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Advanced Skills through Multiple Adversarial Motion Priors in
Reinforcement Learning

Eric Vollenweider, Marko Bjelonic, Victor Klemm, Nikita Rudin, Joonho Lee and Marco Hutter

Abstract— In recent years, reinforcement learning (RL) has
shown outstanding performance for locomotion control of
highly articulated robotic systems. Such approaches typically
involve tedious reward function tuning to achieve the desired
motion style. Imitation learning approaches such as adversarial
motion priors aim to reduce this problem by encouraging a
pre-defined motion style. In this work, we present an approach
to augment the concept of adversarial motion prior-based RL
to allow for multiple, discretely switchable styles. We show
that multiple styles and skills can be learned simultaneously
without notable performance differences, even in combination
with motion data-free skills. Our approach is validated in sev-
eral real-world experiments with a wheeled-legged quadruped
robot showing skills learned from existing RL controllers and
trajectory optimization, such as ducking and walking, and novel
skills such as switching between a quadrupedal and humanoid
configuration. For the latter skill, the robot is required to stand
up, navigate on two wheels, and sit down. Instead of tuning
the sit-down motion, we verify that a reverse playback of the
stand-up movement helps the robot discover feasible sit-down
behaviors and avoids tedious reward function tuning.

I. INTRODUCTION

Reinforcement Learning (RL) had a significant impact in
the space of legged locomotion, showcasing robust policies
that can handle a wide variety of challenging terrain in the
real world [1]. With this advancement, we believe that these
articulated robots can perform specialized motions like their
natural counterparts. Therefore, we aim to push these robots
even more to their limits by executing advanced skills like
the quadruped-humanoid transformer in Fig. 1 performed
by our wheeled-legged robot [2]. In this work, we rely on a
combination of motion priors and RL to achieve such skills.

A. Related Work

Executing specific behaviors for a real robot is a funda-
mental challenge in robotics and RL. For example, the com-
puter animation community synthesizes life-like behaviors
from human or animal demonstrations for their simulated
agents. Boston Dynamic’s real humanoid robot, Atlas, shows
impressive dancing motions and backflips based on human
motion animators. Similarly, our wheeled-legged robot can
track motions from an offline trajectory optimization with an
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Fig. 1. Quadruped-humanoid transformer (https://youtu.be/kEdr0ARq48A)
with a time-lapse from left to right of a stand-up and sit-down motion (top
image), obstacle negotiation (middle image), and indoor navigation (bottom
images). The former skill and the humanoid navigation on two legs are
achieved through traditional RL training with a task reward formulation.
Instead of tuning the sit-down skill, we can reverse the playback of the
stand-up motion and use it as a motion prior that helps the robot discover
feasible sit-down behaviors avoiding tedious reward function tuning.
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model predictive control (MPC) algorithm, as shown in our
previous work [3]. Furthermore, motion optimizations, such
as [4], [5], have the added benefit of producing physically
plausible motions, which is favorable in computer graphics
but vital in robot control. However, designing objective
functions is usually exceptionally difficult. However, these
tracking-based methods require carefully designed objective
functions. When applied to more extensive and diverse
motion libraries, these methods need heuristics to select the
suitable motion prior to the scenario.

Data-driven strategies like [6] automate the imitation ob-
jective and mechanisms for motion selection based on adver-
sarial imitation learning. This paper verifies that this imita-
tion learning approach can be applied to real robotics systems
and not just computer animations. Gaussian processes [7],
[8] can learn a low-dimensional motion embedding space
generating suitable kinematic motions when provided with
a relatively large amount of motion data. However, the
approaches are not goal conditioned and can not leverage
task-specific information.

Animation techniques [9]–[11] attempt to solve this by
imitating/tracking motion clips. This is usually implemented
with pose errors, requiring a motion clip selection and
synchronizing the selected reference motion and the policy’s
movement. By using a phase variable as an additional input
to the policy, the right frame in the motion data-set can
be selected. It can be challenging to scale the number of
motion clips with these approaches. Defining error metrics
that generalize to a wide variety of motions is difficult.

