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All theory depends on assumptions which are not quite true.
That is what makes it theory.
The art of successful theorizing is to make the inevitable simplifying assumptions
in such a way that the final results are not very sensitive.

– Robert M. Solow [239]





A B S T R A C T

In the Internet, billions of endpoints exchange data, and thereby create a global
traffic pattern, characterized by a time-variant distribution of traffic volume over
inter-domain paths. This global traffic pattern is increasingly reshaped by two
mechanisms for data-traffic control that have experienced real-world deployment
in recent years. First, end-host path selection allows end-hosts to allocate traffic
on inter-domain paths that are under-utilized or particularly suitable for a given
application. Second, modern congestion-control algorithms (CCAs) promise to
simultaneously achieve high utilization and low congestion, namely with a latency-
sensitive approach that can withstand competition from legacy algorithms.

However, despite extensive research into end-host path selection and modern
congestion control, the research community does not yet completely understand
how these two control mechanisms will affect the Internet traffic pattern under
global deployment. To further such an understanding, this thesis follows a model-
based approach, i.e., it describes end-host path selection and congestion-control
algorithms in a mathematical fashion, and leverages these descriptions to investigate
the effects of the emerging mechanisms. Thanks to such formal representation, the
model-based analysis in this thesis can rely on diverse mathematical tools, including
game theory and control theory, and therefore provide provable guarantees.

The model-based analysis in this thesis is separated into two parts, both repre-
senting aspects of the intricate dynamics in Internet traffic:

Part I: Network performance. In the first part of this thesis, I find that load-adaptive
path selection by selfish end-hosts admits near-optimal equilibria, but may not
converge to these equilibrium distributions. Instead, this path selection may cause
oscillation, which demonstrably hampers network performance, but which can
be suppressed by network operators. Moreover, I present a highly accurate fluid
model of the BBR congestion-control algorithm, and prove that BBR is stable in
homogeneous settings, but unstable in competition with loss-based CCAs.

Part II: ISP economics. In the second thesis part, I discover that end-host path
selection alters the cooperation among ISPs, by allowing novel interconnection
agreements that substantially boost path diversity, and the competition among ISPs,
by motivating investments that improve transmission quality.

In summary, the model-based approach in this thesis yields numerous complex
insights, and thus contributes towards understanding the future Internet.
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Z U S A M M E N FA S S U N G

Der Datenaustausch durch Milliarden von End-Hosts im Internet führt dazu, dass
sich der globale Datenverkehr ständing neu über über domänenübergreifende Pfade
verteilt. Dieses globale Datenverkehrsmuster steht zunehmend unter dem Einfluss
von zwei Mechanismen zur Datenverkehrskontrolle, welche in den letzten Jahren
praktisch verfügbar geworden sind. Der erste Mechanismus, die Pfadwahl durch
End-Hosts, erlaubt es, Datenverkehr auf Pfade zu verschieben, welche schwach
ausgelastet oder für eine bestimmte Anwendung besonders gut geeignet sind. Der
zweite Mechanismus, namentlich moderne Algorithmen zur Datenstaukontrolle,
verfolgen das Ziel hoher Kapazitätsauslastung bei geringer Überlastung, indem
sie das Sendetempo auf Basis von staubedingten Übertragungsverzögerungen
festlegen und es im Wettbewerb mit älteren Algorithmen nur bedingt reduzieren.

Trotz ausgedehnter Forschung über End-Host-Pfadwahl und moderne Daten-
staukontrolle fehlt allerdings immer noch ein genaues Verständnis davon, wie sich
diese zwei Kontrollmechanismen auf das globale Datenverkehrsmuster auswirken
werden, sobald sie im gesamten Internet verwendet werden. Um dieses Verständ-
nis zu verbessern, verwendet die vorliegende Dissertation einen modellbasierten
Ansatz, welcher die Pfadwahl durch End-Hosts und die modernen Algorithmen
zur Datenstaukontrolle auf eine mathematische Weise beschreibt. Diese mathema-
tischen Beschreibungen ermöglichen es, die Effekte der erwähnten Mechanismen
theoretisch zu untersuchen. In einer solchen Untersuchung können modellbasierte
Analysen auf mathematische Methoden zurückgreifen, so etwa auf die Spieltheorie
und die Kontrolltheorie, und beweisbare Garantien abgeben.

Die modellbasierten Analysen in der vorliegenden Dissertation sind in zwei Teile
aufgegliedert, welche unterschiedlichen Aspekten der vielschichtigen Dynamik des
Internetverkehrs entsprechen:

Teil I: Netzwerkleistung. Im ersten Teil der Dissertation komme ich zum Ergebnis,
dass eine auslastungsorientierte Pfadwahl durch eigennützige End-Hosts zwar
quasi-optimale spieltheoretische Gleichgewichte zulässt, aber nicht zwingend die-
sen Gleichgewichtsverteilungen entgegenstrebt. Die Oszillation, die stattdessen
einsetzt, wirkt sich nachweislich negativ auf die Netzwerkleistung aus, kann aller-
dings von Netzwerkbetreibern unterdrückt werden. Darüber hinaus präsentiere ich
ein äusserst genaues Fluidmodell des BBR-Algorithmus zur Datenstaukontrolle.
Basierend auf diesem Modell lässt sich beweisen, dass BBR in einem homoge-

vi



nen Umfeld stabil ist, im Wettbewerb mit anderen, verlustbasierten Algorithmen
allerdings ein instabiles Verhalten zeigt.

Teil II: ISP-Ökonomie. Im zweiten Teil der Dissertation weise ich nach, dass
die Pfadwahl durch End-Hosts die Zusammenarbeit zwischen ISPs beeinflusst,
nämlich indem neue Vereinbarungen zur Vernetzung ermöglicht werden, welche
die Pfaddiversität im Internet erheblich verbessern. Ebenso beeinflusst die Pfadwahl
durch End-Hosts auch den Wettbewerb zwischen ISPs: Genauer gesagt verstärkt
die Pfadwahl die Anreize, die Übertragungsqualität im Internet durch Investitionen
zu verbessern.

Insgesamt gestattet der modellbasierte Ansatz dieser Dissertation eine Vielzahl
komplexer Einsichten und trägt damit in wertvoller Weise zum Verständnis des
zukünftigen Internets bei.
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1
I N T R O D U C T I O N

In 2023, around 5 billion users and 30 billion connected devices are expected to
exchange 1.8 zettabytes of data over the Internet [62, 178], making the Internet
arguably one of the most complex systems of human creation. This complexity
is not least expressed in the patterns of traffic flow over the Internet, i.e., the data
volume exchanged by endpoints in the Internet, the Internet paths traversed by this
data, and the variation of this distribution over time.

This traffic-flow pattern is highly relevant to the effectiveness of the Internet as a
communication tool, and to its attractiveness as a business environment: If these
traffic flows consistently exceeded capacity limits or fluctuated wildly, the Internet
would be substantially less reliable, usable, and profitable.

The concern for well-managed traffic-flow dynamics has regained urgency in
recent years, due to a number of trends that might fundamentally reshape Internet
traffic patterns. More precisely, these trends might affect Internet traffic dynamics in
ways that are hard to predict, because traffic dynamics are an intricate phenomenon
with temporal, probabilistic, performance-related, and economic aspects. However,
model-based research can yield valuable insights into the traffic-flow dynamics of the
modern Internet, as I argue in this thesis.

To make the objective of this thesis more concrete, I describe the trends affecting
Internet traffic flows (§1.1), I outline the research questions provoked by these trends
(§1.2), I discuss why model-based research gives valuable answers to the research
questions (§1.3), I present my contributions (§1.4), and I provide an overview of
the methods used in this thesis (§1.5). The overall structure of this thesis is also
visualized in Fig. 1.1.
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1.1 motivating trends 3

1.1 motivating trends

The Internet is experiencing multiple technological trends with the potential to
reshape the dynamics of its traffic flows. In particular, I identify two such impactful
trends, namely (i) the emergence of path-selection mechanisms for end-hosts, and
(ii) the deployment of modern congestion-control algorithms. In the following, I
describe these trends and their manifestation.

1.1.1 End-Host Path Selection

End-host path selection describes the capability of end-hosts to reach a given
destination over different network paths, where paths can be selected by the
end-host. While these paths could be arbitrarily constructed in traditional source
routing, the modern and more practical form of end-host path control leaves the
construction of paths or path segments to network operators, who then offer these
predefined paths to the end-hosts.

Such path control is increasingly available in the Internet through two means,
namely through (i) multi-homing, and (ii) path awareness.

Multi-homing. In multi-homing, an end-host has access to the Internet via multiple
interfaces that are associated with different Internet paths. Such multi-homing
already enables a limited degree of path control in today’s Internet, and can be
implemented with an increasing number of technological tools. For example, on
the user side, mobile devices can nowadays access the Internet simultaneously
via high-performance cellular networks and residential Wi-Fi connections [93]. On
the side of content providers, resources can be made available under multiple IP
addresses that are routed differently, e.g., with multiple ISP subscriptions or by
using multiple cloud egresses [132]. However, in all of these approaches based on
multi-homing, information about the available paths is generally not provided in a
systematic manner.

Path awareness. This provision of path information by the network allows path
awareness of end-hosts [245]. Such path awareness is the guiding principle of
the SCION Internet architecture [60], which is currently undergoing practical
deployment [106, 155] and standardization at the IETF [138]. SCION enables end-
points to select an Internet forwarding path from a set of pre-defined paths. This
selection is then enforced by including a secure representation of the selected path
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in packet headers. As such, SCION offers both path information and path control
at a finer granularity than multi-homing–based path selection.

While multi-homing and path-aware architectures differ in the technical approach
and the degree of path control, both paradigms give rise to new traffic dynamics in
the Internet:

Multi-path usage. For example, while all traffic between two Internet endpoints tra-
ditionally used a single path at a time, this traffic might now traverse several paths
simultaneously, based on application requirements and path characteristics. This
decomposition of traffic flows might affect the severity of congestion at bottlenecks
or alter the economic calculus of ISPs.

Load-adaptive path selection. Moreover, while end-hosts traditionally could only
alleviate network congestion by reducing their sending rate, end-hosts with path-
selection capabilities can circumvent congested links altogether. However, this
load-adaptive path selection might itself lead to congestion or to unstable traffic
patterns, and might thus negatively network performance, if performed poorly.

1.1.2 Modern Congestion Control

In transmission over data networks, congestion control refers to mechanisms aimed
at avoiding the overload of network resources (e.g., links or router buffers), as
opposed to avoiding overload of receiver capacity (i.e., flow control). Such con-
gestion control is challenging because network resources are typically shared
between multiple independent senders, and because congestion control should
ideally be achieved by end-host algorithms without network support, according to
the end-to-end principle [226]. These constraints give rise to the central question
in congestion-control research: How can network feedback (e.g., loss, delay, and
delivery rate) be interpreted to achieve efficient, fair, and stable bandwidth sharing?

Traditional congestion control. This question is notoriously difficult: While congestion-
control research famously averted the congestion collapse of the Internet in the
1980s [130], the subsequent history of Internet congestion control has been marked
by slow innovation. For a long time, the most consequential innovation was the
adoption of CUBIC as the default congestion-control algorithm (CCA) of the Linux
kernel in 2006 [117], securing CUBIC dominance until today [180]. Importantly, CU-
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BIC still follows the loss-based paradigm of Reno, the original congestion-control
algorithm [82].

New algorithms. In recent years, however, congestion-control research has pro-
duced a number of new congestion-control algorithms that are inspired by novel
approaches and have been deployed in the Internet. For example, Google’s BBR algo-
rithm [47] constructs a model of the network path, and has become the congestion-
control algorithm used by YouTube [48]. PCC [75] uses an online-learning approach,
and is used today by a major OTT streaming provider in the US [154]. Copa [29] is
based on the previously known concept of delay targeting, but makes it robust to
competition from loss-based CCAs, and has been adopted by Facebook for video
upload [92]. Notably, all of these algorithms are latency-sensitive, while avoid-
ing starvation in competition with traditional loss-based CCAs – unlike previous
latency-based CCAs such as Vegas [39].

While these new approaches in recent CCAs improve performance in target
scenarios, these approaches come at the cost of increased complexity, and make it
more difficult to predict CCA behavior in the wider Internet, which is marked by
enormous heterogeneity in network infrastructure, workloads, and CCA adoption.
Moreover, this complexity in congestion control only grows due to the parallel
trend of end-host path selection (§1.1.1), as little is known about the interaction of
the two control processes.

1.2 research questions

As the preceding section illustrates, the technological trends of end-host path
selection and modern congestion control promise to improve the performance
and reliability of the Internet. At the same time, these trends raise numerous
critical questions regarding their impact on users and network operators. While
investigating this impact in all its facets is beyond the scope of this thesis, a model-
based approach can illuminate the impact in essential areas. In particular, this thesis
considers the impact of the mentioned trends on (i) the performance of the Internet
as a communication tool (§1.2.1), and (ii) the economic interactions among Internet
service providers (ISPs) (§1.2.2).
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1.2.1 Network Performance

Since path-selection routines and congestion-control algorithms prescribe how net-
works should be used, these processes must be evaluated based on their impact on
network performance, i.e., on the effectiveness of the Internet as a communication
tool for users. Among the numerous aspects of network performance, I consider
the essential aspects of efficiency, fairness, and stability in this thesis:

Efficiency. A key aspect of network performance is efficiency, which is understood
here as the degree of optimality of transmission speed given the constraints of the
network. On the one hand, this efficiency increases with link utilization: The uti-
lization of the available network capacity should be complete, in order to maximize
the network throughput, and thus to minimize the duration of data transmission.
On the other hand, the network capacity should not be over-utilized, as such over-
loading has again negative consequences: Mild overload causes queuing in buffers,
and thereby excess latency and jitter, whereas heavy overload results in packet loss
and expensive retransmissions.

Fairness. To make practical statements about performance, efficiency considera-
tions must be combined with fairness considerations, relating to the uniformity
with which the individual end-hosts in the network benefit from the efficiency.
Conventionally, fairness is considered perfect if the sharing of network resources is
fully equal. However, this vague condition has proven surprisingly hard to translate
into concrete fairness metrics, so far preventing a universally accepted precise
definition of fairness.

Stability. Finally, efficiency and fairness must be characterized over time, as both
path selection and congestion control involve adaptive and dynamic processes. From
this dynamic perspective, a desirable performance property is stability, understood
as the absence of persistent large variance of efficiency and fairness over time.

Such stability requires that the flow dynamics satisfy two conditions. First, the
flow dynamics must possess equilibria (i.e., steady states), from which the flow
dynamics do not spontaneously deviate. Second, the flow dynamics must eventually
converge to these equilibria, which guarantees that fairness and efficiency will
eventually be relatively static.

All of these three aspects are affected by the two recent trends of end-host path
selection and congestion control, which provokes the following research questions:
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End-host path selection. End-host path selection has implications on efficiency,
namely via the traffic distribution across paths: If this traffic distribution over-
utilized some paths while under-utilizing others, efficiency would suffer. Therefore,
the traffic distributions caused by end-host path selection must be predicted and
rated with respect to efficiency. In this prediction, it is central to assume that the
selecting end-hosts in an Internet context are self-interested and uncoordinated:

Q 1 Path-Selection Efficiency. How efficient are the traffic distributions across
networks paths that can be expected from path selection by self-interested and uncoor-
dinated end-hosts?

In addition to efficiency, the stability of selfish end-host path selection is an impor-
tant concern:

Q 2 Path-Selection Stability. Under which conditions does path selection by selfish
and uncoordinated end-hosts converge to steady traffic distributions?

This concern for stability conditions is motivated by the unclear performance cost
of instability:

Q 3 Performance under Unstable Path Selection. How does unstable end-host
path selection affect the efficiency and fairness in networks?

Finally, for the sake of performance, the traffic distributions and the convergence
behavior of end-host path selection should not only be understood, but also poten-
tially shaped by network operators through information and incentives:

Q 4 Path-Selection Shaping. How can network operators inform or incentivize
selfish end-hosts to perform path selection in an efficient and stable manner?

Congestion control. While an influencing factor in end-host path selection, conges-
tion control in itself has important performance implications. Given the congestion-
control innovations in recent years (§1.1.2), it is therefore natural to ask:

Q 5 Congestion-Control Performance. How efficient, fair, and stable are the new
congestion-control algorithms?

Importantly, these performance implications must be understood under both ho-
mogeneous and heterogeneous CCA adoption, i.e., for competition among flows
adopting the same CCA or different CCAs, respectively. Answering this question
provokes a deeper question regarding the tools for CCA evaluation:



8 introduction

Q 6 Congestion-Control Methodology. What kind of evaluation methods can
provide reliable insights into CCA behavior under the highly diverse conditions found
in the Internet?

1.2.2 ISP Economics

The traffic flow patterns in the Internet are not only relevant for Internet users, but
also for Internet service providers (ISPs) who generate profit from data forwarding.
This profit is determined by the amount of traffic that ISPs can attract, plus the
prices they can charge and the costs they incur for forwarding that traffic. In other
words, the monetary transfers among ISPs follow the paths taken by traffic, and
the increasingly end-host–based selection of these paths is thus highly relevant for
ISP economics. In contrast, congestion control may affect the business calculus of
an ISP by influencing resource utilization and thereby the provisioning of costly
network equipment.

In this thesis, ISP economics are investigated with respect to ISP interaction
given end-host path selection. Economic interaction among ISPs takes place in two
fundamental dimensions, namely in (i) ISP cooperation, and (ii) ISP competition.

ISP Cooperation. If end-hosts have path control, the ISP decisions regarding for-
warding directions do not exclusively determine the Internet traffic distribution.
Forwarding decisions are typically implemented by means of interconnection agree-
ments, in which neighboring ISPs cooperatively determine the conditions of mutual
traffic forwarding, e.g., forwarding paths and prices. These interconnection agree-
ments may thus change in scope and structure if end-host path selection loosens
the connection between path provision and actual on-path traffic:

Q 7 Interconnection Agreements. How should interconnection agreements among
ISPs be structured and negotiated under end-host path selection in the Internet?

Furthermore, if end-hosts can better avoid low-quality paths, the economic perfor-
mance of ISPs might become more strongly dependent on the quality of provided
paths. Notably, the quality of an Internet path is also the result of ISP cooperation,
but cooperation of a fickle sort: Potentially multiple on-path ISPs jointly determine
path quality, e.g., by individually making costly investments such as installing band-
width; however, each ISP is self-interested and optimizes only its own profit. This
distributed decision making by self-interested on-path ISPs raises the question:
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Q 8 Intra-Path Cooperation. How is the quality of Internet paths affected by
cooperation among self-interested on-path ISPs if end-hosts select paths based on
quality?

ISP Competition. Like ISP cooperation, also the competition among ISPs is a
determining factor of Internet path quality. Since ISP competition is essentially
created by path selection, the transfer of path control to end-hosts provokes the
following question:

Q 9 Inter-Path Competition. How is the quality of Internet paths affected by ISP
competition if end-hosts select paths based on quality?

1.3 thesis approach : modelling

The research questions from the previous section allow analysis in various ways.
For example, the performance effects of path selection and congestion control (Q
1–6) might be investigated with experiments in network test-beds, whereas the
economic response to path selection (Q 7–9) could be investigated by interviewing
ISP strategists and learning about their coping strategies.

In this thesis, however, I opt to investigate all questions with an approach
based on models, i.e., mathematical descriptions of the agents, processes, and
dependencies relevant to each investigated phenomenon. Such models have a
number of methodological strengths that make them suitable for the objective
of this thesis (§1.3.1). Simultaneously, model-based research faces a number of
challenges that deserve special attention (§1.3.2).

1.3.1 Strengths

A model-based approach complements previous literature thanks to the following
strengths:

Improve analytic understanding. Networks are highly complex systems, in which
system components influence each other in numerous and subtle forms. Under-
standing these dependencies is significantly helped by models, as models make
these dependencies explicit in mathematical formulas. Such analytic transparency
is especially important for the study of effects (e.g., of path selection), as it allows
to trace the causality chain from a root cause to other parts of the complex system,
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thereby enabling a comprehensive understanding. To name a concrete example,
describing a congestion-control algorithm (CCA) in a model allows to identify,
quantify, and explain the effects of a delay measurement in the first order, e.g., the
corresponding rate reduction prescribed by the CCA, and in higher orders, e.g.,
the impact on competitor flows. In contrast to modelling, experiments in general
do not explain equally clearly how the experiment results came about, and might
further complicate the closer investigation of observations by reproducibility issues.

In some cases, models are not only more effective at generating insights than
other methods, but are in fact the only applicable method under practical con-
straints. These cases typically involve global effects in large-scale networks, which
can be predicted by models, but barely with other approaches. For example, an
experimental evaluation of performance effects in large-scale networks requires the
physical construction of such networks, which is out of reach for many researchers.
Similarly, interviewing real-world ISPs might illuminate rational business strategies
from the perspective of an individual ISP, but does not predict the global effects
that arise from interacting individual strategies. In contrast, these macroscopic
effects can be captured by models, both by theoretical analysis and model-based
simulation.

Derive proven guarantees. The analytical transparency of models does not only
yield explainable insights, but also provides high confidence in these insights. This
high confidence can be created by applying mathematical tools to the model, which
then enables rigorous proofs of model properties. For example, applying stability
theory to the fluid model of a CCA allows to prove that the CCA is stable, i.e., that
the CCA is guaranteed to converge. Such guarantees are especially valuable in the
context of the Internet, as Internet disruptions may be caused under circumstances
that are difficult to identify with an intuitive or experiment-based approach.

1.3.2 Challenges

In addition to methodological strengths, models also encounter a number of method-
ological challenges, which receive special attention throughout this dissertation:

Over-abstraction. Models typically represent a simplified version of the targeted
system, as capturing the full system complexity usually makes analysis intractable
for both theoretical investigation and simulation. Such abstraction is a powerful
approach if it reduces complexity while retaining the aspects that most significantly
determine the observations of the system. However, if abstraction is excessive, the



1.4 contributions 11

model becomes unrealistic, and the model-based insights lose relevance for real-
world systems. Hence, modelling research must strike the right balance between
complexity reduction and realism.

Sensitivity to assumptions. As mentioned above, modelling virtually always relies
on simplifying assumptions, namely that certain internal system dependencies are
negligible and need not be represented in the model. Another set of assumptions
is introduced in the numerical instantiation of models, where model variables are
assigned a number to allow quantitative predictions. Both sets of assumptions
may lead to unreliable predictions under excessive model sensitivity, i.e., if model
predictions change considerably even if the assumptions are only slightly modified.
Therefore, models should be developed with the goal of robustness, i.e., the model
predictions should have limited sensitivity to the assumptions made.

1.4 contributions

After championing a model-based approach in the previous section, I demonstrate
in this section that the model-based approach effectively enables a number of im-
portant research contributions. Concretely, the following sections lists the research
insights of my dissertation, gained through the application of modelling to the
research questions from §1.2. These research questions are naturally segmented
into the domains of network performance (§1.4.1) and ISP economics (§1.4.2), Both
these domains are affected by changes in traffic patterns (cf. §1.2) and are associated
with Parts i and ii of this thesis, respectively.

1.4.1 Network Performance

During my doctoral studies, I investigated the performance effects of end-host path
selection and modern congestion control, and arrived at the following insights:

1.4.1.1 Information in End-Host Path Selection

As end-hosts gain path control in the Internet, their self-interested and uncoordi-
nated path-selection decisions will increasingly determine the traffic distribution
across Internet paths.

State of the art. To investigate the efficiency of these distributions, previous work
builds on the classic game-theoretic model of selfish routing [224]. In this model,
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end-hosts play a congestion game by selecting the paths with minimal cost, where
path cost depends on path load. The Nash equilibria of this game then represent the
traffic distributions that can be expected from self-interested path selection. These
equilibrium distributions are compared to socially optimal traffic distributions in
order to compute the Price of Anarchy [148].

Contribution. To allow more specific insights on end-host path selection in the
Internet, I refine the selfish-routing model in two main ways. First, I introduce
two different notions of social optima, capturing the perspectives of end-hosts and
network operators, respectively. Second, I newly distinguish two degrees of path-
information detail that end-hosts possess, and thereby investigate how network
operators could shape path selection by providing information. Intriguingly, I
find that (i) different degrees of information induce different equilibrium traffic
distributions, (ii) more detailed information is not always superior to less detailed
information with respect to the efficiency of the associated equilibria, both for
end-hosts and network operators, and (iii) near-optimal traffic distributions tend to
arise even if end-hosts only have basic latency information that they can measure
themselves.

Research questions. The insights in Chapter 2 are relevant for Research Questions
Q 1 (Path-Selection Efficiency) and Q 4 (Path-Selection Shaping).

1.4.1.2 Incentives in End-Host Path Selection

In addition to path information, incentives play a crucial role regarding the perfor-
mance effects of end-host path selection.

State of the art. Previous research has suggested incentives in the form of prices
in order to improve the efficiency of traffic-distribution equilibria [232]. However,
the role of incentives is curiously under-explored in the context of dynamic path
selection by end-hosts, which is relevant for stability. In dynamic path selection,
the lack of concern for incentives has produced a situation where numerous path-
selection strategies are known to be stable [79, 85], but no strategy is known to be
rational, i.e., suitable for adoption by self-interested end-hosts.

Contribution. Reasoning about self-interest in dynamic path selection requires
a new game-theoretic framework, which is presented in Chapter 3. To develop
that framework, I again leverage the selfish-routing model (as in Chapter 2), but



1.4 contributions 13

additionally consider the dynamic perspective where end-hosts select paths over
time based on outdated load information. In this environment, Chapter 3 evaluates
the stable path-selection strategies from previous research on their rationality under
universal adoption, and finds that these strategies are in fact irrational. Hence, if
a stable path-selection strategy is universally adopted, it becomes worthwhile to
adopt an unstable strategy. As a result, the stable strategy will quickly be abandoned
by self-interested end-hosts, and load oscillation will result from the newly adopted
unstable strategy.

To counter this selfishness-induced instability, Chapter 3 suggests that network
operators take an active role in creating incentives for stability. More concretely,
Chapter 3 presents two stabilization mechanisms, which are provably incentive-
compatible and can be applied by network operators with limited overhead.

Research questions. The insights in Chapter 3 are relevant for Research Questions
Q 2 (Path-Selection Stability) and Q 4 (Path-Selection Shaping).

1.4.1.3 Impact of Unstable Path Selection

While Chapter 3 demonstrates why oscillatory path selection arises and how it
can be disincentivized, the analysis in Chapter 3 does not show why oscillatory
path selection is actually undesirable, i.e., whether and how this oscillation hurts
network performance.

State of the art. In fact, the performance effects of oscillatory path selection are
discussed by surprisingly little previous research, and are generally not well
understood. To analyze these effects, any analysis must take into account that
end-hosts are running congestion-control algorithms in addition to path selection,
as congestion control is a crucial network process that is potentially affected by
oscillation. Representing congestion control requires a departure from the selfish-
routing model used in Chapters 2 and 3, as this model assumes that the sending
rate of any single end-host is infinitesimal and thus effectively static. This limitation
is overcome by fluid models of multi-path congestion-control algorithms [144,
204, 259], such as LIA and OLIA. However, these models investigate fairness and
stability concerns of specific multi-path congestion-control algorithms, rather than
investigating the impact of instability on other network-performance metrics.

Contribution. To close this research gap, Chapter 4 presents a model-based ap-
proach to characterize network performance under unstable path selection. Instead,
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Chapter 4 relies on a model proposed for an axiomatic analysis of congestion
control [268], and extends it with simultaneous path selection. This extension also
has the benefit that the axioms related to the original model can be used for eval-
uation in our context, albeit after some adaptation. These axioms correspond to
performance metrics, rating the equilibrium behavior of joint path selection and
congestion control under a variety of parameters.

This axiomatic approach yields a number of valuable insights. For example,
oscillatory path selection creates a fundamental trade-off between efficiency and
loss avoidance on one side and fairness and responsiveness on the other side.
Furthermore, the model enables to compare network performance under oscillatory
path selection to network performance without any path selection, and suggests for
example that oscillatory path selection may reduce packet loss in some scenarios.

Research questions. The insights in Chapter 4 are relevant for Research Questions
Q 3 (Performance under Unstable Path Selection) and Q 6 (Congestion-Control
Methodology).

1.4.1.4 BBR Dyamics

Among the modern CCAs with real-world deployment (cf. §1.1.2), Google’s BBR
algorithm is most widely used with an estimated adoption by 40% of Internet
downstream traffic [180].

State of the art. Despite this significance for Internet performance, BBR perfor-
mance has been incompletely described by previous research, due to methodological
limitations. For one, experiment-based studies test BBR implementations in real
networks, and thus face a trade-off regarding the number and scale of evaluated set-
tings: Building more diverse and larger test networks achieves more generalizable
results, but also incurs higher experiment cost. In contrast, model-based research
avoids the need to build physical networks. However, the models in previous
research exclusively describe the steady state of BBR, and therefore cannot describe
transient phenomena such as short flows or BBR convergence.

Contribution. These gaps in BBR understanding call for a fluid-model approach,
which is pursued for the first time in Chapter 5. More precisely, Chapter 5 presents
the first fluid model of both BBRv1 and BBRv2, consisting of differential equations
that describe CCA behavior over time. This fluid model lends itself to both efficient
simulation and theoretical stability analysis, and therefore enables important in-
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sights into the efficiency, fairness, and stability of BBR. Of course, the correctness
of these insights relies on the accuracy of the fluid model, which is, however,
confirmed by (i) an experimental validation of fluid-model predictions in diverse
network scenarios, and (ii) the fluid-model reproduction of numerous insights from
prior research. Besides these previous insights, the fluid model also yields new
insights, for example regarding (i) a bufferbloat issue in BBRv2, (ii) unfairness
of BBRv2 towards loss-based CCAs under a random-early-drop (RED) queuing
discipline, and (iii) the provable convergence of BBRv1 and BBRv2.

Research questions. The insights in Chapter 5 are relevant for Research Questions
Q 5 (Congestion-Control Performance) and Q 6 (Congestion-Control Methodology).

1.4.1.5 BBR/CUBIC Competition

Among the numerous performance considerations regarding BBR, the issue that
has received most attention is the fairness of BBR towards traditional loss-based
CCAs in general, and the CUBIC algorithm in particular.

State of the art. This competition between BBR and CUBIC has previously been
investigated by both experiment-based analyses [119, 231] and model-based re-
search [181, 254], and has even inspired a new harm-based fairness notion [255].
However, previous model-based research is exclusively based on steady-state mod-
els, i.e., models that identify equilibria of the competition dynamics and make
fairness predictions based on these equilibria.

Contribution. However, this fairness is more accurately predicted by dynamic
fluid models than by previous steady-state models, as Chapter 6 demonstrates.
Intriguingly, dynamics are important for fairness prediction because the competition
of BBR flows and CUBIC flows may suffer from persistent load oscillation, i.e.,
alternating up- and down-swings of CCA-specific throughput, and frequently do
not even converge to equilibria. This oscillation is not only predicted by fluid-model
simulation, but also explained and quantified by a theoretical stability analysis
based on the fluid model. In particular, the fluid model illustrates that the oscillation
is created by the periodic RTT measurements by the BBR flows, which is distorted
by the competing flows: If the CUBIC flows heavily utilize the buffer when the
BBR flows are measuring their RTT, the resulting high RTT measurements cause a
high BBR rate and a low CUBIC rate; if the BBR flows then probe the RTT again,
the CUBIC flows do not heavily utilize the buffer anymore, and the sending rates
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evolve in the reverse direction. While this oscillation cause could also be identified
by a qualitative algorithm analysis, the fluid-model analysis additionally identifies
quantitative network conditions under which the oscillation provably arises. More
formally, under some network conditions, the joint dynamics of BBR and CUBIC
flows are unstable, which Chapter 6 proves with a combination of Lyapunov theory,
center-manifold theory, and fixed-point iteration. Unfortunately, these network
conditions are frequently satisfied in common networks, and the oscillation issue is
not easily remedied by BBR modifications, as Chapter 6 demonstrates.

Research questions. The insights in Chapter 6 are relevant for Research Questions
Q 5 (Congestion-Control Performance) and Q 6 (Congestion-Control Methodology).

1.4.2 ISP Economics

Besides the insights on network performance in §1.4.1, my doctoral research also
yields insights on ISP economics. Concretely, I made the following contributions
towards understanding how Internet path selection affects economic cooperation
and competition among ISPs:

1.4.2.1 Interconnection Agreements

Cooperation among ISPs is most concretely embodied by interconnection agree-
ments, in which ISPs record the conditions for mutual traffic forwarding.

State of the art. Clearly, these interconnection agreements are only concluded if
the agreement conditions are viable in both technical and economic terms: The
agreements must neither lead to routing instability nor to monetary loss for any
agreement party. To respect both of these concerns, interconnection agreements
in today’s Internet are restricted by the so-called Gao-Rexford conditions in the
traditional Internet [91]. These conditions rule out intermediation between providers
or peers, guarantee BGP convergence, and ensure that any ISP is compensated for
its transit service.

Contribution. Given this significance of the Gao-Rexford conditions, Chapter 7

re-evaluates these conditions in the context of emerging path-aware Internet archi-
tectures, and arrives at an interesting observation: Intriguingly, path-aware Internet
architectures render the Gao-Rexford conditions obsolete from a technical perspec-
tive, because these architectures achieve convergence of path discovery by design.
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However, path-aware Internet architectures still need to respect the economic self-
interest of ISPs, which is protected by the Gao-Rexford conditions today. Therefore,
path-aware Internet architectures enable interconnection agreements that violate
the Gao-Rexford conditions and thereby increase path diversity – that is, if these
agreements can be made economically viable.

To tackle this challenge, Chapter 7 proposes agreement structures in which
peers provide each other with access to their respective peers or providers, and
thereby allow mutual benefit from the agreement. To not only allow, but also
ensure mutual benefit, Chapter 7 extends this basic agreement idea with either
(i) volume targets for transit flows or (ii) measures for financial compensation.
Based on these conditions, efficient and fair agreements can be constructed, but
only if the agreement parties truthfully report the utility that they derive from the
agreement. However, this truthfulness cannot be expected in inter-ISP negotiation,
especially as ISPs usually benefit from understating their agreement utility. To
actively incentivize truthfulness, Chapter 7 also proposes a bargaining mechanism
that structures the negotiation and thereby makes the conclusion of efficient and fair
agreements more likely. Such facilitation of agreements is very valuable in terms of
path diversity, which is also shown by an Internet topology analysis in Chapter 7:
With universal conclusion of the proposed agreements, 50% of autonomous-system
pairs would reduce latency between them, and 35% of AS pairs would obtain more
bandwidth between them, compared to today.

Research questions. The insights in Chapter 7 are relevant for Research Questions
Q 7 (Interconnection Agreements) and Q 8 (ISP Cooperation).

1.4.2.2 ISP Quality Competition

Importantly, the ISP cooperation mentioned above is embedded in an environ-
ment of competition. ISP competition arises from path selection, where this path
selection is performed by autonomous systems (ASes) during route discovery, and
additionally by end-hosts during data forwarding in future path-aware Internet
architectures. Path-selecting entities of any kind base their selection at least in part
on the quality of paths. Broadly understood, this quality may encompass aspects
related to performance (e.g., bandwidth, latency, and jitter), security (e.g., presence
of security middleboxes), sustainability (e.g., carbon emission), and legal matters
(e.g., traversed jurisdictions). Clearly, these quality attributes can be improved by
on-path ISPs in order to attract traffic and increase revenue, but these improvements
also come at a cost. Hence, ISPs face the complex challenge of dimensioning their



18 introduction

quality investments, in the context of investment decisions by both competing ISPs
on alternative paths and other ISPs on the same paths.

State of the art. While multiple models for ISP competition already exist, these
previous models fail to represent important aspects of ISP competition. For ex-
ample, previous models neglect that (i) transmission quality in the wider sense is
determined by a combination of multiple attributes, (ii) quality attributes may have
different impacts on fixed and variable cost of an ISP, and (ii) multiple self-interested
ISPs jointly provide the paths to the path-selecting entities.

Contribution. To better inform quality-investment decisions and better understand
the global effects of ISP quality competition, Chapter 8 presents a new game-
theoretic model of ISP quality competition in networks. This model reflects the
important competition aspects mentioned above, among other aspects neglected
by previous models. Based on this model, Chapter 8 yields a variety of interesting
insights, e.g., regarding the conditions under which ISP competition is beneficial
or detrimental to path quality, regarding the profit impact of ISP competition, and
regarding the prisoner’s dilemma among ISPs on the same path. These insights
are confirmed by both a theoretical analysis, which identifies asymptotically stable
competition equilibria, and a simulation-based case study, which instantiates the
model based on real-world data.

Research questions. The insights in Chapter 8 are relevant for Research Questions
Q 8 (ISP Cooperation) and Q 9 (ISP Competition).

1.5 methodology

While the preceding section provides an overview of the insights gained during
my doctoral research, the section at hand provides an overview of the methods
applied to gain these insights. In particular, this section presents the modelling
choices made in the individual chapters, which are summarized in Table 1.1.

As Table 1.1 suggests, model design involves a number of fundamental choices
that determine the model suitability for specific research questions, and the model
complexity. In this thesis, the fundamental model-design questions include:

Agents. What real-world entities are agents in the model, i.e., decision makers?

Options. What options do agents in the model have in their decisions?
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Rationality. To which extent are the model agents rational in a game-theoretic
sense, i.e., self-interested and able to optimize decisions?

Time. How is time represented in the model?

In the following, I will discuss each model-design question in detail, and justify
the model-design decisions made in the individual chapters.

1.5.1 Agents

Agents, i.e., decision-making units, come in various forms throughout this thesis:

End-hosts. In all models in Chapters 2–4, decisions are made by end-hosts, i.e.,
systems that sit at the edge of the network, and exclusively use the network
for reaching other end-hosts, rather than contributing to the network via data
forwarding. End-hosts are the natural agents in modelling end-host path selection,
which is the subject of Chapters 2–4.

Flows. The models in Chapters 5 and 6 allow for decisions to be made by network
flows, understood here as the system at an end-host, controlling the data trans-
mission over a single path towards another end-host. Given this definition, flows
are more limited agents than end-hosts, but have sufficient agency to express the
(single-path) congestion-control functionality investigated in Chapters 5 and 6.

ISPs. Since Part ii covers ISP economics, the agents in the corresponding models
are ISPs, i.e., organizations that optimize profit, and have both technical abili-
ties (e.g., forwarding traffic to neighbors) and economic abilities (e.g., agreement
negotiation, monetary transfers, investments).

1.5.2 Options

The agents from the preceding sections have a variety of decision options, depend-
ing on the research question:

Path. In the models for end-host path selection in Chapters 2–4, the end-host
agents in the models naturally decide on the path used for data forwarding. This
path decision is either one-off in the static model of Chapter 2, or varied over time
in the dynamic models of Chapters 3 and 4.
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Rate. For agents in congestion-control models (Chapters 4–6), the key decision is
how to adapt the sending rate over time. This decision is intertwined with path
selection in the model of Chapter 4, and is independent of path selection in the
models of Chapters 5 and 6.

Negotiation offer. Chapter 7 models the negotiation of interconnection agreements
between self-interested and intransparent ISPs. Hence, the ISP agents in this model
control the offer with which they enter the negotiation, where an offer may contain
(i) a set of forwarding paths, or (ii) demands for traffic-volume limits or monetary
compensation.

Quality attributes. Finally, the ISP agents in Chapter 8 try to optimize their profit
by adapting various aspects of transmission quality, based on attractiveness and
cost of these quality indicators. Hence, these quality attributes represent the space
of decision options in the model of Chapter 8.

1.5.3 Rationality

When deciding on options for action, agents follow a rationality notion:

Algorithm compliance. The congestion-control chapters in Chapters 4–6 of this
work do not involve self-interested agents which evaluate decision options for their
own benefit. Instead, the agents (flows) in the respective models comply with the
rate adaption prescribed by the congestion-control algorithm.

Full rationality. If agents are considered self-interested, the standard assumption
is that these agents are fully rational, i.e., the agents have the capability to identify
the optimal decision option from their individual perspective. This assumption of
full rationality is attractive for its intrinsic simplicity, and the simplifying effects on
theoretical analysis. Hence, full rationality is assumed in the theoretical analyses
of Chapters 2, 3, 7, and 8.

Bounded rationality. The alternative to the full-rationality assumption is given by
bounded rationality, describing a limited capacity to identify the decision option
that best satisfies self-interest. While such bounded rationality is potentially more
realistic, the bounding of rationality requires that the limitations of agent rationality
are specified and justified. In this thesis, bounded rationality is assumed in two
chapters for varying reasons. In Chapter 4, the agents have bounded rationality
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because they follow a simple greedy strategy for path selection, although this strat-
egy is sub-optimal. However, this strategy is guaranteed to lead to load oscillation,
which is the object of investigation in Chapter 4. In contrast, Chapter 8 uses a
bounded-rationality assumption for a large-scale simulation, where the ISP agents
can only identify a strategy that improves their profit compared to their current
strategy, but not identify the profit-optimal strategy. Limiting the agents in this
manner enables tractability of the simulation, as identifying a profit-improving
strategy is computationally cheaper than identifying the profit-optimal strategy.

1.5.4 Time

The final model choice concerns the representation of time:

No time. Static models do not represent the temporal evolution of agent decisions
at all, which is sufficient for some research questions. In particular, the model
in Chapter 2 is supposed to predict the equilibrium traffic distributions under end-
host path selection, but does not need to represent how end-hosts arrive at these
distributions. Similarly, the model in Chapter 7 is used to construct interconnection
agreements that are acceptable to the negotiating parties, which does not require to
understand the process of negotiation over time.

Continuous time. If a model should describe dynamic phenomena, continuous
time is the most realistic time notion possible. However, representing continuous
time requires specialized mathematical tools in the models: In this thesis, a notion
of continuous time is achieved whenever the model relies on differential equations,
i.e., in Chapters 3, 5, 6, and 8.

Discrete time. When constructing a model, various reasons may make it preferable
to represent time in a discrete fashion, i.e., as a series of time steps, rather than
continuously. In this thesis, a discrete-time notion is applied in Chapters 4, 6, and
8, for different reasons. In Chapter 4, time is discretized because the model in
the chapter extends a previous axiomatic model [268], which uses a time-stepped
model of congestion-control algorithms for simplicity. In Chapter 6, part of the
model relies on fixed-point iteration over discrete time because the underlying
real-world process in BBR actually proceeds in discrete steps. Finally, Chapter 8

employs a discrete-time notion in its simulation part, which relies on step-wise
better-response dynamics to accelerate convergence.
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Chapter Agent
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Table 1.1: Overview of modelling choices.
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In recent years, Internet traffic patterns have been increasingly reshaped by two
emerging paradigms that promise to improve network performance, namely end-
host path selection and competitive latency-sensitive congestion control. These
new paradigms affect Internet traffic patterns in two main aspects. First, end-host
path selection affects the distribution of traffic across the Internet topology, as
multi-homing and emerging path-aware network architectures such as SCION [138,
149] allow end-hosts to select between inter-domain forwarding paths. Second,
modern congestion-control algorithms increasingly govern the evolution of traffic
volumes over time, where the most prominent algorithms BBR [47, 50, 52], PCC [75],
and Copa [29] are all latency-sensitive while still being competitive with traditional
loss-based algorithms.

Both end-host path selection and modern congestion-control algorithms have
been experimentally evaluated in controlled settings, showing significant perfor-
mance benefits. However, the performance implications of both approaches are
much less studied on an analytical level, i.e., using mathematical methods that
can provide proven guarantees. However, such a theoretical understanding is es-
sential for a responsible global deployment of new Internet technologies, as an
analytic perspective might highlight performance issues that are not revealed by
experiments in managed environments.

In this thesis part, I employ an analytic approach to investigate the following
performance-relevant aspects of end-host path selection and congestion control:

Information in end-host path selection. Given path control, end-hosts can perform
load-adaptive path selection in a selfish fashion, which influences the traffic distri-
bution across the network topology. The efficiency of this distribution depends on
the path information provided to end-hosts, which begs the question: What kind of
path information leads to globally desirable traffic distributions? To answer this
question, Chapter 2 extends the classic selfish-routing literature by introducing dif-
fering degrees of path-information detail, and by contrasting the equilibrium traffic
distributions induced by different information degrees. Surprisingly, information
that can be directly measured by end-hosts themselves (i.e., path latency) induces
near-optimal traffic distributions in many realistic scenarios, whereas more detailed
information even tends to cause less efficient traffic distributions.

25
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Incentives in end-host path selection. The selfish and strategic behavior of end-hosts
does not only affect the equilibrium traffic distribution, but also the path-selection
dynamics outside of this steady state. In particular, selfish load-adaptive path
selection causes load oscillation unless the end-hosts have an incentive to adopt
a stable path-selection strategy. Interestingly, Chapter 3 demonstrates that end-
hosts generally have no such incentive, because deviating end-hosts improve their
performance with unstable strategies if all other end-hosts adopt stable strategies.
Hence, network operators have to create an incentive for adopting stable path-
selection strategies by means of incentive-compatible stabilization mechanisms,
also introduced by Chapter 3.

Impact of unstable path selection. While Chapter 3 demonstrates how unstable path
selection can be prevented by network operators, it does not demonstrate the
performance benefits of this stabilization. To quantify such potential benefits, the
performance impact of unstable path selection must first be properly understood.
To that end, Chapter 4 presents a model that captures both the dynamics of
oscillatory path-selection and the dynamics of parallel congestion control, as the
interaction of these two control loops is significant for performance. The model
then allows to quantify the performance effects of this oscillatory path selection
by leveraging an axiomatic approach, suggesting that oscillatory path selection
introduces fundamental trade-offs between key objectives of network performance.

BBR dynamics. While Chapter 4 discusses congestion control only as a complicat-
ing factor for path selection, congestion control is a crucial subject for the future
Internet in its own right, especially since multiple novel congestion-control al-
gorithms have recently been proposed and deployed. Among these algorithms,
Google’s BBR algorithm is the most prominent example, as BBR governs around
40% of downstream Internet traffic. This wide deployment makes understanding
the behavior and the limitations of BBR consequential for the Internet. Chapter 5

contributes to this understanding by presenting a new fluid model for both BBR
versions, based on novel modeling techniques, and by leveraging the model for both
extensive simulation and theoretical stability analysis. This two-fold investigation
confirms findings from previous research (e.g., BBR unfairness in shallow buffers),
yields new insights into BBR behavior (e.g., bufferbloat in BBRv2, asymptotic
stability), and thereby underlines the methodological utility of fluid models.

BBR/CUBIC competition dynamics. Based on the fluid model in Chapter 5, Chap-
ter 6 presents further analysis of a crucial aspect of BBR, namely its fairness towards



part overview 27

CUBIC, the de-facto standard CCA in the Internet. Since the fluid model allows
to represent the competition of BBR and CUBIC over time, the model reveals that
BBR/CUBIC competition suffers from persistent load oscillation. This susceptibility
to oscillation is also rigorously proven by means of control theory, and is not easily
remediable without further drawbacks in term of fairness or performance.





2
I N F O R M AT I O N I N E N D - H O S T PAT H S E L E C T I O N

2.1 introduction

Traditional Internet infrastructure is based on a forwarding mechanism that grants
almost exclusive control to the network and almost no control to users (or end-hosts).
In fact, all communication from a given end-host to another end-host takes place
over the single AS-level path that BGP (Border Gateway Protocol) converged on. In
the upcoming paradigm of end-host path selection [245], however, network operators
supply end-hosts with a pre-selected set of paths to a destination, enabling end-
hosts to select a forwarding path themselves (cf. Fig. 2.1).

End-host path selection allows end-hosts to select paths tailored to their applica-
tion requirements, or to quickly switch to an alternative path upon link failures.
However, a widely shared concern about end-host path selection regards the loss of
control by network operators, which fear that the traffic distribution resulting from
individual user decisions might impose considerable cost on both themselves and
their customers. Another concern is that end-hosts require path-load information

A2

A3

A4

p

A1 A5

e1

e2

(a) Network-based path selection.

A1

A2

A3

A4

p1

p2

p3

A5

e1

e2

(b) End-host path selection.

Figure 2.1: Network-based vs. end-host path selection. Decision makers (ASes Ai or end-
hosts ei) in the respective paradigms are marked with a double border.
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in order to perform path selection effectively, necessitating complex and expensive
systems for the dissemination of network-state information.

To investigate the validity of these concerns, we refine and extend concepts from
the selfish-routing literature in this chapter. This literature on selfish routing is
based on the observation that the uncoordinated path selection by selfish agents can
produce sub-optimal traffic allocations in networks [221, 222, 224]. While seminal
work on such game-theoretic analyses dates back to Wardrop [253], especially
the notion of Price of Anarchy, coined by Koutsoupias and Papadimitriou [148],
has received much attention: the Price of Anarchy compares the worst possible
outcome of individual decision making, i.e., the worst Nash equilibrium, to the
global optimum, by taking the corresponding cost ratio. The Price of Anarchy in
network path selection is typically measured in terms of latency.

In this chapter, we revisit these concepts to investigate one key aspect which
has been less explored in the literature so far and is highly relevant for newly
emerging path-aware network architectures, namely the impact of information that
end-hosts possess about the congestion state of network links. A fundamental
design question of network architectures concerns which information about the
network state should be shared with end-hosts, beyond the latency information
that can be observed by the end-hosts directly.

2.1.1 Contributions

This chapter is based on my publication at SIROCCO 2020 [1]. It presents a game-
theoretic model (§2.2) that quantifies not only the Price of Anarchy experienced
by end-hosts, but also accounts for the network operators. Furthermore, we use
our model to explore how end-host information about the network state affects the
Price of Anarchy.

We find that different levels of information indeed lead to different Nash equi-
libria and thus also to different Prices of Anarchy. Intriguingly, we find that while
more information can improve the efficiency of selfish routing in networks with few
end-hosts (§2.3), more information tends to induce a higher Price of Anarchy in more
general settings (§2.4). Indeed, near-optimal outcomes are typically achieved if end-
hosts select paths based on simple latency measurements of different paths. These
theoretical results suggest that end-host path selection cannot only achieve a good
network performance in selfish contexts, but can be realized in a fairly light-weight
manner, avoiding the need to distribute much information about the network state.
This insight is validated with a case study on the Abilene topology (§2.5).
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2.2 model and first insights

In this section, we present a network model of path-aware networking architectures
(§2.2.1), define the social optima from both the end-host perspective and the
network-operator perspective (§2.2.2), formalize different degrees of information
(§2.2.3) and characterize Nash equilibria based on these different information
assumptions (§2.2.4). Finally, we leverage the concept of the Price of Anarchy
(§2.2.5) to establish a new concept that we call the Value of Information (§2.2.6).

2.2.1 Model

Wardrop Model. As in previous work on selfish routing [85, 224], our model is
inspired by the classic Wardrop model [253]. In this model, the network is abstracted
as a graph G = (A, L), where the edges ℓ ∈ L between the nodes Ai ∈ A represent
links. Every link ℓ ∈ L is described by a link-cost function cℓ( fℓ), where fℓ is the
amount of load on link ℓ, i.e., a link flow. Typically, link-cost functions are seen as
describing the latency behavior of a link. To reflect queuing dynamics, link cost
functions are convex and non-decreasing. For every node pair (Ai, Aj), there is
a set of paths P(Ai, Aj) that contains all non-circular paths between Ai and Aj.
Between any node pair (Ai, Aj), a demand d is shared by infinitely many agents,
where each agent is controlling an infinitesimal share of traffic.

End-host-in-AS Model. However, the traditional Wardrop model is not suitable to
analyze traffic dynamics in an Internet context, where autonomous systems (ASes)
accommodate end-hosts. We thus adapt the Wardrop model into a more realistic
model as follows. First, an AS Ai ∈ A is represented by a node in the network
graph G. The AS contains a set of end-hosts, which are the players in the path-
selection game. Differently than in the Wardrop model, we allow for non-negligible,
heterogeneous demand between end-host pairs in order to accommodate the
variance of demand in the Internet. For example in origin-destination pair od =
(es, et) ∈ OD (short: (s, t)), an end-host es ∈ Ai can have a demand ds,t ≥ 0 towards
another end-host et ∈ Aj. We also deviate from the Wardrop model by considering a
multi-path setting, where the demand ds,t of one agent can be arbitrarily distributed
over all paths p ∈ P(Ai, Aj). The amount of flow from end-host es to end-host et
on path p ∈ P(Ai, Aj) is denoted as a path flow F(s,t),p, which must be non-negative,
with ∑p∈P(Ai ,Aj)

F(s,t),p = ds,t. The set Π(es, et) ⊆ Π contains all end-host paths

of the form π =
[
(s, t), p

]
, where es, et are end-hosts connected by the AS-level

path p. All path flows F(s,t),p for an origin-destination pair (es, et) are collected in a



32 information in end-host path selection

Table 2.1: Notation used in our model in alphabetic order.

Symbol Description

Ai ∈ A Set of autonomous systems (ASes)

Cπ(F) Cost of path π (based on path-flow pattern F)

C∗(F) Social cost to end-hosts

C∗
(e)(F) Total cost to end-host e

C#(F) Social cost to network operators

cℓ( fℓ) Cost of link ℓ (based on link flow fℓ)

ds,t Demand of end-host es towards end-host et

F Path-flow pattern (Demand distribution onto paths)

F∗ Social optimum for end-hosts

F# Social optimum for network operators

F0 Nash equilibrium under the LI assumption

F+ Nash equilibrium under the PI assumption

Fπ Flow on path π

fℓ Flow on link ℓ

ℓ ∈ L Set of inter-AS links

od = (es, et) ∈ OD Set of end-host origin-destination pairs

PoA∗0 Price of Anarchy to end-hosts under the LI assumption

PoA∗+ Price of Anarchy to end-hosts under the PI assumption

PoA#0 Price of Anarchy to network operators under the LI assumption

PoA#+ Price of Anarchy to network operators under the PI assumption

p ∈ P(Ai, Aj) Set of AS-level paths between ASes Ai and Aj

π = [(s, t), p] ∈ Π Set of paths between end-hosts

VoI∗ Value of Information to end-hosts

VoI# Value of Information to network operators
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path-flow vector Fs,t ∈ R|Π(es ,et)|. All such path-flow vectors Fs,t are collected in the
global path-flow pattern F ∈ R|Π|. A link flow fℓ for link ℓ ∈ L is the sum of the path
flows in F that refer to end-host paths π containing link ℓ, i.e., fℓ = ∑π∈Π:ℓ∈π Fπ .

Cost functions. The cost Cπ of an end-host path π given a certain path-flow pattern
F is the sum of the cost of all links in the path: Cπ(F) = ∑ℓ∈π cℓ( fℓ). The cost to
end-hosts C∗(F) from a path-flow pattern F is the latency experienced by all end-
hosts on all the paths to all of their destinations, weighted by the amount of traffic
that goes over a given path. This term can be simplified as follows:

C∗(F) = ∑
(s,t)∈OD

∑
π∈Π(s,t)

Fπ · Cπ(F) = ∑
π∈Π

Fπ · ∑
ℓ∈π

cℓ( fℓ) = ∑
ℓ∈L

fℓ · cℓ( fℓ) (2.1)

Existing work on selfish routing [222, 224] usually defines total cost in the above
sense. However, when analyzing end-host path selection architectures, the network-
operator perspective on social cost is essential. Therefore, we also introduce a social
cost function relating to the perspective of network operators.

The basic idea of the network-operator cost function C# is to treat links as
investment assets. Thus, the business performance of a link ℓ is given by a function
p#
ℓ( fℓ) = b#

ℓ( fℓ) − c#
ℓ( fℓ), where b#

ℓ and c#
ℓ are the benefits and costs of a link,

respectively. As we investigate effects on the aggregate of network operators, we
model the network-operator cost function as follows:

C#(F) = ∑
ℓ∈L
−p#

ℓ( fℓ) = ∑
ℓ∈L

c#
ℓ( fℓ)− b#

ℓ( fℓ) = ∑
ℓ∈L

cℓ( fℓ) (2.2)

We justify this formulation as follows. Concerning link costs c#
ℓ , a central insight

is that network-operator costs mostly stem from heavily used links. In volume-
based interconnection agreements, excessive usage of a link induces high charges,
whereas in peering agreements, excessive usage violates the agreement and triggers
expensive renegotiation. Moreover, heavy usage necessitates expensive capacity
upgrades. As the latency function cℓ( fℓ) indicates the congestion level on link ℓ, we
approximate c#

ℓ ≈ cℓ. The link benefit b#
ℓ captures the link revenue, both revenue

from customer ASes and customer end-hosts. In the aggregate, the monetary
transfers between ASes (charges paid and received) sum up to zero. Given a fixed
market size, the revenue from end-hosts sums up to a constant in the aggregate.
Hence, the global benefit ∑ℓ∈L b#

ℓ is constant and can be dropped, as the absolute
level of the network-operator cost is irrelevant for our purposes. This convex
formulation of C# allows theoretical analysis.
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Figure 2.2: Example network illustrating the end-host path selection model.

2.2.2 Social Optima

According to Wardrop [67, 253], a socially optimal traffic distribution is reached
if and only if the total cost cannot be reduced by moving traffic from one path to
another. In the optimum, the cost increase on an additionally loaded path at least
outweighs the cost reduction from a relieved path. Because the cost functions are
convex and non-decreasing, it suffices that this condition holds for an infinitesimal
traffic share. Adding an infinitesimal amount to the argument of a cost function
imposes a marginal cost, given by the derivative of the cost function. A socially
optimal traffic distribution is thus reached if and only if the marginal cost of
every alternative path is not smaller than the marginal cost of the currently used
paths [67]:

Definition 2.1 Social Optimum. A path-flow pattern F represents a social optimum
w.r.t. cost function C if and only if for every origin-destination pair od ∈ OD, the
paths π1, ..., πi, πi+1, ..., π|Π(od)| ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C(F) = ... =
∂

∂Fπi

C(F) ≤ ∂

∂Fπi+1

C(F) ≤ ... ≤ ∂

∂Fπ|Π(od)|
C(F) (2.3)

Fπ > 0 for π = π1, ..., πi, Fπ = 0 for π = πi+1, ..., π|Π(od)|.

In this work, we refine the conventional notion of the social optimum by distin-
guishing two different perspectives on social cost: The end-host optimum F∗ satisfies
the above conditions with respect to the function C∗, whereas the network-operator
optimum F# satisfies the above conditions with respect to function C#.

Interestingly, the end-host optimum F∗ and the network-operator optimum F#

can differ substantially. Assume that end-host e1 in Figure 2.2 has a demand of
d1,4 = 1 towards end-host e4 and that there is no other traffic in the network.
The network-operator cost function C#(F) is 1 + F2

γβ + Fγβ and is minimized by
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O De

α: cα( fα) = fα +
1
2

β: cβ( fβ) = 2

fα − Fα = 1
fβ − Fβ = 1

Figure 2.3: Example illustrating the different degrees of end-host information.

F# = (1, 0)⊤, i.e., by sending all traffic over link α. In contrast, the end-host cost
function is Fα + F3

γβ + F2
γβ and is minimized by F∗ = (2/3, 1/3)⊤, i.e., by sending

two thirds of traffic over link α and the remaining third over path γβ.

2.2.3 Degrees of Information

In this chapter, we consider the following two assumptions on the network infor-
mation possessed by end-hosts:

• Latency-only information (LI): End-hosts know the latency of every path to a
destination.

• Perfect information (PI): End-hosts know not only the latency of different paths,
but also how the latency of the network links depends on the current load, i.e.,
the latency functions. Moreover, the end-hosts know the current link utilization,
i.e., the background traffic.

The LI assumption hence reflects a scenario where end-hosts have to rely solely
on latency measurements of paths, i.e., through RTT measurements from their own
device. The LI assumption is the standard model traditionally considered in the
selfish routing literature [88, 148, 224].

In this work, we extend the standard model by introducing the concept of perfect
information (PI). The PI assumption reflects a scenario where end-hosts can always
take the best traffic-allocation decision in selfish terms. More specifically, the PI
assumption allows end-hosts to compute the marginal cost of a path. In path-aware
networking, supplying end-hosts with perfect information is possible, as such
information is known by network operators and can be disseminated along with
path information.

Figure 2.3 illustrates the difference between the LI assumption and the PI as-
sumption. Assume that end-host e, residing in AS O, has a demand of d = 1 to a
destination in AS D. End-host e can split its traffic between two paths α and β, both
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consisting of a single link with the cost functions cα (linear) and cβ (constant). The
background traffic (traffic not from end-host e) is 1 on both paths. Assuming the
traffic allocation of end-host e is (Fα, Fβ) = (0.5, 0.5), the path-latency values are
given by cα(0.5 + 1) = 2 and cβ(0.5 + 1) = 2. Given the LI assumption, end-host e
performs no traffic reallocation, as there is no lower-cost alternative path which
traffic could be shifted to. Moreover, there is no method for predicting the path costs
for a different traffic allocation. However, such a prediction is possible with perfect
information (PI): under the PI assumption, end-host e knows the cost functions and
the background traffic such that it can optimize the objective

C∗(e)(Fα) =Fα · cα(Fα + 1) + (d− Fα) · cβ(d− Fα + 1)

=Fα · (Fα + 1 +
1
2
) + (1− Fα) · 2.

(2.4)

As a result, end-host e discovers the optimal traffic assignment (0.25, 0.75). Intrigu-
ingly, the more detailed perfect information (PI) enables end-host e to detect an
optimization that it cannot directly observe with latency values only (LI).

2.2.4 Nash Equilibria

In general, uncoordinated actions of selfish end-hosts do not result in socially
optimal traffic allocations. Instead, the only stable states that arise in selfish path
selection are Nash equilibria, i.e., situations in which no end-host perceives an
opportunity to reduce its selfish cost by unilaterally reallocating traffic. However,
as shown in §2.2.3, the degree of available information (LI or PI) strongly influences
the optimization opportunities that an end-host perceives. Therefore, different
information assumptions induce different types of Nash equlibria:

LI equilibrium. An end-host restricted to latency measurements will shift traffic
from high-cost paths to low-cost paths whenever there is a cost discrepancy between
paths, and will stop reallocating traffic whenever there is no lower-cost path
anymore which the traffic could be shifted to. In the latter situation, an end-host
under the LI assumption cannot perceive any way of reducing its selfish cost. We
thus define a Nash equilibrium under the LI assumption (short: LI equilibrium):
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Definition 2.2 LI Equilibrium. A path-flow pattern F represents an LI equilib-
rium F0 if and only if for every origin-destination pair od ∈ OD, the paths π1, ..., πi,
πi+1, ..., π|Π(od)| ∈ Π(od) have the following relationship:

Cπ1(F) = ... = Cπi (F) ≤ Cπi+1(F) ≤ ... ≤ Cπ|Π(od)|(F) (2.5)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|

Traditionally, the selfish-routing literature [88, 221, 224] considers a Nash equilib-
rium in the sense of the LI equilibrium, namely an equilibrium defined by the cost
equality of all used paths to a destination. Under this classical definition, selfish
routing is an instance of a potential game [227].

PI Equilibrium. We contrast the classical equilibrium (LI equilibrium) with a dif-
ferent equilibrium definition that builds on our new concept of perfect information
(PI). As explained in §2.2.3, the PI assumption states that end-hosts do not only
possess cost information of available paths to a destination, but are informed about
the cost functions of all links in the available paths, as well as the background
traffic on these links, i.e., the arguments to the cost functions. An end-host can
thus calculate the selfish cost of a specific traffic reallocation and find the path-flow
pattern that minimizes the end-host’s selfish cost.

The selfish cost C∗(e)(F) of end-host e is given by the cost of all paths to all desired
destinations, weighted by the amount of flow relevant to end-host e:

C∗(e)(F) = ∑
ℓ∈L

fℓ,(e) · cℓ( fℓ) (2.6)

where fℓ,(e) is the flow volume on link ℓ for which e is origin or destination.
Similar to the end-host social cost function C∗ of which it is a partial term, C∗(e) has

a minimum that is characterized by a marginal-cost equality. An equilibrium under
the PI assumption is thus given if and only if all end-hosts are at the minimum of
their respective selfish cost functions, given the traffic by all other end-hosts:
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LI equilibrium PI equilibrium

End-host perspective PoA∗0 = C∗(F0)
C∗(F∗) PoA∗+ = C∗(F+)

C∗(F∗)

Network-operator perspective PoA#0 = C#(F0)
C#(F#)

PoA#+ = C#(F+)
C#(F#)

Table 2.2: Different versions of the Price of Anarchy.

Definition 2.3 PI Equilibrium. A path-flow pattern F represents a PI equilibrium
F+ if and only if for every origin-destination pair od = (e, _) ∈ OD, the paths
π1, ..., πi, πi+1, ..., πP ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C∗(e)(F) = ... =
∂

∂Fπi

C∗(e) ≤
∂

∂Fπi+1

C∗(e) ≤ ... ≤ ∂

∂Fπ|Π(od)|
C∗(e) (2.7)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|

2.2.5 Price of Anarchy

A natural way of analyzing the efficiency of selfish routing is to compare the social
optima and the equilibria in a network. Typically, such a comparison involves
computing the Price of Anarchy (PoA), i.e., the ratio of the equilibrium cost and the
optimal cost. By definition of the optimal cost, this ratio is never lower than 1.

In our model, the classical Price of Anarchy from the existing literature reflects a
comparison of the end-host cost C∗ of the LI equilibrium F0 and the end-host cost
C∗ of the end-host optimum F∗. With the additional versions of social optima and
equilibria established in the preceding sections, a total of four different variants of
the Price of Anarchy are possible, one for each combination of equilibrium (LI or
PI) and perspective (end-hosts or network operators). These Prices of Anarchy are
presented in Table 2.2.

2.2.6 Value of Information

To compare different equilibria for different information assumptions, we introduce
the Value of Information (VoI). For a given perspective, the Value of Information is
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eK

α1: cα1( fα1) = dp

αm: cαm( fαm) = dp
...

β: cβ( fβ) = f p
β

...

Figure 2.4: Example network with beneficial impact of end-host information.

the difference between the Prices of Anarchy under the LI and PI assumptions,
denominated by the Price of Anarchy under the LI assumption:

VoI∗ =
PoA∗0 − PoA∗+

PoA∗0
VoI# =

PoA#0 − PoA#+

PoA#0 (2.8)

A positive Value of Information reflects a situation where the equilibrium under
the PI assumption is closer to the social optimum than the equilibrium under
the LI assumption. We identify and analyze scenarios with a positive impact of
information in §2.3. A negative Value of Information reflects the counter-intuitive
scenario where additional information makes the equilibrium more costly (cf. §2.4).

2.3 the benefits of information

In this section, we will show that information is beneficial in the artificial network
settings traditionally considered in the literature [221]. More precisely, we show
that in this setting, the PI equilibrium induces a lower Price of Anarchy than the
LI equilibrium such that the Value of Information is positive. This is intuitive: if
end-hosts possess more information, end-host path selection is more efficient.

In the network of Figure 2.4, K end-hosts e1, ..., eK reside in AS O. Each end-host
has a demand of d/K towards a destination in AS D. ASes O and D are connected
by m links α1, ..., αm with a constant cost function cαi ( fαi ) = dp and one link β with
a load-dependent cost function cβ( fβ) = f p

β , where p ≥ 1.
Such networks of parallel links are of special importance in the theoretical selfish-

routing literature. In particular, Roughgarden [221] proved that the network in
Figure 2.4 reveals the worst-case Price of Anarchy for any network with link cost
functions limited to polynomials of degree p. The intuition behind this result is that
the Price of Anarchy relates to a difference of steepness between cost functions of
competing links: the link β allows to reduce the cost of traffic from AS O to AS D if
used modestly, but loses its advantage over the links αi if fully used, i.e., if fβ = d.
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However, in selfish routing, end-hosts will use link β until the link is fully used, as
it is always a lower-cost alternative path if not fully used. Therefore, the end-hosts
overuse link β compared to the optimum.

Roughgarden’s result refers to the classical Price of Anarchy, i.e., the Price of
Anarchy PoA∗0 to end-hosts under the LI assumption. In this section, we will
show how this result is affected by additionally introducing the network-operator
perspective and the PI assumption. In particular, we prove the following theorem:

Theorem 2.1 Benefits of Information. In a network of parallel links, a higher degree
of information (PI assumption) is always more socially beneficial compared to a lower
degree of information (LI assumption), both from the perspective of end-hosts and
network operators:

PoA∗+ ≤ PoA∗0 PoA#+ ≤ PoA#0 (2.9)

2.3.1 Social Optima

The end-host optimum F∗ has social cost (cf. Appendix A.1)

C∗(F∗) = dp+1
(

1− p
(p + 1)(p+1)/p

)
. (2.10)

The network-operator optimum F# is simple to derive: Since the cost of the links
αi is independent of the flow on these links in contrast to the cost of link β, any
flow on link β increases the cost C# to network operators. The minimal cost to
network operators is thus simply C#(F#) = m · dp.

2.3.2 LI Equilibrium

Under the LI assumption, a network is in equilibrium if for every end-host pair,
all used paths have the same cost and all unused paths do not have a lower cost.
Applied to the simple network in Figure 2.4, this condition is satisfied if and only if
f 0
β = d and f 0

αi
= 0 ∀ fαi , implying cβ( f 0

β) = dp = cαi ( f 0
αi
). The path-flow pattern F0

with F(k,D),β = d/K and F(k,D),αi
= 0 therefore represents the LI equilibrium. The

cost C∗ of the LI equilibrium F0 to end-hosts is simply C∗(F0) = dp+1. The Price of
Anarchy to end-hosts under the LI assumption is thus

PoA∗0 =
C∗(F0)

C∗(F∗)
=

1
1− p/(p + 1)(p+1)/p

. (2.11)
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The cost C# of the LI equilibrium F0 to network operators is given by C#(F0) =
dp + ∑αi

dp = (m + 1) · dp. The Price of Anarchy to network operators under the LI
assumption is thus

PoA#0 =
C#(F0)

C#(F#)
=

m + 1
m

m=1
≤ 2. (2.12)

The Price of Anarchy to network operators in networks of parallel links is thus
upper-bounded by 2 whereas the Price of Anarchy to end-hosts is unbounded for
arbitrary p.

2.3.3 PI Equilibrium

If the end-hosts e1,..., eK are equipped with perfect information, they are in equilib-
rium if and only if the selfish marginal cost of every path to AS D is the same for
every end-host. Under this condition, the cost term C∗ of the PI equilibrium F+ to
end-hosts can be derived to be C∗(F+) = dp+1(1− (p/K)/(p/K + 1)(p+1)/p) (cf.
Appendix A.2). The Price of Anarchy to end-hosts under the PI assumption is

PoA∗+ =
(

1− p/K
(p/K + 1)(p+1)/p

)
· PoA∗0

K→∞
≤ PoA∗0. (2.13)

The cost C# of the PI equilibrium F+ to network operators is C#(F+) = (m +
1/(p/K + 1)) · dp and the corresponding Price of Anarchy to network operators is

PoA#+ =
m + 1/(p/K + 1)

m
K→∞
≤ m + 1

m
= PoA#0. (2.14)

Based on Eqs. (2.13) and (2.14), Theorem 2.1 holds. However, the Prices of
Anarchy PoA∗+ and PoA#+ under the PI assumption are dependent on K, which
is the number of end-hosts in the network. If K is very high, as it is in an Internet
context, the Prices of Anarchy under the PI assumption approximate the Prices of
Anarchy under the LI assumption. Thus, for scenarios of heterogeneous parallel
paths to a destination, the benefit provided by perfect information is undone in an
Internet context. In fact, the effect of additional information can even turn negative
when considering more general networks, as we will show in the next section.

2.4 the drawbacks of information

We will now show that in more general settings, more information for end-hosts
can deteriorate outcomes of selfish routing. Such a case is given by the general ladder
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Figure 2.5: Example network with harmful impact of end-host information (V = H − 1).

network in Figure 2.5, a natural generalization of the simple topology considered
above and a traditional ISP topology [167].

A ladder network of height H contains H horizontal links h1,..., hH , which
represent the rungs of a ladder and have the cost function chi

( fhi
) = f p

hi
. Each

horizontal link hi connects an AS Ai1 to AS Ai2, which accommodate the end-hosts
ei1 and ei2, respectively. Every end-host ei1 has the same demand d towards the
corresponding end-host ei2. Neighboring rungs of a ladder are connected by vertical
links vij, i ∈ {1, ..., V = H − 1}, j ∈ {1, 2}, where the vertical link vij connects the
ASes Aij and Ai+1,j and has the linear cost function cvij( fvij) = t · fvij with t ≥ 0.
We denote a ladder network with this structure and a choice of parameters H, p, d,
and t by L(H, p, d, t).

By comparing optima and equilibria, we will prove the following theorem in the
following subsections:

Theorem 2.2 Drawbacks of Information. For any ladder network L(H, p, d, t),
the Value of Information for both end-hosts and network operators is negative, i.e.,
VoI∗ < 0 and VoI# < 0.
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2.4.1 Social Optima

Both the end-host optimum F∗ and F# are equal to the direct-only path-flow pattern
F∼ that is defined as follows: For every end-host ei1, F∼(i1,i2),hi

= d and F∼(i1,i2),q = 0
where q is any other path between Ai1 and Ai2 than the direct path over link hi.

Simple intuition already confirms the optimality of this path-flow pattern. The
social cost from the horizontal links is minimized for an equitable distribution
of the whole-network demand Hd onto the H horizontal links. In contrast, the
cost from vertical links vij can be minimized to 0 by simply abstaining from using
vertical links. In fact, every use of the vertical links is socially wasteful.

More formally, if fhi
= d for i ∈ {1, ..., H} and fvi1 = fvi2 = 0 for i ∈ {1, ..., V},

the marginal costs of the direct path and every indirect path can be easily shown to
equal (p+ 1)dp, given end-host cost function C∗. Concerning network-operator cost
C#, the direct and indirect paths have marginal costs p · dp−1 and p · dp−1 + 2yt ∀y ∈
N≥1, respectively. The used direct paths thus do not have a higher marginal cost
than the unused indirect paths.

2.4.2 LI Equilibrium

Also the LI equilibrium path-flow pattern F0 is equal to the direct-only path-flow
pattern F∼. For F∼, the costs of the direct path π and the indirect path are

Cπ(F∼) = Fp
(i1,i2),π = dp,

Cπ′(F
∼) = f p

h′ + ∑
v∈Wπ′

fv = dp + 0 = dp, (2.15)

where π′ contains the remote horizontal link h′ and the vertical links v ∈Wπ′ . Thus,
the LI equilibrium conditions of cost equality are satisfied by F∼.

As the LI equilibrium is equal to the social optimum both from the end-host
perspective and the network-operator perspective, both variants of the Price of
Anarchy under the LI assumption are optimal, i.e., PoA∗0 = PoA#0 = 1.

2.4.3 PI Equilibrium

Differently than under the LI assumption, the direct-only flow distribution F∼ is
not stable under the PI assumption. An end-host ei can improve its individual cost
by allocating some traffic to an indirect path πk (involving the horizontal link hk)
and interfering with another end-host ek. This reallocation decision will increase
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the social cost for end-hosts and network operators. In particular, the end-host
ek that previously used the link hk exclusively will see its selfish cost increase. In
turn, the harmed end-host ek will reallocate some of its traffic to an indirect path
in order to reduce its selfish cost C(ek)

, leading to a process where all end-hosts
in the network interfere with each other until they reach a PI equilibrium with a
suboptimal social cost for end-hosts and network operators.

Similar to §2.3.3, we use the condition of marginal selfish cost equality in order
to derive the Price of Anarchy under the PI assumption for a ladder network with
H = 2. This derivation, as performed in Appendix A.3, yields the following results
for the Price of Anarchy to end-hosts and network operators:

PoA∗+H=2(p) = 1 + p/12 PoA#+
H=2(p) = 1 + p/3 (2.16)

Since the the LI equilibrium is optimal and the PI equilibrium is generally
suboptimal on the considered ladder networks, Theorem 2.2 holds. This finding
is confirmed by a case study of the Abilene network (cf. §2.5), which structurally
resembles a ladder topology. The case study also reveals that the negative impact
of information is especially pronounced if path diversity is high.

Interestingly, there is an upper bound of the Price of Anarchy to network oper-
ators for a general ladder network. This bound is given by the following theorem
and proven in Appendix A.4:

Theorem 2.3 Bounded Price of Anarchy. For every ladder network L(H, p, d, t),
the Price of Anarchy PoA#+ to network operators is lower than the following upper
bound PoA#+

max:

PoA#+ ≤ PoA#+
H,max = 1 +

2(H − 1)
3H

p ≤ PoA#+
max = 1 +

2
3

p (2.17)

2.5 case study : abilene network

To verify and complement our theoretical insights, we conduct a case study with a
real network: we consider the well-known Abilene network, for which topology
and workload data is publicly available [145, 146]. We accommodate the Abilene
topology into our model as follows. For the demand d between the 11 points-of-
presence, which we consider ASes, we rely on the empirical traffic matrix from the
dataset. Concerning the link-cost functions cℓ, we model the latency behavior of a
link by a function cℓ( fℓ) = f 2

ℓ + δℓ, where f 2
ℓ captures the queueing delay and δℓ
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Figure 2.6: Abilene network results.

is a constant quantity depending on the geographical distance between the two
end-points of link ℓ, approximating the link’s propagation delay.

In order to study the effect of both end-host information and multi-path routing
on the Price of Anarchy, we perform the following simulation experiment. First, we
compute the social optima F∗ and F# for the Abilene network. Second, we simulate
the convergence to the Nash equilibria F0 and F+ for different degrees of multi-path
routing, represented by the maximum number of shortest paths that end-hosts
consider in their path selection. Once converged, we compute the social cost of the
equilibrium traffic distributions and the corresponding Prices of Anarchy.

The experiment results in Figure 2.6 offer multiple interesting insights. Most
prominently, if simple shortest-path routing represents the baseline of network-
controlled path selection, end-host path selection with latency-only information
improves the performance of the network (up to a near-optimum), which confirms
findings of prior work [210]. In contrast, path selection with perfect information
deteriorates performance, especially for a higher degree of multi-path routing.
Therefore, the potential performance benefits of end-host path selection with
multi-path routing are conditional on the amount of information possessed by end-
hosts, where a higher degree of information is associated with lower performance.
However, while an increasing degree of multi-path routing is associated with worse
performance under perfect information, the resulting inefficiency is bounded at
a modest level of less than 4 percent for both end-hosts and network operators.
The near-optimality of latency-only information in terms of performance and the
bounded character of the Price of Anarchy under perfect information reflect the
findings from §2.4 about ladder topologies, which resemble the Abilene topology.
Thus, the experiment results not only show that end-host path selection can be
a means to improve the performance of a network but also confirm the practical
relevance of our theoretical findings.
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2.6 related work

Selfish routing. Inefficiency arising from selfish behavior in networks is well-
known to exist in transportation networks and has been thoroughly analyzed with
the framework of the Wardrop model [67, 253]. The most salient expressions of this
inefficiency is given by the Braess Paradox [38].

