
ETH Library

Tree Variational Autoencoders

Conference Paper

Author(s):
Manduchi, Laura; Vandenhirtz, Moritz; Ryser, Alain; Vogt, Julia

Publication date:
2023-12-12

Permanent link:
https://doi.org/10.3929/ethz-b-000648934

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000648934
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Tree Variational Autoencoders

Laura Manduchi∗, Moritz Vandenhirtz∗, Alain Ryser, Julia E. Vogt
Department of Computer Science

ETH Zurich
Switzerland

Abstract

We propose Tree Variational Autoencoder (TreeVAE), a new generative hierarchi-
cal clustering model that learns a flexible tree-based posterior distribution over
latent variables. TreeVAE hierarchically divides samples according to their intrin-
sic characteristics, shedding light on hidden structures in the data. It adapts its
architecture to discover the optimal tree for encoding dependencies between latent
variables. The proposed tree-based generative architecture enables lightweight
conditional inference and improves generative performance by utilizing specialized
leaf decoders. We show that TreeVAE uncovers underlying clusters in the data and
finds meaningful hierarchical relations between the different groups on a variety
of datasets, including real-world imaging data. We present empirically that Tree-
VAE provides a more competitive log-likelihood lower bound than the sequential
counterparts. Finally, due to its generative nature, TreeVAE is able to generate new
samples from the discovered clusters via conditional sampling.

1 Introduction

Discovering structure and hierarchies in the data has been a long-standing goal in machine learning
(Bishop, 2006; Bengio et al., 2012; Jordan & Mitchell, 2015). Interpretable supervised methods, such
as decision trees (Zhou & Feng, 2017; Tanno et al., 2019), have proven to be successful in unveiling
hierarchical relationships within data. However, the expense of annotating large quantities of data has
resulted in a surge of interest in unsupervised approaches (LeCun et al., 2015). Hierarchical clustering
(Ward, 1963) offers an unsupervised path to find hidden groups in the data and their hierarchical
relationship (R. J. G. B. Campello et al., 2015). Due to its versatility, interpretability, and ability to
uncover meaningful patterns in complex data, hierarchical clustering has been widely used in a variety
of applications, including phylogenetics (Sneath & Sokal, 1962), astrophysics (McConnachie et al.,
2018), and federated learning (Briggs et al., 2020). Similar to how the human brain automatically
categorizes and connects objects based on shared attributes, hierarchical clustering algorithms
construct a dendrogram - a tree-like structure of clusters - that organizes data into nested groups
based on their similarity. Despite its potential, hierarchical clustering has taken a step back in light of
recent advances in self-supervised deep learning (Chen et al., 2020), and only a few deep learning
based methods have been proposed in recent years (Goyal et al., 2017; Mautz et al., 2020).

Deep latent variable models (Kingma & Welling, 2019), a class of generative models, have emerged
as powerful frameworks for unsupervised learning and they have been extensively used to uncover
hidden structures in the data (Dilokthanakul et al., 2016; Manduchi et al., 2021). They leverage the
flexibility of neural networks to capture complex patterns and generate meaningful representations of
high-dimensional data. By incorporating latent variables, these models can uncover the underlying
factors of variation of the data, making them a valuable tool for understanding and modeling complex
data distributions. In recent years, a variety of deep generative methods have been proposed to
incorporate more complex posterior distributions by modeling structural sequential dependencies

∗Equal contribution. Correspondence to {laura.manduchi,moritz.vandenhirtz}@inf.ethz.ch

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

horses dogs

birds cats frogs deers

trucks cars ships planes

animals vehicles

Figure 1: The hierarchical structure discovered by TreeVAE on the CIFAR-10 dataset. We display
random subsets of images that are probabilistically assigned to each leaf of the tree.

between latent variables (Sønderby et al., 2016; He et al., 2018; Maaløe et al., 2019; Vahdat & Kautz,
2020a), thus offering different levels of abstraction for encoding the data distribution.

Our work advances the state-of-the-art in structured VAEs by combining the complementary strengths
of hierarchical clustering algorithms and deep generative models. We propose TreeVAE1, a novel
tree-based generative model that encodes hierarchical dependencies between latent variables. We
introduce a training procedure to learn the optimal tree structure to model the posterior distribution
of latent variables. An example of a tree learned by TreeVAE is depicted in Fig. 1. Each edge
and split are encoded by neural networks, while the circles depict latent variables. Each sample
is associated with a probability distribution over paths. The resulting tree thus organizes the data
into an interpretable hierarchical structure in an unsupervised fashion, optimizing the amount of
shared information between samples. In CIFAR-10, for example, the method divides the vehicles
and animals into two different subtrees and similar groups (such as planes and ships) share common
ancestors.

Our main contributions are as follows: (i) We propose a novel, deep probabilistic approach to
hierarchical clustering that learns the optimal generative binary tree to mimic the hierarchies present
in the data. (ii) We provide a thorough empirical assessment of the proposed approach on MNIST,
Fashion-MNIST, 20Newsgroups, and Omniglot. In particular, we show that TreeVAE (a) outperforms
related work on deep hierarchical clustering, (b) discovers meaningful patterns in the data and their
hierarchical relationships, and (c) achieves a more competitive log-likelihood lower bound compared
to VAE and LadderVAE, its sequential counterpart. (iii) We propose an extension of TreeVAE that
integrates contrastive learning into its tree structure. Relevant prior knowledge, expertise, or specific
constraints can be incorporated into the generative model via augmentations, allowing for more
accurate and contextually meaningful clustering. We test the contrastive version of TreeVAE on
CIFAR-10, CIFAR-100, and CelebA, and we show that the proposed approach achieves competitive
hierarchical clustering performance compared to the baselines.

2 TreeVAE

We propose TreeVAE, a novel deep generative model that learns a flexible tree-based posterior
distribution over latent variables. Each sample travels through the tree from root to leaf in a
probabilistic manner as TreeVAE learns sample-specific probability distributions of paths. As a result,
the data is divided in a hierarchical fashion, with more refined concepts for deeper nodes in the tree.
The proposed graphical model is depicted in Fig. 2. The inference and generative models share the
same top-down tree structure, enabling interaction between the bottom-up and top-down architecture,
similarly to Sønderby et al. (2016).

2.1 Model Formulation

Given H , the maximum depth of the tree, and a dataset X , the model is defined by three components
that are learned during training:

1The code is publicly available at https://github.com/lauramanduchi/treevae-pytorch.

2

https://github.com/lauramanduchi/treevae-pytorch

• the global structure of the binary tree T , which specifies the set of nodes V = {0, . . . , V },
the set of leaves L, where L ⊂ V, and the set of edges E . See Fig. 1/4/5/6/7 for different
examples of tree structures learned by the model.

• the sample-specific latent embeddings z = {z0, . . . , zV }, which are random variables
assigned to each node in V. Each embedding is characterized by a Gaussian distribution
whose parameters are a function of the realization of the parent node. The dimensions of
the latent embeddings are defined by their depth, with zi ∈ Rhdepth(i) where depth(i) is the
depth of the node i, and hdepth(i) is the embedding dimension for that depth.

• the sample-specific decisions c = {c0, . . . , cV−|L|}, which are Bernoulli random variables
defined by the probability of going to the right (or left) child of the underlying node. They
take values ci ∈ {0, 1} for i ∈ V \ L, with ci = 0 if the left child is selected. A decision
path, Pl, indicates the path from root to leaf given the tree T and is defined by the nodes
in the path, e.g., in Fig. 2, Pl = {0, 1, 4, 5}. The probability of Pl is the product of the
probabilities of the decisions in the path.

The tree structure is shared across the entire dataset and is learned iteratively by growing the tree
node-wise. The latent embeddings and the decision paths, on the other hand, are learned using
variational inference by conditioning the model on the current tree structure. The generative/inference
model and the learning objective conditioned on T are explained in Sec. 2.2/2.3/2.4 respectively,
while in 2.5, we elaborate on the efficient growing procedure of the tree.

2.2 Generative Model

d0

d1

d2

d3

x

z3 z4

z2

z0

z1

z5 z6

x

z3 z4

z2

z0

z1

z5 z6

shared

Figure 2: The proposed inference (left) and generative
(right) models for TreeVAE. Circles are stochastic vari-
ables while diamonds are deterministic. The global
topology of the tree is learned during training.

The generative process of TreeVAE for a
given T is depicted in Fig. 2 (right). The
generation of a new sample x starts from
the root. First, the latent embedding of the
root node z0 is sampled from a standard
Gaussian pθ (z0) = N (z0 | 0, I). Then,
given the sampled z0, the decision of go-
ing to the left or the right node is sampled
from a Bernoulli distribution p(c0 | z0) =
Ber(rp,0(z0)), where {rp ,i | i ∈ V \ L}
are functions parametrized by neural net-
works defined as routers, and cause the
splits in Fig. 2. The subscript p is used
to indicate the parameters of the generative
model. The latent embedding of the selected
child, let us assume it is z1, is then sam-
pled from a Gaussian distribution pθ(z1 |
z0) = N

(
z1 | µp,1 (z0) , σ

2
p,1 (z0)

)
, where

{µp,i, σp,i | i ∈ V \ {0}} are functions parametrized by neural networks defined as transformations.
They are indicated by the top-down arrows in Fig. 2. This process continues until a leaf is reached.

Let us define the set of latent variables selected by the path Pl, which goes from the root to the
leaf l, as zPl

= {zi | i ∈ Pl}, the parent node of the node i as pa(i), and p(cpa(i)→i | zpa(i)) the
probability of going from pa(i) to i. Note that the path Pl defines the sequence of decisions. The
prior probability of the latent embeddings and the path given the tree T can be summarized as

pθ(zPl
,Pl) = p(z0)

∏
i∈Pl\{0}

p(cpa(i)→i | zpa(i))p(zi | zpa(i)). (1)

Finally, x is sampled from a distribution that is conditioned on the selected leaf. If we assume that x
is real-valued, then

pθ(x | zPl
,Pl) = N

(
x | µx,l (zl) , σ

2
x,l (zl)

)
, (2)

where {µx,l, σx,l | l ∈ L} are functions parametrized by leaf-specific neural networks defined as
decoders.

3

2.3 Inference Model

The inference model is described by the variational posterior distribution of both the latent embeddings
and the paths. It follows a similar structure as in the prior probability defined in (1), with the difference
that the probability of the root and of the decisions are now conditioned on the sample x:

q(zPl
,Pl | x) = q(z0 | x)

∏
i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)). (3)

To compute the variational probability distribution of the latent embeddings q(z0 | x) and q(zi |
zpa(i)), where

q(z0 | x) = N
(
z0 | µq,0(x), σ

2
q,0(x)

)
(4)

qϕ
(
zi | zpa(i)

)
= N

(
zi | µq,i

(
zpa(i)

)
, σ2

q,i

(
zpa(i)

))
,∀i ∈ Pl, (5)

we follow a similar approach to the one proposed by Sønderby et al. (2016). Note that we use the
subscript q to indicate the parameters of the inference model.
First, a deterministic bottom-up pass computes the node-specific approximate likelihood contributions

dh = MLP (dh+1) (6)

µ̂q,i = Linear
(
ddepth(i)

)
, i ∈ V (7)

σ̂2
q,i = Softplus

(
Linear

(
ddepth(i)

))
, i ∈ V, (8)

where dH is parametrized by a domain-specific neural network defined as encoder, and MLP(dh) for
h ∈ {1, . . . ,H}, indicated by the bottom-up arrows in Fig. 2, are neural networks, shared among the
parameter predictors, µ̂q,i, σ̂

2
q,i, of the same depth. They are characterized by the same architecture

as the transformations defined in Sec.2.2.
A stochastic downward pass then recursively computes the approximate posteriors defined as

σ2
q,i =

1

σ̂−2
q,i + σ−2

p,i

, µq,i =
µ̂q,iσ̂

−2
q,i + µp,iσ

−2
p,i

σ̂−2
q,i + σ−2

p,i

, (9)

where all operations are performed elementwise. Finally, the variational distributions of the decisions
q(ci | x) are defined as

q(ci | x) = q(ci | ddepth(i)) = Ber(rq,i(ddepth(i))), (10)
where {rq,i | i ∈ V \ L} are functions parametrized by neural networks and are characterized by the
same architecture as the routers of the generative model defined in Sec. 2.2.

