also for mTh observations, both concepts are gener-
ally important (Section SB, Supporting Information), with “Late
Peak” being moderately more important than “Early Peak”, con-
firming the importance of Phase IV previously observed in the
CE experiments.

In summary, our analysis reveals that the perovskite thin-film
roughness correlates to the timing of the venting step. We con-
clude further that residual solvent contained in the thin-film
leads to increased surface roughness, resulting in increased PL
outcoupling, i.e., high PL signal during venting. In contrast, per-
fectly dry perovskite thin-films exhibit no change in morphology,

Adv. Mater. 2024, 36, 2307160 2307160 (6 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 6. Diverse XAI results highlight the importance of Phase IV (surface morphology) a) Absolute attribution-map for mTh averaged over 100 obser-
vations. b) Generated CEs of the LP filters yielding either high or low mTh prediction. See Figure S8 (Supporting Information) for the other two filters
and Figures S9 and S10 (Supporting Information) for the CEs of the same observation’s other representations. The original predicted mTh for this ob-
servation is shown in the header and the mTh predicted based on the artificially computed CEs is presented behind the label. c) For TCAV, we test the last
eight layers of the NN, as they capture more semantic information than earlier layers. For each of the eight layers, we observe whether the layer is more
sensitive to the concepts “Phase IV Peak” or “Phase II Peak” of the concept class “Peak Position”, or whether there is no significant difference (ns, based
on proportion z-test with a significance level (𝛼) of 0.05). This is done based on selecting contrasting data subsets, to see the difference in importance of
the concepts to e.g., high and low PCE observations (see Section SB, Supporting Information for optimal mTh observations). Abbreviations: NN: neural
network, TS: timeseries, PL: photoluminescence, PCE: power conversion efficiency, mTh: mean thickness, TCAV: Testing of Concept Activation Vectors.

i.e., no significant change in PL, during venting. The actionable
recommendation derived from our XAI analysis is to optimize
the processing such that the PL does not increase after the vent-
ing, i.e., to prevent the formation of rough and therefore thick lay-
ers, which are more likely to result in bad-performing solar cells.
This can be achieved by extending the evacuation times that dries
the thin-film and eliminates the PL increase during venting.

6. Superior Crystal Growth is Reflected in a Steeper
Photoluminescence Intensity Decay During the
Crystallization Phase

Next to nucleation, the phase of crystallization and crystal growth
(Phase III) is of critical importance for the morphology of the per-
ovskite thin-films. By means of our XAI analysis, we find that
high-performing PSCs correlated with a steeper decrease in PL
intensity during Phase III when compared to low-performing
PSCs. When revisiting the CE analysis in Figures 4b and 6b

we observe that the PL intensity slope apparent in Phase III is
steeper when predicting a higher PCE or a lower mTh. This is
also reaffirmed by the cluster analysis of ref. [29] showing that
clusters having a higher mean PCE also exhibit a steeper slope
in Phase III. To understand the underlying effect behind this dif-
ference in decay slope, we use TCAV to test the importance of
the two concepts “Linear Decay” and “Quadratic Decay” to the
model (Figure 7). We find that the concept “Quadratic Decay” is
more important for observations with high PCE, while the con-
cept “Linear Decay” is more important for observations with low
PCE. It is possible that this correlation may be spurious, as a high
nucleation onset peak in Phase II in PCE could result in a more
quadratic crystallization decay in Phase III, while a lower peak re-
sults in linear decay. Therefore, future work needs to verify the
causal effect behind the change in decay. In the case of mTh, the
model is sensitive to both concepts and no unique characteristic
for optimal or high observations can be defined.

In summary, the data-driven analysis reveals that a fast super-
linear decay of the PL signal correlates with higher performance.