Literature on selfish routing is often concerned with the discrepancy between
optimum and Nash equilibrium: the Price of Anarchy [76, 148]. The Price of Anarchy
was initially studied for network models (see Nisan et al. [197] for an overview),
but literature now covers a wide spectrum, from health care to basketball [223]. Our
work has a closer connection to more traditional research questions, such as bounds
on the Price of Anarchy for selfish routing. An early result has been obtained by
Koutsoupias and Papadimitriou [148], who formulated routing in a network of
parallel links as a multi-agent multi-machine scheduling problem.

A different model has been developed by Roughgarden and Tardos [224] who
build on the Wardrop model [253] for routing in the context of computer networks.
The Price of Anarchy in the proposed routing game is the ratio between the latency
experienced by all users in the Wardrop equilibrium and the minimum latency
experienced by all users. For different classes of latency functions, the authors
derive explicit high bounds on the resulting Price of Anarchy. In a different work,
they show that the worst-case Price of Anarchy for a function class can always be
revealed by a simple network of parallel links and that the upper bound on the
Price of Anarchy depends on the growth rate of the latency functions [221].

The relatively loose upper bounds on the Price of Anarchy of previous works
[148, 224] have been qualified by subsequent research. It was found that problem
instances with high Prices of Anarchy are usually artificial. By introducing plausible
assumptions to make the routing model more realistic, upper bounds on the Price
of Anarchy can be reduced substantially. For instance, Friedman [88] shows that the
Price of Anarchy is lower than the mentioned worst-case derived by Roughgarden
and Tardos [224] if the Nash equilibrium cost is not sensitive to changes in the
demand of agents. By computing the Price of Anarchy for a variety of different
latency functions, topologies, and demand vectors, Qiu et al. even show that selfish
routing is nearly optimal in many cases [210].

Convergence. Convergence to Nash equilibria has been studied in the context of
congestion games [218] and, in a more abstract form, in the context of potential
games [185, 227]. Sandholm [227] showed that selfish player behavior in potential
games leads to convergence to the Nash equilibrium and, under some conditions,
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even to convergence to the social optimum. As the question of equilibrium conver-
gence is traditionally studied separately from the question of equilibrium cost, we
address convergence issues in Chapter 2.

Incomplete information. The study of the effect of incomplete information also has
a long tradition [113], but still poses significant challenges [223]. Existing literature
in this area primarily focuses on scenarios where players are uncertain about
each others’ payoffs, studying alternative notions of equilibria such as Bayes-Nash
equilibria [237], which also leads to alternative definitions of the price of anarchy
such as the Bayes-Nash Price of Anarchy [160, 223] or the price of stochastic
anarchy [61]. A common observation of many papers in this area is that less
information can lead to significantly worse equilibria [223]. There is also literature
on the impact on the Price of Anarchy in scenarios where interacting players only
have local information, e.g., the evolutionary price of anarchy [230].

However, much less is known today about the role of information in games
related to routing. In this context, one line of existing literature is concerned with
the recentness of latency information. Most prominently, research on the damage
done by stale information in load-balancing problems [68, 184] has been applied to
routing games by Fischer and Vöcking [85]. This work investigates whether and
how rerouting decisions converge onto a Wardrop equilibrium if these rerouting
decisions are based on obsolete latency information. Other recent work about the
role of information in routing games investigates how the amount of topology
information possessed by agents affects the equilibrium cost [14].

Differentiation of our work. Existing work on the subject of path-selection efficiency
differs from our work in two important aspects. First, to the best of our knowledge,
all existing work on the subject defines the social optimum as the traffic assignment
that minimizes the total cost experienced by users, which is indeed a reasonable
metric. However, our work additionally investigates the total cost experienced by
links, i.e., the network operators. Since cost considerations by network operators are
a decisive factor in the deployment of architectures offering end-host path selection,
the Price of Anarchy to network operators is an essential metric. Second, although
existing work on the topic has investigated the role played by the recentness of
congestion information or the degree of topology information, it does not investigate
the role played by the degree of congestion information that agents possess. Indeed, a
major contribution of our work is to highlight the effects of perfect information, i.e.,
information that allows agents to perfectly minimize their selfish cost. Latency-only
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information, which agents are assumed to have in existing work, does not enable
agents to perform perfect optimization.

2.7 conclusion

Motivated by the emerging paradigm of end-host path selection, we refine and
extend the Wardrop model in order to study the implications of end-host path
selection. Our analysis provides several interesting insights with practical relevance.
First, the cost of selfish routing to network operators differs from the cost expe-
rienced by users. Since network operators are central players in the adoption of
path-aware networking, research on the effects of selfish routing thus needs to
address the network-operator perspective separately. However, we proved upper
bounds on the Price of Anarchy which suggest that selfish routing imposes a
low cost on network operators. Second, we found that basic latency information,
which can be measured by the end-hosts themselves, leads to near-optimal traffic
allocations in many cases. Selfish routing thus causes modest inefficiency even
if end-hosts have only imperfect path information and network operators do not
disseminate detailed path-load information.



3
I N C E N T I V E S I N E N D - H O S T PAT H S E L E C T I O N

3.1 introduction

End-host path control in inter-domain networking empowers end-hosts to avoid
congested links, i.e., enables load-adaptive path selection, and therefore has the po-
tential to cause a relatively even traffic distribution. However, load-adaptive path
selection creates new challenges, including the potential of sub-optimal traffic
distributions (discussed in the preceding chapter), but also the introduction of
instability. Instability due to load-adaptive path selection typically appears in the
form of oscillation, i.e., periodic up- and downswings of link utilization, leading
to a large variance of the traffic load in a short time span. This oscillation repre-
sents a central obstacle to the deployment of path-aware network architectures
according to a recent RFC by the IETF [72]. Indeed, such oscillation can be shown
to occur if path-selection decisions are taken on the basis of outdated (stale) load
information [85, 233], which is the case in any real system.

Such oscillation is undesirable for many reasons, both from the perspective of
the end-hosts and the perspective of the network operator. From the perspective of
end-hosts, oscillation is associated with unpredictable performance: If oscillation
occurs when a link is near its capacity limit, there is a danger of queue build-
up, jitter, and even loss. This unpredictable performance has especially severe
consequences on throughput if packet loss forces the congestion-control algorithms
to recurring restarts. From the perspective of network operators, oscillation leads to
an inefficient utilization of network resources: Due to the large variance of the load
level over time, network operators have to perform substantial overprovisioning
of link capacities, which is undesirable from a business perspective. Moreover,
oscillation of inter-domain traffic imposes additional overhead for intra-domain
traffic engineering (e.g., MPLS circuit setup), as oscillating inter-domain flows may
constantly switch between inter-AS interfaces.

49
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To avoid these damaging effects, researchers have devised numerous schemes that
aim to guarantee stability of load-adaptive path selection. However, to the best of
our knowledge, no scheme so far has aimed at providing stability for end-host path
control in the inter-domain context. Many systems have been designed under the
assumption of network-based path selection, i.e., hop-by-hop forwarding according
to decisions taken by intermediate routers [84, 100, 152, 177]. These systems achieve
convergence by appropriately adjusting how much traffic is forwarded to each
next hop towards a destination. Therefore, these systems cannot be used if packets
must be sent along paths selected by end-hosts. Other systems allow end-point
path selection, but are targeted to an intra-domain context where the end-points
(typically ingress and egress routers) are under the control of a network operator [79,
85, 136, 137, 140, 196]. In an intra-domain context, network operators are able to
prescribe arbitrary path-selection policies that generate stability. Conversely, in an
inter-domain context, the end-points are not under control of network operators and
can thus not be forced to adopt a non-oscillatory path-selection strategy. Instead,
as end-hosts must be assumed to be selfish, they can only be expected to adopt
path-selection strategies that optimize performance from their individual perspective.

By performing a game-theoretic analysis, we show in this chapter that the non-
oscillatory path-selection strategies traditionally proposed in the literature on stable
end-host path selection [79, 85, 136, 137, 140, 196] are incompatible with the self-
interest of end-hosts: Assuming that such non-oscillatory path-selection strategies
are universally adopted, an end-host can increase its utility by deviating in favor
of a strategy that is oscillatory (§3.3). Therefore, stability of load-adaptive path
selection in an inter-domain context cannot be achieved by relying only on the ra-
tionality of path-selecting end-hosts. Instead, network operators have to incentivize
end-hosts to adopt a convergent path-selection strategies with stabilization mecha-
nisms. These mechanisms have to be incentive-compatible, i.e., the mechanisms must
create an incentive structure such that adopting a non-oscillatory path-selection
strategy is in an end-host’s self-interest (§3.4). In this chapter, we present two such
stabilization mechanisms, FLOSS and CROSS, and formally prove their incentive
compatibility. These mechanisms employ different techniques to disincentivize
oscillatory switching between paths, namely limiting the migration rate between
paths (FLOSS, §3.5) and imposing a cost on switching between paths (CROSS, §3.6).
To complement our mainly theoretical work, we also discuss how our findings
could be practically applied (§3.7).
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3.1.1 Contribution

This chapter is based on my publication at PERFORMANCE 2020 [2]. In the chapter,
we revisit the theoretical study of the dynamic effects of end-point path selection, for
the first time focusing the analysis on inter-domain networks where the end-points
are selfish and uncontrolled. We present a game-theoretic model that allows us to
investigate which path-selection strategies will be adopted by selfish end-hosts. In
particular, we introduce the notion of equilibria to path-selection strategies (PSS
equilibria). Moreover, we formally show that the non-oscillatory path-selection
strategies proposed in the existing literature do not form such PSS equilibria. Thus,
we provide evidence towards the hypothesis that stability in load-adaptive path
selection over multiple domains cannot be achieved by exclusively relying on end-
hosts’ path-selection behavior. To remedy this problem, we leverage insights from
mechanism design to devise two incentive-compatible stabilization mechanisms
enforced by network operators. While these mechanisms build on existing insights
from intra-domain traffic engineering, their methods of incentivization represent a
novel approach to achieve stability in inter-domain networks with load-adaptive
path selection. We formally prove the incentive compatibility of both mechanisms
and discuss their practical application.

3.2 oscillation model

3.2.1 Model Overview

Wardrop model. In order to study oscillation in network architectures with end-
host path selection, we build on the well-established Wardrop model [253], which
is the standard model for studying the interactions of selfish agents in computer
networks [210, 221, 224]. In the Wardrop model, an infinite number of end-hosts,
each controlling an infinitesimal traffic share, select one path π among multiple
paths Π between two network nodes. Every path π has a load-dependent cost,
where the path-cost function cπ is typically interpreted as latency. The end-hosts’
path-selection decisions form a congestion game, where the path-selection decisions
of end-hosts both determine and follow the load fπ on every path π [59, 121, 218].

Dynamicity. In this work, we analyze congestion games with a temporal com-
ponent, i.e., end-hosts take path-selection decisions over time based on currently
available information. More precisely, an end-host performs an average of r > 0 re-
evaluations per unit of time. The aggregate re-evaluation behavior is uniform over
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Table 3.1: Notation used in our model in alphabetic order.

Symbol Description

A Oscillation amplitude

A0 ∈ [0, 1]|Π| Initial load imbalance across paths Π

C(σ | O) Cost of applying path-selection strategy σ in parallel-path system O

C(σ, t) Cost of applying path-selection strategy σ at time t

c(σ, t | π′) Cost of applying path-selection strategy σ at time t while on path π′

cM(π, t) Cost imposed by mechanismM for using path π at time t

cπ( fπ) Cost of path π (based on path load fπ)

cu(π, t) Cost incurred by choosing path π at time t

fπ(t) Load on path π at time t

p Steepness of path-cost function cπ( fπ) = f p
π

π ∈ Π Set of paths

π̃ Alternative path to path π (in a two-path system)

R Expected time between path re-evaluations

r Number of path re-evaluations per time unit

σa Anticipating path-selection strategy (Always switch to costlier path)

σc Converging path-selection strategy (according to Fischer [85])

σg Greedy path-selection strategy (Always switch to cheaper path)

T Delay of path-load information before reaching agents

u(π, t | π′) Probability of selecting path π at time t while on path π′

v(σ) Share of agents adopting path-selection strategy σ

W Time until migration direction is reversed in oscillation

y(π, t | σ) Probability of being on path π at time t given path-selection strategy σ
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time, i.e., when dividing time into intervals of length ϵ ∈ (0, 1], rϵ re-evaluations
are performed in any interval.

Parallel-path systems. Whenever an end-host performs a re-evaluation, it chooses
one path π to its destination according to a freely chosen path-selection strategy σ.
We thus formalize the environment of congestion games as parallel-path systems:

Definition 3.1 Parallel-Path Systems. A parallel-path system O is characterized
by a tuple (Π, r, p, T, A0, v), where:

• a set of parallel paths Π jointly accommodates a total demand normalized to 1;
• r > 0 is the average number of re-evaluations per end-host and unit of time;
• p ≥ 1 is the steepness of the path cost as a function of the load (i.e., cπ = f p

π);
• T ≥ 0 is the average time that it takes for cost information to reach the agents;
• A0 ∈ [0, 1]|Π| is the initial load matrix, where the entry A0π = fπ(0); and
• v is the strategy profile, defining for every available path-selection strategy σ the

share v(σ) ∈ [0, 1] of end-hosts that permanently apply strategy σ.

Wardrop equilibria. Every congestion game possesses at least one Wardrop equi-
librium f∗ = { f ∗π}π∈Π, consisting of a traffic distribution where no single agent
can reduce its cost by selecting an alternative path [218]. Clearly, this Wardrop
equilibrium is achieved at equal load for the parallel-path systems described above,
i.e., for all π ∈ Π, the Wardrop equilibrium path load f ∗π is 1/|Π| in our setting.

Stability and oscillation. If a Wardrop equilibrium f∗ is converged upon by the
end-hosts, we consider a parallel-path system stable at equal load:

Definition 3.2 Stability at Equal Load. A system O is stable at equal load if

∆∗ = lim
t→∞

∆(t) = 0 where ∆(t) = ∑
π∈Π

∣∣∣∣ fπ −
1
|Π|

∣∣∣∣ . (3.1)

Notably, a parallel-path system can also be stable at unequal load if the end-hosts
converge to an unequal load distribution, i.e., ∆∗ ∈ R and ∆∗ ̸= 0. However, this
type of stability requires the adoption of irrational path-selection strategies by at
least some end-hosts, as the imbalance is only preserved if some end-hosts do not
take advantage of the consistently cheaper path.

More interestingly, the rationality of strategy profiles is not obvious if the system
is not stable at all:
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Definition 3.3 Oscillation. A parallel-path system O experiences oscillation if there
exists no limit ∆∗ ∈ R.

Two-path systems. In this chapter, we study parallel-path systems with two paths
α and β (i.e., |Π| = 2), but our insights directly generalize to more paths. Due to
total demand normalization, it holds that fβ(t) = 1− fα(t) for all t ≥ 0. Thus, the
unique Wardrop equilibrium in a two-path oscillation-prone system is given by
f ∗α = f ∗β = 1/2. Moreover, we assume w.l.o.g. that the initial imbalance A0 exists
with the higher load on path α: fα(0) = A0 = A0α > 1/2. For this system of two
parallel paths, π̃ denotes the alternative path to path π, i.e., α̃ = β and β̃ = α.

3.2.2 Path-Selection Strategies

Strategy form. In a congestion game, end-hosts select paths according to freely
adopted path-selection strategies. In order to enable a theoretical treatment, we
follow Fischer and Vöcking [85] in assuming that path-selection strategies are
memory-less, i.e., not dependent on anything else than currently observable infor-
mation. Therefore, any path-selection strategy σ can be fully characterized by two
elements, σ = (R, u), which we will describe in the following.

Re-evaluation periods. Every strategy is characterized by the expected time R
between re-evaluations of an end-host. The expected re-evaluation period R reflects
the reallocation behavior of end-hosts that non-deterministically re-evaluate the
costs of path options, decide for one option based on the perceived costs, and
keep sending on the selected path until the next re-evaluation is due. The expected
re-evaluation period R has to be in accordance with the parameter r of the parallel-
path system, which describes the average number of re-evaluations per end-host
and unit of time. Hence, R = 1/r.

Path-selection functions. Every strategy σ is based on a path-selection function
u(π, t | π′), which gives the probability for selecting path π at time t if the currently
used path is π′. Given universal adoption of a strategy σ and rϵ re-evaluations per
interval of length ϵ, the number of end-hosts on path π changes by the amount
∆ϵ fπ(t) = −rϵ · u(π̃, t | π) · fπ(t) + rϵ · u(π, t | π̃) · fπ̃(t) within an interval starting
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at time t, given a two-path system. If ϵ is chosen to be infinitesimal, we obtain the
rate of change:

∂ fπ(t)
∂t

= lim
ϵ→0

∆ϵ fπ(t)
ϵ

=− r · u(π̃, t | π) · fπ(t)

+ r · u(π, t | π̃) · fπ̃(t)
(3.2)

Throughout the rest of the chapter, we describe oscillation dynamics by such
differential equations.

Greedy path selection. An example of a path-selection strategy is the greedy path-
selection strategy σg, which selects the path perceived as cheaper:

ug(π, t | π̃) =





1 if cπ(t− T) < cπ̃(t− T)

0 otherwise
(3.3)

Conversely, the probability of staying on a path is ug(π̃, t | π̃) = 1− ug(π, t | π̃).
At time t, the number of end-hosts on a more expensive path π thus changes with
rate −r · fπ(t).

3.2.3 Examples of Oscillation and Stability

Whether a parallel-path system in fact experiences oscillation entirely depends
on the path-selection strategies adopted by end-hosts. In this section, we present
the example of a parallel-path system that experiences oscillation for some path-
selection strategy, but converges to stability for a different strategy.

Example of oscillation. For every T > 0, oscillation occurs in a system in which all
agents adopt a greedy path-selection strategy σg presented in the previous section.
The dynamics of a system with universal adoption of the greedy strategy are given
by the partial differential equation:1

∂ fα(t)
∂t

=





−r · fα(t) if cα(t− T) > cβ(t− T)

r · fβ(t) if cα(t− T) < cβ(t− T)

0 otherwise

(3.4)

1 An analogous equation holds for fβ.
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Figure 3.1: Oscillation structure for parallel-path system.

We henceforth refer to turning points as all points in time t+ where cα(t+ − T) =
cβ(t+ − T), as fα(t) switches between increasing and decreasing at these moments.
In particular, we write t+(t) for the most recent turning point t+ < t.

Solving the differential equation piece-wise yields a recursive function:2

fα(t) =





e−r·(t−t+(t)) · fα(t+(t)) if fα(t− T) ≥ 1
2

1− e−r·(t−t+(t)) · fβ(t+(t)) otherwise
(3.5)

Since T is constant, fα(t) is periodic after the first turning point t+1 irrespective
of the initial imbalance A0. Therefore, the oscillation can be described by the
non-recursive function:

fα(t) =





e−r·(t−t+(t)) · A if t+(t)
W is even,

1− e−r·(t−t+(t)) · A otherwise,
(3.6)

where

W =
ln(2erT − 1)

r
, A = 1− 1

2erT , (3.7)

and t+(t) = t− (t mod W) is a multiple of W. Figure 3.1 shows an example of
fα(t) for the oscillation-prone system O =

(
Π = {α, β}, r = 0.3, p ≥ 1, T = 2, A0 =

2 In the two-path system, fα ≥ 1
2 is equivalent to cα ≥ cβ.
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A, v = {σg 7→ 1}
)
, where A0 has been chosen as A in order to skip the irregular

starting phase. Figure 3.1 also highlights the time interval during which path α is
the cheaper path (in blue, between t∗1 and t∗2) and the time interval during which
path α is perceived to be the cheaper path (in red, between t+1 and t+2 ). Clearly, the
discrepancy between reality and perception of path costs is the source of oscillation,
as the discrepancy leads to increasing load on a path even when it is no longer
the cheaper path (i.e., path α between t∗2 and t+2 ). Due to the periodicity of this
phenomenon, there exists no limit ∆∗ of load difference and the oscillation-prone
system experiences oscillation. An interesting observation is that both amplitude (A)
and oscillation period (2W) increase with the staleness of the information (T); any
T > 0 leads to oscillations, only T = 0 ensures stability.

Example of stability. If the strategy profile v contains different path-selection
strategies, a parallel-path system may experience stability. In particular, the parallel-
path system above is stable if a sufficient number of end-hosts anticipate the greedy
strategy σg with an anticipating strategy σa. An end-host adopting the anticipating
strategy always selects the path with the higher perceived cost, speculating that the
seemingly cheaper path will soon be overloaded by greedy-strategy players:

ua(π, t | π̃) =





1 if cπ(t− T) > cπ̃(t− T)

0 otherwise
(3.8)

Conversely, ua(π̃, t | π̃) = 1− ua(π, t | π̃).
In a parallel-path system with strategy profile v = {σg 7→ q, σa 7→ 1− q} and

initial imbalance A0 > 1/2, the initial dynamics of the system are

∂ fα(t)
∂t

= −r · q · fα(t) + r · (1− q) · (1− fα(t))

fα(0)=A0
=⇒ fα(t) = (A0 + q− 1)e−rt + (1− q).

(3.9)

For q ≤ 1/2, we see that fα(t) > fβ(t) for all t ≥ 0, since limt→∞ fα(t) = 1− q ≥
1/2, fα(0) = A0 > 1/2, and fα(t) is monotonic. Using the definitions from §3.2.1,
the oscillation-prone system is stable at equal load for q = 1/2.

3.2.4 Equilibria on Path-Selection Strategies

In general, Nash equilibria refer to strategy profiles that do not allow for beneficial
selfish strategy changes by individual agents. In the context of path-selection



58 incentives in end-host path selection

strategies, a Nash equilibrium is thus given if every end-host cannot improve its
utility by switching to an alternative path-selection strategy. More formally, a Nash
equilibrium on path-selection strategies can be defined as follows:

Definition 3.4 PSS Equilibrium. A strategy profile v∗ is a Nash equilibrium on path-
selection strategies (PSS equilibrium) in a parallel-path system O = (Π, r, p, T, A0, v∗)
if and only if all strategies σ with v∗(σ) > 0 have cost C(σ | O) = C∗ and all
strategies σ′ with v∗(σ′) = 0 have cost C(σ′ | O) ≥ C∗.

It remains to formally define the cost C(σ | O) of a strategy σ in a parallel-path
system O with global strategy profile v. First, we note that a global strategy profile v,
together with an initial strategy-adoption distribution for each path, uniquely
defines the flow dynamics f (t) = ( fα(t), fβ(t)) in oscillation-prone systems with
two paths. As the flow share controlled by each agent is assumed to be negligible
in the Wardrop model, the flow dynamics f (t) are not affected by the choice of σ
when varying σ for a single agent. The basic costs of the two path options α and
β at any moment t are thus given by cα(t) and cβ(t), both uniquely defined by a
parallel-path system O = (Π, r, p, T, A0, v).

Given expected re-evaluation periods of duration R, an end-host deciding for
path π at time t incurs the usage cost

cu(π, t) =
1
R

∫ t+R

t
cπ(s) ds. (3.10)

At time t, the cost c(σ, t) of applying a strategy σ is

c(σ, t|π′) = ∑
π∈Π

uσ(π, t | π′) · cu(π, t), (3.11)

where π′ is the current path of the end-host before the decision at time t, and
uσ(π, t | π′) is the probability that strategy σ prescribes the selection of path π at
time t given current path π′.

Furthermore, the strategy σ also determines the probability distribution y(π′, t |
σ) that defines the probability of the current path being π′ at time t. The expected
cost for applying a strategy σ at time t is thus given as follows:

C(σ, t) = ∑
π′∈Π

y(π′, t | σ) · c(σ, t | π′) (3.12)

The expected cost of applying a strategy σ in general can be derived as the
average time-dependent strategy cost during a certain relevant time span

[
t0, t1

]
:

C(σ | O) =
1

t1 − t0

∫ t1

t0

C(σ, t) dt (3.13)
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For systems that converge to stability at equal load, the relevant time span extends
from t0 = 0 until time tδ when the system has converged according to some
criterion δ > 0, i.e., ∀t > tδ. ∆(t) < δ. The time after convergence does not have
to be considered as all strategies have the same cost for a system with equal path
costs. For periodic oscillating systems, the relevant time span is defined as every
interval that contains the periodically repeated sub-function. For an example of a
PSS equilibrium analysis, see Appendix B.1.

3.3 limits of stable strategies

In this section, we investigate whether the stability-inducing path-selection strate-
gies proposed in the literature form PSS equilibria. In this investigation, the central
question is whether an end-host can minimize its cost with a stability-oriented
strategy if that strategy is universally adopted.

We perform this investigation by means of two case studies. In §3.3.1, we analyze
the convergent rerouting policies designed by Fischer and Vöcking [85] and show
that such rerouting policies are not compatible with the selfishness of end-hosts.
In §3.3.2, we analyze the MATE algorithm [79] and show its equivalence to the
rerouting policies discussed in §3.3.1.

3.3.1 Rerouting Policies by Fischer & Vöcking

A typical example of a convergent path-selection strategy has been proposed
by Fischer and Vöcking [85]. The proposed path-selection strategy, which we
henceforth refer to as the convergent strategy σc, works as follows: If an end-
host discovers a path with lower cost according to stale information, the end-host
switches to that path with a probability that is a linear function of the perceived
latency difference. More formally, the probability u(π, t | π̃) to switch from path πt
to path π ̸= π̃ at time t is:

u(π, t | π̃) =





µ · cπ̃(t−T)−cπ(t−T)
∆max

if cπ(t− T) < cπ̃(t− T),

0 otherwise,
(3.14)

Here, µ is a parameter in [0, 1] and the latency difference is normalized by ∆max,
which is 1 in parallel-path systems as defined in §3.2.1. The dynamics of a two-path
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Figure 3.2: Dynamics produced by universal adoption of strategy σc with different µ in
parallel-path system O = ({α, β}, r = 1, p = 1, T = 2, A0 = 1, v = {σc 7→ 1}).

parallel-path system where strategy σc is universally adopted can thus be described
by the delay-differential equation (DDE)

∂ fα

∂t
=





r · µ · ∆c(t− T) · fα(t) if ∆c(t− T) ≤ 0,

r · µ · ∆c(t− T) · fβ(t) otherwise,
(3.15)

where ∆c(t− T) = cβ(t− T)− cα(t− T). This DDE describes a damped oscillator
with delayed feedback and does not have an explicit solution [46]. However, we
can numerically compute a solution using the method of steps [81].

As Fig. 3.2 shows, the choice of the parameter µ is critical for the strategy to
actually lead to convergence. For high values of µ, such as 1, the strategy fails to
produce convergence and yields undamped periodic oscillations. For low values
of µ, such as 0.1, the system monotonically approaches the equilibrium without
overshooting, i.e., it is overdamped (or, if nearly avoiding overshooting, critically
damped). For values in-between, such as 0.5, the system eventually converges to
stability at equal load, but only after overshooting, i.e., it is underdamped. However,
for both the overdamped and the underdamped convergent strategies, we can make
the following observation:
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Insight 3.1 No PSS Equilibrium by Convergent Strategy. Universal adoption of
the convergent path-selection strategy σc does not represent a PSS equilibrium, neither
in its underdamped nor in its overdamped variant.

In the case of the overdamped strategy (e.g., σc with µ = 0.1), the link loads
monotonically approach each other and thus the greedy strategy allows an end-host
to make use of a cheaper path sooner, making it the best-response strategy given
universal adoption of σc. In the case of the underdamped convergent strategy (e.g.,
σc with µ = 0.5), it is not obvious that the strategy is not a PSS equilibrium strategy
in general. However, we can show that there exist alternative strategies to the
underdamped rerouting policy that reduce a deviant agent’s cost, see Appendix B.2.

3.3.2 MATE Algorithm

The MATE algorithm [79] was designed for the intra-domain context, where an
ingress router has to distribute its demand d between multiple label-switched paths
to a given egress router. As these ingress routers are under control of the domain
operator, the MATE algorithm pursues convergence to the socially optimal traffic
distribution, which minimizes latency from a global perspective, but is generally
not preserved by selfish end-hosts. In the context of inter-domain networks, the
MATE algorithm is instantiated such that it converges to a Wardrop equilibrium,
which is preserved by selfish agents.

However, while the equilibrium produced by the MATE algorithm is compatible
with the selfishness of agents, actually following the MATE algorithms is not
necessarily rational from an end-host’s perspective. Namely, an end-host in an
parallel-path two-path system would execute the MATE algorithm as follows. In
every re-evaluation, the end-host selfishly optimizes its traffic allocation

(
Fα, Fβ

)
,

where Fα = d − Fβ. In order to conform to the Wardrop model, the demand d
is negligible from a global perspective. A MATE optimization step is defined as
follows:

(
F′α
F′β

)
=

[(
Fα

Fβ

)
− γ ·

(
cα(t− T)

cβ(t− T)

)]+
(3.16)

Here,
[
F
]+ represents a projection of allocation vector F to the feasible allocation

set defined by Fα + Fβ = d with Fα, Fβ ≥ 0. In order to reach convergence despite
stale information, the coefficient γ has to conform to a certain upper bound [79].
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As we show in Appendix B.2, the dynamics of an parallel-path system with uni-
versal adoption of the MATE algorithm are described by the following differential
equation:

∂ fα

∂t
=





r · γ
2 · ∆c(t− T) · fα(t) if ∆c(t− T) ≤ 0

r · γ
2 · ∆c(t− T) · fβ(t) otherwise

(3.17)

This equation is clearly equivalent to Eq. (3.15) for a choice of µ = γ/2. An parallel-
path system with universal adoption of σc and a system with universal adoption
of the MATE algorithm thus exhibit the same flow dynamics, which allow for
beneficial deviation:

Insight 3.2 No PSS Equilibrium by MATE. The path-selection strategy as pre-
scribed by the MATE algorithm is equivalent to the path-selection strategy σc. Thus,
universal adoption of the MATE algorithm neither constitutes a PSS equilibrium.

3.3.3 Conclusion

In summary, the kind of convergent path-selection strategies proposed in the
literature cannot be assumed to be adopted by selfish end-hosts, as deviating
from these strategies (e.g., by switching faster than prescribed by the strategy) is
beneficial to an end-host.

Stability in a path-aware network architecture with selfish end-hosts can thus not
be guaranteed by non-oscillatory path-selection strategies that prescribe a maximum
rate of change to be respected by end-hosts. Instead, the network could employ
mechanisms that incentivize end-hosts to follow non-oscillatory path-selection strate-
gies. This finding reflects a similar result [16, 99] in the context of congestion control,
namely that socially desirable behavior of end-hosts can only be enforced with
network support.

3.4 stabilization mechanisms

As argued in the previous section, rational end-hosts in networks with unrestricted
path choice are unlikely to adopt convergent path-selection strategies. Therefore,
network operators require mechanisms to incentivize the adoption of path-selection
strategies that induce stability at equal load, i.e., incentive-compatible stabilization
mechanisms. First, we integrate the concept of traffic-steering mechanisms into our
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game-theoretic model (§3.4.1). Second, we specify in §3.4.2 the conditions under
which these mechanisms are incentive-compatible.

3.4.1 Traffic-Steering Mechanisms

In order to affect the path-selection decisions of end-hosts in an parallel-path
system O, a traffic-steering mechanismM needs to alter the strategy cost C(σ|O)
for at least one path-selection strategy σ. A mechanismM thus defines a function
cM(π, t) that quantifies the mechanism-imposed cost for using path π at time t.
This cost is imposed onto the user of a path π in addition to the load-dependent
path cost.

If a mechanismM is active, the usage cost cMu extends the standard usage cost cu
from Equation (3.10) as follows:

cMu (π, t) = cu(π, t) + cM(π, t). (3.18)

The cost formulas cM(π, t|π̃), CM(σ, t), and CM(σ|O) can be constructed from
cMu (π, t), analogously to §3.2.4.

3.4.2 Incentive Compatibility

In general, incentive-compatible mechanisms are mechanisms that incentivize a
certain form of desirable behavior. In our context, we consider traffic-steering mech-
anisms to be incentive-compatible if these mechanisms incentivize the desirable
behavior of adopting a non-oscillatory path-selection strategy. In other words, an
incentive-compatible mechanism creates a PSS equilibrium, i.e., a situation where
every end-host minimizes its cost by adopting a non-oscillatory path-selection
strategy, given that all other end-hosts do so:

Definition 3.5 Incentive-Compatible Traffic Steering. A traffic-steering mech-
anism M is an incentive-compatible stabilization mechanism for a parallel-path
system O if there is a strategy profile v∗ such that

(i) v∗ leads to stability at equal load, and

(ii) v∗ represents a PSS equilibrium with respect to the cost function CM(σ|O).

In the following two sections, we present two instances of stabilization mecha-
nisms, namely FLOSS and CROSS, and prove their incentive compatibility. The two
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mechanisms differ in the methods for achieving stability: Whereas FLOSS reduces
the imbalance between two paths by regulating the migration rate between the
paths, CROSS achieves stability by repetitive reshuffling of flows between paths
and increasing the cost of path migration.

3.5 the floss mechanism

In this section, we present the FLOSS mechanism (Flow-Loyalty Oscillation-Suppression
System).

3.5.1 Overview

As shown in §3.3, convergent path-selection strategies are characterized by care-
ful path-switching behavior: An end-host only switches to a seemingly cheaper
path with a modest probability that depends on the measured latency difference,
translating into a relatively low migration rate between paths. It is well known that
system stability can be achieved by limiting the rate of change (also known as the
system gain [140]). However, the challenge is to develop methods that achieve this
change-rate limitation in the face of selfish, uncontrolled end-hosts. Such a method
is given by FLOSS.

As selfish end-hosts do not voluntarily conform to a modest path-migration
rate, the path-migration rate has to be regulated by network operators. The FLOSS
mechanism performs such regulation by rewarding end-hosts that are loyal to a
certain path and by restricting arbitrary path migration of oscillating end-hosts.

In order to regulate path migration, the FLOSS mechanism makes use of reg-
istrations and proceeds in intervals. Figure 3.3, which shows a simulation of the
FLOSS mechanism in a two-path system, illustrates the FLOSS approach. Initially,
the FLOSS mechanism announces at time t′ that all end-hosts are required to obtain
a registration for one path π of their choice. This registration allows an end-host
to use path π during a future time interval I0 = [t0, t1) with t′ < t0 < t0 + T < t1.
End-hosts that use path π without a registration are punished in the interval (e.g.,
by dropping packets).

This call for registration produces a distribution of flows over the two paths,
which is stable during the interval as no end-host can switch to the path which it is
not registered for. However, this load distribution is unlikely to be perfectly equal.
The FLOSS mechanism iteratively reduces this imbalance: In every following time
interval, a small set of flows are allowed to migrate from the more expensive path
to the cheaper path. This allowance is enforced by selectively granting registrations:
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Figure 3.3: Simulation of FLOSS enforcement in an oscillation-prone system O = (Π =
{α, β}, r = 1, p = 1, T = 2, A0 = 1, v = {σF 7→ 1}).

Whereas end-hosts with a pre-existing registration for a path (loyal end-hosts)
always obtain a registration for that path, end-hosts without a pre-existing registra-
tion are not always allowed to register. Once the imbalance is sufficiently small, the
end-hosts do not have an incentive anymore to switch paths, at which point the
enforcement of the mechanism can be suspended (e.g., at the end of interval I2 in
Figure 3.3).

Theorem 3.1 Incentive Compatibility of FLOSS. The FLOSS mechanism is an
incentive-compatible stabilization mechanism.

As defined in §3.4.2, incentive compatibility implies the existence of a strategy
profile that leads to stability at equal load and is a PSS equilibrium during mecha-
nism enforcement. For FLOSS, such a strategy profile is given by universal adoption
of the FLOSS-compliant path-selection strategy σF. The strategy σF prescribes to use
the path with the lowest expected cost which the end-host is entitled to use. Our
incentive-compatibility proof thus builds on the following two concrete lemmas,
which are proven in §3.5.2 and §3.5.3, respectively:

Lemma 3.1 Stability of FLOSS. Universal adoption of the FLOSS path-selection
strategy σF leads to stability at equal load.
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Lemma 3.2 PSS Equilibrium under FLOSS. Universal adoption of the FLOSS
path-selection strategy σF represents a PSS equilibrium during enforcement of the
FLOSS mechanism.

3.5.2 Stability Analysis

In order to prove Lemma 3.1, we assume universal adoption of path-selection
strategy σF, i.e., an end-host always uses the path with the lower expected cost
provided that the end-host is entitled to use that path.

Initial interval. When registering before the initial interval, all end-hosts simulta-
neously decide for one path to use during the upcoming interval [t0, t1). Confronted
with such a choice, each end-host aspires to commit to the path π that will be
selected by fewer other end-hosts, i.e., the path π with fπ(t0) < fπ̃(t0). In absence
of inherent differences between the two choices, the only Nash equilibrium of
such a speculative game is given if every end-host commits to each path π with
probability 1/2.

Idealized execution. In expectation, the load on both paths α and β is thus E[ fα(t0)] =
E[ fβ(t0)] = 1/2. Since no migration occurs during the interval [t0, t1), the load dis-
tribution is expected to remain equal during the interval, i.e., E[ fα(t)] = E[ fβ(t)] =
1/2 ∀t ∈ [t0, t1). If this expectation were actualized without variance, the mech-
anism enforcement could end at time t1, and the equal load distribution would
be preserved even if the end-hosts were free again to arbitrarily select paths after
time t1. Since t0 + T < t1, any end-host performing a re-evaluation after t1 perceives
the Wardrop equilibrium cα(t − T) = cβ(t − T) and will thus not switch paths.
Therefore, the system is stable at equal load even when the mechanism is not
enforced anymore.

Realistic execution. In reality, however, variance makes it likely that the load on
paths α and β is not perfectly equalized at t0. In that case, the FLOSS mechanism
attempts to eliminate the remaining load difference ∆ f (t0) = | fα(t0)− fβ(t0)| > 0
as follows. Starting from t′′ = t0 + T, the end-hosts can again register on paths
for an upcoming interval [t1, t2). At t′′, all end-hosts correctly perceive the cost
difference between a cheaper path π and a more expensive path π̃, as for every
path π̂, cπ̂(t′′ − T) = cπ̂(t0) = cπ̂(t′′) due to the constant load in [t0, t′′). The core
idea of the FLOSS mechanism is to enforce a migration allowance ρπ(t1), which is an
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upper bound on the amount of end-hosts that are allowed to migrate from path π̃
to path π at time t1.

Migration allowance. Importantly, ρπ(t1) is chosen such that

fπ(t0) + ρπ(t1) · fπ̃(t0) ≤ (1− ρπ(t1)) · fπ̃(t0), (3.19)

which implies cπ(t1) ≤ cπ̃(t1) (i.e., the cheaper path π will remain the cheaper
path in the next interval even if a share ρπ(t1) of end-hosts on the more expensive
path π̃ migrate to path π). This choice of ρπ(t1) ensures the correct incentives
for the end-hosts. Given such an assurance, end-hosts registered on the cheaper
path π during [t0, t1) minimize their cost by remaining on path π. Since these
end-hosts are considered loyal to path π, their registration at path π will be
renewed for the upcoming interval [t1, t2). Conversely, all end-hosts registered on
the more expensive path π̃ would minimize their cost by migrating to the cheaper
path π. However, the FLOSS mechanism restricts this migration by only granting a
registration for π to a share ρπ(t1) of end-hosts on π̃. The non-migrating end-hosts
on path π̃ are considered loyal on path π̃ and are thus allowed to renew their
registration at π̃.

Therefore, exactly ρπ(t1) · fπ̃(t0) migrate from path π̃ to path π at time t1,
which reduces the difference in load and cost between the paths π and π̃. By
repetitive mechanism application with appropriately chosen migration allowances,
the FLOSS mechanism can arbitrarily minimize the cost differential between the
paths π and π̃. When the cost difference becomes so small that end-hosts perceive
a Wardrop equilibrium, the mechanism has achieved stability at equal load that
continues to hold even without mechanism enforcement.

3.5.3 PSS Equilibrium Analysis

We now prove Lemma 3.2, i.e., we show that path-selection strategy σF is the optimal
strategy for an end-host given that all other end-hosts have adopted σF. Concretely,
we show that the FLOSS mechanism induces a PSS equilibrium v∗ = {σF 7→ 1},
where σF is the universally adopted path-selection strategy with the following
path-selection function:
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uF(π, t|π̃) =





1/2 if t = t0,

1 if t > t0 and Ee(π, t)
and cπ(t− T) < cπ̃(t− T),

0 otherwise

(3.20)

where Ee(π, t) is true if and only if end-host e is entitled to use path π at time t. We
assume that an end-host always knows whether it is entitled to use a path. For the
initial interval, every path is selected with equal probability 1/2. For all subsequent
intervals, a path π is selected if the path is perceived to be cheaper than the current
path π̃ and end-host e is entitled to use path π. For remaining on a path π̃, it holds
that uF(π̃, t|π̃) = 1− uF(π, t|π̃).

Mechanism cost. The FLOSS mechanism makes strategy σF the equilibrium strategy
by imposing the additional cost cM(π, t) for using path π at time t. End-host e
incurs a cost ca for attempting to register and a penalty cost cp for using a path
without a registration. We assume cp = ∞, i.e., the penalty cost makes a path
unusable. Let Ae(π, t) be true if and only if end-host e applies to register for
using path π at time t and let Re(π, t) be true if and only if end-host e obtained
a registration for using path π at time t, i.e., Re(π, t) = Ae(π, t) ∧ Ee(π, t). Using
these predicates, the cost imposed by the FLOSS mechanism can be expressed as

cM(π, t|Ae, Re) = [Ae(π, t)] · ca + [¬Re(π, t)] · cp, (3.21)

where [P] = 1 if the predicate P is true and 0 otherwise.
A selfish end-host e chooses its actions such that its cost from the mechanism

is minimized. Therefore, an end-host e requests a registration if and only if the
end-host is entitled to the registration, as there is no benefit of a registration request
that will be refused. Thus, the relevant mechanism-imposed cost for end-host e is

cM(π, t) = min
Ae

cM(π, t|Ae, Re) =





ca if Ee(π, t),

cp otherwise.
(3.22)

Initial interval. Concerning the initial interval with start t0, both paths α and β
have expected cost cπ(t0) = 1/2p if all other end-hosts choose each path with
probability uF(π, t|π̃) = 1/2. As both paths have the same cost and both paths
require a registration, the usage cost of both paths is cMu (π, t0) = 1/2p + ca.
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Independent of the current path π̃, the cost of applying strategy σF at time t0
is thus cM(σF, t0|π̃) = 1/2p + ca for any choice of u(π, t0|π̃). Therefore, end-
host e cannot reduce its cost by choosing another path-selection probability than
uF(π, t0|π̃) = 1/2, which makes σF an equilibrium strategy for the initial interval.

Subsequent intervals. Concerning subsequent intervals with start ti > t0, we have
to distinguish two cases for the current path π′ of end-host e, namely whether
end-host e is on the cheaper path π or on the more expensive path π̃.3

1. If end-host e is on the cheaper path π, the cost of remaining on π is
cMu (π, ti) = cπ(ti) + ca, whereas the cost of switching to π̃ is cMu (π̃, ti) =
cπ̃(ti) + ca if Ee(π̃, ti) and cπ̃(ti) + cp otherwise. As always cMu (π, ti) <

cMu (π̃, ti), the current path π must be selected with probability u(π, t|π) = 1
to minimize the end-host’s cost.

2. If end-host e is on the more expensive path π̃, the cost of remaining on π̃
is cMu (π̃, ti) = cπ̃(ti) + ca, whereas the cost of switching to π is cMu (π, ti) =
cπ(ti) + ca if Ee(π, ti) and cπ(ti) + cp otherwise. Thus, cMu (π, ti) < cMu (π̃, ti)

if Ee(π, ti), but cMu (π̃, ti) < cMu (π, ti) otherwise. If end-host e is entitled
to use the cheaper path π, the cheaper path π must thus be selected with
probability u(π, t|π̃) = 1 to minimize the end-host’s cost, and with probability
0 otherwise.

In summary, for all intervals with start ti > t0, an end-host e optimizes its cost by
switching to an alternative path π if and only if path π is cheaper than the current
path π̃ and end-host e is entitled to use path π. This path-switching behavior is
exactly captured by the path-selection function uF(π, t|π̃). Therefore, path-selection
strategy σF is an equilibrium strategy for both the initial interval and the subsequent
intervals of the mechanism, which proves Lemma 3.2.

3.6 the cross mechanism

In this section, we present a second stabilization mechanism called CROSS (for
Computation-Requiring Oscillation Suppression System).

3 Thanks to the load being constant in subsequent intervals, the cost cπ̂(t) of a path π̂ at registration
time t is equal to the known stale cost cπ̂(t− T). Therefore, any end-host can correctly identify the
cheaper and the more expensive path.
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Figure 3.4: Simulation of CROSS enforcement in an oscillation-prone system O = (Π =
{α, β}, r = 1, p = 1, T = 2, A0 = 1, v = {σC 7→ 1}), with ϵ = 0.01.

3.6.1 Overview

Motivation: Backup paths. While the FLOSS mechanism (cf. §3.5) deterministically
achieves stability at equal load, its strict enforcement of the migration allowance
represents a problem in case of path failures. When a path fails, an end-host on
that path is not allowed to switch to an alternative path immediately. Only when
the path failure is detected after some time by the mechanism, enforcement of the
mechanism can be stopped and the end-hosts can be allowed to use an alternative
path. For highly critical transmissions, such inflexibility is undesirable.

The CROSS mechanism allows end-hosts to obtain an insurance against such
cases of path failure. Basically, the CROSS mechanism works similarly to the initial
interval of the FLOSS mechanism: End-hosts are required to register for one path
of their choice, which in general cannot be changed during the upcoming interval.
Unlike FLOSS, however, the CROSS mechanism offers the possibility of registration
for a second path that can be immediately used in case of a path failure, even if the
path failure is not yet confirmed.

Design challenge: Avoid oscillation. However, the question is how to avoid that
end-hosts always register for both paths and, if on the more expensive path,
falsely claim to be affected by a path failure and switch to the cheaper path. Such
opportunistic behavior would cause oscillation. To solve this problem, the idea of
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the CROSS mechanism is that end-hosts must prove that they need the immediate-
switching option for insurance against path failures, not simply for opportunistic
cost reduction. End-hosts can prove their truthfulness by paying a price for the
immediate-switch option. This price must be higher than any cost gain that can
be achieved by switching to a cheaper path in a scenario without path failure.
An end-host that paid this price thus only switches to the backup path if a path
failure has occurred; if no path failure occurred, the end-host would not trade its
insurance option against the cost gain, as the insurance option is more valuable to
the end-host than any cost gain. Immediate switching during the interval can thus
be allowed to the end-hosts with a backup-path registration. Moreover, immediate
switching behavior by those end-hosts is an indication of path failure, which means
that all other end-hosts must be allowed to migrate as well.

Cryptographic puzzles. As a price for the backup path registration, the CROSS
mechanism requires the solution to a computationally hard puzzle. This puzzle
is structured such that only end-hosts with a sufficiently high valuation of the
backup path will obtain a solution. More precisely, each puzzle E is associated with
a cryptographic hash function h : {0, 1}∗ 7→ [0, 1] and a difficulty level δ ≥ 0. An
end-host e can solve a puzzle E(π) for registering at a backup path π by finding
a value s such that h(π, ti, e, s) ≤ 2−δ, where ti is the start of the next interval.
Given a secure hash function, a puzzle E(π) can only be solved by brute force, i.e.,
varying s in a series of hash computations. By finding an appropriate s, an end-host
can obtain a backup-path registration.

Probabilistic stability guarantees. Also unlike FLOSS, the CROSS mechanism allows
end-hosts to register at a path of their choice not only for the initial interval, but for
every interval. Therefore, even if the path failure is not detected for some reason
(e.g., because no end-host obtained a backup registration), the end-host can use
the alternative path in the interval after a path failure. The CROSS mechanism
thus has a non-deterministic approach for achieving stability: Intervals in CROSS
serve as balancing trials and are repeated until the load imbalance is small enough
that end-hosts do not switch paths anymore. Since the end-hosts select each path
with probability 1/2 in any balancing trial, the probability that an approximately
equal load distribution results after a few balancing trials is substantial. Still, the
additional flexibility of CROSS results in a relaxation of convergence guarantees:
Instead of convergence to an equal-load distribution, the CROSS mechanism only
guarantees convergence to a traffic distribution with approximately equal load. A
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simulation of CROSS enforcement is visualized in Figure 3.4, which also shows the
convergence produced by the CROSS approach.

Theorem 3.2 Incentive Compatibility of CROSS. The CROSS mechanism is an
incentive-compatible stabilization mechanism that achieves stability at approximately
equal load, i.e., for every ϵ > 0, limt→∞ ∆(t) < ϵ.

The CROSS mechanism achieves stability at approximately equal load by incen-
tivizing the universal adoption of path-selection strategy σC, which prescribes that
end-hosts only use a path if they have a corresponding registration and only use a
backup in case of path failures. More formally, Theorem 3.2 directly follows from
Lemmata 3.3 and 3.4:

Lemma 3.3 Stability of CROSS. Universal adoption of the CROSS path-selection
strategy σC leads to stability at approximately equal load.

Lemma 3.4 PSS Equilibrium under CROSS. Universal adoption of the CROSS
path-selection strategy σC represents a PSS equilibrium given enforcement of the
CROSS mechanism.

While the proof of Lemma 3.3 is intuitive and can thus be found in Appendix B.4,
Lemma 3.4 is proven below.

3.6.2 PSS Equilibrium Analysis

CROSS PSS. In this section, we prove Lemma 3.4 by showing that universal
adoption of path-selection strategy σC is a PSS equilibrium, i.e., if all other end-
hosts adopt σC, σC is the optimal strategy for a single end-host e. The path-selection
strategy σC is characterized by the following path-selection function for π ̸= π̃:

uC(π, t|π̃) =





1/2 if t = ti ∧ ¬R′e(π, t),

1 if cπ̃(t− T) = ∞ ∧ R′e(π, t),

0 otherwise,

(3.23)

where ti is the start time of any balancing trial, cπ̃(t− T) = ∞ designates a path
failure and R′e(π, t) is true if and only if end-host e has a backup registration for
path π at time t. Moreover, uC(π̃, t|π̃) = 1− uC(π, t|π̃).
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Mechanism cost. As in FLOSS, registering has cost ca, whereas using a path
without registration imposes a penalty cost cp = ∞. Additionally, an end-host
incurs cost by solving puzzles, where each hashing operation has cost ch. To an
end-host with valuation ω of a backup path, a hash operation has the expected
utility E[Uh](δ, ω) = 2−δω− ch.

Optimal PSS. Given puzzle-difficulty level δ, an end-host thus solves a puzzle if
and only if it has a backup valuation ω such that E[Uh](δ, ω) > 0. If an end-host
does not solve a puzzle, it simply obtains a regular registration for one path at cost
ca, where every path is selected with probability 1/2. Obtaining no registration
and using any path would incur a much higher penalty cost cp ≫ ca and is thus
not rational. Therefore, an end-host with a registration for one path uses this path
from the start ti of the balancing trial. If an end-host solves a puzzle, the end-host
obtains a backup registration for the path corresponding to the puzzle and obtains
a regular registration for the other path at cost ca. Since CROSS enforces that an
end-host can only switch once to its backup path and never switch back during the
balancing trial, every end-host with a backup-path registration starts by using the
path with its regular registration at time ti. In summary, the optimal path-selection
function for all t = ti is uC(π, t|π′) = 1/2 if ¬R′e(π, t).

During the balancing trial, no reallocation decisions are taken before ti + T, as
the expected path costs during [ti, ti + T] is E[cα] = E[cβ] = 1/2p. Only at ti + T,
the actual imbalance ∆(t) = | fπ(ti)− fπ̃(ti)| between a more expensive path π̃ and
a cheaper path π becomes visible to the end-hosts. If the end-hosts on path π̃ with
a backup registration for path π switched at that point, they would save

∆C =
∫ ti+1

ti+T
(cπ̃(t)− cπ(t))dt < ∆Cmax = ti+1 − ti − T. (3.24)

However, such a switch would erase the backup value ω of path π for the end-host,
which is why an end-host with a backup registration for path π only switches to
path π if ω < ∆C. In order to disincentivize such migration and keep the load
distribution constant, the CROSS mechanism chooses the puzzle-difficulty level δ
such that E[Uh](δ, v) > 0 if and only if ω > ∆Cmax. This choice of δ leads to a
situation where the end-hosts with a backup registration will only switch to the
backup path in case of a path failure, as these end-hosts value the backup option
higher than any cost reduction obtainable without path failure. In case of a path
failure, however, trading the backup value ω of path π against the infinite cost
of failed path π̃ is rational and the end-hosts with a backup registration switch
the paths. In summary, the optimal path-selection function for end-host e and for
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all t ̸= ti is thus uC(π, t|π̃) = 1 if R′e(π, t) and cπ̃(t− T) = ∞, and uC(π, t|π̃) = 0
otherwise. Thereby, path-selection strategy σC has been established as the PSS
equilibrium strategy.

3.7 practical application

While the focus of this chapter is on the theoretical exploration of selfish path selec-
tion and stabilization mechanisms, this section lays out a pathway toward practical
application of our findings. First, we discuss practical requirements for inter-domain
stabilization mechanisms in §3.7.1. In §3.7.2, we present a mechanism-enforcement
architecture that conforms to these requirements. In §3.7.3 and §3.7.4, we outline
how the FLOSS and CROSS mechanisms could be practically implemented.

3.7.1 Requirements

If a stabilization mechanism is to be practically applied by network operators
in an inter-domain architecture, the mechanism must conform to the following
requirements:

Limited overhead. The stabilization mechanism must only induce a small overhead
on network operators. In particular, the genuine function of AS border routers
(forwarding traffic at line rate) must not be compromised by expensive mechanism-
enforcement tasks. Note that both mechanisms only need to be enforced by routers
in case of oscillation and until stabilization is achieved; however, the mechanisms
should induce little overhead even during this short time span.

No explicit inter-AS coordination (coordination-freeness). The stabilization mechanism
must not rely on explicit inter-AS coordination. Such explicit coordination may not
be feasible or scalable, as the domains that perceive the same oscillation pattern
may be mutually unknown, mutually distrusted, or very distant from each other.

3.7.2 Mechanism-Enforcement Architecture

To enforce an incentive-compatible stabilization mechanism, an AS operator needs
the means to detect, inform, and punish the selfish entities that employ an oscilla-
tory path-selection strategy. In this section, we describe a mechanism-enforcement



3.7 practical application 75

O

D

A1

A4

A2 A3

π1 π2
π3 π4

(a)

O

D

A0

A1

A4

A2 A3

(b)

O

D

A0

A1

A4

A2 A3

(c)

O

D

A1

A4

A7

A2 A3

A5 A6

(d)

Figure 3.5: Oscillation patterns.

architecture that provides these means to an AS operator while conforming to the
requirements in §3.7.1.

Inter-domain architecture. From an inter-domain perspective, the most important
architectural question concerns coordination, i.e., how each AS perceiving an oscilla-
tion pattern contributes to oscillation suppression. As explicit inter-AS coordination
is undesirable, an implicit method for responsibility assignment is necessary.

We leverage a fundamental property of paths in inter-domain networks as a
natural way to assign responsibility for inter-domain oscillation suppression: For
every pair of paths connecting the same origin and destination ASes, there is at
least one AS (henceforth: the splitting AS) in which the paths split, i.e., the paths
contain different egress interfaces out of the AS. For every oscillation between two
paths, at least one AS perceives the oscillation as an oscillation of traffic between
egress interfaces, not only as periodic upswings and downswings in the load at
one egress interface. Such splitting ASes are the natural candidates for a leading
role in inter-domain oscillation suppression, as these ASes are both best informed
about the oscillation and in the best position to manage the oscillating traffic.
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For illustration of the path-splitting property, Fig. 3.5 shows different types of
oscillation patterns for paths connecting an origin end-host O and a destination
end-host D. In the simplest cases, the oscillation may be perceived at the origin AS
(AS A1 in Fig. 3.5a) or at one intermediate AS (AS A1 in Fig. 3.5b). However, the
oscillation may be perceived at multiple splitting ASes. The different paths may
pass through a different number of egress interfaces at which the mechanism is
enforced. For example, path π3 in Fig. 3.5c only passes through one critical egress
interface (at AS A0), whereas paths π1 and π2 pass through two critical egress
interfaces. Conversely, each path in Fig. 3.5d passes through two egress interfaces
at which a load-balancing mechanism is enforced. Any stabilization mechanism
may thus be applied repeatedly and with different frequency to flows belonging to
the same parallel-path system.

Intra-domain architecture. In the intra-domain context, the mechanism-enforcement
architecture envisages a centralized oscillation-suppression service (OSS) in each
AS. The OSS is capable of interacting with the border routers at the egress interfaces.
For a splitting AS, this OSS functions as displayed in Fig. 3.6. By collecting aggregate
load statistics from the border routers, the OSS in the splitting AS can identify the
egress interfaces between which oscillation occurs (through correlation). As the
presence of such oscillation means that the AS is obliged to enforce a stabilization
mechanism, the OSS equips every oscillation-perceiving border router ri with
data Mi that is necessary to enforce the mechanism (e.g., start time of the next
interval). By further collecting load statistics from the egresses, the OSS monitors
and continuously adapts the execution of the mechanism. The border routers
communicate with the origins of the oscillating flows by appending mechanism-
relevant information to passing packets.

3.7.3 FLOSS in Practice

In the following, we discuss how the FLOSS mechanism could be applied by the
mechanism-enforcement architecture from §3.7.2, while under the requirements
from §3.7.1, namely limited overhead and coordination-freeness.

3.7.3.1 Limited Overhead

Registration on routers. In order to signal that end-hosts must register for an
upcoming time interval, a border router appends the start time ti of the next
interval to passing packets. If an end-host witnesses such a call for registrations
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in its packets, it can send a packet with a registration request over the desired
egress. A border router can keep track of registrations using a Bloom filter, which
approximates a set of flow IDs. A Bloom filter offers constant complexity for both
lookup and insertion, although suffering from false positives. When checking for
registrations, false positives result in unregistered flows being able to send over an
egress and being rewarded like loyal flows. However, the enforced migration rate ρ
can simply be discounted by the false-positive rate of the Bloom filter such that the
desired migration rate is enforced despite the presence of lucky unregistered flows.

Enforcement of single registration. In order to avoid that an end-host registers on
multiple egresses, a border router forwards all registrations to the OSS, which
keeps track of egress-specific registration by flows and can therefore spot multiple
registrations by the same flow. If multiple registrations are detected, the OSS pushes
a blacklist update for the malicious flow ID to the border routers. In order to avoid
introducing DoS attacks where a malicious actor provokes the blacklisting of an end-
host by sending multiple registrations, we assume some form of lightweight source
authentication, which is typically offered by path-aware Internet architectures [219].

Selective admission of migrating flows. Border routers need an efficient way to decide
whether to grant registration applications to flows that are willing to switch paths,
while preserving the property that a maximum share ρ of flows migrates. Such
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selective admission can be implemented using a publicly known hash function h,
which maps the flow ID f to the interval [0, 1]. If h(ti| f ) < ρ, the registration is
granted, where ti is the beginning time of the next registration-enforcement interval.
This construction has the advantage that an end-host can locally check whether
it will be accepted on the alternative ingress, as h, ti, and f are known to the
end-host. Therefore, the border router is not bothered by registration requests from
end-hosts that would be rejected. Furthermore, it is important to choose the flow
ID f based on attributes that the source end-host cannot easily influence without
compromising its communication, e.g., source and destination IP, but not source or
destination port.

Small traffic allowance for unregistered flows. While unregistered end-hosts should
not be able to properly use an egress, these end-hosts should be able to send a few
packets over the egress to measure the latency of the corresponding path. Also,
short flows, e.g., DNS requests, should not be required to obtain a registration. Such
a limited traffic allowance can be efficiently achieved by applying the mechanism
only to a subset of packets, e.g., by sub-sampling. If registrations are only checked
for a sub-set of packets, even an unregistered flow has a high chance of getting a few
packets through the egress, while still experiencing severe disruption when sending
a large number of packets over the egress. Due to the structure of congestion-
control algorithms, sub-sampling rates as low as 1% already cause enough packet
drops to make a path completely unusable for unregistered flows [168]. Moreover,
sub-sampling reduces the workload on border routers.

Addition of new flows. In reality, new flows appear during the execution of the
mechanism. Clearly, these flows cannot register in advance for an enforcement
interval, as these flows do not exist beforehand. Therefore, new flows are also
allowed to register at one path of their choice during an enforcement interval. In
order to distinguish new flows from flows that merely pretend to be new, the
FLOSS mechanism samples the active flows at both egresses in every interval and
inserts them into a Bloom filter. These previously active flows are supposed to
have a registration in the subsequent interval. In contrast, truly new flows can be
identified with a lookup failure in the mentioned Bloom filter. Due to false positives,
a truly new flow might be mistaken for a previously active flow and thus be denied
a retroactive registration. However, given a small false-positive probability, the
registration at one path should always be possible in practice. As all new flows
(except the false-positive new flows) must be expected to flock to the cheaper path,
the migration allowance must be discounted by the birth rate of flows.
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3.7.3.2 Coordination-Freeness

If there is one splitting AS for a parallel-path system, there are no unintended
effects due to distributed application of the mechanism. However, as explained
in §3.7.2, there may be multiple mechanism-enforcing ASes along a path. If ni is
the number of splitting ASes along path πi, the costs for obtaining a registration
for πi and for using πi without a registration are ni · ca and ni · cp, respectively.
In cases where ni is the same for every path πi of an oscillation pattern (such as
in Figure 3.5d), the incentives for the end-hosts thus do not change compared to
a single-application scenario. However, if ni is different for the paths πi in the
parallel-path system (such as in Figure 3.5c), the registration cost for different paths
may be different. For example, the registration cost for obtaining a registration of
path π3 in Figure 3.5c is ca, whereas the corresponding cost for paths π1 and π2
is 2ca. Since cp = ∞ > nica for all finite ni, registering for a path is still worthwhile.
However, an equilibrium between the two egresses of AS A0 is only reached if
( fπ1 + fπ2)

p + 2ca = f p
π3 + ca, which implies stability at unequal load. However,

since the cost ca for obtaining a registration is modest (just a single packet as
explained in §3.7.3.1), the resulting load imbalance between the ASes is also modest.
Therefore, no explicit inter-AS coordination is needed.

3.7.4 CROSS in Practice

In this section, we discuss the CROSS mechanism with respect to the two practicality
requirements, i.e., limited overhead and coordination-freeness.

3.7.4.1 Limited Overhead

Compared to FLOSS, the only additional piece of functionality needed for CROSS
is puzzle verification. Efficient puzzle-solution verification on border routers is
performed by a hash function evaluation with the appropriate arguments, among
which is the solution value provided by the data packet (cf. §3.6.2).

3.7.4.2 Coordination-Freeness

Like FLOSS, CROSS suffers from the minor issue that some paths may require
more registrations than other paths. Concerning backup registrations, multiple
applications of the mechanism do not constitute a problem, as an end-host always
has to solve only one puzzle to obtain a backup registration. For example, an
end-host in the network of Figure 3.5c could insure against path failure as follows.
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At AS A0, the end-host would obtain a normal registration for π3 and a backup
registration for π1 and π2. Such a combined backup registration is possible by
including only the respective egress of AS A0 in the puzzle solution, not the specific
path. At AS A1, the end-host can then obtain a normal registration for one of these
paths, e.g., π1. If the end-host desires an additional insurance against failure of
path π1, the end-host can solve a puzzle to obtain a backup registration for π2
at AS A1. Since only one puzzle per backup path is needed, no explicit inter-AS
coordination is necessary to preserve the incentives of the CROSS mechanism.

3.8 related work

Hop-by-hop forwarding. Due to the traditional paradigm of network-controlled
path selection, most traffic-engineering tools assume that packet forwarding is
performed by series of decisions taken by the hops along a path. Systems such
as AMP [100], ReplEx [84], Homeostasis [152], and HALO [177] thus prescribe
how routers along a path should take forwarding decisions, mostly by adapting
traffic-splitting ratios based on network information. If packets must be forwarded
along a path chosen by the end-host, these schemes cannot be used.

End-host path selection. An alternative line of work is generally compatible with
the emerging paradigm of end-point path selection. Assuming path selection by
the source, this flavor of research prescribes path-selection strategies that lead
to convergence. However, such convergent path-selection strategies are always
designed for an intra-domain context, i.e., for path selection within a domain where
end-points are under control of the network operator. Due to the selfishness of
end-hosts in the inter-domain context, these schemes are thus impractical. For
example, Proportional Sticky Routing [196] relies on self-restraint of end-points,
which leads to persistent preference of shortest paths over alternative paths even
when alternative paths are more attractive. The convergence of MATE [79] and the
rerouting strategy designed by Kelly and Voice [140] is built on the assumption that
the end-points restrain themselves to a maximum speed when reallocating traffic
on cheaper paths, which cannot be expected from selfish end-hosts. In TeXCP [137],
end-points are expected to comply with maximum traffic-reallocation allowances
dynamically set by the network. Similarly, the rerouting policies designed by Fischer
and Vöcking [85] require that end-hosts do not exceed a certain probability for
switching to a cheaper path. Finally, OPS [136] also demands behavior from end-
hosts that is irrational in a game-theoretic sense, in particular the probabilistic
usage of sub-optimal paths.
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Inter-domain traffic engineering. Inter-domain traffic engineering by means of incen-
tives has only been studied in context of the BGP ecosystem, thus not accounting
for path choice by end-hosts. Given rational ASes, there are different methods to
achieve stability for inter-domain traffic: incentive-compatible yet oscillation-free
BGP policies [83, 266], egress-router selection under QoS constraints [118], coop-
erative traffic-engineering agreements between ASes reached by Nash bargaining
[235], and the use of prices as traffic-steering incentives [186].

3.9 conclusion

In this chapter, we develop a game-theoretic framework that allows to test path-
selection strategies on their viability for selfish end-hosts, i.e., to show whether it
is rational for an end-host to adopt a path-selection strategy, given that all other
end-hosts use said path-selection strategy. Only strategies that form such equilibria
may be adopted in an Internet environment, where end-hosts are self-interested
and uncontrolled.

Using this framework, we show that the non-oscillatory path-selection strategies
traditionally proposed in the literature are not rational strategies and thus cannot
be expected to be adopted by selfish, unrestricted end-hosts. This insight suggests
that end-hosts must be incentivized to abstain from oscillatory path selection by
means of stabilization mechanisms. We present two such stabilization mechanisms,
and prove their incentive compatibility.

This incentive compatibility is a desirable property of a system, for two rea-
sons. First, the selfishness assumption for end-hosts is a pessimistic assumption
for networked systems, and designing systems under this assumption limits the
possible damage. Second, a system in which users can gain by rule-breaking may
be seen as inherently unfair, which limits the adoption of the system. With this
work, we make a first step in addressing these concerns regarding path-aware
network architectures, which hopefully sparks further research into load-adaptive
path selection and its impact on these architectures.





4
I M PA C T O F U N S TA B L E PAT H S E L E C T I O N

4.1 introduction

As discussed in the preceding chapter, end-host path selection introduces a risk
of load oscillation, which is expressed as an alternating grow-and-shrink pattern
of traffic volumes on links, and is perceived as an obstacle to the deployment
of path-aware networks [72]. Interestingly, this oscillation is targeted by a wide
range of solutions for oscillation suppression [79, 85, 140, 196, 2], but relatively
little is known about how exactly and by how much instability from path selection
deteriorates network performance. In other words, the solution to the oscillation
problem is much clearer than both the impact vectors and the magnitude of this
oscillation problem.

In this chapter, we therefore aim at qualifying and quantifying the effects of
oscillatory path selection on various metrics of a network. To tackle this challenge,
we must take into account that end-points in real path-aware networks employ
algorithms which jointly perform path selection and congestion control (CC), i.e.,
multi-path congestion-control (MPCC) algorithms. In this work, we will focus on
MPCC algorithms that are inspired by greedy, myopic path-selection behavior and
thus simultaneously produce and react to oscillation.

To analyze these algorithms, we require an analytical approach that (i) captures
the congestion-window fluctuations that represent the oscillation, and (ii) is general
enough to deliver fundamental insights into the nature of CC-assisted end-host
path selection. Alas, fluid models [112, 140, 142, 204, 253] are well suited to rep-
resent equilibria in terms of the rough traffic distribution on a network; these
models, however, either completely disregard congestion-control dynamics (such
as the classic Wardrop model [253]) or fail to capture the small-scale dynamics of
congestion-window fluctuations (as noted by Peng et al., who themselves operate
with a fluid model [204]). More applied approaches, as employed in the design of

83
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multi-path TCP (MPTCP) [144, 214, 259], can capture oscillatory phenomena (e.g.,
the ‘flappiness’ of protocols [144]), but these approaches rely on ad-hoc reasoning
from stylized network examples and experimental validation, which reduces their
viability as generic analytic tools.

We argue that a so-called axiomatic approach recently initiated by Zarchy et
al. [268] offers both the right analytical resolution and the required generality
for the question at hand. This approach is axiomatic in a sense borrowed from
economics and game theory, where properties with obvious desirability (e.g., the
acyclicity of preferences [36] or the fairness of a bargaining outcome [194]) are
formulated as axioms. Zarchy et al. apply this approach to congestion control by
capturing desirable properties of CC protocols such as efficiency, fairness, and
stability in axioms. The approach allows to analytically rate protocols with respect
to these axioms and highlight the fundamental trade-offs between them. In our
work, we further extend Zarchy et al.’s model to a multi-path context with the goal
of characterizing fundamental properties of joint algorithms for path selection and
congestion control.

4.1.1 Contribution

This chapter is based on my publication at PERFORMANCE 2021 [4]. Our work
uses a theoretical model to investigate how network performance is affected by the
instability due to greedy end-point path selection. In contrast to earlier theoretical
models, we develop a model that is able to capture both path-selection dynamics
and congestion-window fluctuations in §4.2. Within this model, we identify and
formalize different classes of dynamic equilibria (in §4.3 and §4.4) to which the
flow dynamics can be expected to converge exponentially fast. These equilibria are
essential for the analytical rating of MPCC protocols: In §4.5, we rate these dynamic
equilibria with respect to a number of performance metrics (the axioms). These
metrics are inspired by the recently developed axiomatic approach to CC [268], but
are extended to accommodate path selection. This equilibrium formalization allows
to derive the following insights in §4.6:

No trade-off between efficiency, convergence and loss avoidance. Through appropriate
protocol tuning, the metrics efficiency, loss avoidance, and convergence can be
simultaneously optimized. Hence, there is no trade-off between these properties
in theory. Unfortunately, however, such optimization requires knowledge about
system parameters such as the number of end points and the bottleneck capacities,
making them hard to determine in most practical settings.



4.2 model and assumptions 85

Trade-off with fairness and responsiveness. There is, however, a fundamental trade-off
between the above metrics and the fairness and the responsiveness of a MPCC
protocol. In particular, higher responsiveness makes a protocol less efficient, but
more fair.

Effects of introducing end-host path selection. By contrasting the axiomatic perfor-
mance ratings for a general network with and without path selection, we obtain
a multifaceted formalization of the performance impact of introducing end-host
path selection. This formalization allows to interpret and quantify how unstable
path selection affects network performance depending on network parameters. The
insights gained from this approach show that there are both benefits and drawbacks
of end-host path selection in an unstable form.

4.2 model and assumptions

4.2.1 Discrete Model

We leverage the analytical model of congestion control proposed by Zarchy et
al. [268] and extend it to a multi-path context with path selection, as illustrated
in Fig. 4.1.

Agents, paths, and flows. In summary, N agents (denoted by set A = [N] :=
{0, ..., N − 1}) compete for bandwidth on the bottleneck links of P parallel paths
from set Π. Each agent i ∈ A maintains a congestion window with size cwndi,
which evolves over time t. At each moment t ∈N0 in discrete time, any path π ∈ Π
accommodates a set Aπ(t) of agents that use path π at moment t, and carries
load fπ(t) = ∑i∈Aπ(t) cwndi(t).

Agent behavior. In each time step t, every agent i takes two actions. First, agent i
performs congestion control, i.e., adapts its congestion-window size cwndi(t) ac-
cording to a chosen CC protocol CCi(t, cwndi(t)), resulting in congestion-window
size cwndi(t + 1). Second, agent i performs path selection, i.e., determines the path π
such that i ∈ Aπ(t) and cwndi(t) is included in fπ(t), according to a given path-
selection strategy. In Fig. 4.1 as well as in our following analysis, agents implement
probabilistic greedy path selection, i.e., switch to the path carrying the lowest
load in the last time step with a given probability m. Finally, in order to investi-
gate different behaviors for congestion-window adaptation upon path switches,
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Table 4.1: Notation used in our model in alphabetic order.

Symbol Description

A = [N] Set of agents in network

Aπ(t) Set of agents using path π at time t

aπ(t) Number of agents using path π at time t

α(τ) Additive increase given continuity time τ

β Multiplicative-decrease parameter

C Total bottleneck capacity of network

Cπ Bottleneck capacity of path π

cwndi(t) Congestion-window size of agent i at time t

f (t) Combined congestion-window size of all agents at time t

fπ(t) Combined congestion-window size of all agents using path π at time t

Mπ(t) Set of agents who migrate away from path π at time t

m
Responsiveness
(Probability of switching to more attractive path in each time step)

N Number of agents in the network

P Number of paths in the network

Π Set of paths in the network

πi(t) Path used by agent i at time t

πmin(t) Path with lowest utilization at time t

r
Reset softness
(Multiplicative decrease of congestion-window size on path switch)

rank(π, t)
Rank of path π at time t
(Number of paths with higher utilization than π at time t)

τ Continuity time (time since last loss or path switch)

τi(t) Continuity time of agent i at time t

z(aπ(t), N) Scaling factor for extrapolating on-migration flow volume from path flow
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Figure 4.1: Illustration of discrete model (Notation: N = N− 1). The dotted arrow visualizes
path migration by agent 1 from path π to path π′′.

we introduce a reset-softness parameter r ∈ [0, 1] that determines the extent of
congestion-window reduction for path-switching agents (e.g., agent 1 in Fig. 4.1).

The agents are further constrained by path capacities Cπ , π ∈ Π, where Cπ is
the amount of data in maximum segment size (MSS) that can be transmitted on
path π during one round-trip time (RTT). If the capacity Cπ of path π is exceeded
by the flow fπ(t), the agents Aπ(t) experience packet loss and take this loss into
account in their congestion-control protocol.1 For example, the TCP Reno protocol,
with a multiplicative decrease of 0.5 as a reaction to loss and an additive increase
of 1 otherwise, is modelled as follows for an agent i using path π at time t:

TCPReno(t, cwndi(t)) =





cwndi(t) + 1 if fπ(t) ≤ Cπ

0.5 · cwndi(t) otherwise
(4.1)

1 We note that this loss modelling is a simplification in three respects. First, loss may already occur
when fπ(t) > sπ , namely if all agents send out all traffic f (t) in a burst that exceeds the buffer size sπ .
Second, even if fπ(t) > Cπ , the loss may not be perceived by all agents. Third, CC algorithms may
react differently depending on the number of recent losses.
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4.2.2 Scenario of Interest and Assumptions

Since the goal of this work is to characterize the worst-case effects of oscillatory
path selection, our analysis throughout the chapter will focus on a network scenario
that maximizes the severity of load oscillation. This scenario has the following
properties, which henceforth serve as assumptions:

Greedy load-adaptive path selection. Oscillation is caused by greedy, myopic path
selection behavior [2], which dynamically determines the number aπ(t) = |Aπ(t)|
of agents on path π. In any time step t, agents select the path πmin(t) with the
lowest bottleneck utilization fπ(t)/Cπ and hence the lowest latency (assuming
roughly equal propagation delay of all paths as stated below) and lowest loss
rate. Since monitoring the state of alternative paths and switching paths consume
resources, agents may not consider a path change in every time step. Instead, the
path-selection behavior is regulated by a path-migration probability m ∈ (0, 1], i.e.,
the probability with which an agent switches to a more attractive path in any time
step. Alternatively, m is interpreted as a measure for the responsiveness of agents.

Sequential multi-path usage. The intensity of oscillations grows with the size of
shifted flow volume per time unit. In order to maximize oscillation, we therefore
assume that a path-switching agent completely stops using its previously used path
and exclusively sends on the newly selected path. This coarse-granular migration
behavior produces sequential instead of concurrent usage of multiple paths. This
mode of sequential multi-path usage approximates the actual behavior of real-
world algorithms such as MPTCP, which tends to use only the most attractive
path for data transmission and sends a negligible amount of probing traffic over
the alternative paths [140, 144, 259]. Moreover, the average utility improvement
per user that is possible by concurrently using multiple paths instead of a single
selected path vanishes for a high number of agents [252]. Sequential multi-path
usage implies that ∑π∈Π aπ(t) = N ∀t.

Disjoint and similar paths. We investigate a network consisting of paths that are
parallel (i.e., disjoint) and equal in terms of latency Dπ and bottleneck capacity Cπ =
C/P, where C is the bottleneck capacity of the complete network. Such a network,
while being a simplification of general networks, is likely to bring out the worst-
case effects of myopic, greedy path selection, which are the subject of this chapter.
In particular, load oscillations are strongest if the actions of the sending agents
are strongly correlated because they react to the same (potentially misleading)
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feedback signals (i.e., path loss and latency) simultaneously [2]. If agents sharing
a link react to different feedback signals or at different times, e.g., because they
are using different paths with different round-trip latencies, their actions are less
strongly correlated and the flow dynamics are likely to oscillate less. The feedback
synchronization by equal path RTTs also ensures that the discrete time steps of the
model have consistent duration across all paths.

4.2.3 Stochastic Dynamics

In summary, a multi-path congestion-control protocol MPCC(CC, m, r) is a combi-
nation of a CC protocol CC(t), a responsiveness parameter m, and a reset-softness
parameter r. In a network with path selection, the MPCC dynamics are thus
represented by a pair of functions (aπ(t), fπ(t)) for any path π ∈ Π. Since the
path-selection behavior is probabilistic (regulated by responsiveness parameter m),
the MPCC dynamics are not uniquely determined by initial conditions, but need
to be modeled as a stochastic process. In particular, the MPCC dynamics under
universal adoption of MPCC(CC, m, r), are given by

aπ(t + 1) =





aπ(t)− |Mπ(t)| if π ̸= πmin(t)

aπ(t) + ∑π̃ ̸=π |Mπ̃(t)| otherwise
(4.2a)

fπ(t + 1) =





if π ̸= πmin(t):

fπ(t)−∑i∈Mπ(t) cwndi(t) + ∑i∈Aπ(t)\Mπ(t) ∆cwndi(t)

otherwise:

fπ(t) + ∑π̃ ̸=π ∑j∈Mπ̃(t) r · cwndj(t) + ∑i∈Aπ(t) ∆cwndi(t),

(4.2b)

where Mπ(t) is a random subset of Aπ(t), which contains the agents who leave
path π at time t, and ∆cwndi(t) = cwndi(t + 1) − cwndi(t) is the growth in
congestion-window size of agent i. Intuitively, the flow on a more congested path π
is reduced by the congestion windows of all agents Mπ that leave the path, and
increased by the congestion-window growth of the remaining agents Aπ(t) \Mπ(t).
In contrast, the flow on the least congested path π is increased by the post-reset
congestion-window sizes r · cwndj(t) of the agents j ∈ Mπ̃ who migrate to path π,
and by the congestion-window growth of the previously present agents Aπ(t).
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4.2.4 Expected Dynamics

While the formulations in Eq. (4.2) capture the evolutionary dynamics of an MPCC
system, their discrete and probabilistic nature hinders analytic treatment. However,
as we investigate large-scale systems with a high number of agents, the law of large
numbers allows that the probabilistic elements in Eq. (4.2) can be well approximated
by their expected values and traffic randomness can be largely ignored. This insight
is also frequently used in mean-field analysis [19].