2.4 Evidence Lower Bound

The parameters of both the generative model (defined as p) and inference model (defined as q),
consisting of the encoder (µq,0, σq,0), the transformations ({(µp,i, σp,i), (µq,i, σq,i) | i ∈ V \ {0}}),
the decoders ({µx,l, σx,l | l ∈ L}) and the routers ({rp,i, rq,i | i ∈ V\L}), are learned by maximizing
the Evidence Lower Bound (ELBO) (Kingma & Welling, 2014; Rezende et al., 2014). Each leaf l is
associated with only one path Pl, hence we can write the data likelihood conditioned on T as

p(x | T) =
∑
l∈L

∫
zPl

p(x, zPl
,Pl) =

∑
l∈L

∫
zPl

pθ(zPl
,Pl)pθ(x | zPl

,Pl). (11)

We use variational inference to derive the ELBO of the log-likelihood:
L(x | T) := Eq(zPl

,Pl|x)[log p(x | zPl
,Pl)]−KL (q (zPl

,Pl | x)∥p (zPl
,Pl)) . (12)

The first term of the ELBO is the reconstruction term:
Lrec = Eq(zPl

,Pl|x)[log p(x | zPl
,Pl)] (13)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log p(x | zPl
,Pl) (14)

≈ 1

M

M∑
m=1

∑
l∈L

P (l; c) logN
(
x | µx,l

(
z
(m)
l

)
, σ2

x,l

(
z
(m)
l

))
, (15)

P (i; c) =
∏

j∈Pi\{0}

q(cpa(j)→j | x) for i ∈ V, (16)

4

where Pi for i ∈ V is the path from root to node i, P (i; c) is the probability of reaching node i,
which is the product over the probabilities of the decisions in the path until i, z(m)

l are the Monte
Carlo (MC) samples, and M the number of the MC samples. Intuitively, the reconstruction loss is the
sum of the leaf-wise reconstruction losses weighted by the probabilities of reaching the respective
leaf. Note that here we sum over all possible paths in the tree, which is equal to the number of leaves.

The second term of (12) is the Kullback–Leibler divergence (KL) between the prior and the variational
posterior of the tree. It can be written as a sum of the KL of the root, the nodes, and the decisions:

KL (q (zPl
,Pl | x)∥p (zPl

,Pl)) = KLroot +KLnodes +KLdecisions (17)
KLroot = KL(q(z0 | x)∥p(z0)) (18)

KLnodes ≈
1

M

M∑
m=1

∑
i∈V\{0}

P (i; c)KL(q(z
(m)
i | pa(z(m)

i))∥p(z(m)
i | pa(z(m)

i))) (19)

KLdecisions ≈
1

M

M∑
m=1

∑
i∈V\L

P (i; c)
∑

ci∈{0,1}

q(ci | x) log

(
q(ci | x)

p(ci | z(m)
i)

)
, (20)

where M is the number of MC samples. We refer to Appendix A for the full derivation. The
KLroot is the KL between the standard Gaussian prior p(z0) and the variational posterior of the
root q(z0 | x), thus enforcing the root to be compact. The KLnodes is the sum of the node-
specific KLs weighted by the probability of reaching their node i: P (i; c). The node-specific KL of
node i is the KL between the two Gaussians q(zi | pa(zi)), p(zi | pa(zi)). Finally, the last term,
KLdecisions, is the weighted sum of all the KLs of the decisions, which are Bernoulli random variables,
KL(q(ci | x) | p(ci | zi))) =

∑
ci∈{0,1} q(ci | x) log

(
q(ci|x)
p(ci|zi))

)
. The hierarchical specification of

the binary tree allows encoding highly expressive models while retaining the computational efficiency
of fully factorized models. The computational complexity is described in Appendix A.2.

2.5 Growing The Tree

d0

d1

d2

d3

x

z2

z0

z1

d0

d1

d2

d3

x

z3 z4

z2

z0

z1

x̂ x̂

x̂ x̂

Step 1 Step 2

Figure 3: The first two steps of the growing process
to learn the global structure of the tree during training.
Highlighted in red are the trainable weights.

In the previous sections, we discussed the
variational objective to learn the parame-
ters of both the generative and the inference
model given a defined tree structure T . Here
we discuss how to learn the structure of the
binary tree T . TreeVAE starts by training a
tree composed of a root and two leaves, see
Fig. 3 (left), for Nt epochs by optimizing the
ELBO. Once the model converged, a leaf is
selected, e.g., z1 in Fig. 3, and two children
are attached to it. The leaf selection criteria
can vary depending on the application and
can be determined by, e.g., the reconstruc-
tion loss or the ELBO. In our experiments,
we chose to select the nodes with the max-
imum number of samples to retain balanced
leaves. The sub-tree composed of the new leaves and the parent node is then trained for Nt epochs
by freezing the weights of the rest of the model, see Fig. 3 (right), resulting in computing the
ELBO of the nodes of the subtree. For efficiency, the subtree is trained using only the subset of data
that have a high probability (higher than a threshold t) of being assigned to the parent node. The
process is repeated until the tree reaches its maximum capacity (defined by the maximum depth)
or until a condition (such as a predefined maximum number of leaves) is met. The entire model is
then fine-tuned for Nf epochs by unfreezing all weights. During fine-tuning, the tree is pruned by
removing empty branches (with the expected number of assigned samples lower than a threshold).

2.6 Integrating Prior Knowledge

Retrieving semantically meaningful clustering structures of real-world images is extremely challeng-
ing, as there are several underlying factors according to which the data can be clustered. Therefore, it

5

is often crucial to integrate domain knowledge that guides the model toward desirable cluster assign-
ments. Thus, we propose an extension of TreeVAE where we integrate recent advances in contrastive
learning (van den Oord et al., 2018; Chen et al., 2020; Li et al., 2021), whereby prior knowledge on
data invariances can be encoded through augmentations. For a batch X with N samples, we randomly
augment every sample twice to obtain the augmented batch X̃ with 2N samples. For all positive
pairs (i, j) where x̃i and x̃j stem from the same original sample, we utilize the NT-Xent (Chen et
al., 2020), which introduces losses ℓi,j = − log

exp (si,j/τ)∑2N
k=1 1[k ̸=i] exp (si,k/τ)

, where si,j denotes the cosine
similarity between the representations of x̃i and x̃j , and τ is a temperature parameter. We integrate
ℓi,j in both the bottom-up and the routers of TreeVAE. In the bottom-up, similar to Chen et al. (2020),
we compute ℓi,j on the projections gh(dh). For the routers, we directly compute the loss on the
predicted probabilities rq,i(dh). Finally, we average the terms over all positive pairs and add them to
the negative ELBO (12) in real-world image experiments. Implementation details can be found in
Appendix E, while a loss ablation is shown in Appendix C.3.

3 Related Work

Deep latent variable models automatically learn structure from data by combining the flexibility of
deep neural networks and the statistical foundations of generative models (Mattei & Frellsen, 2018).
Variational autoencoders (VAEs) (Rezende et al., 2014; Kingma & Welling, 2014) are among the
most used frameworks (Nasiri & Bepler, 2022; Bae et al., 2023; Bredell et al., 2023). A variety
of works has been proposed to integrate more complex empirical prior distributions, thus reducing
the gap between approximate and true posterior distributions (Ranganath et al., 2015; Webb et al.,
2017; Klushyn et al., 2019). Among these, the most related to our work is the VAE-nCRP (Goyal
et al., 2017; Shin et al., 2019) and the TMC-VAE (Vikram et al., 2018). Both works use Bayesian
nonparametric hierarchical clustering based on the nested Chinese restaurant process (nCRP) prior
(Blei et al., 2003), and on the time-marginalized coalescent (TMC). However, even if they allow more
flexible prior distributions these models suffer from restrictive posterior distributions (Kingma et al.,
2016).To overcome the above issue, deep hierarchical VAEs (Gregor et al., 2015; Kingma et al., 2016)
have been proposed to employ structured approximate posteriors, which are composed of hierarchies
of conditional stochastic variables that are connected sequentially. Among a variety of proposed
methods (Vahdat & Kautz, 2020b; Falck et al., 2022; T. Z. Xiao & Bamler, 2023), Ladder VAE
(Sønderby et al., 2016) is most related to TreeVAE. The authors propose to model the approximate
posterior by combining a “bottom-up” recognition distribution with the “top-down” prior. Further
extensions include BIVA (Maaløe et al., 2019), which introduces a bidirectional inference network,
and GraphVAE (He et al., 2019), that introduces gated dependencies over a fixed number of latent
variables. Contrary to the previous approaches, TreeVAE models a tree-based posterior distribution
of latent variable, thus allowing hierarchical clustering of samples. For further work on hierarchical
clustering and its supervised counterpart, decision trees, we refer to Appendix B.

4 Experimental Setup

Datasets and Metrics: We evaluate the clustering and generative performance of TreeVAE on
MNIST (LeCun et al., 1998), Fashion-MNIST (H. Xiao et al., 2017), 20Newsgroups (Lang, 1995),
Omniglot (Lake et al., 2015), and Omniglot-5, where only 5 vocabularies (Braille, Glagolitic, Cyrillic,
Odia, and Bengali) are selected and used as true labels. We assess the hierarchical clustering
performance by computing dendrogram purity (DP) and leaf purity (LP), as defined by (Kobren et
al., 2017a) using the datasets labels, where we assume the number of true clusters is unknown. We
also report standard clustering metrics, accuracy (ACC) and normalized mutual information (NMI),
by setting the number of leaves for TreeVAE and for the baselines to the true number of clusters. In
terms of generative performance, we compute the approximated true log-likelihood calculated using
1000 importance-weighted samples, together with the ELBO (12) and the reconstruction loss (16).
We also perform hierarchical clustering experiments on real-world imaging data, namely CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton, 2009) with 20 superclasses as labels, and CelebA (Z. Liu et al.,
2015) using the contrastive extension (Sec. 2.6). We refer to Appendix D for more dataset details.

Baselines: We compare the generative performance of TreeVAE to the VAE (Rezende et al., 2014;
Kingma & Welling, 2014), its non-hierarchical counterpart, and the LadderVAE (Sønderby et al.,
2016), its sequential counterpart. For a fair comparison, all methods share the same architecture and

6

Table 1: Test set hierarchical clustering performances (%) of TreeVAE compared with baselines.
Means and standard deviations are computed across 10 runs with different random model initialization.
The star "*" indicates real-world image datasets on which contrastive approaches were applied.

Dataset Method DP LP ACC NMI

MNIST Agg 63.7± 0.0 78.6± 0.0 69.5± 0.0 71.1± 0.0

VAE + Agg 79.9± 2.2 90.8± 1.4 86.6± 4.9 81.6± 2.0

LadderVAE + Agg 81.6± 3.9 90.9± 2.5 80.3± 5.6 82.0± 2.1

DeepECT 74.6± 5.9 90.7± 3.2 74.9± 6.2 76.7± 4.2

TreeVAE (ours) 87.9± 4.9 96.0± 1.9 90.2± 7.5 90.0± 4.6

Fashion Agg 45.0± 0.0 67.6± 0.0 51.3± 0.0 52.6± 0.0

VAE + Agg 44.3± 2.5 65.9± 2.3 54.9± 4.4 56.1± 3.2

LadderVAE + Agg 49.5± 2.3 67.6± 1.2 55.9± 3.0 60.7± 1.4

DeepECT 44.9± 3.3 67.8± 1.4 51.8± 5.7 57.7± 3.7

TreeVAE (ours) 54.4± 2.4 71.4± 2.0 63.6± 3.3 64.7± 1.4

20Newsgroups Agg 13.1± 0.0 30.8± 0.0 26.1± 0.0 27.5± 0.0

VAE + Agg 7.1± 0.3 18.1± 0.5 15.2± 0.4 11.6± 0.3

LadderVAE + Agg 9.0± 0.2 20.0± 0.7 17.4± 0.9 17.8± 0.6

DeepECT 9.3± 1.8 17.2± 3.8 15.6± 3.0 18.1± 4.1

TreeVAE (ours) 17.5± 1.5 38.4± 1.6 32.8± 2.3 34.4± 1.5

Omniglot-5 Agg 41.4± 0.0 63.7± 0.0 53.2± 0.0 33.3± 0.0

VAE + Agg 46.3± 2.3 68.1± 1.6 52.9± 4.2 34.4± 2.9

LadderVAE + Agg 49.8± 3.9 71.3± 2.0 59.6± 4.9 44.2± 4.7

DeepECT 33.3± 2.5 55.1± 2.8 41.1± 4.2 23.5± 4.3

TreeVAE (ours) 58.8± 4.0 77.7± 3.9 63.9± 7.0 50.0± 5.9

CIFAR-10* VAE + Agg 10.54± 0.12 16.33± 0.15 14.43± 0.19 1.86± 1.66

LadderVAE + Agg 12.81± 0.20 25.37± 0.62 19.29± 0.60 7.41± 0.42

DeepECT 10.01± 0.02 10.30± 0.40 10.31± 0.39 0.18± 0.10

TreeVAE (ours) 35.30± 1.15 53.85± 1.23 52.98± 1.34 41.44± 1.13

CIFAR-100* VAE + Agg 5.27± 0.02 9.86± 0.19 8.82± 0.11 2.46± 0.10

LadderVAE + Agg 6.36± 0.07 16.08± 0.28 14.01± 0.41 8.99± 0.41

DeepECT 5.28± 0.18 6.97± 0.69 6.97± 0.69 1.71± 0.86

TreeVAE (ours) 10.44± 0.38 24.16± 0.65 21.82± 0.77 17.80± 0.42

hyperparameters whenever possible. We compare TreeVAE to non-generative hierarchical clustering
baselines for which the code was publicly available: Ward’s minimum variance agglomerative
clustering (Agg) (Ward, 1963; Murtagh & Legendre, 2014), and the DeepECT (Mautz et al., 2020).
We propose two additional baselines, where we perform Ward’s agglomerative clustering on the latent
space of the VAE (VAE + Agg) and of the last layer of the LadderVAE (LadderVAE + Agg). For the
contrastive clustering experiments, we apply a contrastive loss similar to TreeVAE to the VAE and
the LadderVAE, while for DeepECT we use the contrastive loss proposed by the authors.

