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ABSTRACT: Alchemical free-energy methods based on molecular
dynamics (MD) simulations have become important tools to
identify modifications of small organic molecules that improve their
protein binding affinity during lead optimization. The routine
application of pairwise free-energy methods to rank potential
binders from best to worst is impacted by the combinatorial
increase in calculations to perform when the number of molecules
to assess grows. To address this fundamental limitation, our group
has developed replica-exchange enveloping distribution sampling
(RE-EDS), a pathway-independent multistate method, enabling the
calculation of alchemical free-energy differences between multiple
ligands (N > 2) from a single MD simulation. In this work, we
apply the method to a set of four kinases with diverse binding
pockets and their corresponding inhibitors (42 in total), chosen to showcase the general applicability of RE-EDS in prospective drug
design campaigns. We show that for the targets studied, RE-EDS is able to model up to 13 ligands simultaneously with high sampling
efficiency, leading to a substantial decrease in computational cost when compared to pairwise methods.

■ INTRODUCTION
Free energy is one of the most fundamental quantities in
chemistry. Any spontaneous chemical process (under constant
pressure or temperature) is accompanied by a decrease in free
energy. In the context of drug design, the properties of a drug
candidate must satisfy specific criteria, which can be related to
differences in free energy, e.g., binding affinity, selectivity,
solubility, and passive membrane permeability.1 During hit-to-
lead optimization, accurate prediction of binding affinities
allows prioritization and reduction of the number of
compounds to synthesize.2,3 Approximate methods such as
docking have been used for decades to estimate binding
affinities,4 although they fail to account for entropic
contributions,5 ligand and/or protein flexibility,6 or the role
of specific water molecules in binding.7−9 Recent advances in
computing power have enabled the routine application of
rigorous free-energy methods based on molecular dynamics
(MD) simulations such as free-energy perturbation (FEP)10 in
both academic and industrial settings.11,12

While calculating the physical binding pathway of an
inhibitor is possible,14,15 it is computationally more feasible
to estimate relative binding free energies (RBFE)16 by
performing “alchemical” transformations between analogous
inhibitors (Figure 1 and eq 1)

G G G G GA B A B A B B A
bound free bind bind= = (1)

The main drawback of such pairwise methods is that the
number of calculations to perform grows quadratically (at
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Figure 1. Thermodynamic cycle to estimate the relative binding free
energy between inhibitors A and B. Simulating the alchemical
pathway (bold black arrows) is computationally more feasible than
the physical pathway (gray arrows). The relative binding free energy is
obtained with eq 1. Figure inspired by Aldeghi et al.13
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most) with the number of compounds to be screened,17,18 as
accuracy relies on the simulation of many of the (2n) possible
pairwise combinations (see discussion in Results and
Discussion below).19 To limit this combinatorial problem in
practice, automated workflows have been developed to
estimate the smallest and/or most efficient perturbation map
for a given set of ligands.19−22 Despite these efforts, finding a
general solution is no trivial task and remains an open
question.19,23,24 In this context, simulating many such
alchemical transformations from the same MD simulation
would thus significantly decrease the computational costs of
the free-energy method, further improving their applicability in
the drug design process.
The existing multistate free-energy methods can be grouped

into three main families. The first set of methods is based on λ-
dynamics,25−28 the second group is based on enveloping
distribution sampling (EDS),29,30 and the third class is based
on “single-step” perturbation.31−33 The latter is typically
restricted to systems with a good phase space overlap. In the
first method, the system follows well-defined pathways to
transition from state to state, whereas no such constraints are
imposed in EDS (i.e., it is “pathway independent”), which may
provide additional flexibility for sampling. Transitions in
alchemical space may be accelerated by coupling these
methods to enhanced sampling algorithms, enabling a more
rapid convergence of the free-energy differences. λ-dynamics
based methods have been combined with the tailor-made
adaptive landscape flattening algorithm,34 while EDS has been
combined with well-established algorithms, giving rise to
replica-exchange EDS (RE-EDS)35−39 and accelerated
EDS.40,41 In this work, we aim to showcase the transferability
of the RE-EDS method to multiple protein targets with distinct
binding pockets. To that end, we have constructed a data set of
inhibitors for four different kinases, containing a wide range of
chemical functional groups and scaffolds.
The kinase family of enzymes catalyzes the phosphorylation

of proteins, contributing to the mediation of a wide range of
critical biological processes such as metabolism, transcription,
cytoskeletal rearrangement, apoptosis, and intercellular com-

munication.42 Deregulation of kinase function has been linked
to various diseases such as autoimmune, cardiovascular,
inflammatory, and nervous diseases as well as cancer.43,44

Over the past 20 years, drug discovery programs have focused
heavily on developing inhibitors targeting kinases, accounting
for a significant part (20−33%) of drug discovery efforts
worldwide.45 While 68 FDA-approved drugs targeting more
than 20 kinases already exist, research in the field remains very
active, highlighted by the large number of additional
compounds currently undergoing clinical trials.46 In this
work, we have applied the RE-EDS method to a series of
inhibitors of the following four kinases: checkpoint kinase 1
(CHK1),47 NF-κB inducing kinase (NIK),48 p21-activated
kinase 1 (PAK),49 and the proviral insertion in murine
lymphoma kinase 1 (PIM).50 All four enzymes belong to the
most common subclass of serine/threonine kinases.45 All
inhibitors examined in this work (Figure 3) bind in the hinge
region connecting the terminal N- and C-lobes, in competition
with the natural adenosine triphosphate (ATP) cofactor.51

In summary, the main objective of this work is to
demonstrate the transferability of the RE-EDS method to
multiple protein targets with distinct binding pockets,
highlighting it as a viable and computationally less demanding
alternative to conventional pairwise free-energy calculations.
We present methodological improvements that enable us to
expand both the scope and number of alchemical perturbations
that can be performed in a single RE-EDS simulation, further
showcasing its suitability to calculate RBFE in prospective drug
design campaigns. All simulations in this work were performed
with two small-molecule force fields (GAFF52 and OpenFF53),
which allows us to discern deviations stemming from lack of
sampling and from force-field inaccuracies. Note that we have
studied a subset of the inhibitors of CHK1 (subset a) with RE-
EDS and the GROMOS force field in our previous work.54 We
discuss the current limitations of RE-EDS and compare them
to other state-of-the-art free-energy methods. While our study
focuses on biologically relevant kinases, RE-EDS can of course
also be applied to other protein families as well as solvation