Two alternative approaches are adversarial learning and
student-teacher architectures [12]. The latter trains a teacher
policy with privileged information such as perfect knowledge
about the height map, friction coefficients, and ground con-
tact forces. With that, the teacher can learn complex motions
more easily. After the teacher’s training, the student policy
learns to reproduce the teacher’s output using non-privileged
observations and the robot’s proprioceptive history. Hereby,
a style transfer from teacher to student is happening. On
the other hand, adversarial imitation learning techniques
[13], [14] and more recently [15] build upon a different
approach. The latter offers a discriminator-based learning
strategy called Adversarial Motion Priors (AMP), which
outsources the error-metrics, phase, and motion-clip selection
to a discriminator which learns to distinguish between the
policy’s and motion data’s state transitions. AMP does not
require specific motion clips to be selected as tracking targets
since the policy automatically chooses which style to apply
given a particular task. The method’s limitation is that when-
ever multiple provided motion-priors cover the same task, the
policy might either go for the more straightforward style to
fulfill or find a hybrid motion similar to both motion clips.
In other words, there is no option of actively choosing styles
in single or multi-task settings. Furthermore, the task-reward
still has to motivate the policy to execute a specific movement
because otherwise the policy might identify two states and
oscillate between them. Generally, to our experience, it is
not trivial to find task-reward formulations for complex and

Fig. 2. Multi-AMP overview: The discriminator predicts a style reward
sstylet which is high if the policy’s behavior is similar to the motions of the
motion-data base M i, by distinguishing between state transitions (st, st+1)
of both sources. The style reward is added to the task reward, which finally
leads to the policy fulfilling the task while applying the motion data’s style.

highly dynamic movements that do not conflict with the style
reward provided by the discriminator.

B. Contribution

This paper introduces the Multi-AMP algorithm and ap-
plies it to our real wheeled-legged robot. Like its AMP
predecessor [6], this approach automates the imitation ob-
jective and motion selection process without heuristics. Fur-
thermore, our extension allows for the intentional switching
of multiple different style objectives. The approach can
imitate motion priors from three different data sets, i.e., from
existing RL controllers, trajectory optimization, and reverse
stand-up motions. The latter enables the automatic discovery
of feasible sit-down motions on the real robot without tedious
reward function tuning. This permits exceptional skills with
our wheeled-legged robot in Fig. 1, where the robot can
switch between a quadruped and humanoid configuration.
To the best of our knowledge, this is the first time such a
highly dynamic skill is shown and also the first time that the
AMP approach is verified on a real robot.

II. MULTIPLE ADVERSARIAL MOTION PRIORS

In this work, the goal is to train a policy π capable
of executing multiple tasks, including styles extracted from
n individual motion data-sets M i, i ∈ {0, ..., n − 1} with
the ability to actively switch between them. In contrast to
tracking-based methods, the policy should not blindly follow
specific motions but rather extract and apply the underlying
characteristics of the movements while fulfilling its task.

Similar to the AMP algorithm [6], we split the reward
calculation into two parts rt = rtaskt + rstylet . The task-
reward is a description of what to do, e.g., velocity tracking,
and the style-reward rstylet defines how to do it, namely by
extracting and applying the style of the motion priors. While
task rewards often have simple mathematical descriptions,
the style reward is not trivial to calculate. In the following,
we introduce Multi-AMP, a generalization of AMP which
allows for switching of multiple different style-rewards,
which constitutes the main theoretical contribution of this
work.

A style reward motivates the agent to extract the motion
prior’s style. We use an adversarial setup with n discrim-
inators Di, i ∈ {0, ..., n − 1}. For every trained style i, a
roll-out buffer Biπ collects the states of time-steps where the
policy applies the ith style, and another buffer M i contains
the motion-data prior to that specific style. Each discrim-
inator Di learns to differentiate between descriptors built



from a pair of consecutive states (st, st+1) sampled from
M i and Biπ . Thus, every trainable style is defined by a
tuple {Di, Biπ,M

i}. By avoiding any dependency on the
source’s actions, the pipeline can process data of sources
with unknown actions, such as data from motion-tracking
and character animation. The discriminator Di learns to
predict the difference between random samples of its motion
database M i , and the agent’s transitions sampled from the
style’s roll-out buffer Biπ by scoring them with +1 and
−1, respectively. This behavior is encouraged by solving the
least-squares problem [6] defined by

Li = EdMi (s,s′)
[
(Di(φ(s), φ(s′))− 1)2

]
+ E

dB
i
π(s,s′)

[
(Di(φ(s), φ(s′)) + 1)2

]
+
wgp

2
EdMi (s,s′)

[
‖∇φDi(φ)|φ=(φ(s),φ(s′))‖2

]
,

(1)

where the descriptors are built by concatenating the output
of an arbitrary function φ(·) : Rds 7→ Rdd for two consec-
utive states, whereby the choice of φ decides which style
information is extracted from the state-transitions, e.g., the
robot’s joint and torso position, velocity, etc.