Adv. Mater. 2024, 36, 2307160 2307160 (7 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202307160 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 7. TCAV concept importance to analyze the decay during Phase III (crystallization) For each of the eight layers, we observe whether the layer
is more sensitive to the concepts “Linear Decay” or “Quadratic Decay” of the concept class “Crystallization Decay”, or whether there is no significant
difference (ns, based on proportion z-test with a significance level (𝛼) of 0.05). We select contrasting data subsets to see the difference in importance of
the concepts to e.g., optimal and high mTh observations. Abbreviations: NN: neural network, PCE: power conversion efficiency, mTh: mean thickness,
TCAV: Testing of Concept Activation Vectors.

In addition, the correlation suggests that the crystallites grow and
coalesce into larger crystals, which reduces the number of grain
boundaries and promotes the extraction of charge carriers. Grain
boundaries exhibit a high defect density which reduces radia-
tive recombination and therefore lead to a decrease in emitted
PL. Thus, a high importance of the concept “Quadratic Decay”
for observations with high PCE could possibly be caused by the
higher charge extraction of high-performing PSCs leading to a
stronger reduction of radiative recombination during the crystal
growth phase illustrated in the steeper decrease in PL. For low-
performing solar cells, charge carrier extraction is lower, result-
ing in a high rate of radiative recombination and therefore in a
flatter decrease of emitted PL signal over time.

7. Conclusion

Our analysis shows that fluctuation in the quality of PSCs pro-
cessed with nominally identical conditions can be understood

by investigating the thin-film formation process with DL and
XAI, bringing us one step closer to the industrial usage of PSCs
(Table 1). We are able to infer actionable recommendations just
by analyzing the video dataset and without having to carry out
extensive and costly trial-and-error experiments. This is possi-
ble due to our unique approach of leveraging diverse XAI meth-
ods, going beyond mere feature importance, combined with deep
learning-based modeling of video data, to generate new insights
that would not have been identified by human experts.

While this data-driven approach can vastly accelerate and fa-
cilitate experimentation in materials science, some possible lim-
itations need to be taken into account. In DL, overfitting is
a common problem, where no meaningful relationships are
learned. Therefore, general conclusions can only be drawn if suf-
ficient prediction performance on unseen test data is achieved.
Our quantitative testset evaluation (Figure 3) and parity plots
(Figure S14, Supporting Information) show that our models are
well capable of predicting unseen data to find general patterns.

Table 1. Overview of all findings and the recommendations derived from them.

Adv. Mater. 2024, 36, 2307160 2307160 (8 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Differences between the two labels are due to the fact that PCE
can only be measured after the completion of the solar cell while
mTh only depends on the perovskite layer. Since the subsequent
production steps can introduce irregularities that adversely af-
fect PCE but are impossible to predict from only the videos it
is expected that mTh is predicted overall more accurately. This
is also reflected in the parity plots (Figure S14, Supporting Infor-
mation) showing PCE predictions for low-PCE solar cells being
consistently overestimated, due to the error leading to a low PCE
only occurring in not imaged subsequent steps. Apart from these
cases, however, a high-quality prediction performance for sub-
sequent XAI steps is achieved. Further, human interaction with
XAI is prone to confirmation biases and overinterpretation. To
mitigate these potential pitfalls, we not only apply diverse XAI
methods that confirm observations from different perspectives
but also perform a large-scale quantitative evaluation (Section SC,
Supporting Information). Furthermore, a data-driven approach is
naturally limited by the dataset used for analysis. A higher spa-
tial resolution that makes prominent defects and crystal struc-
tures better visible (e.g., SEM) would widen the range of poten-
tial insights but is infeasible to obtain for in situ videos. Naturally,
there is a possibility of unobserved parameters, not captured in
our dataset, but still affecting the labels. However, we deem the
possibility of important unobserved parameters and confounders
as rather low, since the information-rich video data captures al-
most all important processes of the thin-film formation, with the
exception of the succeeding production steps to finalize the PSC
when measuring PCE. Further, the inference from XAI results
to underlying causal variables is performed by human experts,
so as to control against potential confounders. Lastly, we want to
stress that the techniques applied in this manuscript should also
be regarded as a general concept for experimental material re-
searchers to assess and enhance their experimental setups. The
XAI methods are not limited to the dataset we have used as an
example. Consequently, a similar analysis can be conducted to in-
terpret and improve other fabrication processes in materials sci-
ence.