Figure 2. (A) “Enveloping” nature of the reference potential VR (in dark gray), which encloses the minima of the potential-energy surfaces of three
small molecules (colored dashed curves). If no energy offsets or s-values are used to scale minima or barrier heights, transitions between states C
and B are unlikely (indicated with a red cross). (B) Effect of lowering the s-value on a reference potential VR (all colored lines), with energy offsets
chosen such that all minima are aligned at s = 1. Gray areas indicate regions of phase space that are sampled, and black dots and arrows represent
possible replica exchanges in RE-EDS.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01469
J. Chem. Inf. Model. 2023, 63, 7133−7147

7134

https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


free energies (ΔGsolv) of small organic molecules,38,39 or to
investigate water thermodynamics in binding pockets.55

■ THEORY
RBFE calculations involve the simulation of the alchemical
transformation of a molecule into another and the adaptation
of the environment in which this alteration is taking place (e.g.,
protein binding pocket). State-of-the-art pairwise free-energy
methods introduce a coupling parameter λ to connect end

states together. Independent simulations are then carried out at
discrete λ-points along the path connecting the two end states,
and free-energy differences can be obtained using the Zwanzig
equation,10 thermodynamic integration,56 or MBAR estima-
tor.57,58

Replica-Exchange Enveloping Distribution Sampling.
In EDS, the different end states are connected in a reference
state R with the form29,30

Figure 3. Four kinases and the set of inhibitors used in this study. For CHK1, PIM, PAK, and NIK, the core is shown together with the different
substituents and the corresponding label. For CHK1, we studied two subsets separately, indicated by dashed lines. Molecules C.4 and C.5 are part
of both subsets.
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Essentially, forces will be largest for the end state for which
the current conformation is most compatible, and forces
exerted by states in unfavorable conformations (e.g., overlap
with the protein or solvent molecules) are scaled to
approximately zero, without requiring soft-core potentials.34,61

This reference potential-energy surface “envelops” the
potential-energy surfaces of all end states, ensuring that all
minima of the individual end states are minima of the reference
state (Figure 2A). In order to sample the minima
corresponding to all end states in a reasonable amount of
simulation time, two parameters were introduced to the EDS
reference state:30 the energy offsets (Ei), which enable equal
sampling of all end states, and the smoothness parameter (s),
which reduces energy barriers to enhance transitions. Finding
appropriate reference-state parameters is not trivial, as the ideal
energy offsets (at s = 1, assuming infinite simulation)
correspond to the free-energy differences we seek to
calculate.62 Similarly, the s-values alter the shape of the
reference potential-energy surface and need to be chosen
carefully.62,63 Excessive reduction of the s parameter leads to a
distortion of the reference potential-energy surface such that its
minima no longer map to minima corresponding to physical
conformations for any of the end states. We denote this
unphysical regime “undersampling” (yellow curve in Figure
2B).63

In RE-EDS,35−37 multiple EDS simulations with different s-
values are carried out in parallel, and exchange trials are
performed between neighboring replicas every few steps. All
sets of conformations (starting at distinct s-values) are thus
able to “visit” replicas at lower s-values that enable transitions
between end states, as well as higher s-values where physically
meaningful conformations are sampled. Free-energy differences
between all pairwise combinations of end states i and j can
then be recovered by employing the Zwanzig equation (eq 5)
from the simulation data gathered at s = 1, or more optimally
by combining data from all replicas with MBAR.58 Coupling
EDS to replica exchange was found to simplify the choice of
appropriate s parameters,36 and affords enhanced transitions
between the states

G
V V

V V
1

ln
exp( )

exp( )i j
j R R

i R R

=
[ ]
[ ] (5)

Obtaining accurate free-energy differences thus relies on the
ability to sample conformations relevant to all end states in the
simulation at s = 1. Doing so is crucially dependent on the
energy offsets and s-parameters, which are determined prior to
the production run. Ries et al.37 have recently proposed an
improved automated workflow to optimize these parameters.
The pipeline is discussed in more detail in the Methods
Section.

■ METHODS
Data Sets. The main focus of this work is to demonstrate

the transferability of the RE-EDS methodology to different
protein targets as well as its capability to simulate a wide range
of distinct chemical perturbations. Increasingly complex sets of
inhibitors were chosen to showcase the generality of RE-EDS.
Details of the assay conditions and crystal structure
preparation are given for the different targets in the respective
publications (NIK,64,65 PAK,66,67 PIM,68 CHK169).
We built sets of congeneric inhibitors for each target, with at

least one crystal structure of the inhibitor−protein complex
available, which could be used as the starting structure. We also
followed guidelines by Mey et al.70 in the construction of the
data sets to avoid known sources of error in free-energy
calculations (e.g., small spread of experimental binding
affinities, inhibitors with multiple protonation/tautomeric
state at pH 7, unknown stereoisomer in the experimental
assay, etc.). For backward comparison, we simulated the same
set of CHK1 inhibitors from our previous work (Ries et al.37),
and in addition constructed a larger set of 13 ligands from the
same experimental data.69 The four kinases and the selected
inhibitors are shown in Figure 3.
Topology Preparation and Parameterization. All

initial topologies were prepared with the AmberTools71 suite
of programs. Unresolved residues in the crystal structure were
added using SWISS-MODEL,72 and buried water molecules (if
any) were retained. Solvent molecules were added, ensuring a
minimum distance of 1.2 nm between solute atoms and the
edge of the box. All protein parameters were taken from the
AMBER ff14SB force field,73 and the TIP3P water model was
used.74 The inhibitors were modeled with two different small-
molecule force fields using AM1-BCC75 charges: the general
AMBER force field (GAFF) 1.8,52 and the Open Force Field
(OpenFF) version 2 (“Sage”).53,76 Topologies with both force
fields, as well as initial coordinates, were generated in the
AMBER format and then translated into the GROMOS format
using the amber2gromos program.38