For the remainder of this chapter, we therefore consider the expected MPCC dy-
namics, where the recursion on the random variables

(
aπ(t), fπ(t)

)
is approximated

with a recursion on the expectations
(
âπ(t), f̂π(t)

)
(where we write x̂ := E[x] for

any function x). The accuracy of this approximation is validated with simulations
in Appendix C.2.

Path selection. Concerning the agent dynamics in Eq. (4.2a), we note that E[|Mπ(t)|] =
m · âπ(t) for any path π ̸= πmin(t). Moreover, the expected volume of flow asso-
ciated with the agents in Mπ in Eq. (4.2b) is a proportional share of the expected
total flow f̂π(t) on path π:

E


 ∑

i∈Mπ(t)
cwndi(t)


 = m · f̂π(t). (4.3)

By the same argument, it holds that

E


 ∑

π̃ ̸=π
∑

j∈Mπ̃(t)
r · cwndj(t)


 = m · r · ∑

π̃ ̸=π

f̂π̃(t) (4.4)

for π = πmin(t). However, in order to make the second case of Eq. (4.2b) inde-
pendent of flows fπ̃ on alternative paths, we additionally make the following
approximation:

∑
π̃ ̸=π

f̂π̃(t) ≈
N − âπ(t)

âπ(t)
· f̂π(t) = z(âπ(t), N) · f̂π(t), (4.5)

where z(âπ(t), N) is henceforth referred to as the extrapolation factor. In this approx-
imation, the flow on path π is scaled proportionally to the number of agents N −
âπ(t) on other paths. This approximation can be justified on the grounds that in a
steady state, imbalances in path load are likely to stem from imbalances in the num-
ber of agents between paths, not from imbalances in the average congestion-window
size between paths.
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Congestion control. Finally, in order to arrive at the expected flow dynamics
f̂π(t), the expected combined congestion-window change E[∑k∈Aπ(t) ∆cwndk(t)]
(or for Aπ(t + 1), respectively) must be formalized. Of course, this change depends
on the CC protocols employed by the agents. In order to maximize the generality
of our analysis, we rely on the following generic form of a loss-based CC protocol
employed by each agent i, where πi(t) denotes the path that agent i uses at time t:

CCi(t, cwndi(t)) =





cwndi(t) + α
(
τi(t)

)
if fπi(t)(t) ≤ Cπi(t)

β · cwndi(t) otherwise
(4.6)

Here, τi(t) is the so-called continuity time of agent i, i.e., the number of time steps in
which agent i has already been on its current path without experiencing packet loss.
This continuity time is the argument to a function α, which determines the additive
increase to the congestion window in absence of loss. This formulation allows
to mimic the window-growth behavior in classic TCP Reno [82], in the widely
deployed TCP CUBIC [110], in the slow-start phase of many TCP protocols [243],
or in more theoretical MIMD protocols [20]. Finally, β ∈ [0, 1] is a parameter that
determines the multiplicative decrease of the congestion-window size in the case of
packet loss, which is the predominant practice in loss-based CC protocols.

Based on the probability distribution for the continuity time τi(t) of any agent i ∈
Aπ(t) at time t from Appendix C.1, we can calculate the average congestion-window
increase per agent, conditioned on the path π used by the agent at time t:

α̂π(t) =
∞

∑
τ=0

P [τi(t) = τ | i ∈ Aπ(t)] · α(τ). (4.7)

This average congestion-window increase then allows to obtain the aggregate
additive increase in absence of loss. In contrast, loss reduces the expected flow
volume f̂π(t) through multiplicative decrease β, complementing the effects of
out-migration (for π ̸= πmin(t)) or in-migration (for πmin(t)).

Complete expected dynamics. In summary, under universal adoption of a proto-
col MPCC(CC, m, r), the expected dynamics therefore are:

âπ(t + 1) =




(1−m) · âπ(t) if π ̸= πmin(t)

(1−m) · âπ(t) + m · N otherwise
(4.8a)
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f̂π(t + 1) =





If π ̸= πmin(t) ∧ f̂π(t) ≤ Cπ :

(1−m) · f̂π(t) + α̂π(t) · (1−m) · âπ(t)

If π = πmin(t) ∧ f̂π(t) ≤ Cπ :
(
1 + m · r · z(âπ(t), N)

)
· f̂π(t) + α̂π(t) · âπ(t)

If π ̸= πmin(t) ∧ f̂π(t) > Cπ :

β · (1−m) · f̂π(t)

If π = πmin(t) ∧ f̂π(t) > Cπ :
(

β + m · r · z(âπ(t), N)
)
· f̂π(t)

(4.8b)

4.2.5 Limitations

While our model presents a tractable approach to analyze oscillatory MPCC dy-
namics, our investigation and the resulting insights have clear limitations worth
addressing in future research. In particular, as our network model is an extension of
the network model by Zarchy et al. [268], our work inherits some limitations noted
by Zarchy et al., most importantly the assumption of synchronized feedback, and
the focus on a specific type of network. However, it is noteworthy that our work
addressed the previously identified challenge concerning randomized protocols
through the concept of expected dynamics. In general, the comprehensiveness
of our analysis would benefit from relaxing the worst-case conditions elicited
in §4.2.2, most prominently the assumption of disjoint and similar paths, and from
introducing latency-based and model-based CC protocols.

4.3 lossless equilibria

In order to rate MPCC protocols, we focus on the equilibria that these protocols
induce, i.e., stable load patterns to which the MPCC dynamics from Eq. (4.8) even-
tually converge. In this section, we characterize one class of equilibria that are
attained before the capacity limit of any bottleneck link is exceeded, i.e., these equi-
libria are lossless. Equilibria without this lossless property, i.e., lossy equilibria, are
presented in §4.4. All of these equilibria are dynamic equilibria, i.e., periodic patterns
of the number of agents and the load on the different paths. Note that the insights
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regarding equlibria only apply to the theoretical construct of expected dynamics in
an exact sense, and only approximately apply to actual MPCC dynamics.

4.3.1 Structure of Lossless Equilibria

In order to characterize lossless equilibria, we need to investigate whether the ex-
pected MPCC dynamics tend to exhibit a certain pattern in the case where capacity
limits are disregarded. Unfortunately, even this simplified discrete dynamical sys-
tem (determined by Eq. (4.8) without the two last cases of Eq. (4.8b)) is analytically
intractable due to the presence of case distinctions in the evolution functions [89].
Therefore, we use a hybrid approach, similar to previous work [16]: By performing
simulations as in Fig. C.2, we arrive at the following two observations about MPCC
dynamics with greedy, myopic agents sharing parallel and similar paths (cf. §4.2.2),
which serve as a basis for further analytical investigation:

In-migration is utilization-maximizing. Whenever path π with minimal utilization,
i.e., ûπ(t) = f̂π(t)/(C/P), experiences in-migration according to the second case
of Eq. (4.8b), this path tends to become the most utilized path.2

Out-migration is order-preserving: If two paths π and π̃ with ûπ(t) > ûπ̃(t) ex-
perience out-migration according to the first case of Eq. (4.8b), it tends to hold
that ûπ(t + 1) > ûπ̃(t + 1).

If the expected dynamics consistently conform to these two observations, they
exhibit the following pattern:

Definition 4.1 P-Step Oscillation. MPCC dynamics exhibit P-step oscillation if
there exists a time t0 ≥ 0 such that

∀T ∈N ≥ 0. rank(π, t0) = p =⇒ rank(π, t0 + T) = (p+ T) mod P, (4.9)

where rank(π, t) ranks all paths π ∈ Π in descending order according to their
utilization at time t:

rank(π, t) = p ⇐⇒ |{π̃ | ûπ̃(t) > ûπ(t)}| = p. (4.10)

In P-step oscillation, the assignment of the rank to paths changes in a round-robin
fashion, i.e., in any time step t, every path π rises by one rank, except the path with

2 This observation suggests that myopic, greedy load-adaptive path selection is not a Nash equilibrium
strategy, which has also been demonstrated in Appendix B.1.
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rank P− 1 (i.e., with the lowest expected utilization), which obtains the lowest rank
0 at time t + 1. After P time steps, a path reaches its original place in the ranking
order, i.e., rank(π, t) = rank(π, t + P) for all t ≥ t0. We present an argument for
the prevalence of P-step oscillation in §4.3.3.

4.3.2 Lossless Agent Equilibrium

As this P-step oscillation uniquely determines the least congested path in any
time step t ≥ t0, this pattern also determines the agent-migration dynamics.
Starting from an agent distribution {aπ(t0)}π∈Π at time t0, all the paths π with
rank(π, t0) ̸= P − 1 will experience an outflow of agents (according to case 1

in Eq. (4.8a)) and only the path with rank P− 1 experiences an inflow of agents
(according to case 2 in Eq. (4.8a)). In a single round of P-step oscillation with
start time t0, the path π(0) with rank(π(0), t0) = 0 will thus first experience agent
outflow for P− 1 times and then once experience agent inflow. Hence, the following
difference equation characterizes the discrete dynamical system for a granularity of
P time steps:

âπ(0)(t0 + P) = (1−m) ·
(
(1−m)P−1 · âπ(0)(t0)

)
+ m · N

= (1−m)P · âπ(0)(t0) + m · N,
(4.11)

To find an equilibrium of the dynamic system for the agent dynamics on π(0),
we identify a fixed point of the difference equation in Eq. (4.11), i.e., we solve

â(0) = (1−m)P · â(0) + m · N ⇐⇒ â(0) =
m · N

1− (1−m)P , (4.12)

where â(0) is the equilibrium value for any âπ(t) with rank(π, t0) = 0, which gener-
alizes as follows:

Insight 4.1 Convergence to Unique Dynamic Agent Equilibrium. Under P-step
oscillation, the expected agent dynamics {âπ(t)}π∈Π of an MPCC system asymptot-
ically converge to a unique dynamic equilibrium, i.e., a cyclic series of states. This
dynamic equilibrium of the agent dynamics consists of P states in each of which the
rank-p path accommodates the corresponding equilibrium amount of agents â(p), i.e.,

âπ(t) = â(rank(π,t)), where â(p) =
(1−m)p ·m · N

1− (1−m)P . (4.13)

This convergence can be shown by finding a trajectory function:
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Definition 4.2 Trajectory Function. A trajectory function x(p)
π (t) is an explicit

interpolation function that yields the correct value of path-specific dynamics xπ(t) at
all moments where path π has rank p:

∀k ∈N≥0. x(p)
π (tπp + k · P) = xπ(tπp + k · P), (4.14)

where tπp = min{t | t ≥ t0 ∧ rank(π, t) = p} is the first time step in which path π
has rank p, and t0 is the start time of P-step oscillation.

For the agent dynamics âπ(t), such a trajectory function is given by

â(p)
π (t) =

(
âπ(tπp)− â(p)

)
· (1−m)t−tπp + â(p). (4.15)

As limt→∞ â(p)
π (t) = â(p), the trajectory functions converge to the equilibrium found

above exponentially fast. Figure 4.2 visualizes the asymptotic convergence to the
dynamic equilibrium {â(p)}p∈[P] (highlighted in blue) along the trajectory functions.

4.3.3 Lossless Flow Equilibrium

After identifying the agent equilibrium in §4.3.2, we identify the equilibria of the
MPCC flow dynamics { f̂π(t)}π∈Π in this section. We first consider hypothetical
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equilibria, which are equilibria of the flow dynamics under the assumption that
the capacity of each path is never exceeded. In a second step, we will show under
which conditions these hypothetical equilibria are actual equilibria.

4.3.3.1 Hypothetical Flow Equilibria

Rank-based dynamics. To find the hypothetical equilibria of the flow dynamics,
we can simplify the flow dynamics from Eq. (4.8b) by disregarding the capacity
limit C/P. In addition, we insert the equilibrium agent levels â(p) from §4.3.2
and the expected additive increase α̂(p) derived in Appendix C.1 to arrive at the
following formulation:

f̂π(t+ 1) =




(1−m) ·

(
f̂π(t) + α̂(rank(π,t)) · â(rank(π,t))

)
if rank(π, t) ̸= P− 1,

(
1 + m · r · z(m, P)

)
· f̂π(t) + α̂(P−1) · â(P−1) if rank(π, t) = P− 1,

(4.16)

where the extrapolation factor z is only dependent on m and P given the agent
equilibrium, i.e., z(m, P) = N/â(P−1) − 1 = (1− (1−m)P−1)/(m · (1−m)P−1).

Rank-based fixed points. Similar to Eq. (4.11), we set up a first-order difference
equation for the dynamics for the path that has rank p at time t0 (where the P-step
oscillation starts) and find a fixed point that is attained every P time steps, for
example for ranks 0 and P− 1:

f̂ (0) =

(
(1 + m · r · z(m, P)) · (∑P−2

p=0 α̂(p)) + α̂(P−1)) · â(P−1)

1− (1 + m · r · z(m, P)) · (1−m)P−1 , (4.17a)

f̂ (P−1) =

(
∑P−2

p=0 α̂(p) + α̂(P−1) · (1−m)P−1) · â(P−1)

1− (1 + m · r · z(m, P)) · (1−m)P−1 . (4.17b)

The fixed point for a general rank p can be derived analogously and expressed by
a similar (albeit quite complicated) term f̂ (p) shown in Eq. (C.11) in Appendix C.3.
These fixed points { f̂ (p)}p∈[P] constitute the hypothetical equilibrium, i.e., if a
rank-p path carries flow volume f̂ (p), the path will carry this flow volume again P
time steps later, where it is again the rank-p path.
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Insight 4.2 Hypothetical Dynamic Flow Equilibrium. If capacity limits of links
are disregarded, the dynamic equilibrium of the flow dynamics { f̂π(t)}π∈Π consists
of P states in each of which the rank-p path accommodates flow volume f̂ (p).

In order for such an equilibrium to be valid, it must be consistent with P-step
oscillation, i.e., it must hold that f̂ (p) > f̂ (p+1) for all p ∈ [P− 1]. Interestingly, if a
certain parameter combination is associated with an invalid equilibrium, it follows
that P-step oscillation is fundamentally impossible for that parameter combination.
However, we show in Appendix C.3 that only a small part of the parameter space,
containing rather extreme parameters, is inconsistent with P-step oscillation.

Convergence. Similarly as in §4.3.2, convergence to this equilibrium can be proven
using a trajectory function (cf. Definition 4.2). The following trajectory function
yields the correct flow volume in all time steps where path π has rank p again:

f̂ (p)
π (t) =

(
f̂π(tπp)− f̂ (p)) ·

(
(1+ m · r · z(m, P)) · (1−m)P−1) t−tπp

P + f̂ (p). (4.18)

The limit of this trajectory function for t→ ∞ is the equilibrium value f̂ (p), which
establishes convergence;3 this is illustrated in Fig. 4.3.

4.3.3.2 Actual Flow Equilibrium

Intuitively, this hypothetical equilibrium given by { f̂ (p)}p∈[P] is an actual equilib-
rium of the MPCC dynamics if the convergence is not disturbed by the capacity
limit C/P on any path π, i.e., if the trajectory functions for all ranks consis-
tently remain below C/P. We therefore require an upper bound on all trajectory
functions { f̂ (p)

π (t)}p∈[P]. Thanks to the structure of P-step oscillation, it holds
that f̂ (p) > f̂ (p+1) ∀p ∈ [P− 1]. Therefore, in the hypothetical equilibrium, f̂ (0)

represents an upper bound on the flow dynamics. We speak of flow dynamics
with consistent trajectories if such an ordering not only holds on the equilibrium
values f̂ (p), but also on the trajectory functions f̂ (p)

π (t) for all paths π:

3 Note that f̂ (0) from Eq. (4.17a) is undefined for r = 1, as the flow dynamics do not converge to a fixed
point in that case. Given r = 1, the trajectory function for rank 0 can be expressed with the following
linear function, which has no limit:

f̂ (0)π (t) =
[
(1−m)1−P ·

(
∑P−2

p=0 α̂(p)
)
+ α̂(P−1)

]
· â(P−1) · P−1 · (t− tπp) + f̂π(tπ0). (4.19)
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Definition 4.3 Consistent Trajectories. The flow dynamics { f̂π(t)}t≥0 have con-
sistent trajectories at time point t′ if on every path π ∈ Π, the rank-specific trajectory
functions { f̂ (p)

π (t)}p∈[P] satisfy the following condition:

∀p ∈ [P− 1], t ≥ t′. f̂ (p)
π (t) > f̂ (p+1)

π (t) (4.20)

As trajectories are always eventually consistent, it holds that:

∃t′. ∀t > t′. ∀p ∈ [P]. f̂ (0)π (t) ≥ f̂ (p)
π (t)

∀π ∈ Π. f̂ (0)π (t) ≥ f̂π(t)
(4.21)

In other words, the rank-0 trajectory function for any path is eventually an upper
bound on all rank-specific trajectory functions and by consequence also an upper
bound on the flow dynamics.

As f̂ (0)π (t) is monotonic, its function values will not exceed C/P if f̂π(tπp) ≤ C/P
and f̂ (0) ≤ C/P. Due to the introduction of capacity limits, it is necessary to alter
the definition of tπp to be the first point in time after oscillation began (at t0) where
rank(π, tπp) = p (as before) and additionally f̂π(tπp) ≤ C/P.4 Therefore, we arrive
at the following insight:

Insight 4.3 Dynamic Lossless Flow Equilibrium. The hypothetical equilibrium
(disregarding capacity limitations) from Insight 4.2 is an actual, lossless equilibrium
(taking capacity limits into account) for the flow dynamics { f̂π(t)}π∈Π if and only
if f̂ (0) ≤ C/P, i.e., the maximum flow-equilibrium level does not exceed the bottleneck
capacity of any path.

4.4 lossy equilibria

In this section, we characterize lossy equilibria, i.e., dynamic equilibria where f̂ (0) >
C/P and the flow dynamics therefore periodically exceed bottleneck capacities.

4.4.1 Structure of Lossy Equilibria

Lossy equilibrium types. In order to identify the typical structure of lossy equi-
libria, we again rely on simulations similar to §4.3.1. Based on these simulations,

4 Such a tπp always exists as any reasonable CC’s reaction to loss reduces f̂π(t) below C/P eventually.
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we can distinguish two types of lossy equilibria, illustrated in Figs. 4.4 and 4.5.
Note that both of these lossy-equilibrium types are characterized by flow vol-
umes { f̂ (p)∗}p∈[P], each carried by the path with rank p in the state that is des-
ignated as the initial state of the lossy equilibrium (t = 0 in the figures) and is
periodically revisited every L time steps. Moreover, the boundary points, i.e., the
largest and smallest flow volume arising in a lossy equilibrium, are denoted by f̂ ∗+

and f̂ ∗−, respectively.

Type distinction. The main distinguishing property of type-1 lossy equilibria
(cf. Fig. 4.4) is that these lossy equilibria are consistent with P-step oscillation
despite the occasional multiplicative decrease β on rank-0 paths. In contrast, type-2
lossy equilibria (cf. Fig. 4.5) temporarily deviate from P-step oscillation whenever
there is packet loss on a path. In that case, the rank-0 path with loss directly becomes
the rank-(P− 1) path in the subsequent time step. However, even in type-2 lossy
equilibria, P-step oscillation eventually resumes, e.g., at t = 2 in Fig. 4.5. Type-1
equilibria typically appear for a relatively high migration rate m, whereas type-2
equilibria tend to appear for lower migration rates.
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4.4.2 Flow Equilibria

While the lossy equilibria cannot be characterized as simply as the lossless equilibria
in §4.3.3, it is feasible to determine the flow-volume bounds for the presented types
of lossy equilibria.

Upper bound. Both for type-1 and type-2 lossy equilibria, we note that the upper-
boundary point f̂ ∗+ is reached after one round of P-step oscillation starting from
a flow volume below the capacity limit. Hence, an upper bound on f̂ ∗+ can be
represented as follows:

f̂ ∗+ ≤ f̂ (0)π (tπ0 + P) where f̂ (p)
π (tπ0) = C/P. (4.22)

The trajectory function from Eq. (4.18) (or from Eq. (4.19) for r = 1) is used to
calculate the effects of one round of P-step oscillation on flow volume C/P, which is
the highest flow volume from which ordinary P-step oscillation can proceed. Note
that this trajectory function is only usable if the agent dynamics are in equilibrium
according to §4.3.2. Type-1 lossy equilibria preserve P-step oscillation and thus
also the corresponding agent equilibria. For type-2 lossy equilibria, however, P-step
oscillation is occasionally disturbed, which can result in agent dynamics out of
equilibrium. However, multiple rounds of P-step oscillation precede the moment of
reaching f̂ ∗+ and the convergence to the agent equilibrium is exponential. Hence,
we observe that the agent dynamics are close to the agent equilibrium and the
trajectory function can therefore be used to obtain an approximate upper bound
for type-2 lossy equilibria.

Lower bound. In type-1 lossy equilibria, the lower-boundary point f̂ ∗− is reached
after P− 1 time steps with agent outflow on an overloaded rank-0 path. Combined
with the multiplicative decrease β in the first of these P− 1 time steps, we can thus
formulate a lower bound on f̂ ∗− for type-1 lossy equilibria:

f̂ ∗− > β · (1−m)P−1 · Cπ , (4.23)

given a rank-0 path that is only infinitesimally overloaded and α(τ) > 0, ∀τ ∈N>0.
For type-2 lossy equilibria, this lower bound is too pessimistic, as the combination of
multiplicative decrease and agent out-migration directly transforms the overloaded
rank-0 path into the least utilized path and there are no further consecutive time
steps with agent out-migration on this path. Hence, β · (1−m) · Cπ suffices as a
lower bound for type-2 lossy equilibria. For a validation of these lower bounds by
simulation, consult Fig. C.5 in Appendix C.4.
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4.5 axioms

In this section, we use an axiomatic approach inspired by Zarchy et al. [268] to
derive insights regarding the effects of oscillatory path selection. We adapt a number
of their axioms, which were formulated for a single-path context, to a multi-path
context in §4.5.1. In §4.5.2, we evaluate the equilibria from Sections 4.3 and 4.4 with
respect to these axioms.

4.5.1 List of Axioms

In our axiomatic approach to multi-path congestion control, axioms correspond
to desirable properties that MPCC protocols should possess. However, as these
properties refer to general and vague concepts (e.g., efficiency or fairness), the
conditions for possessing these properties are usually not well-defined. Therefore,
the axioms here are formalized as metrics for rating an MPCC protocol with respect
to a certain property, instead of binary indicators of whether the protocol possesses
the given property. Concretely, we consider the following axioms in this work:

Axiom 4.1 Efficiency. An MPCC protocol is ϵ-efficient if under universal adoption
of this protocol, the bottleneck utilization of every path π with capacity C/P is never
lower than a share ϵ after some time t′:

∃t′. ∀t ≥ t′, π ∈ Π.
P · f̂π(t)

C
≥ ϵ (4.24)

Larger values of ϵ are better, and we consider an ϵ-efficient protocol optimal if ϵ ≥
(C− s)/C, where s is the buffer size.a

a In terms of latency, (C− s)/C, i.e., empty buffers, would even be preferable to higher values
of ϵ. This latency effect could be captured by an additional axiom, which we do not introduce in
this work.
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Axiom 4.2 Loss avoidance. An MPCC protocol is λ-loss-avoiding if under uni-
versal adoption, the loss rate on any path π with capacity C/P never exceeds λ after
some time t′:

∃t′. ∀t > t′, π ∈ Π.
f̂π(t)
C/P

− 1 ≤ λ (4.25)

Thus, smaller values of λ are better, and a 0-loss-avoiding protocol is optimal.

Axiom 4.3 Convergence. An MPCC protocol is γ-convergent if under universal
adoption, the flow volume f̂π(t) on every path π lies consistently within a range
[γ · f̂+π , f̂+π ] below a path-specific maximum level f̂+π after some time t′:

∃t′ > 0, f+π . ∀t > t′, π ∈ Π. γ · f̂+π ≤ f̂π(t) ≤ f̂+π (4.26)

Thus, larger values of γ are better, and a 1-convergent protocol is optimal.

Axiom 4.4 Fairness. An MPCC protocol is η-fair if under universal adoption, the
variance of congestion-window sizes of all agents i ∈ A in the network never exceeds η
after some time t′:a

∃t′ > 0. ∀t > t′. Var
i∈A

[
cwndi(t)

]
≤ η (4.27)

Thus, smaller values of η are better, and a 0-fair protocol is optimal.

a Zarchy et al. [268] formalize fairness with the ratio of the smallest to the largest congestion-
window size in the steady state. Given path selection, this ratio is always potentially 0, e.g., if an
agent migrates in every time step.

For any axiom metric µ, we write µ(MPCC) for the most desirable value of
metric µ that the protocol MPCC can be rated with.

4.5.2 Axiomatic Characterization of Equilibria

The axioms in §4.5.1 refer to characteristics which are eventually attained and then
persistently preserved by the flow dynamics. Hence, a natural way to axiomatically
rate an MPCC protocol is to evaluate the equilibria (i.e., stable states) of this protocol
(cf. Sections 4.3 and 4.4).
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Efficiency (Axiom 4.1). We distinguish lossless and lossy flow equilibria. If there
is a lossless equilibrium ( f̂ (0) ≤ C/P), the minimal flow volume ever carried by
any path π is the equilibrium value for rank P − 1, i.e., f̂ (P−1).5 The network-
wide efficiency level is therefore ϵ = P · f̂ (P−1)/C (Case 1 ). In contrast, for lossy
equilibria, the efficiency level is the lower bound on the lower boundary point f̂ ∗−

according to §4.4.2. Depending on the lossy-equilibrium type, this lower bound is
given by β · (1−m)P−1 or β · (1−m), respectively. Since the lower bound is never
higher for type 1 than for type 2, we consider β · (1−m)P−1 to be the minimum
flow volume for lossy equilibria (Case 2 ). While this lower bound is too pessimistic
for lossy equilibria of type 2, these type-2 lossy equilibria mostly appear for low
values of m, where the difference between the two bounds is small.

ϵ
(
MPCC(α, β, m, r)

)
≥





P · f̂ (P−1)/C 1 if f̂ (0) ≤ C/P,

β · (1−m)P−1
2 otherwise.

(4.28)

Loss avoidance (Axiom 4.2). If all paths are in lossless equilibrium ( f̂ (0) ≤ C/P),
it is clear that the maximum loss rate in the whole network is 0 (Case 1 ). If
the network is in lossy equilibrium, the maximum loss rate is determined by the
upper boundary point f̂ ∗+ (cf. §4.4.2). As shown in Eq. (4.22), this boundary point
is maximal at f̂ (0)π (tπ0 + P), where f̂ (0)π is the rank-0 trajectory function for an
arbitrary path π and is anchored at f̂ (0)π (tπ0) = C/P. For r ̸= 1 (Case 2 ) and r = 1
(Case 3 ), this trajectory function is given by Eq. (4.18) and Eq. (4.19), respectively.
In summary, the maximum loss rate λ is

λ
(
MPCC(α, β, m, r)

)
≤





1 If f̂ (0) ≤ C/P: 0

2 If f̂ (0) > C/P ∧ r ̸= 1:
q(m, r, P) · (1−m)P−1 − 1+(
q(m, r, P) ·∑P−2

p=0 α̂(p) + α̂(P−1)) · â(P−1)P
C

3 Otherwise:
(
(1−m)1−P ·∑P−2

p=0 α̂(p) + α̂(P−1)) · â(P−1)P
C

(4.29)

where we use the abbreviation q(m, r, P) := (1 + m · r · z(m, P)).

5 To be precise, the asymptotic convergence to f̂ (P−1) permits that f̂π(t) for rank(π, t) = P − 1 is
consistently below f̂ (P−1). However, since this shortfall is infinitesimal, we treat the equilibrium as
completely reached instead of only asymptotically approached.
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Figure 4.7: Markov process for congestion-
window size given lossy equilib-
ria (Notation: p = 1− p).

Convergence (Axiom 4.3). If the network is in a lossless equilibrium ( f̂ (0) ≤ C/P),
the convergence behavior of the flow dynamics can be derived from the bound-
aries f̂ (0) and f̂ (P−1) of the hypothetical flow equilibrium (Case 1 ). Given a lossy
equilibrium, we can build on the range between the upper boundary point f̂ ∗+ and
the lower boundary point f̂ ∗−, for which we have derived an upper and a lower
bound, respectively (Case 2 ). From these ranges, the derivation of the convergence
indicator γ and the maximum level f̂+π is straightforward:

γ
(
MPCC(α, β, m, r)

)
≥





f̂ (P−1)

f̂ (0)
1 if f̂ (0) ≤ C

P ,

β·(1−m)P−1

λ(MPCC(α,β,m,r))+1 2 otherwise.
(4.30)

Fairness (Axiom 4.4). We consider the variance of congestion-window sizes in the
equilibrium as a metric for the fairness of an MPCC algorithm:

Var
i∈A

[
cwndi(t)

]
= E

i∈A

[
cwndi(t)2]− E

i∈A

[
cwndi(t)

]2 (4.31)

As the congestion-window evolution of a single agent is a probabilistic pro-
cess where any state transition only depends on the current state, we approxi-
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mate cwndi(t) for the case of lossless equilibria by means of the following Markov
process with two state variables:

If τi(t) ̸= P− 1:

τi(t + 1), cwndi(t + 1) =





0, r · cwndi(t) prob. m

τi(t) + 1, cwndi(t) + α(τi(t)) prob. 1−m

Else:

τi(t + 1), cwndi(t + 1) = τi(t) + 1, cwndi(t) + α(τi(t))

(4.32)

where the initial state is given by τi(0) = cwndi(0) = 0.
Computationally tractable computation of the congestion-window size vari-

ance can be done by averaging many simulation samples of the Markov process
from Eq. (4.32), which has only linear complexity in t and yields the expectation of
the congestion-window size by the central limit theorem. Fig. 4.6 illustrates that the
variance of cwndi(t) has a limit for t→ ∞.

Regarding lossy equilibria, the Markov process from Eq. (4.32) must be adapted
as shown in Fig. 4.7, where the following properties hold:

pI→I = if τi(t) mod P ̸= (P− 1) then pℓ ·m else pℓ (4.33)

pI→M = if τi(t) mod P ̸= (P− 1) then m else 0 (4.34)

pI→D = if τi(t) mod P ̸= (P− 1) then pℓ ·m else pℓ (4.35)

In particular, we assume that every path encounters loss with probability pℓ in
any time step, except if the path has experienced loss in the previous time step (as
there are no consecutive loss events on the same path in the lossy equilibria in §4.4).
If the agent is using a lossy path, but does not leave the path, the congestion-
window size is multiplicatively decreased as shown in transition Decrease in Fig. 4.7.
Like for lossless equilibria, a simulation-based approach enables to efficiently
compute the variance in congestion-window size (cf. Fig. C.6 in the appendix).
This figure suggests that the variance limit for lossy equilibria is decreasing in loss
probability pℓ. Moreover, since the lossy Markov process in Fig. 4.7 is equivalent
to the lossless Markov process in Eq. (4.32) for pℓ = 0, the variance of the lossless
Markov process represents an upper bound on the variance of the lossy Markov
process. Therefore, we henceforth exclusively rely on the lossless Markov process.
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4.6 axiom-based insights

In this section, we derive fundamental insights into the nature of end-host path
selection on the basis of the axioms presented in the previous section. First, we
investigate in §4.6.1 how the performance characteristics of a network change if
end-host path selection is introduced. Second, we show in §4.6.2 that there are
fundamental trade-offs when applying end-host path selection.

4.6.1 Performance Effects of Introducing End-Host Path Selection

4.6.1.1 Evaluation Method

General approach. In order to analyze how end-host path selection affects the
performance characteristics of a network, we use a comparative approach: First, we
characterize the performance of a network without end-host path selection based
on the axioms from §4.5.1 (henceforth: Scenario (I)). Afterwards, we compare the
axiomatic ratings of the network without path selection to the axiomatic charac-
terization of the MPCC equilibria (cf. §4.5.2) that arise in the same network given
end-host path selection (henceforth: Scenario (II)).

Evaluation network. We base the comparison on a network with N agents and
a total bottleneck capacity C distributed over P paths with equal bottleneck ca-
pacity C/P. All agents adopt the same CC protocol CCi(α, β) (cf. Eq. (4.6)) in
Scenario (I), whereas they employ a multi-path version MPCCi(α, β, m, r) of this
CC protocol in Scenario (II). Moreover, while the agent distribution on paths is dy-
namically determined in Scenario (II), the agent distribution in Scenario (I) is static:
To identify the worst-case effects of end-host path selection, let this static agent
distribution be optimal, i.e., aπ = N/P. Finally, we consider two different additive-
increase functions: We distinguish a constant additive-increase function α1(τ) = 1
and an additive-increase function αS in the style of TCP Slow Start: αS(τ) = 2τ

if τ < 5 and αS(τ) = 1 otherwise.

Evaluation figures. The changes in evaluation metrics are also visualized in Figs. 4.8
and 4.9: For any m and every equilibrium class (lossless or lossy), the possi-
ble range of the metric change is shown for the two additive-increase func-
tions and an example network. The range associated with each value of m is
[minr∈R(m) ∆(m, r), maxr∈R(m) ∆(m, r)], where ∆ is the difference metric as a func-
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tion of m and r, and R(m) contains all values of r that produce a valid equilibrium
of the given class (lossless or lossy) in the example network given m.

4.6.1.2 Efficiency (Axiom 4.1).

Given that the employed protocol CCi(α, β) eventually exhausts the capacity of any
path, the efficiency level is given by the lowest possible flow volume that results
from loss. This lower bound is determined by the multiplicative decrease β applied
to a flow volume that is infinitesimally above the capacity limit:

∀π ∈ Π. ϵ
(
CCi(α, β)

)
=

β · C/P
C/P

= β (4.36)

We now compare this efficiency level to the MPCC efficiency levels from Eq. (4.28)
and analyze the efficiency change ∆ϵ = ϵ

(
MPCC(α, β, m, r)

)
− ϵ
(
CC(α, β)

)
that is

due to the introduction of end-host path selection. For a visualization of this
efficiency change, consider Fig. 4.8a.

Lossless equilibria. If the efficiency level of the MPCC dynamics is determined by a
lossless equilibrium, then ∆ϵ is given by P · f̂ (P−1)/C− β. As f̂ (P−1) is a decreasing
function of the migration rate m and an increasing function of the reset softness r,
end-host path selection is more likely to negatively affect ϵ for high migration rates
and hard resets on path switch:

Insight 4.4 Efficiency Effects of Path Migration and Resets in Lossless Equi-
libria. The more likely agents are to migrate away from a path at any single point
in time, the further the bottleneck-link utilization can drop, and if agents start out
with a small congestion window every time they switch to a new path, utilization (and
therefore efficiency) are relatively low.

Nonetheless, it is possible that the introduction of end-host path selection leads to
a higher level of efficiency. The computations for the example network, visualized
in Fig. 4.8a, show that for low values of m and high values of r, introducing end-host
path selection can increase efficiency.
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Figure 4.8: Effects of end-host path selection for an example network with P = 3, β = 0.7,
N = 1000, and C/P = 12000.

Lossy equilibria. In contrast, if the MPCC efficiency level is determined by a lossy
equilibrium, then ∆ϵ is given by β · (1−m)P−1 − β, which is bound to be negative.
This fact allows the interpretation that end-host path selection strictly lowers the
efficiency in case of loss, as emigration from a path reinforces the utilization plunge
created by the CC loss reaction, i.e., the multiplicative decrease β. As Fig. 4.8a
shows, such less efficient lossy equilibria are bound to exist for low values of m,
for which there is no value of r such that a a lossless equilibrium can arise. This
insight points to a subtle relationship between migration rates and efficiency:

Insight 4.5 Inefficient Equilibria due to Low Migration. While lowering the
migration rate can increase the efficiency of end-host path selection, very low migration
rates necessarily lead to inefficient (lossy) equilibria, which make end-host path selection
detrimental to efficiency compared to a scenario without path selection.

4.6.1.3 Loss avoidance (Axiom 4.2).

In Scenario I, the worst-case loss rate occurs if flow fπ on path π is exactly at the
capacity limit Cπ , and there is an additional increase by all agents on the path:

∀π ∈ Π. λ
(
CCi(α, β)

)
=

αmax · aπ

Cπ
=

αmax · N
C

, (4.37)

where αmax = maxτ∈N≥0 α(τ) to represent the maximum possible loss.
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Lossless equilibria. In case of lossless equilibria of the MPCC dynamics, it is clear
that ∆λ (defined analogously to ∆ϵ) is negative, i.e., the loss rate can be reduced
(to 0). This improvement in ∆λ is shown in Fig. 4.8b for all values of m for which
there is a value of r such that a lossless equilibrium arises.

Lossy equilibria. If a lossy equilibrium is present, the effects of end-host path
selection are more ambivalent. In that case, the maximum loss rate in the path-
aware network is proportional to f̂ (0): the larger the hypothetical limit value f̂ (0)

of the trajectory function, the stronger the increase of the trajectory function at
level Cπ and thus the higher the loss rate. As f̂ (0) is proportional to r and effectively
infinite for r = 1, the highest loss rate for every value of m is achieved for r = 1,
which yields the following intuitive insight:

Insight 4.6 Loss Effects of Soft Resets. If agents only perform soft resets of the
congestion-window size when switching paths, high loss may arise on the newly
selected path.

In contrast, if m and r are such that the equilibrium is only marginally lossy, i.e.,
f̂ (0) is only infinitesimally larger than Cπ , then the maximum loss rate in a lossy
equilibrium is arbitrarily close to 0 (similar to a lossless equilibrium). However, a
value of r that achieves f̂ (0) ≈ Cπ may not exist given a (low) value of m; in this
case, the reduction of the loss rate to 0 is not possible. Therefore, we arrive at a
counter-intuitive insight that mirrors Insight 4.5:

Insight 4.7 Loss Effects of Low Migration. Loss is not minimized by minimizing
the migration rate m, as low migration rates may prohibit the emergence of completely
lossless equilibria.

Loss effects of additive-increase functions. Fig. 4.8b allows another non-obvious
insight:

Insight 4.8 Loss Effects of Path Selection with Variable Additive-Increase
Functions. The benefits of end-host path selection in terms of loss are particularly
large if additive-increase functions with high inherent variability (such as αS in Fig. 4.8)
are used by the agents.

In that case, end-host path selection may reduce loss because it leads to de-
synchronization of the continuity time τ between agents: If all agents tend to
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have the same continuity time τ, there is a chance that many agents have continuity
time τmax with α(τmax) = αmax at the same time, resulting in high loss. In contrast,
agent migration due to path selection causes more heterogeneity in τ and therefore
leads to an averaging of α(τ), which reduces the aggregate additive increase and
therefore the maximum possible loss. While this observation may first seem like an
unfair comparison of a maximum to an average, the averaging of additive increases
is exactly a fundamental feature of path selection. In particular, the averaging re-
duces the possible maximum of aggregate additive increase compared to a scenario
without path selection.

4.6.1.4 Convergence (Axiom 4.3).

The convergence level γ is determined by the minimum and the maximum possible
flow volume, as derived above:

γ
(
CCi(α, β)

)
=

β · C
C + αmax · N (4.38)

Lossless equilibria. In the case of lossless equilibria, end-host path selection can
increase stability if

f̂ (P−1)

f̂ (0)
=

∑P−2
p=0 α̂(p) + α̂(P−1) · (1−m)P−1

(
1 + m · r · z(m, P)

)
·∑P−2

p=0 α̂(p) + α̂(P−1)
> γ

(
CCi(α, β)

)
, (4.39)

which is unsurprisingly true for a low migration rate m and hard resets r ≈ 0.

Lossy equilibria. However, analogously to efficiency and loss, convergence surpris-
ingly suffers from very low migration rates m, as this causes lossy equilibria, which
are inferior to lossless equilibria in terms of convergence (cf. Fig. 4.9a).

The convergence in these lossy equilibria benefits from low migration rates
and hard resets, without the exception for very low migration rates that exists
for lossless equilibria. While such lossy equilibria might be inferior to lossless
equilibria in terms of convergence, lossy equilibria of end-host path selection might
still be preferable to no end-host path selection at all, as Fig. 4.9a suggests for the
lossy equilibria for αS. Similar to Insight 4.8, the reason for this improvement is
the de-synchronization of the continuity time brought about by agent migration,
which reduces the variance of the aggregate additive increase and thus the flow-
volume fluctuations. Contrary to the widespread belief that end-host path selection
necessarily hurts stability (in the sense of the convergence axiom), our analysis thus
shows that network stability can in fact benefit from end-host path selection.
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Figure 4.9: Illustration of effects of end-host path selection on the basis of the same example
network as in Fig. 4.8.

4.6.1.5 Fairness (Axiom 4.4).

Fairness without path selection. Given simultaneous sending start and no path
selection, perfect synchronization implies that all agents always have exactly the
same congestion-window size, i.e., η = 0. Moreover, Zarchy et al. show that even
if some agents start sending after others, CC protocols generally tend to come close
to perfect fairness [268]. To find the worst-case effects of end-host path selection,
we thus assume perfect fairness in the scenario without path selection:

η
(
CCi(α, β)

)
= 0 (4.40)

Fairness effects of migration. Hence, the fairness change ∆η due to end-host path
selection is equal to the unfairness level η of the MPCC dynamics, which has
been computed as a function of the migration rate m in Fig. 4.9b for two different
additive-increase functions. In Fig. 4.9b, the lowest values for η, i.e., the highest
fairness, is achieved for very high migration rates m ≈ 1, which leads to the
following insight:

Insight 4.9 Fairness Effects of Path Migration. In a system with greedy end-host
path-selection, a very high migration rate m leads to optimal fairness.

This phenomenon can be intuitively explained as follows: If the migration rate
is high, any agent is likely to reset its congestion-window size in any time step,
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which results in a compact distribution of the congestion-window size. Under a
low migration rate, some agents may reach a high congestion-window size due
to uninterrupted growth, while a few agents per time step perform a reset, which
leads to a high variance of the congestion-window size distribution.

Fairness effects of resets. The effects of the reset softness r on η are more nuanced.
As Fig. 4.9b shows, the unfairness metric η is generally higher for lossy equilibria,
which appear for high reset softness, than for lossless equilibria, i.e., lossless
equilibria are fairer. However, as mentioned in §4.5.2, the fairness metric for lossy
equilibria is computed for infinitesimal loss probability pℓ; for any higher pℓ, η
is lower, which complicates a comparison to lossless equilibria. Also, for a low
migration rate m, lossy equilibria with a high reset softness are associated with
lower η than lossless equilibria. The reason behind this phenomenon is that soft
resets reduce the difference in congestion-window size between the agents that
have not migrated in a long time (and therefore have a large congestion-window)
and the agents that have recently migrated and reset their congestion-window size.

Fairness over time. Finally, while end-host path selection seems to reduce fairness
as captured by η, we note that η only represents the fairness at any single point in
time. However, under low migration rates, there may still be very high inter-temporal
fairness. If the migration probability is low, any agent has a high probability to
uninterruptedly grow its congestion window for a long time. If the congestion-
window sizes of any agent were averaged over a certain time span, the distribution
of such average congestion-window sizes would have low variance. We leave this
more complex fairness analysis as an interesting task for future work.

4.6.2 Fundamental Trade-Offs

In Sections 4.5.2 and 4.6.1, the dependency of the MPCC dynamics on the migration
rate (or responsiveness) m and the reset softness r has been qualified and quantified.

Trade-off regarding migration rate. These characterizations allow to observe the
following trade-off in the design of systems with end-host path selection:



4.6 axiom-based insights 113

Insight 4.10 Efficiency and Convergence vs Fairness and Responsiveness. Effi-
ciency ϵ and convergence γ are more favorable under low migration rates, whereas
fairness η and responsiveness m are more favorable under high migration rates,
implying a fundamental trade-off between these axioms.

However, we note that this trade-off is only valid within equilibrium classes,
e.g., for comparing lossless equilibria among each other, but not across equilibrium
classes: Lowering the migration rate below a certain (low) level restricts the set of
possible equilibria to lossy equilibria, which are worse in terms of efficiency and
convergence than lossless equilibria (cf. Insight 4.5).

Migration and loss. Regarding loss avoidance, the effect of migration rates depends
on the remaining network parameters. If resets are hard (r ≈ 0), higher migration
rates are associated with lower loss rate (as higher migration rates make lossless
equilibria more likely, which are optimal in terms of loss). In contrast, if resets are
soft (r ≈ 1), lossless equilibria are impossible and the effects of the migration rate on
the loss rate are unclear in general, because the migration rate non-monotonically
affects the aggregate additive increase (cf. the curve for maximal ∆λ given αS
and lossy equilibria in Fig. 4.8b). However, this unpredictable effect vanishes for
constant additive-increase functions (such as α1 from §4.6.1). For constant-increase
functions, a higher migration rate leads to a higher loss rate given soft resets. This
finding underlines the relevance of congestion-window adaptation on path switch:

Insight 4.11 Reset Dependence of Migration Effect on Loss. While a high migra-
tion rate decreases loss under hard resets, it increases loss under soft resets.

Optimal MPCC parameters. Despite this subtle relationship of migration rates and
the axiomatic metrics, we can identify parameters m and r that are optimal with
respect to all the metrics efficiency, loss, and convergence simultaneously. These
parameters are given by the lowest m such that a lossless equilibrium is still possible
given a complete reset r = 0. These parameters yield a lossless equilibrium with
high efficiency and convergence (cf. Insight 4.10).
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Insight 4.12 No Trade-Off between Efficiency, Loss Avoidance and Conver-
gence. Since there exist protocol parameters that are optimal with respect to efficiency,
loss avoidance, and convergence simultaneously, there exists no fundamental trade-off
between these metrics.

Unfortunately, determining these optimal parameters requires knowledge about
specific and variable properties of the target network, i.e., the number of agents |A|
and the path-bottleneck capacities Cπ in the network, making it unattainable in
most practical settings.

4.7 related work

End-host path selection. Traditionally, the effects of end-host path selection have
been theoretically studied in the literature on selfish routing. In this line of research,
the classic Wardrop model [253] is used to characterize stable traffic distribu-
tions (equilibria) that result from uncoordinated path selection by self-interested
agents. These equilibria have been thoroughly investigated with respect to their
existence [218, 222], their efficiency (typically termed Price of Anarchy [148, 210, 221,
224]), and their convergence properties [85, 227]. However, the Wardrop model
cannot represent congestion-control dynamics appropriately, which we consider
important for characterizing the impact of end-host path selection on network
performance.

The effects of end-host path selection have also been characterized by Wang et
al. [252], whose ‘cost of not splitting in routing’ captures the difference in network
utility between a scenario where end-hosts select a single path and a scenario
where multiple paths can be selected. However, this work differs from ours in
investigating static rate allocations instead of dynamic rate evolution, in evaluating
a single metric (utility) instead of multiple axioms, and in contrasting different
modes of end-host path selection instead of contrasting path selection with path
pre-determination.

Methods for MPCC analysis. In research about multi-path congestion control, there
has been widespread use of fluid models which can better represent congestion-
control dynamics [112, 140, 142, 204]. However, also these models focus on repre-
senting equilibria in terms of approximate traffic distributions on networks and do
not capture small-scale dynamics such as congestion-window fluctuations. More
applied approaches rely on reasoning from network examples and experimental
validation and have been used in the design of MPTCP algorithms such as LIA [214,
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259] and OLIA [144]. These approaches are rather suited for the design of concrete
protocols than for the elicitation of fundamental properties of end-host path se-
lection. Moreover, MPTCP research typically only investigates the effects of path
selection by scrutinizing friendliness concerns between single-path and multi-path
TCP users in the same network, not by looking at the impact that the introduction
of end-host path selection has on aggregate performance based on various metrics.

Axiomatic reasoning. In contrast, the axiomatic approach used in this chapter
allows to qualify and quantify the performance impact of path selection on a
fundamental level while taking congestion-control dynamics into account. Thanks
to this power, the axiomatic perspective has been applied to various topics beyond
game theory: In computer science, for example, research on congestion control [268],
routing protocols [161], and recommendation systems [21] have benefited from
axiom-based approaches.

4.8 conclusion

Motivated by a stability concern about end-host path selection, we qualify and
quantify the performance impact of such path-selection-induced instability in
this chapter. More precisely, we analyze a general network in which end-hosts
employ greedy load-adaptive path selection and characterize the resulting traffic
pattern with respect to five metrics of interest (“axioms”): efficiency, loss avoidance,
convergence, fairness and responsiveness. Through this analysis, we show how
the performance impact of end-host path selection depends on the path-migration
behavior, the underlying congestion-control protocol, and the structure of the
network. Among the dependencies that we present and explain, there are both
intuitive, well-known dependencies (e.g., high migration rates decrease efficiency)
and non-intuitive, more complex dependencies (e.g., very low migration rates
increase loss). Moreover, we show that there are fundamental limitations such that
no multi-path congestion-control protocol can optimize all metrics simultaneously.





5
M O D E L L I N G B B R D Y N A M I C S

5.1 introduction

To this day, ever changing applications, traffic patterns, network capacities, and
path types prompt research into new and better congestion-control algorithms
(CCAs). Most prominent in recent years was Google’s introduction of BBR [47],
which was promptly enabled in 2017 for some Google services and thus widely
deployed in the public Internet [48]. Since then, several theoretical and experimental
studies of the behavior of BBR [75, 119, 231, 246, 254] have identified issues with
this first version of BBR, relating to both fairness (especially towards loss-based
CCAs) and efficiency (e.g., excessive queue buildup). As a result, BBRv2 [50] has
been proposed, triggering another series of evaluation studies [101, 143, 193, 240].

Still, the characterization of BBR performance remains incomplete. Experiment-
based studies [101, 119, 143, 193, 231, 246], by their nature, allow statements relating
to the concrete network settings in the experiments. Given the variety of scenarios
in which a CCA might be deployed, such experimental investigations could only be
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made exhaustive with great effort and large-scale testbeds which only a minority of
researchers has access to. Previous model-based studies contain BBR steady-state
models that are valuable for specific settings (e.g., deep buffers [255] or wireless
links [264]); however, a deep theoretical understanding requires a model that allows
investigation of general settings and the convergence process.

In this chapter, we complement previous approaches to BBR analysis with a clas-
sic approach in CCA research: fluid models consisting of differential equations [86,
163, 166, 182, 215, 241, 249]. Such fluid models are unique in their suitability for both
efficient simulation and theoretical stability analysis. Enabling efficient simulation
is critical because the model must be simulated under a plethora of configurations,
including settings that are expensive to build. Enabling theoretical stability analysis
is crucial because the equilibria (i.e., steady states) of the CCA dynamics are only
relevant for performance characterization if stable in a control-theoretic sense, i.e.,
if the dynamics actually converge to the equilibria.

While a fluid model for BBR is thus well-suited to complement previous work,
constructing such a model is challenging because BBR does not naturally fit into the
existing fluid-model framework for loss-based CCAs [166, 249]. In fact, BBR does
not exclusively rely on a congestion window affected by loss, but includes traffic
pulses for capacity probing and measurement-driven state transitions. By using
new techniques, e.g., by mimicking the probing pulses with sigmoid functions, this
work establishes the first highly accurate and highly general model of BBR, both
for versions 1 and 2.

Our fluid model predicts BBR behavior with high accuracy, which we validate
with experiments with the network emulator mininet [157]. The validated model
confirms BBR performance issues from previous studies and yields new insights.
Moreover, we apply dynamical-system analysis (i.e., Lyapunov method) to our fluid
model to identify asymptotically stable equilibria of the BBR dynamics.

5.1.1 Contributions

This chapter is based on my publication at IMC 2022 [5]. Its main contributions are
the following:

BBR fluid model. We introduce the first general fluid model for BBR (versions 1

and 2), using new techniques such as sigmoid pulses and mode variables.

Validated BBR analysis. We present extensive, systematic model-based calculations,
experimentally validate the results of these calculations, and provide profound
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insights into fundamental metrics of BBR. For example, we analytically confirm the
previous insight that BBRv1 can lead to unfair bandwidth allocations —especially
when it competes against loss-based CCAs, but also in competition with itself
given unequal RTTs. Moreover, we confirm that BBRv2 eliminates most of the
undesirable behavior of BBRv1, but we also identify settings in which BBRv2 leads
to bufferbloat and unfairness.

Stability analysis. We analytically identify asymptotically stable equilibria of
BBRv1 and BBRv2.

5.2 network fluid model

In this section, we present our network fluid model, which closely follows the work
by Low et al. [166]. However, we have made several improvements to the network
model, which we will highlight in the following. We denote function f (t) by f and
its derivative by ḟ , unless the argument differs from the default time variable t.

In our model, the network consists of links ℓ with capacity Cℓ, buffer size Bℓ, and
propagation delay dℓ.

Link-arrival rate. The arrival rate yℓ(t) at link ℓ is

yℓ = ∑
i∈Uℓ

xi

(
t− df

i,ℓ

)
, (5.1)

where Uℓ is the set of agents using link ℓ, xi(t) is the sending rate of agent i at
time t, and df

i,ℓ is the propagation delay from agent i to link ℓ. Together with Low
et al. [166], we neglect queuing delay and packet losses previous to link ℓ.

Queue length. In general, the queue length grows or shrinks according to the
discrepancy between combined arrival rate yℓ and the transmission capacity Cℓ at
the respective link [166], but never exceeds its buffer size Bℓ:

q̇ℓ = (1− pℓ) · yℓ − Cℓ, qℓ(t) ∈ [0, Bℓ], (5.2)

where pℓ(t) is the loss probability of link ℓ at time t (cf. §5.2). We refine the model
by Low et al. to additionally capture the effect of packet drops on the queue length.
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Table 5.1: Notation used in network model.

Symbol Description

Bℓ Buffer size at link ℓ

Cℓ Link capacity of link ℓ

dℓ Propagation delay of link ℓ

df
i,ℓ Forward propagation delay from agent i to link ℓ

db
i,ℓ Backward propagation delay from link ℓ to agent i (over destination and return

segment of path)

dp
i Total propagation delay for agent i; dp

i = df
i,ℓ + db

i,ℓ

πi Path used by agent i; modeled as set of links

πi,ℓ Path from agent i to link ℓ

Uℓ Set of agents using link ℓ

pℓ(t) Loss probability at link ℓ at time t

pπ(t) Loss probability on path π at time t

qℓ(t) Queue length at link ℓ at time t

τℓ(t) Latency (propagation and queueing delay) on link ℓ

τπ (t) Round-trip latency (propagation and queueing delay) of path π

τℓ(t) Latency of link ℓ

wi(t) Congestion-window size of agent i at time t

xi(t) Sending rate of agent i at time t

yℓ(t) Arrival rate at link ℓ at time t
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Latency. The link latency is the fixed link propagation delay plus the queuing
delay, which depends on queue size qℓ(t). The latency of a path is the sum of link
latencies:

τπi = ∑
ℓ∈πi

τℓ = ∑
ℓ∈πi

dℓ +
qℓ
Cℓ

. (5.3)

Loss probability and queuing disciplines. Without active queuing discipline, loss
occurs if the buffer of a link is full. Given such a simple drop-tail policy, the loss
probability is given by the relative excess rate whenever the queue is full, and is 0

otherwise [258]. To facilitate analytical treatment, we refine previous models by a
smooth approximation:

pℓ(t) = σ
(
yℓ(t)− Cℓ

)
·
(

1− Cℓ

yℓ

)
·
(

qℓ
Bℓ

)L
(5.4)

where L≫ 1 and σ(v) is a relatively sharp sigmoid function:

σ(v) =
1

1 + e−K·v (5.5)

with K ≫ 1 controlling the sharpness of the increase at v = 0.
In contrast to drop-tail, the loss probability under the RED queuing discipline

moves synchronously with the queue size. More precisely, RED keeps the drop
probability at 0 if the queue size is below a configurable threshold q0, increases
the drop probability linearly to a configurable value p1 for queue sizes up to q1,
and drops all packets for larger queue sizes. We approximate the RED behavior as
follows, representing the general idea of RED:

pℓ =
qℓ
Bℓ

∈ [0, 1]. (5.6)

which corresponds to a RED configuration with q0 = 0, q1 = Bℓ, and p1 = 1. The
extension of the fluid model to other RED configurations is straightforward.

Regarding the loss probability of paths, link-specific loss probabilities are as-
sumed to be small enough such that the following approximations regarding loss
hold:

pπi (t) = 1− ∏
ℓ∈πi

(
1− pℓ

(
t + df

i,ℓ

))
≈ ∑

ℓ∈πi

pℓ
(

t + df
i,ℓ

)
. (5.7)
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Congestion window and sending rate. For the window-based congestion-control
algorithms Reno and CUBIC (cf. Appendix D.1), the sending rate of agent i is
determined by the congestion-window size wi and round-trip latency:

xi =
wi
τi

. (5.8)

5.3 bbr fluid model

In this section, we introduce the first fluid model for BBR, both for BBRv1 [47] and
BBRv2 [50]. Interestingly, the fluid-model techniques used for the loss-based CCAs
cannot reflect essential BBR features, in particular its phases with different behavior.
Hence, we construct our BBR model using new techniques, i.e., periodic probing
pulses and mode variables (for simulating the BBR state machine). In the following,
we first describe the behavior of BBR for both versions 1 and 2. Then, we present
our fluid model for BBR by means of a basic fluid model, which can be concretized
for each version.

5.3.1 Description of BBR

Fundamentally, BBR continuously performs measurements to estimate two core
properties of the network path, namely the bottleneck bandwidth BtlBw and the
minimal round-trip time (RTT) RTprop (i.e., propagation delay). To estimate these
properties, BBR constantly switches between two states, namely the ProbeBW state
and the ProbeRTT state. While the ProbeBW state consumes most of flow lifetime
and is considerably different across the two BBR versions, the ProbeRTT state is only
infrequently and briefly entered and is mostly identical across both BBR versions.

ProbeRTT state. BBR enters the ProbeRTT state if no smaller round-trip time than
the existing RTprop estimate is observed for 10 seconds. To discover the propagation
delay, the ProbeRTT state tries to eliminate queuing delay by restricting the data in
flight (inflight in BBR terminology) to a small volume during 200 ms. In BBRv1, this
small volume has a fixed size of 4 segments; since this volume has been found to
be too conservative, the ProbeRTT inflight limit in BBRv2 has been chosen to half
the estimated bandwidth-delay product, i.e., half the product of BtlBw and RTprop.

ProbeBW state in BBRv1. The ProbeBW state aims at measuring the bottleneck
bandwidth of the network path, and includes a periodic probing strategy with the
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pacing rate as the primary control of the sending rate. In this probing strategy, each
period consists of 8 phases with the duration of RTprop. In one phase randomly
chosen from the first 7 phases, BBRv1 sets its pacing rate to 5/4 · BtlBw to find the
capacity limit of the path. In the subsequent phase, BBRv1 decreases its pacing
rate to 3/4 · BtlBw to drain the queues potentially built up during the aggressive
previous phase. In the other 6 phases of the period, BBRv1 paces at rate BtlBw. At
the period end, the maximum delivery rate from the period is then considered the
new bottleneck bandwidth estimate and thus serves as a base pacing rate for the
next period.

BBRv1 congestion window. BBRv1 also maintains a congestion window, which
amounts to twice the estimated BDP and was intended as a safeguard against
‘common network pathologies’ such as delayed ACKs [47]. Contrary to design
intention, this inflight limit by the congestion window is the essential constraint
on the sending rate of BBRv1 when competing with loss-based CCAs given large
buffers [119, 254], letting BBRv1 degenerate into a window-based CCA in these
circumstances.

ProbeBW state in BBRv2. This unintentional relevance of the inflight limit in some
circumstances, plus the unfairness towards loss-based CCAs in shallow buffers,
led Google to revise the ProbeBW mechanism for BBRv2. This revision mainly
aimed at making BBR less aggressive, through increasing its sensitivity to loss and
ECN signals (where we henceforth only consider loss for simplicity), less frequent
probing, and a persistent coupling between inflight limits and the sending rate. To
be precise, BBRv2 tries to obtain additional bandwidth only every few seconds,
where the time between such probings is given by the minimum of 62 estimated
RTTs (chosen for fairness reasons) and a random value between 2 and 3 seconds. In
this probing, BBRv2 first paces at the rate given by BtlBw for one RTprop, with the
goal to achieve an inflight corresponding to the bandwidth-delay product. Then,
BBRv2 sets its pacing rate to 5/4 · BtlBw and increases the inflight until it reaches
5/4 of the estimated BDP or the loss rate exceeds 2%. At this point, the bottleneck-
bandwidth estimate BtlBw is updated to the maximum delivery rate from the last
two ProbeBW periods. Moreover, BBRv2 also records the maximum tenable inflight
in state variable inflight_hi, which tracks the observed inflight, but is reduced by
a multiplicative decrease β if the exponential-increase phase has been terminated
by excessive loss. Afterwards, BBRv2 chooses a pacing rate of 3/4 · BtlBw until the
inflight is reduced to an arguably safe level, which corresponds to the minimum of
the estimated BDP and 85% of the previously measured inflight_hi (where the
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erased 15% are termed headroom in BBRv2). Once the inflight has been reduced to
that level, BBRv2 enters into cruising mode. In cruising mode, BBRv2 aims to keep
its inflight on a safe level by introducing the additional inflight bound inflight_lo,
which is activated if packet loss occurs: inflight_lo starts from the congestion-
window size at the moment of loss and is reduced by β upon packet loss. In contrast
to inflight_hi, which serves as a long-term inflight bound, inflight_lo serves as a
short-term inflight bound and is therefore reset at the end of the bandwidth-probing
period. In summary, at any point in time, the congestion-window size of a BBRv2

flow is the minimum of the general BBR congestion window of two BDP, the
long-term bound inflight_hi (discounted by headroom in cruising mode), and the
short-term bound inflight_lo (if activated).

5.3.2 Basic fluid model for BBR

We rely on a skeleton fluid model that captures the common properties of BBRv1

and BBRv2.

MinRTT estimate. As mentioned in the previous section, the two versions of BBR
are mostly similar regarding the estimation of the minimum RTT given by RTprop,
which we represent with variable τmin

i (t) for the RTprop estimate of agent i at time t.
The variable τmin

i is continuously adjusted downwards upon encountering smaller
RTTs:

τ̇min
i = −Γ

(
τmin

i (t)− τi(t− dp
i )
)

(5.9)

where Γ(v) is a differentiable function approximating the ReLU function max(0, v).
Such a function can be constructed using the sigmoid function from Eq. (5.5):

Γ(v) = v · σ(v). (5.10)

In Eq. (5.9), this formulation of Γ leads to a proportional decrease in minimum
RTT estimate τmin

i if the currently observed delay τi(t− dp
i ) is below the previously

observed minimum τmin
i , i.e., if the argument of Γ exceeds 0. Otherwise, τmin

i is
preserved.

ProbeRTT state. To describe that BBR is in ProbeRTT state, we use a discrete mode
variable mprt

i , which is 1 if BBR is in ProbeRTT state and 0 otherwise. In both BBR
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Table 5.2: Notation used in BBR fluid model (in alphabetical order).

Symbol Description

Γ Continuous approximation of ReLU function

mcrs
i Indicator of flow i being in cruising mode (BBRv2)

mdwn
i Indicator of flow i currently reducing inflight volume (BBRv2)

mprt
i Indicator of flow i being in ProbeRTT mode

Φi(t, ϕ) Pulse function activated in bandwidth-probing phase ϕ of flow i

σ Sigmoid function

Tpbw
i Duration of bandwidth-probing period for flow i

tprt
i Time spent by flow i in current bandwidth-probing period

Tprt
i Time between entries/exits of ProbeRTT mode for flow i

tprt
i Time spent by flow i since last entry/exit of ProbeRTT mode

τmin
i Minimum-RTT estimate of flow i

vi Inflight data volume of flow i

w−i Inflight-draining target of flow i (BBRv2)

whi
i inflight_hi limit of flow i (BBRv2)

wlo
i inflight_lo limit of flow i (BBRv2)

wpbw
i Inflight limit of flow i in ProbeBW mode

wprt
i Inflight limit of flow i in ProbeRTT mode

xbtl
i Bottleneck-bandwidth estimate of flow i

xdlv
i Delivery rate measured by flow i

xmax
i Maximum delivery rate measured by flow i during probing period

xpbw
i Sending rate of flow i in ProbeBW mode

xpcg
i Pacing rate of flow i
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versions, the ProbeRTT mode is switched on or off upon time-out of the ProbeRTT

timer tprt
i :

∆mprt
i = σ

(
tprt
i − Tprt

i

)
·
(
(1−mprt

i )−mprt
i

)
(5.11)

where Tprt
i is the time period between entries and exits of the ProbeRTT state for

agent i. Note that Eq. (5.11) represents an update rule for simulations rather than
a differential equation, as mprt

i is discrete. Upon time-out of the current ProbeRTT
timer (i.e., σ ≈ 1), Eq. (5.11) leads to an inversion of mprt

i :

mprt
i + ∆mprt

i =





1 + 1− 2 · 1 = 0 if mprt
i = 1

0 + 1− 2 · 0 = 1 if mprt
i = 0.

(5.12)

The two time-related variables in Eq. (5.11) behave as follows:

Tprt
i = mprt

i · 0.2 +
(

1−mprt
i

)
· 10 (5.13)

ṫprt
i = 1− σ

(
tprt
i − Tprt

i

)
· tprt

i − σ
(

τmin
i − τi(t− dℓ)

)
· tprt

i (5.14)

The constants in Eq. (5.13) cause BBR to remain in ProbeRTT state for 0.2 seconds
and to wait 10 seconds before re-entering the state after exiting it. Eq. (5.14) causes
a reset of the ProbeRTT timer to 0 if the timer has reached the limit Tprt

i or a lower
RTT has been measured, and to tick up otherwise.

State-specific sending rate. In ProbeRTT state, the sending rate is limited by a
version-dependent inflight limit wprt

i (t):

xi = mprt
i ·

wprt
i
τi

+
(

1−mprt
i

)
· xpbw

i (5.15)

where the ProbeBW sending rate xpbw
i follows the relevant constraint (congestion

window or pacing rate):

xpbw
i = min

(
wpbw

i
τi

, xpcg
i

)
(5.16)
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ProbeBW state. Similar to the ProbeRTT state, we also introduce the two time-
related variables Tpbw

i and tpbw
i for the ProbeBW state, where Tpbw

i is the duration

of a ProbeBW period and tpbw
i is the time within the current period. While Tpbw

i

is version-dependent, tpbw
i grows with time and is reset to 0 when exceeding the

period duration for both BBR versions:

ṫpbw
i = 1− σ

(
tpbw
i − Tpbw

i

)
· tpbw

i (5.17)

In the ProbeBW state, the bottleneck-bandwidth estimation is based on measure-
ments of the delivery rate xdlv

i (with link ℓ being the bottleneck link of agent i):

xdlv
i =

xi
(
t− dp

i
)

yℓ
(

t− db
i,ℓ

) ·





Cℓ if qℓ(t− db
i,ℓ) > 0

yℓ
(

t− db
i,ℓ

)
otherwise

(5.18)

where dp
i is the propagation delay of flow i, and db

i,ℓ is the propagation delay from
link ℓ to sender i (via the destination host). As a result, the fraction in Eq. (5.18)
denotes the share of flow i’s traffic, emitted one RTT before time t, among the
aggregate traffic simultaneously arriving at link ℓ.

We accommodate the recorded maximum delivery rate xmax
i (t) per ProbeBW

period as follows:

ẋmax
i = Γ(xdlv

i − xmax
i )− σ(0.01− tpbw

i ) · xmax
i (5.19)

where the second term provokes a reset of xmax
i in the first ten milliseconds of

the period. The mechanism for adjusting the bottleneck-bandwidth estimate xbtl
i

(corresponding to BtlBw) to xmax
i is specific to each BBR version.

Inflight volume. Finally, we choose the following natural formulation to model the
inflight volume vi(t):

v̇i = xi − xdlv
i (5.20)

5.3.3 BBRv1 Fluid Model

Given the basic BBR fluid-model framework, the biggest challenge in modelling
BBRv1 is to model the randomized probing behavior with varying pacing rates.
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BtlBw update. As described in §5.3.1, BBRv1 proceeds in bandwidth-probing
periods that are 8 phases long, where each phase has a duration of τmin

i , i.e.,

Tpbw
i = 8 · τmin

i . The bottleneck-bandwidth estimate xbtl
i is updated to the maximum

delivery rate xmax
i at the end of the period, which we formalize as follows:

ẋbtl
i = σ

(
tpbw
i − Tpbw

i + 0.01
)
·
(

xmax
i − xbtl

i

)
(5.21)

Pacing rate. In general, BBRv1 prescribes a pacing rate xpcg
i equal to xbtl

i in each
phase, but increases xpcg

i to 5/4 · xbtl
i in one randomly chosen phase and decreases

it to 3/4 · xbtl
i in the subsequent phase. To restrict a given behavior to a certain

phase ϕ ∈ {0, ..., 7}, we introduce the following pulse function Φ, which is 1 if
BBRv1 is in phase ϕ and 0 otherwise:

Φi(t, ϕ) = σ
(

tpbw(t)− ϕ · τmin
i

)
· σ
(
(ϕ + 1) · τmin

i − tpbw
)

(5.22)

This pulse function allows to model the pacing behavior of an agent i that employs
the augmented pacing rate in phase ϕi:

xpcg
i = xbtl

i ·
(

1 + 1
4 ·Φi(t, ϕi)− 1

4 ·Φi(t, ϕi + 1)
)

(5.23)

In the implementation of BBRv1, the phase ϕi is randomly chosen from {0, ..., 6}
every time BBRv1 switches from ProbeRTT state back to ProbeBW state. Since such
randomness is incompatible with the determinism of fluid models, we mimic the
randomness of ϕi by choosing it as i mod 6, where we assume the agent identifier i
to be a natural number. This agent-dependent choice of ϕi desynchronizes the
pacing-rate variation of agents i on paths with equal RTT, which is the central goal
of the randomization, without sacrificing the determinism of the fluid model. The
interplay of BBRv1 variables in pacing-based mode is visualized in Fig. 5.2a.

Congestion window. The basic BBR fluid-model allows a straightforward integra-
tion of the state-dependent inflight limits of BBRv1:

wprt
i = 4 wpbw

i = 2 · wi = 2 · xbtl
i · τmin

i (5.24)

where wi denotes the BDP estimated by agent i.

5.3.4 BBRv2 Fluid Model

BBRv2 mostly differs from BBRv1 with regard to the structure of the bandwidth-
probing phase in several ways.
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Figure 5.2: Visualization of BBR fluid-model variables link capacity normalized to 100%,
single flow)

ProbeBW duration. In BBRv2, a bandwidth-probing period is considerably longer
than in BBRv1: The duration of bandwidth-probing periods in BBRv2 is given by
the minimum of 62 estimated RTTs and a random value between 2 and 3 seconds.
This randomness in BBRv2 poses a similar challenge as the randomness in BBRv1,
such that we again use an approach based on the agent identifier to achieve the
central goal of agent desynchronization without sacrificing determinism:

Tpbw
i = min

(
62 · τmin

i , 2 +
i
N

)
(5.25)

ProbeBW behavior. The behavior in the bandwidth-probing phases of BBRv2 differs
from BBRv1. To model the BBRv2 phases, we introduce two additional mode
variables, namely mdwn

i (t), which indicates whether agent i is attempting to reduce
its inflight at time t, and mcrs

i (t), which indicates whether agent i is cruising at
time t. The mode variable mdwn

i affects the pacing rate xpcg
i as follows:

xpcg
i = xbtl

i ·
(

1 + 1
4 · σ

(
tpbw
i − τmin

i

)
·
(

1−mdwn
i

)
− 1

4 ·mdwn
i

)
(5.26)

where mdwn
i increases the pacing rate to 5/4 · xbtl

i if mdwn
i = 0 (and one RTT has

passed in the bandwidth-probing period), and decreases the pacing rate to 3/4 · xbtl
i

if mdwn
i = 1.

ProbeBW phase transition. While we modelled phase transitions in BBRv1 as purely
dependent on time tpbw

i , the phase transitions in BBRv1 are triggered by probing
observations. In particular, the inflight-reducing mode mdwn

i is activated if the
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inflight vi exceeds 5/4 · wi or loss pπi exceeds 2%, and is disabled once the reduced
pacing rate has reduced the inflight vi to the draining target w−i , i.e.,

w−i = min
(

wi, 0.85 · whi
i

)
, (5.27)

where whi is the variable accommodating the long-term bound inflight_hi:

∆mdwn
i = (1−mcrs

i ) ·
(

1−mdwn
i

)
· σ
(

tpbw
i − τmin

i

)

·min (σ (vi − 5/4 · wi) + σ (pπi − 0.02) , 1)

−mdwn
i · σ

(
w−i − vi

)
(5.28)

Moreover, the disabling of mdwn
i automatically leads to the activation of mcrs

i , which
is then disabled again when a new bandwidth-probing period starts:

∆mcrs
i = −∆mdwn

i − σ
(

tpbw
i − Tpbw

i

)
·mcrs

i (5.29)

BtlBw update. The fourth difference concerns the adjustment of the bottle-neck-
bandwidth estimate xbtl

i . In BBRv2, xbtl
i is adjusted to the maximum delivery rate

from the last two probing periods when the inflight-growing phase has stopped:

ẋbtl
i = mdwn

i ·
(

max
(

xmax
i , xmax

i (t− Tpbw)
)
− xbtl

i

)
(5.30)

Additional state variables. BBRv2 operates with another two additional state vari-
ables, namely inflight_hi and inflight_lo, which we accommodate in our fluid
model with whi

i and wlo
i , respectively. The upper inflight bound whi is exponentially

adjusted upwards when it represents the relevant constraint on the sending rate
(vi = whi

i ) during the aggressive probing phase and no excessive loss occurs. In con-
trast, inflight_hi is reduced by a multiplicative decrease of 30% if encountering
loss exceeding 2%. To be precise, the BBRv2 implementation applies this multiplica-
tive decrease at most once per bandwidth-probing period. We approximate this
behavior with a reduced multiplicative decrease in presence of excessive loss:

ẇhi
i = (1−mcrs

i ) · σ
(

tpbw
i − τmin

i

)
· σ
(

vi − whi
)
· 2tpbw

i /τmin
i

− σ (pπi − 0.02) · 0.3
τmin

i
· whi

i

(5.31)
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Outside of cruising mode, the lower inflight bound wlo
i is unset (which we represent

with an assimilation to w−i ). In cruising mode, wlo
i is also decreased by 30% per

RTT upon encountering loss:

ẇlo
i = (1−mcrs

i ) ·
(

w−i − wlo
i

)
−mcrs

i · σ(pπi ) ·
0.3wlo

i
τmin

i
· (5.32)

In summary, the congestion-window size in ProbeBW state is given as follows in
BBRv2:

wpbw
i = min

(
2 · wi, (1−mcrs

i ) · whi
i + mcrs

i · wlo
i

)
(5.33)

ProbeTT congestion window. A final difference between BBRv1 and BBRv2 concerns
the congestion-window size in ProbeRTT mode. Instead of using a fixed congestion-
window size of 4 segments, BBRv2 cuts the congestion window to half the estimated
BDP in this mode:

wprt
i =

wi
2

=
2 · xbtl

i · τmin
i

2
. (5.34)

The interplay of the variables in the BBRv2 fluid model is visualized by means of
an example in Fig. 5.2b.

5.4 experimental validation

In this section, we experimentally validate our BBR fluid model, building on the
network emulator mininet [157].

5.4.1 Validation Set-up

5.4.1.1 Model-Based Computations

The implementation of the fluid models uses NumPy [199] and is available on-
line [229]. Differential equations are solved with the method of steps [81, §1.1.2]
with a step size of 10 µs.

5.4.1.2 Experiments

To compare the model output with implementation behavior, we perform experi-
ments using the network emulator mininet [157]. In mininet, we use OvS to emulate
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Figure 5.3: Dumbbell topology.

switches [87]. The emulated hosts send traffic by using iPerf [175]. All experiments
are run with an Intel Core Intel Xeon E5-2695 v4 CPU.

5.4.1.3 Topology

As usual in the literature [101, 119, 143, 193, 231, 240, 254], we consider the dumbbell
topology in Fig. 5.3. In this topology, N agents ai, i ∈ {1, ..., N}, communicate with
a destination host ad via a switch S. In all paths, the shared link ℓ between switch S
and destination host ad constitutes the bottleneck link. The links ℓi, i ∈ {1, ..., N},
which connect the individual senders to switch S, are never saturated and therefore
do not affect the sending rates. The propagation delays of these non-shared links
are heterogeneous (randomly selected from a given range) such that the individual
senders experience different RTTs. Switch S is equipped with a buffer, the size of
which is measured in bandwidth-delay product (BDP) of the bottleneck link ℓ.

5.4.2 Validation of Trace Results

Network parameters. Using the validation set-up described in §5.4.1, we first
verified traces as predicted by the fluid models regarding their similarity with traces
from experimental measurements. The concrete network setting in this validation
included a single sender, a bottleneck link ℓ with a rate of Cℓ = 100 Mbps (as
recommended by mininet [156]) and with a propagation delay of dℓ = 10 ms, a
non-bottleneck link ℓ1 with a delay of dℓ1 = 5.6 ms, and a switch buffer of 1 BDP.

Validation figures. Figs. 5.4 and 5.5 visualize the comparison of the thus obtained
traces for the BBRv1 and BBRv2, respectively, where each CCA was tested under
both a drop-tail and a RED queuing discipline (A validation for Reno and CUBIC
can be found in Appendix D.1). All measurements have been normalized: The
sending rate is given in percent of the bottleneck-link rate, the queue in percent of
buffer volume, loss in percent of traffic volume, the RTT as relative excess delay, and
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Figure 5.4: BBRv1 trace validation.
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Figure 5.5: BBRv2 trace validation.

the congestion window in percent of the path BDP. The comparisons highlight both
important commonalities and differences between the model and the experiments.

Similarities. The fluid models are highly predictive regarding the rate patterns
over time. In addition, the fluid models correctly capture that the loss-sensitive
BBRv2 lead to considerably smaller loss (barely visible) than BBRv1, which is almost
insensitive to loss. Finally, the fluid model correctly predicts that the sending rate
of the loss-sensitive BBRv2 barely exceeds the bottleneck rate under RED, while
RED has no impact on the loss-insensitive BBRv1. The model thus also reflects the
relatively low buffer usage of BBRv2 under RED, although it slightly overestimates
the buffer usage of BBRv2 under RED (cf. Fig. 5.5b).