Our encouraging action recommendations exemplify the us-
age of XAI methods in materials science and PSC research
and showcase data-driven approaches as key tools for the devel-
opment of upcoming photovoltaic technologies. Moreover, this
work highlights the importance of investigating PSCs in a scal-
able experimental setup to tackle current reliability issues in
large-scale PSC production. To this end, it is important to un-
derstand the perovskite thin-film formation process, which is in-
vestigated in this work.

8. Experimental Section
Data Preprocessing: We created several data representations in– or ex-

cluding time and/or spatial dimensions. The original dataset consisted of
width (w), height (h), and time (t). The video representation contains all
available information {w, h, t}. They contain 719 timesteps (i.e., frames)
acquired at a rate of three frames per second. Each frame was an image
sized 65 × 56 pixels with a spatial resolution of 18.6 pixels/mm and covers
the active area of a PSC. The point timeseries (Point TS) contains only the
temporal information by aggregating each frame via its mean {(w, h)|t}.
The image representation on the other hand only covers spatial informa-
tion. It consisted of a single frame at a given time point t, for example,

the one with the maximum PL signal {(w, h)|tmaxPL} or the last frame of
each video {(w, h)|t|T|}, simulating an ex situ approach. The vector time-
series (Vector TS) is similar to the Point TS, aggregating only the w dimen-
sion {(w|h), t} resulting in a 2D representation that includes temporal as
well as some spatial information. Additionally, we tried spectral analysis by
converting the Point TS to a spectrogram. However, there were not many
prominent frequencies in the data, resulting in lower prediction perfor-
mance. Each of the representations contains the four filters. They were
concatenated along the channel dimension. Further, the data was stan-
dardized using the z-transformation with the mean and standard devia-
tion of the training set. Additionally, each model was trained with differ-
ent data augmentations such as flips and blurs. A detailed list of all aug-
mentations for each model can be found in Section SE (Supporting Infor-
mation). For the testset, the data was only standardized using mean and
standard deviation again from the training set and no augmentations were
applied.

Neural Network Training and Testing: We used the same train and test
split as ref. [29], excluding 30% of the 1,129 PSCs as a held-out test set
stratified on a substrate level. For model development, we applied five-fold
cross-validation to the training set. The average score of the five different
models was then used to determine the best configurations. This ensures
a reliable model evaluation mitigating potential overfitting on only one val-
idation set. The final model evaluation as seen in Figure 3a was done on
the test set. sMAE was used as a metric: It standardizes the common MAE
by dividing it by the standard deviation of the respective ground truth label
to render scores comparable across different labels and value ranges. The
complete results table for the test set including also unnormalized scores
is available in the Section SD (Supporting Information).

Neural Network Architectures: Since we used different data repre-
sentations with varying dimensionality we needed to adapt the neural
network architecture to the representation. Different architectures such
as VGGs,[39] ResNets,[40] PreActResNets,[41] EfficientNets,[42] and Wide
ResNets[43] were compared against each other during development and
the final architecture for each data representation and label and final mod-
els were selected based on the highest cross-validated performance as
measured by sMAE. Overall, the ResNet architecture[40] had the highest
performance for the 1D and 2D representations. For the Point TS which
only had one dimension (time), we applied a ResNet-152 using 1D convo-
lutions. For the image and Vector TS representations, we used a ResNet-18
with 2D convolutions. The four filters from the dataset are presented to the
networks as input channels, analogous to how red, green, and blue were
used when processing natural images.