Alchemical free-energy calculations may be performed with
different representations of the perturbed region. We chose to
represent this region with a “hybrid topology”,77,78 where
common core atoms between inhibitors are represented once,
and all varying substituents are represented separately. We
opted for this representation to avoid hindering any motion of
the common core with distance restraints (known to introduce
some biases or cause slow convergence79,80), which are
necessary to keep ligands overlaid with one another in RE-
EDS simulations with the “dual topology” representation.37,78

Note that the same atom may have a different partial charge
(and Lennard-Jones parameters) according to the various end
states in the hybrid topology representation. This allows to
take into account electron withdrawing (or donating) effects of
a perturbed group on the core region while maintaining an
integer net charge for each ligand, and without requiring any
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charge renormalization protocol as in some λ-dynamics
implementations.81

Hybrid topologies were generated by combining the
topologies of the individual inhibitors using the RDKit82 and
PyGromosTools83 to select an appropriate core structure with
a maximum common substructure (MCS) search and adding
the different substituent atoms and parameters (bonded and
nonbonded) to the initial topology. An example Jupyter
notebook to build such a hybrid topology can be found in the
GitHub repository (https://github.com/rinikerlab/reeds/
blob/main/examples/input_preparation/hybrid_topology_
maker.ipynb). For the NIK data set, additional calculations
using a dual topology representation (as in our previous
work37) were investigated for comparison, imposing weak
harmonic distance restraints (krestraint = 5000 kJ mol−1 nm−2)
between selected core atoms of each inhibitor to prevent drifts
(see Figure S3 in the Supporting Information). All results
obtained with RE-EDS discussed in this work correspond to
those using hybrid topologies, unless explicitly labeled. The
starting coordinates for the hybrid topologies were built by
taking protein coordinates from a reference crystal structure
and ligand coordinates from prealigned crystal structures if
available (PAK, NIK), or by generating coordinates for the
substituents using the constrained embedding functionality in
the RDKit (CHK1, PIM).
Simulation Details. All simulations were performed using

the GROMOS software package.84 The program is freely
available on www.gromos.net. The simulations were propa-
gated using a leapfrog algorithm with an integration time step
of 2 fs. All bond lengths were constrained with the SHAKE
algorithm85 and a relative tolerance of 10−4. Nonbonded
interactions were calculated up to an atomic cutoff of 1 nm
(the pair list was updated every step), and electrostatic
contributions beyond the cutoff were modeled by a reaction
field60 with a relative permittivity εRF = 66.7.86 The simulations
were carried out in the NpT thermodynamic ensemble by
maintaining a temperature of 298 K and a pressure of 0.06102
kJ mol−1 nm−3 (≈1 atm) with a Berendsen thermostat and
barostat, respectively.87 The translational and rotational
motions of the center of mass of the box were removed
every 1000 steps. Energies and coordinates of the system were
recorded every 1000 steps (2 ps).

RE-EDS Simulations. RE-EDS simulations were performed
using the pipeline introduced by Ries et al.37,54 (Figure 4). In
the following sections, we briefly describe each step of the RE-
EDS pipeline. The complete set of simulation details (lengths,
initial conformations given, number of parameter optimization

iterations, etc.) is given in Section S2 of the Supporting
Information.
First, starting coordinates have to be generated where the

environment (solvent, protein) is well adapted for each of the
end states. Starting from optimized coordinates was shown to
improve the accuracy of RE-EDS calculations,78 in particular
when an experimental crystal structure is not available for all
end states. This procedure, termed “end-state generation”,
consists of N-independent EDS simulations in which energy
offsets are chosen to enforce sampling of one specific end state.
The lowest energy conformation in each of these simulations is
then used as an input for all subsequent RE-EDS simulations
(“starting state mixing”, SSM). In parallel, the lower-bound
search consists of very short EDS simulations performed at
different s-values to determine when the system reaches
undersampling. Then, a first guess for the energy offsets is
estimated from free-energy differences in the undersampling
regime (eq 5) of an RE-EDS simulation with default
parameters (i.e., Ei = 0, logarithmically distributed s-parameters
between 1.0 and the lower bound). Typically, a gap region with
low exchange frequencies is observed during this step (see
Figure S1 in the Supporting Information), which can be
crudely filled prior to the optimization phase, making the latter
more efficient (see details in Supporting Information Section
S2).
Subsequently, the distribution of s-values and energy offsets

are further optimized in an iterative process, until specific
criteria are met: no replica-exchange bottlenecks and
approximately equal sampling of all end states at s = 1. Each
iteration consists of a short RE-EDS simulation from which
exchange probabilities or sampling distributions are extracted
to guide the update of RE-EDS parameters. The parameters
can be refined separately one after the other as proposed by
Ries et al.37 (e.g., s-optimization followed by energy-offset
optimization), or may be updated simultaneously (“mixed
optimization” as described in this study). Optimization of the
s-distribution may be achieved by either adding replicas in
regions of s-space with low exchange rates based on local
criteria (N-LRTO algorithm36) or by redistributing the replicas
in s-space to maximize the replica-exchange probability over
the entire range of s-values (N-GRTO algorithm36). Note that
the N-GRTO algorithm could also be used to add replicas, but
this was not done in this study. If there are already some
transitions between all replicas with the initial s-distribution,
the N-GRTO algorithm is more robust and often requires
fewer replicas than N-LRTO. The latter algorithm was
developed mainly for cases with severe exchange bottlenecks,
where N-GRTO fails. Optimization of the energy offsets is