A. Style-reward

During the policy’s roll-out only one style is active at a
time. The state st passed into the policy at every time-step
t contains a command ct, which is augmented with a one-
hot-encoded style selector cs, i.e., the elements of cs are
zero everywhere except at the index of the active style i. As
in the standard RL-cycle, after the policy π(at|st) predicts
an action at, the environment returns a new state st+1 and
a task-reward rtaskt . The latest state-transition (st, st+1) is
used to construct the style-descriptor dt = [φ(st), φ(st+1)] ∈
R2dd , which is mapped to a style-reward rstylet ∈ R+ using
the current style’s discriminator Di and the style-reward
given by

rstylet = −log
(
1− 1

1 + exp−Di([φ(st),φ(st+1)])

)
. (2)

B. Task-reward

Our agents interact with the environment in a command-
conditioned framework. During the training, the environment
rewards the policy for fulfilling commands ct sampled from
a command distribution p(c). For example, the task might
be to achieve the desired body velocity sampled from a
uniform distribution in x, y and yaw coordinates. The task is
included in the policy’s observation and essentially informs
the agent what to do. The task reward depends on the
performance of the policy with respect to the command
rtaskt = R(ct, st, st−1)

C. Multi-AMP algorithm

The sum of the style and task rewards rt = rtaskt + rstylet

constitutes the overall reward, which can be used in any RL
algorithm such as Proximal Policy Optimization (PPO) [16]
or Soft Actor Critic (SAC) [17]. The state st is additionally

stored in the style’s roll-out buffer Biπ to train the discrimi-
nator at the end of the epoch. The full approach is shown in
the following algorithm:
Require: M = {Mi}, |M | = n (n motion data-sets)

1: π ← initialize policy
2: V ← initialize Value function
3: [B]← initialize n style replay buffers
4: [D]← initialize n discriminators
5: R← initialize main replay buffers
6: while not done do
7: for trajectory i = 1, ..., m do
8: τ i ← {(ct, cs, st, at, rGt )T−1t=0 , sT , g} roll-out with π
9: d← style-index of τ i (encoded in cs)

10: if Md is not empty then
11: for t = 0, ..., T-1 do
12: dt ← Dd(φ(st), φ(st+1))
13: rstylet ← according to Eq. 2
14: record rstylet in τ i

15: end for
16: store dt in Bd and τi in R

17: end if
18: end for
19: for update step = 1, ..., nupdates do
20: for d = 0, ..., n do
21: bM ← sample batch of K transitions {sj , s′j}Kj=1

from Md

22: bπ ← sample batch of K transitions {sj , s′j}Kj=1

from Bd

23: update Dd according to Eq. 1
24: end for
25: end for
26: update V and π (standard PPO step using R)
27: end while

D. Data-free skills

If no motion data is present for the desired skill and it
should nevertheless be trained alongside multiple motion-
data skills, Multi-AMP can be adapted slightly. While the
policy learns the motion-data free skill, rstylet is set to 0.
Thereby, the data-free skill is still treated as a valid style
and present in the one-hot-encoded style-selector cs, but the
policy π is not guided by the style-reward anymore.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We implement and deploy the proposed Multi-AMP
framework on our wheeled-legged robot in Fig. 1 with
16 DOF (degrees of freedom). The training environment
consists of three tasks, two of which are supported by
motion data, and one is a data-decoupled task. The first
task is four-legged locomotion, the motion data of which
consists of motions recorded from another RL policy (Fig. 3
top left). The second task is a ducking skill, allowing the
robot to duck under a table. The motion data for this
skill was generated by a trajectory optimization pipeline,
which was deployed and tracked by an MPC controller [3]
(Fig. 3 bottom left). The last skill represents a partly data-
decoupled skill. Here, the wheeled-legged robot learns to



TABLE I
TASK-REWARDS.

All tasks formula weight
rτ ‖τ‖2 -0.0001
rq̇ ‖q̇‖2 -0.0001
rq̈ ‖q̈‖2 -0.0001

4-legged locomotion
rlin vel e‖ẋtarget, xy−ẋ‖

2/0.25 1.5
rang vel e‖ωtarget, z−ω‖

2/0.25 1.5

Ducking
rduck e0.8∗|xgoal−x| 2

Stand-up
see Tab. II

stand up on its hind legs followed by two-legged navigation
(Fig. 4), before sitting down again. The sit-down skill is
supported by motion data as detailed in Section III-B. A
video available at https://youtu.be/kEdr0ARq48A showing
the results accompanies this paper.