Difference: RED idealization. The difference above is due to the idealization of RED:
In the model, the queue size affects the loss probability instantly; in reality, RED
relies on outdated and averaged measurements of the queue size, causing some
lag between queue build-ups and loss surges. In effect, a larger queue can build
up until the increased drop probability stabilizes the queue, which translates into
larger buffer usage in the experiments.

Difference: ProbeRTT state in BBRv2. The BBRv2 flow in the model simulation for
drop-tail regularly enters the ProbeRTT state, unlike in the corresponding experi-
ment. This observation can be explained as follows. In the model, BBRv2 regularly
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manages to drain the queue, therefore discovers the propagation delay early, and
cannot detect a lower RTT afterwards; hence, it enters the ProbeRTT state every
10 seconds. In the experiment, however, BBRv2 never fully uncovers the propaga-
tion delay, and experiences random fluctuations in the RTT measurements. Hence,
BBRv2 occasionally observes RTTs that fall short of the current minimum-RTT
estimate, which keeps it from entering the ProbeRTT state.

In summary, the fluid models capture the differences among CCAs and queuing
disciplines with high accuracy, especially relatively (e.g., which CCAs lead to lower
buffer usage) and to a lesser degree also absolutely (e.g., level of buffer usage).

5.4.3 Validation of Aggregate Results

The trace validations in the previous subsection indicate that the presented CCA
fluid models yield reasonable predictions for single senders. The more important
question, however, is whether these fluid models can acceptably predict network-
performance metrics given interacting senders.

Aggregate-validation metrics. To test the fluid models in this metric-oriented aspect,
we compare aggregate results from model computations and experiments for a wide
variety of network parameters, in particular with respect to Jain fairness (Fig. 5.6),
packet loss (Fig. 5.7), buffer occupancy (Fig. 5.8), bottleneck-link utilization (Fig. 5.9)
and jitter, i.e., packet-delay variation (Fig. 5.10).

Experiment settings. All metrics were obtained from the aggregation of 5-second
traces, where the experiment results are averaged over 3 runs. In contrast, fluid
models are deterministic and do not require averaging. The network setting was
based on the topology in Fig. 5.3, N = 10 senders, a bottleneck-link rate of Cℓ =
100 Mbps, a bottleneck-link propagation delay dℓ = 10 ms and total RTTs randomly
selected between 30 and 40ms. For heterogeneous CCAs, each CCA was employed
by N/2 = 5 senders. To strengthen our validation, we conduct the same analysis
for shorter delays, which confirms our results (cf. Appendix D.2).

5.4.3.1 Fairness

BBRv1 vs loss-based CCAs. Regarding fairness (cf. Fig. 5.6), we first observe that the
least fairness arises when a loss-sensitive CCA (Reno, CUBIC or BBRv2) competes
with BBRv1 in shallow buffers, which has already been well documented in previous
research [231, 254]. This unfairness is the result of the loss insensitivity of BBRv1,
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which maintains its rate despite loss while loss-sensitive CCAs practically stop
sending in reaction to the loss caused by BBRv1.

Starting at buffer sizes from 4 BDP, however, the fairness in these settings in-
creases for two reasons. First, these large buffers reduce the occurrence of loss,
which prevents the back-off of loss-sensitive CCAs. Second, in large buffers, the
inflight limit of the congestion window restricts the sending rate of BBRv1 and
allows competing flows to obtain a higher share of bandwidth than in shallow
buffers. Given a RED queue, however, the fairness of BBRv1 towards loss-sensitive
CCAs is consistently low because RED (1) increases loss and (2) restricts the buffer
build-up such that the inflight of the BBRv1 flows is substantially below their
inflight limit.

BBRv2 vs loss-based CCAs. The fairness issues of BBRv1 have been largely resolved
in BBRv2, as the fluid model and the experiment results show. However, BBRv2

is still unfair towards loss-based CCAs in RED buffers, where the higher loss
sensitivity of loss-based CCAs is revealed.

Homogeneous BBRv1 fairness. One substantial difference between the fluid-model
predictions and the experiment results is the decreasing fairness of BBRv1 in
homogeneous settings in deep drop-tail buffers, which only appears in the fluid
model. The fluid model reveals the RTT unfairness of BBRv1, which has indeed
been experimentally confirmed [231, 254], although for higher RTT differences
than used in our network setting. This RTT unfairness stems from the inflight
limit of BBRv1, which becomes relevant in deep buffers: Since flows with a lower
RTT are estimating a lower BDP and hence maintain a smaller congestion window,
lower-RTT flows are more severely restricted by the inflight limit. Our fluid model
can reveal this effect. In deep buffers with large queues, each BBRv1 sender i is
restricted by its congestion-window size wi, resulting in the following sending rate:

xi =
wi
τi

=
2τmin

i xbtl
i

τi
=

2dp
i

dp
i + qℓ/Cℓ

xbtl
i , (5.35)

where ℓ is the bottleneck link shared among all flows, and we assume τmin
i = dp

i
(i.e., the propagation delay has been successfully uncovered). With these sending
rates, the delivery rate for sender i is according to Eq. (5.18):

xdlv
i =

xiCℓ

xi + ∑j ̸=i xj
. (5.36)
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Figure 5.6: Fairness validation

Moreover, since the sending rates are static (because the varying pacing rate is
overruled by the congestion-window constraint), the delivery rates are static across
the bandwidth-probing interval as well, resulting in xmax

i = xdlv
i . This maximum

delivery rate xmax
i is monotonically increasing in propagation delay dp

i of sender i:

∂xmax
i

∂dp
i

=
2xbtl

i ∑j ̸=i xj
(

2dp
i xbtl

i + (dp
i + qℓ/Cℓ)∑j ̸=i xj

)2 > 0 (5.37)

Hence, flows with a higher RTT have a larger congestion window, can thus send
at a higher rate, measure a higher maximum delivery rate, and in turn estimate a
higher bottleneck bandwidth. This bottleneck-bandwidth estimate then increases
the congestion-window size, leading to a positive feedback loop. However, the
representation of the delivery rate in Eq. (5.36) idealizes the noisy relationship
between sending rates and delivery rates in real-world buffers. This noise can
eliminate the difference in measured delivery rates for flows with small RTT
differences, and thus break the positive feedback loop in that case. Hence, the
described effect only appears for relatively large RTT differences in reality.

Fairness conclusion. In conclusion, the fluid models correctly predict fairness ef-
fects from a qualitative perspective, i.e., they rank CCA settings correctly according
to their fairness, and approximately also from a quantitative perspective. Interest-
ingly, the fluid model also predicts RTT unfairness among BBRv1 flows in deep
drop-tail buffers, which does not appear in the corresponding experiments. How-
ever, this RTT unfairness is a real issue in more extreme settings than tested in this
validation, i.e., for higher RTT differences between the senders. Since the role of a
fluid model is to reveal problematic CCA features, the exaggeration of an existing
problem barely weakens the methodological value of the BBR fluid model.
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Figure 5.7: Loss validation

5.4.3.2 Loss

Predicted phenomena. Fig. 5.7 suggests that fluid models are highly suitable to pre-
dict loss rates for different CCAs, both in homogeneous settings and heterogeneous
settings and both qualitatively and quantitatively. Our model correctly predicts (1)
that the loss rate of loss-sensitive CCAs (Reno, CUBIC, BBRv2 and combinations
thereof) in drop-tail buffers is below 1% and goes to 0% for increasing buffer size,
(2) that BBRv1 leads to considerable loss of at most 20%, where the loss rate is
indirectly proportional to the buffer size for drop-tail queuing, and (3) that a RED
queuing discipline keeps loss rates roughly consistent across buffer sizes.

Prediction error. One obvious prediction error of the fluid model is the underesti-
mation of loss rates for loss-sensitive CCAs given RED in Fig. 5.7d. This underesti-
mation stems again from an idealization of the RED queue in the model, which
determines the loss rate based on the current queue length. In contrast, real RED
tracks the queue length with a moving average and hence reacts to queue build-up
with delay. Since the queue has more time to accumulate until stabilization by RED,
the queue length is higher than given an instantaneously reacting RED algorithm (cf.
also Fig. 5.8b). Moreover, since the RED dropping probability is proportional to the
queue size, the loss rate given delayed RED is slightly higher than for instantaneous
RED. However, since this underestimation only amounts to 0.5 percentage points,
we still consider our fluid model highly predictive with respect to loss.
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Figure 5.8: Queuing validation

5.4.3.3 Queuing

Fig. 5.8 shows the average queue size as a share of buffer capacity.

Bufferbloat by loss-based CCAs. Notably, the fluid model captures the effect that
the traditional loss-based CCAs Reno and CUBIC cause bufferbloat, i.e., lead to
consistently high buffer utilization. This effect is visible in combined settings
of BBRv2 with loss-based CCAs, as the generally lower buffer usage of BBRv2

in a homogeneous setting demonstrates that BBRv2 is not responsible for the
bufferbloat.

Buffering by BBRv1. Interestingly, BBRv1 leads to even more intense buffer usage
than loss-sensitive CCAs, whether in homogeneous or in combined settings. Under
drop-tail (Fig. 5.8a), BBRv1 uses most of the buffer independent of buffer size,
where the relative buffer usage is only moderately reduced in large buffers. This
effect is surprising, as a major design goal of BBR is exactly to avoid the bufferbloat
caused by traditional loss-based CCAs [47].

Buffering by BBRv2. The validation analysis reveals another unexpected phe-
nomenon, which concerns the buffer utilization of BBRv2 in homogeneous settings
given a drop-tail queuing discipline. In particular, BBRv2 leads to constant absolute
buffer usage for buffer sizes up to 4 BDP, which is visible as decreasing relative
buffer usage in Fig. 5.8a. In these scenarios, the adjustments to BBR appear to have
resolved the issue of bufferbloat in BBRv1. In large buffers, however, the buffer
utilization increases again with buffer size. Through trace inspection, we found
that this phenomenon is caused by initial measurements of inflight_hi during
the start-up phase of BBRv2: Given large buffers, this initial inflight_hi bound
may be set too high or not set at all. Moreover, inflight_lo may never be set either,
because large buffers prevent loss, which would activate inflight_lo. In absence
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Figure 5.9: Utilization validation
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Figure 5.10: Jitter validation

of stringent bounds given by inflight_hi and inflight_lo, BBRv2 falls back
on the standard BBR congestion-window size of 2 estimated BDP (cf. Eq. (5.33)).
In comparison with the empirically found inflight_hi and inflight_lo, this
congestion-window size is a loose bound that allows higher sending rates of BBRv2

and thus causes more intense buffering. To the best of our knowledge, this behavior
of BBRv2 has not been publicly documented so far. While our BBRv2 fluid model
does not model the start-up phase which causes this issue, the same effect can
be observed in the model when choosing the initial condition of the differential
equation for whi

i (cf. Eq. (5.31)) dependent on the buffer size. Therefore, we note
that fluid models have to be evaluated under a variety of initial conditions to reveal
design issues.

5.4.3.4 Utilization

The fluid model captures three important aspects of link utilization (cf. Fig. 5.9).

Full utilization by BBRv1. First, the fluid model correctly predicts that BBRv1

(or combinations with BBRv1) lead to full utilization of the bottleneck link, both
under drop-tail and RED. This high utilization by BBR is unsurprising given the
aggressiveness of the CCA, which also manifests in high loss (Fig. 5.7) and intense
queuing (Fig. 5.8).
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Utilization by loss-based CCAs. Second, the fluid model mirrors the increasing
link utilization by loss-sensitive CCAs for increasing buffer size under drop-tail:
Loss-based CCAs grow their rate while the buffer is filling up and cut it by a
constant factor when the buffer is full, so larger buffers imply higher rates and thus
higher utilization.

Utilization by BBRv2. Third, the fluid model reflects that BBRv2 yields the lowest
utilization given drop-tail among all CCAs, although the wasted capacity only
amounts to 3% at most. This incomplete utilization stems from the ProbeRTT state
of BBRv2, in which the inflight is reduced to half the estimated BDP. Under RED,
BBRv2 does not enter the ProbeRTT phase for 10 senders; neither does BBRv1 for
both queueing disciplines.

Prediction error. The only major prediction error of the model is the underesti-
mation of utilization by the BBRv2/Reno combination in shallow RED buffers.
This result again points to the idealization of instantly reacting RED queues: The
Reno flows in the model back off as soon as the arrival rate exceeds the bottleneck
capacity, whereas this back-off is delayed in the experiments. Hence, the arrival-rate
evolution moves on a lower level in the model than in the experiment, leading to
an underestimation of utilization.

5.4.3.5 Jitter

Jitter corresponds to the mean delay difference between consecutive packets. The
experimental jitter results in Fig. 5.10 are calculated in this manner. As the fluid
model misses a notion of packets, we compute the jitter for fluid-model traces by
sampling the RTT at a virtual packet rate, i.e., every g · N/Cℓ seconds, where g is a
given packet size.

However, as Fig. 5.10 makes clear, also this makeshift calculation unsurprisingly
fails to predict jitter: Fluid models intentionally abstract from small-scale fluctu-
ations and describe only the macroscopic tendency of network indicators with
smooth curves. Nonetheless, fluid models could be combined with packet-level
models aimed at modeling jitter [69, 70]; we leave this challenge for future research.

5.5 theoretical analysis

In this section, we analyze the BBR fluid models to characterize the stability of
these CCAs.
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5.5.1 BBRv1 Stability Analysis

While the fluid model in §5.3.3 is suitable for simulation, we have to simplify it to
a high-level model for analysis (§5.5.1.1). In §5.5.1.2, we investigate the existence,
form and stability of BBRv1 equilibria.

5.5.1.1 Model Reduction

Abstraction of ProbeRTT state. The first simplification step is given by disregarding
the ProbeRTT state, which lets flow discover their propagation delay and generally
achieves this goal. Hence, we assume that

τmin
i = ∑

ℓ∈πi

dℓ =: di. (5.38)

Since this minimum-RTT measurement is present in the congestion-window size,
we simplify:

wpbw
i = 2τmin

i xbtl
i = 2dixbtl

i . (5.39)

Apart from affecting the congestion-window size, the ProbeRTT state has no lasting
effects and can hence be omitted for the purpose of stability analysis.

Simplification of delivery-rate evolution. The second step involves understanding the
evolution of the maximum measurement xmax

i . This maximum measurement is the
maximum delivery rate xdlv

i over a period, which in turn depends on the sending
rates of all flows and the queue length at the bottleneck link (cf. Eq. (5.18)). The
sending rate of a sender i is

xi =





min(wpbw
i /τi, 5/4xbtl

i ) if flow i is probing,

min(wpbw
i /τi, 3/4xbtl

i ) if flow i is draining,

min(wpbw
i /τi, xbtl

i ) otherwise.

(5.40)

Hence, the maximum delivery rate depends on the concurrent behavior of the
other flows on the bottleneck link, which may be probing or draining during the
measurements of flow i. For many flows, the probing and draining flows can be
expected to offset each other such that the total background-traffic volume is similar
as if

∀j ∈ Uℓi
, j ̸= i. xpbw

j = min(wpbw
j /τj, xbtl

j ). (5.41)
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Given this background traffic, a sender i measures the maximum delivery rate in
the probing phase. Hence, the maximum measurement is determined as follows:

xmax
i =





min(5/4, ∆i)·xbtl
i ·Cℓi

min(5/4, ∆i)·xbtl
i +∑j ̸=i min(1, ∆j)·xbtl

j
if qℓi

> 0

min(5/4, ∆i) · xbtl
i otherwise

(5.42)

where

∆i =
2di

di + ∑ℓ∈πi
qℓ
Cℓ

, (5.43)

and ℓi is flow i’s bottleneck link.

Simplification of bottleneck-estimate update. The final simplification step concerns
the adaptation of the bottleneck-bandwidth estimate xbtl

i . Over a long duration, this
regular update can be approximated by a continuous assimilation:

ẋbtl
i = xmax

i − xbtl
i (5.44)

5.5.1.2 BBRv1 Stability Analysis

Equilibria. To characterize stability of a CCA, we first need to identify its equilibria,
i.e., configurations from which the fluid-model dynamics cannot depart. In the case
of BBRv1, the network state may change if the maximum measurement xmax

i by
some flow i differs from the bottleneck-bandwidth estimate xbtl

i , or if the queue
length qℓ of some link ℓ grows; both events may lead to subsequent rate changes.
To formalize this condition, we henceforth consider N senders which share a single
bottleneck link ℓ∗. Moreover, we first assume that buffer capacities do not constrain
the dynamics, and modify this assumption later.

Definition 5.1 BBRv1 Equilibrium Conditions. N BBRv1 senders sharing a bot-
tleneck link ℓ∗ are in equilibrium if and only if {xbtl

i }i∈Uℓ∗ and qℓ∗ satisfy:

∑
i∈Uℓ∗

min(1, ∆i) · xbtl
i = Cℓ∗ ∀i ∈ Uℓ∗ . xbtl

i = xmax
i (5.45)

The first condition keeps the aggregate rate yℓ∗ at line rate Cℓ∗ and hence ensures
a static queue length. The remaining constraints rule out rate adaptations. These
conditions imply the following equilibria according to the proof in Appendix D.3.1:
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Theorem 5.1 BBRv1 Equilibrium. N BBRv1 senders sharing a bottleneck link ℓ∗

are in equilibrium if and only if propagation delay equals queuing delay for every
sender, i.e.,

∀i ∈ Uℓ∗ . di = ∑
ℓ∈πi

qℓ
Cℓ

.

Interestingly, Theorem 5.1 suggests that the equilibria of BBRv1 in single-bottleneck
scenarios (with non-limiting buffers) can be arbitrarily unfair as long as ∑i∈Uℓ∗ xbtl

i =
Cℓ∗ . Furthermore, we note that the BBRv1 equilibrium requires equal path propa-
gation delay d for all senders if all senders only encounter a non-empty queue at
the bottleneck link ℓ∗.

Stability. For our stability analysis, we focus on that case, i.e., a scenario where
the queue lengths on all involved links except the bottleneck link ℓ∗ are zero, which
is a scenario frequently investigated in the literature [15, 120, 273]. In this case,
we can prove asymptotic stability of BBRv1 with the indirect Lyapunov method,
meanining that initial configurations exist for which the BBRv1 dynamics converge
to the equilibrium.

Theorem 5.2 BBRv1 Stability. In a single-bottleneck network with a queue exclu-
sively at the bottleneck, the BBRv1 equilibrium from Theorem 5.1 is asymptotically
stable.

Proof. In the scenario under consideration, it holds that qℓ = 0 ∀ℓ ̸= ℓ∗.
Given Theorem 5.1, it thus holds that the equilibrium is valid only for equal
RTTs:

∀i ∈ Uℓ∗ . di =
qℓ∗
Cℓ∗

=: d. (5.46)

Hence, we can simplify: ∆i = ∆(qℓ∗) := 2d/(d + qℓ∗/Cℓ∗). As a result, the equilib-
rium requires that ∆(qℓ∗) = 1 ⇐⇒ qℓ∗ = dCℓ∗ .

We now consider a configuration where the senders are out of equilibrium and
constrained by the congestion-window limit, i.e., ∆(qℓ∗) < 1 ⇐⇒ qℓ∗ > dCℓ∗ . The
dynamics of the bottleneck-bandwidth estimates by sender i are then given by:

ẋbtl
i =

∆(qℓ∗)xbtl
i Cℓ∗

∆(qℓ∗)∑k∈Uℓ∗ xbtl
k
− xbtl

i =
xbtl

i Cℓ∗

∑k∈Uℓ∗ xbtl
k
− xbtl

i (5.47)
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Moreover, the dynamics of the bottleneck-link queue qℓ∗ are:

q̇ℓ∗ = yℓ∗ − Cℓ∗ = ∆(qℓ∗) ∑
i∈Uℓ∗

xbtl
i − Cℓ∗ (5.48)

where yℓ∗ is the arrival rate at bottleneck link ℓ∗. Based on these dynamics, we
derive the dynamics of the arrival rate yℓ∗ :

ẏℓ∗ = ∆̇(qℓ∗) ∑
i∈Uℓ∗

xbtl
i + ∆(qℓ∗) ∑

i∈Uℓ∗
ẋbtl

i (5.49)

= − 1
Cℓ∗(d + qℓ∗

Cℓ∗
)

y2
ℓ∗ +

(
1

d + qℓ∗
Cℓ∗
− 1

)
yℓ∗ + ∆(qℓ∗)Cℓ∗

Building on this formalization, we can define a classic non-linear dynamic system
with yℓ∗ and qℓ∗ as state variables, and ẏℓ∗ and q̇ℓ∗ as entries of the vector-valued
function f describing the dynamics. To characterize the stability of that system,
we can then employ the indirect Lyapunov method [209]. This method states
that a system is locally asymptotically stable if the Jacobian matrix of the system
dynamics f has eigenvalues with exclusively negative real parts when evaluated at
the equilibrium. The Jacobian matrix J f ∈ R2×2 has the following entries:

∂ẏℓ∗
∂yℓ∗

= − 2
Cℓ∗(d + qℓ∗

Cℓ∗
)

yℓ∗ +
1

d + qℓ∗
Cℓ∗
− 1 (5.50)

∂ẏℓ∗
∂qℓ∗

=
y2
ℓ∗

C2
ℓ∗(d + qℓ∗

Cℓ∗
)2
− yℓ∗

Cℓ∗(d + qℓ∗
Cℓ∗

)2
− 2d

(d + qℓ∗
Cℓ∗

)2
(5.51)

∂q̇ℓ∗
∂yℓ∗

= 1
∂q̇ℓ∗
∂qℓ∗

= 0 (5.52)

Evaluating this Jacobian matrix at the equilibrium, i.e., yℓ∗ = Cℓ∗ and qℓ∗ = dCℓ∗ ,
yields a matrix for which the maximum eigenvalue λ+ can be found via the
characteristic equation:

J f (Cℓ∗ , dCℓ∗) =

(
− 1

2d − 1 − 1
2d

1 0

)

=⇒ λ+ = −( 1
4d

+
1
2
) +

1
2d

(±(d− 1
2
))

(5.53)
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Performing a case distinction on d confirms that the maximum eigenvalue λ+ is
always negative:

d ≤ 1
2

: λ+ =
−( 1

2d + 1)− 1
d (d− 1

2 )

2
= −1 < 0

d >
1
2

: λ+ =
−( 1

2d + 1) + 1
d (d− 1

2 )

2
= − 1

2d
< 0

(5.54)

Hence, we observe that the Jacobian matrix J f has consistently negative eigenval-
ues, which by the indirect Lyapunov method proves the asymptotic stability of the
dynamics. □

Shallow buffers. As the proof of Theorem 5.2 makes clear, the BBRv1 equilibrium
from Theorem 5.1 is only viable if the bottleneck-link buffer capacity Bℓ∗ permits
the equilibrium queue length qℓ∗ = dCℓ∗ . Intuitively, the equilibrium is valid for
a bottleneck buffer that is large enough for the congestion-window constraint ∆i
to have an impact. To analytically investigate the shallow-buffer case where the
congestion-window limit is not effective, we assume that the bottleneck queue
length qℓ∗ is restricted by the buffer size Bℓ∗ such that the congestion-window limit
has no effect for any flow i, i.e., ∆i ≥ 5/4 for all i ∈ Uℓ∗ (cf. Eq. (5.42)). With this
assumption, we find a different equilibrium for BBRv1, proven in Appendix D.3.2:

Theorem 5.3 Stable BBRv1 Equilibrium in Shallow Buffers. N BBRv1 senders
sharing a bottleneck link ℓ∗ that has a shallow buffer (i.e. ∆i > 5/4 ∀i ∈ Uℓ∗ )
are in equilibrium if and only if each flow i has the following bottleneck-bandwidth
estimate xbtl

i :

xbtl
i =

5Cℓ∗

4N + 1
.

This equilibrium is perfectly fair and asymptotically stable.

Theorem 5.3 thus implies that without an effective congestion-window limit,
the aggregate rate yℓ∗ in equilibrium consistently exceeds the link capacity Cℓ∗ ,
except for N = 1. As a result, multiple BBRv1 senders fill the shallow bottleneck-
link buffer, eventually incurring a loss rate equal to the excess sending rate (20%
for N → ∞). While this consistent packet loss does not reduce the rate of loss-
insensitive BBRv1 senders, the loss is fatal for loss-based CCAs on the same
bottleneck link, which produces high inter-CCA unfairness. Among each other,
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BBRv1 flows must converge to perfect fairness in shallow buffers, whereas such
fairness is only possible, but not required in deep buffers (cf. Theorem 5.1).

5.5.2 BBRv2 Stability Analysis

This section again presents a condensed version of the BBRv2 fluid model from §5.3.4,
which is then used for stability analysis.

5.5.2.1 Model Reduction

Thanks to the shared foundation of BBRv1 and BBRv2, our reduced fluid model
for BBRv2 largely matches the reduced model for BBRv1 (cf. §5.5.1.1) such that we
only discuss the simplification of the maximum measured delivery rate, which is
different from §5.5.1.1.

Sending rate during pulse. In particular, the specific probing process of BBRv2

affects the maximum measurement xmax
i . This probing process is centered around

a traffic pulse, which raises the pacing rate to 5/4 · xbtl
i and the inflight volume

to 5/4 · wi, except the loss exceeds 2%. Since we limit our analysis to networks with
buffers large enough to prevent loss, the traffic-pulse rate is:

xpls
i = 5/4 ·min(1, δi) · xbtl

i , where δi =
di

di + ∑ℓ∈πi
qℓ/Cℓ

=
∆i
2

. (5.55)

Background traffic during bandwidth probing. In addition to this pulse rate, the
background traffic co-determines the maximum delivery rate xmax

i . This background
traffic can be assumed to consist of flows in cruising mode, in which any BBRv2

flow spends the vast majority of its lifetime. In cruising mode, a BBRv2 flow i
sets its pacing rate to xbtl

i and keeps its inflight volume at the minimum of the
estimated BDP wi and 85% of the upper inflight bound inflight_hi (whi

i ). Since
we can exclude packet loss, whi

i corresponds to the maximum measured inflight
from the probing pulse, which is 5/4 ·wi. Since the estimated BDP wi is consistently
smaller than 0.85 · 5/4 · wi = 1.0625 · wi, the sending rate in cruising mode is:

xi = min(1, δi) · xbtl
i (5.56)
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Evolution of maximum delivery rate. Based on the sending rates of pulses and the
cruising mode, the evolution of the maximum delivery rate xmax

i is approximated
as follows (with ℓi as the bottleneck link):

xmax
i =





5/4·min(1, δi)·xbtl
i ·Cℓi

5/4·min(1, δi)·xbtl
i +∑j ̸=i min(1, δj)·xbtl

j
if qℓi

> 0

5/4 ·min(1, δi) · xbtl
i otherwise

(5.57)

5.5.2.2 Stability Analysis

Equilibria. For BBRv2, the equilibrium conditions match the equilibrium condi-
tions for BBRv1 (cf. Definition 5.1), with ∆i substituted by δi = ∆i/2. However, the
modified adaptation rule for xbtl

i induces a different equilibrium for BBRv2:

Theorem 5.4 BBRv2 Equilibrium Conditions. N BBRv2 senders sharing a bottle-
neck link ℓ∗ are in a perfectly fair equilibrium if propagation delay and queuing delay
for each flow have the following relation:

∀i ∈ Uℓ∗ .
N − 1

4N + 1
· di = ∑

ℓ∈πi

qℓ
Cℓ

. (5.58)

Importantly, the above equilibrium is not necessarily the only equilibrium for
BBRv2, which may thus induce unfair equilibria like BBRv1. Nevertheless, the above
BBRv2 equilibrium conditions has an inter-dependency with the rate distribution,
in contrast to the BBRv1 equilibrium conditions from Theorem 5.1. Similar to the
BBRv1 equilibrium, however, the above equilibrium implies equal path propagation
delay d for all senders if only the bottleneck link has a non-empty queue.

Stability. For our stability analysis, we thus again focus on a scenario where the
queue lengths on all involved links except the bottleneck link ℓ∗ are zero:

Theorem 5.5 In a single-bottleneck network with a queue exclusively at the bottleneck,
the BBRv2 equilibrium from Theorem 5.4 is asymptotically stable.

If a network has a queue exclusively at the bottleneck link, Theorem 5.4 implies
equilibrium queue length qℓ∗ = N−1

4N+1 dCℓ∗ . In comparison with BBRv1, BBRv2 thus
reduces buffer utilization by at least 75% (for N → ∞), assuming the buffer is large
enough to accommodate the BBRv1 equilibrium queue.
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5.5.3 Summary of Theoretical Results

To provide a practical interpretation of our theoretical findings, we summarize the
key takeaways from the preceding sections in the following.

BBRv1 in deep buffers. In deep buffers, BBRv1 converges to rate distributions with
no fairness guarantees (cf. Theorems 5.1 and 5.2). Indeed, previous research has
already demonstrated that unfairness can arise among BBRv1 flows with strongly
different RTTs, with longer-RTT flows obtaining higher bandwidth shares [119, 254].
However, we find that RTT diversity is not necessary for unfairness: Even flows
with equal RTTs can obtain different bandwidth shares as long as the propagation
delay of each flow equals the cumulative queuing delay on the used path. Hence,
if flows with equal RTT d share a bottleneck link ℓ∗ with capacity Cℓ∗ and only
encounter a queue at that bottleneck link, the steady-state queue length of BBRv1

is the product of path propagation delay and bottleneck capacity, i.e., d · Cℓ∗ .

BBRv1 in shallow buffers. BBRv1 converges to different steady states (i.e., equilibria)
in shallow buffers than in deep buffers (cf. Theorem 5.3). In particular, the steady
states that are attained given shallow buffers involve perfectly fair rate distributions.
However, the aggregate equilibrium rate for shallow buffers necessarily exceeds
the bottleneck capacity for more than one concurrent flow; hence, BBRv1 causes
permanently full buffers and enduring loss (of up to 20% for a high number of
flows) in shallow buffers.

BBRv2 improvements. Our analysis illustrates the improvements of BBRv2 over
BBRv1 for the scenario where all flows have equal propagation delay and only
encounter a queue at the bottleneck link. In that case, BBRv2 necessarily converges
to a steady state (cf. Theorems 5.4 and 5.5), which is preferable to the BBRv1 steady
state in two respects. First, the steady state that is attained by BBRv2 necessarily
involves a perfectly equitable rate distribution (unlike the steady states of BBRv1,
which can be arbitrarily unfair). Second, the steady state involves a bottleneck
queue length which is shorter than the BBRv1 equilibrium queue length by at
least 75% and is even 0 for a single sender. Our theoretical analysis thus confirms
that BBRv2 improves upon BBRv1 in the essential aspects of fairness and buffer
utilization.
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5.6 insights and discussion

In this section, we summarize the most interesting insights from our experimental
validation (§5.4), and our theoretical analysis (§5.5). These insights reflect properties
of CCAs (§5.6.1) and properties of the fluid-model methodology (§5.6.2).

5.6.1 Insights into CCA Performance

In the following, we will distinguish previously known insights that were confirmed
by our fluid model, and novel insights that our fluid model disclosed. For this
distinction, we indicate the type of insight by (P) (for previous) and (N) (for novel).

One of the most consistent findings in the previous sections relates to the packet
loss caused by different types of CCAs:

Insight 5.1 Loss Rates of CCAs. BBRv1 causes considerable loss of up to 20%
of traffic under drop-tail, while the loss-sensitive CCAs Reno, CUBIC, and BBRv2
cause loss rates of around 1% (P). The same behavior is observed for a RED queuing
discipline (N).

While such a difference between BBRv1 and loss-based CCAs is not surprising
given different loss sensitivity, the large extent of the loss caused by BBRv1 is
unexpected. Importantly, while the loss insensitivity of BBRv1 does not lead to
throughput reductions of BBRv1, the high packet loss will still lead to unsatisfactory
application performance. Moreover, in competition with loss-sensitive CCAs, the
loss insensitivity of BBRv1 poses a fairness concern, which is also reflected in
previous work [231, 254]:

Insight 5.2 BBRv1’s Unfairness Towards Loss-Based CCAs. BBRv1 is highly
unfair towards loss-sensitive CCAs, leading to near starvation of loss-based flows in
shallow buffers (given a drop-tail queuing discipline) (P) or buffers of any size (given
a RED queuing discipline) (N). In large drop-tail buffers, the congestion window of
BBRv1 becomes effective, leading to improvements in fairness towards loss-sensitive
CCAs (P).

The aggressiveness of BBRv1 has two additional effects:
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Insight 5.3 Utilization and Buffer Usage of BBRv1. In all investigated settings,
BBRv1 (also in combination with other CCAs) achieves full link utilization, but also
significant bufferbloat independent of the queuing discipine (P).

Many of these insights gained from our fluid model have already been identified
by previous, experiment-based analyses. In response to documentations of these
issues, Google has begun to develop BBRv2, which can be characterized as follows:

Insight 5.4 Performance of BBRv2. BBRv2 mostly achieves the redesign goals of
reduced buffer usage, avoiding excessive loss, and preserving fairness to loss-based
CCAs (P).

However, we have identified two settings in which BBRv2 does not achieve its
design goal:

Insight 5.5 BBRv2 in Large Drop-Tail Buffers. In drop-tail buffers with a size
exceeding five BDP, BBRv2 causes higher buffer utilization than for smaller buffers,
caused by distortions in an initial inflight_hi estimate in the start-up phase (N).

Insight 5.6 BBRv2 in RED Buffers. When competing with loss-based CCAs (Reno
and CUBIC) under a RED queuing discipline, BBRv2 is unfair towards the loss-based
CCAs. The reason for this unfairness is that on high-capacity links, the loss sensitivity
of loss-based CCAs is markedly higher than the loss sensitivity of BBRv2 (N).

5.6.2 Insights into Fluid Models

The preceding sections not only yield valuable insights into the performance
characteristics of BBR, but also illustrates the strengths and limitations of fluid
models as an analysis tool. We assess the predictive power of fluid models as
follows:

Insight 5.7 Qualitative Accuracy of Fluid Models. Fluid models are highly pre-
dictive from a qualitative perspective, i.e., they accurately capture the direction of
correlations between CCA performance and network parameters as well as the ranking
of different CCAs according to performance metrics.
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Insight 5.8 Quantitative Accuracy of Fluid Models. The accuracy of the quan-
titative predictions by fluid models depends on the metric: While the quantitative
predictions of fluid models are highly accurate regarding loss and fairly accurate
regarding buffer usage, the quantitative predictions regarding fairness and utilization
are only partially accurate.

Despite their overall high predictive power, fluid models yield misleading re-
sults in some cases. We identified the following sources of potentially inaccurate
predictions:

Insight 5.9 Sources of Inaccuracy. Inaccurate predictions by fluid models can result
from at least three sources:

• idealizations, e.g., assuming instantly reacting RED queues (cf. §5.4.3.2);

• difficulty of capturing discrete phenomena, e.g., jitter (cf. §5.4.3.5);

• and negligence of the start-up phase, e.g., BBRv2 has to be simulated with vary-
ing initial conditions to find issues arising from the start-up phase (cf. §5.4.3.3).

If the developers of CCAs are aware of the above pitfalls of fluid models, they
can interpret the fluid-model results in the context of these caveats.

5.7 related work

Congestion management. While our focus on this chapter is on congestion-control
algorithms (CCAs), we note that there exist several orthogonal approaches to
deal with congestion, for example, related to buffer management [25, 58, 63],
scheduling [18, 122, 205, 206], and bandwidth reservation [43, 97].

Congestion control. Since the seminal work by Jacobson [130], a wide range of
CCAs have been proposed and analyzed [30, 120, 124, 134, 141, 208]. While tradi-
tional CCAs are based on loss (timeout) signals, more recent protocols leverage
explicit congestion notification (ECN) [17, 248, 272] or delay [15, 115, 151, 159,
183] to react in a more informed and fine-grained manner. With BBR [47], recently
another flavor of CC has been introduced, which is often referred to as model-based.

BBR. BBR has been studied in a number of papers. In particular, Hock et al. [119]
present a first independent study of BBRv1 and found fairness issues, and that
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multiple BBR flows operate at their in-flight cap in buffer-bloated networks. This
work led to several interesting follow-up works [75, 231, 246]. In particular, Scholz
et al. [231] show that BBRv1 flows are robustly able to claim a disproportionate
share of the bandwidth. Ware et al. [254] complement these empirical studies by
presenting a first analytical model (although not based on differential equations)
capturing BBR’s behavior in competition with loss-based CCAs in deep buffers.
This model has recently been refined by Mishra et al. [181]. Yang et al. [264] devise
a simple fluid model for Adaptive-BBR, i.e., their adaptation of BBR specialized for
wireless links. Neither of these model-based works possesses the generality of our
fluid model, nor do they include a rigorous convergence analysis. BBRv2 has been
investigated by a number of experiment-based studies [101, 143, 193, 240], finding
mostly that BBRv2 resolves the most serious issues of BBRv1, but also identifying
problematic facets of BBRv2 behavior, although not the ones found by the analysis
in this chapter.

Fluid models. Fluid models (also known as differential-equation models) provide
a particularly powerful framework for an analytical understanding of CC protocols
and their equilibria [241], and have been widely used in the literature [86, 163,
166, 182, 215, 249]. These models are attractive for their flexibility (e.g., supporting
different topologies and queuing disciplines), and for allowing fast initial analyses.
In general, the models come in different flavors and can for example be analyzed
using dynamical-systems techniques [215]. In one prominent work [182], a dynamic
model of TCP behavior is proposed using a fluid-flow and stochastic differential-
equation analysis. Using the Runge-Kutta algorithm, the fluid model also allows
efficient time-stepped network simulations [163].

Recent approaches in congestion-control research. Recently, CCA research method-
ology has experienced innovation with promising proposals for an axiomatic
approach [268] and a formal-verification approach [27]. These approaches are com-
plementary to the fluid-model approach: While the axiomatic approach allows
to identify fundamental design constraints and the formal-verification approach
allows to identify network configurations in which CCA performance does not
conform to specifications, neither of them is equally well-suited as the fluid-model
approach to reveal the qualitative and quantitative effects of network settings and
competing CCAs on CCA performance.
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5.8 conclusion

In this chapter, we take a deep dive into the recent CCA proposals of BBRv1 and
BBRv2 by complementing previous analyses with an approach based on fluid models.
Fluid models are a classic but lately seldom employed approach to evaluating CCA
properties, and are unique in their ability to allow both theoretical stability analysis
and efficient simulation for a wide range of network scenarios.

We devise such a fluid model for both BBR versions by using new modelling
techniques such as sigmoid pulses and mode variables, and perform an experiment-
based validation to show that the model is highly predictive regarding performance
and fairness properties. We further leverage the model for both an extensive simu-
lation and a theoretical stability analysis. This investigation confirms previously
found issues in BBRv1, but also yields new insights, e.g., regarding the structure
and asymptotic stability of BBR equilibria, as well as regarding bufferbloat and
inter-CCA unfairness in BBRv2.

While our model is accurate and general, we understand our analysis as a first
step in exploring the investigation opportunities that our fluid model opens up.
Indeed, the next chapter leverages our BBR fluid model to analyze the competition
between BBR and CUBIC using theoretical stability analysis. Furthermore, it will
be interesting to evaluate the BBR fluid models in multiple-bottleneck scenarios,
both through simulations and further theoretical analysis.





6
M O D E L L I N G B B R / C U B I C C O M P E T I T I O N D Y N A M I C S

6.1 introduction

Besides providing insights by simulation, the BBR fluid model from the preceding
chapter can also enhance the analytical understanding of a frequent phenomenon
in the modern Internet, namely the competition between BBR and CUBIC flows. This
form of inter-CCA competition is relevant for estimating the performance impact
of BBR deployment on legacy applications, and for estimating to which extent BBR
will replace CUBIC as the de-facto standard CCA in the Internet [181].

In previous model-based research on BBR/CUBIC competition, all analysis is
based on steady-state models [181, 254]. These models identify a steady state of the
inter-CCA dynamics, and predict the long-term fairness of BBR towards CUBIC
based on the sending-rate distribution in this steady state. Steady-state models
thus assume that BBR and CUBIC converge to a steady rate distribution, without
rigorously justifying convergence.

In fact, as we show in this chapter, the convergence assumption in BBR/CUBIC
competition is violated in many common settings. Instead, BBR/CUBIC competition
often suffers from persistent oscillation of sending rates, as we demonstrate by both
test-bed experiments and dynamic fluid-model simulations [5, 249]. This oscillation
involves regular change patterns of CCA-specific throughput, repeating in periods
of 20–30 seconds. This oscillation regularly results in extreme rate distributions, in
which flows using different CCAs obtain highly uneven bandwidth shares.

Since oscillation therefore affects BBR fairness, this chapter presents a dynamic
model of BBR/CUBIC competition, which describes the inter-CCA dynamics over
time and therefore analytically confirms the oscillation. More precisely, the model
reflects the complex interplay between the RTT probing in BBR and the CUBIC
congestion-window adaptation, which drives the oscillation. As the model allows
to prove, BBR and CUBIC flows do converge towards an equilibrium as long the
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minimum-RTT estimate of the BBR flows is fixed. However, since this estimate
regularly changes, the long-term dynamics of BBR/CUBIC competition oscillate
under common conditions, which we also prove based on the model. The model
also allows to compute (i) worst-case bounds for transitory unfairness during the
oscillation, and (ii) network parameters under which oscillation occurs.

6.1.1 Contributions

In summary, we present the following contributions:

Documentation of instability. We show that steady-state models predict BBR fairness
towards CUBIC less accurately than dynamic models (§6.3), due to their assumption
that BBR/CUBIC competition converges to an equilibrium. In reality, convergence
is often prevented by persistent sending-rate oscillation, which we demonstrate
and explain (§6.4).

Dynamic BBR/CUBIC competition model. We develop a dynamic model of BBR/CU-
BIC competition that explains the observed oscillation in a mathematically rigorous
fashion (§6.5). The model separates BBR/CUBIC competition into short-term dy-
namics, which are continuous and asymptotically stable, and long-term dynamics,
which are discrete and unstable under mild conditions. These stability properties
are proven with various techniques, including Lyapunov theory, center-manifold
theory, and fixed-point iteration.

Insights into temporal fairness. Besides confirming the possibility of oscillation, the
model provides insights on the fairness implications of BBR/CUBIC oscillation,
yielding worst-case fairness bounds that we experimentally validate (§6.6). We also
gain insights on the prevalence of oscillation, as the model allows to identify the
space of network parameters conducive to oscillation (§6.7).

Countermeasure evaluation. We evaluate multiple adaptations of BBR regarding
their effectiveness in suppressing oscillation (§6.8). These redesigned versions
include several ad-hoc modifications of BBR, which we design and implement, and
the official release of BBRv2. However, none of these redesigns eliminates oscillation
without reducing fairness or responsiveness of BBR.
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6.2 background on bbr

In this section, we provide a short overview of the BBR functionality that is relevant
for this chapter. A detailed description of BBR is presented in §5.3.1.

Fundamentally, a BBR flow maintains a bottleneck-bandwidth estimate xbtl and a
minimum-RTT estimate τmin. These two state variables determine the sending rate
and are continuously adjusted by the following probing processes.

Bandwidth probing. To continuously adjust xbtl, a BBR flow cycles through periods
of eight phases, where each phase lasts for the duration of the minimum-RTT
estimate τmin. In six of these eight phases, the BBR flow sends at pacing rate xbtl.
However, in one phase (ProbeBW_UP), the BBR flow raises the sending rate to 5/4 · xbtl

to discover whether more bandwidth is available. In the subsequent phase, the
pacing rate is decreased to 3/4 · xbtl to eliminate any potentially built-up queues.
At the end of the eight-phase period, the bottleneck-bandwidth estimate xbtl is
updated to the maximum measured delivery rate (ACK rate) during the period.

RTT probing. Since the minimum-RTT estimate τmin should ideally match the
path propagation delay, τmin tracks the minimum measured RTT. If τmin is not
adjusted for 10 seconds, BBR performs an RTT-probing step: Namely, the flow
resets τmin and tries to drain the buffer by drastically reducing its sending rate for
200 milliseconds. This rate reduction is achieved by limiting the BBR congestion
window to 4 segments. At any other time, the BBR congestion-window size amounts
to twice the estimated BDP, i.e., 2τminxbtl.

6.3 the steady-state perspective

In previous research, the competition between BBR and CUBIC flows has been
analyzed by means of steady-state models, namely by Ware et al. [254] and Mishra
et al. [181]. These steady-state models have recently been complemented by our
fluid model from Chapter 5, where we analyze BBR/CUBIC competition by means
of fluid-model simulation. While such simulations yield time series that describe
the competition over time in specific networks, these simulations cannot yield
general analytical insights or provable guarantees.

To bridge the gap between analytic steady-state modelling and numerical fluid-
model simulation, we derive a fluid-equilibrium model of BBR/CUBIC competition
in §6.3.1. This model identifies the steady state of the BBR/CUBIC dynamics by
deriving the equilibrium of the joint BBR/CUBIC fluid model, and serves as a
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basis for our dynamic model in §6.5. All models are evaluated w.r.t. their predictive
power in §6.3.2.

6.3.1 Fluid-Equilibrium Model

In the following, we combine our reduced BBR fluid model from §5.5 with the
CUBIC fluid model by Vardoyan et al. [249], and derive the equilibrium of the new
joint fluid model.

6.3.1.1 Basic Model

We consider NB BBR flows in set FB and NC CUBIC flows in set FC, all of which
share a single bottleneck link ℓ.

BBR flows. As described in §5.5.1, each BBR flow i generally sends at rate xB
i =

βixbtl
i , where xbtl

i is the bottleneck-bandwidth estimate of flow i, and βi is the
flow’s strength. This strength βi enforces the congestion-window constraint on the
BBR sending rate. The BBR congestion-window size is 2τmin

i xbtl, where τmin
i is the

minimum-RTT estimate of BBR flow i. Hence, the strength βi is

βi = min
(

1, 2τmin
i /τi

)
, (6.1)

where τi is the current delay experienced by BBR flow i,.

CUBIC flows. In contrast, each CUBIC flow k sends at rate xC
k = wk/τk, where wk

is the current congestion window of CUBIC flow k and τk is the currently experi-
enced delay of flow k. The congestion-window size wk is determined by the CUBIC
window-growth function W(wmax, s):

wk = W(wmax
k , sk) = wmax

k + c

(
sk −

3

√
wmax

k b
c

)3

. (6.2)

In this function, wmax
k is the recorded congestion-window size at the time of the

last loss, sk is the time since the last loss, and b = 0.3 and c = 0.4 are CUBIC
parameters [217].

Link-arrival rate. The total load yℓ on link ℓ is thus given by:

yℓ = ∑
i∈FB

xB
i + ∑

k∈FC

xC
i = ∑

i∈FB

βixbtl
i + ∑

k∈FC

wk
τk

. (6.3)
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Table 6.1: Notation used in model (in alphabetical order).

Symbol Description

αi Probing strength of BBR flow i

α̂ Probing strength that minimizes BBR flow i

Bℓ Buffer volume at link ℓ

b, c CUBIC parameters

βi Strength of BBR flow i

Cℓ Rate capacity of link ℓ

FB Set of BBR flows

FC Set of CUBIC flows

NB Number of BBR flows

NC Number of CUBIC flows

pℓ Loss rate at link ℓ

qℓ Queue length at link ℓ

sk Time since last loss of CUBIC flow k

τj RTT experienced by flow j

τ
p
j Propagation delay experienced by flow j

τmin
i Minimum-RTT estimate of BBR flow i

wk Congestion-window size of CUBIC flow k

wmax
k Congestion-window size at time of last loss for CUBIC flow k

w←(w) CUBIC congestion-window size 10 seconds after RTT-probing step with
congestion-window size w

xB
i Sending rate of BBR flow i

xbtl
i Bottleneck-bandwidth estimate of BBR flow i

xC
k Sending rate of CUBIC flow k

χ Lower limit on bottleneck-bandwidth estimate for BBR flows

yℓ Total arrival rate at link ℓ

Ω Unstable neighborhood of CUBIC congestion-window size in long-term equi-
librium

· Variable in long-term equilibrium

·̃ Variable in short-term equilibrium
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Loss rate. The loss rate pℓ is based on the excess sending rate of yℓ w.r.t. the link
capacity Cℓ:

pℓ =





yℓ−Cℓ
yℓ

if yℓ > Cℓ ∧ qℓ = Bℓ,

0 otherwise,
(6.4)

where qℓ is the bottleneck-queue length and Bℓ is the bottleneck-buffer size.

6.3.1.2 CUBIC Equilibrium

The behavior of a CUBIC flow k is captured by the two variables wmax
k and sk,

which evolve as follows according to Vardoyan et al. [249]:

ẇmax
k = (wk − wmax

k ) · xC
k · pℓ, (6.5)

ṡk = 1− sk · xC
k · pℓ, (6.6)

Intuitively, Eq. (6.5) describes that the maximum recorded window wmax is adjusted
towards the current window for each lost segment. Similarly, Eq. (6.6) captures
the fact that the window-growth duration s is reset to 0 for each lost segment, but
grows linearly in absence of loss.

Given the CUBIC dynamics in Eqs. (6.5) and (6.6), the CUBIC equilibrium
conditions correspond to:

∀k ∈ FC. ẇmax
k = (wk − wmax

k ) · xC
k · pℓ = 0 (6.7)

ṡk = 1− sk · xC
k · pℓ = 0 (6.8)

Eq. (6.8) implies that none of sk, xC
k , and pℓ can be zero in equilibrium. Using this

insight on Eq. (6.7) implies:

ẇmax
k = 0

(6.7)⇐⇒
xC

k ,pℓ ̸=0
wk = wmax

k
(6.2)⇐⇒ wk = wmax

k =
c
b

s3
k . (6.9)

Hence, in the fluid equilibrium, the rate of the CUBIC flows is kept constant over
time by persistent loss. Note that fluid models average network metrics over time;
in reality, the loss actually occurs for specific packets rather than continuously,
and thereby causes multiplicative-decrease fluctuations in the CUBIC sending rate.
Inserting xC

k = wmax
k /τk into Eq. (6.8) yields:

pℓ =
bτk

cs4
k
> 0. (6.10)
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This CUBIC-stabilizing loss pℓ must correspond to the actually occurring loss, which
in turn depends on the sending rates of both CUBIC and BBR flows:

Lemma 6.1 CUBIC Equilibrium Conditions:

∀k ∈ FC.
bτk

cs4
k
=

yℓ − Cℓ

yℓ
(6.11)

Since pℓ > 0 follows from Eq. (6.10), Eq. (6.11) implies yℓ > Cℓ, i.e., an equilibrium
can only arise on a congested link, and qℓ = Bℓ, i.e., congestion fills the whole
buffer and loss occurs. For that reason, the delays in equilibrium become:

∀j ∈ FB ∪ FC. τ j = τ
p
j +

Bℓ

Cℓ
, (6.12)

where τ
p
j is the propagation delay experienced by flow j.

6.3.1.3 BBR Equilibrium

The bottleneck estimate xbtl
i of BBR flow i tracks the maximum delivery rate xdlv

i
produced by bandwidth probing (cf. §5.5.1.1), i.e., ẋbtl

i = xdlv
i − xbtl

i with

xdlv
i =





αixbtl
i Cℓ

yℓ+(αi−βi)xbtl
i

if yℓ + (αi − βi)xbtl
i ≥ Cℓ,

αixbtl
i otherwise,

(6.13)

where αi denotes the probing strength of the BBR flow: In its 8-RTT bandwidth-
probing cycle, a BBR flow raises its pacing rate during a single RTT (ProbeBW_UP
phase) to discover whether additional bandwidth is available. In this phase, the
BBR flow sets the pacing rate to 5/4xbtl

i , while being constrained by the congestion-
window size of 2τmin

i xbtl:

αi = min
(

5/4, 2τmin
i /τi

)
. (6.14)

We now extend previous work by identifying the BBR/CUBIC equilibrium
(outside of the RTT-probing steps). Since yℓ > Cℓ (implied by Lemma 6.1) and
αi ≥ βi (Eqs. (6.1) and (6.14)), Eq. (6.13) implies the BBR equilibrium condition:

∀i ∈ FB.
αixbtl

i Cℓ

yℓ + (αi − βi)xbtl
i
− xbtl

i = 0. (6.15)
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These conditions always admit the equilibrium xbtl
i = 0 for any i. However, xbtl

i = 0
is an artificial equilibrium that cannot arise in practice: The BBR implementation
never sets the bottleneck-bandwidth estimate xbtl completely to zero, even under
100% packet loss, as such zeroing would prohibit any recovery of the sending
rate [131]. Effectively, the bottleneck-bandwidth estimate is thus lower-bounded
by some small number χ > 0. Hence, we arrive at the following BBR equilibrium
conditions:

Lemma 6.2 BBR Equilibrium Conditions: ∀i ∈ FB.

xbtl
i = max


χ, Cℓ −

1
αi


 ∑

j∈FB\{i}
βjx

btl
j + ∑

k∈FC

xC
k




 (6.16)

To determine the strengths αi and βi in equilibrium, we require the equilibrium
minimum-RTT estimate τmin

i . To determine τmin
i , we first note that the CUBIC

equilibrium conditions in Lemma 6.1 imply a consistently full buffer. Hence, the
BBR flows never spontaneously observe decreasing RTT samples in equilibrium, and
must perform an RTT-probing step every 10 seconds. In an RTT-probing step, a BBR
flow i reduces its congestion window to 4 segments, with the goal of uncovering the
path propagation delay τ

p
i . Intriguingly, BBR flows synchronize their RTT-probing

steps (cf. §6.4.2) such that the propagation delay is indeed uncovered if only BBR
flows compete. However, in our scenario, the bottleneck link ℓ is shared with
CUBIC flows, which do not participate in this buffer-draining behavior. Hence, the
equilibrium minimum-RTT estimate τmin

i is inflated by the minimal back-off queue
length q−ℓ remaining in the RTT-probing step:

q−ℓ =

[
4NB + (1− b) ∑

k∈FC

wk − τ
p
ℓ Cℓ

]Bℓ

0

=⇒ τmin
i = τ

p
i +

q−ℓ
Cℓ

. (6.17)

Since q−ℓ can neither be negative nor exceed the bottleneck-buffer capacity Bℓ, we
use the notation [·]Bℓ

0 for projection to the interval [0, Bℓ]. Intuitively, the remaining
queue volume q−ℓ contains the inflight volume of all flows when the BBR flows are
in an RTT-probing step and the CUBIC flows are minimal, i.e., back off because of
loss (factor 1− b). In case of congestion, this inflight data tends to accumulate on
the bottleneck link ℓ. Hence, this inflight data is discounted by the volume that fits
in the pipe, i.e., the BDP τ

p
ℓ Cℓ (τp

ℓ being the propagation delay of bottleneck link ℓ).
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The equilibrium conditions in Lemma 6.1 (CUBIC flows) and in Lemma 6.2 (BBR
flows) form a system of N = NB + NC nonlinear equations with N variables. This
equation system can then be solved to compute an equilibrium rate distribution.
While such solutions are difficult in general, the starvation of BBR flow i is easy to
derive given αi ≤ 1:

Lemma 6.3 Sufficient Condition for BBR Starvation:

αi ≤ 1 =⇒ xbtl
i = χ (6.18)

Proof. From Lemma 6.1, we know that yℓ > Cℓ, and hence:

yℓ > Cℓ
αi≤1⇐⇒ yℓ > αiCℓ

/yℓ⇐⇒
−1

0 >
αiCℓ

yℓ
− 1

·xbtl
i⇐⇒

αi=βi

0 >
αixbtl

i Cℓ

yℓ + (αi − βi)xbtl
i
− xbtl

i = ẋbtl
i

(6.19)

Therefore, if xbtl
i = χ, a BBR flow i would reduce xbtl

i , which is impossible.
Hence, xbtl

i = χ is the unique equilibrium. □

6.3.2 Model Evaluation

In this section, we experimentally evaluate the two previous steady-state mod-
els [181, 254], the simulated fluid model [5], and the fluid-equilibrium model
from §6.3.1.

6.3.2.1 Experiment Setting

As usual in the literature [101, 119, 143, 193, 5, 231, 240, 254], we consider a dumbbell
topology with a single bottleneck link ℓ. In our experiment, this bottleneck link ℓ
has capacity Cℓ = 100Mbps and propagation delay τ

p
ℓ = 10ms, which is in line with

the capabilities of the network emulator Mininet [156]. Moreover, each of the N
senders is connected to the bottleneck link ℓ via an individual non-shared link,
also with a propagation delay of 10ms, which raises the overall RTT propagation
delay to τp = 40ms for each flow. The non-shared links and the bottleneck link
are intermediated by a buffer with a size of 1.5 path BDP (750KB), as buffer sizes
above 1 BDP are especially interesting for BBR/CUBIC fairness [231, 254]. Each
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experiment runs for 120 seconds, and is repeated three times. Unless otherwise
stated, these experiment settings are relevant for the remainder of the chapter.

6.3.2.2 Results

We consider all possible BBR/CUBIC combinations of a network with N = 10 flows,
and run all models plus the Mininet experiment for each combination. Then, we
compute the obtained capacity share of all BBR flows. For the steady-state models
and the fluid-equilibrium model, the capacity share is derived from the equilibrium
rate distribution. For the simulated fluid model and the experiments, the capacity
share is calculated as the average capacity share over time. The results in Fig. 6.1
yield two important insights.

BBR unfairness. First, the BBR flows consistently obtain a disproportionately large
share of the capacity, especially if they are in a minority. Hence, the fairness from
the balanced scenario with 5 flows for each CCA is not generalizable.

Accuracy by dynamicity. Second and more importantly for our purpose, we note
that the predictive power of the models grows with their fidelity regarding the time
dimension of the competition: Previous steady-state models (referred to as SteadyS-
tate I [254] and SteadyState II [181]) have no notion of time, but SteadyState II at
least captures that the CUBIC flows regularly back off upon loss and is thus more
accurate. All steady-state models (including the fluid-equilibrium model) are less ac-
curate than the predictions from fluid-model simulation (Fluid (Sim)). The reduced
accuracy of the fluid-equilibrium model (Fluid (Eq)) is especially interesting, given
that it is derived from the time-aware fluid model. This observation suggests that
the steady-state perspective on BBR/CUBIC competition fails to capture important
phenomena that unfold over time. Put differently, the steady-state models predict
the outcomes of BBR/CUBIC competition from a steady state, and thus implicitly
assume that the competition dynamics converge to this steady state. However, this
assumption is often questionable, as we will demonstrate in the following sections.

6.4 the dynamic perspective

In §6.3, we concluded that BBR/CUBIC competition must involve important time-
varying phenomena that reduce the accuracy of predictions from steady-state
models. In fact, the detailed results from the fluid-model simulations and the
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Figure 6.1: Model evaluation for 10 flows.
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experiments (shown in Fig. 6.2) confirm that BBR/CUBIC competition often suffers
from persistent sending-rate oscillation.

This oscillation of sending rates results from the dynamic interplay between the
minimum-RTT estimate of BBR flows (τmin) and the congestion-window size of
CUBIC flows (w). This interplay is explained in its basic form (i.e., for one BBR
flow and one CUBIC flow) in §6.4.1, and extended to an arbitrary number of flows
in §6.4.2.

6.4.1 Basic Oscillation Mechanism

Fundamentally, oscillation in BBR/CUBIC competition is created by the alternation
between (i) the RTT probing step of BBR, and (ii) the short-term dynamics, which are
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∗
CUBIC congestion-window size w
→ back-off queue length q−ℓ
→ BBR minimum-RTT estimate τmin

→ BBR probing strength α

BBR RTT Probing
(every 10 seconds)

∗
BBR probing strength α (fixed)
→ BBR sending rate xB

→ Packet loss pℓ
→ CUBIC congestion-window size w

Short-Term Dynamics
(during 10 seconds)

Long-Term Dynamics

Figure 6.3: Basic two-level mechanism behind
oscillation in BBR/CUBIC compe-
tition.
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Figure 6.4: Oscillation of sending rates for
competition between one BBR
flow and one CUBIC flow.

determined by the preceding RTT-probing step and last until the next RTT-probing
step. This alternation forms the long-term dynamics, which is explained in Fig. 6.3,
and demonstrated with an experiment in Fig. 6.4.

Inflation of τmin. In the RTT-probing step, the BBR flow reduces its sending rate to
almost zero, with the goal of emptying the buffer and discovering the propagation
delay. However, the CUBIC flow does not participate in this reduction, and may
thus prevent the complete clearance of the buffer if its contemporary congestion-
window size w is relatively large. The CUBIC congestion-window size w thus
affects the back-off queue length q−ℓ during the RTT-probing step, and hence also
the BBR minimum-RTT estimate τmin that is computed from probing measurements
(cf. Fig. 6.3). For example, the CUBIC congestion-window size w in RTT-Probing
Step 1 in Fig. 6.4 is relatively large (cf. high CUBIC rate); as a result, the buffer is
not completely cleared during RTT probing and the minimum-RTT estimate τmin

after the probing step (in interval [ 1 , 2 ] in Fig. 6.4) is around 35% higher than the
actual propagation delay (highlighted with rectangle).

Effect on sending rates. This inflated minimum-RTT estimate τmin is relevant
because it co-determines the congestion-window size of the BBR flow, and thus
the probing strength α of the BBR flow (Eq. (6.14)). In particular, an excessive
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Figure 6.5: Self-synchronization of RTT probing (highlighted with red rectangles) among 4

BBR flows.

minimum-RTT estimate τmin (such as in time interval [ 1 , 2 ] in Fig. 6.4) results in a
high bandwidth-probing strength of the BBR flow, which increases the BBR sending
rate xB and reduces the CUBIC congestion-window size w by causing packet loss.

Temporarily fixed probing strength. Crucially, this high probing strength is fixed
after RTT probing: Since the BBR flow and the CUBIC flow make intensive use of
the buffer, they prevent a downward revision of the minimum-RTT estimate τmin

during the short-term dynamics. Hence, these short-term dynamics continue until
the minimum-RTT estimate τmin times out, i.e., for 10 seconds.

Circular stepwise process. At the next RTT probing step, the modified CUBIC
congestion-window size w determines a new probing strength α: For example,
the reduced window size w at Step 2 in Fig. 6.4 reduces the minimum-RTT
estimate τmin to the propagation delay and thus induces a relatively low probing
strength α. Hence, the congestion-window size w increases again until Step 3 .
At this Probing Step 3 , w is still low enough to cause a correct estimate of the
propagation delay and thus another growth phase of w. However, at Probing
Step 4 , τmin is inflated again and the oscillation pattern is restarted.
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6.4.2 Generalization to Multiple Flows

The oscillation mechanism explained above applies to the case with a single flow
per CCA. However, as Fig. 6.2 illustrates, we observe oscillation also for multiple
flows per CCA. This observation raises the question how and why exactly the
mechanism in Fig. 6.3 generalizes to multiple flows.

CUBIC flows. The generalization to multiple CUBIC flows is straightforward: The
explanation in §6.4.1 is equally valid for multiple CUBIC flows, with the slight
adaptation that the aggregate congestion-window size of all CUBIC flows affects the
minimum-RTT estimate τmin of a BBR flow.

BBR flows. Interestingly, multiple BBR flows also behave analogously to a single
BBR flow for the purpose of oscillation because BBR flows synchronize their RTT-
probing steps. This synchronization has been documented by previous work [49,
231], and is experimentally confirmed in Fig. 6.5. In that experiment, 4 BBR flows
are initiated sequentially with 4-second delays, and compete with 6 CUBIC flows
(not pictured). The BBR flow 1 performs the first RTT probing at Time 1 , which
shrinks the queue and reduces the RTT. In fact, the RTT is reduced enough such
that Flow 3 measures a new minimum RTT. Hence, Flow 1 and Flow 3 start the
reset timers of their minimum-RTT estimates at the same time, and therefore
simultaneously probe the RTT at Time 3 = 1 +10 seconds. At this Time 3 , also
the remaining two flows 2 and 4 become synchronized with flows 1 and 3 such that
all flows perform a simultaneous RTT probing at Time 4 .

Absence of oscillation. Finally, note that oscillation does not necessarily arise in a
multiple-flow scenario if the CCA distribution is very unequal, e.g., for 9 BBR flows
and 1 CUBIC flow in Fig. 6.2. In this case, the single CUBIC flow never manages to
inflate the minimum-RTT estimate of the BBR flows, and hence the rate distribution
is largely static.

6.5 modelling dynamic competition

While §6.4 provides an intuitive explanation why oscillation arises in our experi-
ment setting, we are now interested in a rigorous mathematical characterization
of this oscillation. With this characterization, we can identify the conditions under
which BBR/CUBIC oscillation occurs. In the next two sections (§6.7 and §6.6), we
will then apply the model to gain practical insights.
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6.5.1 Model Overview

We distinguish short-term and long-term dynamics (Fig. 6.3).

Short-term dynamics. The short-term dynamics describe the continuous BBR/
CUBIC competition between the RTT probing steps of BBR. Between these probing
steps, the BBR probing strength α is fixed, and fully determines the equilibria
(§6.5.2) and the convergence behavior (§6.5.3) of the short-term dynamics.

Long-term dynamics. Building on these short-term dynamics, we derive the long-
term dynamics, describing the BBR/CUBIC competition across RTT-probing steps
(§6.5.4). In each RTT-probing step, the CUBIC congestion-window size w determines
the probing strength α and thus the short-term dynamics for the next 10 seconds;
these short-term dynamics then determine the congestion-window size w at the
next RTT-probing step. Hence, the long-term dynamics form a discrete process.

In the following, we consider the case for one BBR flow and one CUBIC
flow (NB = 1, NC = 1). For simplicity, we thus eliminate the flow-specific sub-
scripts i and k where the association is obvious, e.g., only the BBR flow i has a
probing strength αi = α. As discussed in §6.4.2, the scenarios for multiple flows per
CCA are qualitatively similar for a majority of CCA compositions.

6.5.2 Short-Term Equilibria

In §6.4, we have observed that the minimum-RTT estimate τmin of the BBR flow i is
only periodically updated in competition with CUBIC. To investigate the dynamics
between these updates, we can thus treat τmin as fixed, and by extension also the
probing strength α (cf. Eq. (6.14)). This fixed α then determines the equilibrium σ̃(α)
of the short-term dynamics:



170 modelling bbr/cubic competition dynamics

Theorem 6.1 Unique Short-Term Equilibrium. Given probing strength α, the short-
term equilibrium σ̃(α) = (x̃btl(α), w̃max(α), s̃(α)) for competition between a BBR
flow i and a CUBIC flow k on a bottleneck link ℓ has the unique values:

α ≥ α̂ : s̃(α) s.t. S̃1(s̃) = 0, x̃btl(α) = Cℓ −
w̃max(α)

ατk

α < α̂ : s̃(α) s.t. S̃2(s̃) = 0, x̃btl(α) = χ

(6.20)

w̃max =
c
b

s̃(α)3,
α̂4(α̂− 1)3

(χ + α̂(Cℓ − χ))3 =
c

bτk(Cℓ − χ)7 , (6.21)

S̃1(s) =
(α− 1)c2

αbτk
s7 − (α− 1) c

α
s3 − bCℓτk, and (6.22)

S̃2(s) =
c2

bτk
s7 − c (Cℓ − αχ) s4 − cs3 − αbτkχ. (6.23)

Proof Sketch. The full proof of Theorem 6.1 is provided in Appendix E.1.
The proof first considers the case α ≤ 1, which implies x̃btl(α) = χ according
to Lemma 6.3. Inserting this value into the CUBIC equilibrium conditions from
Lemma 6.1 yields the condition S̃2(s) = 0. The corresponding septic polynomial
can be shown to have a unique root, which guarantees a unique equilibrium s̃(α).
Second, the proof considers the case α > 1, and distinguishes the sub-cases x̂btl ≥ χ
and x̂btl < χ, where x̂btl = Cℓ − x̃C/α is the equilibrium BBR bottleneck-bandwidth
estimate without restriction to the domain [χ, ∞). If x̂btl ≥ χ, combining x̃btl = x̂btl

with the CUBIC equilibrium conditions from Lemma 6.2 yields S̃1 = 0, which again
can be confirmed to have a unique solution. For the other sub-case where x̂btl < χ,
we identify the probing strength α̂ > 1 such that χ is an unrestricted equilibrium,
i.e., x̂btl = x̃btl = χ. For any probing strength α < α̂, it holds that x̂btl < χ and
thus x̃btl(α) = χ. □
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6.5.3 Stability of Short-Term Equilibria

For the short-term equilibria to be relevant, the short-term dynamics have to
converge to these equilibria. In particular, this attractiveness is also necessary
for the BBR/CUBIC dynamics to converge to a new short-term equilibrium rate
distribution if the minimum-RTT estimate τmin is updated and α thus changes. To
provide evidence for the attractiveness of the short-term equilibria, we prove the
asymptotic stability of these equilibria, meaning that the competition converges to
the short-term equilibrium if the initial rate distribution is close enough:

Theorem 6.2 Stability of Short-Term Equilibrium. In the competition between
one BBR flow and one CUBIC flow, the short-term equilibrium σ̃(α) = (x̃btl(α),
w̃max(α), s̃(α)) of the joint dynamics is asymptotically stable.

Proof Sketch. We provide the full rigorous proof in Appendix E.2, and provide
a high-level overview in the following.

Importantly, a straightforward stability proof via linearization of the dynamic
system fails, for the reasons already noted by Vardoyan et al. [249] who considered
a CUBIC flow in isolation. Namely, when the BBR/CUBIC dynamics approach the
equilibrium σ̃(α), the evolution of the CUBIC maximum window wmax is exclusively
determined by high-order terms that are not captured by the linearization.

However, since the short-term equilibrium is not explicitly unstable with respect
to the linearized dynamics, we can rely on the center-manifold emergence theorem [128]:
This theorem states that the dynamics converge exponentially fast to the so-called
center manifold and then approximately follow a slow (i.e., sub-exponential) trajec-
tory along the center manifold. The center manifold itself contains the equilibrium
point, and thus potentially allows convergence to the equilibrium. Hence, the dy-
namics along the center manifold determine the overall short-term dynamics, and
thus the stability properties of the short-term equilibrium. These center-manifold
dynamics have lower dimension and thus allow a more tractable stability analysis.

Figure 6.6 illustrates this convergence behavior for the dynamics between one
BBR flow and one CUBIC flow. As these dynamics involve the three variables xbtl

(for the BBR flow), wmax, and s (both for the CUBIC flow), the state space of the
competition dynamics is three-dimensional. The system evolution from any starting
point σn is given by a path through the state space, which is determined by the dif-
ferential equations governing the three variables, and is visualized by a curve Γe(σn)
in the three-dimensional space. This evolution curve Γe(σn) approaches the center
manifold exponentially quickly. In our proof, this center manifold can be expressed
by means of the single variable wmax, and thus corresponds to another curve Γc.
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Figure 6.6: Two-step convergence in short-term dynamics: First exponential convergence
towards the center manifold Γc (a function of wmax), then sub-exponential along Γc
towards the short-term equilibrium σ̃(α).

Moreover, the system-evolution path Γe(σn) tracks the center-manifold curve Γc in
the direction towards the equilibrium σ̃(α), indicating that the short-term equilib-
rium is asymptotically stable. □

6.5.4 Long-Term Dynamics

Given the insights above, we know that the BBR/CUBIC dynamics converge to
a short-term equilibrium σ̃(α) for a fixed minimum-RTT estimate τmin and fixed
probing strength α. While τmin is indeed fixed for a certain amount of time, it is
also regularly adjusted, at least every 10 seconds. This readjustment of τmin and α
is based on the CUBIC congestion-window size w at the time of RTT probing.
At that time, the CUBIC congestion window w is evolving towards the window
size w̃(α′) = w̃max(α′) (cf. Eq. (6.9)) of the short-term equilibrium σ̃(α′) based on
the previous α = α′. Importantly, however, this convergence may not be completed
at the time of RTT probing. Hence, an intermediate window size w′ ̸= w̃(α′)
determines the readjustment of α.

As a result, the long-term evolution of the CUBIC window size w is described by
a discrete-time process:

∀t ∈N, t ≥ 0. w(t + 1) = w←(w(t)), (6.24)
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where the discrete-time moments t are the RTT-probing steps of BBR, i.e., i.e., 10

seconds apart. Intuitively, w←(w(t)) is the CUBIC congestion-window size that
results from the short-term dynamics (cf. §6.5.3) between the probing steps t and
t + 1. These short-term dynamics are determined by the BBR probing strength α in
that interval, which in turn results from the CUBIC window size w(t) at the start
time of the interval, i.e., when α was updated.

In fact, the dynamic process in Eq. (6.24) is guaranteed to have a unique long-term
equilibrium window size w, corresponding to the equilibrium in the fluid-equilibrium
model (§6.3.1). However, this equilibrium is unstable, i.e., not attractive to the
dynamics, under the following mild conditions:

Theorem 6.3 Instability of Long-Term Equilibrium. The dynamics between a BBR
flow and a CUBIC flow have a unique long-term equilibrium at CUBIC window size w,
which is unstable if the equilibrium has a neighborhood Ω in which the window-update
function w←(w) decreases fast enough in w:

∃ Ω = [ω0, ω1], ω0 < w < ω1. ∀ω ∈ Ω.
∂w←(ω)

∂w
< −1. (6.25)

Proof Sketch. The proof in Appendix E.3 can be summarized by means of
the geometric interpretation visualized in Fig. 6.7. The graph in Fig. 6.7 contains
the actual window-update function w←(w), which yields the CUBIC window size
after an interval that started with CUBIC window size w. Moreover, the graph
contains the equilibrium window-update function w̃←(w), which yields the short-
term equilibrium window size w̃ for an interval that started with CUBIC window
size w. If the short-term dynamics always completely converged to their equilibrium
during the interval, then it would hold that w← = w̃←. The function w̃← is fully
known, has a finite value range [wmin, wmax], and is computed from network
parameters as documented in Appendix E.3.

In contrast, the window-update function w←(w) is mostly unknown, except
for the property that w←(w) is always between the initial window size w and
the short-term equilibrium window size w̃←(w). This last insight follows from the
asymptotic stability of the short-term equilibrium (proven in Theorem 6.2), meaning
that the CUBIC window always evolves towards the short-term equilibrium window
size w̃(α) while α is fixed; however, this convergence is not necessarily complete
when α is updated. In Fig. 6.7, w← is chosen arbitrarily for visualization purposes.

Given these functions, the updates of the discrete-time process in Eq. (6.24) can
be visualized with the fixed-point diagram in Fig. 6.7. Let each window size w
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Figure 6.7: Instability of long-term dynamics: Under the condition from Theorem 6.3, the
dynamics suffer from persistent oscillation as the evolution trajectory moves away
from the CUBIC long-term equilibrium window w.

correspond to point (w, w) on the identity line w. Starting with a window size w(t),
the evolution of w during an interval corresponds to a vertical projection of the
point (w(t), w(t)) onto w←. The new window size w(t+ 1) is reached by the CUBIC
flow after the interval [t, t + 1] starting at window size w(t). Graphically, this new
window size w(t + 1) then corresponds to point (w(t + 1), w(t + 1)), which is
achieved by a subsequent horizontal projection of (w(t), w(t + 1)) onto the identity
line. A series of such alternating projections thus visualizes the evolution trajectory
of the discrete-time system.

Given this analogy, it becomes clear that the intersection point w of the window-
update function w̃← and the identity line w constitutes an equilibrium. This equi-
librium is unique because w̃←(w) can be shown to be monotonic, and hence the
functions only have one intersection.

The stability properties of the long-term equilibrium w depend on the update
function w← around the equilibrium. Intuitively, the update function w← must be
decreasing steeply enough around the equilibrium such that the evolution trajectory
spirals away from the long-term equilibrium w. Hence, under the condition on w←

from Theorem 6.3, we can find a neighborhood Ω around the equilibrium w such
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that all trajectories entering Ω are guaranteed to leave Ω again eventually. Hence,
such a neighborhood prevents asymptotic convergence to the equilibrium, and thus
causes the equilibrium to be unstable. □

6.6 fairness under oscillation

We now consider the fairness implications of BBR/CUBIC oscillation. In particular,
the long-term BBR/CUBIC dynamics from Eq. (6.24) involve CUBIC congestion-
window sizes {w(t)}t∈N,t≥0, Given this association between any oscillation state w(t)
and sending rates, fairness under oscillation depends on the fairness of the oscillation
pattern, i.e., the fairness of all rate distributions associated with {w(t)}t∈N,t≥0. This
oscillation pattern has a worst-case form with respect to fairness, which is found
in §6.6.1. From this worst-case oscillation pattern, fairness bounds are computed
and experimentally validated in §6.6.2.

6.6.1 Bounding the Oscillation Pattern

In particular, the fairness of the oscillation pattern can be lower-bounded by maxi-
mizing the amplitude of the oscillation pattern, i.e., the variance of xC(t) and xB(t)
over time:

Theorem 6.4 Worst-Case Oscillation Pattern. Given oscillation with maximum
amplitude, the CUBIC flow oscillates between the congestion-window sizes ŵ0 =
w̃←(wmax) and ŵ1 = w̃←(wmin) when competing with a BBR flow (ŵ0 < ŵ1).

Proof Sketch. The proof in Appendix E.4 rests on two observations regarding the
oscillation amplitude. First, this oscillation amplitude corresponds to the window-
size changes in the update intervals, i.e., the difference between the window-size w
at the start of the interval and the convergence result w←(w) at the end of the inter-
val (cf. Fig. 6.7). This difference |w− w←(w)| is upper-bounded by |w− w̃←(w)|,
i.e., the difference for complete convergence to the short-term equilibrium. Hence,
the amplitude of the oscillation is maximized by assuming w← = w̃←. Second,
the oscillation amplitude correlates with the size of the unstable neighborhood Ω
around the long-term equilibrium w, as the oscillation pattern typically involves
a window-size change across Ω, e.g., from w(t) < ω0 to w(t + 1) > ω1. In the
feasible maximum, Ω covers the entire decreasing part of w̃←.
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Worst-Case Max BBR Share φB(ŵ0)
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Figure 6.8: Experiments involving one flow per CCA, used for the experimental validation of
fairness bounds (cf. §6.6) and for the empirical estimation of the window-update
function w← (cf. §6.7) .

Under these two assumptions, the oscillation corresponds to a limit cycle, cycli-
cally revisiting the window sizes ŵ0 = w̃←(wmax) and ŵ1 = w̃←(wmin). This limit
cycle is sound for the process in Eq. (6.24), i.e., w̃←(ŵ0) = ŵ1 and w̃←(ŵ1) = ŵ0,
Moreover, the limit cycle is attractive, i.e., the process in Eq. (6.24) eventually enters
the limit cycle. □

6.6.2 Computing Fairness Bounds

Given the worst-case oscillation pattern from §6.6.1, we now compute fairness
bounds for a selection of network configurations, and validate these bounds by
means of experiments.

In particular, we test a range of 27 configurations, which are variations of the ex-
periment settings in §6.3.2.1 regarding bottleneck-link capacity Cℓ, path-propagation
delay τp and buffer capacity Bℓ. These experiments result in 120-second traces that
involve two flows and are depicted in Fig. 6.8.