Figure 4. Schematic overview of the steps to calculate free-energy differences with RE-EDS. The steps during the parameter estimation and
optimization phases are needed to acquire information about the system to improve the s-values (circled in yellow) or the energy offsets (circled in
blue).
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accomplished with the “energy-offset rebalancing” approach,37

which updates the energy offsets based on the current sampling
of each end state (at s = 1). Sampling is determined with the
“maximally contributing”37 criterion, which assigns the current
frame to the end state which contributes most to the forces
(largest wi in eqs 3 and 4). Finally, the RE-EDS production
phase is carried out with the parameters obtained, and the final
free-energy differences are extracted from the simulation at s =
1 (or all s-values when using MBAR).
Replica-exchange trials were carried out every 50 steps. After

the parameter optimization phase, production runs of 5 ns
were performed, of which the first 1 ns was discarded as
equilibration. Five replicates with different initial velocities
were performed, from which average values were obtained and
standard deviations were used to represent statistical
uncertainty.88,89 To calculate the final free-energy differences,
the data acquired at all s-values were incorporated using the
MBAR procedure.58 For this, the values of the reference
potential energy of each replica need to be re-evaluated with
the reference potential parameters (s-values and/or energy
offsets) of all other replicas, allowing us to optimally connect
all thermodynamic states together. This re-evaluation can be
simply done as a postprocessing step. Free-energy differences
with respect to the reference state at s = 1 ( Gi R

bound and Gi R
free

) are then passed into eq 6.
TI Simulations. For the NIK data set, we performed

additional TI calculations for comparison. Here, only OpenFF
was tested. TI calculations were performed using 21 evenly
spaced λ-values between 0 and 1. Five replicates with different
initial velocities were performed for 5 ns at each λ-value.
Hamiltonian replica-exchange trials were performed every 50
steps between neighboring λ-values to enhance sampling.90
Comparison to Experiment. All simulated RBFE values

were compared to experimental values (Ki or IC50) by first
converting them to absolute binding free energies (ABFE)
based on the known experimental binding free energies of the

N inhibitors (eq 6), following the procedure introduced by
Wang et al17

G G
G

N
G

Ni i R
i Rsim sim
sim expi

=
i
k
jjjjj

y
{
zzzzz (6)

We noted that this conversion, which is simply a shift with
respect to average values, does not alter the interpretation of
the results in a prospective study (experimental affinities
unknown) as the ranking of inhibitors and the differences
among them remain identical. All experimental values can be
found in Section S1 in the Supporting Information.
We also followed recommendations from Mey et al.70 to

perform a bootstrapping analysis. This was performed by
drawing new simulated binding free energies from normal
distributions with standard deviations equal to those obtained
from the five repeats that started with different velocities. Note
that the alignment with respect to the experimental values was
not repeated after adding noise to the data based on the
observed errors.
We calculated both the mean unsigned error (MUE) and

correlation metrics for the ABFE values obtained using the
scheme described above as well as the root-mean-squared error
(RMSE) of the RBFE values (including all possible pairwise
relative differences). Since the error metrics depend on the
range of experimental values included, we also provide a
reference “null model” where each prediction is equal to the
mean of the experimental data set.

■ RESULTS AND DISCUSSION
First, we present the modifications made to the RE-EDS
pipeline and discuss the resulting gains in efficiency. Second,
we examine the binding free energies calculated with RE-EDS
for each data set and explain observed deviations. Sub-
sequently, we discuss our results more generally, with an
emphasis on the differences between the inhibitors/binding
pockets studied and how these relate to differences in the RE-

Figure 5.Mixed optimization of the RE-EDS parameters for the CHK1 data set (ligands in water) with the GAFF. (Upper left): Average number of
round trips made by all replicas. The error bars correspond to the standard deviations among the replicas. Sampling of the end states in the
uppermost replica (s = 1). (Right): Distribution of the replicas in s-space.
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EDS simulations. Finally, we compare the cumulative
simulation time with state-of-the-art methods and discuss
future improvements expected to amplify the gains in
computational cost provided by RE-EDS.
Improvements to the RE-EDS Pipeline. In this work, we

build upon the pipeline described by Ries et al.37 to set up the
system and optimize the reference-state parameters (Figure 4).
Modifications to the workflow are proposed, which allowed us
to fine-tune and shorten the parameter optimization phase.
First, we take advantage of the information regarding
exchanges (or lack thereof) between replicas during the energy
offset estimation step to preoptimize the s-distribution.
Typically, the default logarithmic s-distribution contains a
“gap region” where the replica-exchange probability is low (see
Figure S1 in the Supporting Information), especially for
simulations with the ligands in the protein binding pocket.
Previously,36,37 this problem was tackled using the N-LRTO
algorithm to add replicas in the exchange bottleneck region
until sufficient exchanges were obtained. By using the
information about the location of the gap region from the
energy offset estimation step and placing a large number of s-
values in this gap region (uniformly on a log scale) prior to the
s-optimization step, we were able to bridge the gap sufficiently
to directly use the N-GRTO algorithm to optimize the s-
distribution. We found that adding replicas in the gap region to
reach a total of 32 replicas worked well for all systems studied
here (details in Supporting Information Section S2). This
hyperparameter is analogous to the number of λ-values in
FEP/TI simulations (often 21 values).
We found that the optimal set of energy offsets may depend

on the current s-distribution. As a result of this coupling of
parameters, an optimized set of parameters (e.g., energy
offsets) may require reoptimization upon changes to the other

parameters (e.g., s-values). To facilitate the optimization of
connected parameters, we explored the adjustment of both sets
simultaneously (termed “mixed optimization”). This is
particularly important if the initial guess for energy offsets
leads to preferential sampling of only one end state, which we
observed in one of our simulations (Figure 5). In this example,
we noticed that the s-distribution changed significantly
between iterations 1 and 3 where ligand C.11 is predominantly
sampled and shifted again when the updated energy offsets led
to more equal sampling of the end states between iterations 3
and 6. More generally, we found that the s-distribution
converges close to an ideal solution within a few iterations (2
or 3, see Figure S2 in the Supporting Information), and the
remaining iterations mostly involve fine-tuning the energy
offsets. This suggests that applying the N-GRTO algorithm to
an optimal s-distribution does not further modify it, supporting
the robustness of the mixed optimization protocol.
In summary, we recommend optimization of the parameters

via a mixed optimization protocol. In this work, the parameter
optimization phase typically represents around 20% of the total
simulation time (see the discussion below). Note that the 500
ps used for each iteration was chosen based on our experience
from previous simulations.36,37 The procedure in its current
form may still be further refined, which will be part of future
work. Faster convergence toward optimal parameters may for
example be obtained by performing an initial set of short
optimization steps, followed by longer iterations to fine-tune
the parameters.27