Implementation Details: While we believe that more complex architectures could have a substantial
impact on the performance of TreeVAE, we choose to employ rather simple settings to validate
the proposed approach. We set the dimension of all latent embeddings z = {z0, . . . , zV } to 8 for
MNIST, Fashion, and Omniglot, to 4 for 20Newsgroups, and to 64 for CIFAR-10, CIFAR-100, and
CelebA. The maximum depth of the tree is set to 6 for all datasets, except 20Newsgroups where we
increased the depth to 7 to capture more clusters. To compute DP and LP, we allow the tree to grow
to a maximum of 30 leaves for 20Newsgroups and CIFAR-100, and 20 for the rest, while for ACC
and NMI we fix the number of leaves to the number of true classes. The transformations consist
of one-layer MLPs of size 128 and the routers of two-layers of size 128 for all datasets except for
the real-world imaging data where we slightly increase the MLP complexity to 512. Finally, the
encoder and decoders consist of simple CNNs and MLPs. The trees are trained for Nt = 150 epochs
at each growth step, and the final tree is finetuned for Nf = 200 epochs. For the real-world imaging
experiments, we set the weight of the contrastive loss to 100. See Appendix E for additional details.

7

Table 2: Test set generative performances of TreeVAE with 10 leaves compared with baselines. Means
and standard deviations are computed across 10 runs with different random model initialization.

Dataset Method LL RL ELBO

MNIST VAE −101.9± 0.2 87.2± 0.3 −104.6± 0.3

LadderVAE −99.9± 0.5 87.8± 0.7 −103.2± 0.7

TreeVAE (ours) −92.9± 0.2 80.3± 0.2 −96.8± 0.2

Fashion VAE −242.2± 0.2 231.7± 0.5 −245.4± 0.5

LadderVAE −239.4± 0.5 231.5± 0.6 −243.0± 0.6

TreeVAE (Ours) −234.7± 0.1 226.5± 0.3 −239.2± 0.4

20Newsgroups VAE −44.26± 0.01 45.52± 0.03 −44.61± 0.01

LadderVAE −44.30± 0.03 43.52± 0.03 −44.62± 0.02

TreeVAE (Ours) −51.67± 0.59 45.83± 0.36 −52.79± 0.66

Omniglot VAE −115.3± 0.3 101.6± 0.3 −118.2± 0.3

LadderVAE −113.1± 0.5 100.7± 0.7 −117.5± 0.6

TreeVAE (Ours) −110.4± 0.5 96.9± 0.5 −114.6± 0.4

5 Results

Hierarchical Clustering Results Table 1 shows the quantitative hierarchical clustering results
averaged across 10 seeds. First, we assume the true number of clusters is unknown and report DP
and LP. Second, we assume we have access to the true number of clusters K and compute ACC and
NMI. As can be seen, TreeVAE outperforms the baselines in both experiments. This suggests that the
proposed approach successfully builds an optimal tree based on the data’s intrinsic characteristics.
Among the different baselines, agglomerative clustering using Ward’s method (Agg) trained on the
last layer of LadderVAE shows competitive performances. To the best of our knowledge, we are the
first to report these results. It is noteworthy to observe that it consistently improves over VAE + Agg,
indicating that the last layer of LadderVAE captures more cluster information than the VAE.

Generative Results In Table 2, we evaluate the generative performance of the proposed approach,
TreeVAE, compared to the VAE, its non-hierarchical counterpart, and LadderVAE, its sequential
counterpart. TreeVAE outperforms the baselines on the majority of datasets, indicating that the
proposed ELBO (12) can achieve a tighter lower bound of the log-likelihood. The most notable
improvement appears to be reflected in the reconstruction loss, showing the advantage of using
cluster-specialized decoders. However, this improvement comes at the expense of a larger neural
network architecture and an increase in the number of parameters (as TreeVAE has L decoders).
While this requires more computational resources at training time, during deployment the tree
structure of TreeVAE permits lightweight inference through conditional sampling, thus matching the
inference time of LadderVAE. It is also worth mentioning that results differ from (Sønderby et al.,
2016) as we adapt their architecture to match our experimental setting and consequently use smaller
latent dimensionality. Finally, we notice that more complex methods are prone to overfitting on the
20Newsgroups dataset, hence the best performances are achieved by the VAE.

Real-world Imaging Data & Contrastive Learning Clustering real-world imaging data is ex-
tremely difficult as there are endless possibilities of how the data can be partitioned (such as the colors,
the landscape, etc). We therefore inject prior information through augmentations to guide TreeVAE
and the baselines to semantically meaningful splits. Table 1 (bottom) shows the hierarchical clustering
performance of TreeVAE and its baselines, all employing contrastive learning, on CIFAR-10 and
CIFAR-100. We observe that DeepECT struggles in separating the data as their contrastive approach
leads to all samples falling into the same leaf. In Table 3, we present the leaf-frequencies of various
face attributes using the tree learned by TreeVAE. For all datasets, TreeVAE is able to group the data
into contextually meaningful hierarchies and groups, evident from its superior performance compared
to the baselines and from the distinct attribute frequencies in the leaves and subtrees.

Discovery of Hierarchies In addition to solely clustering data, TreeVAE is able to discover
meaningful hierarchical relations between the clusters, thus allowing for more insights into the

8

(a) (b)

Figure 4: Hierarchical structures learned by TreeVAE on Fashion. Subtree (a) encodes tops, while (b)
encodes shoes, purses, and pants.

comp.windows.x
comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

misc.forsale

comp.sys.mac.hardware

rec.motorcycles

rec.autos / motorcycles

misc.forsale

sci.med

alt.atheism

talk. religion.misc

rec.sport.baseball

talk.politics.guns / misc

talk.politics.mideast

soc.religion.christian

soc.religion.christian

rec.sport.hockey

sci.space

sci.crypt

Figure 5: Hierarchical structure
learned by TreeVAE on 20News-
groups.

(a) (b)

Figure 6: Hierarchical structures learned by TreeVAE on
Omniglot-5. Subtree (a) learns a hierarchy over Braille and
the Indian alphabets, while (b) groups Slavic alphabets.

Attribute 1 2 3 4 5 6 7 8

Female 97.2 55.0 97.7 86.6 23.1 30.7 46.6 43.7
Bangs 1.6 1.2 24.1 61.7 3.4 11.1 9.1 11.4
Blonde 1.1 3.7 66.7 2.2 5.8 2.6 26.1 7.1
Makeup 75.7 43.4 76.6 59.7 15.0 12.4 16.3 12.8
Smiling 54.3 66.6 66.4 51.2 54.7 42.4 37.3 22.4
Hair Loss 3.6 17.8 3.0 0.2 18.9 6.9 21.2 10.6
Beard 1.1 20.6 0.4 3.7 39.5 36.5 21.3 21.4

Table 3: We present the frequency (in %) of selected at-
tributes for each leaf of TreeVAE with eight leaves in CelebA.

Figure 7: Hierarchical structure learned by TreeVAE with eight leaves on the CelebA dataset with
generated images through conditional sampling. Generally, most females are in the left subtree, while
most males are in the right subtree. We observe that leaf 1 is associated with dark-haired females,
leaf 2 with smiling, dark-haired individuals, leaf 3 with blonde females, leaf 4 with bangs, leaf 7 with
a receding hairline, and leaf 8 with non-smiling people. See Table 3 for further details.

dataset. In the introductory Fig. 1, 5, and 6, we present the hierarchical structures learned by
TreeVAE, while in Fig. 4 and 7, we additionally display conditional cluster generations from the leaf-
specific decoders. In Fig. 4, TreeVAE separates the fashion items into two subtrees, one containing
shoes and bags, and the other containing the tops, which are further refined into long and short sleeves.
In Fig. 5, we depict the most prevalent ground-truth topic label in each leaf. TreeVAE learns to

9

separate technological and societal subjects and discovers semantically meaningful subtrees. In Fig. 6,
TreeVAE learns to split alphabets into Indian (Odia and Bengali) and Slavic (Glagolitic and Cyrillic)
subtrees, while Braille is grouped with the Indian languages due to similar circle-like structures. For
CelebA, Fig. 7 and Table 3, the resulting tree separates genders in the root split. Females (left) are
further divided by hair color and hairstyle (bangs). Males (right) are further divided by smile intensity,
beard, hair loss, and age. In Fig. 8 and Appendix C we show how TreeVAE can additionally be used
to sample unconditional generations for all clusters simultaneously, by sampling from the root and
propagating through the entire tree. The generations differ across the leaves by their cluster-specific
features, whereas cluster-independent properties are retained across all generations.

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5 leaf 6 leaf 7 leaf 8

Figure 8: Selected unconditional generations of CelebA. One row corresponds to one sample from
the root, for which we depict the visualizations obtained from the 8 leaf-decoders. The overall face
shape, skin color, and face orientation are retained among leaves from the same row, while several
properties (such as make-up, beard, mustache, glasses, and hair) vary across the different leaves.

6 Conclusion

In this paper, we introduced TreeVAE, a new generative method that leverages a tree-based posterior
distribution of latent variables to capture the hierarchical structures present in the data. TreeVAE
optimizes the balance between shared and specialized architecture, enhancing the learning and
adaptation capabilities of generative models. Empirically, we showed that our model offers a
substantial improvement in hierarchical clustering performance compared to the related work, while
also providing a tighter lower bound to the log-likelihood of the data. We presented qualitatively
how the hierarchical structures learned by TreeVAE enable a more comprehensive understanding of
the data, thereby facilitating enhanced analysis, interpretation, and decision-making. Our findings
highlight the versatility of the proposed approach, which we believe to hold significant potential for
unsupervised representation learning, paving the way for exciting advancements in the field.

Limitations & Future Work: Currently, TreeVAE uses a simple heuristic on which node to split
that might not work on datasets with unbalanced clusters. Additionally, the contrastive losses on the
routers encourage balanced clusters. Thus, more research is necessary to convert the heuristics to
data-driven approaches. While deep latent variable models, such as VAEs, provide a framework for
modeling explicit relationships through graphical structures, they often exhibit poor performance on
synthetic image generation. However, more complex architectural design (Vahdat & Kautz, 2020a) or
recent advancement in diffusion latent models (Rombach et al., 2021) present potential solutions to
enhance image quality generation, thus striking an optimal balance between generating high-quality
images and capturing meaningful representations.

Acknowledgments and Disclosure of Funding

We thank Thomas M. Sutter for the insightful discussions throughout the project, Jorge da Silva
Gonçalves for providing interpretable visualizations of the TreeVAE model, and Gabriele Manduchi
for the valuable feedback on the notation of the ELBO. LM is supported by the SDSC PhD Fellowship
#1-001568-037. MV is supported by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number MB22.00047. AR is supported by the StimuLoop grant
#1-007811-002 and the Vontobel Foundation.

10

References
Arenas, M., Barceló, P., Orth, M. A. R., & Subercaseaux, B. (2022). On computing probabilistic expla-

nations for decision trees. In Neurips. Retrieved from http://papers.nips.cc/paper_files/
paper/2022/hash/b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html

Bae, J., Zhang, M. R., Ruan, M., Wang, E., Hasegawa, S., Ba, J., & Grosse, R. B. (2023).
Multi-rate VAE: Train once, get the full rate-distortion curve. In The eleventh international
conference on learning representations. Retrieved from https://openreview.net/forum?id=
OJ8aSjCaMNK

Basak, J., & Krishnapuram, R. (2005). Interpretable hierarchical clustering by constructing an
unsupervised decision tree. IEEE Trans. Knowl. Data Eng., 17(1), 121–132.

Bengio, Y., Courville, A. C., & Vincent, P. (2012). Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798-1828.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics).
Berlin, Heidelberg: Springer-Verlag.

Blei, D. M., Jordan, M. I., Griffiths, T. L., & Tenenbaum, J. B. (2003). Hierarchical topic models
and the nested chinese restaurant process. In Proceedings of the 16th international conference on
neural information processing systems (p. 17–24). Cambridge, MA, USA: MIT Press.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of clustering trees. In Proceedings of the
fifteenth international conference on machine learning (pp. 55–63).

Bredell, G., Flouris, K., Chaitanya, K., Erdil, E., & Konukoglu, E. (2023). Explicitly minimizing
the blur error of variational autoencoders. In The eleventh international conference on learning
representations. Retrieved from https://openreview.net/forum?id=9krnQ-ue9M

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Wadsworth.

Briggs, C., Fan, Z., & András, P. (2020). Federated learning with hierarchical clustering of local
updates to improve training on non-iid data. 2020 International Joint Conference on Neural
Networks (IJCNN), 1-9.

Campello, R. J., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density estimates for data
clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from
Data (TKDD), 10(1), 1–51.

Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density estimates for
data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery
from Data (TKDD), 10, 1 - 51.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th international conference on machine
learning. JMLR.org.

Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salimbeni, H., Arulkumaran,
K., & Shanahan, M. (2016). Deep unsupervised clustering with Gaussian mixture variational
autoencoders. (arXiv:1611.02648)

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters
in large spatial databases with noise. In E. Simoudis, J. Han, & U. M. Fayyad (Eds.), Proceedings
of the second international conference on knowledge discovery and data mining (kdd-96), portland,
oregon, USA (pp. 226–231). AAAI Press. Retrieved from http://www.aaai.org/Library/
KDD/1996/kdd96-037.php

Falck, F., Williams, C., Danks, D., Deligiannidis, G., Yau, C., Holmes, C. C., . . . Willetts, M. (2022).
A multi-resolution framework for u-nets with applications to hierarchical VAEs. In A. H. Oh,
A. Agarwal, D. Belgrave, & K. Cho (Eds.), Advances in neural information processing systems.
Retrieved from https://openreview.net/forum?id=PQFr7FbGbO

Fraiman, R., Ghattas, B., & Svarc, M. (2013). Interpretable clustering using unsupervised binary
trees. Adv. Data Anal. Classif., 7(2), 125–145. Retrieved from https://doi.org/10.1007/
s11634-013-0129-3 doi: 10.1007/s11634-013-0129-3

11

http://papers.nips.cc/paper_files/paper/2022/hash/b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html
https://openreview.net/forum?id=OJ8aSjCaMNK
https://openreview.net/forum?id=OJ8aSjCaMNK
https://openreview.net/forum?id=9krnQ-ue9M
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
https://openreview.net/forum?id=PQFr7FbGbO
https://doi.org/10.1007/s11634-013-0129-3
https://doi.org/10.1007/s11634-013-0129-3

Frosst, N., & Hinton, G. E. (2017). Distilling a neural network into a soft decision tree. In
T. R. Besold & O. Kutz (Eds.), Proceedings of the first international workshop on comprehensibility
and explanation in AI and ML 2017 co-located with 16th international conference of the italian
association for artificial intelligence (ai*ia 2017), bari, italy, november 16th and 17th, 2017 (Vol.
2071). CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-2071/CExAIIA_2017
_paper_3.pdf

Ghojogh, B., Ghodsi, A., Karray, F., & Crowley, M. (2021). Uniform manifold approximation and
projection (UMAP) and its variants: Tutorial and survey. CoRR, abs/2109.02508. Retrieved from
https://arxiv.org/abs/2109.02508

Goyal, P., Hu, Z., Liang, X., Wang, C., Xing, E. P., & Mellon, C. (2017). Nonparametric variational
auto-encoders for hierarchical representation learning. 2017 IEEE International Conference on
Computer Vision (ICCV), 5104-5112.

Gregor, K., Danihelka, I., Graves, A., Rezende, D., & Wierstra, D. (2015). Draw: A recurrent neural
network for image generation. In F. Bach & D. Blei (Eds.), Proceedings of the 32nd international
conference on machine learning (Vol. 37, pp. 1462–1471). Lille, France: PMLR. Retrieved from
https://proceedings.mlr.press/v37/gregor15.html

He, J., Gong, Y., Marino, J., Mori, G., & Lehrmann, A. M. (2018). Variational autoencoders
with jointly optimized latent dependency structure. In International conference on learning
representations.

He, J., Gong, Y., Marino, J., Mori, G., & Lehrmann, A. M. (2019). Variational autoencoders with
jointly optimized latent dependency structure. In Iclr.

Heller, K. A., & Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Proceedings of the
22nd international conference on machine learning (pp. 297–304).

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255-260. Retrieved from https://www.science.org/doi/abs/10.1126/
science.aaa8415 doi: 10.1126/science.aaa8415

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved
variational inference with inverse autoregressive flow. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 29).
Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/
paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Found. Trends
Mach. Learn., 12, 307-392.

Klushyn, A., Chen, N., Kurle, R., Cseke, B., & Smagt, P. v. d. (2019). Learning hierarchical priors
in vaes. In Proceedings of the 33rd international conference on neural information processing
systems. Red Hook, NY, USA: Curran Associates Inc.

Kobren, A., Monath, N., Krishnamurthy, A., & McCallum, A. (2017a). A hierarchical algorithm
for extreme clustering. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, halifax, ns, canada, august 13 - 17, 2017 (pp. 255–
264). ACM. Retrieved from https://doi.org/10.1145/3097983.3098079 doi: 10.1145/
3097983.3098079

Kobren, A., Monath, N., Krishnamurthy, A., & McCallum, A. (2017b). A hierarchical algorithm for
extreme clustering. In Proceedings of the 23rd acm sigkdd international conference on knowledge
discovery and data mining (pp. 255–264).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images (Tech.
Rep. No. 0). Toronto, Ontario: University of Toronto.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through
probabilistic program induction. Science, 350(6266), 1332-1338. Retrieved from https://
www.science.org/doi/abs/10.1126/science.aab3050 doi: 10.1126/science.aab3050

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the twelfth international
conference on machine learning (p. 331-339).

12

https://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
https://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
https://arxiv.org/abs/2109.02508
https://proceedings.mlr.press/v37/gregor15.html
https://www.science.org/doi/abs/10.1126/science.aaa8415
https://www.science.org/doi/abs/10.1126/science.aaa8415
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://doi.org/10.1145/3097983.3098079
https://www.science.org/doi/abs/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050

Laptev, D., & Buhmann, J. M. (2014). Convolutional decision trees for feature learning and
segmentation. In Pattern recognition: 36th german conference, gcpr 2014, münster, germany,
september 2-5, 2014, proceedings 36 (pp. 95–106).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proc. IEEE, 86, 2278-2324.
Li, Y., Hu, P., Liu, J. Z., Peng, D., Zhou, J. T., & Peng, X. (2021). Contrastive clustering. In Thirty-

fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative
applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational advances
in artificial intelligence, EAAI 2021, virtual event, february 2-9, 2021 (pp. 8547–8555). AAAI
Press. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/17037

Li, Y., Yang, M., Peng, D., Li, T., Huang, J., & Peng, X. (2022). Twin contrastive learning for online
clustering. International Journal of Computer Vision, 130(9), 2205–2221.

Liu, B., Xia, Y., & Yu, P. S. (2000). Clustering through decision tree construction. In International
conference on information and knowledge management.

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In
Proceedings of international conference on computer vision (iccv).

Maaløe, L., Fraccaro, M., Liévin, V., & Winther, O. (2019). Biva: A very deep hierarchy of latent
variables for generative modeling. In Neurips.

Manduchi, L., Chin-Cheong, K., Michel, H., Wellmann, S., & Vogt, J. E. (2021). Deep conditional
gaussian mixture model for constrained clustering. In Neural information processing systems.

Mattei, P.-A., & Frellsen, J. (2018). Leveraging the exact likelihood of deep latent variable
models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Gar-
nett (Eds.), Advances in neural information processing systems (Vol. 31). Curran Associates,
Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2018/file/
0609154fa35b3194026346c9cac2a248-Paper.pdf

Mautz, D., Plant, C., & Böhm, C. (2020). Deepect: The deep embedded cluster tree. Data Science
and Engineering, 5, 419 - 432.

McConnachie, A. W., Ibata, R. A., Martin, N., Ferguson, A. M. N., Collins, M. L. M., Gwyn, S. D. J.,
. . . Widrow, L. M. (2018). The large-scale structure of the halo of the andromeda galaxy. ii.
hierarchical structure in the pan-andromeda archaeological survey. The Astrophysical Journal,
868.

Monath, N., Zaheer, M., Silva, D., McCallum, A., & Ahmed, A. (2019). Gradient-based hierarchical
clustering using continuous representations of trees in hyperbolic space. In Proceedings of the
25th acm sigkdd international conference on knowledge discovery & data mining (pp. 714–722).

Moshkovitz, M., Yang, Y., & Chaudhuri, K. (2021). Connecting interpretability and robust-
ness in decision trees through separation. In M. Meila & T. Zhang (Eds.), Proceedings of the
38th international conference on machine learning, ICML 2021, 18-24 july 2021, virtual event
(Vol. 139, pp. 7839–7849). PMLR. Retrieved from http://proceedings.mlr.press/v139/
moshkovitz21a.html

Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86–97.

Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which
algorithms implement ward’s criterion? Journal of Classification, 31, 274-295.

Nasiri, A., & Bepler, T. (2022). Unsupervised object representation learning using translation
and rotation group equivariant VAE. In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (Eds.),
Advances in neural information processing systems. Retrieved from https://openreview.net/
forum?id=qmm__jMjMlL

Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocabulary tree. 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2, 2161-2168.

Pace, A., Chan, A. J., & van der Schaar, M. (2022). POETREE: interpretable policy learning with
adaptive decision trees. In The tenth international conference on learning representations, ICLR
2022, virtual event, april 25-29, 2022. OpenReview.net. Retrieved from https://openreview
.net/forum?id=AJsI-ymaKn_

13

https://ojs.aaai.org/index.php/AAAI/article/view/17037
https://proceedings.neurips.cc/paper_files/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
http://proceedings.mlr.press/v139/moshkovitz21a.html
http://proceedings.mlr.press/v139/moshkovitz21a.html
https://openreview.net/forum?id=qmm__jMjMlL
https://openreview.net/forum?id=qmm__jMjMlL
https://openreview.net/forum?id=AJsI-ymaKn_
https://openreview.net/forum?id=AJsI-ymaKn_

Ram, P., & Gray, A. G. (2011). Density estimation trees. In Knowledge discovery and data mining.

Ranganath, R., Tran, D., & Blei, D. M. (2015). Hierarchical variational models. ArXiv,
abs/1511.02386.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st international conference on
machine learning (Vol. 32, pp. 1278–1286). PMLR.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 10674-10685.

Rota Bulo, S., & Kontschieder, P. (2014). Neural decision forests for semantic image labelling. In
Proceedings of the ieee conference on computer vision and pattern recognition (pp. 81–88).

Shin, S.-J., Song, K., & Moon, I.-C. (2019). Hierarchically clustered representation learning. In Aaai
conference on artificial intelligence.

Sneath, P. H. (1957). The application of computers to taxonomy. Microbiology, 17(1), 201–226.

Sneath, P. H., & Sokal, R. R. (1962). Numerical taxonomy. Nature, 193, 855–860.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. In D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information pro-
cessing systems 29: Annual conference on neural information processing systems 2016, december
5-10, 2016, barcelona, spain (pp. 1849–1857). Retrieved from https://proceedings.neurips
.cc/paper/2016/hash/6b180037abbebea991d8b1232f8a8ca9-Abstract.html

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O. (2016). Ladder variational
autoencoders. Advances in neural information processing systems, 29.

Souza, V. F., Cicalese, F., Laber, E. S., & Molinaro, M. (2022). Decision trees with short explainable
rules. In Neurips. Retrieved from http://papers.nips.cc/paper_files/paper/2022/
hash/500637d931d4feb99d5cce84af1f53ba-Abstract-Conference.html

Steinbach, M. S., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques..

Suárez, A., & Lutsko, J. F. (1999). Globally optimal fuzzy decision trees for classification and
regression. IEEE Trans. Pattern Anal. Mach. Intell., 21(12), 1297–1311. Retrieved from https://
doi.org/10.1109/34.817409 doi: 10.1109/34.817409

Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., & Nori, A. (2019). Adaptive neural trees.
In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th international conference
on machine learning (Vol. 97, pp. 6166–6175). PMLR. Retrieved from https://proceedings
.mlr.press/v97/tanno19a.html

Vahdat, A., & Kautz, J. (2020a). Nvae: A deep hierarchical variational autoencoder. In Proceedings
of the 34th international conference on neural information processing systems. Red Hook, NY,
USA: Curran Associates Inc.

Vahdat, A., & Kautz, J. (2020b). Nvae: A deep hierarchical variational autoen-
coder. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Ad-
vances in neural information processing systems (Vol. 33, pp. 19667–19679). Curran
Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2020/file/
e3b21256183cf7c2c7a66be163579d37-Paper.pdf

van den Oord, A., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748. Retrieved from http://arxiv.org/abs/1807.03748

Vikram, S., Hoffman, M. D., & Johnson, M. J. (2018). The loracs prior for vaes: Letting the trees
speak for the data. ArXiv, abs/1810.06891.

Wan, A., Dunlap, L., Ho, D., Yin, J., Lee, S., Petryk, S., . . . Gonzalez, J. E. (2021). NBDT: neural-
backed decision tree. In 9th international conference on learning representations, ICLR 2021,
virtual event, austria, may 3-7, 2021. OpenReview.net. Retrieved from https://openreview
.net/forum?id=mCLVeEpplNE

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58, 236-244.

14

https://proceedings.neurips.cc/paper/2016/hash/6b180037abbebea991d8b1232f8a8ca9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6b180037abbebea991d8b1232f8a8ca9-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/500637d931d4feb99d5cce84af1f53ba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/500637d931d4feb99d5cce84af1f53ba-Abstract-Conference.html
https://doi.org/10.1109/34.817409
https://doi.org/10.1109/34.817409
https://proceedings.mlr.press/v97/tanno19a.html
https://proceedings.mlr.press/v97/tanno19a.html
https://proceedings.neurips.cc/paper/2020/file/e3b21256183cf7c2c7a66be163579d37-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e3b21256183cf7c2c7a66be163579d37-Paper.pdf
http://arxiv.org/abs/1807.03748
https://openreview.net/forum?id=mCLVeEpplNE
https://openreview.net/forum?id=mCLVeEpplNE

Webb, S., Goliński, A., Zinkov, R., Narayanaswamy, S., Rainforth, T., Teh, Y. W., & Wood, F. (2017).
Faithful inversion of generative models for effective amortized inference. In Neural information
processing systems.

Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via non-parametric
instance discrimination. In 2018 IEEE conference on computer vision and pattern recognition,
CVPR 2018, salt lake city, ut, usa, june 18-22, 2018 (pp. 3733–3742). Computer Vision Foun-
dation / IEEE Computer Society. Retrieved from http://openaccess.thecvf.com/content
_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html doi:
10.1109/CVPR.2018.00393

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747. Retrieved from http://arxiv.org/abs/
1708.07747

Xiao, T. Z., & Bamler, R. (2023). Trading information between latents in hierarchical variational
autoencoders. In The eleventh international conference on learning representations. Retrieved
from https://openreview.net/forum?id=eWtMdr6yCmL

You, C., Robinson, D. P., & Vidal, R. (2015). Scalable sparse subspace clustering by orthogonal
matching pursuit. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
3918-3927.

Zharmagambetov, A., & Carreira-Perpiñán, M. Á. (2022). Semi-supervised
learning with decision trees: Graph laplacian tree alternating optimization. In
Neurips. Retrieved from http://papers.nips.cc/paper_files/paper/2022/hash/
104f7b25495a0e40e65fb7c7eee37ed9-Abstract-Conference.html

Zhou, Z.-H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural networks. In
Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-
17 (pp. 3553–3559). Retrieved from https://doi.org/10.24963/ijcai.2017/497 doi:
10.24963/ijcai.2017/497

15

http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://openreview.net/forum?id=eWtMdr6yCmL
http://papers.nips.cc/paper_files/paper/2022/hash/104f7b25495a0e40e65fb7c7eee37ed9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/104f7b25495a0e40e65fb7c7eee37ed9-Abstract-Conference.html
https://doi.org/10.24963/ijcai.2017/497

A Evidence Lower Bound

In this section, we provide a closer look at the loss function of TreeVAE. We focus on the derivations
of the Kullback-Leibler divergence term of the Evidence Lower Bound and provide an interpretable
factorization. Furthermore, we address the computational complexity, thus offering an in-depth
understanding of the loss function, its practical implications, and the trade-offs involved in its
computation.

A.1 ELBO Derivations

In this section, we derive the KL loss (17) of the ELBO (12), which is the Kullback–Leibler divergence
(KL) between the prior and the variational posterior of TreeVAE. Additionally, we give details about
the underlying distributional assumptions for computing the reconstruction loss.

Let us define Pl the decision path from root 0 to leaf l, L is the number of leaves, which is equal to
the number of paths in T , zPl

= {zi | i ∈ Pl} the set of latent variables selected by the path Pl, the
parent node of the node i as pa(i), p(cpa(i)→i | zpa(i)) the probability of going from pa(i) to i. For
example, if we consider the path in Fig. 2 (right) we will observe c0 = 0, c1 = 1, and c4 = 0, where
ci = 0 means the model selects the left child of node i. The KL loss can be expanded using Eq. 1/3:
KL (q (zPl

,Pl | x) ∥p (zPl
,Pl)) (21)

= KL
(
q(z0 | x)

∏
i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

∥∥p(z0) ∏
i∈Pl\{0}

p(cpa(i)→i | zpa(i))p(zi | zpa(i))
) (22)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

(
q(z0 | x)

∏
j∈Pl\{0} q(cpa(j)→j | x)q(zj | zpa(j))

p(z0)
∏

k∈Pl\{0} p(cpa(k)→k | zpa(k))p(zk | zpa(k))

) (23)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(z0 | x)
p(z0)

)
(24)

+
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log

(∏
j∈Pl\{0}q(cpa(j)→j | x)∏

k∈Pl\{0} p(cpa(k)→k | zpa(k))

)
(25)

+
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log

(∏
j∈Pl\{0} q(zj | zpa(j))∏
k∈Pl\{0} p(zk | zpa(k))

)
. (26)

In the following, we will simplify each of the three terms 24, 25, and 26 separately.

A.1.1 KL Root

The term (24) corresponds to the KL of the root node. We can integrate out all the latent variables zi
for i ̸= 0 and all decisions ci. The first term can be then written as follows:

KLroot =
∑

i∈{1,2}

∫
z0

q(z0 | x)q(c0→i | z0) log
(
q(z0 | x)
p(z0)

)
(27)

=

∫
z0

q(z0 | x)

 ∑
i∈{1,2}

q(c0→i | z0)

 log

(
q(z0 | x)
p(z0)

)
(28)

=

∫
z0

q(z0 | x) [q(c0 = 0 | z0) + q(c0 = 1 | z0)] log
(
q(z0 | x)
p(z0)

)
(29)

=

∫
z0

q(z0 | x) log
(
q(z0 | x)
p(z0)

)
= KL (q(z0 | x)∥p(z0)) , (30)

16

where q(c0 = 0 | z0) + q(c0 = 1 | z0) = 1 and KL (q(z0 | x)∥p(z0)) is the KL between two
Gaussians, which can be computed analytically.

A.1.2 KL Decisions

The second term (25) corresponds to the KL of the decisions. We can pull out the product from the
log, yielding

KLdecisions =
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

 ∏
j∈Pl\{0}

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

 (31)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(32)

Let us define as Pl∈j all paths that go through node j, as P≤j (denoted as Pj in the main text for
brevity) the unique path that ends in the node j, and as P>j all the possible paths that start from the
node j and continue to a leaf l ∈ L. Similarly, let us define as z≤j all the latent embeddings that are
contained in the path from the root to node j and as z>j all the latent embeddings of the nodes i > j
that can be reached from node j.
To factorize the above equation, we first change from a pathwise view to a nodewise view. Instead of
summing over all possible leaves in the tree (

∑
l∈L) and then over each contained node (

∑
j∈Pl\{0}),

we sum over all nodes (
∑

j∈V\{0}) and then over each path that leads through the selected node
(
∑

Pl∈j
).

∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

=
∑

j∈V\{0}

∑
Pl∈j

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

) (33)

The above can be proved with the following Lemma, where we rewrite
∑

Pl∈j
=
∑

l∈L 1[j ∈ Pl].

Lemma A.1. Given a binary tree T as defined in Section 2.1, composed of a set of nodes V =
{0, . . . , V } and leaves L ⊂ V, where Pl is the decision path from root 0 to leaf l, and zPl

= {zi |
i ∈ Pl} the set of latent variables selected by the path Pl. Then it holds

∑
l∈L

∫
zPl

∑
j∈Pl\{0}

f(j, l, zPl
) =

∑
j∈V\{0}

∑
l∈L

∫
zPl

1[j ∈ Pl]f(j, l, zPl
), (34)

17

Proof. The proof is as follows:

∑
j∈V\{0}

∑
l∈L

∫
zPl

1[j ∈ Pl]f(j, l, zPl
) =

∑
j∈V\{0}

∑
l∈L

∫
zPl

f(j, l, zPl
)
∑

i∈Pl\{0}

1[i = j] (35)

=
∑
l∈L

∑
j∈V\{0}

∫
zPl

∑
i∈Pl\{0}

f(j, l, zPl
)1[i = j] (36)

=
∑
l∈L

∑
j∈V\{0}

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
)1[i = j] (37)

=
∑
l∈L

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
)
∑

j∈V\{0}

1[i = j] (38)

=
∑
l∈L

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
) (39)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

f(j, l, zPl
). (40)

Having proven the equality, we can continue with the KL of the decisions as follows:

KLdecisions =∑
j∈V\{0}

∑
Pl∈j

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(41)

=
∑

j∈V\{0}

∑
Pl∈j

∫
zPl

[q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
×

∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))]
(42)

=
∑

j∈V\{0}

∑
P>j

∫
z≤j ,z>j

[q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
×

∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))]
(43)

=
∑

j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

×
∑
P>j

∫
z>j

[∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))
] (44)

From Eq. 41 to Eq. 42, we split the inner product into the nodes of the paths Pl∈j that are before and
after the node j.
From Eq. 42 to Eq. 43, we observe that the sum over all paths going through j can be reduced to
the sum over all paths starting from j, because there is only one path to j, which is specified in the
product that comes after.
From Eq. 43 to Eq. 44, we observe that the sum over paths starting from j and integral over z>j

concern only the terms of the second line. Observe that the term on the second line of Eq. 44

18

integrates out to 1 and we get

KLdecisions =∑
j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(45)

=
∑

j∈V\{0}

∫
z<j

∫
zj

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(46)

=
∑

j∈V\{0}

∫
z<j

q(z0 | x)
∏

i∈P<j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

×
∫
zj

q(cpa(j)→j | x)q(zj | zpa(j))
(47)

=
∑

j∈V\{0}

∫
z<j

q(z0 | x)
∏

i∈P<j\{0}

q(cpa(i)→i | x)q(zi | zpa(i))q(cpa(j)→j | x)

× log

(
q(cpa(j)→j | x)

p(cpa(j)→j | zpa(j))

)
.

(48)

From Eq. 46 to Eq. 47, we single out the term in the product that corresponds to j = i, which is the
only term that depends on

∫
zi

.
From Eq. 47 to Eq. 48, we observe that in the singled-out term,

∫
zj
q(zj | zpa(j)) = 1, which leaves

only q(cpa(j)→j | x).

This equation can be rewritten in a more interpretable way. Let us define the probability of reaching
node j and observing zj as

P (j; z, c) = q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)). (49)

Then the KL term of the decisions can be simplified as

KLdecisions =
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(50)

=
∑

i∈V\L

∑
k∈{0,1}

∫
z<i

P (i; z, c)q(ci = k | x) log
(
q(ci = k | x)
p(ci = k | zi)

)
. (51)

This term requires Monte Carlo sampling for the expectations over the latent variables z, while we
can analytically compute the sum over all decisions Pl.

KLdecisions =
∑

i∈V\L

∫
z<i

P (i; z, c)

×
[
q(ci = 0) | x) log

(
q(ci = 0 | x)
p(ci = 0 | zi)

)
+ q(ci = 1 | x) log

(
q(ci = 1 | x)
p(ci = 1 | zi)

)] (52)

≈ 1

M

M∑
m=1

∑
i∈V\L

P (i; z(m), c)

×

[
q(ci = 0) | x) log

(
q(ci = 0 | x)

p(ci = 0 | z(m)
i)

)
+ q(ci = 1 | x) log

(
q(ci = 1 | x)

p(ci = 1 | z(m)
i)

)]
,

(53)

where P (i; z(m), c) =
∏

j∈P≤i
q(cpa(j)→j | x) is the probability of reaching node i, defined as

P (i; c) in Eq. 16/19/20 for simplicity.

19

A.1.3 KL Nodes

Finally, we can analyze the last term of the KL term, which corresponds to the KL of the nodes (26).
The reasoning is similar to the equations above and we will use the same notation. The KL of the
nodes can be written as

KLnodes =
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

(∏
j∈Pl\{0} q(zj | zpa(j))∏
k∈Pl\{0} p(zk | zpa(k))

) (54)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(55)

We now change from a pathwise view to a nodewise view.

=
∑

j∈V\{0}

∑
Pl∈j

∫
z≤j ,z>j

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(56)

=
∑

j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)

×
∑
P>j

∫
z>j

 ∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))

 (57)

=
∑

j∈V\{0}

∫
z<j

∫
zj

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(58)

=
∑

j∈V\{0}

∫
z<j

∫
zj

P (pa(j); z, c)q(cpa(j)→j | x)q(zj | zpa(j)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(59)

=
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x)
∫
zj

q(zj | zpa(j)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(60)

=
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x)KL
(
q(zj | zpa(j)) | p(zj | zpa(j))

)
(61)

≈ 1

M

M∑
m=1

∑
i∈V\{0}

P (pa(i); z(m), c)q(cpa(i)→i | x)

×KL(q(z
(m)
i | pa(z(m)

i))∥p(z(m)
i | pa(z(m)

i)))

(62)

=
1

M

M∑
m=1

∑
i∈V\{0}

P (i; z(m), c)KL(q(z
(m)
i | pa(z(m)

i))∥p(z(m)
i | pa(z(m)

i))), (63)

where P (pa(j); z, c) is defined in Eq. 49 and where P (i; z(m), c) = P (i; c) =
∏

j∈P≤i
q(cpa(j)→j |

x) is the probability of reaching node i.

20

A.1.4 KL terms

Using the above factorization, the KL term of the ELBO can be written as

KL (q (z,Pl | x) ∥p (z,Pl)) ≈ KL (q(z0 | x)∥p(z0))

+
1

M

M∑
m=1

∑
i∈V\L

P (i; z(m), c)
∑

ci∈{0,1}

q(ci | x) log

(
q(ci | x)

p(ci | z(m)
i))

)

+
1

M

M∑
m=1

∑
i∈V\{0}

P (i; z(m), c)KL(q(z
(m)
i | pa(z(m)

i))∥p(z(m)
i | pa(z(m)

i))),

(64)

where P (i; z(m), c) = P (i; c) =
∏

j∈P≤i
q(cpa(j)→j | x).