Bound computation. For each of these configurations, we find the worst-case
oscillation pattern according to Theorem 6.4. In this oscillation pattern, the CUBIC
congestion-window size alternates between two values ŵ0 and ŵ1 at every RTT-
probing step. These congestion-window sizes constitute the extreme points of the
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oscillation: ŵ0 is the smallest congestion-window size attained by the CUBIC flow
during the oscillation, whereas ŵ1 is the largest window size. Hence, xC(ŵ0) =
ŵ0/τk is the minimal attained CUBIC rate, whereas xC(ŵ1) is maximal. For BBR,
the maximum sending rate is (symmetric for xB(ŵ1)):

xB(ŵ0) = β(ŵ1) ·max
(

χ, Cℓ −
xC(ŵ0)

α(ŵ1)

)
, (6.26)

which is based on the BBR equilibrium conditions from Lemma 6.2, because ŵ0
and ŵ1 represent short-term equilibria. Note that the minimum-RTT estimate (and
thus also the strengths α and β) of a BBR flow is based on the CUBIC congestion-
window size at the previous RTT-probing step, which is ŵ1 when the current
congestion-window size is ŵ0.

Based on these sending rates, we also identify the maximum BBR capacity share:

ϕB(ŵ0) =
xB(ŵ0)

xC(ŵ0) + xB(ŵ0)
. (6.27)

The minimum BBR share ϕB(ŵ1) is found analogously.

Bound validation. To validate these bounds, we compare the theoretically derived
bounds to the experimentally found oscillation patterns in Fig. 6.8. For bound cor-
rectness, the oscillation pattern of the BBR flow is supposed to be contained within
these bounds, which is clearly true. However, the worst-case bounds are relatively
loose, as they are derived based on worst-case assumptions. These assumptions do
not hold in the experiments in Fig. 6.8, but may hold in other configurations.

Approximate empirical bound. In addition, we empirically find the following bound,
which approximates the maximum BBR share more accurately:

ϕ̂B(ŵ0) =
1
2

(
ϕB(w) + ϕB(ŵ0)

)
, (6.28)

where w is the CUBIC congestion-window size in the long-term equilibrium (which
is not converged upon). Intuitively, Eq. (6.28) states that the maximum BBR capacity
share is roughly half-way between the BBR share ϕB(w) that would be achieved in
the long-term equilibrium, and the worst-case maximal BBR share ϕB(ŵ0).

6.7 conditions for oscillation

After leveraging the oscillation model to predict fairness under oscillation, we now
apply it again it to predict the prevalence of oscillation, i.e., to predict which concrete
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network parameters lead to oscillation. An abstract condition for oscillation is
already contained in Theorem 6.3; however, to make this condition practically ap-
plicable, we need to instantiate the window-update function w← used in Eq. (6.24).
This function is instantiated in §6.7.1 based on experimental results. Based on this
instantiation, we can predict oscillation for a wide range of network parameters
in §6.7.2.

6.7.1 Approximating the Update Function

The window-update function w← cannot be derived from the fluid-model alone,
as w← depends on the explicit rate of convergence of the short-term dynamics
in §6.5.3. However, this rate of convergence is only known in terms of order (i.e.,
exponential vs sub-exponential) rather than in explicit form. Hence, we estimate the
rate of convergence and thus characterize w← based on the empirical observations
from the experiments in Fig. 6.8.

Samples of w←. For each configuration γ listed in Fig. 6.8, we perform 3 exper-
iments E(γ). In each experiment e, we observe that the BBR/CUBIC dynamics
contain a series of 12 window sizes {we(t)}t∈{1,...,12}, which are attained every 10

seconds, i.e., when the BBR flow performs RTT probing. Given the observations
from experiment e, we know:

∀t ∈ {1, ..., 11}. we(t + 1) = w←(we(t)), (6.29)

as w← describes the result of the CUBIC congestion-window evolution between
probing steps. Hence, the window sizes {we(t)}t represent samples of w←. To
fit w← to these samples, we use the estimation process in Appendix E.5. In this
estimation, we rely on the insights that (i) the CUBIC congestion-window size
always evolves towards its short-term equilibrium, and (ii) the CUBIC congestion-
window size decreases faster than it increases (cf. Fig. 6.4).

Illustration. For an illustration of w←-fitting, consider the fixed-point diagram
of Fig. 6.9, which was introduced in §6.5.4. This diagram contains the window-
update function w←, which has been estimated with the approach in Appendix E.5
for the experiment in Fig. 6.4. Moreover, the window sizes {we(t)}t∈{1,...,12} from
that experiment are also located in the fixed-point diagram. These window sizes
are consecutively attained via the congestion-window evolution, which can be
visualized as a series of movements with alternating directions (visualized by
arrows). Ideally, these movements should correspond to alternating projections
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Figure 6.9: The empirically estimated window-update function w← is approximately consis-
tent with the oscillation trajectory from experiment e, i.e., w←(we(t)) ≈ we(t+ 1).

onto the estimated w← and onto the identity line w. Achieving this consistency
is the goal of the estimation approach in Appendix E.5. However, since w← has
been estimated based on a function template and multiple experiments, it is only
approximately consistent with the actual trajectory from the experiment in Fig. 6.4.

6.7.2 Identifying Oscillatory Networks

With an empirically grounded instance of w←, we can predict whether a given
network will experience oscillation. For this prediction, we check whether the
parameters of the given network satisfy the condition in Theorem 6.3. To evaluate
the strictness of this condition, we test a range of parameter combinations similar
to the experiment configurations from Fig. 6.8. In particular, we simultaneously
vary two critical parameters of the configuration, where a configuration includes
a bottleneck capacity Cℓ ∈ [1, 200] Mbps (default: 100 Mbps), a path propagation
delay τp ∈ [1, 100] ms (default: 40 ms), the bottleneck-link propagation delay τ

p
ℓ

in percent of τp (default: 25%), and the bottleneck buffer capacity Bℓ ∈ [0.1, 3] as a
multiple of path BDPs (default: 1.5). Since these parameters are sufficiently similar
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Figure 6.10: Network-parameter subspace (blue) that satisfies the oscillation condition
from Theorem 6.3, based on an empirical w←. The dots mark the experiment
configurations from Fig. 6.8.

to the experiment configurations in Fig. 6.8, we take caution not to over-generalize
the validity of the empirical w←, which is based on these experiments.

The results of this parameter exploration are depicted in Fig. 6.10, indicating that
oscillation is fostered by large network parameters Cℓ, τp, and Bℓ. Moreover, the
demarcation of the oscillatory parameter sub-space is confirmed by the experiments
from Fig. 6.8, as the configurations of these oscillatory experiments are all within
the oscillatory subspace (red dots in Fig. 6.10).

6.8 preventing oscillation

The preceding sections confirm that rate oscillation in BBR/ CUBIC competition is
a frequent problem with severe fairness implications. Therefore, we now consider
methods to prevent this oscillation. To that end, we discuss potential countermea-
sures and their drawbacks in §6.8.1. In §6.8.2, we evaluate whether and how BBRv2

avoids oscillation.
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6.8.1 Evaluating Countermeasures

As explained in §6.4, BBR/CUBIC oscillation happens because the BBR flows si-
multaneously perform RTT probing by briefly, but sharply reducing their rate.
Therefore, the BBR flows regularly estimate a relatively low minimum RTT, espe-
cially if the CUBIC flows are small at the time of probing. This low minimum-RTT
estimate then decreases the BBR sending rate (via the BBR congestion window), in-
creases the CUBIC sending rate, and thus leads to a higher minimum-RTT estimate
at the next RTT probing. If that next minimum-RTT estimate is high enough, the
evolution of the sending rates is reversed, causing oscillation.

This causal chain may be disrupted by a number of possible modifications to the
BBR algorithm, which we discuss and experimentally evaluate in the following.

Randomize RTT probing. As described above, oscillation requires that all BBR
flows simultaneously perform RTT probing, namely every 10 seconds. If these RTT-
probing periods were randomized, each flow would probe the RTT when other BBR
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flows still contribute to the queue. Hence, the high minimum-RTT estimates would
be consistently high rather than varying over time. While such randomization
might avoid oscillation, it is undesirable for three reasons.

First, the synchronization of the RTT probing among BBR flows is a conscious
feature of BBR, enabling BBR flows to discover the path propagation delay in a
pure BBR scenario; this discovery would be prevented by randomization. Second,
randomization does not prevent oscillation given a single BBR flow, as visible
in Fig. 6.11 1 . Given a single BBR flow, no other BBR flows exist that could inflate
the minimum-RTT estimate. Hence, the rate of the randomized single BBR flow still
oscillates, although not in 10-second steps anymore, but in intervals with varying
duration. Third, randomization can suppress oscillation only at the cost of even
lower fairness, as the experiment in Fig. 6.11 2 demonstrates: Since randomization
causes consistently high minimum-RTT estimates, it also causes consistently high
BBR rates and near-starvation of the CUBIC flows.

Detect oscillation and freeze. To suppress oscillation in a more targeted fashion, we
envision that a BBR flow (i) keeps a recent history of its minimum-RTT estimates,
(ii) maintains the mean µ and the standard deviation σ of these estimates, and
(iii) concludes that oscillation is ongoing if the standard deviation σ exceeds
a configured share κ of the mean µ. In case of oscillation, the BBR flow then
considers µ its minimum-RTT estimate.

Unfortunately, this oscillation-suppression strategy is self-defeating: When os-
cillation is suppressed for a sufficiently long time, the variance of minimum-RTT
estimates decreases, the oscillation-suppression mechanism is deactivated, and os-
cillation resumes. Hence, this mechanism does not eliminate the oscillation, but only
prolongs the oscillation period (see experiments 3 and 4 in Fig. 6.11). Moreover,
the mechanism relies on a suitable value κ to distinguish structural oscillation from
acceptable fluctuation of the minimum-RTT estimates, which might be difficult to
find in practice.

Restrict update of minimum-RTT estimate. Since the variance of minimum-RTT
estimates over time causes oscillation, oscillation might be suppressed by restricting
the adjustment of these minimum-RTT estimates. For example, the minimum-RTT
estimate might be slowly adjusted to new RTT measurements using a moving
average. Indeed, this smoothing of the minimum-RTT estimate can dampen, but
not completely eliminate oscillation (experiments 5 and 6 in Fig. 6.11). While
being the most promising among the evaluated countermeasures, this smoothing
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approach reduces responsiveness when a path change alters the propagation delay,
which may be acceptable in fixed networks, but is problematic in mobile networks.

6.8.2 Evaluating BBRv2

The previous section demonstrates that suppressing oscillation in BBR/CUBIC
competition with ad-hoc changes to the BBR algorithm is difficult and comes
with several drawbacks. In this section, we show that also a more fundamental
redesign of BBR represented by the BBRv2 algorithm [50] eliminates oscillation, but
introduces new problems.

Fundamentally, BBRv2 eliminates oscillation by reducing the negative impact
of the BBR congestion window. Remember that this congestion window has a
size of two estimated BDPs, where the BDP is estimated based on minimum-RTT
estimates. While this congestion window still exists in BBRv2, BBRv2 has introduced
additional limits on the inflight volume that are activated on packet loss and are
stricter than the BBR congestion window. In particular, BBRv2 has a long-term
inflight bound (inflight_hi), which is at most 5/4 estimated BDPs, and a short-term
inflight bound (inflight_lo), which is at most one estimated BDP; moreover, both
these bounds are below maximum if loss occurs frequently, as in the competition
with CUBIC. Hence, the inflight volume of a BBRv2 flow is considerably less
sensitive to minimum-RTT estimates. As a result, varying minimum-RTT estimates
do not translate into large changes of the sending rate, which prevents oscillation.
This insight is confirmed by the experiments in Fig. 6.12, which also includes
predictions by the BBRv2 fluid model by Scherrer et al. [5].

However, the BBRv2 features that suppress oscillation have two main drawbacks.
First, BBRv2 flows might obtain less than the fair share of bandwidth, e.g., all
cases with more than 4 BBRv2 flows in Fig. 6.12 show sub-proportional throughput
for BBRv2. This lack of assertiveness might hamper the adoption of BBRv2 [181].
Second, the tight and relatively static inflight bounds of BBRv2 hurt its ability to
quickly increase its sending rate when additional bandwidth becomes available, as
demonstrated by previous work on BBRv2 [263].

In summary, we conclude that avoiding oscillation in BBR/CUBIC competition is
hard to achieve without damaging fairness or responsiveness of the BBR algorithm.
Designing an oscillation-free BBR version without major performance drawbacks is
an interesting task for future work.
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Figure 6.12: BBRv2/CUBIC competition for different CCA combinations (Aggregate capacity
share by CCA).

6.9 related work

Most relevant related work. As apparent throughout the chapter, our work has a
close connection to the two previous steady-state models of BBR/CUBIC competi-
tion [181, 254], and the fluid models for CUBIC [249] and BBR [5]. In addition, we
also emphasize the relevance of recent work by Arun et al. [26], who investigate the
delay oscillations caused by delay-bounding CCAs (such as BBR) and loss-based
CCAs (such as CUBIC) in homogeneous settings. In particular, they find that the
amplitude of these delay oscillations should exceed the random, non-congestive
jitter that is expected, in order to avoid starvation of flows measuring a distorted
RTT. Our work complements this insight by showing that another type of oscillation
can result from the competition of CCAs. Interestingly, we also identify a model con-
dition for BBR starvation involving delay measurements (i.e., α ≤ 1 from Lemma
6.3), but demonstrate that BBR can recover from this starvation in the long term
when competing with CUBIC.

Congestion-control models. Congestion-control algorithms (CCAs) have been ana-
lyzed with a wide range of modeling techniques [201, 241].

For example, steady-state models describe only the equilibrium of CCA execution
in terms of network metrics. Most influentially, Mathis et al. [171] and Padhye et
al. [203] provide closed-form functions yielding long-term Reno throughput based
on RTT and packet loss; their methodology has been extended to short-lived flows
and other CCAs [30, 51, 150].
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In contrast, dynamic models represent the full CCA behavior over time. This
evolution is sometimes represented in discrete time [16, 28, 207, 268], but more
often in continuous time by fluid models. Specific fluid models exist for Reno [166,
182], Vegas [37], CUBIC [249], and both BBR versions [5]. While these models have
been applied to analyze fairness and stability [135, 139, 141, 163], our work is the
first to analytically investigate inter-CCA fairness with a dynamic fluid model.

BBR. Motivated by the excessive queuing of loss-based CCAs (e.g., Reno [82],
CUBIC [110]) and competitiveness issues of latency-based CCAs (e.g., Vegas [39]),
Google proposed the BBR CCA in 2017 [49]. BBR was enabled for YouTube soon
afterwards [48], and was used by around 40% of Internet traffic in 2019 [180]. Given
that BBR competes with other CCAs in the Internet, its fairness towards other
CCAs has received much attention. In a first independent study, Hock et al. [119]
demonstrate that BBR is over-aggressive against loss-based CCAs for settings with
small buffers, and under-aggressive given large buffers. In these large buffers,
the BBR congestion window restricts the BBR sending rate, which is confirmed
by experiment-based follow-up work [75, 231, 246, 262]. This insight about BBR
fairness triggered the release of BBRv2 [50], which improves inter-CCA fairness
thanks to higher loss sensitivity, but is less responsive than BBR version 1 [143, 193,
240, 263].

Congestion-control fairness. In evaluating CCAs, much attention is traditionally
devoted to fairness, i.e., the equality of resource sharing under distributed CCA
execution. This fairness is typically measured by some aggregation (e.g., Jain fair-
ness index [133]) of the throughput-share distribution across flows on a bottleneck
link [49, 75, 119, 181, 231, 254]. However, researchers have argued that fairness
measures should instead focus on flow-completion times [77] or quality of ex-
perience (QoE) [123], emphasize compatibility with CCAs already deployed in
the Internet [255], or avoid flows as central entities of the fairness definition [41].
Regarding fairness between different CCAs, TCP friendliness (i.e., fairness towards
the Reno CCA) has been shown to require a fundamental trade-off with other goals
such as throughput and responsiveness [43, 268]. In this work, we also demonstrate
that fairness has an important time component: If throughput shares are averaged
over a long enough time, high transitory inequality might be obscured.
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6.10 conclusion

To better understand BBR/CUBIC competition over time, we provide a dynamic
perspective on BBR fairness in this chapter. In this dynamic perspective, we docu-
ment persistent sending-rate oscillation in BBR/CUBIC competition, and leverage
fluid models to provide a mathematically rigorous explanation for this oscillation.
Moreover, we show that this oscillation occurs frequently and causes recurring
unfair rate distributions. While these extreme rate distributions are transient and
(loosely) bounded in their unfairness, they substantially differ from the long-term
average rate distribution, and thus matter for the fairness among short flows.

Furthermore, this sending-rate oscillation can have severe ramifications be-
yond fairness. In particular, the continuous change in flow-specific throughput is
challenging to handle for throughput-sensitive applications. For example, video-
conferencing applications that use adaptive bitrate (ABR) algorithms might ex-
perience quality-of-experience oscillation if the video quality is adapted to the
oscillation in flow throughput. Crucially, such ABR algorithms might even intensify
the sending-rate oscillation if the application increases demand when through-
put increases. For future work, it will be interesting to investigate the effects of
BBR/CUBIC oscillation on the performance of real-world applications.
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In the first part of this thesis, the focus is on end-hosts and their traffic-sending
behavior, expressed by algorithms for end-host path selection and congestion
control. For the following thesis part, I change the focus regarding both the agent
type and the area of interaction: More concretely, the following two chapters are
related to Internet Service Providers (ISPs) and their economic strategies.

However, the model-based analysis of ISP economic strategies is made both
interesting and challenging by the same features as end-host network usage. First,
ISP economics are shaped by the underlying technical mechanisms in the Internet,
in particular the mechanisms for routing and forwarding. As a result, ISP eco-
nomics are impacted in manifold ways by the emerging paradigm of path-aware
networking. Second, ISP economics has strategic and dynamic aspects, and there-
fore requires to combine game theory with stability theory. Third, ISP economics
are inherently networked, i.e., the underlying network topology constrains which
ISPs can interact with each other other in which manner.

This interaction among ISPs can take the forms of cooperation and competition,
which are discussed as follows:

ISP Cooperation: Interconnection Agreements. Cooperation among ISPs is most
concretely embodied by interconnection agreements, in which ISPs determine
how each agreement party should forward traffic from other parties. Today, these
interconnection agreements are subject to the Gao-Rexford conditions, i.e., technical
constraints that ensure BGP convergence, and therefore become irrelevant in path-
aware networking. These new opportunities for interconnection agreements are
explored in Chapter 7. In particular, Chapter 7 illustrates (i) how to structure
interconnection agreements that are beneficial to all involved parties, (ii) how to
efficiently negotiate these agreements despite private information and incentives
for dishonesty, and (iii) how these novel agreements will affect path diversity in the
Internet.

ISP Competition: Quality Attributes. While ISPs cooperate in order to provide
Internet paths to customers, these customers usually have the choice between
multiple paths towards a destination, which gives rise to ISP competition. Under
this competitive pressure, ISPs might differentiate themselves by investing in the

189



190 part overview

quality of their offered paths, e.g., in bandwidth, latency, security, or ecological
concerns. Importantly, these quality investments should optimize profit in the
context of alternative offers by other ISPs. To inform quality-investment decisions
and analyze these competitive dynamics, Chapter 8 presents a game-theoretic
competition model that is applicable to the traditional BGP-based Internet as
well as to a future path-aware Internet. The model provides various insights
on competition effects on path quality and ISP profits, including the impacts of
competition intensity, ISP heterogeneity, and ISP collusion.



7
I S P C O O P E R AT I O N : I N T E R C O N N E C T I O N A G R E E M E N T S

7.1 introduction

In contrast to today’s Internet, path-aware networks (PANs) enable end-hosts to
choose their forwarding path at the level of autonomous systems (ASes), which is
then embedded in the header of data packets. As such, end-hosts are not limited
to using a single path between a pair of ASes, but can use multiple paths simulta-
neously. This multi-path availability offers new opportunities and challenges for
both end-hosts and network operators. For end-hosts, PANs present new questions
regarding path selection, some of which are discussed in Chapters 2–4 of this thesis.
For network operators, PANs modify the economic environment in the Internet by
expanding the opportunities for cooperation and competition among ISPs.

In this chapter, we focus on ISP cooperation in PANs, as embodied by interconnec-
tion agreements between ASes possible in such architectures. These interconnection
agreements are highly relevant for both network operators and end-hosts. From the
perspective of ASes, interconnection agreements determine the economic opportu-
nities offered by PANs, which are critical to PAN adoption. From the perspective
of end-hosts, interconnection agreements play an essential role for path diversity;
the extent of path diversity, in turn, influences the magnitude of the resilience and
efficiency improvements of multi-path availability.

In this context, we observe that PAN architectures enable new types of in-
terconnection agreements that are not possible in today’s Internet. Nowadays,
interconnection agreements are heavily influenced by the Gao–Rexford conditions
(henceforth: GRC) [64, 91], which prescribe that traffic from peers and providers
must not be forwarded to other peers or providers. It is important to distinguish
between two aspects of the GRC which refer to independent concerns: a stability
aspect and an economic aspect. Regarding stability, the GRC provably imply route
convergence of the Border Gateway Protocol (BGP) [91]. Regarding economics,
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Figure 7.1: AS topology with interconnection agreements a and a′ (discussed in §7.3.2).
Peering links are shown as dashed lines, provider–customer links as “provider
→ customer”.

the GRC signify that an AS only forwards traffic if the cost of forwarding can be
directly recuperated from customer ASes or end hosts.

However, PAN architectures no longer require the GRC for providing stability.
While paths in PAN architectures are discovered similarly as in BGP, namely by
communicating path information to neighboring ASes, data packets are forwarded
along a path selected by the packet source, which is embedded in the packet
headers. Thus, PAN architectures directly achieve convergence in the sense of
achieving a consistent view of the used forwarding paths, as we will explain in §7.2.

PAN architectures therefore present the exciting opportunity to create and use
GRC-violating paths—if such paths can be made economically viable. In particular,
we observe that PAN architectures may no longer require the GRC for reasons of
stability, but must still respect the economic logic that makes the GRC a rational
forwarding policy. For example, while the creation of GRC-violating path ADE
by D in Fig. 7.1 may not lead to convergence problems, the path still is economi-
cally undesirable for D, because D would incur a charge from its provider A for
forwarding traffic of E, which it cannot recuperate due to E’s status as a peer.

In this chapter, we tackle this challenge by proposing new interconnection agree-
ments based on mutuality, a concept that is already present in peering agreements
today, but can be leveraged to set up more complex and flexible agreements. Con-
cretely, mutuality means that the mentioned example path ADE could be rendered
economically viable for D by requiring a quid pro quo from E, the main beneficiary
of the path. For example, E could offer path DEB to D such that both D and E
could save transit cost for accessing ASes B and A, respectively, but incur additional
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transit cost for forwarding their peer’s traffic to their respective provider. Moreover,
ASes D and E might as well provide each other with access to their peers C and F,
thereby saving transit cost while experiencing additional load on their network. If
the flows over the new path segments are properly balanced and especially if the
new path segments allow ASes D and E to attract additional revenue-generating
traffic from their customers, such unconventional agreements can be mutually
beneficial. Hence, PANs offer opportunities for profit maximization which are not
present in today’s Internet.

7.1.1 Contributions

This chapter is based on my publication at DSN 2021 [3], and contains the following
contributions:

Agreement conditions based on AS business model. Concluding mutuality-based
agreements affects revenue and cost of the AS parties in many ways, which re-
quires a careful structuring of such agreements. We envisage that such agreements
contain conditions that must be respected in order to preserve the positive value
of the agreement for both parties. To this end, we further present a formal model
of AS business calculations and AS interconnections that allows to derive two
different types of agreement conditions, namely conditions based on flow volumes
and conditions based on cash compensation. Moreover, we show how to shape
mutuality-based agreements to maximize the utility (i.e., the profit) obtained by
both parties.

BOSCO negotiation mechanism. When designing an optimal structure for mutuality-
based interconnection agreements, we demonstrate that this optimization relies on
private information of the AS parties, and that an AS party benefits from unilateral
dishonesty. Furthermore, if both parties are dishonest, negotiations of mutuality-
based agreements may become inefficient in the sense that the agreements are
not concluded even if mutually beneficial. To limit this inefficiency, we present
BOSCO, a negotiation mechanism with a game-theoretic foundations and a range
of provable desirable properties.

Path-diversity effects. Finally, we investigate the effect of mutuality-based agree-
ments on path diversity, building on a combination of several publicly available
datasets [53–55, 173]. Our results underpin the benefits of mutuality-based agree-
ments, which provide ASes access to thousands of additional paths, many of



194 isp cooperation : interconnection agreements

which are considerably more attractive regarding latency and bandwidth than the
previously available paths.

7.2 the relevance of grc for bgp and pans

To clarify why the GRC are needed in a BGP/IP-based Internet but not in PAN
architectures, we compare their convergence requirements using the example
topology of Fig. 7.1.

The fundamental issue with convergence in BGP is the next-hop principle: ASes
can only select a next-hop AS for their traffic and thus rely on that AS to forward the
traffic along the route that was originally communicated via BGP. If this assumption
is violated—even temporarily—routing loops can arise.

For example, suppose that ASes D and E forwarded routes from their respective
providers A and B to each other, which violates the GRC. Assuming both D and E
prefer routes learned from peers, this results in a (slightly extended) instance of
the classical DISAGREE example [105], which does converge with BGP but non-
deterministically. The non-determinism of such topologies, which are also known
as “BGP wedgies” [103], is undesirable, but it does not constitute a fundamental
problem for convergence in BGP. However, adding a single additional AS C, which
concludes similar agreements with both D and E, this topology leads to the famous
BAD GADGET problem, which causes persistent route oscillations [105].

This susceptibility to oscillations is also worrisome because seemingly benign
topologies and policies may easily reduce to the BAD GADGET in case one network
link fails [105]. This shows that GRC-violating policies need to be implemented
very carefully and with coordination among all involved parties to ensure routing
stability (e.g., using BGP communities). As a consequence, “sibling” agreements in
which two ASes provide each other access to their respective providers (as presented
above) generally only exist between ASes controlled by a single organization.

Unlike IP, PANs forward a packet along the path encoded in its header. Thus,
there is no uncertainty about the traversed forwarding path after the next-hop AS
and routing loops can be prevented. For example, if a source in D would encode
path DEBA in packets sent to a receiver in A, E would not send these packets
back to D. Precautions like the GRC are therefore not required for stability in a
PAN and ASes have substantially more freedom in deciding which interconnection
agreements to conclude and which paths to authorize.
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7.3 modelling interconnection economics

In this section, we describe our model of the economic interactions between ASes
in the Internet, which allows to derive quantitative conditions that must be fulfilled
by interconnection agreements.

7.3.1 AS Business Calculation

Network topology. We model the Internet as a mixed graph G = (A,L↔,L↑),
where the nodes A correspond to ASes, the undirected edges L↔ correspond to
peering links, and the directed edges L↑ correspond to provider–customer links.
An edge (X, Y) ∈ L↑ corresponds to a link from provider X to customer Y. An AS
node X ∈ A is connected to a set of neighbor ASes that can be decomposed into
a provider set π(X), a peer set ε(X), and a customer set γ(X). For simplicity of
notation, we denote the customer end-hosts of X as a virtual stub AS ΓX ∈ γ(X),
connected over a virtual provider–customer link ℓ′.

Flows. In our model, fℓ for ℓ ∈ (L↔ ∪ L↑) denotes the traffic volume carried by
link ℓ, and fX for X ∈ A denotes the traffic volume carried by node X. Furthermore,
let the flow fXY be the share of fX that also flows directly to or from X’s neighbor
Y. These sub-flows are represented in vector fX, i.e., (fX)Y = fXY. Analogously,
fXYZ is the flow volume on the path segment consisting of ASes X, Y, and Z in
that order, but independent of direction.

Link pricing. Each provider–customer link ℓ = (X, Y) ∈ L↑ has a corresponding
pricing function pℓ( fℓ), yielding the amount of money X receives from Y given
flow volume fℓ on link ℓ. This flow volume fℓ can be interpreted as is appropriate
for the pricing function, e.g., as the median, average, or 95th percentile of traffic
volume over a given time period. Each pricing function pℓ( fℓ) is of the form

pℓ( fℓ) = αℓ f βℓ
ℓ , (7.1)

where αℓ ≥ 0 and βℓ ≥ 0 are pricing-policy parameters. For example, βℓ = 0
corresponds to flat-rate pricing with flow-independent fee αℓ, βℓ = 1 corresponds to
to pay-per-usage pricing with traffic-unit cost αℓ, and βℓ > 1 results in a superlinear
pricing function, e.g., as given in congestion pricing. For simplicity, we assume
that all peering links ℓ′ ∈ L↔ are settlement-free, as usual in the literature [125].
Paid-peering links can be represented in the model as provider–customer links. We
write pXY = p(X,Y) for brevity.
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Table 7.1: Notation used in model (in alphabetical order).

Symbol Description

A Set of autonomous systems (ASes)

cX Cost of AS X

ΓX Stub AS containing end-host customers of AS X

γ(X) Set of customer ASes of AS X

∆ f (a)
P Volume of customer traffic on path segment P newly attracted thanks to

agreement a

ϵ(X) Set of peer ASes of AS X

fX Traffic-volume pattern of AS X with respect to its neighbor ASes

f(a)
X Traffic-volume pattern of AS X with respect to its neighbor ASes, given

agreement a

f (a)↕
P Volume of previously forwarded traffic newly allocated to path segment P,

given agreement a

fX Traffic volume forwarded by AS X

fXYZ Traffic volume forwarded over path segment composed of ASes X, Y, and Z
(in that order, but in both directions)

iX Internal forwarding cost of AS X

L↔ Set of peering links

L↑ Set of provider-customer links

rX Revenue of AS X

pℓ Price of link ℓ (based on link load fℓ)

ΠX←Y Monetary transfer sum paid by AS X yo AS Y

π(X) Set of provider ASes of AS X

UX Profit of AS X

uX(a) Utility (profit impact) of agreement a to AS X
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Internal forwarding cost. In addition to charges defined by pricing functions, an
AS X incurs an internal cost according to an internal-cost function iX( fX), which is
non-negative and monotonously increasing in the flow fX through X.

Utility. The utility (or profit) UX(fX) = rX(fX)− cX(fX) of an AS X is the differ-
ence between the revenue rX(fX) obtained and the costs cX(fX) incurred by traffic
distribution fX :

rX(fX) = ∑
Y∈γ(X)

pXY( fXY), (7.2a)

cX(fX) = iX( fX) + ∑
Y∈π(X)

pYX( fXY). (7.2b)

This simple model can already formalize some important insights. For example,
consider ASes A, D, and H in Fig. 7.1, connected by provider–customer links (A, D)
and (D, H). For D to make a profit, i.e., UX(fX) > 0, it must hold that rD(fD) >
cD(fD). This in turn implies

pDH( fDH) + pDΓD ( fDΓD ) > pAD( fAD) + iD( fD), (7.3)

i.e., the revenue from H and D’s customer end-hosts must cover the cost induced
by charges from A as well as internal cost.

7.3.2 Interconnection Agreements

We denote an interconnection agreement a between two ASes X and Y in terms
of the respective neighbor ASes to which X and Y gain new paths thanks to the
agreement:

a =
[
X(↑ π′X ,→ ε′X , ↓ γ′X); Y(↑ π′Y,→ ε′Y, ↓ γ′Y)

]
(7.4)

Here π′X ⊆ π(X), ε′X ⊆ ε(X) and γ′X ⊆ γ(X) are the providers, peers, and
customers of AS X, respectively, to which Y obtains access through the agreement
(analogously for π′Y, ε′Y, γ′Y). Furthermore, we introduce the notation aX = π′X ∪
ε′X ∪ γ′X , and an analogous notation for Y.

Next, we formalize the utility of interconnection agreements. Let the utility uX(a)
of agreement a to X be the difference in UX produced by changes in flow composi-
tion due to agreement a, i.e.,

uX(a) = UX(f
(a)
X )−UX(fX) = ∆rX − ∆cX , (7.5)
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where f(a)
X is the distribution of traffic passing through X if agreement a is in

force, and ∆rX and ∆cX are agreement-induced changes in revenue and cost of X,
respectively.

7.3.2.1 Example of Peering Agreement

Consider the negotiation of a classic peering agreement between ASes D and E in
Fig. 7.1, which so far have been connected by providers A and B. We assume that
ASes D and E are pure transit ASes, i.e., there are no customer end-hosts within
these ASes.

Formalization. In a classic peering agreement, both ASes provide each other access
to all of their respective customers. Using the notation introduced above, this
agreement is formalized as ap = [D(↓ {H}); E(↓ {I})]. The change in revenue for
D, namely

∆rD = pDH

(
f
(ap)
DH

)
− pDH( fDH), (7.6)

results from changes in flows to D’s customer H, driven by the new peering
link ℓ′(D, E). The changes in cost to D,

∆cD = iD

(
f
(ap)
D

)
− iD( fD) + pAD( fAD − fDABE)− pAD( fAD), (7.7)

result from changes in internal and provider cost. In Eq. (7.7), it is assumed that
all traffic fDABE originally reaching AS E via ASes A and B is reallocated to the
direct link (D, E) made usable by the agreement, and hence does not contribute
to charges by AS A anymore. The utility of a peering agreement to D is then
uD(ap) = ∆rD − ∆cD.

Interpretation. The strongest rationale for peering agreements is that the agreement
leads to considerable cost decrease, i.e., a strongly negative ∆cD, as provider A can
be avoided for any traffic fDE. The new peering link may also attract additional
traffic from customer H (e.g., due to the lower latency of the new connection), thus
increasing D’s revenue. If ∆rD > ∆cD, agreement ap has positive utility uD(ap) > 0
and is worth concluding from D’s perspective. However, D may also experience
a substantial increase in internal cost (∆iD) due to peering, with little savings in
provider cost and no extra income from the additionally attracted traffic (e.g., due to
flat-rate fees). In such a case, uD(ap) is negative, and the agreement is not attractive
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to D. For agreement ap to be concluded, both uD(ap) and uE(ap) need to be non-
negative (or, if cash transfers as in paid peering [267] are used, uD(ap) + uE(aE)
would need to be non-negative such that one party could compensate the other
party and still benefit from the agreement).

7.3.2.2 Example of Novel Mutuality-Based Agreement

As discussed in §7.2, the GRC are not necessary for stability in a PAN, which allows
for new types of interconnection agreements.

Formalization. In the example topology of Fig. 7.1, the following agreement a
could not be concluded in today’s BGP-based Internet, but could be concluded in a
path-aware inter-domain network:

a = [D(↑ {A}); E(↑ {B},→ {F})] (7.8)

In this agreement a, D offers E access to its provider A, whereas E in return
provides D with access to its provider B and its peer F.

The agreement utility uD(a) of agreement a to D can be derived similarly to the
peering-agreement example in §7.3.2.1. Namely, the changes in revenue and cost of
D are

∆rD = ∑
X∈γ(D)

pDX( f (a)
DX)− pDX( fDX), (7.9a)

∆cD = iD( f (a)
D )− iD( fD) + ∑

Y∈π(D)

pYD( f (a)
DY)− pYD( fDY), (7.9b)

where

f (a)
DY = fDY + f (a)

EDY − ∑
Z∈aE

f ↕DY(Z, E) (7.9c)

is the flow from D to one of its providers, Y, after conclusion of the agreement.
This flow towards the provider is increased by the traffic f (a)

EDY that D transfers
to Y for E in accord with the agreement. Simultaneously, flow fDY is decreased
by the flow f ↕DY(Z, E) to the destinations Z ∈ aE that was previously forwarded
via provider Y, but is newly forwarded over E thanks to agreement a. As the new
paths over agreement partner E are the reason for newly attracted traffic from D’s
customers, we assume here that all such newly attracted traffic is forwarded over
the agreement partner, not over D’s providers.
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Interpretation. Clearly, agreement a is not per se attractive to ASes D and E. For D,
the higher the amount of flow from E that newly must be forwarded to a provider
AS, the less attractive the agreement to D, i.e., the higher ∆cD. In contrast, the
higher the amount of flow offloaded to E, the higher the utility that D can derive
from agreement a. Vice versa, the agreement utility for E is conversely affected by
the size of these new flows. Thus, the agreement a must be qualified. Necessarily,
these qualifications must guarantee positive agreement utility to both parties.
Furthermore, it is desirable that the qualifications achieve Pareto-optimal [73] and
fair agreement utility, i.e., no party’s utility could be increased without decreasing
the other party’s utility, and the utility obtained by both parties is as similar as
possible. In §7.4, we propose two different types of agreement qualifications to
achieve these goals.

7.3.2.3 Extension of Agreement Paths

Thanks to agreement a, ASes D and E obtain access to the new path segments DEB
and DEF (for D), or EDA (for E). As the motivation behind the agreement is
the attraction of additional customer traffic, the agreement parties would provide
access to the new path segments only to their respective customers. For example, D
would extend the new path segment DEB to HDEB, but not to ADEB or CDEB.

However, the new path segments can themselves become the subject of other
agreements. For example, in an agreement a′ between E and F, E could provide
F with access to path segment EDA if F in return provides access to its peer G.
Note that agreement a′ must be negotiated such that the conditions defined in
agreement a can still be respected, as these agreements are interdependent.

7.4 optimization of mutuality-based agreements

The novel mutuality-based agreements should achieve Pareto-optimal and fair
utility in order to be attractive to both agreement parties. Moreover, a necessary
economic condition to conclude the agreement is the guarantee of non-negative
agreement utility for both parties. Hence, defining an optimal interconnection agree-
ment between two ASes D and E corresponds to solving the nonlinear program

maximize uD(a) · uE(a)

subject to uD(a) ≥ 0, uE(a) ≥ 0,
(7.10)
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where the objective is given by the Nash product [35, 194], which is only optimized
for Pareto-optimal and fair values of uD(a) and uE(a). Hence, if the Nash bargaining
product is optimized, no party can increase its utility without decreasing the other
party’s utility, and the utility of both parties is as similar as possible.

In the following, we present two methods to solve the nonlinear program
in Eq. (7.10), i.e., two ways to qualify agreement a such that the constrained
optimization problem is solved: The optimization method in §7.4.1 is based on
defining flow-volume targets, which offers better predictability, whereas the method
in §7.4.2 is based on cash transfers between the agreement parties, which offers
more flexibility.

7.4.1 Optimization via Flow-Volume Targets

The constrained optimization problem in Eq. (7.10) can be solved by determin-
ing volume limits for the flows that traverse the new path segment created by
agreement a.

Concretized optimization problem. Concretely, the general optimization problem can
be instantiated by the nonlinear program

max uD

(
f(a), ∆f(a)

)
· uE

(
f(a), ∆f(a)

)

s.t. ∆rD

(
f(a), ∆f(a)

)
≥ ∆cD

(
f(a), ∆f(a)

)
(I-D)

∀X ∈ aE. f (a)
DEX ≥ ∑Z∈γ(D) ∆ f (a)

ZDEX (II-D) (7.11)

∀X ∈ aE. ∀Z ∈ γ(D). ∆ f (a)
ZDEX ≤ ∆ f max

ZDEX (III-D)

+ constraints (I-E), (II-E), (III-E) where D ↔ E.

Here, f (a)
P refers to the total flow volume on a new path segment P allowed by

the agreement, and ∆ f (a)
P is the volume of newly attracted customer traffic on

path segment P after agreement conclusion. Hence, the flow volume on new path
segment P that consists of rerouted existing traffic is at most f (a)↕

P = f (a)
P − ∆ f (a)

P .

Constraints. The constraints (I-D) and (I-E) capture the fact that the agreement
must be economically viable for both parties. The constraints (II-D) and (II-E)
capture the requirement that all the agreement-induced additional traffic from
customers has to be accommodated within the flow allowances defined in the
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agreement. Finally, as any agreement could be made viable by attracting enough
additional customer traffic, the constraints (III-D) and (III-E) express that there
is a limit ∆ f max

P to customer demand for new path segment P. The optimization
problem can be solved by appropriately adjusting f (a), i.e., the total allowance
for flows on the new path segments, and ∆ f (a), i.e., the amount of additionally
attracted customer traffic on the new path segments. The resulting f (a) can then be
included into the agreement as flow-volume targets, whereas the resulting ∆ f (a)

can be used by each AS to optimally allocate the flow-volume allowance among
its customers. If agreement paths are extended as discussed in §7.3.2.3, additional
constraints may hold; in this chapter, we do not investigate these constraints.

Example optimization. We illustrate the optimization via flow-volume targets at the
example of the mutuality-based agreement in §7.3.2.2. Hence, we attempt to find
volume targets for the new flows f (a)

EDA, f (a)
DEB, and f (a)

DEF. To simplify the derivation
of flow-volume targets, we assign pricing functions to the links in the topology of
Figure 7.1. Let pricing function pℓ of any provider–customer link in Figure 7.1 be a
linear function, i.e., βℓ = 1, with αℓ > 0. Moreover, let the internal-cost function iX
of an AS X be a linear function with unit cost jX > 0, i.e., iX( fX) = jX fX. For
ASes D and E, the constraint ∆r > ∆c produces the following concrete constraints
on the new sub-flows f (a)

EDA, f (a)
DEB, and f (a)

DEF:

f (a)
EDA ≤

(αDH − jD)∆ f (a)
HDE + αAD( f (a)↕

DEB + f (a)↕
DEF)

αAD + jD
(7.12a)

f (a)
DEB ≤

(αEI − jE)∆ f (a)
IED + αBE f (a)↕

EDA
αBE + jE

− jE
αBE + jE

f (a)
DEF

(7.12b)

Intuitively, the flow that is newly forwarded for the agreement partner (e.g., f (a)
EDA

in the case of D) is determined by the agreement-induced additional revenue from
customers, the transit-cost savings from rerouting traffic, and the unit cost incurred
by both internally and externally forwarding the partner’s traffic. Furthermore, the
size of multiple new forwarded flows must be coordinated, e.g., as in case for E
with Eq. (7.12b). As the new flows must accommodate the newly attracted traffic
from customers, there are the additional constraints

f (a)
EDA ≥ ∆ f (a)

IEDA, f (a)
DEB ≥ ∆ f (a)

HDEB, and f (a)
DEF ≥ ∆ f (a)

HDEF. (7.13)

Finally, the limits of customer demand for additional traffic must be respected:

∆ f (a)
IEDA ≤ ∆ f max

IEDA, ∆ f (a)
HDEB ≤ ∆ f max

HDEB, and ∆ f (a)
HDEF ≤ ∆ f max

HDEF. (7.14)
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Solving an optimization problem with the constraints in Eqs. (7.12)–(7.14) allows
to determine the Pareto-optimal, fair size of volume limits for the new flows. As an
example, we assume the following relations between the parameters:

αAD = αBE = jD = jE = 1
2 αDH = αBE = 3

∆ f max
HDEB = ∆ f max

HDEF = 1
4 ∆ f max

IEDA = 1
2

(7.15)

With these parameters, the optimal sizes of flow-volume targets are

f (a)
EDA = 1

2 , f (a)
DEB = 1

4 , f (a)
DEF = 3

8 ,

∆ f (a)
IEDA = 1

2 , ∆ f (a)
HDEB = 1

4 , ∆ f (a)
HDEF = 1

4 .
(7.16)

Hence, ASes D and E can satisfy the complete demand of their customers for new
path segments, and D can even forward up to

f (a)↕
DEF = f (a)

DEF − ∆ f (a)
HDEF =

3
8
− 1

4
=

1
8

(7.17)

of pre-existing traffic over the new path segment DEF.

7.4.2 Optimization via Cash Compensation

Instead of fixing flow-volume targets, a non-technical approach could be based
on cash transfers between the agreement parties. The idea of such an agreement
structure is to abstain from limiting flow volumes, but to agree upon a cash
payment π for compensating the party that benefits less or even stands to lose from
the agreement.

Concretized optimization problem. Formally, negotiating an agreement between
ASes D and E is equivalent to defining a cash sum ΠD→E from D to E (for
negative ΠD→E, E pays D) that solves the optimization problem

max
(
uD(a)−ΠD→E

)(
uE(a) + ΠD→E

)

s.t. uD(a)−ΠD→E ≥ 0, uE(a) + ΠD→E ≥ 0.
(7.18)

In negotiation, the utilities uD(a) and uE(a) are estimated based on the expected
volume of the newly enabled flows.

The optimization problem in Eq. (7.18) has a solution if and only if uD(a) +
uE(a) ≥ 0, i.e., one party gains at least as much as the other party loses and
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can thus compensate the losing party while still benefiting from the agreement.
If uD(a) + uE(a) ≥ 0, Eq. (7.18) is always solved based on the Nash Bargaining
Solution [194]:

ΠD→E = uD(a)− uD(a) + uE(a)
2

. (7.19)

7.4.3 Comparison of Optimization Methods

Profit safety. The main advantage of flow-volume targets over cash transfers is
their higher predictability: As flow-volume agreements allow the agreement parties
to enforce volume limits, they are more likely to guarantee positive agreement
utility than cash-compensation agreements. The latter depend on ex-ante estimates
of newly attracted customer traffic that might be incorrect, in which case the
stipulated cash sum might not respect the constraints in Eq. (7.18).

Flexibility. Besides being easier to compute, an important advantage of cash
compensation over volume targets is its larger flexibility, which translates into
higher probability of the agreement being concluded as well as higher achievable
joint utility. In certain settings where the revenues and costs of two ASes are very
dissimilar, the flow-volume optimization problem in Eq. (7.12a) has a solution
where all flow-volume targets are zero, i.e., the agreement cannot be concluded. In
contrast, a cash-compensation agreement can always be concluded as long as the
joint utility is positive.

Negotiation inefficiency. A common difficulty of both agreement structures is
that they depend on private information of the negotiating parties, namely the
charges from their respective providers, their internal forwarding cost, and the
pricing for their customers, which determine the utility each party derives from the
agreement. It cannot be assumed that the parties are willing to truthfully reveal this
private information, as false claims about the cost structure strengthen a party’s
bargaining position. In §7.5, we show how the inefficiency arising from such private
information can be limited by means of a bargaining mechanism.

7.5 mechanism-assisted negotiation

In this section, we present a bargaining mechanism that we have designed to allow
two interested parties to negotiate a mutuality-based interconnection agreement



7.5 mechanism-assisted negotiation 205

Table 7.2: Notation used in our negotiation model (in alphabetical order).

Symbol Description

mX(vX) Probability of agreement conclusion given claim vX

N (uX , uY , vX , vY) Nash bargaining product given true utility values uX , uY , and utility
claims vx, vY

ΠX←Y Monetary transfer sum paid by party X to party Y

qX(vX) Expected compensation of party X from party Y, given utility claim
vX

σX Bargaining strategy of party X

σ+
X Best-response bargaining strategy of party X

σ+
X Nash-equilibrium bargaining strategy of party X

σX(uX) Utility claim of party X given bargaining strategy σX and true util-
ity uX

σ+
X VX Set of possible utility claims for party X, constructed by BOSCO

vX Utility claim by party X

UX Probability distribution of utility for party X

uX Utility (profit impact) of agreement to party X

uX Utility of agreement to party X, after monetary transfers

in an automated fashion, while reducing the negotiation inefficiency arising from
bargaining under private information. However, while there are considerable ad-
vantages to using such a bargaining mechanism, there is no inherent necessity to
use it; mutuality-based agreements might as well be negotiated by classic offline
negotiations similar to classic peering agreements.

7.5.1 Problem Statement

When negotiating a mutuality-based interconnection agreement a, the agreement
parties X and Y must agree on flow-volume targets or a cash sum transferred
between the parties. The core difficulty of such negotiations is that the determination
of the agreement conditions relies on uX(a) and uY(a), i.e., the amount of utility
that either party derives from the agreement, which is unknown to the respective
other party. The presence of such private information allows each party to falsely
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report a lower agreement utility than it really obtains, which leads to more favorable
terms of the agreement for the dishonest party.

For example, when negotiating a cash-compensation agreement, the after-nego-
tiation utility uX of party X is determined by

uX = uX −ΠX→Y = uX −
vX − vY

2
, (7.20)

where vX and vY are the values of the utility which X and Y claim to obtain
from the agreement and which are used for determining the cash-compensation
sum ΠX→Y. To simplify our notation, we drop the reference to a here and in
the remainder of the section, as we always consider a single agreement. Clearly,
party X can increase uX by decreasing vX, i.e., its utility claim. However, if both
parties follow such a dishonest strategy, the apparent utility surplus vX + vY of
the agreement tends to become negative, in which case the agreement seems to
be not worth concluding, the negotiation breaks down, and both parties derive
zero utility. Hence, the challenge in negotiating mutuality-based agreements (as
for paid-peering agreements in today’s Internet [267]) is the classic problem of
non-cooperative bilateral bargaining [190].

In the game-theoretic literature, this problem is tackled by mechanism design, i.e.,
by structuring the negotiation in a way that minimizes the inefficiency of the result.
Especially for inter-AS negotiation, such mechanisms have the additional advantage
that they enable the automation and mathematical characterization of negotiations
which nowadays are often informal and risky [45].

In this section, we present a bargaining mechanism with multiple desirable
properties. We focus on negotiating cash-compensation agreements (cf. §7.4.2);
adapting the mechanism for flow-volume agreements (cf. §7.4.1) is an interesting
challenge for future work.

7.5.2 Desirable Mechanism Properties

Typically, desirable properties of bilateral-bargaining mechanisms include the
following properties [190]:

P1 Individual rationality. Participation in the mechanism should be associated
with non-negative utility in expectation (weak individual rationality) or in any
outcome (strong individual rationality) for any party such that no party must
be forced to take part in the mechanism.

P2 Ex-post efficiency. The mechanism should lead to conclusion of the agreement if
and only if the utility surplus is non-negative.



7.5 mechanism-assisted negotiation 207

P3 Incentive compatibility. The mechanism should structure the negotiation such that
it is in a party’s self-interest to be honest about its valuation of the agreement.

P4 Budget balance. The mechanism should neither require external subsidies nor
end up with left-over resources (e.g., money) that are not ultimately assigned to
the negotiating parties [195].

According to the famous Myerson–Satterthwaite theorem, no mechanism can
satisfy the requirements P1, P2, and P4 simultaneously [190, 191]. The prominent
Vickrey–Clarkes–Grove (VCG) mechanism, for example, guarantees individual
rationality (P1) and ex-post efficiency (P2), but violates budget balance (P4) [65, 107,
251]. Absent government intervention, individual rationality and budget balance are
necessary conditions for an inter-AS negotiation mechanism; we therefore sacrifice
perfect ex-post efficiency and instead aim at maximizing the Nash bargaining
product:

N (uX , uY, vX , vY) =





(
uX −ΠX→Y

)(
uY + ΠX→Y

)
if vX + vY ≥ 0,

0 otherwise,
(7.21)

where the cash transfer is ΠX→Y = (vX − vY)/2.
While there are bargaining mechanisms that offer individual rationality, bud-

get balance and incentive compatibility (according to the notion of Bayes–Nash
incentive compatibility (BNIC) [188]), there are three arguments for relaxing the
incentive-compatibility requirement as well.

Privacy. First, incentive compatibility might not be desired, because an AS might
not want to disclose its true utility from an agreement for privacy reasons (e.g.,
not to hamper its prospects in future negotiations) and an incentive-compatible
mechanism would allow the other party to learn the utility of a party X from the
mechanism-induced truthful claim vX = uX .

Restrictiveness. Second, incentive compatibility is in general unnecessary to achieve
an optimal Nash bargaining product: For a viable agreement (i.e., uX + uY ≥ 0),
the Nash bargaining product is optimized for all vX, vY with vX − uX = vY − uY
(i.e., equal dishonesty) and vX + vY ≥ 0. Hence, while truthfulness, i.e., vX − uX =
0 = vY − uY, is a sufficient condition for an optimal Nash bargaining product, it is
not a necessary condition.

Inefficiency. Third, while incentive compatibility can be guaranteed with mecha-
nisms, this guarantee often comes at the cost of introducing inefficiency, in the sense
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of negotiation-failure probability induced by the mechanism itself. For example, the
randomized-arbitration mechanism by Myerson [189] introduces a relatively high
probability of negotiation cancellation such that even agreements with large surplus
often cannot be concluded. Counter-intuitively, mechanisms which allow small
deviations from truthfulness might thus be more effective at facilitating agreements
than perfectly incentive-compatible mechanisms.

In the following subsection, we present a mechanism that sacrifices incentive
compatibility in order to increase the probability of negotiation conclusion, while
preserving individual rationality and budget balance.

7.5.3 BOSCO: Bargaining in One Shot with Choice Optimization

In this subsection, we present the BOSCO mechanism, which we have designed
to enable automated negotiation of inter-AS agreements with high bargaining
efficiency. The core idea of the BOSCO mechanism is as follows: The negotiating
parties play a simple bargaining game supervised by a BOSCO service, in which
each party has a set of choices defined by the mechanism. Each combination of such
choice sets is associated with at least one Nash equilibrium, i.e., a combination of
strategies (here: utility-choice mappings) in which no party can profitably deviate
from the strategy assigned to it. In turn, each such Nash equilibrium can be rated
with respect to a bargaining-efficiency metric.

The benefit of the mechanism is thus realized by the BOSCO service, which
appropriately constructs the choice sets and picks an associated Nash equilibrium
such that a high bargaining-efficiency results. In the following, we will present and
formalize the components of the mechanism.

7.5.3.1 Utility Distributions

For executing the BOSCO mechanism, the two agreement parties X and Y com-
municate the content of a mutuality-based agreement to an BOSCO service. While
the BOSCO service does not know the true utility uX and uY that either party
derives from the agreement, we assume (as usual in bargaining-mechanism design)
that the BOSCO service can estimate a utility distribution UZ(u), which yields the
probability that party Z ∈ {X, Y} derives utility u from the agreement. We envision
that such an estimation can be performed on the basis of heuristics, taking standard
transit and network-equipment prices into account.
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7.5.3.2 Choice Sets

After deriving UZ(u) for each agreement party Z, the BOSCO mechanism con-
structs a choice set VZ of possible claims for each agreement party Z. For BOSCO,
these choice sets correspond to finite discrete sets with cardinality WZ = |VZ|. To
guarantee strong individual rationality, each choice set always contains the op-
tion −∞, with which any party can cancel the negotiation. Moreover, let there be an
ordering vZ,1, . . . , vZ,WZ on the choices such that vZ,i < vZ,j for all 1 ≤ i < j ≤WZ.

7.5.3.3 Bargaining Game

The utility distributions and the choice sets represent the basis of a bargaining game.
In this bargaining game, each party Z picks a suitable choice vZ ∈ VZ and commits
it to the BOSCO service. The BOSCO service then checks whether the apparent
utility surplus is non-negative, i.e., vX + vY ≥ 0. If yes, the mechanism prescribes
the conclusion of the agreement with cash compensation ΠX→Y = (vX − vY)/2,
resulting in after-negotiation utility uX = uX −ΠX→Y and uY = uY + ΠX→Y. If
not, the mechanism cancels the negotiation, resulting in the after-negotiation utility
uX = uY = 0.

7.5.3.4 Bargaining Strategies

In the bargaining game, the bargaining strategy σZ(uZ) of party Z is a function
which yields a choice vZ ∈ VZ, given the true utility uZ of party Z. The bargaining
strategy σY of a counter-party Y is especially relevant when party X evaluates the
attractiveness of a choice vX based on the expected after-negotiation utility:

E[uX ](uX , vX) = ∑
vY∈VY .

vY≥−vX

P
[
vY
]
·
(

uX −
vX − vY

2

)
, (7.22)

where

P
[
vY
]
=
∫ ∞

−∞
UY(uY) · [[σY(u) = vY]] duY, (7.23)

and [[P]] is 1 if statement P is true and 0 otherwise.
This expected after-negotiation utility E[uX ](uX , vX) can also be represented in

the following form:

E[uX ](uX , vX) = mX(vX)uX + qX(vX), (7.24)
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where

mX(vX) = P[σY(uY) ≥ −vX ], (7.25)

qX(vX) = ∑
vY≥−vX

P[vY] ·
vY − vX

2
(7.26)

are the choice slope and the choice intercept, respectively. Intuitively, mX(vX) denotes
the probability of agreement conclusion given claim vX, and qX(vx) denotes the
expected monetary transfer that party X obtains from party Y given claim vX . These
values are henceforth abbreviated as mX,i = mX(vX,i) and qX,i = qX(vX,i) based on
our choice-set enumeration. Notably, it holds that claim slopes grow together with
the claims, i.e., mX(vX,i) ≥ mX(vX,j) for all i > j by nature of the CDF in Eq. (7.25).

This formulation allows a natural definition of the best-response strategy σ+
Z :

Definition 7.1 Best-Response Strategy. In the negotiation between two parties X
and Y, the best-response strategy σ+

X (uX) of party X picks the choice vX ∈ VX with
the highest expected after-negotiation utility given its true utility uX :

σ+
X (uX) = arg maxvX∈VX

E[uX ](uX , vX). (7.27)

In the following, we provide insight into the functional structure of σ+
X . In

particular, we will identify the true-utility values uX for which each choice vX,i is
the best choice.

Fundamentally, vX,i is the best choice for true utility uX if and only if vX,i has
higher expected utility than all other choices vX,j, j ̸= i, i.e.,

∀j ̸= i. mX,iuX + qX,i ≥ mX,juX + qX,j. (7.28)

Notably, a choice vX,i may not be optimal for any uX : If another choice vX,j has
identical slope mX,j = mX,i and higher intercept qX,j > qX,i, the choice vX,i is never
the best choice, and does not need to be considered further. Furthermore, if another
choice vX,j has identical slope mX,j = mX,i and identical intercept qX,j = qX,i, the
two choices are completely equivalent, and can be considered a single choice.

For all other cases, we can thus assume distinct slopes mX,i and mX,j. This assump-
tion allows the following transformation of the pairwise inequality in Eq. (7.28):

uX




≥ ũX(i, j) if mX,i > mX,j,

≤ ũX(i, j) if mX,i < mX,j,
where ũX(i, j) =

qX,j − qX,i

mX,i −mX,j
. (7.29)
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In this formulation, we first consider the choice vX,1 with the minimal mX,1. This
minimal choice vX,1 is optimal for true utility uX ranging from −∞ to the lowest
value ũX(1, j) for any j. More formally, the upper end of the optimality range for
minimal choice vX,i is at ũ+

X (1), where

ũ+
X (i) = ũX(i, j+(i)) where j+(i) = arg minj. mX,j>mX,i

ũX(i, j). (7.30)

In turn, the choice vX,j+(1) is optimal for true utility uX ranging from ũ+
X (1)

to ũ+
X (j+(1)), where choice vX,j+(j+(1)) becomes optimal. This process can be con-

tinued until the choice vX,k with maximal slope mX,k, yielding a finite recursive
series J:

J1 = 1 and ∀n > 1. Jn = j+(Jn−1). (7.31)

Hence, the best-response strategy σ+
X can be represented as follows:

σ+
X (uX) =





vX,1 if uX ≤ ũ+
X (1),

vX,Jn if uX ∈
[
ũ+

X (Jn−1), ũ+
X (Jn)

)
,

vX,k otherwise.

(7.32)

7.5.3.5 Nash Equilibria

A Nash equilibrium σ∗ = (σ∗X , σ∗Y) in the bargaining game is a set of two bargaining
strategies, each of which is the best-response strategy to the other strategy. We com-
pute such an equilibrium by assuming arbitrary σX and σY, and then computing the
best-response strategies in an alternating fashion until the best-response strategy of
any party is their existing strategy. While it can be shown that the considered bar-
gaining game is not a potential game [185] (which would guarantee convergence to
an equilibrium by alternating unilateral optimization), the best-response dynamics
always converged to an equilibrium in our diverse simulations.

7.5.3.6 Bargaining Efficiency

Given a Nash equilibrium, a natural question arises concerning the efficiency of such
an equilibrium σ∗. Clearly, if the BOSCO service knew uX and uY, it could simply
compute the associated Nash bargaining product N (uX , uY, σ∗X(uX), σ∗Y(uY)) and
compare it to the optimal Nash bargaining product N (uX , uY, uX , uY) that arises
under universal truthfulness. However, as the BOSCO service has only probabilistic
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knowledge about the true utility of the agreement, it must evaluate the efficiency
of an equilibrium σ∗ by computing the expected Nash bargaining product E [N |σ∗]
for this strategy, which is

E [N |σ∗] =
∫∫ ∞

−∞
U(uX , uY)N

(
uX , uY, σ∗X(uX), σ∗Y(uY)

)
duY duX (7.33)

where U is the joint utility distribution for parties X and Y. The optimal expected
Nash bargaining product is given by E

[
N
∣∣σ⊤

]
where σ⊤Z (uZ) = uZ is the truthful

strategy for party Z. Similar to a Price of Anarchy formulation [148], we thus
formalize the efficiency of an equilibrium with the following metric of Price of
Dishonesty (PoD):

PoD(σ∗) = 1− E [N |σ∗]
E
[
N
∣∣σ⊤

] , (7.34)

which is always in [0, 1] for reasons laid out in §7.5.4. Note that PoD is undefined
if E[N |σ⊤] = 0, i.e., if the agreement would be consistently non-viable even under
honesty, which is an uninteresting case that we henceforth disregard.

In summary, the BOSCO service is thus tasked with estimating UX and UY and
constructing choice sets VX and VY such that the thereby defined bargaining game
has an equilibrium σ∗ with a low PoD. After the BOSCO service finds such a con-
figuration, it communicates the mechanism-information set (UX , UY, VX , VY, σ∗),
to the communicating parties, which can verify that σ∗ is indeed a Nash equilib-
rium. As a result, the parties then follow the strategy that is assigned to them in
the equilibrium. Hence, each party Z plays the bargaining game by applying the
equilibrium strategy σ∗Z to its true utility value uZ and commits the resulting claim
to the BOSCO service, which then decides on agreement conclusion and, in case of
negotiation success, on the exchanged cash compensation ΠX→Y.

7.5.4 BOSCO Properties

After describing the BOSCO mechanism in the previous section, we now analyze
the mechanism with respect to the properties listed in §7.5.2. First of all, it is clear
that the BOSCO mechanism is budget-balanced, as the cash transfer paid by one
party is exactly the cash transfer received by the other party. Other important
properties are listed and justified with proofs below.
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Theorem 7.1 Strong Individual Rationality. The BOSCO mechanism offers
strong individual rationality:

∀uX , uY. uX ≥ 0 and uY ≥ 0. (7.35)

Proof. Given utility uX of party X, the Nash-equilibrium strategy choice σ∗X(uX)
is the best choice for party X. If uY is such that σ∗Y(uY) < −σ∗X(uX), then the agree-
ment is not concluded and uX = uY = 0. Conversely, if σ∗Y(uY) ≥ −σ∗X(uX), the
agreement is concluded and σ∗Y(uY) enters into E[uX ](uX , σ∗X(uX)) from Eq. (7.22)
with non-zero weight.

Now assume for contradiction that uX = uX − (vX − σ∗Y(uY))/2 < 0. In that
case, uX(vY) = uX − (vX − vY)/2 is also negative for any lower vY ∈ VY with
vY ≤ σ∗Y(uY). To avoid that the negative uX(vY) for these lower vY enter into
E[uX ] with non-zero weight, party X could choose a lower v′X < vX ∈ VX
with −v′X > σ∗Y(uY) ≥ −vX, With such a choice, all the mentioned vY are in-
activated in the expected-utility term. This inactivation increases expected utility
as the summands associated with these inactivated vY only contribute negative
values and the summands associated with the remaining choices of party Y increase.
Thanks to −∞ ∈ VX , such a choice is always possible.

However, this non-optimality of σ∗X(uX) contradicts the best-response character
of σ∗X , which invalidates the assumption of a negative uX . Hence, if an agreement
is concluded, uX ≥ 0 for any uX and uY (The case for uY is analogous).

In summary, non-negativity of after-negotiation utility holds in any case (non-
conclusion and conclusion), establishing strong individual rationality. □

Theorem 7.2 Soundness. The BOSCO mechanism is sound, i.e., it never leads to
conclusion of a non-viable agreement:a

∀uX , uY. σ∗X(uX) + σ∗Y(uY) ≥ 0 =⇒ uX + uY ≥ 0 (7.36)

a In order to be ex-post efficient, the mechanism would additionally need to be complete in the
sense that all viable agreements are concluded. However, as noted in §7.5.2, ex-post efficiency is
not achievable given other desirable properties.

Proof. If σ∗X(uX) + σ∗Y(uY) ≥ 0, the agreement is concluded and uX = uX −
ΠX→Y and uY = uY +ΠX→Y. By strong rationality (Theorem 7.1), it holds that uX ≥
0 and uY ≥ 0, which implies uX ≥ ΠX→Y and uY ≥ −ΠX→Y. By addition of the
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inequalities, uX + uY ≥ ΠX→Y −ΠX→Y = 0. Hence, σ∗X(uX) + σ∗Y(uY) ≥ 0 =⇒
uX + uY ≥ 0. □

Theorem 7.3 Privacy Preservation. The BOSCO mechanism is privacy-preserving,
i.e., an exact reconstruction of the true utility of a party from its choice is impossible:

∀vX ∈ VX . |{uX |σ∗X(uX) = vX}| ̸= 1 (7.37)

Proof. In terms of privacy, the only problematic case would arise if the range
[ũ+

X (Jn), ũ+
X (Jn+1)) contained only one value, which would allow the derivation of

that value uX from the associated choice vX,i. However, since half-open intervals on
the real numbers cannot contain a single value, this problematic case cannot arise. □

While exact reconstruction of the true utility is thus impossible, it might still
be possible to predict the true utility with high precision if the interval associated
with a choice is very small. Hence, the degree to which an equilibrium preserves
privacy could be quantified (e.g., by the length of the shortest non-empty interval)
and then taken into account by the BOSCO service when picking an equilibrium.

7.5.5 Choice-Set Construction

It remains to analyze how the choice sets should be constructed such that equilibria
with a low Price of Dishonesty result. Surprisingly, we have found that random
generation of such choice sets works reasonably well in practice. In particular,
the choice set VX for any party X can be constructed by sampling a high enough
number of choices vX from the utility distribution UX . With multiple trials of such
random choice-set generation, choice sets with a relatively low Price of Dishonesty
can be found.

In Fig. 7.2, for example, we analyze the resulting PoD from random choice-set
generation for two uniform utility distributions, namely U(1), which is a uniform
distribution of (uX , uY) on [−1, 1]× [−1, 1], and U(2), which is a uniform distribu-
tion on [− 1

2 , 1]× [− 1
2 , 1]. For each choice-set cardinality WX = WY, we generate

200 random choice-set combinations and find the mean and the minimum of the
associated PoD values. Clearly, a higher number of choices generally helps to reduce
the Price of Dishonesty, but given around 50 choices, adding more choices does not
improve the mechanism efficiency.
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Figure 7.2: Price of Dishonesty (minimum and mean) guaranteed by BOSCO depending
on the number of choices WX = WY for two different utility distributions U(1)

and U(2).

Interestingly, we also observe that the number of equilibrium choices (i.e., choices
which have a non-empty associated interval in the equilibrium strategy) for each
party reaches 4 at that point and is not further increased for more possible choices.

Hence, the BOSCO service can increase the number of possible choices until the
resulting PoD values do not substantially decrease anymore. With this procedure,
the BOSCO mechanism could guarantee a Price of Dishonesty of around 10% for
both U(1) and U(2) in the example at hand, meaning that the negotiation can be
expected to be 10% less efficient than under the unrealistic assumption of perfect
honesty.

7.6 effect on path diversity

In this section, we attempt to quantify the effect of mutuality-based agreements on
path diversity in the Internet.

7.6.1 Method

Agreement prediction. Starting from the CAIDA AS-relationship dataset [54], we
construct a network of ASes where a provider–customer or peering relationship
results in a single provider–customer or peering link, respectively. In this graph, we
generate all possible mutuality-based agreements (MAs) for the whole topology:
For every pair (A, B) of peers, we generate an MA in which A gives B access to



216 isp cooperation : interconnection agreements

0 50k 100k 150k 200k

Length-3 Paths Starting at AS

0.0

0.2

0.4

0.6

0.8

1.0

S
h

ar
e

of
A

S
es

W
it

h
≤
x

P
at

h
s

GRC

MA∗ (Top 1)

MA∗ (Top 5)

MA∗ (Top 50)

MA∗

MA

Figure 7.3: Distribution of ASes with respect to the number of length-3 paths starting at the
AS, given different degrees of MA conclusion.

all its providers and peers which are not customers of B, and vice versa. As MAs
consist of an AS A giving its peer B access to a provider or another peer, these
agreements enlarge the set of paths with 3 AS hops and 2 inter-AS links (henceforth:
length-3 paths) for B, as well as the set of ASes that B can reach with such length-3
paths (henceforth: nearby destinations).

Impact analysis. Given this graph and these MAs, we perform the following
analysis for 500 randomly chosen ASes. First, we find the GRC-conforming length-3
paths starting at the given AS. Then, we find the MA-created length-3 paths for
which the given AS is an end-point. The number of these additional paths and the
number of additional nearby destinations are thus metrics for the increased path
diversity that the given AS enjoys thanks to MAs.

7.6.2 Number of Paths and Nearby Destinations

Paths: Complete conclusion. Figure 7.3 shows the substantial increase in the number
of length-3 paths that are potentially available to these ASes thanks to mutuality-
based agreements: For example, whereas none of the analyzed ASes have more
than 45,000 GRC-conforming paths with length 3, 20% of the analyzed ASes have
more than 45,000 length-3 paths if all MAs are concluded (CDF for ’MA’). Note
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that for a fixed source and a fixed destination, all length-3 paths are disjoint by
definition.

Paths: Partial conclusion. Since the conclusion of all possible MAs is an extreme
case (although MAs could be negotiated in an automated fashion with the mecha-
nism presented in §7.5), we analyze the effects of partial agreement conclusion.

Initially, we note that an MA can provide an AS with new paths in two manners.
First, an AS can directly gain an MA path by concluding an MA that includes the
path (e.g., as AS D gains the path DEB in Fig. 7.1 from the MA with AS E). Second,
an AS can indirectly gain an MA path by being the subject of an MA that includes
the path (e.g., as AS B or AS F gain paths to AS D from the MA between AS D
and AS E in Fig. 7.1). Interestingly, most additional MA paths are directly gained
paths, as the similarity of the CDFs for all MA paths (MA) and directly gained MA
paths (MA∗) in Fig. 7.3 suggests. Hence, the ASes bearing the negotiation effort of
an MA have a strong incentive to negotiate that MA despite the effort, because they
typically are its biggest beneficiaries. Moreover, we find that an AS already tends
to obtain substantial gains in path diversity with only a handful of MAs. This point
is demonstrated by the results for the scenarios where an AS only concludes the n
MAs which provide it with the most new paths (annotated with ‘MA∗ (Top n)’
in Fig. 7.3): Even if an AS only concludes the single most attractive agreement from
its perspective, it stands to gain several thousands of new paths.

Destinations. Figure 7.4 also illustrates that mutuality-based agreements enlarge
the set of destinations reachable with paths of length 3: For example, whereas 40%
of the analyzed ASes can reach more than 5,000 destinations over length-3 paths,
57% of ASes can reach more than 5,000 destinations over such paths if all MAs are
concluded. Interestingly, very few MAs per AS already suffice to reap most of these
benefits, as the results for non-comprehensive agreement conclusion demonstrate.

Distribution of benefits. For the set of analyzed ASes, the average number of
additional length-3 paths thanks to mutuality-based agreements is 22,891 paths
(maximum: 196,796 paths), and the average number of additionally reachable des-
tinations over length-3 paths is 2,181 ASes (maximum: 7,144 ASes). Interestingly,
the gains in terms of additionally reachable destinations are more broadly dis-
tributed than the gains regarding paths. The explanation for this phenomenon is
that mutuality-based agreements in very densely connected regions of the Internet
lead to a high number of additional length-3 paths, but have little impact on the
number of ASes reachable over such paths.
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Figure 7.4: Distribution of ASes with respect to the number of destination reachable over
length-3 paths, given different degrees of MA conclusion.

7.6.3 Geodistance

In order to gain a more qualitative perspective on the additional paths enabled by
MAs, we also investigate the geographical length (henceforth: geodistance) of these
new paths. Such geodistance is an important determinant of path latency [238],
which is typically considered a core aspect of path diversity.

Geodistance calculation. As the CAIDA AS-relationship dataset [54] does not di-
rectly contain the necessary information, we additionally build on the CAIDA
prefix-to-AS dataset [55], the GeoLite2 database [173], and the CAIDA geographic
AS-relationship dataset [53]. In particular, we determine the geolocation of any AS
by finding the IP prefixes associated with the AS number in the prefix-to-AS dataset,
determining the geolocation of the IP prefixes via the GeoLite2 database, and av-
eraging the resulting coordinates to obtain the center of gravity of the AS. With
such averaging, the potentially considerable intra-AS latency of geographically dis-
tributed top-tier ASes is automatically taken into account. Moreover, we obtain the
geolocation of an AS interconnection from the CAIDA geographic AS-relationship
dataset. The geodistance of a length-3 path π = (A1, ℓ12, A2, ℓ23, A3), where Ai are
ASes and ℓj are inter-AS links, is then computed as d(π) = d(A1, ℓ12) + d(ℓ12, ℓ23) +
d(ℓ23, A3), where d(X, Y) is the geodistance between two points. If there are multi-
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ple known AS interconnections, the geodistance of the AS-level path (A1, A2, A3)
is computed for ℓ12 and ℓ23 that minimize d(π).

Impact analysis. Using this measure of path geodistance, we again compare the
set of paths that conform to the GRC and the set of paths enabled by novel MAs.
For every analyzed AS pair connected by at least one length-3 GRC path, we
determine the maximum, median, and minimum geodistance given the length-3
GRC paths connecting the AS pair. In a next step, we determine the geodistance of
the additional MA paths and check for each MA path whether it is lower than the
maximum, median, or minimum GRC geodistance, respectively. Each AS pair is
then characterized by the number of MA paths below these comparison thresholds.
The aggregate results of this comparison method are presented in Fig. 7.5a.

Results. Figure 7.5a shows that through MAs, around 50% of AS pairs gain at
least 1 path with a lower geodistance than the minimum-geodistance GRC path,
suggesting that inter-AS latency can be decreased by MAs in these cases. Around
25% of AS pairs even gain at least 5 paths that improve upon the minimum GRC
geodistance, and at least 7 and 8 paths that improve upon the median and maximum
GRC geodistance, respectively. Another 20% of AS pairs only gain MA paths with
a higher geodistance than the maximum GRC geodistance (or no new paths at all);
however, also these additional paths have value in terms of reliability. Regarding the
AS pairs experiencing a reduction in minimum geodistance, Fig. 7.5b illustrates the
considerable extent of the geodistance reduction for these AS pairs: For example,
50% of AS pairs that experience a geodistance reduction obtain a reduction of more
than 24%.

7.6.4 Bandwidth

We perform an analogous analysis as in the preceding section with respect to the
bandwidth of additional paths.

Bandwidth estimation. To infer the bandwidth of inter-AS links, we employ a degree-
gravity model [225] which endows each link with a capacity value proportional to
the product of the node degrees of the link end-points. The path bandwidth is then
the minimum such computed link bandwidth of all links in the path.

Results. With such an analysis, we find that 35% of all investigated AS pairs
obtain a new MA path that has more bandwidth than the corresponding maximum-
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Figure 7.5: Results of geodistance analysis.

bandwidth GRC path (cf. Fig. 7.6a). Of these benefiting AS pairs, 50% gain an MA
path with at least 150% more bandwidth than the respective maximum-bandwidth
GRC path (cf. Fig. 7.6b).

7.7 related work

Traditional BGP interconnection agreements. After the growth of the Internet had led
to considerable BGP stability problems in the late 1990s [102, 153], the research of AS
interconnection agreements, their stability properties, and their optimal structures
received significant interest. The commercial reality of the Internet has been shown
to mainly contain two basic types of agreements that determine route-forwarding
policies, namely provider–customer agreements and peering agreements [125, 198].
The relative exclusiveness of these two agreement types was reinforced by the
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Figure 7.6: Results of bandwidth analysis.

important result of Gao and Rexford, showing that BGP route convergence is
guaranteed if ASes stick to these two forms of route-forwarding policies [91].

Non-standard BGP interconnection agreements. However, it is well-known that such
strict BGP policies reduce path quality: For a majority of routes selected in BGP,
there exists a route that is more attractive with respect to metrics such as bandwidth,
latency, or loss rate [94, 96, 109, 147, 211, 228]. Motivated by such improvements,
many ASes do not always follow the Gao–Rexford conditions [94]. For example,
some ISPs use alternative paths to reach content distribution networks such as
Akamai [24, 95, 174], other ISPs prefer the peer route through their Tier-1 neighbor
over a longer customer route [24], and so on. Still, these deviations are narrow in
scope, with most non-GRC policies being explainable by “sibling” ASes, which
belong to the same organization and provide mutual transit services [24, 90], and
partial/hybrid provider relationships [95]. This is due to the fact that more complex
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policies would threaten the convergence of the routing process unless they are
supported through multi-AS coordination efforts. These restrictions have also been
acknowledged by previous efforts to provide multipath routing based on BGP such
as MIRO [261].

Non-BGP interconnection agreements. Interconnection agreements in PAN architec-
tures [22, 33, 60, 98, 212, 213, 245, 265, 269] do not need to follow the guidelines
devised to achieve BGP stability. In that respect, PANs confirm an insight by Haxell
and Wilfong [114], who showed that a fractional relaxation of the stable-paths prob-
lem of BGP [104] guarantees a solution and that a more flexible routing paradigm
can thus defuse BGP stability issues. In contrast to this work, however, our focus lies
on the structure of interconnection agreements under this new paradigm, the extent
to which these agreements increase path diversity, and their economic rationality
and bargaining aspects.

Economic aspects of interconnection agreements. Interconnection agreements have
to respect the economic self-interest of ASes. The Gao–Rexford guidelines for
BGP policies have been proven to be rational in that sense [83]. Notable proposals
for agreement structures that attempt to satisfy both AS self-interest and global
efficiency include Nash peering [74, 267], where the cooperative surplus of the
agreement is shared among the parties according to the Nash bargaining solu-
tion [194], and ISP-settlement mechanisms based on the Shapley value [169]. It is
important to note that unlike traditional source routing and similar to MIRO [261],
PANs still offer transit ASes control over the traffic traversing their network, and
hence to maximize their revenue. In contrast to MIRO, however, PANs guarantee
path stability.

7.8 conclusion

This chapter shows that PAN architectures enable novel types of interconnection
agreements, thereby substantially improving path diversity in the Internet and cre-
ating new business opportunities. Such new possibilities exist in PAN architectures
as they do not rely on the nowadays essential route-forwarding policy guidelines
formulated by Gao and Rexford [91] for route convergence.