Binding Free Energies for the Kinase Inhibitors. To
start, we will present our results for the NIK data set which was
evaluated using both a dual topology (as used in our previous
work36,37,63) and a hybrid topology (more suitable for R group
modifications). The three other kinases will be discussed in the

Figure 6. Results obtained for the NIK data set: Comparison of the calculated and experimental binding free energies. Dark and light-gray regions
correspond to margins of error of 1 and 2 kcal mol−1, respectively. Error bars correspond to standard deviations over the five random seeds. (A)
Results from RE-EDS simulations with dual topologies were obtained with the GAFF (purple) and OpenFF (blue), and reference H-RE TI
calculations (orange) were performed for comparison with those with OpenFF. (B) Comparison of the results of RE-EDS simulations with the
OpenFF (blue) using dual and hybrid topologies.

Table 1. Statistical Metrics Used to Evaluate the Accuracy of Binding Free Energies Calculated for the NIK Data Seta

method simulation MUE [kJ mol−1] RMSE [kJ mol−1] Kendall τ Spearman ρ
RE-EDS GAFF (dual) 3.8 [3.64−4.04] 7.3 [6.92−7.72] 0.4 [0.36−0.47] 0.6 [0.56−0.69]
RE-EDS OpenFF (dual) 7.7 [7.59−7.93] 14.3 [14.11−14.53] 0.0 [-0.03−0.03] 0.1 [0.10−0.19]
RE-EDS OpenFF (hybrid) 7.0 [6.90−7.19] 13.1 [12.83−13.34] 0.1 [0.06−0.10] 0.3 [0.26−0.28]
H-RE TI OpenFF (dual) 5.3 [5.14−5.48] 10.6 [10.33−10.91] 0.1 [0.06−0.15] 0.2 [0.13−0.25]
null model 6.0 10.1 0 0

aMUE and correlation metrics (τ and ρ) relate to absolute binding free energies, whereas RMSE corresponds to all pairwise relative binding free
energies. Numbers reported correspond to the mean, with upper and lower bounds of the 95% confidence interval in square brackets.
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order of increasing complexity in terms of the magnitude and
number of alchemical perturbations as well as the flexibility of
the binding site.

NF-κB Inducing Kinase (NIK). The NIK data set displays the
greatest variety in structural modifications among the
inhibitors with ring opening (e.g., ligand N.1 compared to
the others), a fusion of rings (e.g., N.1, N.3, N.4, and N.6),
and a second site of modification (e.g., N.4 and N.6), adding
different layers of complexity.
In the case of NIK, the results obtained with GAFF are

within the margin of error with an MUE of 3.8 kJ mol−1, in
contrast to OpenFF with an MUE of 7.7 kJ mol−1 (Figure 6
and Table 1). The largest deviation compared to the
experiment with OpenFF was found for ligand N.1 (15.3 kJ
mol−1). Supporting these observations, the ranking correlation
metrics are better for GAFF with a Spearman ρ of 0.6 and
Kendall τ of 0.4 compared to 0.0 and 0.1, respectively, with
OpenFF (using also a dual topology). Detailed analysis
pointed to insufficient sampling of the protein reorganization
as the main source of error. First, we analyzed the binding
poses of the six different ligands based on the crystal structures
and identified the key interactions between the protein and
ligand. In all six crystal structures, the catalytically important
DFG activation loops are well aligned (Figure S5 in the
Supporting Information), indicating that the inhibitors interact
in a fashion similar to that part of the binding pocket. On the
other hand, the Arg410 side chain adopts various conforma-
tions in the crystal structures, some with and some without a
hydrogen bond with either the ligand, Glu475, or Leu474. In
the RE-EDS simulations, we find three key conformations of
the protein with respect to Arg410, which we denote “open”,
“closed 1″, and “closed 2” (Figure 7). The system adopted an
open or closed conformation approximately 50% of the time
with both GAFF and OpenFF. However, the “closed 2” form
in which Arg410 interacts with Leu474 as well as the ligand
occurs more prominently in the simulations with OpenFF
(Figure 7D), which may explain the differences between the
two force fields. As the crystal structures vary among the

different inhibitors, it is not trivial to interpret them, but there
is no evidence for the presence of this “closed 2” form (Figure
S5).
To further investigate whether force-field deficiencies or

sampling are the main causes of deviations, we performed H-
RE TI simulations with the same force field (OpenFF). We
found overall good agreement with the RE-EDS results (Figure
6A), but a lower MUE of 5.3 kJ mol−1 compared to the
experiment. We note that the binding affinity of the largest
outlier in the RE-EDS simulations (N.1) is also predicted
poorly by H-RE TI, and the increased accuracy mainly stems
from slightly better predictions for other ligands (N.2, N.3,
N.4, and N.6). This suggests that incomplete sampling in the
simulations with OpenFF may at least be partially responsible
for the deviations observed. In agreement with our previous
analysis, we find that the Arg410 side chain position in the H-
RE TI calculations varied for the different ligands (Figure S7 in
the Supporting Information), suggesting that this degree of
freedom may indeed be the source of part of the observed
deviations in both RE-EDS and H-RE TI simulations.
The sampling issues may also be related to the motion

slower than the trajectory, which is supported by observations
from Shih et al.,91 who reported that FEP+ results for
inhibitors of the NIK kinase may differ by up to 8.4 kJ mol−1
when using a starting structure prepared with a different
workflow to model the missing loop residues. Finally, we note
that the simulations with a hybrid topology perform slightly
better than those with a dual topology representation (Table 1
and Figure 6B). This result may be explained by the larger
number of round trips observed in the simulations with a
hybrid topology (∼5.6 round trips per ns) than with dual
topology (∼2.3 round trips per ns), thus favoring transitions
between states.
Consequently, we recommend the use of the hybrid

topology representation for binding free-energy calculations
of ligands with a common core due to the advantages this
confers (e.g., no hindering of motion with distance
restraints),77,78 as shown below for the other data sets.