A.1.5 Reconstruction Loss

Finally, to compute the full ELBO, the KL terms are added to the reconstruction loss defined in (16).
Here, assumptions about the distribution of the inputs are required. For the grayscale datasets such as
MNIST, Fashion-MNIST, and Omniglot, as well as the one-hot-encoded 20Newsgroup, we assume
that the inputs are Bernoulli distributed, such that the resulting reconstruction loss is the binary cross
entropy. On the other hand, for the colored datasets CIFAR-10, CIFAR-100, and CelebA, we assume
that their pixel values are normally distributed, which leads to the mean squared error as loss function,
where we assume that σ = 1.

A.2 Computational Complexity

All terms of the Evidence Lower Bound, Equation 12, can be computed efficiently and the compu-
tational complexity of a single joint update of the parameters is O(MBVDCp), where M is the
number of MC samples, B is the batch size, V is the number of nodes in the tree, D is the maximum
depth of the tree, and Cp is the cost to compute the KL between Gaussians. It should be noted that
the computational complexity is, in practice, reduced to O(LBV Cp), as the term P (i; c) can be
computed dynamically from parent nodes.

B Related Work

In addition to the review presented in Section 3, which encompasses a broad range of related work
in the field of deep latent variable models, we provide a review of relevant work in the domains
of hierarchical clustering and decision trees. By doing so, we hope to shed further light on the
current state-of-the-art approaches and contribute to a deeper understanding of the challenges and
opportunities that lie in the intersection of hierarchical clustering, decision trees, and latent variable
models.

B.1 Hierarchical Clustering

Hierarchical clustering algorithms have long been employed in the field of data mining and machine
learning to extract hierarchical structures from data (Sneath, 1957; Ward, 1963; Murtagh & Contreras,
2012). Agglomerative clustering is among the earliest and most well-known hierarchical clustering
algorithms. These methods start with each data point as an individual cluster and then iteratively
merge the closest pairs of clusters, according to a predefined distance metric, until a stopping criterion
is met. While single-linkage and complete-linkage agglomeration clustering are widely used as
baselines, we observe better performance when using the bottom-up strategy proposed by Ward
(1963). Ward’s minimum variance criterion minimizes the total within-cluster variance (Murtagh &
Legendre, 2014), thus providing balanced and compact clusters. In contrast, the Bayesian Hierarchical
Clustering (BHC) proposed by Heller & Ghahramani (2005) takes a different approach by employing
hypothesis testing to determine when to merge the clusters. The divisive clustering algorithms, on the
other hand, provide a different strategy to hierarchical clustering. Unlike agglomerative methods,
divisive clustering starts with all data points in a single cluster and recursively splits clusters into
smaller ones. The proposed TreeVAE is an example of a divisive clustering method. Among a variety
of proposed methods, the Bisecting-K-means algorithm (Steinbach et al., 2000; Nistér & Stewénius,

21

2006) is widely used for its simplicity; it applies k-means with two clusters recursively. More recent
approaches include PERCH (Kobren et al., 2017b), which is a non-greedy, incremental algorithm that
scales to both the number of data points and the number of clusters, GHC (Monath et al., 2019), which
leverages continuous representations of trees in a hyperbolic space and optimizes a differentiable
cost function, and RSSCOMP (You et al., 2015), which explores a subspace clustering method based
on an orthogonal matching pursuit. Finally, Deep ECT (Mautz et al., 2020) proposes a divisive
hierarchical embedded clustering method, which jointly optimizes an autoencoder that compresses
the data into an embedded space and a hierarchical clustering layer on top of it. Density-based
clustering algorithms, such as DBSCAN, belong to a distinct category of clustering techniques. They
aim to identify regions in a dataset where points are densely concentrated and classify outliers as
noise (Ester et al., 1996). R. J. Campello et al. (2015) build on this idea to learn a hierarchy based
on the distances between datapoints where distance is roughly determined by the density. However,
one limitation of density-based methods lie in their performance when confronted with complex
datasets requiring high-dimensional representations. In such cases, estimating density requires an
exponentially growing number of data points, which leads to scalability issues that TreeVAE does not
have.

B.2 Decision Trees

Decision trees (Breiman et al., 1984) are interpretable, non-parametric supervised learning techniques
commonly employed in classification and regression tasks. They rely on the data itself to build a
hierarchical structure. This is done by recursively partitioning the data into subsets, each of which
corresponds to a specific node in the tree. At each node, a decision rule is generated based on one
of the input features that best discriminates the data in that subset. One of the key advantages of
decision trees is their interpretability. The learned tree structure can be easily visualized to get
insights into the data and the model’s decision-making process. Suárez & Lutsko (1999) argue
that deterministic splits lead to overfitting and introduce fuzzy decision trees with probabilistic
decisions, implicitly allowing for backpropagation. With the advancement of neural networks,
many works (Rota Bulo & Kontschieder, 2014; Laptev & Buhmann, 2014; Frosst & Hinton, 2017)
leverage MLPs or CNNs for learning a more complex decision rule. However, the input at every node
remains the original features, which limits their performance, as they are unable to learn meaningful
representations. Thus, Tanno et al. (2019) introduces Adaptive Neural Trees (ANT), a method that
learns flexible, hierarchical representations through NNs, hereby facilitating hierarchical separation
of task-relevant features. Additionally, ANTs architectures grow dynamically such that they can
adapt to the complexity of the training dataset. At inference time, ANTs allow for lightweight
conditional computation via the most likely path, leading to inbuilt interpretable decision-making.

While decision trees were initially designed with the goal of achieving high predictive performance,
they are also used for many auxiliary goals such as semi-supervised learning (Zharmagambetov
& Carreira-Perpiñán, 2022), robustness (Moshkovitz et al., 2021) or interpretability (Wan et al.,
2021; Souza et al., 2022; Arenas et al., 2022; Pace et al., 2022). In the context of interpretability,
various approaches have been proposed to enhance accuracy and interpretability. Wan et al. (2021)
introduce Neural-Backed Decision Trees (NBDTs), which improve accuracy by replacing the final
layer of a neural network with a differentiable sequence of decisions to increase its interpretability
while retaining predictive performance. Souza et al. (2022) focus on optimizing the structural
parameters of decision trees, introducing the concept of "explanation size" as being the expected
number of attributes required for prediction to measure interpretability. Pace et al. (2022) develop the
POETREE framework for interpretable policy learning via decision trees in time-varying clinical
decision environments. Arenas et al. (2022) investigate explanations in decision trees, considering
both deterministic and probabilistic approaches and showing the limitations thereof. These works
collectively contribute to advancing the use of decision trees in interpretable machine learning,
providing insights into trade-offs, criteria, and frameworks for improving accuracy and interpretability.

While decision trees are most commonly known for their application in supervised tasks, they can be
repurposed to partition the data space into clusters in an unsupervised way (Blockeel & De Raedt,
1998; B. Liu et al., 2000; Basak & Krishnapuram, 2005; Ram & Gray, 2011; Fraiman et al., 2013).
Most methods, however, have the downside of not learning meaningful representations for their splits,
such that they are unfit for modelling complex interactions. Therefore, similar to Tanno et al. (2019)

22

in the supervised setting, in this work, we combine the simplicity and interpretability of clustering
decision trees with the flexibility of NNs.

C Further Experiments

Here, we provide additional experimental results, including further hierarchical structures, uncondi-
tional generation of samples, and ablation experiments.

C.1 Discovery of Hierarchies

We show further hierarchical structures learned by TreeVAE on MNIST in Fig. 9/10, Fashion-MNIST
in Fig. 11, Omniglot-50 in Fig. 12, and CIFAR-100 in Fig. 13. Additionally, the figures that include
conditional generations are generated by sampling from the root and following the most probable
path to generate every leaf-specific image.

Figure 9: Hierarchical structure learned by TreeVAE with ten leaves on MNIST dataset with generated
images through conditional sampling. The right subtree contains rounded digits, while the left subtree
contains digits with a straight line.

Figure 10: Hierarchical structure learned by TreeVAE with 20 leaves on MNIST dataset with
generated images through conditional sampling. The digits are further divided according to style.

C.2 Generations

We further show how TreeVAE can be used to sample unconditional generations for all clusters
simultaneously for MNIST, in Fig. 14, and CelebA, in Fig. 15. Differently from the conditional
generation, where we follow the path of the tree with the highest probability, here we follow all
paths of the tree regardless of their probabilities. As a result, we generate L images, where L is
the number of leaves, corresponding to the number of decoders. These generated samples exhibit
distinct characteristics based on their respective cluster-specific features while maintaining cluster-
independent properties across all generated instances.

23

Figure 11: Hierarchical structure learned by TreeVAE with 20 leaves on Fashion-MNIST dataset
with generated images.

Figure 12: Hierarchical structure learned by TreeVAE on the full Omniglot dataset. We display
random subsets of images that are probabilistically assigned to each leaf of the tree. Similar to the
results in the main text, we can again find regional hierarchies in some individual subtrees. For
instance, the leftmost subtree seems to find structures in different Indian alphabets. We can also
observe that this subtree seems to cluster smaller characters in its left child, whereas the right child
contains bigger shapes. Another example is the rightmost tree, which seems to encode the more
straight shapes of Japanese writing styles. There, the left child encodes more complex shapes that
contain many different strokes, and the right subtree groups simpler shapes with only a few lines.

Figure 13: Hierarchical structure learned by TreeVAE with 20 leaves on CIFAR-100 dataset. We
display random subsets of images that are probabilistically assigned to each leaf of the tree.

C.3 Ablation Study

In this section, we provide additional studies on the effect of selected hyperparameters and assump-
tions on the behavior of TreeVAE. In Table 4, we provide an ablation on selected hyperparameters of
TreeVAE on Fashion MNIST. In the following subsection we will provide further in-depth explo-
rations of TreeVAE.

24

leaf 1 leaf 2 leaf 3 leaf 4 leaf 9leaf 8leaf 7leaf 6leaf 5 leaf 10

Figure 14: Selected unconditional generations of MNIST. One row corresponds to one sample from
the root, for which we depict the visualizations obtained from the 10 leaf-decoders. Each row retains
similar properties across the different leaves. In the first row, all digits are rotated; the second are
bold; the third are straight; and the last are squeezed.

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5 leaf 6 leaf 7 leaf 8

Figure 15: Selected unconditional generations of CelebA. One row corresponds to one sample from
the root, for which we depict the visualizations obtained from the 8 leaf-decoders. The overall face
shape, skin color, and face orientation are retained among leaves from the same row, while several
properties (such as beard, mustache, hair) vary across the different leaves.

C.3.1 Training time parameter matching

TreeVAE has the advantage of lightweight inference, as each datum ends up in one leaf. Still, we
have to learn the full tree with all paths during training. Thus, we have conducted an ablation study
on Fashion MNIST that increases the effective number of parameters of LadderVAE to match the
parameter count of TreeVAE at training instead of inference. The results are presented in Table 5.

25

Table 4: Ablation Study on Fashion MNIST: (A) dimensionality of latent embeddings ordered
by depth, (B) dimensionality of MLP and Router hidden layer ordered by depth, (C) Increasing
dimensionality, (D) number of hidden layers of MLP, (E) number of hidden layers of router, (F)
pre-determined maximum depth of tree.

zdepth MLPdepth MLPlayers Routerlayers depth Acc NMI ELBO

base 8, 8, 8, 8, 8, 8 128, 128, 128, 128, 128 1 2 6 63.5± 4.1 63.9± 2.2 −239.2± 0.3

(A) 2, 2, 2, 2, 2, 2 49.8± 4.0 51.8± 2.7 −249.5± 0.4

(A) 4, 4, 4, 4, 4, 4 60.0± 4.7 61.0± 3.7 −242.6± 0.4

(A) 16, 16, 16, 16, 16, 16 61.0± 4.5 63.0± 2.4 −238.8± 0.4

(A) 32, 32, 32, 32, 32, 32 62.7± 4.4 63.5± 2.8 −238.7± 0.4

(B) 16, 16, 16, 16, 16 58.3± 3.5 60.6± 2.1 −241.5± 0.3

(B) 32, 32, 32, 32, 32 60.6± 3.6 62.7± 2.5 −240.4± 0.4

(B) 64, 64, 64, 64, 64 62.6± 3.8 63.5± 1.4 −239.6± 0.3

(B) 256, 256, 256, 256, 256 62.3± 4.9 63.4± 3.9 −239.2± 0.4

(C) 64, 32, 16, 8, 4, 2 128, 64, 32, 16, 8 56.7± 4.0 59.9± 3.1 −239.2± 0.4

(C) 64, 32, 16, 8, 4, 2 256, 128, 64, 32, 16 60.9± 5.3 62.6± 2.4 −238.6± 0.3

(C) 128, 64, 32, 16, 8, 4 128, 64, 32, 16, 8 58.5± 4.4 61.3± 2.5 −239.1± 0.4

(C) 128, 64, 32, 16, 8, 4 256, 128, 64, 32, 16 62.6± 3.4 63.6± 1.5 −238.8± 0.3

(C) 256, 128, 64, 32, 16, 8 256, 128, 64, 32, 16 61.1± 3.7 61.7± 2.9 −238.9± 0.3

(C) 256, 128, 64, 32, 16, 8 512, 256, 128, 64, 32 60.5± 4.7 61.1± 3.1 −239.1± 0.3

(D) 2 60.3± 5.3 61.6± 3.5 −239.0± 0.3

(D) 3 61.4± 4.2 62.9± 3.2 −239.0± 0.3

(E) 1 59.6± 4.0 62.3± 2.0 −239.2± 0.4

(E) 3 62.1± 4.4 63.6± 3.1 −239.1± 0.4

(F) 8, 8, 8, 8, 8 128, 128, 128, 128 5 64.0± 4.6 64.4± 2.7 −239.2± 0.3

(F) 8, 8, 8, 8, 8, 8, 8 128, 128, 128, 128, 128, 128 7 61.0± 4.9 62.9± 2.9 −239.2± 0.3

(F) 8, 8, 8, 8, 8, 8, 8, 8 128, 128, 128, 128, 128, 128, 128 8 62.1± 5.2 63.6± 2.7 −239.1± 0.4

Table 5: Test set performances (%) of TreeVAE and LadderVAE with matched training parameter
count. Means and standard deviations are computed across 10 runs with different random model
initializations.