Our results show that path diversity in the Internet benefits enormously by
enabling paths beyond the Gao–Rexford constraints: By using previously impossible
path types, the median AS can reach thousands of new destinations with 3-hop
paths and benefit from tens of thousands of additional paths, some of which have
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more desirable characteristics than the previously available paths. There is thus a
largely unknown advantage to PAN architectures: Not only do these architectures
enable end-hosts to select a forwarding path, they also allow network operators to
offer new (and often shorter) forwarding paths. As PANs are not limited to using
a single path between a pair of ASes, all these paths can be used simultaneously
according to the requirements of end-hosts and their applications (e.g., low latency
for voice over IP and high bandwidth for file transfers). These direct benefits to
end-hosts in turn incentivize providers to explore new interconnection agreements
and offer diverse paths to attract new customers.

To enable such new interconnection agreements, we present two methods for
designing agreements that are Pareto-optimal, fair, and thus attractive to both
parties. We also show that, assisted by an appropriate bargaining mechanism,
the negotiation of such agreements can lead to efficient agreements, even though
necessary information is private.





8
I S P C O M P E T I T I O N : Q UA L I T Y AT T R I B U T E S

8.1 introduction

Whereas the preceding chapter investigated opportunities for ISP cooperation in
terms of interconnection agreements, the chapter at hand focuses on ISP competition,
which arises from path-selection decisions: Both today’s Border Gateway Protocol
(BGP) and emerging path-aware network architectures (PANs) supply ISPs with
potentially multiple paths towards an IP prefix. When selecting among these paths,
ISPs and end-hosts decide on the basis of price and quality of the available paths.
This path quality is determined by multiple quality attributes of potentially multiple
on-path ISPs. Such quality attributes may include conventional performance metrics
(e.g., bandwidth, latency, loss rate, jitter) or security features (e.g., presence of secu-
rity middleboxes), but also properties that traditionally receive less attention, e.g.,
environmental, social, and governmental (ESG) properties such as carbon emission
from data transmission [274] or geopolitical concerns regarding on-path ISPs [71].
Transit ISPs invest in their attributes, communicate them in path announcements,
and thereby attract traffic from selecting entities (ISPs and end-hosts). However,
improving these attributes comes at a cost, which may exceed the revenue from
attracted traffic, especially if ISPs on competing paths also raise their quality level.

Given this competitive setting, ISPs today face complex strategic questions when
optimizing profit: What quality attributes should be invested in, and to what extent?
How should prices be determined? And how are these decisions affected by ISPs
on competing paths and ISPs elsewhere on the provided paths?

Well-informed strategic decisions thus require a fundamental understanding
of ISP competition under path selection, not only on an intuitive, but also on
a rigorous analytical level. While such an understanding has been furthered by
previous academic research [170, 192, 234, 244, 270], many open questions of
practical relevance remain, e.g., regarding the multi-attribute nature of path quality,

225
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the dependence of fixed and variable ISP cost on provided quality, the feasibility of
cooperation among ISPs on the same path, and the impact of differing degrees of
competition intensity (cf. §8.6).

To address these questions, we present a new game-theoretic model, enabling
a rigorous investigation of quality competition among ISPs. We perform this
investigation through theoretical analysis and simulation:

Theoretical analysis. We conduct an extensive theoretical analysis to systematically
understand the effect of ISP competition on path quality, and ISP profits (Path price
constitutes a quality attribute in our model). In particular, we identify closed-form
solutions for the Nash equilibria of the competition dynamics, prove the stability
of these equilibria, and contrast them for varying degrees of path diversity and
ISP heterogeneity. On the one hand, this theoretical analysis confirms intuitive
insights, namely that competition tends to raise the prevalence of valuable attributes.
On the other hand, our model reveals counter-intuitive insights, namely that the
cooperation between ISPs on the same path suffers from a prisoner’s dilemma, that
ISP profits can increase under intensified competition, and that additional paths
may decrease the prevalence of quality attributes if unchangeable path attributes
are starkly different.

Simulation-based case study. To determine which competition effects are significant
in practice, we leverage our model for a simulation-based case study. In this case
study, we investigate the competition dynamics in the Internet core with respect
to two attributes (internal bandwidth and the share of clean energy used by an
ISP). This simulation requires a numerical instantiation of the model, based on
real-world data. For this model instance, our simulations yield robust evidence that
competition raises the prevalence of valuable attributes, the quality of available
paths, and the profits of most ISPs.

8.1.1 Contributions

In summary, this chapter includes the following contributions:

Game-theoretic competition model. Our new ISP-competition model (§8.2) departs
from previous competition models by representing both inter-path competition
and intra-path cooperation, accommodating a multi-faceted notion of path quality,
revealing the effect of path diversity, and reflecting realistic ISP cost structures
(§8.6).
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Theoretical analysis. We conduct a rigorous theoretical analysis by reasoning from
basic competition scenarios that showcase the fundamental effects in ISP competi-
tion (§8.3). In particular, we contrast monopolistic and competitive scenarios in ISP
path selection, investigate networks with varying similarity in ISP profit functions,
and identify asymptotically stable equilibria and social optima of the competition.
Our analysis suggests that ISP competition has nuanced effects on ISP profits and
path quality, going beyond the predictions of basic economic theory.

Large-scale simulation. We demonstrate how to instantiate our model based on real-
world data, with the goal of predicting competition effects in the Internet core (§8.4).
These predictions are generated with simulations, which rely on randomization
to achieve robust results, represent the competition behavior with better-response
dynamics, and are executed for varying path diversity. The simulation results
suggest that competition, induced by path diversity, has positive effects for a
majority of ISPs on multiple tiers of the Internet, i.e., raises ISP profits and path
quality (§8.5).

8.2 model and first insights

In the following, we present a game-theoretic model, which we employ to investi-
gate the competition dynamics under attribute-oriented path selection. While our
model reflects common characterizations of inter-domain network economics, it is
more general than previous models (cf. §8.6).

Network and paths. We abstract the network as a set N of ISPs, which represent
the players in the competition game. Each ISP n ∈ N is assumed to be fully rational.
The ISPs form paths, where each path r ⊆ N is a set of ISPs. All usable paths in
a network are collected in the path set R, and all usable paths between selecting
ISP n1 and destination ISP n2 constitute the set R(n1, n2). Throughout this work,
we study how ISPs affect the quality of paths as given by path set R, not how ISPs
strategically adapt the set R of usable paths via interconnection agreements and
announcements, which is a related but distinct problem [176, 3].

Attributes. We consider a network with a set K of ISP attributes, |K| ≥ 1, that
are relevant in path selection. Hence, each ISP n is associated with an attribute
vector an ∈ RK

≥0, where ank ∈ R≥0 denotes the prevalence of attribute k ∈ K in ISP n.
As a player in the competition game, each ISP n strives to choose its attributes an in
order to optimize its profit (see below). Since the lowest possible degree of attribute
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Table 8.1: Notation used in our model (in alphabetical order).

Symbol Description

A ∈ R
|N|×|K|
≥0 Attributes of all ISPs N

A+ ∈ R
|N|×|K|
≥0 Nash-equilibrium attributes of all ISPs N

A◦ ∈ R
|N|×|K|
≥0 Socially optimal attributes (Nash bargaining solution) of all ISPs N

an ∈ R
|K|
≥0 Attributes of ISP n

ank Attribute k ∈ K of ISP n ∈ N

a∗nk(A−nk) Best-response attribute k of ISP n given all other attributes

â∗nk(A−nk) Unrestricted best-response attribute k of ISP n given all other attributes
(potentially complex or negative and thus invalid)

αrnk Weight of attribute k of ISP n in valuation of path r

αr0 Base valuation of path r

Γn Demand-independent cost of ISP n

γnk Weight of attribute k in demand-independent cost of ISP n

γn0 Attribute-independent demand-independent cost of ISP n

Dn Demand volume forwarded by ISP n

d(n1,n2) Limit of demand of ISP n1 towards ISP n2

δr Demand volume forwarded over path r

Φn Demand-dependent cost of ISP n

ϕnk Weight of attribute k in demand-dependent cost of ISP n

ϕn0 Attribute-independent demand-dependent cost of ISP n

K Set of attributes

N Set of ISPs

pr Selection probability of path r

πn Profit of ISP n

R(n1, n2) Set of paths between ISPs n1 and n2

Rn Revenue of ISP n

r ⊆ N Path

ρn Sensitivity of revenue on attracted demand for ISP n

V(A) Total valuation of network given attributes A

vr Valuation of path r
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prevalence is attained if an ISP does not possess an attribute at all, we restrict
the attribute values to non-negative real numbers: ∀n ∈ N, ∀k ∈ K. ank ≥ 0. For
convenience of notation, we also define an attribute matrix A ∈ R

|N|×|K|
≥0 , with

the n-th row being an.

Path valuations. The attributes of an ISP n determine the attractiveness of using
paths including that ISP. Hence, we define the attractiveness of available options on
the level of paths, specifically by valuation functions {vr}r∈R. The valuation vr for
path r then depends on all attributes an of all on-path ISPs n ∈ r. Since we consider
desirable attributes in our model, every function that is monotonically increasing
in all attribute values is a suitable valuation function. Throughout this chapter, we
use affine functions:

vr(A) = ∑
n∈r

∑
k∈K

αrnkank + αr0, (8.1)

where each αrnk > 0 determines how strongly attribute k of ISP n affects the
valuation of path r, and αr0 ≥ 0 is the base valuation of path r. This formulation
captures several real-world aspects of path valuations, as not all attributes are
equally important and not all ISPs on a path equally affect the valuation, e.g., ISPs
providing a large segment of the path might be more relevant for the valuation.
The linear formulation might be counter-intuitive given that the marginal utility
of attribute prevalence is likely decreasing; this property, however, is reflected in
the formulation for the path-selection probability below, which predicts that the
volume of attracted demand on a path is sub-linear in path attributes. Moreover,
we show by simulation that the model predictions do not strongly rely on the affine
formulation (cf. §8.5.2.3).

Path-selection probability. Path valuations inform the path selection at the selecting
ISP, and thus determine the probability of each path being selected. More precisely,
when a selecting ISP n1 or an end-host in n1 selects a path towards a prefix hosted
by ISP n2, each path r among the available paths R(n1, n2) is selected for transit with
probability pr(A). Inspired by the popular logit-demand model [31], we consider
the selection probability pr to be proportional to the relative attractiveness of path r
compared to alternative paths:

∀(n1, n2) ∈ N × N, r ∈ R(n1, n2). pr(A) =
vr(A)

1 + ∑r′∈R(n1,n2) vr′(A)
. (8.2)

Crucially, the addition term 1 in the fraction denominator captures demand elasticity,
i.e., the path selector might not select any path in R(n1, n2) at all if the available
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paths are generally unattractive. Instead, selecting ISP n1 might not offer its cus-
tomers any path to n2, create a new path to n2 by concluding a peering agreement,
or obtain the desired content from another destination ISP than n2.

Demand. The path-selection probabilities above determine the demand volume Dn
that is obtained by any ISP n, which we formalize by:

Dn(A) = ∑
r∈R. n∈r

δr(A) = ∑
r∈R. n∈r

r∈R(n1,n2)

pr(A) · d(n1,n2)
. (8.3)

Due to the elasticity of demand, actual total demand (i.e., δr(A) summed over
all r ∈ R (n1, n2)) is strictly below the demand limit d(n1,n2)

.
The practical interpretation of path demand δr in Eq. (8.3) depends on the transit

behavior of the selecting ISP n1. If n1 is a stub AS or operates in a path-aware
Internet, then traffic can be split across multiple paths towards a given prefix. If n1
thus selects multiple paths, δr denotes the actual demand allocated to path r. In
contrast, if ISP n1 is a transit AS in a BGP-based Internet, the traffic transited by n1
must follow the single path announced by ISP n1 to neighboring ISPs, as BGP
forwarding loops might arise otherwise. If n1 thus selects only a single path for
transit, δr corresponds to the expected demand allocated on path r.

Profit. Given the demand model, an ISP n can affect attracted demand Dn with an
appropriate choice of an. However, the profit πn depends not only on the volume
of attracted demand, but also on the cost for provision of the attributes. We thus
consider the profit function πn of ISP n to have three components. First, the ISP
profit is increased by a revenue function Rn, which is a function of Dn. Second, the
profit is reduced by a demand-dependent cost function Φn, which as well depends
on Dn, but also directly on an, as the cost of transmitting a unit of demand depends
on the chosen attributes. Third, the profit is reduced by a demand-independent
cost function Γn, which depends only directly on the chosen attributes an and thus
corresponds to the ‘fixed cost’ of possessing certain attributes.

While these component functions could in principle be any monotonically in-
creasing function, we use the following formulations for the component functions
throughout this chapter:

Rn(A) = ρn · Dn(A)

Φn(A) =

(
∑
k∈K

ϕnkank + ϕn0

)
· Dn(A) (8.4)
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Γn(an) = ∑
k∈K

γnkank + γn0

where the coefficient ρn > 0 corresponds to the per-unit base revenue of ISP n
(transit prices are additionally subsumed within quality attributes, as described
below). Furthermore, the coefficients ϕnk ≥ 0 and γnk ≥ 0 determine the attribute-
specific increase in demand-dependent and demand-independent cost, respectively,
and the intercepts ϕn0 ≥ 0 and γn0 ≥ 0 express the attribute-independent basic
values for the respective cost terms. Throughout the chapter, we assume ρn ≥ ϕn0
for all ISPs n ∈ N, as a rational ISP that loses money by attracting demand even
with the most cost-saving strategy (i.e., an = 0) would in fact go out of business.
The affine formulations of Φn and Γn predict qualitatively similar competition
effects as quadratic functions, as we demonstrate by simulation in §8.5.2.3.

In summary, the profit function πn is of the following form in our investigations:

πn(A) = Rn(A)−Φn(A)− Γn(an)

= Dn(A) ·
(

ρn − ∑
k∈K

ϕnkank − ϕn0

)
− ∑

k∈K
γnkank − γn0.

(8.5)

Undesirable attributes. So far, our model formulation assumes desirable attributes,
which increase path attractiveness in high quantities and are costly to increase, e.g.,
bandwidth. However, many relevant ISP attributes are undesirable in high quantities
and are challenging to decrease, e.g., transit price or latency. To accommodate
undesirable attributes in the model, a naive approach would consist of allowing
negative coefficients αrnk, ϕnk, and γnk for any undesirable attribute k. However,
such negativity would entail nonsensical model predictions, such as potentially
negative path-selection probabilities from Eq. (8.2), or infinite profit given an
undesirable attribute (n, k) with ank = ∞ and γnk < 0 (cf. Eq. (8.5)).

To avoid such nonsensical predictions and preserve model tractability, we suggest
to convert undesirable attributes into their desirable counterparts. For example, the
actual transit-price attribute a′nk ∈ [0, Pmax

n ] could be translated to a non-negative
cheapness attribute ank = Pmax

n − a′nk ∈ [0, Pmax
n ], where Pmax

n is the maximum price
that ISP n can reasonably ask. The cheapness attribute then formally contributes
to the costs in Φ and Γ, while actually quantifying foregone revenue in the profit
function π.
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Nash equilibrium. The competition dynamics in attribute-oriented path selection
can be characterized by their Nash equilibria. In our setting, such a Nash equilib-
rium is a choice of attributes in which each ISP has optimal attributes (w.r.t. its
profit) given the attributes of all other ISPs:

Definition 8.1 Nash Equilibrium. A choice of attributes A+ form a Nash equilib-
rium if and only if

∀n ∈ N. a+n = arg max
an∈R

|K|
≥0

πn
(
an ⊕n A+

−n
)

(8.6)

where ⊕n combines the attribute choice an of ISP n with the equilibrium attribute
choices A+

−n of the remaining ISPs.

In this abstract form, the Nash equilibria offer little opportunity for analytical
characterization. However, if the attributes ank are restricted to [0, amax] rather than
to R≥0 (e.g., if there is an upper bound amax on all attribute values), the existence
of Nash equilibria is guaranteed by Brouwer’s fixed-point theorem [42]. To gain a
deeper understanding of Nash equilibria beyond that special case, we concretize
equilibria in this work, and investigate these equilibria with respect to existence,
uniqueness, stability, and efficiency.

Social Optimum. To assess the efficiency of Nash equilibria, we compare these
equilibria to social optima. In our setting, such a social optimum optimizes a metric
that aggregates the perspectives of all agents involved in the competitive dynamics.
Our model contains two types of agents, namely path selectors (selecting ISPs or
end-hosts) and transit ISPs, with non-aligned interests, which warrants two different
formalizations of the social optimum.

First, path selectors are interested in path quality. Hence, the social efficiency for
path selectors is simply measured by the aggregate valuation V of all paths in the
network, given a choice of attributes A:

V(A) = ∑
r∈R

vr(A). (8.7)

Since the valuation functions vr are assumed to be linear and therefore unbounded
in this chapter, a finite social optimum for path selectors only exists if all attributes
are restricted to a finite domain.

Second, transit ISPs are interested in profit. To characterize the social optimum
from the perspective of transit ISPs, we rely on the conditions of the Nash bargaining
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solution (NBS), i.e., the conditions that a global attribute choice A would have to
fulfill if ISPs had to agree on this attribute choice through cooperative bargain-
ing [194]. The two most important NBS conditions are Pareto-optimality, i.e., no
ISP can increase its profit without any other ISP experiencing a decrease in its
profit, and symmetry, i.e., among Pareto-optimal profit distributions, the fairest
distribution is preferred. These conditions are achieved if the attributes A optimize
the Nash bargaining product:

Definition 8.2 Social Optimum for Transit ISPs. A choice of attributes A◦ forms
a social optimum from the perspective of transit ISPs if it corresponds to the Nash
bargaining solution (NBS), i.e.,

A◦ = arg max
A∈R

|N|×|K|
≥0

Πn∈N πn(A). (8.8)

8.3 theoretical analysis

In this section, we theoretically analyze the competition dynamics in path selection.
For that purpose, we focus on an individual market in isolation, i.e., the competition
between transit ISPs for traffic between a single source-destination pair (n1, n2). As
a result, we write R = R(n1, n2) and d = d(n1,n2)

throughout this section.

8.3.1 Optimal Attribute

To analyze the competition dynamics, we first investigate how any single ISP n
should choose its attribute k in response to the attribute choices of all other ISPs.
This optimal attribute is given by the following closed-form solution:
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Theorem 8.1 Best-Response Attribute. In an individual market with arbitrarily
overlapping paths, the optimal admissible attribute a∗nk of ISP n given the remaining
attributes A−nk is

a∗nk(A−nk) =





â∗n(A−nk) if â∗n(A−nk) ∈ R and â∗n(A−nk) ≥ 0,

0 otherwise,
(8.9)

where â∗nk(A−nk) is the optimal unrestricted (i.e., potentially complex or negative)
attribute:

â∗nk(A−nk) =
1

αnk

(√
d
(
1 + v−r(n)(A−nk)

)

dϕnk + γnk
·

√
ϕnk(1 + v−nk(A−nk)) + αnk(ρn −Φ−nk(A−nk))

−
(
1 + v−nk(A−n)

)
)

(8.10)

Eq. (8.10) uses the following abbreviations:

Valuation parameter for attribute (n, k) over all paths:

αnk = ∑
r∈R.
n∈r

αrnk (8.11)

Valuation for all paths not including ISP n:

v−r(n)(A) = ∑
r′∈R.
n/∈r′

vr′(A) (8.12)

Valuation for all paths including ISP n, without attribute (n, k):

v−nk(A) = ∑
r∈R

αr0 + ∑
(n′ ,k′)∈N×K.
(n′ ,k′) ̸=(n,k)

αn′k′ an′k′ (8.13)

Demand-dependent cost of ISP n, without attribute (n, k):

Φ−nk(A) = ∑
k′∈K\{k}

ϕnk′ ank′ + ϕn0 (8.14)
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The proof of Theorem 8.1 is provided in Appendix F.1. To provide intuition about
the formula in Eq. (8.10), we transform it to a simplified version:

v̂∗r(n) =

√√√√√√

( dϕnk(1 + v−nk)

dϕnk + γnk︸ ︷︷ ︸
1

+
dαnk(ρn −Φ−nk)

dϕnk + γnk︸ ︷︷ ︸
2

) (
1 + v−r(n)

)
︸ ︷︷ ︸

3

−
(
1 + v−r(n)

)
︸ ︷︷ ︸

3

(8.15)

where

v̂∗r(n) = ∑
r∈R.
n∈r

v̂∗r (8.16)

contains the sum of unrestricted valuations of all paths containing ISP n that would
be optimal for n given A−nk.

This v̂∗r(n) (and thus also ânk) correlates positively with term 1 , which relates
to the share of demand-dependent cost (∝ dϕnk) among total cost (∝ dϕnk + γnk)
with respect to attribute (n, k). This correlation suggests that ISPs should champion
attributes with low demand-independent cost.

Moreover, v̂∗r(n) correlates with term 2 , which relates to the revenue from at-
tribute (n, k) per unit of cost from the attribute, i.e., the ‘return’ on attribute (n, k).

Term 3 , which describes the attractiveness of paths avoiding n, can have a
positive effect on v̂∗r(n) up to a point, as competition incentivizes ISP n to raise its
attribute values. However, from a certain point onwards, term 3 has a negative
effect on v̂∗r(n), as detracting traffic from highly attractive alternatives becomes too
costly compared to the achievable revenue.

For an individual market, the equilibrium condition from Definition 8.2 can
thus be concretized based on Theorem 8.1: A choice of attributes A+ is a Nash
equilibrium if and only if

∀n ∈ N, ∀k ∈ K. a+nk = a∗nk(A
+
−nk). (8.17)

For the general case, we find that deriving equilibria based on this condition
is intractable. For example, when considering a market with two disjoint paths,
a single attribute, and a single ISP with arbitrary parameters on each path, the
equilibrium must be found by solving a quartic equation, which impedes an anal-
ysis even for that simple network. Fortunately, we identify two types of markets
that allow deriving closed-form equilibria and therefore analytic insights, while
still capturing the fundamental characteristics of ISP competition, i.e., inter-path
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competition, intra-path cooperation, and ISP heterogeneity. Concretely, we sepa-
rately analyze homogeneous markets (cf. §8.3.2) and heterogeneous markets with
attribute-independent traffic-unit cost (cf. §8.3.3), both with disjoint paths.

8.3.2 Homogeneous Markets

By homogeneous markets, we refer to topologies of Q := |R| > 0 disjoint paths
in competition, each of which accommodates the same number I = |N|/Q of
ISPs. All ISPs are identical and all attributes are identically valuable and costly,
i.e., for all ISPs n ∈ N, it holds that ρn = ρ and ϕn0 = ϕ0, and ∀k ∈ K, it holds
that αnk = α1, ϕnk = ϕ1, and γnk = γ1. Moreover, the path-valuation functions
for all paths are identical as well, i.e., ∀r ∈ R. αr0 = α0. While artificial, such
competition among completely equal goods (here: paths) and firms (here: ISPs) is
common in competition models, as homogeneity allows isolating pure competition
effects that are not due to variety in offers [66, 78].

In our case, the homogeneity also permits to identify the Nash equilibria of the
competition dynamics (§8.3.2.1), to investigate the convergence to these equilib-
ria (§8.3.2.2), to compare these equilibria to social optima (§8.3.2.3), and to evaluate
the effect of competition intensity (§8.3.2.4).

8.3.2.1 Equilibria

The symmetry of the homogeneous markets allows finding an equilibrium:

Theorem 8.2 Nash Equilibrium in Homogeneous Markets. The Nash equilibrium
of a homogeneous market is given by an attribute sum a+ such that ∑k a+nk = a+

∀n ∈ N, where a+ = max(0, â+) with

â+ =

√
T2

2 − 4T1T3 − T2

2T1
. (8.18)

Eq. (8.18) uses the following abbreviations:

T1 = Q2 I2α2
1 −

d
dϕ1 + γ1

(QI − 1)(Q− 1)Iα2
1ϕ1, (8.19)

T2 = 2QIα1 (1 + Qα0)−
d

dϕ1 + γ1
· (8.20)
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(
α1ϕ1 (QI − 1)

(
1 + (Q− 1)α0

)
+ (8.21)

Iα1 (Q− 1)
(
ϕ1 (1 + Qα0) + α1 (ρ− ϕ0)

))
, and

T3 = (1 + Qα0)
2 − d

dϕ1 + γ1
· (8.22)

(1 + (Q− 1)α0)
(
ϕ1(1 + Qα0) + α1(ρ− ϕ0)

)
.

The proof of Theorem 8.2 is provided in Appendix F.2. Note that the equilibrium
in Theorem 8.2 is only unique with respect to the attribute sum a+ of any ISP
and hence also with respect to path valuations, as the equilibrium path valuation
is vr(A+) = Iα1a+ + α0. However, the equilibrium is not necessarily unique with
respect to the individual attribute values ank.

8.3.2.2 Stability

The Nash equilibrium from Theorem 8.2 is an interesting fixed point of the com-
petitive dynamics in homogeneous markets. However, the equilibrium is only
relevant if the distributed profit optimization by the ISPs converges to it. Hence,
the equilibrium must be additionally investigated with respect to its stability, i.e.,
its attractive effect on the competition dynamics. To investigate this stability, we
formally describe the competition by the following system of ordinary differential
equations (ODEs):

∀n ∈ N. ȧn(t) = a∗n
(
A−n(t)

)
− an(t) (8.23)

Intuitively, one ODE in this system describes the behavior of an ISP n which
continuously adjusts its attribute-sum value an towards the optimal choice a∗n given
the contemporary attribute values of all other ISPs. Given this dynamic process, we
can show the following property:

Theorem 8.3 Stability of Homogeneous Equilibrium. The Nash equilibrium
from Theorem 8.2 is an asymptotically stable equilibrium of the competition dynamics
in Eq. (8.23).

The proof of Theorem 8.3 is provided in Appendix F.3.

8.3.2.3 Intra-Path Dynamics

The equilibrium formalization from Theorem 8.2 also applies to the case where
an ISP pair is only connected by a single usable path. Such a single-path scenario
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represents a monopoly in economic terms. Crucially, the ISPs on the same single
path are supposed to cooperate rather than compete, as the decisions by each ISP
contribute to path attractiveness, which in turn benefits all ISPs. For that single-path
case, we can make the following interesting observation about the cooperation
among on-path ISPs:

Theorem 8.4 Suboptimality of Homogeneous Equilibrium. On a single path
with I identical ISPs, the equilibrium attribute sum a+ is generally lower than the
NBS attribute sum a◦, i.e., ∀I ∈N, I ≥ 1. a+ ≤ a◦.

The proof of Theorem 8.4 is provided in Appendix F.4.
Intuitively, Theorem 8.4 states that the cooperation by on-path ISPs suffers from

inefficiency caused by individual selfishness, similar to a prisoner’s dilemma [216].
More precisely, the NBS attribute sum a◦, which would optimize every ISP’s profit
if chosen universally, is not a rational choice for an individual ISP. In particular, if
an ISP n chooses an = a◦, ISP n enables another ISP m to optimize its profit πm
by choosing a lower attribute sum am < a◦, and thus to free-ride on the path
attractiveness created by ISP n. Because of this selfish deviation from the global
optimum, the on-path ISPs converge to the equilibrium attribute prevalence a+,
which is generally lower than the NBS attribute sum a◦, prevents the transit ISPs
from reaping optimal profit, and also reduces the path attractiveness for the path
selectors.

8.3.2.4 Competition Effects

After investigating intra-path cooperation in the preceding section, we now inves-
tigate the effect of inter-path competition on attribute prevalence. In particular, we
are interested in the dependence of the equilibrium attribute a+ on the number of
available paths between an origin-destination pair.

To characterize this dependence, we compare the Nash equilibria in two homo-
geneous markets. First, we consider the competition-free network N1 in Fig. 8.1a,
which is partitioned between Q origin-destination pairs {(mq1, mq2)}q=1,...,Q, each
connected by a single path with I ISPs and obtaining the same demand limit d′.
This network is a set of homogeneous markets, each with one available path and no
competition. Second, we consider the competitive network N2 in Fig. 8.1b, where
each of the Q origin-destination pairs can use all Q available paths.

By identifying the equilibrium attribute value a+(N ) for each network N , we
find that competition has a consistently positive effect on attribute prevalence:
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m11 m12n11 n12 n1I...

m21 m22n21 n22 n2I...

mQ1 mQ2nQ1 nQ2 nQI...

... ...... ... ... ...

(a) Competition-free network N1.

m11 m12n11 n12 n1I...

m21 m22n21 n22 n2I...

mQ1 mQ2nQ1 nQ2 nQI...

... ...... ... ... ...

(b) Competitive network N2.

Figure 8.1: Homogeneous markets with and without inter-path competition.

Theorem 8.5 Attribute Improvement under Homogeneous Competition. The
equilibrium attribute prevalence is never lower in the competitive network N2 than in
the competition-free network N1, i.e., a+(N2) ≥ a+(N1) for all Q ∈N ≥ 1.

The proof of Theorem 8.5 is provided in Appendix F.5.
Surprisingly, the higher attribute values in the competitive equilibrium do not

necessarily come at the cost of lower ISP profits. Instead, the profit of the ISPs may
even increase under competition, which is important because the ISPs partially
control whether they engage in competition at all, namely through link setup
and path announcements. For example, an increase in equilibrium profits through
competition happens if competition causes only a modest increase in attribute
values:

Theorem 8.6 Profit Improvement under Homogeneous Competition. The equi-
librium profit π+(N2) in the competitive network preserves or exceeds the equilibrium
profit π+(N1) of the uncompetitive network if a+(N2) ∈ [a+(N1), a◦(N1)], i.e.,
the equilibrium attribute sum a+(N2) from the competitive network is between the
equilibrium attribute sum a+(N1) of the uncompetitive network and the corresponding
NBS attribute sum a◦(N1).

The proof of Theorem 8.6 is provided in Appendix F.6. In summary, we conclude
that inter-path competition in homogeneous markets is always desirable from the
perspective of path selectors, and potentially desirable from the perspective of
transit ISPs.
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8.3.3 Heterogeneous Markets

The homogeneous markets discussed in the previous section can reflect competition
dynamics among arbitrarily many paths. However, these market models cannot
represent differences between paths that go beyond attribute values. In reality, on-
path ISPs may differ in their importance for the path valuation, in their revenue per
traffic unit, and in their attribute-specific costs. In this section, we study competition
among such heterogeneous ISPs, i.e., every ISP n has arbitrary parameters αnk ∀k ∈
K, ρn, ϕn0, γnk ∀k ∈ K, and γn0. To achieve tractability despite this additional
complexity, we restrict our analysis to markets with at most two paths. Moreover,
since traffic-unit cost is commonly considered negligible for ISPs [250], we consider
especially the attribute-dependent part of this traffic-unit cost to be negligible, i.e.,
ϕnk = 0 ∀n ∈ N, k ∈ K.

8.3.3.1 Intra-Path Dynamics

To understand the attribute-choice dynamics among ISPs in a heterogeneous market,
we first consider a single path in isolation, i.e., a monopoly scenario. As before,
ISPs on a path collectively determine the attractiveness of the path, but optimize
only their individual profit. This selfishness may lead to a sub-optimal global
outcome, both regarding ISP profits and path valuations. To quantify this shortfall,
we first identify the Nash bargaining solution (NBS) for the attribute choices, i.e.,
the attribute values that all on-path ISPs would agree on if they were bound by
the result of a collective negotiation. This Nash bargaining solution represents the
global optimum with respect to the ISP profits.
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Theorem 8.7 Profit Optimum on Heterogeneous Paths. On a path r with het-
erogeneous ISPs, the attributes A◦ form a Nash bargaining solution if and only if

A◦ = arg maxA∈R≥0
Πn∈rπn(A) (8.24)

subject to

vr(A) = v◦r ∀(n, k) ∈ K◦r . ank ≥ 0 ∀(n, k) /∈ K◦r . ank = 0 (8.25)

where v◦r = max

(
αr0, max

(n′ ,k′)∈r×K

√
αn′k′

γn′k′

√
d ∑

n∈r
(ρn − ϕn0)− 1

)
, (8.26)

and K◦r =

{
(n, k) | (n, k) = arg max(n′ ,k′)∈r×K

αn′k′

γn′k′

}
. (8.27)

The proof of Theorem 8.7 is provided in Appendix F.7. More informally, the
attributes A◦ form a Nash bargaining solution if and only if these attributes
optimize the product of all ISP profits while

1. leading to the NBS path valuation v◦r ,

2. containing non-zero attribute values only for attributes (n, k) with maximal
ratio αnk

γnk
,

3. and containing zero attribute values for all other attributes.

To optimize aggregate profit, the on-path ISPs should thus only upgrade the
attribute(s) with maximal ‘return’ αnk/γnk while minimizing the prevalence of all
other attributes. This return ratio αnk/γnk yields the valuation for attribute k of
ISP n, compared to the cost that ISP n incurs for adopting that attribute. The return
ratio also correlates with the optimal path valuation (cf. Eq. (8.26)).

However, aggregate profit is not the objective of selfish ISPs when determining
attribute values. Instead, selfish ISPs optimize their individual profit, and eventually
arrive at the following equilibrium by their non-aligned optimization behavior:
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Theorem 8.8 Nash Equilibrium on Heterogeneous Paths. On a path r with
heterogeneous ISPs, the attributes A+ form a Nash equilibrium if and only if

vr(A+) = v+r ∀(n, k) ∈ K+
r . a+nk ≥ 0 ∀(n, k) /∈ K+

r . a+nk = 0 (8.28)

where v+r = max
(

αr0, max
(n′ ,k′)∈r×K

√
αn′k′

γn′k′

√
d(ρn′ − ϕn′0)− 1

)
, (8.29)

and K+
r =

{
(n, k) | (n, k) = arg max(n′ ,k′)∈r×K

αn′k′(ρn′ − ϕn′0)

γn′k′

}
. (8.30)

The proof of Theorem 8.8 is provided in Appendix F.8. More informally, the
attributes A+ form a Nash equilibrium if and only if these attributes

1. lead to the equilibrium path valuation v+r ,

2. contain non-zero attribute values only for attributes (n, k) with maximal
ratio αnk(ρn−ϕn0)

γnk
,

3. and contain zero attribute values for all other attributes.

Interestingly, the equilibrium in Theorem 8.8 is similar to the Nash-bargaining
solution in Theorem 8.7, but contains one crucial difference: The return ratio
associated with cultivated attributes includes the net revenue per unit of traffic ρn−
ϕn0 of ISP n (Eq. (8.27) vs. Eq. (8.30)). This inclusion reflects that each ISP n
optimizes its individual profit rather than the aggregate profit: When optimizing
an attribute (n, k) for individual profit, an ISP n only considers its individual net
revenue per traffic unit, not the aggregate net revenue per traffic unit, which would
be relevant for aggregate profit.

This difference, albeit subtle, generally leads to different attribute choices in
equilibrium than postulated by the Nash-bargaining solution, meaning that the
transit ISPs generate sub-optimal profits. Unfortunately, also the path selectors
suffer from this selfishness, as the individual-profit optimization leads to less
valuable paths:

Theorem 8.9 Suboptimality of Heterogeneous Equilibrium. On a path r with
heterogeneous ISPs, the equilibrium path valuation vr(A+) never exceeds the NBS
path valuation vr(A◦), i.e., vr(A+) ≤ vr(A◦).

The proof of Theorem 8.9 is provided in Appendix F.9.
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8.3.3.2 Two-Path Equilibria

In the preceding section, the social optimum and the Nash equilibrium are char-
acterized for a single-path scenario, which is exclusively informed by (failing)
intra-path cooperation among selfish ISPs. Since we are also interested in the ef-
fect of inter-path competition, we now consider heterogeneous markets in which
the path selectors can select between two disjoint paths. For these networks, the
single-path equilibrium in Theorem 8.8 can be adjusted as follows:

Theorem 8.10 Nash Equilibrium in Heterogeneous Markets. In a two-path het-
erogeneous market, the attribute values A+ form a Nash equilibrium if and only if
the attribute values A+ satisfy the conditions from Theorem 8.8, but with modified
equilibrium path valuation v+r :

v+r = max
(
αr0, v̂∗r

(
max

(
αr0, v̂+r

)))
(8.31)

where r is the alternative path to r,

v̂∗r (vr) =ψr
√

d
√

1 + vr − (1 + vr), (8.32)

v̂+r =
ψ3

r ψr

(ψ2
r + ψ2

r )
2

(√
d
(
ψ2

r + ψ2
r
)
+

1
4

ψ2
r ψ2

r d2 +
d
2

ψrψr

)
(8.33)

− ψ2
r

ψ2
r + ψ2

r
, and

ψr =max
n∈r
k∈K

√
αnk(ρn − ϕn0)

γnk
. (8.34)

The proof of Theorem 8.10 is provided in Appendix F.10. We note that ψr from
Eq. (8.34) is the square root of the maximum individual return ratio discussed in
the previous section, albeit only among the attributes of path r. In the following,
we refer to ψr as the characteristic ratio of path r.

Similar to §8.3.2, we are again interested in the stability of the equilibrium w.r.t.
the process:

∀n ∈ N, k ∈ K. ȧnk(t) = a∗nk(A−nk(t))− ank(t). (8.35)

However, stability analysis in the case of heterogeneous two-path networks is
complicated by the fact that the equilibrium from Theorem 8.10 is only unique in
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the path valuations {vr}r∈R, but not necessarily unique in the attribute choices A by
the ISPs. Therefore, if the equilibrium is not unique in A, no single equilibrium A+

is asymptotically stable in a narrow sense, as the process in Eq. (8.35) does not
converge to A+ from A(t) in case A(t) already represents a different equilibrium.

Therefore, we focus on the stability of unique equilibria:

Theorem 8.11 Stability of Heterogeneous Equilibrium. The Nash equilibrium A+

from Theorem 8.10 is an asymptotically stable equilibrium of the competition dynamics
in Eq. (8.35) if the equilibrium A+ is unique, i.e., if there is only one attribute on
every path which has potentially non-zero prevalence (|K+

r | = |K+
r | = 1).

The proof of Theorem 8.11 is provided in Appendix F.11.

8.3.3.3 Competition Effects

Based on the equilibria for single-path and two-path markets, we now investigate
the effect of inter-path competition in heterogeneous markets. For this investigation,
we use a similar approach as in §8.3.2.4: We contrast a competition-free network N3,
which consists of two paths r and r, each connecting one origin-destination pair,
with a competitive network N4, where both origin-destination pairs are connected
by both paths. The origin-destination pair connected by path r in the competition-
free network N3 has demand limit dr; hence, the total demand limit d = dr + dr
is distributed over both paths in the competitive network N4. The networks N3
and N4 thus differ in the same manner as the networks N1 and N2 from Fig. 8.1,
except that the different paths may have different length in ISPs, each ISP may have
different parameters, and each origin-destination pair may have a different demand
limit. When contrasting these two networks, we gain the following insight:

Theorem 8.12 Attribute Improvement under Heterogeneous Competition. For
any competition-free network N3 and the corresponding competitive network N4, a
demand limit d exists such that the competitive network N4 has a higher equilib-
rium valuation than the competition-free network N3 independent of the demand
distributions (dr, dr), i.e.,

∃d s.t. ∀dr, dr with dr + dr = d. V+(N4) ≥ V+(N3) (8.36)

The proof of Theorem 8.12 is provided in Appendix F.12.
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In simplified terms, inter-path competition thus affects the attribute values
and the path valuations positively for high-enough demand, given the remaining
network parameters. This condition on demand, however, raises the question
whether competition reduces the network valuation in some circumstances. Indeed,
we find that such a counter-intuitive effect can arise at every demand level if the
remaining network parameters are unfavorable:

Theorem 8.13 Attribute Decline under Heterogeneous Competition. For every
demand distribution (dr, dr), there exist characteristic ratios (ψr, ψr) and path base
valuations (αr0, αr0) such that the competitive network N4 has a lower equilibrium
valuation than the competition-free network N3, i.e.,

∀dr, dr. ∃ψr, ψr, αr0, αr0 s.t. V+(N4) < V+(N3). (8.37)

The proof of Theorem 8.13 is provided in Appendix F.13.
To understand this effect intuitively, we note that an ISP n optimizes its profit

by balancing the marginal revenue and the marginal cost with respect to attribute
prevalence, i.e., adjusts attribute prevalence as long as the adjustment generates
more revenue than cost. In the competition-free scenario of N3, the marginal
revenue and cost of an ISP n with respect to attribute (n, k) are:

∂Rn

∂ank
=

drαnk

(1 + vr)
2 · ρn

∂

∂ank
(Φn + Γn) =

drαnk

(1 + vr)
2 · ϕn0 + γnk (8.38)

In contrast, the corresponding terms for the competitive scenario in network N4
are as follows:

∂Rn

∂ank
=

dαnk · (1 + vr)

(1 + vr + vr)
2 · ρn

∂

∂ank
(Φn + Γn) =

dαnk · (1 + vr)

(1 + vr + vr)
2 ·ϕn0 +γnk (8.39)

On the one hand, competition has a positive effect on marginal revenue ∂Rn/∂ank
by increasing the total amount of attractable demand from dr to d > dr. On the
other hand, the new competition embodied by the alternative-path valuation vr
has a negative effect on marginal revenue. The negative effect predominates if the
alternative-path valuation vr is relatively large and unresponsive to competition,
as the proof of Theorem 8.13 demonstrates. If marginal revenue in fact decreases,
marginal cost decreases less strongly as ρn ≥ ϕn0. Given negative marginal profit,
the profit of ISP n is thus optimized by a lower attribute prevalence ank, which
translates into decreasing path value.
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8.4 a model instance based on real-world data

In this section, we demonstrate how to instantiate our competition model from §8.2
to investigate a large-scale network containing multiple intertwined markets. To
that end, we construct a topology approximating the Internet core and a corre-
sponding traffic matrix in §8.4.1. Furthermore, we consider two ISP attributes in
the competitive dynamics, namely internal bandwidth and clean-energy share, and
estimate appropriate model parameters in §8.4.2 and §8.4.3, respectively. Attribute-
independent parameters are estimated in §8.4.4.

Importantly, we note that estimating highly realistic parameters for the model
goes beyond the scope of this chapter, as the scarcity of publicly available data
and the complexity of real-world business practices considerably complicates this
estimation. Therefore, the goal of the following parameter estimation is to place
the parameters in the right order of magnitude, especially in relation to each other,
rather than to determine each parameter highly realistically. Interestingly, our
sensitivity analysis in §8.5 suggests that such an approximate estimation might be
sufficient to yield useful predictions.

8.4.1 Network Topology and Demand

To investigate the effects of competition in practically interesting, large-scale settings
while keeping the complexity of the simulation manageable, we extract a network
topology that roughly approximates the Internet core from a public dataset. In
particular, we rely on a CAIDA dataset containing 12 300 autonomous systems
(ASes), their economic relationships, and the geolocation of their interconnections
(i.e., inter-domain interfaces) [53]. From this dataset, we extract the topology of the
2000 most interconnected ASes by iteratively removing the lowest-degree ASes.

In this reduced topology, we aim at finding the 5 shortest paths between every
origin-destination pair of ASes. For scalability, we can only consider AS paths with
at most 4 AS hops, which is not a strong limitation: The paths in our topology
only represent the core-traversing segments of whole Internet paths, which have
an average length of around 5 hops (and decreasing) [126]. Moreover, for both
scalability and practical relevance, we only consider paths that are Gao-Rexford-
compliant [91], i.e., are compatible with the economic self-interest of ASes regarding
monetization of traffic. With these constraints, we can identify 5 paths for ∼ 52.4%
of AS pairs in the topology.

While only a subset of all AS pairs, these pairs of closely located ASes are
disproportionately relevant for the competition dynamics, as they account for a
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substantial share of traffic given the gravity-like nature of Internet traffic [220].
Generally, gravity models predict that the traffic demand d(n1,n2)

between two
ISPs n1 and n2 is proportional to the product of the ‘masses’ m1 ·m2 of the two ISPs
divided by the squared distance r2

12 between the ISPs:

d(n1,n2)
∝ G12 =

m1 ·m2

r2
12

. (8.40)

In order to synthesize a traffic matrix for our purpose, we concretize this gravity
model as follows. First, we calculate the mass mn of an AS n as the number of
distinct IPs in all prefixes owned by AS n and by the ASes in the customer cone
of AS n. This information is available via the datasets ‘Routeviews Prefix-to-AS
Mapping’ [55] and ‘AS Relationships’ [54], both from CAIDA. Second, we determine
the distance r12 for each AS pair (n1, n2) as the average number of hops in the
5 paths connecting the AS pair. Third, we calculate the gravity G12 according
to Eq. (8.40) for every AS pair (n1, n2). Finally, we allocate the total Internet traffic
volume of 170 Tbps [178] to the AS pairs (n1, n2) according to the relative size
of G12.

8.4.2 Attribute 1: Internal Bandwidth

To instantiate the model, we define the ISP attributes K that are affected by the
competitive dynamics, and the corresponding model parameters. As an intuitive
example of desirable ISP attributes, we consider the internal bandwidth of an ISP
(in Gbps) the first such attribute (k = 1). If the ISPs along a path have a large
bandwidth capacity, these ISPs are likely able to absorb sudden traffic surges,
tolerate equipment failures, handle large traffic flows, and in general deliver a high
quality of service; hence, the internal bandwidth of on-path ISPs correlates with
the attractiveness of the given path.

8.4.2.1 Valuation

This valuation by path-selecting ISPs is quantified by the valuation function vr1,
quantifying the valuation of a bit traversing path r given the internal bandwidth of
on-path ISPs. This valuation function vr1 is characterized by the parameters αrn1,
giving the valuation of a bit traversing ISP n on path r for a unit of the internal
bandwidth of ISP n. For this quantification, we rely on two empirical findings.
First, the average US consumer transmits 536.3 GB of data per month [202], and is
willing to pay 94 USD per month for a 1Gbps connection [162]. Hence, we arrive at
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a monthly willingness-to-pay of around w = 0.17 USD per GB at the quality of a
1Gbps connection. With this willingness-to-pay w, we determine the bandwidth
valuation parameters αrn1, namely by defining αrn1 = w/(|r| ·mn), where |r| is the
number of ASes on path r (averaging the internal bandwidth across on-path ISPs)
and mn is the number of IPs in the customer cone of AS n (correcting for the number
of end-points sharing the bandwidth). Multiplied with the internal bandwidth an1,
these valuation parameters thus approximate the valuation per bit traversing ISP n
given the internal bandwidth of ISP n. Furthermore, the bandwidth valuation
function vr1 is also characterized by the base valuation α′r0 of path r. However, since
a path only has value in terms of bandwidth if the on-path ASes have non-zero
internal bandwidth, we choose α′r0 = 0.

8.4.2.2 Cost

Apart from increasing valuation by path selectors, providing bandwidth also has
a cost. However, it is difficult to quantify the cost of providing a Gbps of internal
bandwidth, as this cost heavily depends on the way of provision (leasing or
physically installing new capacity), on the necessary installation procedures (e.g.,
length of cables to be newly laid), on the location where capacity should be added,
and on numerous other aspects. Hence, we rely on the simple insight that the
cost of providing a Gbps of connectivity is likely lower than the corresponding
willingness-to-pay by consumers (94 USD per Gbps per month [162]), as ISPs would
go out of business otherwise. Hence, we randomly vary the cost parameter γn1
between 0 and 94 USD per Gbps per month in our simulations, for all n ∈ N.
Importantly, the provision of bandwidth only affects the demand-independent
cost Γn of an ISP n, as providing a certain bandwidth capacity causes the same cost
independent of the actually experienced demand. Hence, we can also define the
demand-dependent cost parameter for the bandwidth attribute k = 1: ϕn1 = 0 for
all n ∈ N.

8.4.2.3 Attribute Bounds.

Using internal bandwidth as one of multiple attributes leads to an implausible
model prediction in the case where all ASes on a path r have zero internal band-
width (an1 = 0 ∀n ∈ r), but some non-zero values for other attributes. In that case,
the valuation function vr might still assign some non-zero valuation and some
demand to path r, although the zero-bandwidth path r is clearly worthless. To
avoid this implausible case of the model, we place a lower bound on the bandwidth
attribute an1 ∀n ∈ N. This lower bound is given by 10% of the demand experienced
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by AS n if the demand of every origin-destination pair was equally distributed
among the available 5 paths:

∀n ∈ N. an1 ≥
0.1
5
· ∑

r∈R. n∈r
r∈R(n1,n2)

d(n1,n2)
(8.41)

8.4.3 Attribute 2: Clean-Energy Share

Path-selection preferences are not exclusively related to transmission performance
(such as internal bandwidth of on-path ISPs), but may also reflect ESG considera-
tions [57, 164]. For example, in carbon-intelligent routing [11, 274], path selection
takes into account the carbon emission that results from data transmission. More
precisely, the path-specific transmission carbon intensity, i.e., the volume of carbon
emission per bit of transmitted data on a given path, affects path selection. To
investigate the effect of competition on this carbon intensity, we choose the share
of clean energy used by an ISP (in percent) as the second attribute (k = 2) for our
simulations, i.e., an2 ∈ [0, 1] ∀n ∈ N.

8.4.3.1 Transmission carbon intensity

The clean-energy share attributes of on-path ASes determine the carbon intensity of
a path as follows. First, any AS-level path r must be transformed into a router-level
path sr, which is possible by means of the CAIDA ITDK dataset [56]. For simplicity,
we assume that the intra-AS router-level path srn in AS n is the shortest router-level
path between the two AS interconnections derived from the AS-level path r. For
any intra-AS path srn, we determine the energy intensity ern, i.e., the amount of
consumed electricity per bit transmitted on path srn. This energy intensity ern can
be calculated from the number of routers and the covered distance of path srn,
given by the CAIDA ITDK dataset, and the energy-intensity values for various
devices, as reported by Heddeghem at al. [116]. Then, we calculate the maximum
transmission carbon intensity crn,max of any intra-AS path srn by multiplying the
corresponding energy intensity ern with the the energy carbon intensity cmax of
the most carbon-intensive electricity, namely 875 gCO2/kWh for coal-generated
electricity [127]. This maximum transmission carbon intensity crn,max thus quantifies
the carbon emission associated with the transmission of a bit across path srn if
AS n used maximally carbon-intensive electricity. Finally, we derive the actual
transmission carbon intensity crn of any intra-AS path srn as the product of the
maximum transmission carbon intensity crn,max and the dirty-energy share of ISP n,
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i.e., 1 − an2. The carbon intensity cr of a path r is the sum of carbon-intensity
values crn of the constituting intra-AS paths srn ∀n ∈ r:

cr(A) = ∑
n∈r

crn(A) = ∑
n∈r

crn,max · (1− an2) = ∑
n∈r

ern · cmax · (1− an2). (8.42)

8.4.3.2 Valuation

This carbon-intensity calculation also informs the valuation vr2, which quantifies
the valuation of path r exclusively with respect to carbon emissions. In fact, we
understand vr2 as an affine function of the negative carbon intensity of path r:

vr2(A) = ∑
n∈r

αrn2an2 + α′′r0 = −∑
n∈r

pCO2 crn(A) + qr

= ∑
n∈r

(
pCO2 · crn,max · an2 − pCO2 · crn,max

)
+ qr,

(8.43)

where pCO2 is the cost of emitted CO2, chosen as 90 USD per ton according to
the EU emission-trading scheme [80], and qr is a constant that ensures the non-
negativity and comparability of the valuation (see below). From Eq. (8.43), we
can determine the valuation parameters αrn2, describing the valuation of ISP n’s
clean-energy share on path r, as pCO2 · crn,max. The base valuation α′′r0 is determined
based on two considerations. First, the valuation function vr2 must be consistently
non-negative. Second, the valuation function must allow a meaningful comparison
between paths R(n1, n2) connecting the same AS pair (n1, n2): For example, if all
ISPs use zero clean energy, a path with higher energy intensity should still be
valued less than a path with lower energy intensity. Conversely, if all ISPs use
perfectly clean energy, all paths should be valued identically. To achieve these
properties, we determine α′′r0 as follows:

α′′r0 = −∑
n∈r

pCO2 · crn,max + qr

= −∑
n∈r

pCO2 · crn,max + max
r′∈R(n1,n2)
r∈R(n1,n2)

∑
n′∈r′

pCO2 · cr′n′ ,max. (8.44)

With such determined vr2, we can formalize the complete path-valuation vr as
the sum of the attribute-specific valuation functions vr1 and vr2. Since αrnkank yields
a valuation per bit for both attributes k ∈ {1, 2}, the attribute-specific valuation
functions are compatible.
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8.4.3.3 Cost

To estimate the costs associated with the clean-energy share of an ISP n, we rely
on the analysis of the levelized cost of energy (LCOE) of different electricity-
generation technologies, performed by Lazard [158]. According to the Lazard
analysis, electricity from low-carbon sources (solar, wind, nuclear) is on average
g = 3.375 USD per MWh more expensive than electricity from high-carbon sources
(coal, gas). This cost penalty, together with the average energy intensity of all
intra-AS paths in AS n, yields the parameter ϕn2 relevant for demand-dependent
cost:

ϕn2 = g · 1
|R(n)| · ∑

r∈R(n)
ern, (8.45)

where R(n) = {r ∈ R | n ∈ R}. Multiplied with the clean-energy share attribute an2,
the parameter ϕn2 yields the extra cost per transported bit that AS n incurs by using
clean energy.

Regarding demand-independent cost, we note that the idle-power requirement of
network devices plays an important role, as this requirement generates electricity
bills even in absence of demand. The idle-power consumption un of a complete AS n
can be estimated from the number of devices in AS n [56], the power consumption
of network devices [116], and an average idle-power requirement of 85% [129].
This idle-power consumption un, together with the extra cost g for clean energy,
determines the parameter γn2 relevant for demand-independent cost: γn2 = g · un.

8.4.4 Attribute-Independent Parameters

In addition to the attribute-specific parameters in Sections 8.4.2 and 8.4.3, the
attribute-independent parameters ρn, ϕn0 and γn0 also appear in our model.

The parameter ρn quantifies the revenue per transported bit of AS n. To estimate
this parameter, we use a top-down approach: We divide the global annual revenue
of wholesale Internet backbone providers (45.2 billion USD in 2019 [256]) by the
amount of global annual Internet traffic (433 exabyte in 2019 [178]), and arrive at an
average revenue of ρ = 0.104 USD per GB. For simplicity, we use this ρ as revenue
parameter ρn for every ISP n ∈ N.

The parameter ϕn0 describes the marginal cost of AS n per transported bit,
excluding extra marginal cost due to clean-energy usage (cf. §8.4.3). As this marginal
cost is commonly understood to be ‘essentially zero’ [250], we determine ϕn0 =
0 ∀n ∈ N.
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Conversely, the attribute-independent fixed cost γn0 of AS n can be quite substan-
tial. However, since we are mainly interested in the attribute-optimization behavior
of ASes under competition, and γn0 does not affect this optimization behavior,
we abstain from estimating γn0, i.e., use γn0 = 0 in our simulations. As a result,
the absolute value of the profit function πn is not meaningful, which we take into
account for the result discussion in §8.5.2.

8.5 simulation

Section 8.3 theoretically illustrates the diverse results of quality competition among
ISPs. These results include both positive and negative effects of competition on
attribute prevalence and profits, depending on the concrete topologies of competing
paths in the considered markets. In this section, we investigate which types of effect
are observable if competition is introduced in a large-scale topology where transit
ASes (autonomous systems, corresponding to ISPs) simultaneously compete in
multiple markets. To that end, we run simulation experiments described in §8.5.1
for the instance of the competition model constructed in §8.4, and discuss the
results in §8.5.2.

8.5.1 Experiments

Since the parameters estimated in §8.4 are afflicted with considerable uncertainty,
we conduct our experiments without being overly reliant on the exact estimated
parameter values. More precisely, we generate 10 different sets of model parameters
by randomly modifying each model parameter y such that it lies between 0 and 2y
in virtually all cases. We achieve this modification by randomly sampling each
model parameter y′ from the following restricted normal distribution, based on the
corresponding estimated parameter y:

y′ ∼ max
(
N
(

y,
y2

9

)
, 0
)

. (8.46)

For each random sample of parameters, we investigate the effect of increasing
competition intensity on the attribute-value choice of transit ASes. In our experiments,
the intensity of competition corresponds to the number of usable paths between any
AS pair. This number of usable paths is varied between 1 and 5 across experiments,
where the case of 1 path corresponds to a monopoly scenario. In each simulation
experiment, we thus simulate the competitive dynamics given a set of randomly
sampled model parameters and given a certain intensity of competition.
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Each simulation experiment amounts to computing round-robin better-response
dynamics [44], where all ASes consecutively adjust their attribute values in the
direction which increases their profit. This discrete process is an approximation of
the continuous ODE process in Eq. (8.23). Moreover, the process can be understood
as reflecting bounded rationality [236], as we assume that ASes can only identify
profit-improving rather than profit-optimal attribute values. The simulation is
terminated once the competitive dynamics have converged upon an equilibrium,
i.e., each round only causes negligible change in the attribute values A. The attribute
values A+ in the equilibrium then represent the results of the experiment.

8.5.2 Results

The results of the experiments described in §8.5.1 are visualized in Figs. 8.2–8.4.
The error bar of any data point in these figures illustrates the variance of the
respective aggregate result across the 10 random parameter samples. Interestingly,
the variance of the aggregate results is limited, although the variance in individual
parameters is considerable. This observation indicates that our results are not highly
sensitive to the model parameters from §8.4, and suggests that an approximate
estimation of model parameters might be sufficient to yield useful predictions.

The central question in our analysis is: How does the intensity of competition
affect the attribute values and the ISP profits? Our theoretical investigation in §8.3
indicates that the competitive dynamics can both increase and decrease these
indicators compared to a monopoly scenario, depending on network properties.
Hence, we investigate which type of effect is predominant for the large-scale
network from §8.4.

In this analysis, we distinguish three groups of ASes that differ in their topology
rank, namely tier-1 ASes (ASes that have no provider), tier-2 ASes (ASes that
have only tier-1 providers), and tier-3 ASes (ASes that have only tier-1 and tier-
2 providers). Since these AS groups differ in their market power, the effect on
competition on attributes and profits for these groups may be different.

8.5.2.1 Attribute Prevalence

Regarding competition effects on attribute prevalence, we observe the following:

Effects on transit ASes. Fig. 8.2 confirms that an increasing number of options
for the path-selecting ASes intensifies competition between transit ASes, which
then improve their attribute values in response. In particular, about half of ASes
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Figure 8.2: Under increasing competition, more ASes improve their attribute values or their
profit compared to a single-path scenario, independent of their topology level.
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Figure 8.3: Competition tends to raise the mean attribute values across ASes (for all AS tier
groups), compared to a monopoly situation. However, attributes may be affected
differently by competition due to differences in valuation and cost.

improve both their attribute values given 5 available paths, whereas only 20%
improve their attributes in a duopoly scenario (compared to a monopoly scenario).
Note that some ASes may decrease their attribute values under competition for the
counter-intuitive reasons explained in §8.3.3.3.

Moreover, the general level of attribute prevalence is raised by competition,
which is implied by the increasing global average of attribute values in Fig. 8.3.
The internal-bandwidth attribute is more strongly affected by this average gain
than the clean-energy–share attribute, because (i) the bandwidth attribute is not
upper-bounded, and (ii) the bandwidth attribute has zero demand-dependent cost.

Effects on path selectors. The average improvement in attributes translates into
a more attractive offer for path selectors, i.e., source ASes and end-hosts. More
precisely, the most attractive path between each AS pair tends to become more
attractive as competition increases: Fig. 8.4 shows that 75% of AS pairs obtain
access to a more valuable path if two paths instead of a single path are available
(increasing maximum valuation), irrespective of the tier of the path-selecting AS.
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Notably, we would expect that around 50% of AS pairs obtain a second path of
higher quality in the absence of dynamic competition effects. Hence, the increasing
maximum valuation is a combined effect of multi-path availability and competition.

Moreover, in absence of competition effects, a second path can only decrease, but
not raise the minimum valuation across available paths. However, we observe that
for 40% of AS pairs, both paths in a two-path scenario are more highly valued than
the single path in a monopoly scenario, which suggests that competition raises the
value of the previously monopolistic path. However, as the number of available
paths increases, the tendency of additional paths to decrease the minimum quality
becomes more visible.

Finally, these offer improvements materialize for all tiers of path-selecting ASes.

Differences in market power. Intriguingly, the higher market power of tier-1 ASes is
not visible in Fig. 8.2, as tier-1 ASes are equally likely as lower-tier ASes to improve
their attributes. However, the market power of tier-1 ASes becomes apparent
in Fig. 8.3, which indicates that tier-1 ASes in competition improve their attributes
to a lower extent than ASes on lower tiers.

8.5.2.2 Profits

Regarding competition effects on profits, we make the following observations:

Effects on transit ASes. Increasing path diversity and competition lead to increasing
profits for a substantial share of ASes (cf. Fig. 8.2). At 5 available paths per AS pair,
75% of ASes increase their profits. This insight is surprising, given that competition
is traditionally expected to increase consumer welfare and to reduce producer
profits. In an ISP market, however, profits may increase because competition is
modulated by path diversity. Such path diversity not only allows selecting ASes
to select more different paths, but also allows transit ASes to attract and monetize
traffic from more selecting ASes, increasing profit. Importantly, such an increase in
attracted demand for an ISP does not necessarily reduce the attracted demand of
another ISP, as the volume of total demand is elastic in our model.

Differences in market power. Interestingly, the profit increase under competition
among 5 paths is more pronounced for tier-2 and tier-3 ASes than for tier-1 ASes.
The reason is that the tier-1 ASes become more likely to be circumvented as path-
selecting ASes obtain additional path options, and lower-tier ASes can thus attract
more demand.
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Figure 8.4: On average, competition raises the the attractiveness of the most and the least
attractive path that connect two ASes, independent of the source-AS tier.

8.5.2.3 Sensitivity to Model Functions

In our model, we assume affine functions for both the path-valuation functions vr
and the cost functions Φn and Γn. To assess the impact of this assumption, we
rerun the simulations by replacing linear dependencies within these functions. In
particular, we replace ank in vr by sub-linear

√
ank (cf. Eq. (8.1)), and replace ank

in Φn and Γn by super-linear a2
nk (cf. Eq. (8.4)). The results are presented in Fig. 8.5.

Intriguingly, the results for the non-affine functions closely match the results
for affine functions in a qualitative sense, i.e., competition improves the attribute
values, profits, and path options for a large share of ASes. Quantitatively, the
largest difference concerns the mean increase in attribute values (cf. Fig. 8.5b
vs. Fig. 8.3), which is considerably lower for the bandwidth attribute for the non-
affine functions. However, this effect is to be expected because the non-affine
functions make attributes both less valuable and more costly (if ank > 1, as for the
bandwidth attribute), and thus less attractive to invest in.

8.6 related work

General competition models. Internet competition is frequently studied by means
of the three fundamental competition models from the economic literature. First,
Cournot competition [66] describes multiple firms that produce the same homoge-
neous good, individually determine the quantity to be produced, and thus indirectly
determine the market price. Cournot competition suggests that in comparison with
a monopoly, a duopoly increases the quantity of the good and reduces its price,
indicating that competition benefits consumers. In the second competition model,
Bertrand competition [78], firms also produce a homogeneous good, but directly
set a price instead of a quantity. Moreover, the firm with the lowest price acquires
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Figure 8.5: Equilibrium results for competitive dynamics with non-affine functions for valua-
tion and cost.

the whole market. Hence, Bertrand competition is considered more suitable to
analyze highly competitive markets. Lastly, Stackelberg competition [242] is similar
to Cournot competition, but is suitable for hierarchical markets in which follower
firms determine their production quantity after observing the quantity produced
by a leader firm. All competition models have been adapted to networked mar-
kets, i.e., markets in which each segment of consumers can only be served by a
corresponding subset of firms [23, 34, 187].

Our competition model is more strongly inspired by the logit-demand model [31],
which originates from econometrics, can more directly represent competition be-
tween goods with different characteristics, and has been used in research on Internet
transit pricing [247]. Still, the market in our model is networked, as determined by
the network topology.

Internet competition models. To study Internet competition in particular, Shakkottai
and Srikant [234] leverage Bertrand and Stackelberg competition to theoretically
analyze the effect of competition in different levels of the Internet, i.e., for tier-1,
tier-2, and local ISPs. Their model shows that competition may exert downwards
pressure on prices, and an assimilating pressure on the quality-of-service (QoS)
levels offered by different ISPs. These insights are confirmed by a subsequent line
of simulation-based research [170, 244]. These studies analyze the ISP competition
induced by virtualized access networks and by the ChoiceNet proposal [260], which
describes a marketplace for transit services. Using both theoretical analysis and
simulation, Nagurney and Wolf [192] expand on a study by Zhang et al. [270]
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to investigate the intertwined competition dynamics among service providers (in
Bertrand competition) and among network providers (in Cournot competition).
In this analysis, the offers of service providers and network providers differ in
both price and quality, and converge to an equilibrium describable by variational-
inequality conditions.

In this chapter, we extend the previous work in a number of aspects. First, our
model acknowledges that path quality may be determined collectively by multiple
selfish on-path ISPs, and reveals the inefficient cooperation within a path due to
selfishness. In contrast, previous work assumed that network service is bought from
a single access/transit provider, and is thus effectively limited to one-hop paths.
Second, path quality in our model depends on multiple underlying attributes,
whereas previous work abstracts path quality in a single attribute. This fine-grained
view of quality attributes is valuable, as it reveals how different attributes are
affected differently by competition (cf. §8.3.3). Third, our model represents the
internal cost structure of ISPs in a detailed manner, as it (i) distinguishes demand-
dependent and demand-independent cost, and (ii) formalize the cost dependence
on quality attributes, unlike previous work. Fourth, we make an effort to find
realistic parameters for our large-scale simulations, whereas the parameters in
previous simulation-based works are arbitrary. Finally, we explicitly investigate the
differences between differing degrees of competition, and find network examples in
which more intense competition leads to previously undocumented effects, namely
increasing profits and decreasing path quality.

ISP cooperation. The economic dynamics between between network entities that
collectively provide connectivity has been studied with the lens of cooperative
game theory [40], i.e., assuming that agents within a group choose rules which
are enforced thereafter. Such considerations can inform financial settlement among
ISPs in a coalition, where settlement mechanisms based on the Shapley value [169]
or ISP characteristics [271] have been proposed. In our work, we discuss intra-path
dynamics using non-cooperative game theory, as setting up a binding contract
among the ISPs on every path is difficult in practice. Moreover, our model also
reflects that multiple coalitions (paths) are in competition, which is missing from
previous work.

8.7 conclusion

ISPs determine the quality attributes of their connectivity offer (e.g., performance
metrics, security features, sustainability properties) in line with their profit objective
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and alternative offers by other ISPs. The presence of such alternative offers (i.e.,
competition) tends to improve path quality, as we demonstrate in this chapter. We
provide evidence for this positive effect of ISP competition with an extensive theo-
retical analysis, based on a new game-theoretic model, and a large-scale simulation,
based on empirical data. Our theoretical analysis suggests that an augmented path
choice incentivizes transit ISPs to improve path quality, especially if ISPs have simi-
lar cost structures or traffic demand is high (Theorems 8.5 and 8.12). Interestingly,
this higher investment in quality attributes does not necessarily reduce transit ISP
profits, as entering competition (by connecting to new customers) also allows transit
ISPs to attract revenue-generating traffic from new customer segments (Theorem
8.6). While these positive effects do not materialize in unfavorable circumstances
(Theorem 8.13), our simulation-based case study indicates largely positive effects
of competition in practice.

Our analysis does not only reveal the macroscopic effects of competition, but
also formalizes the rational attribute choice for ISPs, which can inform ISP busi-
ness strategies. In particular, we obtain three main recommendations for quality
investment from our analysis:

• Invest in attributes with low fixed cost: Theorem 8.1 suggests that the optimal
extent of a quality attribute correlates with the ratio of demand-dependent
attribute-specific cost to total attribute-specific cost. Hence, the lower the
demand-independent (fixed) cost of an attribute, the higher the optimal
investment in the attribute. For example, renting internal bandwidth on-
demand tends to improve profit more than a fixed bandwidth installation.

• Invest exclusively in attributes with high return: Theorem 8.1 also shows a
correlation between the optimal attribute extent and the attribute return, i.e.,
the attribute-specific net revenue per traffic unit, divided by the attribute-
specific cost. Theorem 8.10 even suggests specialization in heterogeneous
markets with negligible demand-dependent cost, i.e., only the path attribute
with the highest return should be invested in, while all less attractive attributes
should be abandoned.

• Engage in competition and on-path cooperation: Both our theoretical analysis
(Theorem 8.6) and our simulations (§8.5) show that engaging in competition
by connecting to new customers tends to increase transit ISP profit, as the
revenue from newly attracted traffic generally outweighs the costs of com-
peting in the new markets. Furthermore, transit ISPs should also engage in
cooperation with other on-path ISPs by coordinating attribute investment.
Such coordination leads to achievement of the Nash bargaining solution, and
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therefore to higher profits and higher path quality, which also benefits path
users (Theorems 8.4 and 8.9). However, to achieve stable cooperation among
selfish ISPs, additional work based on mechanism design is needed.



Part III

O U T L O O K A N D C O N C L U S I O N





9
F U T U R E W O R K

In this chapter, I discuss possibilities to extend and refine the research work in this
thesis, oriented around the areas of network performance (§9.1) and ISP economics
(§9.2).

9.1 network performance

The models and insights in Part i naturally raise a number of follow-up research
questions:

Influence of network topology. In Chapter 2, the inefficiency of self-interested load-
oriented path selection is investigated in two different topologies, namely a network
of parallel links and a ladder topology. These two topologies are crucial examples,
as they illustrate that detailed path-load information can have positive and neg-
ative effects on the global efficiency, respectively. Still, the analysis of these two
topologies does not provide a rigorous understanding of the topology properties
that determine the inefficiency of self-interested path selection and the effects of
path-load information. Achieving such an understanding is an interesting task for
future work, as topology properties that induce inefficient traffic distributions are
valuable in predicting the performance effects of end-host path selection in the
Internet.

Different path-selection behaviors. In both Chapters 2 and 3, path selection is studied
under the assumption of rational agents that select paths exclusively based on path
load. While this assumption is standard in the literature on selfish routing, future
work might uncover relevant insights by modifying this assumption. For example,
end-hosts may only possess bounded rationality, e.g., they may select the minimal-
load path in a subset of available paths, or may show byzantine behavior, e.g.,
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they may select random paths. Alternatively, end-hosts may also select paths based
on load-independent properties, e.g., security-relevant or geographic properties.
In this respect, it will be especially interesting to combine the enhanced selfish-
routing models for end-host path selection from Chapters 2 and 3 with the quality-
competition model from Chapter 8 that reflects the economic reaction of network
operators to that path selection.

Path-selection performance beyond the worst case. Chapter 4 aims at identifying the
performance damage of load oscillation in the worst-case, and therefore focuses on
the worst-case scenario of greedy load-adaptive path selection between disjoint and
identical paths with unsplittable traffic. While this worst case is relevant to obtain
performance guarantees, the worst-case performance effects may be substantially
more negative than the performance effects under realistic conditions. For example,
the performance effects of end-host path selection would likely improve given
stable path-selection strategies, latency-based congestion-control algorithms, or
heterogeneous path options. These more friendly settings may be studied in future
work to obtain insights into path-selection performance beyond the worst case.

Time bounds for congestion-control convergence. Both in Chapters 5 and 6, the con-
vergence properties of BBR are investigated with a stability analysis based on fluid
models. This stability analysis yields information regarding the existence of conver-
gence and regarding the asymptotic convergence time, e.g., the fluid dynamics may
converge exponentially fast. However, the stability analysis as performed in this
work does not provide bounds on the convergence time in explicit terms, which
would be valuable in practice. To estimate such a convergence, future work will
benefit from additionally integrating concepts such as finite-time stability [32].

Combination of congestion-control models. While Chapters 5 and 6 demonstrates that
fluid models are a powerful tool in congestion-control analysis, fluid models might
benefit from combination with different models that compensate the abstraction of
packet-level phenomena. As mentioned in Chapter 5, the notion of discrete packets
is crucial to capture jitter, which is not captured by the smooth evolution curves
present in fluid models. In contrast, models from queuing theory (e.g., M/M/1)
represent packet arrivals as stochastic processes, and thus capture the fluctuation
of the queue length that results in jitter. As such, queuing-models might be more
suitable to analyze the performance improvements by the constant bit-rate traffic
that is usable in presence of bandwidth-reservation systems. As these improvements
are likely based on jitter reduction, combining queuing models and fluid models
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is a promising approach for more comprehensive congestion-control modelling in
future work.

Application-demand modelling. Chapters 5 and 6 of this thesis follow the entire lit-
erature on congestion control in assuming that the flows employing the congestion-
control algorithms have infinite data to send. As a result, congestion-control algo-
rithms are never application-limited in the academic analysis, although application
limits determine to which extent the sending rate prescribed by congestion control is
actualized. Therefore, application limits have significant performance implications,
and would ideally also be integrated into congestion-control models. However,
such an integration requires models for the evolution of application demand over
time, which are challenging to create and may vary from application to application.
Still, approximate application-demand models might be feasible for prominent
application types, which is an interesting task for future work.

Further novel congestion-control algorithms. This thesis is motivated in part by the
emergence of the novel congestion-control algorithms (CCAs) BBR, PCC, and Copa.
All these algorithms are based on the idea of latency-sensitive congestion control
which does not yield to competing flows employing a loss-based CCA (unlike
earlier latency-sensitive CCAs such as Vegas). Since these algorithms thus share
a fundamental similarity, this thesis focuses on BBR as an example of this new
generation of CCAs. Still, BBR is different from PCC and Copa in its mechanisms;
therefore, the insights into BBR performance likely do not fully apply to the other
two algorithms. Hence, it will be interesting to investigate also PCC and Copa with
the fluid-model approach refined in this thesis.

9.2 isp economics

Part ii presents my model-based work on ISP economics, which could be extended
in the following ways:

Path-aware agreements with multiple objectives. Chapter 7 demonstrates how to
structure interconnection agreements in path-aware Internet architectures in order
to pursue the main ISP goal of profit optimization. However, ISPs have secondary
goals beyond profit generation, e.g., to maximize link utilization, to attain quality-of-
service (QoS) benchmarks, or to enable secure communication. Satisfying these ob-
jectives might require further clauses to interconnection agreements, going beyond
the flow-volume targets and the monetary compensation proposed in Chapter 7.
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Designing such agreement conditions related to non-profit objectives is an exciting
avenue for future work.

Assessment of different competition models. As Chapter 8 mentions, the model for
quality competition in the chapter departs from previous competition models with
a more fine-grained formalization of quality attributes, ISP cost structures, and the
hybrid cooperation-competition environment in the Internet. While this detailed
modelling plausibly increases the accuracy of model predictions, rigorously as-
sessing the predictive accuracy of the various competition models is a complex
endeavor in itself. Notably, ISP competition models predict the prices, quality offers,
and profits of ISPs based on information about the network topology and costs.
Hence, if model predictions should be compared to ground truth, ground-truth
information about actual transit prices, transmission quality, and ISP profits is re-
quired; however, such information is not available in a systematic and detailed form.
This limited information requires future work on model-validation approaches that
require little ground-truth data.

Generalization of competition model. Interestingly, the new competition model in
Chapter 8 is not only applicable to ISP competition, but in general to settings in
which coalitions of selfish entities stand in competition. While ISPs and paths repre-
sent the entities and coalitions in the ISP market, competition in other markets arises
between firms that form value chains. Our model allows investigating complex
economic phenomena such as the interaction between firms along a value chain, or
the effect of overlapping value chains. Hence, it is an intriguing opportunity for
future work to investigate whether the findings for the ISP market in Chapter 8

translate to other economic sectors.
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C O N C L U S I O N

To conclude this thesis, I revisit the research questions initially presented in §1.2,
and formulate an answer to these questions based on the implications of my
doctoral research. These answers are again organized by the topic areas of network
performance (§10.1), and ISP economics (§10.2). The thesis is then concluded by
some final remarks in §10.3.

10.1 network performance

Regarding network performance, the introduction poses the following research
questions:

Q 1 Path-Selection Efficiency. How efficient are the traffic distributions across
networks paths that can be expected from path selection by self-interested and uncoor-
dinated end-hosts?

As Chapter 2 demonstrates, the efficiency of traffic-distribution equilibria pro-
duced by self-interested path selection depends both on the perspective and on the
characteristics of the network. Regarding the perspective, end-hosts and network
operators are affected by traffic distributions in different ways. Hence, end-hosts
and network operators experience a different Price of Anarchy, i.e., the different
stakeholders rate the efficiency of traffic-distribution equilibria differently when
comparing to the stakeholder-specific social optimum.

However, while the perspectives of end-hosts and network operators are not iden-
tical, the findings in Chapter 2 suggest that the interests of the stakeholder groups
are well-aligned, because both groups are similarly affected by changes in network
characteristics. For example, if the traffic-distribution efficiency improves for end-
hosts thanks to more detailed load information about paths, network operators
also experience an efficiency improvement. This similarity also applies to networks
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where more detailed load information surprisingly induces less efficient traffic
equilibria than the basic latency information obtainable from RTT measurements.
Moreover, end-hosts and network operators are also similarly affected by another
network property, namely the scale of the network: In large-scale networks such as
the Internet, the efficiency induced by detailed path-load information approaches
the efficiency induced by basic latency information, for both end-hosts and net-
work operators. Fortunately, Chapter 2 indicates that the efficiency associated with
this basic latency information is near-optimal in realistic network topologies, as
confirmed by both theoretical worst-case bounds and simulation results.

However, this equilibrium-based efficiency is only relevant under the condition
that the path-selection dynamics in fact converge to traffic-distribution equilibria.
This caveat underlines the relevance of the next research question:

Q 2 Path-Selection Stability. Under which conditions does path selection by
self-interested and uncoordinated end-hosts converge to steady traffic distributions?

This stability question is answered by the new notion of equilibria on path-
selection strategies (PSS equilibria), introduced in Chapter 3: A path-selection
strategy, which prescribes path selection over time based on network observations,
is adopted by a self-interested end-host only if no other path-selection strategy
allows the end-host to improve performance, given the path-selection strategies
adopted by all other end-hosts. Hence, if a path-selection strategy is (i) such a
PSS equilibrium strategy under universal adoption, and (ii) a stable strategy that
produces convergence to the equilibrium, then stable path selection can be expected
from self-interested end-hosts. However, the game-theoretic analysis in Chapter 3

demonstrates that the stable path-selection strategies, which have been proposed in
previous research to achieve convergence under outdated load information, are not
rational strategies under universal adoption.

In a narrow game-theoretic understanding, path selection by self-interested
end-hosts is thus bound to produce load oscillation, unless network operators
take active measures to stabilize path selection. However, these active measures
introduce overhead, which must be compared to the performance cost of the load
oscillation itself. This insight naturally begets the next research question:

Q 3 Performance under Unstable Path Selection. How does unstable end-host
path selection affect the efficiency and fairness in networks?