Figure 7. (A−C) Three key conformations of Arg410 are seen in the simulations of the protein binding to ligand N.1. (D) Distributions of the
distance between Arg410 and Glu475 (left) and between Arg410 and Leu474 (right) from the combined trajectories (five repeats concatenated).
Blue and purple lines correspond to simulations with OpenFF and GAFF, respectively.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01469
J. Chem. Inf. Model. 2023, 63, 7133−7147

7140

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01469/suppl_file/ci3c01469_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01469/suppl_file/ci3c01469_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01469/suppl_file/ci3c01469_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01469/suppl_file/ci3c01469_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01469?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


p21-Activated Kinase 1 (PAK). The PAK data set was
constructed to highlight the transformations of five-membered
and six-membered aromatic and nonaromatic heterocycles as
might be explored in lead optimization. Note that the
substituent modified here is in the buried region of the
binding pocket, which is generally considered to be more
challenging to simulate, as the rearrangement of the protein
pocket may be slow on the simulation time scale. However, all
functional groups occupy a very similar volume and all ligands
form the same key hydrogen bond between the carbonyl group
oxygen of the modified substituent and Lys299 (Figure 8B).
Overall, the binding free energies obtained with GAFF and
OpenFF are in good agreement with experimental values, with
a MUE of 1.9 and 2.8 kJ mol−1, respectively (Table 2), and all
but one data point lie within the chemical accuracy limit70 of 1
kcal mol−1 (=4.184 kJ mol−1) (Figure 8A). While the MUE is
higher for OpenFF than for GAFF, the ranking of the ligands
(Spearman ρ and Kendall τ) is more accurate with OpenFF.
We note that the RMSE values are generally higher than MUE
values but follow the same trend, which we observe for all data
sets in this study.
The largest deviation compared to the experiment was

observed for ligand K.1 with OpenFF. Inspection of the
rotation around the bond connecting the modified substituent

and the core in the simulations with GAFF and OpenFF
(Figure 8C,D) showed some differences in dihedral-angle
sampling between the force fields, which led to small
differences for adopting the key hydrogen bond with Lys299
(Figure 8E), which occurs when the dihedral angle is around
120°. Although the hydrogen bond was present in both
simulations, the population differences may explain the larger
deviation of ΔGbind with OpenFF. This finding highlights the
importance of accurate torsion parameters for binding free-
energy calculations.

Checkpoint Kinase 1 (CHK1). The CHK1 data set consists
of two subsets of 5 and 13 ligands, respectively. The first subset
of five ligands is the same as studied by Wang et al.92 with
FEP+, Jespers et al.21 with QligFEP, and Ries et al.37 with RE-
EDS in combination with the GROMOS force field. The five
ligands include challenging ring growth and ring opening
modifications. The second subset was prepared from the same
set of published experimental values,69 choosing molecules for
which the experimental IC50 values were spread over a broader
range. This second subset focuses on the alchemical
modifications of aromatic rings (five-membered, six-mem-
bered, and fused rings).
The results for the smaller subset are very good with MUE

values of 1.7 and 1.5 kJ mol−1 for GAFF and OpenFF,

Figure 8. Results obtained for the PAK data set. (A) Comparison of calculated and experimental binding free energies obtained with GAFF
(purple) and OpenFF (blue) with hybrid topologies. Dark- and light-gray regions correspond to margins of error of 1 and 2 kcal mol−1,
respectively. Error bars correspond to standard deviations over the five random seeds. (B) Binding pose of the RE-EDS system in a conformation
favorable for ligand K.1. The core and perturbed functional group for ligand K.1 are shown in black, whereas the nonsampled states are shown in
light gray. The side chain of Lys299 is shown as dark-green sticks. (C,D) Time series of the dihedral angle between the core and the perturbed
substituent of ligand K.1 in the simulations with GAFF (purple, C) and OpenFF (blue, D). Gray points correspond to the dihedral angle at all time
steps, whereas colored points correspond to frames where ligand K.1 is actively sampled in the reference state. (E) Probability distribution of the
distance between the carbonyl oxygen of ligand K.1 and the terminal nitrogen atom of Lys299 from frames in which ligand K.1 is actively sampled.
The gray region corresponds to distances compatible with the presence of the stabilizing hydrogen bond.

Table 2. Statistical Metrics Used to Evaluate the Accuracy of Binding Free Energies Calculated for the PAK Data Seta

force field MUE [kJ mol−1] RMSE [kJ mol−1] Kendall τ Spearman ρ
GAFF 1.9 [1.80−2.01] 3.3 [3.14−3.50] 0.4 [0.33−0.46] 0.5 [0.45−0.60]
OpenFF 2.8 [2.66−2.89] 5.8 [5.62−6.00] 0.6 [0.57−0.65] 0.7 [0.71−0.76]
null model 2.1 3.7 0 0

aMUE and correlation metrics (τ and ρ) relate to absolute binding free energies, whereas RMSE corresponds to all pairwise relative binding free
energies. Numbers reported correspond to the mean, with upper and lower bounds of the 95% confidence interval in square brackets.
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respectively (Figure 9 and Table 3), which is lower than the
previous results obtained with GROMOS force-field parame-
ters (MUE of 2.2 kJ mol−1). This confirms the hypothesis that
deviations seen in Ries et al. can be attributed mostly to force-
field parameterization (done manually based on similar
molecules). These results are also very similar to those
obtained for the same system with other methods (FEP+92 and
QligFEP21) (Figure S8 in the Supporting Information). Note

that the standard deviations in the RE-EDS simulations with
GAFF and OpenFF are generally smaller than those observed
with FEP+ and QligFEP as not all possible pairwise
transformations were simulated with the latter methods.
Results for the subset of 13 ligands show overall good

performance and demonstrate that more ligands can be
included in the same RE-EDS simulation. For both force
fields, we find average errors below the margin of error (1 kcal
mol−1) and the correlation coefficients show a reasonable
ranking of the ligands (Table 3). All metrics indicate OpenFF
performing slightly better for these data sets. Most of the
remaining deviations can likely be attributed to the force field,
as the sampling of all end states is almost uniform (Figure S9
in the Supporting Information). Sampling is facilitated in this
system by the modified substituent being solvent-exposed. As
rearrangement of water molecules occurs on a faster time scale
than rearrangement of protein side chains or loops, the
transition between the end states should be easier.