Dataset Method ACC NMI LL RL ELBO

Fashion LadderVAE + Agg 56.4± 1.9 62.3± 2.0 −233.7± 0.1 224.8± 0.3 −238.9± 0.3

TreeVAE 63.6± 3.3 64.7± 1.4 −234.7± 0.1 226.5± 0.3 −239.2± 0.4

C.3.2 Tree Structure

First, we analyze the necessity of the iterative growing procedure as opposed to fixing an (informed)
tree structure a priori. Thus, we present an ablation, where we fix a reasonable tree structure and
directly train the full tree as opposed to iteratively grow. The results in Table 6 suggest that the
iterative learning is vital to the performance of TreeVAE. Intuitively, by fixing a tree structure, the
model loses the ability to learn one out of multiple equivalent tree structures (e.g. left and right
subtrees can be exchanged) and instead needs to fit one specific structure. This leads to less flexibility
and more influence of the random weight initialization, as well as local optima.

Table 6: Test set performances (%) of TreeVAE with a fixed structure standard TreeVAE. Means and
standard deviations are computed across 10 runs with different random model initializations.

Dataset Method ACC NMI LL RL ELBO

Fashion fixed TreeVAE 35.1± 4.8 54.1± 5.8 −237.4± 0.4 228.9± 0.5 −241.0± 0.5

TreeVAE 63.6± 3.3 64.7± 1.4 −234.7± 0.1 226.5± 0.3 −239.2± 0.4

Second, we analyze whether the learnt tree structure is informed through the learnt embeddings or
rather an artifact of induced biases. For this, we show the UMAP (Ghojogh et al., 2021) representation
of the learnt root embedding in Fig. 16. As can be seen, tops as well as shoes are clustered together,
while bags are somewhat in between. Trousers on the other hand are completely separate. Our
interpretation is that the root split is made between shoes and tops, where it is unclear in which

26

subtree bags and trousers should fall as they are both not clearly assigned to one of the two groups.
Therefore, depending on initialization, they might end up on either side. To analyze the effect of
random weight initialization on the learned dendrogram, we have made further efforts to find a
dendrogram that best summarizes the learned dendrogram of multiple runs. We show it in Fig. 17.
For this, we first align the leaves of the different trees by maximizing the overlapping samples, then
we store the number of edges between any two clusters for every tree and then average this number
over all trees. Thus, we have computed a distance matrix of all clusters, which is averaged over all
trees. We then used average and complete linkage to cluster according to the average distance matrix.
The recovered dendrograms of the two algorithms are identical, apart from the Bag and the Trouser
cluster, which switch places. That is, all tops are in one subtree and all shoes in the other, while bags
and trousers are assigned to either the shoes or tops subtree, depending on the clustering algorithm
used. What this indicates is that the groups of shoes and tops are consistently recovered, no matter
the random initialization, while the assignment of bags and trousers varies, which is aligned with the
interpretation of the root embedding in Fig. 16, as there is no clear assignment thereof.

Figure 16: UMAP visualization of root embed-
ding for Fashion MNIST.

Figure 17: “Average” dendrogram learnt on
Fashion MNIST by averaging cluster distances
across 10 runs and applying average linkage
clustering.

C.3.3 Contrastive Losses

In this section, we present an ablation on the effect of the contrastive losses that are applied in real
world datasets. The experiments are performed on a slightly modified version of CIFAR-10 and
shown in Table 6. As can be seen, the experiments showed that the proposed combination of (A) and
(B) leads to the best results as the two methods complement each other.

Table 7: Ablation study of contrastive losses. (A) corresponds to the NT-Xent regularization on
the routers, (B) to the NT-Xent regularization on the bottom-up embeddings, (C) on a transposed
version of the NT-Xent regularization on the routers, following Li et al. (2021), (D) to the NT-Xent
regularization of only the output of the encoder, and (E) to minimizing the Jensen-Shannon divergence
between the router probabilities of the two augmented inputs.

Dataset Contrastive Method NMI

CIFAR-10* Ours (=A+B) 44.1± 0.7

(A) 21.7± 4.0

(B) 6.0± 6.0

(C) 23.0± 1.2

(D) 0.2± 0.0

(E) 1.0± 1.3

C.3.4 Unknown number of clusters

In an unsupervised setting, it is unclear a priori what the optimal number of clusters is. Thus, we are
interested in the sensitivity of TreeVAE with respect to misspecifications of the ground truth number
of clusters. The CIFAR-100 dataset is an optimal candidate for this ablation, as the ground truth

27

Table 8: Test set hierarchical clustering performances (%) of TreeVAE for different number of
predicted clusters. Means and standard deviations are computed across 10 runs with different random
model initializations. The star "*" indicates that contrastive learning was applied.

Dataset # Predicted clusters NMI

CIFAR-100* 10 15.99± 0.85

20 17.80± 0.42

32 19.33± 0.41

Table 9: Test set hierarchical clustering performances (%) of TreeVAE for different number of ground
truth clusters. Means and standard deviations are computed across 10 runs with different random
model initializations. The star "*" indicates that contrastive learning was applied.

Dataset # Ground truth clusters NMI

CIFAR-100* 20 17.80± 0.42

100 22.74± 0.36

number of clusters can be defined differently depending on whether we look at coarse or fine-grained
classes. As a metric, we will only use NMI, because DP, LP, as well as Accuracy values are not fairly
comparable across different number of predicted clusters. To determine the sensitivity of TreeVAE
with respect to the misspecification of number of clusters, we evaluate its performance with 10, 20,
and 32 predicted classes, compared to the ground truth 20 superclasses. The results are depicted in
Table 8. Clearly, TreeVAE is not very sensitive to the correct specification of the number of clusters.
This is also supported by Fig. 10/11, which show that even as we grow the tree further than the ground
truth number of classes, TreeVAE still finds meaningful subsets of inside the classes.

As a next ablation, we are interested in the case of the number of ground truth clusters being
misspecified or unclear. Note that the difference to the previous ablation is whether the ground truth
or the predicted number of classes is misspecified. Again, CIFAR-100 is a natural choice for this
ablation, as the ground truth number of classes can either be 20 or 100. Thus, in Table 9, we present
how the performance of TreeVAE would change if we chose a different granularity of ground truth
classes while keeping the number of predicted clusters fixed to 20. We can observe that the NMI for
finer granularity is even higher than for the superclasses used, indicating that TreeVAE learned to
differentiate classes of the same superclass.

D Datasets

This section provides supplementary background information and preprocessing steps of the different
datasets used in our experiments.

D.1 MNIST

The MNIST (LeCun et al., 1998) dataset is a widely used benchmark dataset in machine learning.
It is composed of grayscale images representing handwritten digits from zero to nine. Each image
is of size 28× 28 pixels that we rescale to [0, 1]. The dataset is balanced, meaning that there is an
equal number of examples for each digit class, with a total of 60′000 training images and 10′000
test images. The digits in the dataset are manually labeled, providing ground truth information for
clustering evaluation.

D.2 Fashion-MNIST

The Fashion-MNIST (H. Xiao et al., 2017) dataset consists of a collection of grayscale images
depicting various clothing items and accessories. The dataset contains a balanced distribution of ten
different classes, representing different fashion categories such as T-shirts, trousers, dresses, footwear,
and more. Each image in the dataset has a resolution of 28× 28 pixels that we again rescale to [0, 1].

28

Similar to the original MNIST dataset, Fashion MNIST also includes 60, 000 training images and
10′000 test images.

D.3 20Newsgroups

The 20Newsgroups (Lang, 1995) dataset is a widely-used benchmark dataset in the field of natural
language processing and text classification, known for its inherent hierarchical structure. It consists of
approximately 20′000 newsgroup documents organized into 20 different topics or categories. These
categories include sports, politics, technology, science, religion, and more. One of the most important
characteristics of this dataset is the presence of hierarchical relationships within the topics. We
employ a TF-IDF vectorizer for the 2′000 most frequent words and use this text embedding as input
to our model. We retain 60% of the original dataset for training and separate the other 40% for the
test set.

D.4 Omniglot

The Omniglot Lake et al. (2015) dataset contains handwritten characters from 50 different alphabets.
Every alphabet contains various individual characters, amounting to a total of 1623 different characters
in the dataset. Given the heterogeneous nature of the dataset, Omniglot contains relatively few samples.
The dataset consists of 32′460 samples, which is about 650 samples per alphabet or 20 samples
per character. In our experiments, we are interested in whether TreeVAE can find alphabet-specific
patterns that stay invariant across different characters. Given that many alphabets developed either
from or parallel to each other, many alphabets are very hard to distinguish, both for humans and
machines. While we use the full Omniglot dataset for our generative experiments to have more data,
we only use a subset of the alphabets for our clustering experiments. We call this subset Omniglot-5
and it consists of the five alphabets Braille, Glagolitic, Cyrillic, Odia, and Bengali. We selected
them by ensuring that we have languages from different origins (artificial, Slavic, and Indian) and
that there are learnable hierarchies. Old Church Slavonic (Cyrillic) developed from Glagolitic and
Odia and Bengali are languages with their own alphabet from geographically similar regions in India.
The resulting Omniglot-5 results in 4′160 samples. For both dataset versions and all experiments,
we split the dataset into train/test splits with 80%/20% of the samples, respectively, and stratifying
across the characters of the dataset. We resized the images to 28× 28 to align with images in MNIST
and Fashion-MNIST, transformed the images to grayscale, and rescaled pixel values to [0, 1]. For a
description of the augmentations we use, we refer to Appendix E.1.2.

D.5 CIFAR-10

The CIFAR-10 (Krizhevsky & Hinton, 2009) dataset contains colored images of ten balanced classes.
These classes are {Airplane,Automobile, Bird, Cat,Deer,Dog, Frog,Horse, Ship, Truck}.
Therefore, some classes are more similar (for example Automobile and Truck) than others (for
example Frog and Airplane), indicating that there is a structure across clusters that can be captured.
The dataset consists of 50′000 training and 10′000 test images of resolution 32 × 32 pixels and 3
color channels, which we rescaled to [0, 1].

D.6 CIFAR-100

The CIFAR-100 (Krizhevsky & Hinton, 2009) dataset originally contains colored images of 100
classes. In order to not have to grow until TreeVAE has 100 clusters, we apply the common grouping
of the 100 classes into 20 balanced superclasses. In Table 9, we also present an ablation if instead
we chose the full 100 clusters. The dataset consist of 50′000 training and 10′000 test images of
resolution 32× 32 pixels and 3 color channels, which we rescaled to [0, 1].

D.7 CelebA

The CelebA (Z. Liu et al., 2015) dataset contains images of celebrities with 40 attribute annotations
per image. This dataset is well-suited for exploratory analysis, as there are no agreed-upon ground
truth clusters. As a result, we can visualize the clusters that are learned by TreeVAE and validate
whether they align with our intuition as well as with the given attributes. Thus, in Table 3, we
additionally define "Hair Loss" as balding or having a receding hairline, and "Beard" as having a

29

beard or the so-called 5 o’clock shadow. For training, we select a subset of 100′000 random images
from the training set and evaluate on the given test set of 19′962 images. Lastly, we crop the images
to 64× 64 pixels with 3 color channels and rescale them to [0, 1].

E Implementation Details

The following section provides a comprehensive overview of the various aspects and components
regarding the practical implementation of our proposed framework. We provide a detailed description
of our proposed model’s training process and architectural design. Furthermore, we outline the
specific techniques and methodologies used for the contrastive learning extension. We also provide
the implementation details of the Variational Autoencoder and the Ladder Variational Autoencoder
that are used as baselines. Finally, we present the computational resources required for executing
the proposed framework. Together, these subsections aim to provide a comprehensive view of the
implementation details, enabling readers to replicate and build upon our work effectively.

E.1 Training Details

Hierarchical variational models, such as LadderVAE, are prone to local minima and posterior collapse,
and TreeVAE shows similar behavior. Therefore, few technical choices, such as batch normalization
and KL annealing, are needed to converge to a desirable optimum. For all datasets, we train TreeVAE
only on the training set and evaluate the trained model on the separate test set.