This question is tackled in Chapter 4 with an axiomatic method. This method
allows to analytically rate the performance of congestion-control algorithms with
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and without coupled path selection, where the path selection is greedy and therefore
unstable. This comparison-based approach reveals that the performance effects
of unstable path selection significantly depend on the specifics of the congestion-
control and path-selection routines. For example, highly responsive path selection,
which quickly switches to a supposedly more attractive path, can reduce link
utilization and increase packet loss compared to no path selection at all; in contrast,
moderately responsive path selection actually improves these metrics compared
to a path monopoly. Conversely, highly responsive path selection is preferable
to moderately responsive path selection in terms of fairness. Moreover, these
performance effects depend on the congestion-window adaptation on path switch:
If the size of the congestion window is significantly reduced when switching paths,
packet loss is reduced, but link utilization suffers.

Hence, unstable end-host path selection does not necessarily reduce any single
performance indicator compared to path pre-determination, but leads to (i) undesir-
able trade-offs between performance objectives, and (ii) performance unpredictabil-
ity for network operators who may not know the specific parameters underlying
end-host path selection. Therefore, avoiding instability in path selection appears to
be a worthwhile goal, which is pursued by the next research question:

Q 4 Path-Selection Shaping. How can network operators inform or incentivize
selfish end-hosts to perform path selection in an efficient and stable manner?

Judging from the previous research questions, this research question is answered
differently for the goals of efficiency and stability.

Efficiency. Regarding efficiency, the findings related to Q 1 suggest that the ef-
ficiency of self-interested path selection cannot be substantially improved by the
provision of detailed path-load information, at least in Internet-scale networks.
However, the urgency of improving this efficiency is also quite low, as self-interested
path selection possesses equilibrium traffic distributions with near-optimal effi-
ciency. To close this small efficiency gap, a more effective tool than information
provision might be congestion pricing [232]. However, given that traffic distribu-
tions already tend to be near-optimal without pricing, any efficiency benefits of
such smart data pricing are limited, and will thus likely be considered insufficient
to tackle the practical and economic challenges that have traditionally held back
price-based traffic shaping [200].

Stability. Regarding stability, the answer to Q 2 suggests that stability is unlikely
to spontaneously arise in self-interested path selection. Instead, stability can be
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incentivized with the incentive-compatible stabilization mechanisms from Chapter 3.
These stabilization mechanisms suppress load oscillation by presenting rewards or
imposing costly requirements for using certain ingresses of autonomous systems
(ASes). These incentivization mechanisms are designed with limited overhead to
be applicable under the high traffic speeds in the Internet core.

While such stabilization mechanisms are thus capable to suppress oscillation,
their necessity can be questioned from two angles.

Rationality assumption. First, stabilization mechanisms are only necessary if self-
interested end-hosts do not adopt stable, but irrational path-selection strategies.
This rationality assumption is central to the game-theoretic perspective, but might
be considered overly pessimistic in practice. This skepticism is supported by the
observation that end-hosts in various areas of networking comply with prescribed
actions that are desirable but irrational from an individual perspective, e.g., in
congestion control [16] or file-sharing protocols [165]. Indeed, the rationality of
users or application developers might be bounded in practice, as deviating to more
attractive actions is prevented by reasons that are not commonly accommodated
in game-theoretic models, e.g., inertia, incompetence, or idealism. However, the
limited understanding of these factors, which violate rationality in a narrow sense,
introduces considerable risk when relying on these factors. Notably, non-compliance
for self-interest is definitely observable in the Internet, e.g., in the tendency of web
browsers to open multiple flows to circumvent per-flow fairness [41] or in the in-
creased aggressiveness of vendor-specific congestion-control implementations [179].
In this regard, the rationality assumption of game-theoretic models is a worst-case
assumption, and incentive-compatible stabilization mechanisms are a uniquely
viable tool in a worst case.

Intra-domain adaptation. Second, stabilization mechanisms would not be required
if suppressing oscillation was more costly than only alleviating the consequences of
said oscillation. More precisely, instead of avoiding that traffic oscillates between AS
ingress interfaces, an AS might employ traffic engineering to dynamically rebalance
the traffic flows across its internal network infrastructure [84, 177]. Thereby, an AS
would continuously adapt to an oscillating traffic matrix rather than shape this
traffic matrix. However, dynamic rebalancing by traffic engineering is limited by
both its response time and by the capacity of paths through the internal network.
Hence, intra-domain traffic engineering likely benefits from being complemented
by traffic-steering mechanisms that stabilize the traffic matrix.
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While strategies for path selection thus play an important role for network
performance, strategies for the sending-rate adaptation, i.e., congestion-control
algorithms are equally essential. This relevance motivates the following research
questions:

Q 5 Congestion-Control Performance. How efficient, fair, and stable are the new
congestion-control algorithms?

Q 6 Congestion-Control Methodology. What kind of evaluation methods can
provide reliable insights into CCA behavior under the highly diverse conditions found
in the Internet?

To investigate Q 6, this thesis explores and applies three different evaluation meth-
ods for congestion control. First, Chapter 4 describes congestion-control dynamics
(with and without path selection) as a discrete-time process. Second, Chapter 5 and
Chapter 6 describe congestion-control dynamics by means of fluid models. Third,
Chapters 5 and 6 also use experimental evaluations based on network emulation,
mostly to validate the insights from the fluid models.

Each of these evaluation methods has strengths and shortcomings. For one, the
discrete-time model is straightforward and allows theoretical analysis, in particular
the identification of dynamic equilibria. However, the discrete-time assumption
in the model is artificial, the feedback in the model is coarse-grained (e.g., binary
packet-loss indicator per time step), and queuing dynamics are neglected. All of
these shortcomings are remedied by the continuous-time fluid model, which also
allows theoretical stability analysis and provides a basis for efficient simulation.
However, the fluid model introduces higher complexity than the discrete-time
model, and still cannot represent packet-level phenomena such as jitter due to
the smoothness of fluid traffic. The full spectrum of congestion-control perfor-
mance, including packet-level phenomena, is of course revealed by experimental
evaluations. Unfortunately, experimental evaluations are expensive to conduct for
Internet conditions, as the necessary test-bed must include a large-scale topology
and high-throughput hardware.

Among these methods, this thesis applies a combination of fluid modelling
and small-scale experimental validation to answer Q 5, i.e., to evaluate the new
congestion-control algorithms (CCAs). In particular, this combination of techniques
yields robust and relevant insights into the behavior of the BBR algorithm. On the
one hand, some of these insights confirm previous research, e.g., regarding the
high loss caused by BBRv1 in shallow buffers, the resulting unfairness towards



272 conclusion

loss-based CCAs, and the successful elimination of this issue by BBRv2 under a
drop-tail queuing discipline. On the other hand, some insights yielded by fluid
modelling are previously undocumented, e.g., the unfairness of BBRv2 towards
loss-based CCAs under RED, buffer-size-dependent bufferbloat behavior by BBRv2,
and the rate oscillation in BBRv1 when competing with loss-based CCAs. All
these insights are not only revealed by fluid-model simulation and confirmed by
experiments, but also rigorously proven by means of theoretical stability analysis.

These observations allow two conclusions. First, BBR – as the most prominent
example of the new CCAs – is not free from performance issues, but is continu-
ously improved by new releases. This ongoing refinement is likely to continue, as
evidenced by the release of BBRv3, which is imminent at the time of writing [52].
Second, fluid models are a powerful yet under-explored tool for analyzing the per-
formance of contemporary CCAs, as these models allow both accurate simulation
and theoretical stability analysis.

10.2 isp economics

Regarding ISP economics, Chapter 1 poses the following research question:

Q 7 Interconnection Agreements. How should interconnection agreements among
ISPs be structured and negotiated under end-host path selection in the Internet?

As described in Chapter 7, ISP interconnection agreements benefit from relaxed
technical constraints if end-host path selection is implemented through path-aware
networking. More precisely, if forwarding directives in data packets eliminate the
need for BGP convergence, ISP interconnection agreements can deviate from the
Gao-Rexford conditions (GRC), which are necessary for BGP convergence. To make
such GRC-violating agreements acceptable to self-interested ASes, such agreements
might additionally include restrictions on exchanged traffic volumes or procedures
for monetary compensation, as some peering agreements today already do. If such
additional conditions can make these agreements viable, Internet path diversity
benefits to an enormous extent, as our topology analysis in Chapter 7 shows: When
introducing mutuality agreements in a BGP-based Internet, the median AS gains
access to three times the number of short paths (with 3 AS hops), 50% of ASes gain
a path with lower latency, and 35% of ASes gain a path with higher bandwidth.

While ISP interconnection agreements thus benefit from new possibilities in
path-aware networks, the negotiation of agreements based on path awareness is
complicated by a game-theoretic issue that already hampers ISP negotiation today.
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In particular, ISP agreements can only be optimized with respect to fairness and
efficiency if the revenue structure and the cost structure of the involved ISPs are
known. Since this information is private, an ISP can strategically misrepresent how
an agreement would affect its revenue and cost, and thereby aim at agreement
terms that are more favorable from an individual perspective, but inefficient and
unfair from a global perspective. This problem can be remedied by our automated
bargaining mechanism BOSCO, which intelligently restricts the offers that the
negotiating parties can make.

While this exploration of new interconnection opportunities in Chapter 7 assumes
a path-aware Internet, the analysis also provides relevant insights on today’s
Internet. First, the topology analysis in Chapter 7 quantifies the cost of the Gao-
Rexford conditions in terms of path diversity. Second, the BOSCO bargaining
mechanism is not only applicable to novel agreements in path-aware networks, but
can also be applied to classic interconnection agreements in today’s Internet, which
also confront the same game-theoretic challenge of private information.

Still, the study of interconnection agreements in Chapter 7 covers only one aspect
of ISP cooperation, namely the collaborative construction of paths by ISPs. Once
these paths are announced, ISPs also need to contribute to the transmission quality
of the paths together with other on-path ISPs, especially as the provided paths
stand in competition with other paths. This hybrid environment of cooperation and
competition gives rise to the last two research questions:

Q 8 Intra-Path Cooperation. How is the quality of Internet paths affected by
cooperation among self-interested on-path ISPs if end-hosts select paths based on
quality?

Q 9 Inter-Path Competition. How is the quality of Internet paths affected by ISP
competition if end-hosts select paths based on quality?

These research questions are tackled in Chapter 8, which proposes a game-
theoretic model of ISP quality competition that is applicable under path selection
by both ISPs (as in BGP) and end-hosts. This model captures how ISPs adapt
their quality attributes to optimize profit in path-based competition, where quality
attributes are understood broadly as performance, security, environmental, and
economic ISP properties. Notably, ISPs can affect each other’s profit with their
quality-attribute investments both positively (if the ISPs are on a shared path)
and negatively (if the ISPs are on competing paths). This distributed optimization
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by interdependent ISPs leads to a number of interesting phenomena that are
revealed by the model through rigorous proofs. First, competition between paths
has an improving effect on quality attributes if ISPs have similar cost structures
or demand is sufficiently high, but may have a negative effect if the competing
ISPs have sufficiently different characteristics. Second, under common conditions,
ISPs optimize their profit by exclusively investing in the single quality attribute
with the best cost-benefit ratio. Third, the cooperation among ISPs on a shared
path suffers from a prisoner’s dilemma: If all on-path ISPs make the attribute
investments that optimize the aggregate profit on the path, some ISPs can increase
their profit by reducing their attribute investment. As a result, the equilibrium
attribute investments are lower than the profit-optimal investments, which not
only causes sub-optimal global profit, but also damages the users of the path, i.e.,
end-hosts.

In summary, the analysis from Chapter 8 focuses on the quality competition
among ISPs under path selection, independently of whether the path selection is
performed by ISPs or by end-hosts. Still, the model can capture the increasingly
prevalent end-host path selection through appropriate parameter selection. First,
the model includes valuation parameters, which determine how strongly any
quality attribute is valued by the path-selecting entities, i.e., how strongly the
attribute attracts traffic. These valuation parameters are likely different if paths are
selected by end-hosts rather than ISPs. Second, if end-host path selection is enabled
in a strong form by path-aware networks, the different mode of path discovery
substantially increases the number of competing paths between any two ASes. Since
the number and the composition of paths are represented as model parameters, a
shift to path-aware networking can be accommodated by changes to the underlying
topology in the model.

10.3 final remarks

This thesis presents an analysis of the impact of two contemporary Internet trends,
namely end-host path selection and novel congestion-control algorithms, on traffic
patterns in the Internet. This shift in traffic patterns has numerous effects on network
performance and ISP economics, where these effects may be subtle and even
counter-intuitive. In this thesis, many of these effects are identified, characterized,
and quantified with a model-based approach, which provides a unique perspective
and mathematical guarantees in all investigated areas. In particular, my modelling
underlines the relevance of (i) inefficient equilibria and (ii) stability issues of
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networked dynamics, which play an essential role for both network performance
and ISP economics in a future Internet.
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A
A P P E N D I X O F C H A P T E R 2

a.1 parallel links : end-host optimum

In the end-host optimum F∗, it holds that for every end-host ek, k ∈ {1, ..., K},
the marginal cost of the path over the link β is equal to the marginal cost of any
path over a link αi, i ∈ {1, ..., m}. Using this insight, the end-host optimum can be
derived by the solution of the following equation:

∂

∂F(k,D),β
C∗ =

∂

∂F(k,D),αi

C∗ (A.1)

As it holds that

∂

∂F(k,D),ℓ
C∗ =

∂

∂ fℓ
C∗, (A.2)

the optimal link-flow pattern f∗ is obtained by solving:

∂

∂ fβ
( fβ · f p

β ) =
∂

∂ fαi

( fαi · dp) ⇐⇒ (p + 1) · f p
β = dp, (A.3)

which yields f ∗β = d/ p
√

p + 1.
Any path-flow pattern F∗ that produces a link-flow pattern with fβ = f ∗β and

∑αi
fα1 = d− f ∗β is thus optimal from the perspective of end-hosts. The total cost of

such an optimal path-flow pattern F∗ is given by

C∗(F∗) = f ∗β · f ∗β
p + (d− f ∗β ) · dp = dp+1

(
1− p/(p + 1)(p+1)/p

)
(A.4)
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a.2 parallel links : pi equilibrium

In the network from Figure 2.4, the selfish cost function of an end-host ek can be
simplified to

C∗(ek)
(F) = F(k,D),β · f p

β + ∑
αi

F(k,D),αi
· dp (A.5)

.
Since it holds that ∂/∂F(k,D),β fβ = 1, the marginal selfish costs for the paths

over link β and αi are given by

∂/∂F(k,D),β C∗(ek)
(F) = f p

β + F(k,D),β · p · f p−1
β

∂/∂F(k,D),αi
C∗(ek)

(F) = dp.
(A.6)

An equilibrium under the PI assumption is characterized by the equality of these
selfish marginal costs.

Note that for every end-host ek, the marginal selfish cost of every path over a link
αi is the same, namely dp. By marginal selfish cost equality, the marginal selfish
costs ∂/∂F(k,D),β

(
C∗(ek)

)
must be equal to dp for every end-host ek and thus also

equal across all end-hosts. This condition is only satisfied if every end-host ek has
the same flow on the path over link β, i.e., F(m,D),β = F(n,D),β for all end-hosts em, en.
As fβ = ∑ek

F(k,D),β, the fact ∑ek
F(k,D),β = K · F(k,D),β implies F(k,D),β = fβ/K for

every end-host ek.
This knowledge about F(k,D),β allows to simplify the selfish marginal cost equation

and to compute the PI equilibrium. By inserting fβ/K for F(k,D),β, the selfish
marginal cost equality reads

f p
β + fβ/K · p · f p−1

β = dp. (A.7)

This equation yields the PI equilibrium link flow f+β = d/ p
√

p/K + 1. The PI
equilibrium F+ is thus given by every path-flow pattern that satisfies the following
conditions for every end-host ek:

F(k,D),β = f+β /K ∧ ∑
αi

F(k,D),αi
= (d− f+β )/K. (A.8)

The cost term C∗ of the PI equilibrium F+ to end-hosts is thus

C∗(F+) = dp+1
(

1− (p/K)/(p/K + 1)(p+1)/p
)

. (A.9)
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a.3 ladder network : pi equilibrium

In order to compute the Price of Anarchy under the PI assumption for a general
ladder network, we start by computing the Price of Anarchy for the simple ladder
network of H = 2. Conforming to the PI equilibrium conditions in Definition 2.3,
the PI equilibrium is given by the solution of the following equilibrium equation
system E2 that formalizes the marginal cost equality:

E2 =





∂/∂F′1
(

F′1 · f p
h1

)
= ∂/∂F1

(
F1 ·

(
f p
h2
+ t( fv11 + fv12)

))

∂/∂F′2
(

F′2 · f p
h2

)
= ∂/∂F2

(
F2 ·

(
f p
h1
+ t( fv11 + fv12)

))

=





f p
h1
+ F′1 p f p−1

h1
= f p

h2
+ t( fv11 + fv12) + F1

(
p · fh2 + 2t

)

f p
h2
+ F′2 p f p−1

h2
= f p

h1
+ t( fv11 + fv12) + F2

(
p · fh1 + 2t

)

(A.10)

where F′1 = F(11,12),h1
and F1 = F(11,12),v11h2v12

and the analogous abbreviations have
been made by F′2 and F2 for the direct and indirect path flow of end-host e21. Due to
demand constraints, it holds that F′1 = d− F1 and F′2 = d− F2. Due to the symmetry
of the equation system, it is possible to conclude that F′1 = F′2 and F1 = F2. Since
fh1 = F′1 + F2 and fh2 = F′2 + F1, we obtain

fh1 = F′1 + F2
Demand

= F′1 + d− F′2
Symmetry

= F′2 + d− F′2 = d, (A.11)

and a symmetric derivation for fh2 = d. Furthermore, the flow on the vertical
links v11 and v12 can be expressed as follows: fv11 = fv22 = F1 + F2 = 2F1. The
equilibrium equation system E2 can thus be reduced to the single equation:

dp + (d− F1) · λ = dp + 2t · (2F1) + F1 ·
(
λ + 2t

)

⇐⇒ λd− (6t + 2λ)F1 = 0 ⇐⇒ F1 =
λd

6t + 2λ

(A.12)

where λ = p · dp−1.
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Based on this solution for the path flow F1 = F(11,12),v11h2v12
, all other path flows

can be derived, which yields the following terms for the two perspectives on the
Price of Anarchy:

PoA∗+H=2(d, t, p) =
2
(
(d− F1) · f p

h1
+ F1 ·

(
f p
h2
+ t · ( fv11 + fv12)

))

2d · fh1

=
(d− F1) · dp + F1 · (dp + t · 4F1)

d · dp

=
dp+1 + 4t(λd/(6t + 2λ))2

dp+1

PoA#+
H=2(d, t, p) =

2
(

f p
h1
+ t · ( fv11 + fv12)

)

2 · f p
h1

=
dp + t · (4F1)T

dp =
dp + 4tλd/(6t + 2λ)

dp

(A.13)

The Price of Anarchy for all ladder networks with H = 2 is obtained by comput-
ing an upper bound in terms of demand d and parameter t:

PoA∗+H=2(p) = 1 + p/12 PoA#+
H=2,max(p) = 1 + p/3 (A.14)

a.4 ladder network : proof of theorem 2 .3

We start by observing that PoA#+
H,max is given by the limit in t and is only dependent

on the flows on vertical links v:

PoA#+
H,max = 1 + lim

t→∞
(t ·∑

v
fv)/(H · dp), (A.15)

where we used that limt→∞ ∑h f p
h = H · dp as vertical links become infinitely

expensive. We need only characterize the sum of vertical link flows fV = ∑v fv,
for which we use an argument based on the structure of the equilibrium equation
system EH .

For setting up EH , we consider Figure A.1 which illustrates numerically computed
equilibria for some H > 2. The figure shows the traffic distribution on the horizontal
links of a ladder network, where different-color flow shares correspond to flows
of different end-hosts. Figure A.1 shows two insights that are relevant for setting
up EH . First, the path-flow pattern F+ only contains non-zero flows on paths that
deviate at most one ladder level from the originating end-host (for high enough t).
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h1 h2 h3

0.0

0.5

1.0

fhi H = 3

h1 h2 h3 h4

0.0

0.5

1.0

fhi H = 4

Figure A.1: Traffic distribution over horizontal links of a ladder network in PI equilibrium
F+ (for p = 2, t = 1, H = 3, 4).

Second, the path-flow pattern is symmetric with respect to the horizontal axis of the
ladder network. The variables in EH can thus be assigned to the indirect path flows
as displayed in Figure A.2. Variable assignments for higher H work analogously to
Figure A.2a (for odd H) and Figure A.2b (for even H).

With these variables and the knowledge about the equilibrium traffic distribution,
the equation system EH can be set up for all values for H. In the following, we
demonstrate the construction of the equation systems for H = 3, H = 4, and the
general case.
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h1

F1

h2

F2
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h3

F1

v11 v12

v21 v22

(a) H = 3

h1

F1

h2

F2

F3

h3

F2
h4

F1

v11 v12

v21 v22

v31 v32

(b) H = 4

Figure A.2: Variable assignments to indirect path flows in a ladder network for computing
the PI equilibrium.

H = 3. In this case, the PI equilibrium is given by the solution of the following
equilibrium equation system E3 encoding the marginal cost equality:

E3 =





∂/∂F′1
(

F′1 · f p
h1

)
= ∂/∂F1

(
F1 ·

(
f p
h2
+ t( fv11 + fv12)

))

∂/∂F′2
(

F′2 · f p
h2

)
= ∂/∂F2

(
F2 ·

(
f p
h1
+ t( fv11 + fv12)

))

=





f p
h1
+ F′1 p f p−1

h1
= f p

h2
+ t( fv11 + fv12) + F1

(
p · fh2 + 2t

)

f p
h2
+ F′2 p f p−1

h2
= f p

h1
+ t( fv11 + fv12) + F2

(
p · fh1 + 2t

)

=





dp + (d− F1) λ = dp + 2t(F1 + F2) + F1
(
λ + 2t

)

dp + (d− 2·F2) λ = dp + 2t(F1 + F2) + F2
(
λ + 2t

)

=





λd− (4t + 2λ) · F1 − 2t · F2 = 0

λd− (4t + 3λ) · F2 − 2t · F1 = 0

(A.16)



A.4 ladder network : proof of theorem 2 .3 285

H = 3. In this case, the equilibrium equation system E4 is given by the following
equation system, where the demand between end-hosts e21 and e22 is composed
as F2 + F′2 + F3 = d:

E4 =





∂/∂F′1
(

F′1 · f p
h1

)
= ∂/∂F1

(
F1 ·

(
f p
h2
+ t( fv11 + fv12)

))

∂/∂F′2
(

F′2 · f p
h2

)
= ∂/∂F2

(
F2 ·

(
f p
h1
+ t( fv11 + fv12)

))

∂/∂F′2
(

F′2 · f p
h2

)
= ∂/∂F3

(
F3 ·

(
f p
h3
+ t( fv21 + fv22)

))

=





f p
h1
+ F′1 p f p−1

h1
= f p

h2
+ t( fv11 + fv12) + F1

(
p · fh2 + 2t

)

f p
h2
+ F′2 p f p−1

h2
= f p

h1
+ t( fv11 + fv12) + F2

(
p · fh1 + 2t

)

f p
h2
+ F′2 p f p−1

h2
= f p

h3
+ t( fv21 + fv22) + F3

(
p · fh3 + 2t

)

=





dp + (d− F1) λ = dp + 2t(F1 + F2) + F1
(
λ + 2t

)

dp + (d− F2 − F3) λ = dp + 2t(F1 + F2) + F2
(
λ + 2t

)

dp + (d− F2 − F3) λ = dp + 2t(2F3) + F3
(
λ + 2t

)

=





λd− (4t + 2λ) · F1 − 2t · F2 = 0

λd− (4t + 3λ) · F2 − 2t · F1 − λ · F3 = 0

λd− (6t + 2λ) · F3 − λ · F2 = 0

(A.17)

General case. Table A.1 lists the equation systems EH for all H. All equations in a
system EH are of the form Ea,b(Fc, Fd, Ff ) = 0, where

Ea,b(Fc, Fd, Ff ) = λd− (at + bλ) · Fc − 2t · Fd − λ · Ff . (A.18)

The set E(EH) contains all left-hand side terms Ea,b of the equations in EH . Let the
sum Σ(EH) of an equation system EH be the equation ∑E(EH) Ea,b = 0. It holds that
for all H, Σ(EH) is the equation

(H − 1)λd− (6t + 2λ) · F1 − (6t + 3λ) ∑
2≤u≤H−1

Fu = 0. (A.19)

Solving equation Σ(EH) for FV = ∑1≤u≤H−1 Fu, we obtain

FV =
(H − 1)λd

ρ(t) · (6t + 3λ)
(A.20)
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Ladder height H Equation system EH

H = 2
{

E6,2(F1, 0, 0) = 0

H = 3





E4,2(F1, F2, 0) = 0

E4,3(F2, F1, 0) = 0

Even H ≥ 4
Odd j, 3 ≤ j ≤ H − 3





E4,2(F1, F2, 0) = 0

E4,2(F2, F1, F3) = 0

E4,2(Fj, Fj+1, Fj−1) = 0

E4,2(Fj+1, Fj, Fj+2) = 0

E6,2(FH−1, 0, FH−2) = 0

Odd H ≥ 5
Odd j, 3 ≤ j ≤ H − 4





E4,2(F1, F2, 0) = 0

E4,2(F2, F1, F3) = 0

E4,2(Fj, Fj+1, Fj−1) = 0

E4,2(Fj+1, Fj, Fj+2) = 0

E4,2(FH−2, FH−1, FH−3) = 0

E4,3(FH−1, FH−2, 0) = 0

Table A.1: Equation systems EH characterizing PI equilibrium for all H.
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where limt→∞ ρ(t) = 1.
Due to the horizontal and vertical symmetry of the PI equilibrium on the ladder

network, it holds that fV = 4 · FV . Inserting fV into PoA#+
H,max yields

1 + lim
t→∞

t
H · dp ·

4(H − 1)λd
ρ(t)(6t + 3λ)

= 1 +
2(H − 1)

3H
· p. (A.21)

Taking the limit of this term for H → ∞ results in

PoA#+
max = 1 +

2
3
· p. (A.22)
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A P P E N D I X O F C H A P T E R 3

b.1 example of pss equilibrium analysis

In this section, we illustrate the calculation of strategy costs of the form set out in
§3.2.4 by investigating whether the strategies described in §3.2.3 form PSS equilibria.
Proving that a strategy profile is not a PSS equilibrium amounts to finding a deviant
strategy that reduces an end-host’s cost. Indeed, there exist such deviant strategies
for the strategy profile v with v(σg) = q and v(σa) = 1− q for all q ∈ [0, 1].

q ≤ 1/2. For the case q ≤ 1/2, there is no inversion of link costs and a deviant agent
can always assume that fπ(t) > fπ̃(t) if the agent perceives fπ(t− T) > fπ̃(t− T).
The best strategy given such a strategy profile thus consists of switching to the
cheaper path π̃ in a deterministic and immediate fashion, as in the greedy strategy
σg presented in §3.2.3. Every delay of switching simply translates into more time
needlessly spent on a strictly more expensive path. As the greedy strategy σg
allows an end-host to reduce its cost, v(σg) would quickly rise from q as more
end-hosts adopt this strategy. Therefore, any strategy profile with q ≤ 1/2 is not a
PSS equilibrium.

q > 1/2. For q > 1/2, the periodic dynamics are structured as

fα(t) =




(A + q− 1) · e−rt′ + 1− q if t+(t)

W is even,

−(A + q− 1) · e−rt′ + q otherwise,
(B.1)

where t′ = t− t+(t),

W =
ln(2erT − 1)

r
, and A =

(
1
2
− q
)

e−rT + q. (B.2)

289
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For showing that the anticipating strategy σa allows an end-host to improve its
cost if q ∈ (1/2, 1], we construct a mixed strategy σp(q′). This strategy σp(q′) plays
the greedy strategy σg with probability q′ and the anticipating strategy σa with
probability 1− q′. We show that an end-host minimizes its cost by choosing q′ = 0
given q ∈ (1/2, 1

]
, i.e, the anticipating strategy σp(0) = σa is the better strategy

than the greedy strategy σp(1) = σg.
As mentioned in §3.2.4, the cost of a strategy in periodic oscillating systems

is computed over a single periodic interval. For the dynamics above, it is even
sufficient to calculate the strategy cost between two turning points t+0 and t+1 ,
as the costs of the paths α and β would simply be reversed in the subsequent
turning-point interval. Without loss of generality, we thus operate on a turning-
point interval [t+0 , t+1 ] during which path α is perceived to be the cheaper path and
fα(t+0 ) < fβ(t+0 ).

The time-dependent strategy cost C(σp(q′), t) for the deviant agent is calculated
based on a linear combination of the two path costs, weighted by q′:

C(σp(q′), t) =
1
R

∫ t+R

t

[
q′ · cα(s) + (1− q′) · cβ(s)

]
ds (B.3)

We further assume R ≤W, as any choice of higher R forces an agent to select a path
that is sub-optimal during at least time R−W. Using this rationality constraint,
it is possible to derive a formula for the strategy cost C(σp(q′)|O) that is a linear
function of q′,

C(σp(q′)|O) = m · q′ + γ (B.4)

where γ is constant w.r.t. q′ and the slope m is

m =
R
[
(2q− 1)(W − R) + 2a

r (e
−rW + 1)

]
+ 4a

r2 (e−rR − 1)
RW

, (B.5)

using the abbreviation a = A + q− 1. The cost function steepness is assumed to
be p = 1, as the integral in Eq. (B.3) is not tractable otherwise.

The slope m can be shown to be positive for all R > 0, r ∈ [0, 1], and T ≥ T(R),
where T(R) is such that W = R. Showing this property is feasible in a two-step
proof, where we first show m(T) > 0 for T = T(R) and then ∂/∂T m(T) > 0 for
all T > T(R). The positiveness of m implies that the minimum of the strategy cost
C(σp(q′)|O) is achieved for q′ = 0, i.e., the anticipating strategy σa.

Given a strategy profile with q > 1/2, the adoption rate q of the greedy strategy
would thus quickly decrease in favor of the anticipating strategy σa. Therefore, no
strategy profile v with q > 1/2 represents a PSS equilibrium.
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b.2 proof of insight 3 .1 : no pss equilibrium by convergent strategy

We can numerically show that there exist parallel-path systems where the greedy
strategy σg ensures a lower cost than an underdamped convergent strategy σc, given
universal adoption of the convergent strategy. In fact, the parallel-path system O
assumed in Fig. 3.2 is such an parallel-path system where the strategy σc in an
underdamped fashion does not yield the optimal cost. Using the definition of
strategy cost introduced in §3.2.4, we calculate both C(σc|O) and C(σg|O).

In the calculation of C(σc|O), we choose uc(π, t |πt) as defined in Eq. (3.14).
Furthermore, we can assume that y(πt, t | σc) = fπt(t), because of universal
adoption of σc: An agent applying strategy σc allocates its traffic in accordance
with all other agents and its probability distribution of being on a certain path is
equivalent to the general traffic distribution over the paths. As for the calculation
of C(σg|O), we know that

ug(π, t | π̃) =





1 if cπ(t− T) < cπ̃(t− T),

0 otherwise,
(B.6)

and

y(π, t | σg) =





1 if cπ(t− T) = minπ′ cπ′(t− T),

0 otherwise.
(B.7)

In Fig. B.1, the comparison of strategy costs for σc and σg are shown for all
R ∈ [0, 1] and the mentioned parallel-path system O. Clearly, given the parallel-
path system O where agents universally apply an underdamped convergent strategy
σc, any single agent would have an incentive to switch to a greedy strategy σc. The
underdamped convergent strategy σc is thus not a PSS equilibrium.

b.3 proof of insight 3 .2 : no pss equilibrium by mate

The flow-allocation vector F∼ before projection is given by (using the abbreviation
cπ for cπ(t− T)):

F∼ =

(
Fα − γ · cα

Fβ − γ · cβ

)
. (B.8)

The projection on the feasible allocation set is the intersection of the line describ-
ing the feasible set F′β = d− F′α and the line through F∼ which is orthogonal to the
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Figure B.1: The underdamped convergent strategy σc may be an inferior strategy (Parallel-
path system O = ({α, β}, r = 1, p = 1, T = 2, A0 = 1, v = {σc 7→ 1})).

feasibility line. If representing this latter line in the form F′β = m · F′α + q, we know
that m = 1 because of orthogonality, and that Fβ − γ · cβ = m · (Fα − γ · cα) + q,
which implies the line:

F′β = F′α +
(

Fβ − Fα − γ(cβ − cα)
)
. (B.9)

This intersection is at F′α = 1/2 ·
(
d − Fβ + Fα + γ(cβ − cα)

)
. The change in an

end-host’s flow on path α is thus

F′α − Fα = γ/2 ·
(
cβ(t− T)− cα(t− T)

)
. (B.10)

If path α appears to be the more expensive path, this change is performed by the
re-evaluating end-hosts on path α, and otherwise by the re-evaluating end-hosts
on path β. Multiplying by the number of re-evaluating end-hosts thus yields the
aggregate dynamics

∂ fα

∂t
=





r · γ
2 · ∆c(t− T) · fα(t) if ∆c(t− T) ≤ 0

r · γ
2 · ∆c(t− T) · fβ(t) otherwise

(B.11)

where ∆c(t− T) = cβ(t− T)− cα(t− T).
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b.4 cross stability analysis

To prove Lemma 3.3, we show that stability at approximately equal load arises
given universal adoption of path-selection strategy σC, i.e., end-hosts use a path if
they have a registration for that path and only use a backup path in case of a path
failure.

Approximate Wardrop equilibrium. For stability at approximately equal load with
parameter ϵ, we assume that an end-host does not reallocate traffic at time t if
the imbalance between paths ∆ f (t − T) = | fα(t − T) − fβ(t − T)| is less than ϵ
and thus the perceived cost difference is too small to justify path migration. If
the imbalance ∆ f (t) can be kept below ϵ for a period of length T, i.e., ∆ f (t) < ϵ
for all t ∈ [t̃, t̃ + T), there will be no reallocation during the following interval
[t̃ + T, t̃ + 2T) and, by extension, also none in all subsequent intervals.

Balancing trials. In any balancing trial with start ti, there will result a traffic
imbalance ∆ f (ti) = | fα(ti)− fβ(ti)|. This imbalance remains constant during time
[ti, ti + T), as the end-hosts only perceive the imbalance at time ti + T. Thus, if
∆ f (ti) < ϵ, stability at approximately equal load is reached and enforcement of the
mechanism can be suspended. However, if ∆ f (ti) ≥ ϵ, stability is not achieved and
the balancing trials are repeated until ∆ f (ti) < ϵ.

Since an end-host selects each path with probability 1/2, the distribution of fα(ti)
on [0, 1] can be approximated with a normal distribution N possessing mean µ =
1/2 and variance σ2 that depends on the number of end-hosts. If Φ( fα) is the CDF of
N , then the probability that ∆ f (ti) < ϵ is p<ϵ = Φ((1 + ϵ)/2)−Φ((1− ϵ)/2) > 0.
With an increasing number of balancing trials over time t, the probability that
∆ f (ti) < ϵ goes to 1 for t→ ∞. Therefore, for t→ ∞, it also holds that ∆ f (t) < ϵ,
which is stability at approximately equal load. Lemma 3.3 thus holds.

CROSS without puzzles. Indeed, the CROSS mechanism eventually achieves stabil-
ity at approximately equal load even without relying on the computational puzzles
mentioned in §3.6.1. However, it is desirable that oscillation can already be avoided
during the execution of the mechanism. In particular, if a balancing trial fails and
∆ f (ti) ≥ ϵ, no oscillation should take place until the start of the next balancing trial,
i.e., during time [ti + T, ti+1). If the imbalance ∆ f (ti) becomes visible to end-hosts
at time ti + T, the end-hosts on path π̃ with a backup registration for path π could
migrate. However, since CROSS ensures that an end-host with a backup registration
only uses its backup path in case of a path failure (§3.6.2), no migration takes place
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during [ti + T, ti+1). Therefore, in absence of a path failure, the load distribution
remains constant during the whole duration [ti, ti+1) of a balancing trial.
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c.1 analysis of the continuity-time distribution

The agent dynamics involved in P-step oscillation (Definition 4.1) allow to estimate
how long the agents on a path have already been using that path without a packet
loss, i.e., allow to characterize the distribution of the continuity time introduced
above. For the following analysis, we introduce the notation θ(π, t), which shall
denote the time since the most recent loss event on path π at time t.

We now derive a probability distribution P
[
τi(t) = τ

]
, giving the probability

that agent i on path πi(t) has continuity time τ ∈ N at time t. This distribution
will later be used to determine the expected congestion-window increase α̂π(t)
in Eq. (4.8b). We consider an arbitrary agent i ∈ A at an arbitrary time t, residing
on path πi(t). Clearly, agent i must have continuity time τi(t) = 0 right after a loss
event, i.e., whenever θ(πi(t), t) = 0, irrespective of the rank of πi(t):

∀t s.t. θ
(
πi(t), t

)
= 0, p ∈ [P]. P

[
τi(t) = 0

∣∣ rank
(
πi(t), t

)
= p

]
= 1 (C.1)

However, in the subsequent time steps, where θ
(
πi(t), t

)
> 0, the continuity-

time distribution of agent i on path πi(t) depends on the rank of that path.
If rank(πi(t), t) = 0 or, equivalently, rank(πi(t− 1), t− 1

)
= P− 1, all the â(P−1)

agents that were on path π in the last time step t− 1 have remained on the path
and have increased their continuity time by 1, but their relative share is reduced by
on-migration from other paths:

∀t s.t. θ
(
πi(t), t

)
> 0, τ > 0.

P
[
τi(t) = τ

∣∣ rank
(
πi(t), t

)
= 0

]

= P
[
τi
(
t− 1

)
= τ − 1

∣∣ rank
(
πi(t− 1), t− 1

)
= P− 1

]
· â(P−1)/â(0)

= P
[
τi
(
t− 1

)
= τ − 1

∣∣ rank
(
πi(t− 1), t− 1

)
= P− 1

]
· (1−m)P−1

(C.2)
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All the m · (N − â(P−1)) agents that migrated from the other paths have continuity
time 0:

∀t s.t. θ
(
πi(t), t

)
> 0.

P
[
τi(t) = 0

∣∣ rank
(
πi(t), t

)
= 0

]
=

m · (N − â(P−1))

â(0)
= 1− (1−m)P−1.

(C.3)

If path πi(t) has rank(πi(t), t) ̸= 0, this path has experienced out-migration in the
last time step, which reduces the number of agents on the path, but does not in
itself affect the continuity-time distribution among the remaining agents. In fact,
the continuity-time distribution is only shifted up by 1 in the last time step, but is
otherwise unaffected:

∀t s.t. θ
(
πi(t), t

)
> 0, p ∈ [P] \ {0}, τ > 0.

P
[
τi(t) = τ | rank

(
πi(t), t

)
= p

]

= P
[
τi(t− 1) = τ − 1 | rank

(
πi(t− 1), t− 1

)
= p− 1

] (C.4)

These recursive characterizations of the probability distribution shall now be
translated to closed-form expressions. To that end, we investigate (i) the case where
the continuity time τi(t) equals the time since last loss θi(πi(t), t), and (ii) the case
where the continuity time τi(t) is lower than the time since the last loss θ(πi(t), t);
a continuity time higher than the last-loss time is impossible.

τi(t) = θ(πi(t), t). Fundamentally, the continuity time of an agent i, being on
path πi(t) at time t, can only correspond to the last-loss time θ(πi(t), t) of that path
if the agent has never migrated since the loss. Clearly, the share of such persistent
agents on path πi(t) is down-scaled every time path πi(t) experiences in-migration,
according to Eq. (C.2). This in-migration happens whenever path πi(t) switches
from rank P− 1 to rank 0. Such a critical rank transition has never happened if the
current path rank p = rank(πi(t), t) is larger or equals the last-loss time θ(πi(t), t).
In contrast, if θ(πi(t), t) > p, a critical rank transition has happened at least once,
namely p time steps ago at time t− p. Moreover, additional critical rank transitions
may have happened earlier, i.e., at the previous time steps t− p− n · P, n ∈ N,
depending on how large θ(πi(t), t) is. In summary, a critical rank transition has
happened for ⌈θ(πi(t), t)− p⌉/P times, which holds both if θ(πi(t), t) ≤ p (always
0 times) and if θ(πi(t), t) > p (at least one time). This insight suggests that

P
[
τi(t) = θ(πi(t), t) | rank

(
πi(t), t

)
= p

]
= (1−m)⌈

τ−p
P ⌉(P−1). (C.5)
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τi(t) < θ(πi(t), t). In that case, it is clear that agent i migrated to its current
path πi(t) only after this path experienced loss. Let that time of migration be
denoted by t′, where t′ = t− τi(t). At this time t′, agent i and its fellow migrants
had a continuity time of τi(t′) = 0 and represented a share of 1− (1− m)P−1

among the total agents on path πi(t) = πi(t′), according to Eq. (C.3). In a next
step, we are interested in how this share of migrants has evolved between time
steps t′ and t. Crucially, at time t′, path πi(t) must have had rank 0, as only rank-0
paths have experienced recent in-migration. Hence, at time t, the path must have
rank p = (t − t′) mod P = τi(t) mod P; put differently, given rank p of a path,
only a continuity time τi(t) that satisfies τi(t) mod P = p is present on the path.
Furthermore, since migration time t′, path πi(t) has experienced ⌊(t− t′)/P⌋ =
⌊τi(t)/P⌋ critical rank transitions from rank P − 1 to rank 0; these critical rank
transitions have reduced the share of the agents that migrated at time t′ according
to Eq. (C.2). In total, we find for the case τi(t) < θ(πi(t), t) that

P
[
τi(t) = τ | rank

(
πi(t), t

)
= p

]

=




(1− (1−m)P−1) · (1−m)⌊ τ

P ⌋(P−1) if τ mod P = p,

0 otherwise.

(C.6)

In summary, the recursive characterizations of the continuity time are equivalent
to the following explicit definition of the continuity-time distribution, which is
visualized in Fig. C.1:

Insight C.1 Explicit Continuity-Time Distribution. At time t, the probability
that an agent i on a path πi(t) with rank p and time since last loss θ

(
πi(t), t

)
has

continuity time τ is

P
[
τi(t) = τ | rank

(
πi(t), t

)
= p

]

=





(1−m)⌈
τ−p

P ⌉(P−1) if τ = θ
(
πi(t), t

)
,

(1− (1−m)P−1) · (1−m)⌊ τ
P ⌋(P−1) if τ < θ

(
πi(t), t

)

∧ τ mod P = p,

0 otherwise.

(C.7)
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Figure C.1: Continuity-time distribution for P = 3, m = 0.15, and different θ. The dashed
lines represent the function (1− (1−m)P−1) · (1−m)(τ−p)/P·(P−1).

On a path π with rank p at time t, the expected additive increase α̂π(t) at time t
is therefore:

α̂π(t) = (1−m)

⌈
θ−p

P

⌉
(P−1) · α(θ) (C.8)

+
⌈(θ−p)/P⌉−1

∑
k=0

(1− (1−m)P−1) · (1−m)k(P−1) · α(Pk + p) (C.9)

where θ = θ(π, t).
For increasing time since the last loss (θ → ∞), the expected average additive

increase on a path with rank p converges to the following quantity, which can be
easily computed for any additive-increase function α:

α̂(p) =
∞

∑
k=0

(1− (1−m)P−1) · (1−m)k(P−1) · α(Pk + p) (C.10)

c.2 approximation accuracy

The expected MPCC dynamics in Eq. (4.8) are an approximation of the actual
probabilistic MPCC dynamics in Eq. (4.2), which are unsuitable for analytic inves-
tigation. In order to demonstrate the accuracy of this approximation, we present
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Figure C.2: Simulated MPCC dynamics {(aπ(t), fπ(t))}π∈Π (gray dashed) and expected
MPCC dynamics {(âπ(t), f̂π(t))}π∈Π (in color) for P = 3, N = 1000, α(τ) = 1,
β = 0.7, and Cπ = 12 000 for every π ∈ Π.

a comparison between the actual dynamics and the expected dynamics for a se-
lection of parameters in Fig. C.2. In each sub-figure, the actual MPCC dynamics
from Eqs. (4.2a) and (4.2b) are simulated and shown with light gray lines, and the
expected dynamics are computed and drawn with colored lines (agent dynamics in
dotted lines, flow dynamics in dashed lines).

P = 3, r ̸= 1. In Fig. C.2(a) and Fig. C.2(b), the expected dynamics are compared
with results from 5 simulation runs of the actual dynamics. The expected dynamics
appropriately capture the structure of both the agent dynamics and the flow
dynamics, in particular the curvature, the convergence behavior and the reaction
to loss (e.g., at t = 35 in Fig. C.2(b)). As the actual dynamics are realizations of a
random variable, their values deviate from the expectation; however, the variance
is modest.

P = 3, r = 1. In Fig. C.2(c), the actual flow dynamics look more different from
the expected flow dynamics than for r ̸= 1. This difference is due to loss events at
different points in time, which can even result in case of low variance, but make
the dynamics look quite different. However, the pattern of recurring loss is well
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captured by the expected dynamics. In order to make this similarity visible, only
one simulation run of the actual dynamics is shown.

Varying configurations. The analysis above is repeated for more paths and a non-
constant additive-increase function in Fig. C.3. In particular, we repeat this analysis
for constant additive increase, but with P = 5 (cf. Fig. C.3a), as well as with an
additive-increase function that mimics TCP slow-start behavior (αS(τ) = 2τ if τ <
5 else 1) for both P = 3 (cf. Fig. C.3b) and P = 5 (cf. Fig. C.3c).

c.3 logical consistency of P-step oscillation

General rank-based flow volume. In §4.3.3, we have shown that given P-step oscilla-
tion and without capacity limits, the flow dynamics exponentially converge to a
dynamic equilibrium where the rank-p path carries flow volume f̂ (p) in every time
step. The general rank-p equilibrium flow volume is given by the following term:

f̂ (p) =
∑

p−1
p′=0(1−m)p−p′ α̂(p′) · â(p′) + (1−m)p · α̂(P−1) · â(P−1)

1−
(
1 + m · r · z(m, P)

)
· (1−m)P−1

+
(1 + m · r · z(m, P)

)
·∑P−2

p′=p(1−m)P−1+p−p′ · α̂(p′) · â(p′)

1−
(
1 + m · r · z(m, P)

)
· (1−m)P−1

(C.11)

Internal consistency of P-step oscillation. Interestingly, analyzing the equilibrium
flow volumes { f̂ (p)}p∈[P] allows to draw conclusions about the occurrence of P-step
oscillation for a certain parameter combination, which works by logical contraposi-
tion: If P-step oscillation occurs for a certain parameter combination, then P-step
oscillation produces the equilibrium flow volumes { f̂ (p)}p∈[P]. However, if the
equilibrium flow volumes are themselves inconsistent with P-step oscillation, i.e.,
if f̂ (p) < f̂ (p+1) for some p ∈ [P− 1], then the equilibrium cannot exist and there is
a contradiction. This contradiction suggests that P-step oscillation is fundamentally
impossible for the given parameter combination, as P-step oscillation would have
produced the equilibrium flow volumes if it had occurred.1

Inconsistent parameter subspace. Based on this reasoning, we can find a parameter
sub-space for which P-step oscillation is impossible. More precisely, given any
parameter combination, we can compute the equilibrium flow volumes { f̂ (p)}p∈[P]

1 Note that the inverse is not true: The absence of a contradiction does not mean that P-step oscillation
necessarily occurs for a given parameter combination.



C.3 logical consistency of P-step oscillation 301

0 10 20 30 40 50
Time t

0.0

0.2

0.4

0.6

0.8

1.0
U

ti
li

za
ti

on
u
π
‖

A
ge

n
t

S
h

ar
e
a
π
/N

(a)

m = 0.1, r = 0.50

0 10 20 30 40 50
Time t

(b)

m = 0.05, r = 0.50

0 10 20 30 40 50
Time t

(c)

m = 0.1, r = 1.00

â0(t)/N
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(c) P = 5, αS(τ) = 2τ if τ < 5 else 1.

Figure C.3: Comparison of model and simulations to demonstrate approximation accuracy.
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Figure C.4: Visualization of parameter sub-space that is inconsistent with P-step oscillation
for different additive-increase functions α1(τ) = 1 and αS(τ) = (2τ if τ <
5 else 1).

and check if f̂ (p) < f̂ (p+1) for any p ∈ [P− 1]. As Eq. (C.11) shows, the parameter
space for the equilibrium flow volumes consists of the migration rate m, the reset
softness r, the number of paths P, the additive-increase function α(τ), and the
number of agents N (appearing in â(p)). Luckily, as N is a linear coefficient of f̂ (p)

and N > 0, N can be eliminated in the inequality f̂ (p) < f̂ (p+1). We performed
such an exploration of the parameter space with a focus on m and r, yielding the
results in Fig. C.4. These results indicate that for the two analyzed additive-increase
functions, P-step oscillation is never logically inconsistent for 2 paths and only
rarely logically inconsistent for higher number of paths. While not a definitive
proof for the prevalence of P-step oscillation, these results suggest that the notion
of P-step oscillation is a sound concept for most parameter combinations.

c.4 additional figures

This appendix section contains additional figures that illustrate concepts presented
in the main body of Chapter 4. Fig. C.5 presents a simulation-based validation
of the lower bounds on the flow volume in lossy equilibria, derived in §4.4.2.
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Fig. C.6 presents the variance in congestion-window size given a lossy equilibrium,
computed from simulation of the lossy Markov process in Fig. 4.7 in §4.5.2.
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A P P E N D I X O F C H A P T E R 5

d.1 loss-based cca models

In this section, we discuss the existing CCA models for Reno and CUBIC, which
have been used in our simulations. We also validate these CCA fluid models in
isolation

d.1.1 Reno

In its congestion-avoidance phase, TCP Reno increases the congestion-window size
by 1/w upon successful transmission (signaled by an ACK) and cuts it in half upon
loss. This adaptation logic is approximated by the following differential equation
for the congestion-window size wi(t) of agent i using path πi [166]:

ẇi = xi(t− dp
i ) · (1− pi(t− dp

i )) ·
1
wi

− xi(t− dp
i ) · pπi (t− dp

i ) ·
wi
2

(D.1)

d.1.2 CUBIC

In contrast, TCP CUBIC cannot directly be described with a differential equation
for the congestion-window size. Instead, Vardoyan et al. [249] suggest to track two
instrumental variables in CUBIC, namely the time since last loss of agent i, si, and
the congestion-window size at that moment of loss, wmax

i :

ṡi = 1− si · xi(t− dp
i ) · pi(t− dp

i ) , (D.2a)

ẇmax
i = (wi − wmax

i ) · xi(t− dp
i ) · pi(t− dp

i ) . (D.2b)

305
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Figure D.1: Reno trace validation
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Figure D.2: CUBIC trace validation

The intuition behind Eq. (D.2a) is that si is increased by 1 in absence of loss (pπi = 0)
and reduced to 0 when a loss occurs. Equation (D.2b) describes that wmax

i (t) should
be updated to wi(t) in presence of loss. Knowing si and wmax

i , the congestion-
window size w can be determined by the CUBIC window-growth function [110],

wi = c ·
(

si − 3

√
wmax

i · b
c

)3

+ wmax
i , (D.3)

where c and b are configurable parameters with standardized values of 0.4 and 0.7,
respectively [217]. Moreover, the CUBIC implementation in the Linux kernel uses a
time unit of around 1 second for si(t) [111].

d.1.3 Trace Validation of Models

Figs. D.1 and D.2 present a comparison of single-sender traces obtained from
running both model simulation and mininet experiments. The fluid model correctly
predicts that the rate growth of Reno and CUBIC decouples from the congestion-
window growth as soon as the buffer fills up. In addition, the fluid models correctly
capture that Reno and CUBIC lead to considerably smaller loss (barely visible) than
BBRv1, which is insensitive to loss (cf. §5.4.2). Finally, the fluid model correctly
predicts that the sending rate of loss-based CCAs never exceeds the bottleneck rate
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under RED, while the congestion windows can temporarily exceed the network
BDP under a drop-tail queuing discipline. As a result, the smaller buffer usage
under RED is also reflected in the model, although the difference between RED
and drop-tail is more pronounced in the model. This last difference is due to the
idealization of the RED algorithm in the model.

d.2 aggregate validation for short rtt

Figures D.3, D.4, D.5, D.6, and D.7 extend the validation, performed in §5.4.3,
of fluid models regarding the aggregate metrics Jain fairness, loss rates, buffer
occupancy, utilization and jitter, respectively. In contrast to the validation in the
body of Chapter 5, the fluid-model predictions are experimentally validated for a
bottleneck-link delay of 5 milliseconds and total RTTs between 10 and 20 millisec-
onds.
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Figure D.3: Fairness validation
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Figure D.4: Loss validation

d.3 proofs for stability analysis

This appendix section contains the proofs of the theorems in §5.5.
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Figure D.5: Queuing validation
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Figure D.6: Utilization validation
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Figure D.7: Jitter validation

d.3.1 Proof of Theorem 5.1

Equilibrium validity. First, we consider the case for qℓ∗ = 0. In that case, the second
condition in Eq. (5.45) implies:

∀i ∈ Uℓ∗ . xbtl
i = xmax

i
(5.42)
= min (5/4, ∆i) · xbtl

i . (D.4)

For this equation, the only solution in terms of {∆i}i∈Uℓ∗ is ∆i = 1 ∀i ∈ Uℓ∗ , which
shows that the network is in equilibrium for qℓ∗ = 0 and di = ∑ℓ∈πi

qℓ/Cℓ ∀i ∈ Uℓ∗ .



D.3 proofs for stability analysis 309

For qℓ∗ > 0, we note that the conditions in Eq. (5.45) can be transformed into the
following conditions for each xbtl

i :

xbtl
i = max(1, 1/∆i) ·

(
Cℓ∗ −∑

j ̸=i
min(1, ∆j) · xbtl

j

)
(D.5)

xbtl
i = Cℓ∗ −max(4/5, 1/∆i) ·∑

j ̸=i
min(1, ∆j) · xbtl

j (D.6)

Clearly, the previously found solution ∆i = 1 ∀i ∈ Uℓ∗ is also a solution to the
conditions in Eqs. (D.5) and (D.6). Hence, we have proven that the network is in
equilibrium if di = ∑ℓ∈πi

qℓ/Cℓ ∀i ∈ Uℓ∗ .

Equilibrium uniqueness. It remains to prove that the previously mentioned equilib-
ria are the only possible equilibria if qℓ∗ > 0. To confirm the uniqueness of these
equilibria, we first assume an equilibrium where ∃i ∈ Uℓ∗ . ∆i > 1. For that agent i,
this assumption implies

xbtl
i

(D.5)
= max(1, 1/∆i)︸ ︷︷ ︸

=1

·
(

Cℓ∗ −∑
j ̸=i

min(1, ∆j) · xbtl
j

)

< Cℓ∗ −max(4/5, 1/∆i)︸ ︷︷ ︸
<1

∑
j ̸=i

min(1, ∆j) · xbtl
j

(D.6)
= xbtl

i ,
(D.7)

which is a contradiction and rules out an equilibrium. Conversely, if assuming an
equilibrium where ∃i ∈ Uℓ∗ . ∆i < 1, this assumption implies

xbtl
i

(D.5)
= max(1, 1/∆i)︸ ︷︷ ︸

=1/∆i>1

·
(

Cℓ∗ −∑
j ̸=i

min(1, ∆j) · xbtl
j

)

> Cℓ∗ −max(4/5, 1/∆i)︸ ︷︷ ︸
=1/∆i>1

∑
j ̸=i

min(1, ∆j) · xbtl
j

(D.6)
= xbtl

i ,
(D.8)

which again leads to contradictory equations. Hence, no equilibria other than the
equilibrium with ∀i ∈ Uℓ∗ . ∆i = 1 are possible, which concludes the proof.
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d.3.2 Proof of Theorem 5.3

Equilibrium rate. Given ∆i ≥ 5/4 for all i ∈ Uℓ∗ , the equilibrium condition
on {xbtl

i }i∈Uℓ∗ is:

∀i ∈ Uℓ∗ . xbtl
i

(5.45)
= xmax

i
(5.42)
=

5/4xbtl
i Cℓ∗

5/4xbtl
i + ∑j ̸=i xbtl

j
= Cℓ∗ − 4/5 ∑

j ̸=i
xbtl

j . (D.9)

This equation system requires all {xbtl
i }i∈Uℓ∗ to be equal, which allows a straight-

forward solution:

∀i ∈ Uℓ∗ . xbtl
i

(D.9)
= Cℓ∗ − 4/5(N − 1) · xbtl

i =
5/4xbtl

i Cℓ∗

(N + 1/4)xbtl
i

=
5Cℓ∗

4N + 1
. (D.10)

Stability. It remains to show that this equilibrium is asymptotically stable, for
which we employ the indirect Lyapunov method. We apply this method to a
non-linear dynamic process with {xbtl

i }i∈Uℓ∗ as state variables and {ẋbtl
i }i∈Uℓ∗ as

vector-valued evolution function f . The Jacobian matrix J f has the following entries,
which we evaluate at the equilibrium:

∂ẋi
∂xi

=
5/4C ∑j ̸=i xbtl

j

(5/4xi + ∑j ̸=i xj)2 − 1
(D.10)
= − 5

4N + 1
=: Jii (D.11)

∂ẋi
∂xj

= −
5/4Cxi

(5/4xi + ∑j ̸=i xj)2
(D.10)
= − 4

4N + 1
=: Jij (D.12)

(D.13)

The eigenpairs (λ, v) of J f at the equilibrium satisfy the following conditions:

∀i ∈ Uℓ∗ . (Jii − λ)vi + Jij ∑
j ̸=i

vj = 0 (D.14)

The first type of solution for this equation system is given by λ = Jii − Jij < 0 and
every v with ∥v∥1 = 0, i.e., with the eigenvector entries summing up to 0. The
second type of solution is found by assuming λ ̸= Jii − Jij, which implies equal vi
∀i ∈ Uℓ∗ and hence (together with vi ̸= 0) λ = Jii + (N − 1)Jij < 0. Since the
eigenvalues of the Jacobian are thus consistently negative, the indirect Lyapunov
method suggests that the dynamics are asymptotically stable.
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d.3.3 Proof of Theorem 5.4

The equilibrium conditions can be translated given qℓ∗ > 0:

∑
i∈Uℓ∗

min(1, δi) · xbtl
i = Cℓ∗ (D.15)

⇐⇒ xbtl
i = max(1, 1/δi) · (Cℓ∗ −∑

j ̸=i
min(1, δj) · xbtl

j ) (D.16)

xbtl
i = xmax

i
(5.57)
=

5/4 ·min(1, δi) · xbtl
i · Cℓi

5/4 ·min(1, δi) · xbtl
i + ∑j ̸=i min(1, δj) · xbtl

j

⇐⇒ xbtl
i = Cℓ∗ − 4/5 ·max(1, 1/δi) ·∑

j ̸=i
min(1, δj) · xbtl

j (D.17)

For the special case N = 1, the conditions above simplify to:

xbtl
i = max(1, 1/δi) · Cℓ∗ and xbtl

i = Cℓ∗ , (D.18)

which clearly implies δi = 1.
For N > 1, these constraints potentially admit multiple equilibria. However,

the equilibrium from Theorem 5.4 is a special equilibrium for which δi is equal
across all i ∈ Uℓ∗ , i.e., δi = δ. Substituting δ for all δi, and equating Eq. (D.16)
with Eq. (D.17), we obtain:

∀i ∈ Uℓ∗ . max(1, 1/δ) · Cℓ∗ −∑
j ̸=i

xbtl
j = Cℓ∗ − 4/5 ∑

j ̸=i
xbtl

j

=⇒ ∑
j ̸=i

xbtl
j = 5 · (max(1, 1/δ)− 1) · Cℓ∗ .

(D.19)

This equation system requires that all xbtl
i ∀i ∈ Uℓ∗ equal the same value, and hence

we obtain the following perfectly fair equilibrium from Eq. (D.15):

∀i ∈ Uℓ∗ . xbtl
i = max(1, 1/δ) · Cℓ∗

N
. (D.20)

Furthermore, by inserting xbtl
i from Eq. (D.20) into Eq. (D.17), we obtain:

xbtl
i

(D.20)
= max(1, 1/δ) · Cℓ∗

N
(D.17)
= Cℓ∗ − 4/5 ·max(1, 1/δ) · N − 1

N
· Cℓ∗ . (D.21)

Given this equation, we can show that δ ≤ 1 by producing a contradiction when
assuming δ > 1 ⇐⇒ max(1, 1/δ) = 1:

1
N
· Cℓ∗ =

(
1− 4/5 · N − 1

N

)
· Cℓ∗

/Cℓ∗⇐⇒ 4/5 · N − 1
N

=
N − 1

N
, (D.22)
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which is a contradiction given N > 1.
In contrast, solving that equation given δ ≤ 1 ⇐⇒ max(1, 1/δ) = 1/δ yields:

1
δN
· Cℓ∗ =

(
1− 4/5 · N − 1

δN

)
· Cℓ∗

⇐⇒ δN − 1− 4/5(N − 1)
δN

= 0 ⇐⇒ δ =
4N + 1

5N
,

(D.23)

which is equivalent to the condition in Theorem 5.4.

d.3.4 Proof of Theorem 5.5

In the scenario under consideration, the equilibrium requires that the propagation
delay di is equal for all senders. Moreover, it holds that qℓ = 0 ∀ℓ ̸= ℓ∗. Hence,
we can simplify: δi = δ(qℓ∗) := d/(d + qℓ∗/Cℓ∗), where d is the propagation delay
experienced by all agents. As a result, the equilibrium requires that

δ(qℓ∗) =
4N + 1

5N
⇐⇒ qℓ∗ =

N − 1
4N + 1

dCℓ∗ . (D.24)

Dynamic process. We translate the reduced model from §5.5.2.1 into a nonlinear
dynamic process with the sending rates {xi}i∈Uℓ∗ and the queue length qℓ∗ as state
variables. The evolution of these state variables is given by vector-valued function f
with the following entries:

ẋi = δ̇(qℓ∗)xbtl
i + δ(qℓ∗)ẋbtl

i (D.25)

=

(
Cℓ∗ −∑k∈Uℓ∗ xk

Cℓ∗(d + qℓ∗/Cℓ∗)
+

5/4δC
5/4xi + ∑j ̸=i xj

− 1

)
· xi

q̇ℓ∗ = ∑
i∈Uℓ∗

xi − Cℓ∗ (D.26)

Jacobian matrix. The corresponding Jacobian matrix J f is composed of the follow-
ing entries:

∂ẋi
∂xi

=
Cℓ∗ − 2xi −∑j ̸=i xj

Cℓ∗(d + qℓ∗/Cℓ∗)
+

5/4δC ∑j ̸=i xbtl
j

(5/4xi + ∑j ̸=i xj)2 − 1 (D.27)

∂ẋi
∂xj

= − xi
Cℓ∗(d + qℓ∗/Cℓ∗)

−
5/4δCxi

(5/4xi + ∑j ̸=i xj)2 (D.28)
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∂ẋi
∂q

=
1

d + qℓ∗
Cℓ∗


Cℓ∗ −∑k∈Uℓ∗ xk

C2
ℓ∗

(
d + qℓ∗

Cℓ∗

) −
5/4δC

5/4xi + ∑j ̸=i xj


 xi (D.29)

∂q̇
∂xi

= 1
∂q̇
∂q

= 0 (D.30)

Evaluating the Jacobian matrix at the equilibrium point from Theorem 5.4 yields
the following matrix J:

∂ẋi
∂xi

= −4N + 1
5N2d

− 5
4N + 1

=: Jii
∂q̇
∂xj

= 1 (D.31)

∂ẋi
∂xi

= −4N + 1
5N2d

− 4
4N + 1

=: Jij
∂q̇
∂q

= 0 (D.32)

∂ẋi
∂q

= −4N + 1
5N2d

=: Jiq (D.33)

Lyapunov analysis. By Lyapunov’s indirect method, the above Jacobian matrix
must have exclusively negative eigenvalues in order for the equilibrium to be
asymptotically stable, i.e., for every pair (λ, v) with Jv = λv, the eigenvalue λ must
be lower than 0. To verify this property J, we concretize the eigenvalue condition:

∀i ∈ Uℓ∗ . Jiivi + Jij ∑
j ̸=i

vj + Jiqvq = λvi (D.34)

∑
i∈Uℓ∗

vi = λvq (D.35)

By solving these equations for vq and equating the resulting terms, we obtain the
following conditions:

∀i ∈ Uℓ∗ . ∑
k∈Uℓ∗

vk =
λ

Jiq

(
(λ− Jii)vi − Jij ∑

j ̸=i
vj

)
(D.36)

This equation allows two types of solutions. First, for λ = Jii− Jij = −1/(4N + 1) <
0, the set of valid eigenvectors v is only constrained by a condition on ∑k∈Uℓ∗ vk;
more importantly for the proof, λ is negative. Second, for λ ̸= Jii − Jij, the val-
ues vi ∀i ∈ Uℓ∗ must be equal such that the equation system from Eq. (D.36)
can be collapsed into a single quadratic equation, which yields the maximum
eigenvalue λ+:

N · vi =
λ

Jiq

(
(λ− Jii)vi − Jij(N − 1)vi

)
=⇒ λ+ = −1. (D.37)
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Since the maximum eigenvalue λ+ is negative, all eigenvalues of J are negative,
which by the indirect Lyapunov method proves that the dynamic process defined
by f is asymptotically stable.



E
A P P E N D I X O F C H A P T E R 6

e.1 proof of theorem 6 .1 : short-term equilibrium

In the following, we consistently write s̃ for s̃(α), as α is considered fixed throughout
the proof (analogously for w̃max and x̃btl)

The CUBIC maximum window w̃max in equilibrium (and by extension also the
CUBIC equilibrium rate x̃C) is directly determined by the CUBIC window-growth
duration s̃ in equilibrium:

w̃max (6.9)
=

c
b

s̃3 ⇐⇒ x̃C =
cs̃3

bτ̃k
. (E.1)

The short-term equilibrium delay τ̃k also matches the general equilibrium delay τk
from Eq. (6.12) because also the short-term equilibrium includes non-zero loss,
which implies a full buffer. To characterize the equilibrium completely, it remains
to determine s̃ and x̃btl, which we achieve with a case distinction on α.

e.1.1 Low Probing Strength: α ≤ 1

We first consider the case α ≤ 1. According to Lemma 6.3, x̃btl
i must equal the lower

bound χ in this case. For x̃btl
i = χ, the CUBIC equilibrium condition in Lemma 6.1

suggests:

bτ̃k
cs̃4

(6.11)
= 1− Cℓ

ỹℓ

(6.3)
= 1− Cℓ

βx̃btl + x̃C
(E.1)
=

β=α
1− Cℓ

αχ + cs̃3

bτ̃k

⇐⇒

c2

bτ̃k
s̃7 − c (Cℓ − αχ) s̃4 − cs̃3 − αbτ̃kχ = 0, (E.2)
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where the polynomial in the last equation corresponds to S̃2(s̃) in Eq. (6.23). Note
that β = α is implied by α ≤ 1 (cf. Eqs. (6.1) and (6.14)). The septic equation S̃2(s) =
0 has a unique solution for positive s, which follows from two arguments:

1. Negativity at 0: S̃2(0) = −αbτ̃kχ < 0.

2. Strict monotonic increase after monotonic decrease:

∃s′ ≥ 0 s.t. ∀s ∈ [0, s′). S̃′2(s
′) ≤ 0 and

∀s > s′. S̃′2(s) > 0.
(E.3)

The existence of such a unique turning point s′ is proven in Appendix E.1.3.

e.1.2 High Probing Strength: α > 1

Conversely, if α > 1, x̃btl may exceed χ. For this case, we consider the unrestricted
equilibrium x̂btl, i.e., the equilibrium bottleneck-bandwidth estimate x̃btl according
to Lemma 6.2, but without restriction to the domain [χ, ∞):

x̂btl (6.16)
= Cℓ −

x̃C

α

(E.1)
= Cℓ −

cs̃3

αbτ̃k
. (E.4)

We now distinguish the cases x̂btl ≥ χ and x̂btl < χ.

x̂btl ≥ χ. In this case, the actual equilibrium x̃btl matches the unrestricted equilib-
rium x̂btl. Plugging x̃btl = x̂btl into the CUBIC equilibrium condition from Eq. (6.11),
we obtain:

bτ̃k
cs̃4

(6.11)
= 1− Cℓ

βx̃btl + x̃C
(E.1)
=

β=1
1− Cℓ

x̃btl + cs̃3

bτ̃k

(E.4)⇐⇒

(α− 1)c2

αbτ̃k
s̃7 − (α− 1) c

α
s̃3 − bCℓτ̃k = 0,

(E.5)

where the polynomial in the second equation corresponds to S̃1(s̃) in Eq. (6.22).
Note that β = 1 is implied by α > 1. Moreover, the uniqueness of the solution
to S̃1 = 0 can be shown similarly as before:

1. Negativity at 0: S̃1(0) = −bCℓτ̃k < 0.

2. Strict monotonic increase after monotonic decrease:

S̃′1(s) > 0 ⇐⇒ 7(α− 1)c2

αbτ̃k
s6 − 3

(α− 1) c
α

s2 > 0 (E.6)
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/s2
⇐⇒ 7(α− 1)c2

αbτ̃k
s4 − 3 (α− 1) c

α
> 0 ⇐⇒ s > 4

√
3bτ̃k
7c

> 0.

x̂btl < χ. This case arises if the equilibrium window-growth duration s̃ is suffi-
ciently high:

x̂btl = Cℓ −
cs̃3

αbτ̃k
< χ ⇐⇒ cs̃3

bτ̃k
> α (Cℓ − χ)

⇐⇒ s̃ > 3

√
αbτ̃k

c
(Cℓ − χ) =: ŝ(α),

(E.7)

where ŝ(α) is the window-growth duration that leads to

x̂btl = Cℓ −
cŝ(α)3

αbτ̃k
= χ

≥χ
= x̃btl, (E.8)

and to a CUBIC equilibrium rate

x̃C (E.4)
= α(Cℓ − x̂btl)

(E.8)
= α(Cℓ − χ), (E.9)

given probing strength α. In order for ŝ(α) to be an equilibrium (i.e., s̃ = ŝ(α)), ŝ(α)
has to satisfy the CUBIC equilibrium conditions from Lemma 6.1:

bτ̃k
cŝ(α)4

(6.11)
= 1− Cℓ

βx̃btl + x̃C
(E.8)
=

(E.9)
1− Cℓ

χ + α (Cℓ − χ)

ŝ(α)⇐⇒
(E.7)

α4(α− 1)3

(χ + α(Cℓ − χ))3 =
c

bτ̃k(Cℓ − χ)7 (E.10)

Let α̂ be the solution in α to Eq. (E.10), which cannot be found analytically in
general. However, it must hold that α̂ > 1, as α = 1 yields a zero LHS in Eq. (E.10),
which cannot match the non-zero RHS.

At probing strength α̂, it holds that ŝ(α̂) = s̃, i.e., in equilibrium, s̃ is such that x̃btl

is exactly moved to χ even without restriction to [χ, 0). Since ŝ(α) is an increasing
function of α according to Eq. (E.7), any α < α̂ also leads to ŝ(α) < s̃, and thus to
x̂btl < χ = x̃btl. Hence, for α < α̂, x̃C is found by solving S̃2, i.e., as for α ≤ 1. We
thus arrive at the condition on α in Theorem 6.1.
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e.1.3 Uniqueness of Turning Point for S̃2

We note that the turning point s′ of S̃2 in Eq. (E.2) should be a unique root of the
first derivative S̃′2, where

S̃′2(s) =
7c2

bτ̃k
s6 − 4c (Cℓ − αχ) s3 − 3cs2. (E.11)

e.1.3.1 Strict Convexity above Critical Value s′′′

To find the area in which S̃′2 is strictly convex, we solve the following inequality for
the second derivative of S̃′2:

S̃′′′2 (s) > 0 ⇐⇒ 210c2

bτ̃k
s4 − 24c (Cℓ − αχ) s > 0 (E.12)

/s⇐⇒ 210c2

bτ̃k
s3 − 24c (Cℓ − αχ) > 0 (E.13)

The division by s is admissible because we only consider s > 0. To identify s′′′, we
note that the LHS in Eq. (E.13) increases from non-positive to positive with s if
Cℓ > αχ, and is consistently positive for all s > 0 in the rare case where Cℓ ≤ αχ.
Hence, we arrive at the following value for s′′′, marking the start of the convex area
of S̃′2:

s′′′ =





3
√

bτ̃k
c · 4

35 (Cℓ − αχ) > 0 if Cℓ > αχ

0 if Cℓ ≤ αχ.
(E.14)

e.1.3.2 Non-Positivity at Critical Value s′′′

The function S̃′2 yields the following non-positive value at the start point s′′′ of the
convex area:

S̃′2(s
′′′) =




−0.11(Cℓ − αχ)2τ̃k − 3cs′′′

2
3 < 0 if Cℓ > αχ

0 if Cℓ ≤ αχ.
(E.15)

e.1.3.3 Non-Negativity in Convex Area

To find an argument s at which S̃′2 is non-negative, we again distinguish the cases
Cℓ > αχ and Cℓ ≤ αχ.
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Cℓ > αχ. We consider the following function Ψ−(s), which constitutes a lower
bound on S̃′2, i.e., ∀s > 0. Ψ−(s) ≤ S̃′2(s):

Ψ−(s) =





7c2

bτ̃k
s6 − 4c (Cℓ − αχ) s3 − 3cs

3

if s ≥ 1

7c2

bτ̃k
s6 − 4c (Cℓ − αχ) s 2 − 3cs2 if s < 1

(E.16)

The highlights in Eq. (E.16) mark the differences of Ψ− and S̃′2 from Eq. (E.11).
The non-zero root of Ψ− is s− = max( 3

√
s0, 4
√

s0), where

s0 =
bτ̃k
c

(
4
7
(Cℓ − αχ) +

3
7

)
. (E.17)

Since Ψ− is a lower bound on S̃′2, it holds that

S̃′2(s
−) ≥ Ψ−(s−) = 0. (E.18)

The non-negativity point s− is in the convex area if s′′′ < s−, which demonstrably
holds:

s′′′
(E.14)
=

3

√
bτ̃k
c
· 4

35
(Cℓ − αχ) <

3

√
bτ̃k
c
· 4

7
(Cℓ − αχ)

< 3

√
bτ̃k
c

(
4
7
(Cℓ − αχ) +

3
7

)
≤ s−.

(E.19)

Cℓ ≤ αχ. In this rare case, the lower bound function Ψ− and its root s− are more
simply expressed:

Ψ−(s) =
7c2

bτ̃k
s6 + 4c (Cℓ − αχ) s 2 − 3cs2 (E.20)

s− = 4

√
bτ̃k
c

(
−4

7
(Cℓ − αχ) +

3
7

)
(E.21)

Note that Ψ− is a strict lower bound (i.e., Ψ−(s) < S̃′2(s)) if Cℓ < αχ, and equals S̃′2
for Cℓ = αχ. Hence, the following property holds on s−:

S̃′2(s
−)




> Ψ−(s−) if Cℓ < αχ

= Ψ−(s−) if Cℓ = αχ
= 0 (E.22)
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0

S̃2
S̃′2

Ψ−S̃′′′2s′′′ s−s′

s

(a) Cℓ > αχ.

0

S̃2
S̃′2

Ψ−S̃′′′2s′′′ s−s′

s

(b) Cℓ < αχ.

0

S̃2
S̃′2

Ψ−S̃′′′2s′′′ s′ = s−

s

(c) Cℓ = αχ.

Figure E.1: Case distinction for determination of unique turning point in §E.1.3.4.

The convex-area membership of s− > s′′′ is demonstrated analogously to the
previous case:

s′′′
(E.14)
= 0

Cℓ≤αχ
< 4

√
bτ̃k
c

(
−4

7
(Cℓ − αχ) +

3
7

)
(E.21)
= s−. (E.23)

e.1.3.4 Combination of Arguments

In summary, the function S̃′2 evolves in a strictly convex fashion from S̃′2(s
′′′) ≤ 0

at s′′′ to S̃′2(s
−) ≥ 0 at s− > s′′′. To demonstrate that these conditions imply a

unique root with subsequent increasing behavior, we consider the relevant cases
separately and visualize them in Fig. E.1 to simplify understanding:

Cℓ > αχ (Fig. E.1a). In this case, we observe that S̃′2(s
′′′) < 0 (Eq. (E.15)) and

S̃′2(s
−) ≥ 0 (Eq. (E.18)). Given this property, the function S̃′2 has at least some

increasing part between s′′′ and s−, and at least the first root is in such an increasing
part. Moreover, since S̃′2 is strictly convex, the function keeps increasing once it is
increasing, proving uniqueness of the root s′ and increasing behavior after s′.
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Cℓ < αχ (Fig. E.1b). In this case, it holds that S̃′2(s
′′′) = 0 (Eq. (E.15)) and S̃′2(s

−) >
0 (Eq. (E.22)). Strict convexity allows either (i) monotonic increase between s′′′ = 0
and s− > 0, which creates a unique root at s′′′ = 0 such that S̃′2(s) > 0 ∀s > 0, or
(ii) a decrease followed by an increase, causing a unique root s′ ∈ (s′′′, s−) = (0, s−)
above which S̃′2(s) > 0.

Cℓ = αχ (Fig. E.1c). In this last case, the function S̃′2 has the property S̃′2(s
′′′) =

S̃′2(s
−) = 0 (Eqs. (E.15) and (E.22)). Given strict convexity, the function S̃′2 can only

return to 0 at s− if it first decreases and then increases forever, causing a unique
root s′ = s− such that S̃′2(s) > 0 ∀s > s′.

e.2 proof of theorem 6 .2 : stability of the short-term equilibrium

Our proof proceeds in three main steps, namely:

1. Stability investigation of the full linearized dynamics

2. Dimension reduction by characterization of the center manifold

3. Stability investigation of the lower-dimensional dynamics

e.2.1 Stability Investigation of the Full Linearized Dynamics

e.2.1.1 Centering the Dynamics

Fundamentally, we consider the dynamic system σ̇ = f (σ), where

σ =




x̃btl

w̃max

s̃


 , f =




ẋbtl

ẇmax

ṡ


 , and σ̃ =




x̃btl

w̃max

s̃


 (E.24)

are the state variables, the adaptation function, and the equilibrium, respectively.
Hence, it holds that σ̃ = f (σ̃). To show the asymptotic stability of the equilibrium σ̃,
we first center the dynamic system around the equilibrium: We transform the
adaptation function f to f ◦ such that z̃ = 0 = [0, 0, 0]⊤ is an equilibrium of the
dynamic system ż = f ◦(z), i.e., 0 = z̃ = f ◦(z̃). In our case, the dynamics in the
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differential equations for ẋbtl, ẇmax (Eq. (6.5)) and ṡ (Eq. (6.6)) are centered as
follows:

ż1 =
α
(

z1 + x̃btl
)

C

α
(
z1 + x̃btl

)
+ 1

τ̃k
W◦(z2, z3)

−
(

z1 + x̃btl
)

(E.25)

ż2 = (W◦(z2, z3)− (z2 + w̃max)) · W◦(z2, z3)

τ̃k
· p◦(z) (E.26)

ż3 = 1− (z3 + s̃) · W◦(z2, z3)

τ̃k
· p◦(z) (E.27)

where both the CUBIC window-growth function W◦ and the loss-rate function p◦

are centered as well:

W◦(z2, z3)
(6.2)
= (z2 + w̃max) + c

(
(z3 + s̃)− 3

√
(z2 + w̃max)b

c

)3

(E.28)

p◦(z)
(6.4)
=





1− Cℓ

β(z1+x̃btl)+ 1
τ̃k

W◦(z2,z3)
if yℓ(z) > Cℓ ∧ qℓ = Bℓ

0 otherwise
(E.29)

e.2.1.2 Linearizing the Dynamics

We now linearize the adaptation function f ◦ of this centered dynamic system
around the equilibrium z̃ = 0 with the first-order Taylor expansion:

L0[ f ◦](z) = f ◦(0) + J f ◦(0)z = J f ◦(0)z, (E.30)

where L0[ f ◦] indicates the linearization of the adaptation function f ◦ around the
new equilibrium 0, J f ◦(0) is the Jacobian matrix of f ◦ evaluated at the equilibrium 0.
Since f ◦(0) = 0, the dynamics around the equilibrium are dominated by J f ◦(0)z.
The stability properties of the dynamic system thus depend on J f ◦(0), especially
on its eigenvalues.