Proviral Insertion in Murine Lymphoma Kinase 1 (PIM).
The PIM data set was constructed to further validate the ability
of RE-EDS to simulate more than 10 alchemical modifications
of five- and six-membered rings with potentially bulky
substituents (e.g., −CN in M.3, and −CF3 in M.4). In general,
the 13 ligands were sampled well in all simulations (except one,
see discussion below), while the resulting binding free energies
show overall a slightly larger deviation from experimental
values compared to the CHK1 data set (Table 4). Akin to the
PAK data set, we find that the MUE indicates a (slightly)
better performance of GAFF (4.6 kJ mol−1) over OpenFF (4.9
kJ mol−1), while the correlation metrics are better for OpenFF
(e.g., ρ = 0.5 compared to 0.3 with GAFF), showing that the
ligands were ranked more accurately despite being further away
from experimental reference values.
The five repeats of the production runs showed larger

deviations for the PIM system than for CHK1 (compare
Figures S9 and S10 in the Supporting Information). These
differences result directly from less frequent transitions
between the end states, which depend strongly on the nature
of the binding pocket. Upon inspection of the binding pose
(see Figure 10), we hypothesize that accommodation of the
bulky −CF3 of ligand M.4 requires a rearrangement of the
neighboring Arg122 side chain, which could explain the larger
standard deviations in ΔGbind observed for this ligand
(rearrangement of Arg122 is unlikely to occur in short ns
simulations typically performed in free-energy calculations).
When comparing the rotation around the bond connecting the

Figure 9. Results obtained for the CHK1 data sets. (A) Comparison
of calculated and experimental binding free energies for the smaller
subset with five inhibitors. Dark- and light-gray regions correspond to
margins of error of 1 and 2 kcal mol−1, respectively. Error bars
correspond to standard deviations over the five random seeds. Results
are shown with GAFF (purple) and OpenFF (blue) with hybrid
topologies, as well as results taken from Ries et al.54 performed with
the GROMOS force field and dual topology (green) for comparison.
Additional comparisons to other state-of-the-art methods can be
found in Figure S8 in the Supporting Information. (B) Results
obtained for the larger subset of 13 inhibitors (hybrid topologies).

Table 3. Statistical Metrics Used to Evaluate the Accuracy of Binding Free Energies Calculated for the CHK1 Data Setsa

simulation MUE [kJ mol−1] RMSE [kJ mol−1] Kendall τ Spearman ρ
GAFF (subset 1) 1.7 [1.61−1.78] 3.1 [2.93−3.27] 0.3 [0.27−0.38] 0.5 [0.36−0.55]
OpenFF (subset 1) 1.5 [1.39−1.67] 2.7 [2.44−2.90] 0.5 [0.39−0.52] 0.7 [0.60−0.71]
GROMOS FF (subset 1) 2.2 [2.16−2.30] 4.1 [4.03−4.23] 0.3 [0.20−0.39] 0.4 [0.30−0.49]
null model (subset 1) 1.5 2.8 0 0
GAFF (subset 2) 4.2 [4.16−4.24] 7.4 [7.29−7.45] 0.3 [0.31−0.34] 0.5 [0.47−0.51]
OpenFF (subset 2) 3.7 [3.69−3.78] 6.8 [6.69−6.88] 0.5 [0.52−0.56] 0.7 [0.67−0.71]
null model (subset 2) 4.8 8.6 0 0

aMUE and correlation metrics (τ and ρ) relate to absolute binding free energies, whereas RMSE corresponds to all pairwise relative binding free
energies. Numbers reported correspond to the mean, with upper and lower bounds of the 95% confidence interval in square brackets. Errors used
to perform the bootstrapping analysis correspond to standard deviations over the five random seeds, with the exception of simulations with the
GROMOS force field where they had been estimated using Gaussian error approximation.54 The MUE and RMSE values presented here do not
match exactly those reported in ref 54 due to the different re-centering procedures to obtain MUE values and different error propagation.
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core and perturbed substituent of ligand M.4 (see Figures S11
and S12 in the Supporting Information), we found that this
dihedral angle remained close to the initial conformation
(−CF3 pointing toward Arg122, dihedral angle of 360°) over
the whole simulation with OpenFF, while it rotates with GAFF
in the “dummy state” (i.e., when the system samples other end
states) such that the bulky −CF3 substituent points in the
other direction, which is an unfavorable conformation
hindering transitions to that end state. We note that this
does not impact the other ortho-substituted ligands (M.4,
M.10, M.12, and M.13) as those are symmetric. For the PIM
data set, ligand M.4 was sampled in one of the five random
repeats with GAFF >0.1% of the time due to this issue. Thus,
the average values for G R4

bound, which were subsequently
converted to ΔGbind, were obtained based only on four repeats
(Figure 10 and Table 4). A more detailed discussion of the
implications of a lack of sampling of end states is provided in
the following section.
General Discussion. Sources of Errors. The results shown

demonstrate that the RE-EDS methodology can be applied to
different protein−ligand systems, allowing to rank ligands
based on ABFE values (obtained from shifting RBFE with
respect to experimental values) within the 1 kcal mol−1 margin
of error, which is the common performance criterion for free-
energy methods (see recent large-scale comparisons11,17,27,93).
RMSE values of RBFE were on the other hand consistently
higher and ranged from approximately 1 to 4 kcal mol−1
depending on the data set and force field, with most values
being below 2 kcal mol−1. As with standard free-energy
methods like FEP or TI, deviations may stem from either
incomplete sampling, inaccurate force-field parameters, or a
combination thereof, and it is often difficult to disentangle
them.94

In the presented simulations, the main source of deviations
appeared to be related to dihedral-angle rotations when a
ligand is not actively sampled in the RE-EDS simulation (i.e.,
the protein environment does not “see” it). If an unfavorable
configuration is reached in this “dummy state”, transitions to
this end state become more difficult. Sampling of degrees of
freedom with time scales similar to that of the simulation is a
known problem for free-energy methods.24,94 In its current
implementation in GROMOS, the EDS reference state (eq 2)
includes only the nonbonded potential energy. Inclusion of the
dihedral-angle terms may be a way to address this issue for RE-
EDS.