Learning from entire video sequences was substantially more chal-
lenging. Using a standard ResNet analogous to the 1D and 2D repre-
sentations would result in an architecture that needs to accumulate in-
formation across 4 × 65 × 56 × 719 input tensors. Computation time
aside, the curse of dimensionality coupled with a limited number of train-
ing cases would impede optimization, particularly generalization perfor-
mance. Thus, a purpose-built solution was required. SlowFast[44] is highly
optimized for video data and yields state-of-the-art performance on com-
mon video data benchmarks. It consists of two convolutional branches
that require different inputs. Its central concept was that a video con-
tains static (slow) information, e.g., objects that were presented in the
video at all times or only change very slowly, and dynamic (fast) informa-
tion, e.g., movements or other actions. Accordingly, the two branches of
SlowFast focus on the two distinct types of information. The slow path-
way processes fewer frames by using a large temporal stride, allowing
the network to detect static information efficiently. On the other hand,
the fast pathway inputs more video frames but used a more lightweight
sub-architecture by using fewer convolutional kernels. In the end, both
branches were concatenated and followed by a classification or regression
head.

Neural Network Hyperparameters: We used the mean absolute error
(MAE) as a loss function to train the regression neural networks. All mod-
els were trained for 1,000 epochs, either using the AdamW[45] or the
Madgrad[46] optimizer and a cosine annealing learning rate scheduler.[47]

A table with detailed information on all hyperparameters for each model
is available in Section SE (Supporting Information).

Adv. Mater. 2024, 36, 2307160 2307160 (9 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Depending on the representation we make extensive use of data aug-
mentation. This allows to slightly change the input data every time the
model sees it during training, ensuring more variability and thus, better
generalization. While we only z-standardize the data for the Point TS rep-
resentation, we additionally used flips, blurs, and spatial transformations
for the other representations. A detailed list of augmentations used for
each model is available in Section SE (Supporting Information).

Attribution Methods: Due to the risk of confirmation bias and unfaith-
ful explanations,[33] we computed each attribution-map for all represen-
tations and labels with four different attribution methods. These include
Guided Backpropagation (GBP),[48] Guided Gradient-weighted Class Ac-
tivation Mapping (GGC),[49] Integrated Gradients (IG),[32] and Expected
Gradients (EG).[50] All results shown in the main paper were based on
EG due to the explanation evaluation results (see Section SC, Supporting
Information), as it shows a good balance between robustness and faith-
fulness without the prior selection of a baseline value (possibly biasing
the explanations). The explanations generated by all other methods are in
Section SC (Supporting Information). Local explanations were computed
on test set observations. As there were no significant differences between
train and test set explanations, global explanations were computed on
the full dataset to leverage the substantially larger size compared to the
test set.

The most apparent solution to measure the sensitivity of a model’s
output to its input is the respective gradient. However, vanilla gradients
are prone to gradient shattering[51] and ignoring global effects in the
input space. Thus, they could e.g., be combined with deconvolutional
networks,[52] which aim to invert the data flow of an NN, to reconstruct
the discriminative input space of an activation or output node. While both
approaches are almost equivalent, they differ in their backwards pass be-
cause, for non-linear functions such as the Rectified Linear Unit (ReLU),
deconvolutions compute “switches” during the forward pass to invert the
function. In the case of ReLU for example, this results in a sign indica-
tor function computed on the higher-layer’s reconstruction instead of the
layer input, which would be the case in backpropagation (for more detailed
information see Section 3.4 in ref. [48]). GBP combines both backwards
pass approaches by masking out the values for which at least one of the
approaches is negative, guiding the gradient by an additional signal from
the higher layers on top of the usual backpropagation.

We combined GBP with GradCAM, a method leveraging the idea that
convolutional neural networks transform spatial to semantic information
by attributing to the semantic information, which is then back-projected
into the input space. The resulting GGC takes the element-wise prod-
uct between GBP and the non-negative GradCAM attributions, leveraging
both the semantic information from GradCAM and the more fine-grained
spatial information in the input space from GBP. We back-project from the
last block in the ResNet and the multipathway fusion block in the Slow-
Fast architecture.