E.1.1 Training the Tree

For MNIST, Fashion-MNIST, Omniglot, and 20Newsgroup, the trees are trained for M = 150 epochs
at each growth step, and the final tree is finetuned for Mf = 200 epochs. To reduce the risk of
posterior collapse during training, we anneal the KL terms of the ELBO. Starting from 0, we increase
the weight of the KL terms every epoch by 0.001 except for the final finetuning of the full tree. Here,
we linearly increase the weight by 0.01 until we reach 1, such that the final model is trained on the
complete ELBO. Additionally, for the aforementioned datasets, we finetune the full tree after every
third growing step for 80 epochs with KL annealing of 0.001, so the otherwise frozen parameters can
adapt to the new structure. For CIFAR-10, CIFAR-100, and CelebA, the splits are mostly determined
by the contrastive losses, and therefore, we avoid finetuning the full tree to reduce the computational
time. The KL term is annealed every epoch by 0.01 such that the weight reaches 1 after 100 of the 150
epochs every growth step. While the annealing procedure is required to achieve good performances,
the exact annealing decay plays a smaller role in the final performances, as well as the in-between
finetuning of the trees, and the number of epochs at each training step.

E.1.2 Augmentations

Due to the scarcity and heterogeneity of Omniglot, we trained our models using data augmentation
by randomly rotating images by up to ±10 degrees, horizontally/vertically shifting images by up to
±2 pixels, applying up to 1% shearing, and zooming by up to ±10%. Note that for Omniglot, no
contrastive learning was applied; the augmentations were solely used for overcoming the scarcity of
data points.

On the other hand, in CIFAR-10, CIFAR-100, and CelebA, augmentations were applied to use
contrastive learning as introduced in Section 2.6 and Appendix E.3. For CIFAR-10 and CIFAR-100,
first, each image is randomly cropped and resized with scale ∈ (0.2, 1) and aspect ratio ∈ (3/4, 4/3).
Second, each image is randomly flipped in the horizontal direction with probability 0.5. Third, with
probability 0.8, color changes are performed, which consist of changes in brightness, contrast, and
saturation, all with their respective factors ∈ (0.6, 1.4), as well as change in hue with its parameter
∈ (−0.1, 0.1). Lastly, with probability 0.2, we transform the image to grayscale. The chosen
parameters are largely adopted from Li et al.’s (2022) weak augmentation scheme.

While these augmentations lead to superior group separation, in CelebA, we are also interested in
generative results. Therefore, to obtain generations without non-sensical artifacts, we reduce the
augmentation strength by removing the hue and grayscale augmentations, reducing the other color
parameters by a factor 2, and reducing the cropping parameters to scale ∈ (3/4, 1) and aspect ratio
∈ (4/5, 5/4).

30

E.2 Model Architecture

In general, model architectures for all datasets are similar and consist of an encoder, followed by the
tree structure with the transformations, routers, and the bottom-up, as depicted in Figures 2 and 3, and
identical decoders for each leaf of the tree. We always apply batch normalization followed by Leaky
ReLU non-linearities after all convolutional and dense layers. For further details on the specific
implementation of the sections below, we direct the reader to consult the accompanying code.

E.2.1 Transformations/Bottom-Up

The architecture of the transformations and the bottom-up is identical across all experiments. They
take as input the previous latent vector of dimension 4 (20Newsgroup), 8 (MNIST, Fashion-MNIST,
Omniglot), or 64 (CIFAR-10, CIFAR-100, CelebA) and map them to some intermediate representation
of dimension 128 (20Newsgroup, MNIST, Fashion-MNIST, Omniglot), or 512 (CIFAR-10, CIFAR-
100, CelebA) using a dense layer, followed by a dense layer without activation to compute µ and one
with Softplus activation to compute σ of the approximate posterior/conditional prior of the respective
tree level.

E.2.2 Routers

Similar to transformations, the architectures of routers are identical across all experiments. The
generative routers take as input zi, the latent representation of a node i, while the inference routers use
ddepth(i). Then, both sequentially apply two dense layers that both map them to 128 (20Newsgroup,
MNIST, Fashion-MNIST, Omniglot), or 512 (CIFAR-10, CIFAR-100, CelebA) dimensions, after
which a final dense layer with a Sigmoid activation function computes the probability of the binary
decision that infers the next child node.

E.2.3 MNIST/Fashion-MNIST

Figure 18: MNIST and Fashion-MNIST encoder architecture.

For MNIST and Fashion-MNIST we use identical encoder/decoder architectures. Both datasets have
inputs of dimension 28× 28 and 8 dimensional latent spaces. We use a small encoder as depicted in
Figure 18, and a symmetric decoder. The encoder uses 3× 3 convolutions with stride 2, whereas the
decoder uses transposed convolutions.

E.2.4 20Newsgroups

20Newsgroups is a text dataset, so the encoder/decoder architecture differs from the other experiments.
The samples of 20Newsgroups are preprocessed in such a way, that the input becomes a 2000D vector
(see Section D.3). Hence, the encoder for 20Newsgroups is a simple MLP with 5 dense layers, as
depicted in Figure 19, and the decoder again mirrors the encoder architecture.

E.2.5 Omniglot

For Omniglot, we use an architecture similar to the one for MNIST and Fashion-MNIST. In contrast
to Section E.2.3, we increase the receptive field of the encoder by using 4× 4 convolutions and make

31

Figure 19: 20Newsgroups encoder architecture.

Figure 20: Omniglot encoder architecture.

it 4 times wider and 2 times deeper. We refer to Figure 20 for a schematic of the encoder. As in the
other architectures, the decoder is symmetric to the encoder.

E.2.6 CIFAR-10/CIFAR-100/CelebA

Figure 21: CIFAR-10, CIFAR-100, and CelebA encoder architecture. The initial convolutional layer
comprises a ResnetBlock, while the remaining convolutional layers additionally incorporate average
pooling prior to the ResnetBlock.

For real-world image datasets, more complex architectures are required. We first define a ResnetBlock
as two consecutive convolutions with kernel size 3 and stride 1, whose output gets weighted by 0.1

32

and combined with a residual connection to the input of the first convolution. In case input and
output dimensions do not match, the residual connection consists of a convolution with kernel size 1
and stride 1 to match dimensionality. The encoder consists of consecutive ResnetBlocks with 2D
average-pooling of kernel size 3 and stride 2. Here, number of filters per ResnetBlock are increasing
by a factor of 2, starting from 32 and going up to 256 until the representation is 4 × 4 × 256, at
which point we flatten it to get dL. We refer to Figure 21 for a schematic of the encoder. The decoder
structure is similar to the reversed encoder, where the pooling layers are replaced by 2D upsampling
with bilinear interpolation and before the ResnetBlocks, we pass the input through a dense layer
and consecutive reshaping in order to match the expected input dimensions. Slight differences are
required for CelebA due to the higher resolution. To arrive at the same internal representation, we
add one more ResnetBlock with 256 filters to the encoder, as well as one more ResnetBlock at the
start of the decoder, starting from 16 instead of 32 filters.

E.3 Contrastive Learning

In real-world datasets, data splits, as determined by the ELBO and especially by the reconstruction
loss, might not coincide with the human-aligned notion of clusters. For example, we observed
that plain TreeVAE utilizes specialized decoders to focus on good reconstructions of the various
background colors. These data splits are rather intuitive from a reconstruction point of view, however,
these might not encode contextually meaningful splits. Thus, we introduce an additional contrastive
loss to guide TreeVAE toward meaningful clusters. The idea of contrastive learning (Sohn, 2016;
van den Oord et al., 2018; Wu et al., 2018; Chen et al., 2020) is simple; constrain the space of
potential clustering rules by defining certain data augmentations with respect to which the model’s
cluster assignment should become invariant. The model should assign a sample to the same cluster
independent of whether and which subset of the chosen augmentations are applied to it. For the
augmentations that were used for contrastive learning, we refer to Appendix E.1.2.

To achieve the desired behavior, we utilize the normalized temperature-scaled cross-entropy loss (NT-
Xent) (Sohn, 2016; van den Oord et al., 2018; Wu et al., 2018; Chen et al., 2020), whose definition we
repeat here for ease of reading: ℓi,j = − log

exp (si,j/τ)∑2N
k=1 1[k ̸=i] exp (si,k/τ)

, where si,j denotes a similarity
measure, which we define as the cosine similarity between the representations of x̃i and x̃j , and
τ is a temperature parameter. This is computed for all 2N pairs of augmented samples x̃i and x̃j

originating from the same initial sample x and then averaged. We compute this depth-wise for every
embedding dl by first passing it through a separate MLP with one hidden layer of dimension 512,
followed by batch normalization and LeakyReLU and the final linear layer with output dimension
64, on which the NT-Xent with τ = 0.5 is applied. Then, we average the pairwise losses and sum
them up over all dl, where we, to be invariant to the depth of the bottom-up, divide by the maximum
depth. With this, we regularize the bottom-up embeddings learned by the model to encode every
augmented pair of samples close to each other, thus constraining the learning of information that the
model should be invariant to.

Even with the previous regularization, dl might still contain some of information that is not relevant
for clustering (such as background color), and therefore the routers might base their split on such
characteristics. Therefore, we build upon ideas from Li et al. (2021, 2022), which propose not only
to regularize the embeddings, but also the cluster probabilities themselves. While Li et al. (2021,
2022) change from a sample-wise view to a cluster-wise view for calculating the NT-Xent on the 2K
clusters, we instead keep the sample-wise view and apply the NT-Xent with τ = 1 directly on the
outputs of every bottom-up router q(ci | dl). We would like to emphasize here that we do not project
them to another space, because, in contrast to previous methods (Chen et al., 2020), we wish to
remove all irrelevant information with respect to the augmentations from the routers. The computed
pairwise loss is then weighted by the probability of falling into the given node. Lastly, we sum up the
weighted pairwise losses and divide them by the sum of the weights to ensure equal regularization
in every node. This has three advantages: (i) We can use the proposed loss during the training of
the subtrees, thus gaining computational efficiency. (ii) We implicitly encourage the splitting of
the data into balanced classes, following the overall design choice for splitting the data, outlined in
Section 2.5. (iii) We can omit the computationally intensive finetuning of the full tree, as the splits, as
enforced by the contrastive losses, are local, which alleviates the need of finetuning the full tree for
global optimization.

33

Lastly, we add these two contrastive parts together and weigh them by 100 to match the gradients
of the ELBO. Thus, we naturally introduce a tradeoff between reconstruction quality and clustering
quality, as we constrain the model to a clustering solution that does not optimally make use of
specialized decoders.

E.4 Baselines

For a fair comparison, we retain the same architectural choices made for TreeVAE for both the
Variational Autoencoder and Ladder Variational Autoencoder, used as baselines. In particular,
we retain the same encoder and decoder structure as explained in Section E.2. For datasets on
which TreeVAE applies contrastive learning, we similarly apply the regularization on the bottom-up
embeddings of the baselines. Below we describe specific training details that deviate from TreeVAE,
due to the differences in the graphical models.

E.4.1 Variational Autoencoder

The non-hierarchical counterpart of TreeVAE is a classical Variational Autoencoder (VAE). As it does
not contain a hierarchical structure, the VAE consists solely of an encoder and decoder architecture,
which follows the architectural choices of TreeVAE. We train the VAE for 500 epochs and use the KL
annealing procedure proposed by LadderVAE, which linearly increases the weight of the KL terms
from 0 to 1 in 200 epochs.

E.4.2 Ladder Variational Autoencoder

The sequential counterpart of TreeVAE is the LadderVAE (Sønderby et al., 2016). We retain the same
encoder, decoder, and transformations used by TreeVAE, and we set the depth to 5 for all datasets. We
train the LadderVAE for 1000 epochs and use the KL annealing procedure proposed by the authors,
which linearly increases the weight of the KL terms from 0 to 1 in 200 epochs.

E.4.3 Agglomerative Clustering

We train Ward’s minimum variance agglomerative clustering (Ward, 1963; Murtagh & Legendre,
2014) on the plain input space (Agg), the latent space of the VAE (VAE + Agg) and the last layer
of LadderVAE (LadderVAE + Agg). We observed that clustering on the last layer of LadderVAE
performed substantially better than when using the root (or the top layer). We chose Ward’s method
as it performed better than other classical hierarchical clustering methods (such as single-linkage
agglomeration clustering or bisecting K-means). However, Ward’s method cannot be tested on a
held-out dataset, as it inherently does not allow for prediction on new data. For this reason, we train
and test Ward’s method on the test set embeddings given by the baseline models, which were trained
on the training data, for a fairer comparison with the other methods.

E.5 Resource Usage

In the following, we describe the resource usage of our experiments. All our experiments were run
on RTX3080 GPUs, except for CelebA, where we increased the memory requirement and use a
RTX3090. Training TreeVAE with 10 leaves on MNIST, Fashion-MNIST, and Omniglot-50 takes
between 1h and 2h, Omniglot-5 30 minutes, CIFAR-10 5h. Training TreeVAE with 20 leaves on
20Newsgroup takes approximately 30 minutes, and on CIFAR-100 9h. Training TreeVAE on CelebA
takes approx 8h. Please note that we only report the numbers to generate the final results but not the
development time.

34