The training environment of our Multi-AMP pipelines
is implemented using the Isaac Gym simulator [18], [19],
which allows for massively parallel simulation. We spawn
4096 environments in parallel to learn all three tasks si-
multaneously in a single neural network. The number of
environments per task is weighted according to their ap-
proximate difficulty, e.g., [1, 1, 5] in the case of the tasks
described above. The state-transitions collected during the
roll-outs of these environments are mapped using a func-
tion φ(s) such that it extracts the linear and angular base
velocity, gravity direction in base frame, the base’s height
above ground, joint position and velocity, and finally the
position of the wheels relative to the robot’s base-frame,
i.e., φ(s) = (ẋbase, xz, ebase, q, q̇, xee,base) ∈ R50. The task
reward definitions for the three tasks are in Table I and II.

A. Experiments

Due to the problem of catastrophic forgetting [20]–[22],
we learn these skills in parallel. This section analyzes the task
performance of each Multi-AMP policy compared to policies
that exclusively learn a single task (baseline). The three
tasks (standing up, ducking, and four-legged locomotion) are
trained in different combinations, where ducking and walking
are always learned with motion data and stand-up without:

1) Stand up only
2) Duck only
3) Walk only
4) Walking and standing up
5) Walking and ducking
6) Walking, ducking, and standing up
First, we compare the learning performance of the stand-

up skill between the models Nr. 1, 4, and 6. The stand-up
task is an informative benchmark since it requires a complex
sequence of movements to achieve the goal. We normalize
all rewards in the following Figures with the number of
robots receiving the reward, making the plots comparable
between the experiments. Fig. 6 shows important metrics of
the stand-up learning progress. The figure shows that the

TABLE II
REWARDS FOR AOW STANDING UP, SITTING DOWN, AND NAVIGATING

WHILE STANDING

symbols description

qrobot ∈ H Robot base-frame rotation
probot ∈ R3 Robot base-frame position
q Joint DOF positions (excl. wheels)
qhl Hind-Leg DOF position
α ∠(robot-x axis, world z axis)
f Feet on ground (binary)
s Standing robots (binary)

stand-up formula weight

rα
π/2−α
π/2

2
rheight probotz 3
rfeet f -2
rwheels

∑
q̇2front wheels ∗ (1− f) -0.003

rshoulder ‖qshoulder‖2 -1
rstand pose exp(−0.1 ∗ ‖qhl − q0, hl‖2) 1

sit-down weight

run−stand max(
π/2−α
π/2

∗ 3, 0) -3

rsit−down
min(α,π/2)

π/2
2.65

rdof vel ‖q̇‖2 -0.015
rdof pos exp(−0.5 ∗ ‖q0 − q‖2) ∗ α

π/2
3

navigation weight

rtrack lin exp(−4 ∗ ‖ẋdes + ṗrobotlocal,z‖
2) ∗ s 2

rtrack ang exp(−4 ∗ ‖ωdes − ωrobotlocal,x‖
2) ∗ s 2

policy does not make compromises during the training of
multiple tasks compared to single-task settings. The policy
that learns three tasks simultaneously (3 styles in Fig. 6)
performs equally well while standing up and sitting down.
While it takes the 3 style policy a bit longer to reach the
maximum rewards (see rstand and rstand track ang vel at
epoch 1000), the differences vanish after sufficiently long
training times. In this case, it takes Multi-AMP about 300
epochs longer to reach the maximum task rewards compared
to the single task policy.

The walking and ducking tasks show a very similar
picture, with the specialized policies (model Nr. 2 and 3 in
the list above) reaching a similar final performance compared
to the others. Furthermore, all policies manage to extract the
walking and ducking style such that no visible difference can
be seen.

In summary, in this specific implementation of the environ-
ment and selection of tasks, Multi-AMP, while taking longer,
learns to achieve all goals equally well as more specialized
policies that learn fewer tasks.

B. Sit-down training

While the sit-down rewards presented in Table II work
well in simulation, the policy’s sit-down motions created
high impulses in the real robot’s knees, which exceeded
the robot’s safety torque threshold. To easily perform more
gentle sit-down motions and avoid reward function tuning,
we recorded the stand-up motion, reversed the motion data,

https://youtu.be/kEdr0ARq48A


Fig. 3. Four-legged locomotion (top row) and ducking motion (bottom row) of the motion data source (left column), simulation training (center column),
and final deployment on the real robot using Multi-AMP. The former skill is trained with a motion prior from a different simulation environment and
control approach, while the ducking motion is trained with data from trajectory optimization [3].