IG on the other hand computes a path integral between a baseline
value x0 and the true value xj of each of the j input features (i.e. pixels
or timesteps).

IGj(x, x0) = (xj − x0j)∫
1

𝛼=0

𝜕f (x0 + 𝛼(x − x0))
𝜕xj

d𝛼 (1)

However, the prior selection of a baseline value in IG is not always clear,
and performing multiple path integrals over several baseline values can be
inefficient. Thus, EG avoids the selection of a baseline value, by leveraging
a probabilistic baseline D computed over a sample of observations.

EGj(x) = 𝔼
x0∼D, 𝛼∼U(0,1)

[
𝜕f (x0 + 𝛼(x − x0))

𝜕xj
d𝛼

]
(2)

In application, this expectation is approximated via a mini-batch sam-
pling approach for x0 and 𝛼.

Counterfactual Examples: To generate CEs, we used the Genetic Coun-
terfactuals (GeCo) algorithm[53] together with the respective models in
Figure 3a. GeCo computes plausible (assuring that they could be real) and

feasible (assuring they can actually be computed) CEs in a short time. It
relies on a genetic algorithm, which was customized to favor searching
CEs with the smallest number of changes. To achieve the short compu-
tation time, it utilized novel optimizations such as the Δ-representation
of candidate counterfactuals and only partial evaluation of the classifier.
This speed in computation was especially important for our task, as it
would not be feasible to compute CEs for high-dimensional data such as
videos or the Vector TS representation with other methods such as Di-
verse Counterfactuals (DiCE)[54] or Diffusion Visual Counterfactual Expla-
nations (DVCEs)[55], even with very high computing resources.

As our labels were continuous, we leverage the CEs to visualize how
an observation had to be changed to receive either a substantially higher
or lower PCE (>13.93% and <9.22%) or mTh (>1300 nm and <700 nm)
prediction compared to the ground truth value.

TCAV: We leverage TCAV[37] to identify concepts that were most im-
portant to the model’s predictions. The technique used a Concept Activa-
tion Vector (CAV), v, to quantify the importance of a particular concept
to the model’s predictions. A CAV is a high-dimensional vector that is
learned by training a linear model on the activations of a hidden layer l
and two datasets of examples, C = [c1, c2], that are representative of the
concepts. The CAV is then the unit length normal vector to the linear deci-
sion boundary of the model, pointing in the direction of c1, while c2 lies in
the opposite direction. We then calculate the sensitivity SC, l of the output
into the direction of the CAV by taking the directional derivative:

SC,l(c1) = ∇hl(fl(c1)) ⋅ vl
C (3)

With f() being the part of the model up to the hidden layer l and h()
the part of the model from the hidden layer to the output. We used a sign-
test to test if the output for a specific observation was more sensitive to
concepts one or two. If the directional derivative in the direction of the CAV
was positive it was more sensitive to c1 and if negative more sensitive to
c2. We computed the concept importance score by averaging the sign-test
result for the respective high/low PCE or mTh subsets Xq.

CoImC,l,q =
|x ∈ Xq : SC,l(x) > 0||Xk| (4)

We sample the datasets C for all of the six concepts (Phase IV and Phase
II Peak, High and Low Peak, Linear, and Quadratic Decay) separately for
each filter based on extracted summary statistics of each Point TS and
specific random permutations to not create out-of-distribution (OOD) ex-
amples (Section SF, Supporting Information for a more detailed descrip-
tion). Each concept is sampled 100 times. To ensure robust and trustwor-
thy CAVs, we also evaluate the linear classifier that was trained to sepa-
rate both concepts in the layer-activation output space. For PCE observa-
tions (high and low PCE, as the CAV was independent of the observations,
and only dependents on the DL model and concepts), we train a Lasso-
regression,[56] which reaches a test set (33% split, ntest = 66) accuracy of
99% for the Phase IV and Phase II Peak concept separation, 95% for the
High and Low Peak and 61% for the Linear and Quadratic Decay. In the
case of mTh, the test set accuracies were 100%, 89%, and 62%, respec-
tively. See Section SF (Supporting Information) for the hyperparameters
of the linear classifier.

