mzuriCh ETH Library

What Keeps Your Network up at
Night”?

Other Conference Item

Author(s):
Rollin, Lukas; Jacob, Romain (°); Vanbever, Laurent

Publication date:
2023-12-05

Permanent link:
https://doi.org/10.3929/ethz-b-000649098

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/3624354.3630092

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2218-5750
https://doi.org/10.3929/ethz-b-000649098
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3624354.3630092
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

N)
)
Check for
updates

Poster: What Keeps Your Network up at Night?

Lukas Rollin Romain Jacob Laurent Vanbever
ETH Zirich ETH Ziirich ETH Zirich
Switzerland Switzerland Switzerland

ABSTRACT

The demand for ever-faster links and devices is competing with the
need to make networks more energy-efficient. One energy-saving
technique is shutting down dispensable parts of the network. In
this work, we investigate the limits of link sleeping; i.e., turning off
underutilized links. We show that turning transceivers on takes on
the order of seconds, making them the bottleneck for fast network
wake-up. We also present a power plane prototype designed to
orchestrate link sleeping alongside standard routing protocols.

CCS CONCEPTS
» Networks — Network protocols.

ACM Reference Format:

Lukas Roéllin, Romain Jacob, and Laurent Vanbever. 2023. Poster: What
Keeps Your Network up at Night?. In Companion of the 19th International
Conference on emerging Networking EXperiments and Technologies (CONEXT
Companion °23), December 5-8, 2023, Paris, France. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3624354.3630092

1 INTRODUCTION

Previous research on making networks more energy efficient falls
into two categories: making the individual parts more efficient or
turning parts that are not needed off. In wired networks, turning off
links is promising for two reasons. One is the observation that many
network links are underutilized (<30%) because network operators
typically plan for peak demand. The other reason is that transceivers
waste a lot of energy when idle. For example, we measure 5W idle
power vs. 6.2W under full load for a 100G LR4 optical transceiver.
In other words, 80% of its total power is spent for no useful work.
Previous research on link sleeping made two assumptions that
do not hold in today’s networks. One is that interfaces can wake
up within a few milliseconds; in fact, we observe they take three
orders of magnitude longer (Fig. 1). This makes many previous
ideas, e.g., waking up for each incoming packet or buffer and burst
traffic [1], infeasible. Another unrealistic assumption is that the
required network state information is instantaneously available
to the controller. Some works even assume reliable predictions of
future network demands, which is very challenging—at best.
Our work aims to identify the limits of today’s networks and
design a realistic link sleeping system. In summary:
o We present a first prototype of a power plane responsible for
optimizing the network energy usage, which is seamlessly
integrated between the standard data and control planes (§ 2).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT Companion °23, December 5-8, 2023, Paris, France

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0407-9/23/12.

https://doi.org/10.1145/3624354.3630092

59

e We measure interface wake-up delays (§ 3) and show that
milliseconds wake-up times remain impossible today.
o Nonetheless, we show it is possible to implement link sleep-
ing in hardware if one considers larger time scales (§ 3).
This work helps estimate how often we can set links to sleep and
how long it takes for the network to react to traffic changes. Sadly,
we cannot translate sleeping times into energy savings—yet—as this
requires power models that are currently unavailable. Establishing
such models is part of parallel research efforts.

2 POWER PLANE DESIGN

The power plane’s overall mission is to put as many links to
sleep as possible with minimal disruption to the network. In other
words, the power plane has three objectives.

(1) It must not disconnect the network by putting links to sleep.

(2) It must decide which links to put to sleep while minimizing

traffic redirection and congestion.

(3) If congestion happens, it must react quickly and turn links

back on to resolve the congestion.
While we aim to set as many links to sleep and keep them asleep
for as long as possible, avoiding congestion takes priority.

We consider a network running OSPF with a centralized power
plane controller deciding which links to put to sleep and a de-
centralized wake-up mechanism allowing any node to initiate a
network-wide wake-up. We use OSPF because it is a widely used
intra-domain routing protocol that is capable of distributing net-
work link utilization through the OSPF TE Metric Extensions (RFC
7471); this gives the power plane a complete view of the link loads
within the network, albeit with some delay.

A centralized controller easily avoids accidental network parti-
tions and synchronizes the two sides of a link; the controller always
knows which links are asleep and which must stay up to keep
the network connected. Guaranteeing connectivity is non-trivial
with a decentralized sleeping mechanism. Listing 1 summarizes the
controller logic, for more details see [2].

The network wake-up is decentralized to speed up the reaction
to congestion. Instead of waiting for OSPF to distribute the link load
information in the network, each router can start a wake-up event
independently. If a router detects high utilization or a link failure on
its interfaces, it starts broadcasting wake-up commands within the

Listing 1: Sleep Decision Pseudocode

1. Check link utilization and available bandwidth to reroute
for link in read_ospf_database().links:
Minimize rerouting: do not sleep links with utilization higher
than the utilization threshold parameter max_util(0.4)
if link.utilization > max_util: continue
Avoid congestion: only sleep if enough capacity + margin(0.2)
minimum_available = check_reroute_capacity(link)
if minimum_available > link.utilization + safety_margin:
mark_link_to_sleep(link)
2. Sort link by utilization and avoid disconnected network
sleep_links = check_connected(sort_by_util(links_marked_to_sleep))

https://orcid.org/0009-0005-0720-5134
https://orcid.org/0000-0002-2218-5750
https://orcid.org/0000-0003-1455-4381
https://doi.org/10.1145/3624354.3630092
https://doi.org/10.1145/3624354.3630092
https://www.rfc-editor.org/rfc/rfc7471.html
https://www.rfc-editor.org/rfc/rfc7471.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624354.3630092&domain=pdf&date_stamp=2023-12-05

CoNEXT Companion ’23, December 5-8, 2023, Paris, France

network. The centralized sleeping controller also receives the wake-
up message such that it does not try to turn off links simultaneously.
The sleep and wake commands are sent to a script that turns links
on and off via the router CLI.