Fig. 4. Stand up-sequence in simulation and on the real robot. The policy is able to stand up, navigate large distances on two legs, and finally sit down
again using the stand-up motion prior.



Fig. 5. Comparison of the sitting down motions. Top row: If the agent
learns to sit down with task rewards only, it falls forward with extended
front legs, which causes high impacts and leads to over-torque on the real
robot. Marked in blue is the trajectory of the center of gravity of the base.
Bottom row: When sitting down with task reward and style reward from
the reversed stand-up sequence, the robot squats down to lower its center
of gravity before tilting forward, thereby reducing the impact’s magnitude.
Marked in green is the trajectory of the center of gravity of the base. We
note that compared to the previous case the base is lowered in a way that
causes less vertical base velocity at the moment of impact.

Fig. 6. Multi-AMP learning capability of the stand-up task. The horizontal
axis denotes the number of epochs, and the vertical axis represents the
value of the reward calculations after post-processing for comparability.
Furthermore, the maximum stand duration is plotted over the number of
epochs. Legend: Blue (one style), yellow (two styles), blue (three styles)

and trained a policy using Multi-AMP. As this motion starts
with a front end-effector velocity of 0 when lifting them off
the ground, the reversed style should encourage low impact
sit-down motions. In the Multi-AMP combination, one style
contains the reversed motion data for sitting down, while
the second style receives plain stand-up rewards. The result
is a sit-down motion that uses its hind knees to lower the
center of gravity before tilting the base and catching itself
on four legs, as shown in Fig. 5. The agent receives zero task
rewards for a predefined time after the command to sit down,
avoiding task rewards that conflict with the sit-down motion-
prior. E.g., rewarding horizontal body orientation leads the
agent to accelerate the sit-down, which breaks the style. After
this buffer-time, the sit-down task-rewards become active and
reward the agent. This allows the robot to sit down with its
own speed and style and guarantees non-conflicting rewards.

C. Remarks

Finding a balance between training the policy and the
discriminators is vital during the Multi-AMP training pro-
cess. Our observations show that fast or slow training of
the discriminators relative to the policy hampers the policy’s
style training. In our current implementation, the number of
discriminator and policy updates is fixed, which might not
be an optimal strategy. Since the setup is very similar to
Generative Adversarial Network (GAN), more ideas from
[23] could be incorporated into Multi-AMP.

We use an actuator model for the leg joints to bridge
the sim-to-real gap [24] while an actuator model is not
needed for the velocity controlled wheels. Moreover, we
apply strategies to increase the policy’s robustness, such
as rough terrain training (see rough terrain robustness in
Fig. 1), random disturbances, and game inspired curriculum
training [19]. The highly dynamic stand-up skill is especially
prone to these robustness measures, which we solve by
introducing timed pushes and joint-velocity-based trajectory
termination. The former identifies the most critical phase of
the skill and pushes the policy in the worst possible way. This
increases the number of disturbances the policy experiences
during these critical phases, rendering it more robust, and
thus, also helping with sim-to-real efforts. Furthermore, by
terminating the trajectory if the joint velocity of any DOF
exceeds the actuator’s limits, the policy learns to keep a
safety tolerance to these limits.

IV. CONCLUSIONS
This work introduces Multi-AMP, with which we automate

the imitation objective and motion selection process of
multiple motion priors without heuristics. Our experimental
section shows that we can simultaneously learn different
styles and skills in a single policy. Furthermore, our approach
can intentionally switch between these styles and skills,
whereby also data-free styles are supported. Various multi-
style policies are successfully deployed on a wheeled-legged
robot. To this end, we show different combinations of skills
such as walking, ducking, standing up on the hind legs,
navigating on two wheels, and sitting down on all four
legs again. We avoid tedious reward function tuning by
training the sit-down motions with a motion prior gained
from reversing a stand-up recording. Furthermore, we note
that similar performances as in the single-style case can be
expected even when learning multiple styles simultaneously.
We conclude that Multi-AMP and its predecessor AMP [15]
are promising steps towards a possible future without style-
reward function tuning in RL. However, even though less
time is invested in tuning reward functions, more time is
required to generate motion priors, which is in most cases
not available for specific tasks.

To the best of our knowledge, this is the first time that
a quadruped-humanoid transformation is shown on a real
robot, challenging how we categorize multi-legged robots.
Over the next few years, this skill will further expand
the possibilities of wheeled quadrupeds by opening doors,
grabbing packages, and many more use-cases.
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