Simulation Time Requirements. Calculating binding free
energies with RE-EDS provides a significant decrease in
computational time compared to standard pairwise methods
like FEP or TI. The performance enhancement obtained grows
with the number of ligands (n) included simultaneously
(Figure 11 and Table S6 in the Supporting Information). Note
that the hyperparameters for FEP/TI (21 λ-values with 5 ns
each) were chosen based on common procedures, although
there is no strict consensus on the best parameters to use, and
it is generally accepted that they are system-depend-
ent.11,12,70,95 Furthermore, we report estimates for FEP/TI
with both the minimum number of pairwise calculations (n −
1) and for the maximum number ((2n)) of edges, as the actual
number of calculations will lie in between and depends on the
user. Recent work from Pitman et al. suggests that the
minimum number of edges to simulate from a perturbation
graph scales with respect to O(n log n),18 based on a rigorous
statistical analysis assuming normally distributed errors (with σ
= 1.0 kcal mol−1) on a set of synthetic data. Simulating a more
challenging system may, however, require the inclusion of a
larger number of edges to satisfy the same stability in precision.

Table 4. Statistical Metrics Used to Evaluate the Accuracy of Binding Free Energies Calculated for the PIM Data Seta

simulation MUE [kJ mol−1] RMSE [kJ mol−1] Kendall τ Spearman ρ
GAFF 4.6 [4.56−4.71] 8.5 [8.38−8.69] 0.2 [0.15−0.17] 0.3 [0.24−0.27]
OpenFF 4.9 [4.83−4.94] 8.6 [8.55−8.72] 0.3 [0.28−0.30] 0.5 [0.43−0.46]
null model 3.0 5.3 0 0

aMUE and correlation metrics (τ and ρ) relate to absolute binding free energies, whereas RMSE corresponds to all pairwise relative binding free
energies. Numbers reported correspond to the mean, with upper and lower bounds of the 95% confidence interval in square brackets.

Figure 10. (A) Comparison of calculated and experimental binding free energies for the PIM data set. Dark- and light-gray regions correspond to
margins of error of 1 and 2 kcal mol−1, respectively. Error bars correspond to standard deviations over the five random seeds. Results are shown
with GAFF (purple) and OpenFF (blue) with hybrid topologies. (B) SSM conformations (minimum energy conformers from a 1 ns simulation)
for ligands M.1 (black) and M.4 (light gray). Alignment was performed by using the atoms of the maximum common core to showcase the shift in
the position of the Arg122 side chain (colored as the corresponding ligand) required to accommodate the bulkier −CF3 substituent.
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Multiscale methods like RE-EDS, on the other hand, will likely
have a better scaling because the interactions between the
unperturbed particles in the system have to be calculated only
once and not for each pair of ligands.
The results shown in Figure 11 are for a single production

run. It is, however, widely acknowledged that performing
multiple repeats (as done in this study) provides more accurate
results.88,89 The speed-up provided by RE-EDS is amplified
when repeats of the production run are performed because the
preparation phase does not need to be repeated (Table S7 in
the Supporting Information). Although not all ligands were
sampled in all repeats for the more complex PIM data set, we
would like to emphasize that it was still possible to estimate all
binding free energies with reasonable accuracy. Importantly,
the lack of sampling of one specific ligand in a simulation did
not impact in any way the results for the other end states.
In this work, we simulated up to 13 ligands simultaneously

with RE-EDS. While this number can in theory be increased
further, it becomes at some point more efficient to subdivide
the set into smaller subsets with one or two overlapping
ligands, as shown by Rieder et al.38 for solvation free energies.
The exact point where splitting the data set becomes more
efficient depends on the specific system and the complexity of
the ligand transformations.

■ CONCLUSIONS
In this study, we have applied the multistate free-energy
method RE-EDS to calculate protein−ligand binding free
energies of a set of four kinases and their inhibitors (42 in
total). The ligands involved relatively large modifications,
changes in ring size, ring opening, and buried and solvent-
exposed substituents. The results demonstrate that the method
is suitable to estimate relative binding affinities for >10 ligands
simultaneously, giving a substantial decrease in cumulative
simulation time compared to conventional methods like FEP
and TI. We have presented a set of improvements made to the
RE-EDS pipeline, in particular a combined optimization of the
energy offsets and s-distribution.
Akin to other free-energy methods, results obtained with

RE-EDS are also affected by force-field deficiencies and
practical limitations in the simulation time restricting the
sampling of all accessible conformations. For the sets of
molecules studied in this work, we did not observe a clear

superiority of one of the two force fields studied. These
observations are in line with the benchmarking study reported
by OpenFF developers where GAFF and OpenFF show similar
performance.53 In addition to deviations arising from larger
conformational changes of the protein (e.g., reorganization of a
loop), which cannot be expected to be sampled within a few
nanoseconds,96 we have identified that dihedral-angle rotations
of the ligand in the “dummy state” may hinder transitions to
this ligand, affecting sampling and thus the resulting free-
energy differences. This issue will be addressed in future
developments of the methodology.
In conclusion, RE-EDS has been shown to be an attractive

and efficient free-energy method, with a pipeline readily
available on GitHub54 and freely available implementations in
GROMOS97 and OpenMM.39
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