3 PRELIMINARY EVALUATION

Interface Wake-up Time. Previous work assumes interface wake-
up times of a few milliseconds, but our measurements show that
they take on the order of seconds. We measure different types of
interfaces and find that 100G optical transceivers take roughly 8-15
seconds to wake up, while electrical ones are a bit faster, taking
around 2-8s (Fig. 1). We also confirm that the wake-up delay is
independent of the sleep time; i.e., even if sleeping for just 50ms, it
takes seconds to wake up the transceiver (not plotted).

In summary, one should be careful when turning links off, as
reverting the decision takes a long time.

Network Wake-up Bottlenecks. To test our power plane design
without access to a complete network, we use a tool called the mini-
internet. This tool emulates a network (8 nodes) on one machine
using docker containers and virtual interfaces. Compared to simu-
lators, the mini-internet runs standard Linux network stacks and
emulates link delays and buffers, resulting in realistic evaluations.

Our experiments show that the interface wake-up delay is by
far the slowest part of waking up the network in the case of con-
gestion (Table 1). The four steps of waking up are detecting the
congestion, flooding the wake-up commands within the network,
waking up the physical interfaces and reconverging the routing
state. Detecting congestion takes roughly 1s and is mainly limited
by the frequency at which the router updates its link load value.
While increasing the update frequency could make the reaction
time faster, it increases the risk of false positives due to bursty traffic.
Flooding the wake-up commands within the network is limited by
how long it takes for a packet to reach the furthest node—at most
a few 100ms in most networks. The most significant bottleneck
with current hardware is the wake-up delay of the interface: several
seconds (Fig. 1). The last step to use the awakened link is for OSPF

Wake-up delay [s]

15 : i Electrical

—_— = 100G DAC

10 . = 10G RJ45

— Optical
100G LR4

=100G LR

5

%

100G DAC 10G RJ45 100G LR4

Transceiver type
Figure 1: The wake-up time is on the order of seconds, not a
few milliseconds, as assumed in previous research.

100G LR

Metric [%]
50 Increased traffic demand Setuz
Hardware

40 | —Mini-internet

30

20 Metric

10 —Links asleep

~Link oversubscription
0 0 30 60 90 120

Time [s]
Figure 2: Our power plane prototype operates as expected.
The behavior on the hardware matches the emulation well.

60

Lukas Réllin, Romain Jacob, and Laurent Vanbever

Table 1: Our measurements show that the link wake-up delay
is the slowest part of the wake-up process.

Steps Scale Limitation

Detection ~1s frequency of load measurement
Flooding ~0.1s network diameter

Wake-up ~1-10s interface wake up delay (Fig. 1)
Convergence ~0.1s OSPF parameters & computation

to distribute the new link state, calculate the shortest path, and
update the data plane.

When using default OSPF parameters, the convergence takes
about 10s but one can cut it down to a few 100 ms by tuning some
parameters. We achieve this by decreasing the hello interval to 0.1s,
the dead interval to 1s and setting the link type to point-to-point.
We also lower the shortest path calculation and LSA throttling
timers to a few 10s of milliseconds. Changing those parameters
increases the network usage of OSPF, but our measurements show
that each link’s average OSPF traffic reaches 32 kbit/s, which is
negligible compared to today’s network bandwidths.

Hardware Validation. We implement our controller on hardware
using two Cisco Nexus 9300 routers to validate the results from the
mini-internet setup. We use VRFs to create eight virtual nodes out
of our two routers. As these routers do not support the OSPF TE
metrics extension, we manually create the TE metrics LSAs but still
rely on OSPF to distribute them in the network as per the RFC.

The scenario contains a base traffic demand that allows the con-
troller to put links to sleep at first (Fig. 2). After 30s, one flow
increases for 60 seconds; it creates congestion, and the power plane
reacts by waking up the whole network. Then, at 50s the controller
puts some links back to sleep under the new traffic demand. Since
the traffic demand is higher now, it can put fewer links to sleep than
before. At 90s, the traffic demand decreases and the controller puts
more links back to sleep (Fig. 2). Our power plane controller be-
haves similarly in our hardware and emulated setups. This suggests
that (i) we can design power plane controllers that are compatible
with today’s hardware and standard protocols; (ii) we can hope
emulation remains realistic for experiments with more complex
topologies and traffic patterns.

4 CONCLUSION AND FUTURE RESEARCH

Our first power plane prototype shows that link sleeping is possible,
but it must be considered at timescales of tens of seconds and above.

Future work should explore the power plane design space, in-
cluding the potential benefits of enhanced network state visibility,
which could enable better sleeping decisions.

Another important direction is quantifying the energy savings
and network disturbance resulting from link sleeping. The two
missing pieces are detailed traffic traces and network power models,
which we both try to acquire in our ongoing research.

REFERENCES

[1] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. 2008. Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation. In 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 08).

[2] Lukas Réllin. 2023. How Fast Can It Wake Up? Putting Link Sleeping into Practice.
Master’s thesis. ETH Ziirich. https://doi.org/10.3929/ethz-b-000637984

https://github.com/nsg-ethz/mini_internet_project
https://github.com/nsg-ethz/mini_internet_project
https://doi.org/10.3929/ethz-b-000637984