Faithfulness Metrics: We applied Sensitivity-N,[57] Insertion and
Deletion[58] to evaluate the faithfulness of the explanations to the mod-
els. The distribution of each evaluation score was approximated from 500
observations for the Point TS, 250 for the image and Vector TS, and 50 for
the video representation. For all metrics, the score for a total unfaithful
(random) attribution-map is zero.

Sensitivity-N was a metric that was satisfied when the sum of the at-
tributions A for any subset of n features was equal to the variation of the
output f() caused by removing the features in the subset. xs is the set of all
subsets of features from cardinality 1 to n.

n∑
j=1

Aj(x) = f (x) − f (x[xs=0]) ∀xs = [x1,… , xn] ⊆ x (5)

Adv. Mater. 2024, 36, 2307160 2307160 (10 of 13) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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We measured how much the sum of the attributions (left-hand side)
and the variation in the output (right side) correlate when calculating each
side for all subsets in xs. We computed the Pearson correlation between
both sides for n is equal to the values of 1, 3, 12, 41, 144, and 501. However,
it was not efficient for the larger values of n to compute the correlation
for all possible xs. To approximate this, we draw each subset 100 times via
Monte Carlo sampling. Each point in Figure S12 (Supporting Information)
was then the mean of the sampled score distribution for each value of
n. If an XAI method assigns positive and negative attribution exactly the
opposite way, negative correlation values are also possible.

Deletion deletes input features one at a time by replacing them with a
baseline value based on their attribution score. For the Vector TS, image,
and video representations we used zero as the baseline value, for the Point
TS it used the implementation presented by ref. [59], as in this case, a
zero value does not correspond with an informationless state. Insertion
gradually inserts features into a baseline input. The baseline input was an
extremely blurred or smoothed version of the input observation (𝜎 = 5), to
simulate an informationless state without a distribution shift in the testing
data, creating an OOD example, a problem discussed by ref. [60]

We were inserting or deleting the features with the highest to the lowest
attribution for both evaluation metrics and compute the neural network
output at each step for every observation. In the original implementation of
the metrics the area under the curve (AUC) value of the output for all steps
was computed. However, this only works in the case of a classification task.
Thus we implemented the area between the curve (ABC) computation, an
adaptation of Insertion/Deletion to the regression task, suggested by ref.
[61].

Robustness Metrics: To evaluate the robustness of the explanation we
implemented the Sensitivity-Max and Infidelity metrics.[62] Both are based
on the idea that a small perturbation of the input x should optimally also
result only in a small change in the explanation. Infidelity calculates the
expected mean-squared error (MSE) between the attribution-map A mul-
tiplied by a random variable input perturbation I and the differences be-
tween the neural network output f() at its input and perturbed input.

Infd(A, f, x) = 𝔼
I∼D

[(IT A(f, x) − (f (x) − f (x − I)))2]

I = x − 𝜀 𝜀 ∼ N(0, 𝜎2) (6)

We implemented the difference to a noisy baseline as the input pertur-
bation which subtracts a Gaussian random vector with a standard devia-
tion 𝜎 = 0.01 from the input observation to receive the input perturbation
I, following the distribution D.

Sensitivity-Max, however, measures the maximum change in the expla-
nation with a small perturbation of the input x. Specifically, it measured
the maximum sensitivity of an attribution-map A by sampling multiple ob-
servations s (in our case ns = 10) from a subspace of an L-infinity ball
with a defined input neighborhood radius (r = 0.02) and approximating
the equation via Monte Carlo sampling.

SensMax(A, f , x, r) = max||s−x||≤r
||A(f , s) − A(f , x)|| (7)

Sensitivity-Max is upper-bounded for attribution-maps that are locally
Lipshitz continuous.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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