To find these eigenvalues, we need to characterize J f ◦(0), which is considerably
simplified by the following identities:

W◦(0, 0) = w̃max,
∂W◦

∂z2
(0, 0) = 1,

∂W◦

∂z3
(0, 0) = 0, and

∂p◦

∂z3
(0) = 0.

(E.31)
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Moreover, we know the following properties of the equilibrium from §6.3.1:

s̃ > 0, w̃max =
c
b

s̃3 > 0, p◦(0) =
bτ̃k
cs̃4 ∈ (0, 1],

and x̃btl = max
(

χ, Cℓ −
1
α

w̃max

τ̃k

)
> 0.

(E.32)

Using these equalities, J f ◦(0) in our case is:

J f ◦(0) =




J11 J12 0

0 0 0

J31 J32 J33


 (E.33)

J11 =
αCℓ

1
τ̃k

W◦(0, 0)
(

αx̃btl + 1
τ̃k

W◦(0, 0)
)2 − 1 (E.34)

=
αCℓ

1
τ̃k

w̃max

(
αx̃btl + 1

τ̃k
w̃max

)2 − 1 < 0

J12 =− αCℓ x̃btl

τ̃k

(
αx̃btl + 1

τ̃k
W◦(0, 0)

)2 ·
∂W◦

∂z2
(0, 0) (E.35)

=− αCℓ x̃btl

τ̃k

(
αx̃btl + 1

τ̃k
w̃max

)2 < 0

J31 =− s̃
W◦(0, 0)

τ̃k

βC
(

βx̃btl + 1
τ̃k

W◦(0, 0)
)2 (E.36)

=− βCℓ s̃w̃max

τ̃k

(
βx̃btl + 1

τ̃k
w̃max

)2 < 0

J32 =− s̃
τ̃k
· ∂W◦

∂z2
(0, 0) ·

(
1− Cℓ

βx̃btl + 1
τ̃k

W◦(0, 0)

)
(E.37)

− s̃ · W◦(0, 0)
τ̃k

· Cℓ

τ̃k(βx̃btl + 1
τ̃k

W◦(0, 0))2
· ∂W◦

∂z2
(0, 0)

=− s̃
τ̃k
· p◦(0)− s̃w̃max

τ̃2
k

Cℓ(
βx̃btl + 1

τ̃k
w̃max

)2 < 0
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J33 =− W◦(0, 0)
τ̃k

· p◦(0)− s̃
τ̃k
· ∂W◦

∂z3
(0, 0) · p◦(0) (E.38)

− s̃ · W◦(0, 0)
τ̃k

· ∂p◦

∂z3
(0)

=− 1
s̃
< 0

Hence, all entries of J f ◦(0) are negative. Among the above matrix entries, the
bounding of the entry J11 in Eq. (E.34) is not trivial and requires a case distinction
on χ:

χ ≤ Cℓ − w̃max/(ατ̃k). In this case, the bounding is straightforward:

x̃btl (E.32)
= max

(
χ, Cℓ −

w̃max

ατ̃k

)
Case
= Cℓ −

w̃max

ατ̃k
(E.39)

=⇒ αx̃btl +
w̃max

τ̃k
= αCℓ =⇒ (E.40)

J11 =
αCℓ

w̃max

τ̃k

(αCℓ)
2 − 1 =

w̃max

τ̃k

αCℓ
− 1

Case
≤ α(Cℓ − χ)

αCℓ
− 1 < 0 (E.41)

χ > Cℓ − w̃max/(ατ̃k). For this case, we note that x̃btl is at the minimum χ of its
domain:

x̃btl (E.32)
= max

(
χ, Cℓ −

w̃max

ατ̃k

)
= χ (E.42)

Moreover, we obtain a lower bound on the CUBIC equilibrium rate x̃C for this case:

χ > Cℓ −
w̃max

ατ̃k
⇐⇒ x̃C =

w̃max

τ̃k
> α (Cℓ − χ) . (E.43)

Moreover, we obtain another lower bound x̂C on the CUBIC equilibrium rates
that lead to a negative Jacobian entry J11:

J11

(
x̃C
) (E.34)

=
αCℓ x̃C

(αχ + x̃C)
2 − 1 < 0 (E.44)

⇐⇒ x̃C2 + α(2χ− Cℓ)x̃C + α2χ2 =: Ψ(x̃C) > 0 (E.45)

⇐⇒ x̃C > α

√
Cℓ (Cℓ − 4χ) + (Cℓ − 2χ)

2
=: x̂C. (E.46)
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We note that the lower bound x̂C in Eq. (E.46) only exists if 4χ ≤ Cℓ. In contrast,
the non-existence of x̂C means that Ψ from Eq. (E.45) has no root. Since Ψ is strictly
convex, and a strictly convex function with no roots is always positive, Ψ > 0
from Eq. (E.45) holds for all x̃C, and J11 is always negative in this case.

Conversely, if 4χ ≤ Cℓ and x̂C therefore exists, we need to verify that x̂C ≤
α(Cℓ − χ) such that all x̃C > α(Cℓ − χ) (i.e., all CUBIC equilibrium rates possible
according to Eq. (E.43)) lead to a negative J11. Given x̂C from Eq. (E.46), we obtain:

α

√
Cℓ (Cℓ − 4χ) + (Cℓ − 2χ)

2
≤ α(Cℓ − χ) ⇐⇒

− 4χCℓ ≤ 0 ⇐⇒ χ ≥ 0 ⇐⇒ ⊤.
(E.47)

In summary, J11 < 0 thus holds for all w̃max/τ̃k and all χ.

e.2.1.3 Finding the Eigenpairs

Finding the eigenvalues and eigenvectors of J f ◦(0) means finding (λ, v) such that
λ ∈ C is an eigenvalue, v ∈ C3 is the corresponding eigenvector and must be non-
zero (v ̸= 0), and J f ◦(0)v = λv. Hence, any solution (λ, v) satisfies the following
system of equations:

(J11 − λ)v1 + J12v2 = 0 (E.48)

λv2 = 0 (E.49)

J31v1 + J32v2 + (J33 − λ)v3 = 0 (E.50)

Clearly, Eq. (E.49) implies that λ or v2 must be zero.

λ = 0. First, we check whether λ = 0 is an eigenvalue of J f ◦(0). Assuming λ = 0,
the equation system reduces to two equations:

J11v1 + J12v2 = 0 J31v1 + J32v2 + J33v3 = 0 (E.51)

Given this equation system, we can identify the following eigenvector v(1) for the
eigenvalue λ(1) = 0:

v(1)1 ∈ C \ {0} v(1)2 = − J11

J12
v(1)1 v(1)3 =

J11 J32 − J12 J31

J12 J33
v(1)1 (E.52)

Note that v(1)1 must be non-zero because v1 = 0 would imply that also v2 = 0
and v3 = 0, which would be an invalid eigenvector. This eigenvector exists because
the denominators are non-zero given J12 < 0 and J12 J33 > 0.
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v2 = 0. To find further eigenvalues, we now assume v2 = 0, leading again to a
reduced equation system:

(J11 − λ)v1 = 0 J31v1 + (J33 − λ)v3 = 0 (E.53)

For this equation system, we can perform a case distinction on v1, the first entry of
the eigenvector:

• v1 ̸= 0 : Assuming v1 ̸= 0 yields the eigenpair (λ(2), v(2)):

λ(2) = J11 < 0 v(2)1 ∈ C \ {0} v(2)2 = 0 v(2)3 =
J31

J11 − J33
v(2)1 (E.54)

• v1 = 0 : In this case, the equation system collapses to the single equation (J33−
λ)v3 = 0, where v3 ̸= 0 because not all entries of an eigenvector can be 0.
Hence, J f ◦(0) has the following eigenpair (λ(3), v(3)):

λ(3) = J33
(E.38)
= −1

s̃
(E.32)
< 0 v(3)1 = 0

v(3)2 = 0 v(3)3 ∈ C \ {0}
(E.55)

Summary of eigenpairs. The Jacobian matrix J f ◦(0) thus has zero and negative
eigenvalues. For convenience, we categorize the eigenvectors into sets correspond-
ing to zero and negative eigenvalues, respectively:

V0 = {v(1)} V− = {v(2), v(3)} (E.56)

The presence of both zero and negative eigenvalues means that the stability prop-
erties of the original nonlinear dynamic system ż = f ◦(z) cannot be derived
from the linearized system ż = J f ◦(0)z [249]. Instead, higher-order terms need to
investigated with respect to stability.

e.2.2 Dimension Reduction via the Center Manifold

While the linearized system is inconclusive about the desired stability properties,
it allows some insight into the dynamics of the nonlinear system when using
center-manifold theory.
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e.2.2.1 Center-Manifold Properties

To introduce the center manifold, we note that the subspace spanned by the eigen-
vectors in V− is the stable subspace of the Jacobian J f ◦(0), and the subspace spanned
by the eigenvectors in V0 is the center subspace [257]. Each of these subspaces is
associated with a manifold that has the same dimension as the corresponding
subspace, and is tangential to the corresponding subspace at the equilibrium [108].

Since our system has only has a stable manifold and a center manifold (and
no unstable manifold, which would be associated with positive eigenvalues), we
can use the center-manifold emergence theorem [128]. This theorem states that given
a starting point sufficiently close to the center manifold, the dynamics converge
exponentially quickly to the center manifold, and thus approach a trajectory on
the center manifold. The overall dynamics of the nonlinear system can thus be
approximated by the dynamics on the center manifold, which have lower dimension
and thus allow a more tractable analysis.

e.2.2.2 Center-Manifold Dynamics

To derive the dynamics on the center manifold, we start by decoupling the system
state z along subspaces, i.e., we transform it onto a different basis such that every
variable only effects a change along either the center or the stable subspace. We
achieve this by a coordinate transformation using the eigenbasis:

z = Tζ = [v(1) v(2) v(3)]ζ =




T11 T12 0

T21 0 0

T31 T32 T33







ζ1

ζ2

ζ3


 (E.57)

⇐⇒ ζ = T−1z,

where ζ1 is the variable associated with the center subspace, and ζ2 and ζ3 are the
variables associated with the stable subspace. From the structure of T, we see that
the center variable ζ1 can be expressed exclusively by z2 (corresponding to wmax):

z2 = T21ζ1 ⇐⇒ ζ1 =
z2

T21
. (E.58)

According to the center-manifold existence theorem, a manifold Γc exists with
the following properties around the equilibrium 0 [257]:

Γc = {(ζ1, ζ2, ζ3) | ζ2 = h2(ζ1), h2(0) = 0, h2
′(0) = 0, (E.59)
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ζ3 = h3(ζ1), h3(0) = 0, h3
′(0) = 0}

where both h2 and h3 are one-dimensional functions of the form:

h(ζ1) =
∞

∑
i=2

aiζ
i
1. (E.60)

Intuitively, in our case, the center manifold Γc corresponds to a curve in three-
dimensional space, which is tangential to the center subspace at the equilibrium 0
and is fully describable by the center variable ζ1. The overall dynamics of the
nonlinear system move along that curve, although it is not clear yet whether
towards or away from the equilibrium. To identify this direction, we only need to
consider the following one-dimensional dynamics along the center manifold:

ζ̇1
(E.58)
=

1
T21

ż2(z)
(E.57)
=

1
T21

ż2(Tζ′) (E.61)

where

ζ′
(E.59)
=




ζ1

h2(ζ1)

h3(ζ1)




(E.58)
=




z2/T21

h2(z2/T21)

h3(z2/T21)


 (E.62)

e.2.3 Stability Investigation of the Lower-Dimensional Dynamics

So far, we have reduced the full dynamics to the lower-dimensional center-manifold
dynamics, which we can now investigate.

e.2.3.1 Taylor Expansion of Center-Manifold Dynamics

The one-dimensional center-manifold dynamics in Eq. (E.61) suggests that the
dynamics of ż2 need to be investigated. These dynamics are already given in
Eq. (E.26). However, these dynamics must be investigated on the center manifold,
which requires expressing z1 and z3 as center-manifold functions of z2:

ẑ(z2) = Tζ′
(E.62)
=




T11
z2
T21

+ T12h2

(
z2
T21

)

z2

T31
z2
T21

+ T32h2

(
z2
T21

)
+ T33h3

(
z2
T21

)


 . (E.63)
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Hence, we investigate the following dynamics:

ż2 = (W◦(z2, ẑ3(z2))− (z2 + w̃max)) · W◦(z2, ẑ3(z2))

τ̃k
· p◦(ẑ(z2)), (E.64)

where
Around the equilibrium z̃2 = 0, the evolution function ż2 can be approximated

via a Taylor expansion of third degree:

ż2(z′2) ≈ ż2(0) +
∂ż2

∂z2
(0) · z′2 +

∂2ż2

∂z2
2
(0) · z′2

2

2!
+

∂3ż2

∂z3
2
(0) · z′2

3

3!
. (E.65)

By using the Symbolic Math Toolbox of Matlab [172], this approximated function
can be reduced to the following expression:

ż2(z′2) ≈
cw̃maxT3

31 p◦(0)
τ̃kT3

21
· z′2

3
= Kz′2

3. (E.66)

It is easy to see that asymptotic stability of this system requires a negative K:
If z′2 < 0 (below the equilibrium), z′2 would be positively affected (multiplication of
negative numbers) and thus drawn closer to the equilibrium at 0, whereas if z′2 > 0,
z′2 would be negatively affected, and thereby also attracted to the equilibrium at 0.
To prove asymptotic stability, we thus have to show:

K < 0
(E.66)⇐⇒ cw̃maxT3

31 p◦(0)
τ̃kT3

21
< 0

(E.57)⇐⇒ cw̃maxv(1)3

3
p◦(0)

τ̃kv(1)2

3 < 0 (E.67)

where v(1) fulfills the condition in Eq. (E.52).
Without loss of generality, we set v(1)1 < 0, which implies (together with J11 < 0

and J12 < 0):

v(1)2
(E.52)
= − J11

J12
v(1)1 > 0. (E.68)

Since c, w̃max, p◦(0), and τ̃k are all known to be positive, asymptotic stability
depends on the following condition:

v(1)3

3
< 0 ⇐⇒ v(1)3 < 0

(E.52)⇐⇒ J11 J32 − J12 J31

J12 J33
v(1)1 < 0
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⇐⇒ J11 J32 − J12 J31

J12 J33
> 0. (E.69)

Since J12 < 0 and J33 < 0, we can simplify this condition even further to:

J11 J32 > J12 J31 ⇐⇒ J11 <
J31

J32
J12. (E.70)

To check whether this condition holds, we again perform a case distinction regard-
ing χ, i.e., we distinguish the cases χ ≤ Cℓ − w̃max/(ατ̃k) and χ > Cℓ − w̃max/(ατ̃k).

e.2.3.2 χ ≤ Cℓ − w̃max/(ατ̃k)

In this case, the expanded form of Eq. (E.70) can be simplified by the finding
in Eq. (E.40):

J11
(E.34)
=

αCℓ

τ̃k

(
αx̃btl + 1

τ̃k
w̃max

)2 · w̃
max − 1

(E.70)
<

− J31

J32

αCℓ

τ̃k

(
αx̃btl + 1

τ̃k
w̃max

)2 · x̃
btl (E.35)

=
J31

J32
J12

(E.71)

(E.40)⇐⇒ 1
τ̃kαCℓ

· w̃max − 1 < − J31

J32

1
τ̃kαCℓ

· x̃btl (E.72)

·τ̃kαCℓ⇐⇒
/x̃btl

(w̃max − τ̃kαCℓ) ·
1

x̃btl < −
J31

J32
(E.73)

(E.39)⇐⇒ (w̃max − τ̃kαCℓ) ·
1

Cℓ − w̃max

τ̃kα

< − J31

J32
(E.74)

expand⇐⇒ (w̃max − τ̃kαCℓ) ·
τ̃kα

τ̃kαCℓ − w̃max < − J31

J32
(E.75)

cancel⇐⇒
·−1

τ̃kα >
J31

J32

1/⇐⇒ J32

J31
>

1
τ̃kα

. (E.76)

In turn, expanding the ratio J32/J31 yields:

J32

J31

(E.37)
=

(E.36)
−


 s̃

τ̃k
· p◦(0) + s̃w̃max

τ̃2
k

Cℓ(
βx̃btl + 1

τ̃k
w̃max

)2


 ·


−

τ̃k

(
βx̃btl + 1

τ̃k
w̃max

)2

βCℓ s̃w̃max




(E.77)
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=
p◦(0)

(
βx̃btl + 1

τ̃k
w̃max

)2

βCℓw̃max +
1

τ̃kβ
>

1
τ̃kα

. (E.78)

The bound holds because β ≤ α and the first term on the LHS in Eq. (E.78) is
strictly positive. Hence, also Eq. (E.70) holds.

e.2.3.3 χ > Cℓ − w̃max/(ατ̃k)

In this case, x̃btl (E.42)
= χ and the expanded form of Eq. (E.70) is thus:

αCℓ

τ̃k

(
αχ + 1

τ̃k
w̃max

)2 · w̃
max − 1

(E.70)
< − J31

J32

αCℓχ

τ̃k

(
αχ + 1

τ̃k
w̃max

)2 (E.79)

⇐⇒ J32

J31
>

αCℓτ̃kχ

w̃max 2 + α(2χ− Cℓ)τ̃kw̃max + α2C2
ℓχ2

(E.80)

Expanding the ratio J32/J31 yields:

J32

J31

(E.37)
=

(E.36)
−


 s̃

τ̃k
· p◦(0) + s̃w̃max

τ̃2
k

Cℓ(
βχ + 1

τ̃k
w̃max

)2


 ·


−

τ̃k

(
βχ + 1

τ̃k
w̃max

)2

βCℓ s̃w̃max




=
τ̃k

(
βχ + w̃max

τ̃k

)2

βCℓ s̃w̃max 2 +
1

βτ̃k
>

1
βτ̃k

. (E.81)

Thanks to this neat lower bound of J32/J31, Eq. (E.80) is implied by the following
stronger condition:

J32

J31

(E.81)
>

1
βτ̃k

>
αCℓτ̃kχ

w̃max 2 + α(2χ− Cℓ)τ̃kw̃max + α2C2
ℓχ2

(E.82)

⇐⇒ 1
βτ̃k

w̃max 2 +
α (2χ− C)

β
w̃max +

τ̃kα2χ2

β
− τ̃kαCℓχ

=: Ψ(w̃max) > 0. (E.83)

To verify Eq. (E.83) for all w̃max > τ̃kα(Cℓ − χ), we first note that Ψ is convex.
Hence, if Ψ has no roots, the convexity of Ψ implies that Ψ(w̃max) > 0 holds for
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any w̃max. In contrast, if Ψ has roots, Ψ(w̃max) > 0 holds for any w̃max above the
upper root ψ of Ψ, which is:

ψ =
τ̃k
2

(
α (Cℓ − 2χ) +

√
α2C2

ℓ + 4αCℓ (β− α) χ

)
(E.84)

The truth of Ψ(w̃max) > 0 ∀w̃max > τ̃kα(Cℓ − χ) is confirmed by the fact that ψ is
below the relevant area of argument w̃max:

ψ ≤ τ̃kα(Cℓ − χ)
·2/τ̃k⇐⇒
(E.84)

α (Cℓ − 2χ) +
√

α2C2
ℓ + 4αCℓ (β− α) χ ≤ 2α(Cℓ − χ)

−α(Cℓ−2χ)⇐⇒
√

α2C2
ℓ + 4αCℓ (β− α) χ ≤ αCℓ

(·)2

⇐⇒
−αCℓ

4αCℓ(β− α)χ ≤ 0
β≤α⇐⇒
χ>0

⊤.

(E.85)

e.2.3.4 Conclusion

In conclusion, the relation between the Jacobian entries J11, J12, J31, and J32 as given
in Eq. (E.70) ensures a negative third entry v(1)3 in the center eigenvector, which
is required for a negative coefficient in the third-order Taylor expansion of the
center-manifold dynamics in Eq. (E.67). The negativity of this coefficient guarantees
asymptotic stability of the center-manifold dynamics in Eq. (E.64), and thus of the
full dynamic system.

e.3 proof of theorem 6 .3 : bbr-cubic oscillation

e.3.1 Update Functions

We start the proof by characterizing the update function w← and used in the
discrete-time process in Eq. (6.24). Conceptually, this function w←(w) yields the
CUBIC window size after an interval of the short-term dynamics given BBR probing
strength α, which in turn results from CUBIC window size w at the beginning of
the interval. We denote this resulting probing strength by α←(w), and characterize
α←(w) in §E.3.1.1 before characterizing w← in §E.3.1.2.
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e.3.1.1 α-Update Function α←

From Eq. (6.17) in the fluid-equilibrium model in §6.3.1, we know that α is deter-
mined by the queue length q−ℓ that remains when the BBR flow backs off:

α←(w) =min(5/4, ὰ←(w)) (E.86)

where ὰ←(w) =
2
τi

(
τ

p
i +

q−ℓ (w)

Cℓ

)
(E.87)

=
2
τi


τ

p
i +

[
4 + (1− b)w− τ

p
ℓ Cℓ

]Bℓ

0
Cℓ


 . (E.88)

This function α←(w) achieves its minimum value αmin if q−ℓ = 0, which is
achieved for all CUBIC window sizes w ≤ w0, where:

w0 =
1

1− b

(
Cℓτ

p
ℓ − 4

)
=⇒ αmin = α←(w0) =

2τ
p
i

τi
. (E.89)

Conversely, the maximum αmax is not achieved for q−ℓ = Bℓ, as in this case ὰ← =
2τi/τi = 2. Instead, the maximum value αmax is achieved for all window sizes w ≥
w1, where

w1 =
1

1− b

(
Cℓ

(
5
8

τi + τ
p
ℓ − τ

p
i

)
− 4
)

=⇒ ὰ←(w1) = 5/4

=⇒ α←(w1) = 5/4 = αmax. (E.90)

Given the above value range, we rewrite the function α← such that its constant
and linear pieces become obvious:

α←(w) =





αmin =
2τ

p
i

τi
if w ≤ w0,

ὰ(w) = 2
τi

(
τ

p
i +

w+4−τ
p
ℓ Cℓ

Cℓ

)
if w ∈ (w0, w1),

αmax = 5/4 if w ≥ w1.

(E.91)

This function α← is illustrated in Fig. E.2.

e.3.1.2 Window-Update Function w←

The window-update function w←(w) yields the CUBIC window size after an
interval with initial window size w and corresponding BBR probing strength α =
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Figure E.2: Illustration of functions α←(w)
and w̃(α).

wmin w0 w1 wmax

CUBIC congestion-window size w

wmin

wmax

C
U

B
IC

co
n

ge
st

io
n

-w
in

d
ow

si
ze
w

w

w̃←(w)
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Figure E.3: Illustration of function w̃←(w),
and value range for w←(w).

α←(w). Since this new CUBIC window size is the result of convergence towards the
short-term equilibrium window size w̃(α), we first revisit w̃(α) based on Theorem
6.1. While this function does not have a closed-form representation, we can still
conclude that w̃(α) has a two-part structure. In particular, we know that an inflection
point α̂ > 1 exists such that w̃(α) is found by solving the equation S̃2(s) = 0
(cf. Eq. (6.23)) for all α < α̂, and and found by solving S̃1(s) = 0 (cf. Eq. (6.22)) for
all α ≥ α̂ (cf. Appendix E.1). Crucially, w̃(α) can be further confirmed to be strictly
monotonically decreasing in α (cf. §E.3.1.3).

Since w̃(α) is thus monotonically decreasing on its complete domain [0, αmax],
the value range of w̃ for that domain is bounded to [wmin, wmax], where

wmin = w̃(αmax)
(E.90)
= w̃(α←(w1)) = w̃←(w1) (E.92)

wmax = w̃(αmin)
(E.89)
= w̃(α←(w0)) = w̃←(w0) (E.93)

The function w̃(α) is visualized in Fig. E.2.
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Note that the above equation also introduces the function w̃←(w) = w̃(α←(w)),
which is of great importance throughout the rest of the proof. This function w̃←

can be explicitly represented based on Eq. (E.91):

w̃←(w) =





wmax if w ≤ w0,

w̃(ὰ←(w)) if w ∈ (w0, w1),

wmin if w ≥ w1,

(E.94)

where w0 and w1 are such that w̃← is strictly monotonically decreasing for argu-
ments w ∈ [w0, w1]. In summary, the function w̃←(w) is monotonically decreasing
for all w:

∀w ∈ R.
∂w̃←(w)

∂w
≤ 0. (E.95)

Based on Eq. (E.94), we can finally represent w←(w). For every interval, w←

describes the convergence from the interval-start CUBIC window size w towards
its associated equilibrium w̃(α←(w)) = w̃←(w), which follows from the asymptotic
stability of any w̃(α) proven in Theorem 6.2:

w←(w) ∈





(w, w̃←(w)] if w < w̃←(w),

[w] = [w̃←(w)] if w = w̃←(w),

[w̃←(w), w) if w > w̃←(w).

(E.96)

The function w̃← and the value ranges for w←(w) are illustrated in Fig. E.3.

e.3.1.3 Strict Monotonic Decrease of w̃

To confirm that w̃(α) is strictly monotonically decreasing for all α, we distinguish
the cases α ≥ α̂ and α < α̂.

α ≥ α̂. First, we note that w̃ = w̃max is strictly monotonically increasing in s̃
(Eq. (6.9)). In turn, s̃(α) is strictly monotonically decreasing in α if all α0 and α1
with α̂ ≤ α0 < α1 satisfy:

s̃(α0) > s̃(α1) ⇐= ∀s > s0(τk). S̃1(s, α0) < S̃1(s, α1), (E.97)
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where s0(τk) is the lower bound on all roots of polynomial S̃1 from Theorem 6.1,
given delay τk for the CUBIC flow. This lower bound is found by setting Cℓ = 0,
which yields:

S̃1(s0) =
α− 1

α

(
c2

bτk
s7

0 − cs3
0

)
!
= 0 ⇐⇒ s0 =

4

√
bτk
c

. (E.98)

Returning to Eq. (E.97), we note that

S̃1(s, α0) < S̃1(s, α1)

⇐⇒ α0 − 1
α0

(
c2

bτk
s7 − cs3

)
<

α1 − 1
α1

(
c2

bτk
s7 − cs3

) (E.99)

holds if the s-polynomial in the parentheses is strictly positive, which is again true
for all s > s0(τk). This insight implies s̃(α0) > s̃(α1) and also w̃(α0) > w̃(α1), i.e.,
w̃(α) is strictly monotonically decreasing for all α ≥ α̂.

α < α̂. The demonstration of strict negative monotonicity for α < α̂ works
analogously to the previous case, but is based on S̃2 instead of S̃1. Intriguingly, we
again find s0(τk) as in Eq. (E.98), marking both the lower bound on possible roots
and the lower bound on roots whose position is a strictly monotonically decreasing
function of α. Hence, w̃ is a strictly monotonically decreasing function for all α.

e.3.2 CUBIC Long-Term Equilibrium Window Size w

Given the update functions from Appendix E.3.1, we can characterize the equi-
librium of the discrete dynamic process in Eq. (6.24). In particular, we will prove
the existence and the uniqueness of an equilibrium w such that w = w←(w).
From Eq. (E.96), we learn that w←(w) only returns the argument w as a value
if w = w̃←(w). Hence, the equilibrium condition can only hold if

w = w̃←(w). (E.100)

Since w̃← is monotonically decreasing (Eq. (E.95)), we know that its value
range R(w̃←) given argument range [wmin, wmax] is

R(w̃←) = [w̃←(wmax), w̃←(wmin)] ⊆ [wmin, wmax] (E.101)

where the subset relation holds for the following reason (symmetric for wmin
and w0):

If wmax < w1 : w̃←(wmax)
Eq. (E.95)
≥ w̃←(w1)

Eq. (E.92)
= wmin



E.3 proof of theorem 6 .3 : bbr-cubic oscillation 337

If wmax ≥ w1 : w̃←(wmax)
Eq. (E.94)

= wmin (E.102)

In a next step, we consider the fixed-point function w∗(w) = w− w̃←(w). Since
any equilibrium w must satisfy w = w̃←(w), it must satisfy w∗(w) = 0. Note
that w∗(w) is now strictly monotonically increasing. The value range R(w∗) for
argument range [wmin, wmax] is therefore:

R(w∗) = [wmin − w̃←(wmin), wmax − w̃←(wmax)]. (E.103)

Eq. (E.101) suggests that wmin ≤ w̃←(wmax) ≤ w̃←(wmin) and wmax ≥ w̃←(wmin)
≥ w̃←(wmax). As a result, we find that wmin− w̃←(wmin) ≤ 0 and wmax− w̃←(wmin) ≥
0. This finding, together with the continuousness and strict monotonicity of w∗,
imply (by the intermediate-value theorem) that a unique w ∈ [wmin, wmax] exists
such that w∗(w) = 0 ⇐⇒ w = w̃←(w). This w is thus a unique equilibrium which
is guaranteed to exist.

e.3.3 Convergence Trajectories

Given the unique equilibrium w, we now investigate the stability properties of
this equilibrium. In other words, we characterize the convergence trajectories
determined by the discrete process in Eq. (6.24), and elicit a condition under which
these trajectories may or may not lead to the equilibrium. This stability property
depends on the neighborhood of the equilibrium w with respect to the update
function w←.

In particular, we now show that the equilibrium w is unstable if an equilibrium
neighborhood Ω exists such that the window-update function w has a slope of less
than −1 in the complete neighborhood:

∃Ω = (ω0, ω1), ω0 < w < ω1. ∀ω ∈ Ω.
∂w←(ω)

∂w
< −1 (E.104)

In other words, we will show that all evolution trajectories from a window size ω ∈
Ω in this neighborhood lead out of the neighborhood. In that case, even if the
dynamics outside the neighborhood converge into the neighborhood, the trajectory
then leaves the neighborhood again and the equilibrium is not converged upon.

In particular, we consider a state w(t) with w(t) ∈ Ω and w(t) < w (The
proof for w(t) > w is symmetric). Since both w(t) and w are in Ω, w← is strictly
monotonically decreasing between w(t) and w, and therefore

w(t) < w =⇒ w(t + 1) = w←(w(t)) > w←(w)
(E.100)
= w. (E.105)
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At this point, w(t+ 1) might already be outside of Ω if w(t+ 1) > ω1. Otherwise,
if w(t+ 1) ∈ Ω, we know by the same argument that w(t+ 2) = w←(w(t+ 1)) < w.
Again, w(t + 2) might be out of the neighborhood Ω if w(t + 2) < ω0.

Importantly, w will eventually leave the neighborhood if for all any t, w(t + 2) <
w(t), i.e., the window state moves away from the equilibrium w and will eventually
fall below ω0. This condition can be reformulated:

w(t + 2) < w(t)
Expand⇐⇒ w←(w←(w(t))) < w(t)

−w←(w(t))⇐⇒
w←(w←(w(t)))− w←(w(t)) < w(t)− w←(w(t))

/RHS⇐⇒
RHS

(E.105)
< 0

w←(w←(w(t)))− w←(w(t))
w(t)− w←(w(t))

> 1

·−1⇐⇒ w←(w←(w(t)))− w←(w(t))
w←(w(t))− w(t)

< −1. (E.106)

The last inequality in Eq. (E.106) can be understood as a condition on the average
slope of w← in [w(t), w←(w(t))]. Since we are considering the case where both w(t)
and w←(w(t)) are in the neighborhood Ω, the derivative condition in Eq. (E.104)
implies this average-slope condition.

e.4 proof of theorem 6 .4 : maximally intensive oscillation

e.4.1 Maximum Oscillation Amplitude

In order to find plausible bounds of the flow-size distribution in BBR-CUBIC
competition, we consider the worst case in terms of oscillation amplitude. To
characterize this worst-case oscillation amplitude, we make two observations.

Convergence speed. We note that the oscillation amplitude is proportional to the
convergence speed of the short-term dynamics in each update interval: In inter-
val [t, t + 1], these short-term dynamics involve a CUBIC window-size change
from the initial CUBIC window size w(t) to window size w(t + 1) = w←(w(t)),
where w←(w(t)) is between the initial window size w(t) and the short-term equi-
librium window size w̃←(w(t)). Hence, a high similarity between w← and w̃←

indicates a high convergence speed, quick window-size changes, and thus a large
amplitude of the oscillation. In the following proof, we therefore assume w← = w̃←

to maximize the oscillation amplitude.



E.4 proof of theorem 6 .4 : maximally intensive oscillation 339

Neighborhood size. We note that the oscillation amplitude is proportional to the size
of the unstable neighborhood Ω = [ω0, ω1] of the long-term equilibrium window
size w. Since the process {w(t)}t∈N,t≥0 evolves away from this equilibrium w when
in neighborhood Ω, the oscillation mostly involves window sizes w ̸= Ω left and
right of the neighborhood. Moreover, many steps of the oscillation also need to
cross Ω, e.g., change the window size from w(t) < ω0 to w(t + 1) > ω1. Hence,
ω1−ω0 is proportional to the window-size changes within the update periods, and
thus to the oscillation amplitude. Since the update function w← (in our case: w̃←)
must be strictly decreasing in Ω, the maximally large neighborhood Ω = (ω0, ω1)
corresponds to (w0, w1), i.e., the decreasing part of w̃← (cf. Eq. (E.94)).

e.4.2 Existence of Limit Cycle

With the two assumptions from Appendix E.4.1, we now prove that the BBR-CUBIC
oscillation has a limit cycle of CUBIC window sizes w̃←(wmin) and w̃←(wmax), i.e.,
the CUBIC window size persistently alternates between these two values.

Clearly, such a limit cycle only exists given an unstable long-term equilibrium w.
As noted in Appendix E.3.3, an equilibrium w is only unstable if w ∈ (w0, w1)
with w0 < w1, i.e., w = w̃←(w) is a value of w̃← in the decreasing part of w̃←. Since
the values of w̃← are restricted to [wmin, wmax] (cf. Eqs. (E.92) and (E.93)), it holds
that w ∈ ([wmin, wmax] ∩ (w0, w1)) =: W∩. Since w is guaranteed to exist, we know
that W∩ ̸= ∅, and thus

w0 < wmax and w1 > wmin. (E.107)

In the following, we consider all possible cases for W∩, and verify whether the
limit cycle is sound, i.e.,:

w̃←(wmin) = w̃←(w̃←(wmax))

w̃←(wmax) = w̃←(w̃←(wmin))
(E.108)

e.4.2.1 W∩ = (w0, w1)

Given the intersection range, we know that wmin ≤ w0 < w1 ≤ wmax. This inter-
leaving implies that

w̃←(wmin)
(E.94)
= wmax and w̃←(wmax)

(E.94)
= wmin. (E.109)
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Clearly, the limit cycle is sound in this case:

w̃←(wmin)
(E.109)
= w̃←(w̃←(wmax))

w̃←(wmax)
(E.109)
= w̃←(w̃←(wmin))

(E.110)

e.4.2.2 W∩ = [wmin, w1)

Given the intersection range, we know that w0 < wmin < w1 ≤ wmax. Hence, we
know that

w̃←(wmin)
(E.94)
< wmax and w̃←(wmax)

(E.94)
= wmin. (E.111)

With this knowledge, the first soundness condition in Eq. (E.108) holds:

w̃←(wmin)
(E.111)
= w̃←(w̃←(wmax)) (E.112)

The second condition, however, is not directly satisfied, but can be converted to:

w̃←(wmax) = w̃←(w̃←(wmin))
(E.111)⇐⇒ (E.113)

wmin = w̃←(w̃←(wmin))
(E.94)⇐⇒ (E.114)

w̃←(wmin) ≥ w1
(E.92)⇐⇒ w̃←(w̃←(w1)) ≥ w1 (E.115)

−w̃←(w1)⇐⇒ w̃←(w̃←(w1))− w̃←(w1) ≥ w1 − w̃←(w1)

(E.94)
= w1 − wmin

(E.107)
> 0 (E.116)

/RHS⇐⇒
·−1

w̃←(w̃←(w1))− w̃←(w1)

w̃←(w1)− w1
≤ −1 (E.117)

In turn, the last condition on w1 is ensured by the derivative condition in neighbor-
hood Ω = [w0, w1], i.e., by Eq. (E.104).

e.4.2.3 W∩ = (w0, wmax]

This case is symmetric to the case for W∩ = [wmin, w1) since wmin ≤ w0 < wmax <
w1.
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e.4.2.4 W∩ = [wmin, wmax]

From the intersection range, we derive wmin > w0 and wmax < w1. These conditions
can be shown to be incompatible with an unstable equilibrium (again via the
derivative condition):

wmax − wmin < w1 − w0
/RHS⇐⇒
·−1

w̃←(w0)− w̃←(w1)

w0 − w1
> −1. (E.118)

Hence, this case is outside the scope of this proof.

e.4.3 Convergence to Limit Cycle

In the following, we show that the long-term dynamics of the CUBIC window
size w converge to the limit cycle constituted by w̃←(wmin) and w̃←(wmax). For this
purpose, we revisit all relevant cases from Appendix E.4.2.

e.4.3.1 W∩ = (w0, w1)

Without loss of generality, we assume an initial state w(t) < w, which allows the
following case distinction:

• w(t) ≤ w0: We know that w(t + 1) = w̃←(w(t))
(E.94)
= wmax. Hence, the limit

cycle is entered in the first step, as wmax is part of the limit cycle by Eq. (E.109).

• w(t) ∈ (w0, w) : We note that w̃← is strictly monotonically decreasing be-
tween w(t) > w0 and w < w1 by Eq. (E.94), and thus

w(t + 1) = w̃←(w(t)) > w̃←(w)
(E.100)
= w. (E.119)

– w(t + 1) ≥ w1: The limit cycle is entered at w(t+ 2) = w̃←(w(t+ 1)) =
wmin, as wmin is part of the limit cycle by Eq. (E.109).

– w(t + 1) ∈ (w, w1): We again note that w̃← is strictly monotonically
decreasing between w > w0 and w(t + 1) < w1, and thus w(t + 2) =
w̃←(w(t + 1)) < w. Moreover, the window size makes progress towards
the limit cycle if w(t + 2) < w(t), which can once more be guaranteed
via the derivative condition.
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e.4.3.2 W∩ = [wmin, w1)

In this case, the limit cycle L is composed of wmin and w̃←(wmin) < wmax (Eq. (E.111)).
Without loss of generality, we assume an initial state w(t) < w, which allows the
following case distinction:

• w(t) ≤ w0: In that case, w(t + 1) = w̃←(w(t)) = wmax by Eq. (E.94). Since
wmax ≥ w1 in the current case, the limit cycle is entered at w(t + 2) =
w̃←(wmax) = wmin.

• w(t) ∈ (w0, wmin): We note that w̃← is strictly monotonically decreasing
between w(t) > w0 and wmin ≤ w1 (Eq. (E.94), where w(t) < wmin. This
property implies that

w(t + 1) = w̃←(w(t)) > w̃←(wmin)
(E.116)
≥ w1. (E.120)

Since w(t + 1) ≥ w1, the limit cycle is then entered at w(t + 2) = w̃←(w(t +
1)) = wmin.

• w(t) ∈ [wmin, w): This case only arises if wmin < w. Hence, w̃← is again
strictly monotonically decreasing between wmin > w0 and w < w1, and
therefore w(t + 1) > w from Eq. (E.119) holds again.

– w(t + 1) ≥ w1: The limit cycle is entered at w(t+ 2) = w̃←(w(t+ 1)) =
wmin by Eq. (E.94).

– w(t + 1) ∈ (w, w1): Based on arguments symmetric to the above analy-
sis, plus the derivative condition from Eq. (E.104), we find that w(t+ 2) ∈
[wmin, w(t)), which implies that the limit cycle is eventually entered.

e.4.3.3 W∩ = (w0, wmax]

This case is symmetric to the case in §E.4.3.2 (directly above).

e.5 deriving update function from experiment samples

To fit w← to the samples {we(t)}t∈{1,...,12} from experiment e, we require an ansatz.
To that end, we observe from the experiment in Fig. 6.4 that the evolution speed of
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the CUBIC window size w seems asymmetric: The window shrinks substantially
faster than it grows. Hence, we use the following ansatz for w←:

w←(w) =




(1− ρ↑)w + ρ↑w̃←(w) if w ≤ w̃←(w),

(1− ρ↓)w + ρ↓w̃←(w) if w > w̃←(w).
(E.121)

where w̃← is the update function under complete convergence to the short-term
equilibrium w̃. Since w̃ also requires a value for the minimum BBR bottleneck-
bandwidth estimate χ, we choose χ = 1MSS/τ = 1500 byte/τ. Moreover, ρ↑,
ρ↓ ∈ (0, 1] are the upwards and downwards convergence speeds, respectively.

With this ansatz and the experiment data, we can estimate the upwards conver-
gence speed ρ↑γ for each configuration γ:

ρ↑γ = Meant∈T↑(E(γ))

[
we(t + 1)− we(t)

w̃←(we(t))− we(t)

]
, (E.122)

where

T↑(E) = {t | |we(t + 1) > we(t)} . (E.123)

The downwards convergence speed is estimated analogously.
To obtain a general approximation of w←, we average the convergence speeds

over all configurations:

ρ↑ = Meanγ

[
ρ↑γ
]
≈ 23.7%

ρ↓ = Meanγ

[
ρ↓γ
]
≈ 47.8%

(E.124)
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f.1 proof of Theorem 8 .1 : best-response attribute

f.1.1 Unrestricted Best Response in Eq. (8.10)

For an individual source-destination pair (n1, n2), we can simplify Eq. (8.5) as
follows:

πn =
dvr(n)

1 + ∑r′∈R vr′
·
(

ρn − ∑
k∈K

ϕnkank − ϕn0

)
− ∑

k∈K
γnkank − γn0 (F.1)

where the argument A has been omitted, and vr(n) denotes the sum of valuations
for all paths including node n:

vr(n) = ∑
r∈R. n∈r

vr. (F.2)

Differentiating Eq. (F.1) with respect to attribute ank of ISP n yields:

∂πn

∂ank
=

dαnk

(
1 + v−r(n)

)

(1 + ∑r′∈R vr′)
2 ·

(
ρn − ∑

k∈K
ϕnkank − ϕn0

)
−

dϕnkvr(n)

1 + ∑r′∈R vr′
− γnk (F.3)

where the abbreviations from Eq. (8.14) have been used. Setting Eq. (F.3) to 0 allows
the following rewriting:

dαnk

(
1 + v−r(n)

)
·
(

ρn − ∑
k′∈K

ϕnk′ ank′ − ϕn0

)
− dϕnkvr(n) ·

(
1 + ∑

r′∈R
vr′

)

− γnk ·
(

1 + ∑
r′∈R

vr′

)2

= 0

(F.4)

345
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In the LHS, we can substitute

vr(n) + v−r(n) = ∑
r′∈R

vr′ = αnkank + v−nk = αnkank + vr(n),−nk + v−r(n)

∑
k′∈K

ϕnk′ ank′ + ϕn0 = ϕnkank + Φ−nk
(F.5)

and obtain:

− dαnkϕnk

(
1 + v−r(n)

)
· ank + dαnk (ρn −Φ−nk)

(
1 + v−r(n)

)
(F.6)

− dϕnk

(
αnkank + vr(n),−nk

)
(αnkank + 1 + v−nk)

− γnk · (αnkank + 1 + v−nk)
2

⇐⇒ − dαnkϕnk

(
1 + v−r(n)

)
· ank + dαnk (ρn −Φ−nk)

(
1 + v−r(n)

)
(F.7)

− dϕnk · α2
nka2

nk

− dϕnk · αnk ·
(

vr(n),−nk + (1 + v−nk)
)

ank

− dϕnk · vr(n),−nk · (1 + v−nk)

− γnk ·
(

α2
nka2

nk + 2αnk (1 + v−nk) ank + (1 + v−nk)
2
)

⇐⇒
(
−dϕnkα2

nk − γnkα2
nk

)
· a2

nk (F.8)

+
(
−dαnkϕnk

(
1 + v−r(n)

)
− dαnkϕnk

(
1 + vr(n),−nk + v−nk

))
· ank

+ (−2αnkγnk (1 + v−nk)) · ank

+ dαnk (ρn −Φ−nk)
(

1 + v−r(n)

)

− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)
2

⇐⇒ − α2
nk (dϕnk + γnk) · a2

nk (F.9)

− 2dαnkϕnk (1 + v−nk) · ank − 2αnkγnk (1 + v−nk) · ank

+ dαnk (ρn −Φ−nk)− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)
2

⇐⇒ − α2
nk (dϕnk + γnk) · a2

nk (F.10)

− 2αnk (dϕnk + γnk) (1 + v−nk) · ank

+ dαnk (ρn −Φ−nk)
(

1 + v−r(n)

)

− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)
2

⇐⇒ T1a2
nk + T2ank + T3 = 0 (F.11)
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Hence, we obtain a quadratic equation in ank. This quadratic equation has the
solutions:

ank =
−T2 ±

√
T2

2 + 4T1T3

2T1
(F.12)

=− 2αnk (dϕnk + γnk) (1 + v−nk)

2α2
nk (dϕnk + γnk)

(F.13)

±

√
4α2

nk (dϕnk + γnk)
2 (1 + v−nk)

2 + 4α2
nk(dϕnk + γnk) · T3

2α2
nk (dϕnk + γnk)

(F.14)

=− 1 + v−nk
αnk

±

√
(dϕnk + γnk) (1 + v−nk)

2 + T3

αnk
√

dϕnk + γnk
, (F.15)

where we expand the term under the root as follows:

(dϕnk + γnk) (1 + v−nk)
2 + T3 (F.16)

= dϕnk · (1 + v−nk)
2 + γnk (1 + v−nk)

2 (F.17)

+ dαnk (ρn −Φ−nk)
(

1 + v−r(n)

)

− dϕnk · vr(n),−nk · (1 + v−nk)−γnk · (1 + v−nk)
2

= dϕnk · (1 + v−nk)
2 − dϕnk · vr(n),−nk · (1 + v−nk) (F.18)

+ dαnk (ρn −Φ−nk)
(

1 + v−r(n)

)

(F.20)
= dϕnk

(
1 + v−r(n)

)
(1 + v−nk) + dαnk (ρn −Φ−nk)

(
1 + v−r(n)

)
, (F.19)

where we have made use of the following equality in the last step:

(1 + v−nk)
2 − vr(n),−nk (1 + v−nk)

=
(

1 + vr(n),−nk + v−r(n)

)
(1 + v−nk)− vr(n),−nk (1 + v−nk)

=
(

1 + v−r(n)

)
(1 + v−nk)

(F.20)

By reinserting Eq. (F.19) in Eq. (F.15), we obtain:

ank =
1

αnk


±

√
d
(
1 + v−r(n)

)

dϕnk + γnk

(
ϕnk(1 + v−nk) + αnk(ρn −Φ−nk)

))
−
(
1 + v−nk

)





348 appendix of chapter 8

(F.21)

where only the upper solution (i.e., with the positive coefficient of the square-root
term) is potentially valid given the non-negativity of attributes. Hence, we arrive
at â∗nk(A−nk) as in Eq. (8.10).

f.1.2 Confirmation of Maximum

This solution is a maximum of πn if πn from Eq. (F.1) is concave in ank, which can
be demonstrated by means of the second derivative:

∂2πn

∂a2
nk

=
−2dα2

kn

(
1 + v−r(n)

)

(1 + ∑r′∈R vr′)
3 ·

(
ρn − ∑

k∈K
ϕnkank − ϕn0

)
−

2dαnϕnk

(
1 + v−r(n)

)

(1 + ∑r′∈R vr′)
2

(F.22)

Clearly, πn may only be non-concave under the following condition:

∂2πn

∂a2
nk

> 0 =⇒ ρn − ∑
k∈K

ϕnkank − ϕn0 < 0 (F.23)

However, if the condition in Eq. (F.23) is true for some an ∈ RK
≥0, then the

profit function has a negative slope at that point (cf. Eq. (F.3)). Hence, the profit
function has no extrema in the non-concave regions, and thus any extremum, in
particular â∗nk(A−nk), is guaranteed to be located in the concave regions and to be a
maximum.

f.1.3 Restricted Best Response in Eq. (8.9)

Since attribute values must be non-negative, we now investigate how the un-
restricted best-response â∗nk informs the best-response a∗nk on the restricted do-
main R≥0. Clearly, if â∗nk ≥ 0, then a∗nk = â∗nk. Otherwise, if â∗nk < 0, the boundary
point ank = 0 constitutes a local maximum on the restricted domain R≥0. To
confirm this statement, we have to distinguish the cases ϕnk > 0 and ϕnk = 0.

If ϕnk > 0, we note that the profit function can only be non-concave for high
enough ank:

ρn − ∑
k∈K

ϕnkank − ϕn0 < 0 ⇐⇒ ank >
ρn −Φ−nk

ϕnk
=: ank (F.24)
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Hence, πn is guaranteed to be concave for all ank ≤ ank. Furthermore, as argued
in Appendix F.1.2, πn is strictly decreasing for all ank > ank. Hence, ank = 0 is the
maximum on the restricted domain independent of ank, given that â∗nk < 0: Either
the boundary point ank = 0 is in the concave region (if ank ≥ 0) or in the decreasing
region (if ank < 0).

If ϕnk = 0, πn can only be non-concave if ρn − Φ−nk < 0, independent of ank.
Hence, πn is either guaranteed to be consistently concave in ank (if ρn −Φ−nk ≥
0), or guaranteed to be decreasing for all ank ≥ 0. In both cases, the boundary
point ank = 0 constitutes a local maximum.

Finally, we investigate the case where the unrestricted best response â∗nk is unde-
fined on R, i.e., if the term under the square root is negative. A necessary condition
for this negativity is that ρn −Φ−nk is negative, which according to Eq. (F.24) im-
plies that ank < 0. Hence, in this case πn is decreasing for ank ≥ 0, which again
makes ank = 0 a local maximum on the restricted domain R≥0.

f.2 proof of Theorem 8 .2 : homogeneous nash equilibrium

f.2.1 Homogeneous Profit Function

In a homogeneous network, all attributes are equally valuable and costly, i.e.,
αnk, ϕnk and γnk are equal across all attributes k ∈ K. This homogeneity allows
to understand the profit function πn of a ISP n as a function of the attribute
sums an = ∑k∈K ank:

πn(A) =
α1an + α1 ∑n′∈r(n)\{n} an′ + α0

1 + α1an + α1 ∑n′∈N\{n} an′ + Qα0
d(ρ− ϕ1an − ϕ0)− γ1an − γ0 (F.25)

In the following, we thus treat the attribute sum an like a single attribute of ISP n.

f.2.2 Unrestricted Equilibrium in Eq. (8.18)

The equilibrium conditions in Eq. (8.17) suggest that the equilibrium for a homo-
geneous parallel-path network satisfies the following equation for every n ∈ N:

a+n = max
(
0, â∗n(A

+
−n)
)

(F.26)



350 appendix of chapter 8

where

â∗n(A
+
−n) =

1
α1

(√
d
(
1 + v−r(n)(A

+
−n)
)

dϕ1 + γ1

(
ϕ1(1 + v−n(A+

−n)) + α1(ρ− ϕ0)
))

−
(
1 + v−n(A−n)

)
)

(F.27)

v−r(n)(A
+
−n) = α1 ∑

n′∈N\r(n)
a+n′ + (Q− 1)α0 (F.28)

v−n(A+
−n) = v−r(n)(A

+
−n) + α1 ∑

n′∈r(n)\{n}
a+n′ + α0 (F.29)

Note that we effectively consider a single attribute in the style of the attribute
sum, which simplifies Φ−nk = ϕ0 ≤ ρ. Hence, the undefined case from Theorem
8.1 does not arise because the term under the square root in Eq. (F.26) is always
non-negative.

To solve the equation system Eq. (F.26) ∀n ∈ N, we first consider the unrestricted
system (i.e., without required non-negativity of solutions) in Â+:

∀n ∈ N. â+n =

√
d
(

1+v−r(n)(Â
+
−n)
)

dϕ1+γ1

(
ϕ1(1 + v−n(Â+

−n)) + α1(ρ− ϕ0)
))

α1

−
(
1 + v−n(Â+

−n)
)

α1

(F.30)

This equation system can be transformed such that the LHS is constant for all n:

∀n ∈ N. 1 + α1 ∑
r∈R

∑
n′∈r

â+n′ + Qα0 =

√
d
(
1 + v−r(n)(Â

+
−n)
)

dϕ1 + γ1

(
ϕ1(1 + v−n(Â+

−n)) + α1(ρ− ϕ0)
)) (F.31)

which implies that all a+n ∀n ∈ N are equal to a value â+. This value â+ can be
found by solving the following single equation:

1 + QIα1 â+ + Qα0 = (F.32)
√

d
(
1 + (Q− 1)(Iα1 â+ + α0)

)

dϕ1 + γ1

(
ϕ1(1 + (QI − 1)α1 â+ + Qα0) + α1(ρ− ϕ0)

))

This equation is solved by â+ as defined in Theorem 8.2.
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f.2.3 Restricted Equilibrium

It remains to show how the solution â+ of the unrestricted system can be used to
derive the actual solution a+ of the restricted system. If â+ ≥ 0, the unrestricted-
system solution â+ is clearly also a solution to the restricted system, i.e., a+ = â+.
However, if â+ < 0, the attribute values as suggested by the unrestricted system
are negative, which is invalid for the restricted system. In this case, we can show
that a solution of the restricted system is given by a+ = 0, i.e., 0 = a∗n(0) (where a∗n
is the optimal choice in single-market networks according to Theorem 8.1). To show
this property, we first observe that the condition for â+ < 0 can be simplified to a
condition on sub-term T3:

â+ < 0 =⇒

√
T2

2 − 4T1T3 − T2

2T1
< 0 (F.33)

For T1 > 0: T2
2 − 4T1T3 < T2

2 =⇒ −4T1T3 < 0 =⇒ T3 > 0 (F.34)

For T1 < 0: T2
2 − 4T1T3 > T2

2 =⇒ −4T1T3 > 0 =⇒ T3 > 0 (F.35)

=⇒ T3 = (1 + Qα0)
2 − d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 + Qα0) + α1(ρ− ϕ0)

)

> 0 (F.36)

Furthermore, the inequality on T3 allows the following conclusion:

(1 + Qα0)
2 − d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 + Qα0) + α1(ρ− ϕ0)

)
> 0 ⇐⇒ (F.37)

(1 + Qα0)−
√

d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 + Qα0) + α1(ρ− ϕ0)

)
> 0 (F.38)

due to the equivalence x2 − y > 0 ⇐⇒ x2 > y ⇐⇒ x >
√

y ⇐⇒ x−√y > 0
(if x, y ≥ 0).

Eq. (F.38) has a striking similarity to â∗n(0) for a homogeneous parallel-path
network:

â∗n(0) =

√
d
(

1+(Q−1)α0

)
dϕ1+γ1

(
ϕ1(1 + Qα0) + α1(ρ− ϕ0)

))
−
(
1 + Qα0

)

α
(F.39)

More precisely, Eq. (F.38) implies that the unrestricted best response â∗n(0) is
always below 0 if the raw-equilibrium choice â+ < 0, and that the restricted best
response a∗n(0) thus always equals 0 for â+ < 0, yielding a restricted equilibrium
choice of a+ = 0. This insight concludes the proof.
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f.3 proof of Theorem 8 .3 : stability of homogeneous equilibrium

f.3.1 Linearization of Dynamic System

In order to prove asymptotic stability of the given Nash equilibrium, we leverage
the indirect Lyapunov method [209]. This method requires that the equilibrium of
an ODE system is asymptotically stable if the Jacobian matrix of the ODE system,
evaluated at the equilibrium point, has exclusively negative eigenvalues. More
formally, given the Jacobian matrix J(A+) ∈ R|N|×|N|, it must hold that ∀λ ∈ R

that ∃x ∈ R|N|, x ̸= 0. J(A+)x = λx =⇒ λ < 0. This matrix J(A+) is defined as
follows for the dynamic system from Eq. (8.23):

Jnn =
∂ȧn

∂an
(A+) = −1 (F.40)

n ̸= m, r(n) = r(m) : Jnm =
∂ȧn

∂am
(A+) =





T4
T5
− 1 if â+ ≥ 0

0 otherwise
(F.41)

n ̸= m, r(n) ̸= r(m) : Jnm =
∂ȧn

∂am
(A+) =





T4+T6
T5
− 1 if â+ ≥ 0

0 otherwise
(F.42)

where â+ is the unrestricted equilibrium attribute value according to Theorem 8.2,
and

T4 = dϕ1
(
1 + v−r(n)(Â

+)
)
, (F.43)

T5 = 2(dϕ1 + γ1)

√
d
(
1 + v−r(n)(Â

+
−n)
)

dϕ1 + γ1
· (F.44)

√
ϕ1(1 + v−n(Â+

−n)) + α1(ρ− ϕ0), and (F.45)

T6 = d
(
ϕ1(1 + v−n(Â+

−n)) + α1(ρ− ϕ0)
)
. (F.46)
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f.3.2 Case 1: Non-Negative Unrestricted Equilibrium (â+ ≥ 0)

We first consider the case of a non-negative unrestricted equilibrium value â+ such
that A+ = Â+. In that case, the eigenvalue condition induces the following system
of equations:

∀n ∈ N. (−λ− 1)xn +

(
T4

T5
− 1
)

∑
n′∈r(n)\{n}

xn′+

(
T4 + T6

T5
− 1
)

∑
n′∈N\r(n)

xn′ = 0
(F.47)

This system has a number of solutions (λ, x).

λ = −T4/T5. For λ1 = −T4/T5, the first two terms in Eq. (F.47) obtain the
same coefficient, and the equation system is reduced from |N| ISP-specific to |R|
path-specific equations:

∀r ∈ R.
(

T4

T5
− 1
)

Xr +

(
T4 + T6

T5
− 1
)

∑
r′∈R\{r}

Xr′ = 0

where Xr = ∑
n′∈r

xn′

(F.48)

Equation systems of this form may have three types of solutions in x. For T6 = 0 and
T4 = T5, any x is a solution, as the coefficients of the variables Xr are 0. For T6 = 0
and T4 ̸= T5, any x with entries summing up to 0 is a solution, as the sum of all Xr
has a single non-zero coefficient. For T6 ̸= 0, any x with Xr = 0 ∀r ∈ R is a solution.
More importantly for the proof, λ1 = −T4/T5 is consistently negative given the
parameter ranges, except for the case where ϕ1 = 0 and hence λ1 = 0. The case
of ϕ1 = 0 is indeed an interesting special case for which the equilibrium is not
unique, as we will show in §8.3.3; for this special case, λ1 = 0 describes the fact
that the dynamics do not converge to a specific equilibrium if they have already
converged onto another equilibrium.

λ ̸= −T4/T5. After discovering the first eigenvalue λ1 = −T4/T5, we now
consider the case where λ ̸= −T4/T5. In this case, the symmetric structure of the
equation system implies that all eigenvector entries xn associated with the same



354 appendix of chapter 8

path r are equal, and thus xn = Xr/I. Hence, a reduction of the equation system
to |R| equations is possible again:

∀r ∈ R.
(−λ− 1

I
+

I − 1
I

(
T4

T5
− 1
))

Xr +

(
T4 + T6

T5
− 1
)

∑
r′∈R\{r}

Xr′ = 0
(F.49)

Again, this equation system admits different types of solutions.
The first type is obtainable by assuming Xr = −∑r′∈R\{r} Xr′ , and is associated

with the following eigenvalue:

−λ2 − 1
I

+
I − 1

I

(
T4

T5
− 1
)
=

T4 + T6

T5
− 1 =⇒ λ2 = −T4 + IT6

T5
(F.50)

Importantly in this case, λ2 is consistently negative.
The second type of solution for the equation system in Eq. (F.49) is obtainable

by assuming equal Xr across all paths r ∈ R, and is associated with the following
eigenvalue:

−λ3 − 1
I

+
I − 1

I

(
T4

T5
− 1
)
= −(Q− 1)

(
T4 + T6

T5
− 1
)

=⇒ λ3 = QI
(

T4 + T6

T5
− 1
)
− T4 + IT6

T5

(F.51)

By inspection of λ3, we confirm that the maximum λ3 is negative:

max
α1,α0,ϕ1,ϕ0,
γ1,ρ,d,Q,I

λ3 = max
ϕ1,Q

lim
α1,α0,ρ,d
→∞

lim
ϕ0,γ1
→0

lim
I→1

λ3 < −1
2

(F.52)

Hence, all eigenvalues of J(A+) for â+ > 0 are negative, i.e., the equilibrium is
asymptotically stable in this case.

f.3.3 Case 2: Negative Unrestricted Equilibrium (â+ < 0)

It remains to show that the equilibrium A+ is also asymptotically stable for the
case â+ < 0 such that A+ = 0. This part of the proof is trivial: For â+ < 0, the
Jacobian J(A+) corresponds to the negative identity matrix, which only has the
negative eigenvalue λ = −1. Hence, the proof is concluded.
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f.4 proof of Theorem 8 .4 : suboptimal homogeneous equilibrium

f.4.1 NBS Attribute

To characterize the NBS attribute a◦, we first require an understanding of the
aggregate profit of ISPs on the path:

∑
n∈r

πn(A) = d
α1 ∑n∈r an + α0

1 + α1 ∑n∈r an + α0
(I(ρ− ϕ0)− ϕ1 ∑

n∈r
an)− γ1 ∑

n∈r
an − γ0 (F.53)

The aggregate profit can thus be considered a function of the sum ar of ISP
attributes on path, i.e., ar := ∑n∈r an. By Theorem 8.1, the unrestricted optimal
attribute sum a◦r is a◦r = max(0, â◦r ), where:

â◦r =

√
d

dϕ1+γ1
(ϕ1(1 + α0) + Iα1(ρ− ϕ0))− (1 + α0)

α1
. (F.54)

Clearly, the Nash bargaining attributes {a◦n}n∈r must sum to a◦r in order to be
optimal. Moreover, the Nash bargaining solution is fair for the cooperating entities,
requiring equal profit for all ISPs in our context. As a result, the Nash bargaining
solution stipulates a single attribute value a◦, which is adopted by all ISPs. This
NBS attribute a◦ is a◦ = max(0, â◦), where â◦ = â◦r /I.

f.4.2 Equilibrium Attribute

The equilibrium attribute a+ is defined as in Theorem 8.2, but can be considerably
simplified for the case Q = 1. In particular, the equilibrium attribute a+ for Q = 1
is a+ = max(0, â+), where:

â+ =

√
T2

2 − 4T1T3 − T2

2T1
, (F.55)

T1 = I2α2
1, (F.56)

T2 = 2Iα1 (1 + α0)−
d

dϕ1 + γ1
α1ϕ1 (I − 1) , and

T3 = (1 + α0)
2 − d

dϕ1 + γ1

(
ϕ1(1 + α0) + α1(ρ− ϕ0)

)
. (F.57)
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f.4.3 Comparison of Attributes

We show that a+ ≤ a◦ by showing that â+ ≤ â◦. This inequality can be rewritten as

√
T2

2 − 4T1T3 − T2

2T1
≤ â◦ ⇐⇒ T2 â◦ ≥ −(T1 â◦2 + T3) (F.58)

The two sides of the second inequality in Eq. (F.58) expand to:

T2 â◦ = − 2 (1 + α0)
2 + 2 (1 + α0) · (F.59)

√
d

dϕ1 + g1
(ϕ1 (1 + α0) + Iα1 (r− ϕ0))

− d
dϕ1 + g1

(I − 1) α1ϕ1 â◦

−(T1 â◦2 + T3) = − 2 (1 + α0)
2 + 2 (1 + α0) · (F.60)

√
d

dϕ1 + g1
(ϕ1 (1 + α0) + Iα1 (r− ϕ0))

− d
dϕ1 + g1

(I − 1) α1(r− ϕ0)

Since these terms lend themselves to considerable simplification, Eq. (F.58) becomes:

ρ− ϕ1 â◦ − ϕ0 ≥ 0 (F.61)

Interestingly, â◦ is guaranteed to satisfy this inequality. To see why, assume the
opposite for the sake of contradiction: ρ− ϕ1 â◦ − ϕ0 < 0. If ϕ1 = 0, this inequality
conflicts with the model assumption ρ − ϕ0 ≥ 0. If ϕ1 > 0, the same model
assumption indicates that â◦ > (ρ− ϕ0)/ϕ1 ≥ 0. Hence, the profit function of any
ISP n is negative:

πn(Â◦) = d
α1 Iâ◦ + α0

1 + α1 Iâ◦ + α0︸ ︷︷ ︸
>0

(ρ− ϕ1 â◦ − ϕ0)︸ ︷︷ ︸
<0

−γ1 â◦ − γ0︸ ︷︷ ︸
≤0

(F.62)

However, this negative profit could be strictly improved by choosing the lower
attribute value a′ = (ρ− ϕ0)/ϕ1 < â◦. This profit improvement is a contradiction to
the character of â◦ as the profit-optimizing attribute value. Hence, Eq. (F.61) holds,
and therefore also the proposition â+ ≤ â◦ holds. This insight concludes the proof.
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f.5 proof of Theorem 8 .5 : homogeneous competition (attributes)

f.5.1 Equilibrium for Competitive Network N2

We begin the proof by characterizing the equilibrium for the competitive net-
work N2, in which every ISP n optimizes the following profit function πn:

πn(an) = d′
(

Q

∑
q=1

vr(mq1,mq2,n)

1 + ∑r′∈R(mq1,mq2)
vr′

)
(ρ− ϕ1an − ϕ0)− γ1an − γ0 (F.63)

where r(mq1, mq2, n) denotes the unique path connecting (mq1, mq2) via ISP n. In
the unrestricted equilibrium Â+, every ISP n has the optimal attribute value â+n
given competitor attributes Â−n, which can be found by setting ∂πn/∂an = 0:

d′




Q

∑
q=1

α1

(
1 + v−r(mq1,mq2,n)

)

(
1 + ∑r′∈R(mq1,mq2)

vr′
)2


 (ρ− ϕ1an − ϕ0)

− d′ϕ1

(
Q

∑
q=1

vr(mq1,mq2,n)

1 + ∑r′∈R(mq1,mq2)
vr′

)
− γ1 = 0

(F.64)

Since this equation is equivalent for every ISP n, the equilibrium â+n is identical for
all ISPs n, i.e., â+n = â+. This simplification allows the following transformation
of Eq. (F.65):

d′Q
α1(1 + (Q− 1)(Iα1 â+ + α0))

(1 + Q(Iα1 â+ + α0))
2 (ρ− ϕ1an − ϕ0)

− d′Qϕ1
Iα1 â+ + α0

1 + Q(Iα1 â+ + α0)
− γ1 = 0

(F.65)

This equilibrium condition is identical to the equilibrium condition for a homo-
geneous parallel-path network with a single origin-destination pair and demand
limit d = d′Q. Hence, the unrestricted equilibrium value â+ from Theorem 8.2
(with d′Q substituted for d) also applies to the competitive network N2.

f.5.2 Equilibrium for Competition-Free Network N1

Moreover, we note that a single sub-network (for one origin-destination pair) of
the competition-free network N1 is equivalent to the network N2 for Q = 1. Since
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the identical, isolated sub-networks of the competition-free network N1 do not
influence each other, the equilibrium attribute value â+ is equal in that whole
network.

f.5.3 Comparison of Equilibria

Hence, if â+(Q) is considered the equilibrium attribute for the competitive net-
work N2, we can prove the proposition a+(N2) ≥ a+(N1) for Q ≥ 1 by show-
ing â+(Q) ≥ â+(1) for Q ≥ 1. To show this property, we solve the following
inequality:

â+(Q)− â+(1) ≥ 0 (F.66)

⇐⇒
√

T2(Q)2 − 4T1(Q)T3(Q)− T2(Q)

2T1(Q)
− â+(1) ≥ 0 (F.67)

⇐⇒
√

T2(Q)2 − 4T1(Q)T3(Q) ≥ T2(Q) + 2T1(Q)â+(1) (F.68)

⇐⇒ T2(Q)2 − 4T1(Q)T3(Q) ≥
(
T2(Q) + 2T1(Q)â+(1)

)2 (F.69)

In Eq. (F.67), the equilibrium constituent terms T1, T2, and T3 from Theorem 8.2 are
considered functions of Q. In Eq. (F.68), the transformation is possible by the fact
that T1(Q) > 0 for Q ≥ 1:

T1(Q) = Q2 I2α2
1 −

Qd′

Qd′ϕ1 + γ1
(QI − 1) (Q− 1) Iα2

1ϕ1 > 0

⇐⇒ Q >
d′ϕ1

(d′ϕ1(I + 1) + Iγ1)

(F.70)

where the RHS in the last inequality is consistently below 1, and T1(Q) > 0 thus
holds for all Q ≥ 1. Using lengthy rewriting, the inequality in Eq. (F.69) can then
be transformed into the following inequality containing a quadratic equation of Q:

T7Q2 + T8Q + T9 ≤ 0 (F.71)

where

T7 = â+(1)2α2
1 I (Iγ1 + dϕ1 (I + 1)) (F.72)

+ â+(1)α1 (2Iα0γ1 + (2I + 1) dϕ1α0 − d (ρ− ϕ0) Iα1)

+ α2
0 (dϕ1 + γ1)− dα0α1 (ρ− ϕ0) ,
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T8 = − â+(1)2dIα2
1ϕ1 (F.73)

+ â+(1)α1 (2Iγ1 + dϕ1(I + 1)− dϕ1α0 + d (ρ− ϕ0) Iα1)

+ 2α0γ1 + (α0 − 1) dα1 (ρ− ϕ0) + dα0ϕ1, and

T9 = γ1. (F.74)

To solve Eq. (F.71), we make use of the following two properties.

• Q = 1 is a root of of â+(Q)− â+(1), which implies:

T7 + T8 + T9 = 0 ⇐⇒ T7 + T8 = −T9. (F.75)

• The inspection of T7 yields the following insight, which we derived by means
of the symbolic algebra system in Matlab:

T7 ≤ lim
d,α0
→0

T7 = γ1 = T9 (F.76)

Given the lower root Q and the higher root Q of the quadratic function in Eq. (F.71)
(which are guaranteed to exist at least at Q = 1 and are identical if T7 = 0), the
inequality is solved by the following Q:

Q ∈





[Q, Q] 1 if T7 > 0

(−∞, Q] ∪ [Q, ∞) 2 if T7 < 0

(−∞, Q] 3 if T7 = 0∧ T8 > 0

[Q, ∞) 4 if T7 = 0∧ T8 < 0

(−∞, ∞) 5 if T7 = 0∧ T8 = 0∧ T9 ≤ 0

∅ 6 if T7 = 0∧ T8 = 0∧ T9 > 0

(F.77)

This area of Q (leading to non-positive values of the quadratic function in Eq. (F.71))
includes [1, ∞) in all cases:

1. T7 ̸= 0. (Eq. (F.77) 1 and 2 ): For T7 ̸= 0, the property in Eq. (F.75) facilitates
finding the solutions (Q, Q):

(Q, Q) =
−T8 ±

√
T2

8 − 4T7T9

2T7
=
−T8 ±

√
(2T7 + T8)2

2T7
=
−T8 ± (2T7 + T8)

2T7
(F.78)
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a) T7 > 0 (Eq. (F.77) 1 ): For T7 > 0, we note that

2T7 + T8
(F.75)
= T7 − γ1

(F.76)
≤ 0. (F.79)

Hence, the solutions from Eq. (F.78) are:

Q =
−T8 + (2T7 + T8)

2T7
= 1

Q =
−T8 − (2T7 + T8)

2T7
=

γ1

T7
≥ 1

(F.80)

where the higher solution Q is spurious and has been introduced by the
squaring operation in Eq. (F.69).

b) T7 < 0: (Eq. (F.77) 2 ): For T7 < 0 (Eq. (F.77) 2 ), the solutions are as
follows:

Q =
−T8 − (2T7 + T8)

2T7
=

γ1

T7
< 0

Q =
−T8 + (2T7 + T8)

2T7
= 1

(F.81)

2. T7 = 0 (Eq. (F.77) 3 – 6 ): For T7 = 0, it holds that T8 = −γ1 − T7 = −γ1 ≤ 0
and Q = −T9/T8 = (−γ1)/(−γ1) = 1.

a) T8 > 0 (Eq. (F.77) 3 ): The case T8 > 0 thus cannot arise.

b) T8 < 0 (Eq. (F.77) 4 ): For T8 < 0, the proposition clearly holds.

c) T8 = 0 (Eq. (F.77) 5 and 6 ): For T8 = 0, the equality T7 + T8 = −T9
from Eq. (F.75) implies T9 = 0. Hence, the case in Eq. (F.77) 5 always
arises if T7 = T8 = 0, whereas the case in Eq. (F.77) 6 never arises.

Since Eq. (F.66) thus always holds for Q ≥ 1, the proposition is proven.

f.6 proof of Theorem 8 .6 : homogeneous competition (profits)

To start the proof, we note that both the equilibrium attribute sum a+(N1) and the
NBS attribute sum a◦(N1) for the competition-free network are found by analyzing
a single path, since the isolated sub-paths in the competition-free network do not
influence each other. Hence, a+(N1) and a◦(N1) are as in Theorem 8.4, which
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relates to the single-path context and thus states that a+(N1) ≤ a◦(N1). Therefore,
the interval [a+(N1), a◦(N1)] is never empty.

From the proof of Theorem 8.5, we know that the proposition π+(N2) ≥
π+(N1) is equivalent to the proposition ∆π = π(Q, a+(N2))− π(1, a+(N1)) ≥ 0,
where π(Q, a) is defined as follows:

π(Q, a) = Qd′
Iα1a + α0

1 + Q(Iα1a + α0)
(ρ− ϕ1a− ϕ0)− γ1a− γ0. (F.82)

Clearly, π(Q, a◦(N1)) is optimal for Q = 1, i.e., the NBS attribute sum is op-
timal in the competition-free network. Hence, it also holds that π(1, a+(N1)) ≤
π(1, a◦(N1)), i.e., the equilibrium profit in the competition-free network is generally
sub-optimal. Moreover, since π(Q, a) is consistently concave in a in the relevant
regions, the assumption a+(N2) ∈ [a+(N1), a◦(N1)] implies

π(1, a+(N1)) ≤ π(1, a+(N2)). (F.83)

Given Eq. (F.83), we can lower bound the profit difference:

∆π = π(Q, a+(N2))− π(1, a+(N1))

≥ π(Q, a+(N2))− π(1, a+(N2)) =: ∆π
(F.84)

Hence, if ∆π ≥ 0 holds, the proof proposition ∆π ≥ 0 follows. At this point, we
also note that a+(N2) ∈ [a+(N1), a◦(N1)] is only a sufficient, but not a necessary
condition for ∆π ≥ 0; hence, profit increases might also happen if a+(N2) /∈
[a+(N1), a◦(N1)].

We can reformulate the lower bound ∆π on the profit difference as follows:

∆π = π(Q, a+(N2))− π(1, a+(N2)) (F.85)

= d′
(

Q(Iα1a+(N2) + α0)

1 + Q(Iα1a+(N2) + α0)
− Iα1a+(N2) + α0

1 + Iα1a+(N2) + α0

)
Ψ(a+(N2))

= d′
(

(Q− 1) (Iα1a+(N2) + α0)

(1 + Q(Iα1a+(N2) + α0))(1 + Iα1a+(N2) + α0)

)
Ψ(a+(N2))

Given d′ > 0 and Q ≥ 1, the first and second factor of ∆π in Eq. (F.85) are
non-negative. Hence, ∆π ≥ 0 is equivalent to

Ψ(a+(N2)) =
(
ρ− ϕ1a+(N2)− ϕ0

)
≥ 0. (F.86)

This latter condition also always holds, which is demonstrable by contradiction.
Let ρ − ϕ1a+(N2) − ϕ0 < 0 ⇐⇒ a+(N2) > (ρ − ϕ0)/ϕ1, which makes the
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minuend in π(1, a+(N2)) negative (cf. Eq. (F.82)). In that case, all a′ > a+(N2)
would lead to lower profit π(1, a′). This observation contradicts the optimality of
the NBS attribute sum a◦(N1) regarding π(1, a′), as a◦(N1) ≥ a+(N2).

Hence, since ∆π ≥ 0, it holds that ∆π ≥ 0 and the theorem proposition follows.

f.7 proof of Theorem 8 .7 : optimum on heterogeneous paths

In order to be a Nash bargaining solution, the attribute values A◦ should both
optimize the aggregate profit function π(A) = ∑n∈r πn(A), and create a maximally
equitable profit distribution across the ISPs n ∈ r. This maximum fairness is
achieved by optimizing the Nash bargaining product, i.e.:

A◦ = arg maxA∈R≥0
Πn∈rπn(A) (F.87)

This optimization of the Nash bargaining product must be performed subject to
the constraints in Theorem 8.7 that are associated with optimal aggregate profit.
In the following, we characterize this aggregate-profit function, and show that the
conditions stated in Theorem 8.7 are both sufficient and necessary in order for A◦

to satisfy aggregate-profit optimality.

f.7.1 Aggregate-Profit Function

The aggregate profit π(A) in our setting is:

π(A) = ∑
n∈r

πn(A) = d
vr(A)

1 + vr(A)

(
∑
n∈r

ρn − ϕn0

)
−∑

n∈r

(
∑
k∈K

γnkank + γn0

)
(F.88)

This aggregate-profit function has the following first and second derivative in
any ank:

∂

∂ank
π(A) = d

αnk

(1 + vr(A))2

(
∑
n∈r

ρn − ϕn0

)
− γnk (F.89)

∂2

∂a2
nk

π(A) = − d
2α2

nk

(1 + vr(A))3

(
∑
n∈r

ρn − ϕn0

)
(F.90)

As the second derivative is non-positive for all A ∈ R≥0, the aggregate-profit
function is consistently concave in any ank on the valid domain R≥0. Therefore,
if the first derivative ∂/∂ank π(A) is negative for any ank, all reductions of ank
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increase aggregate profit, and all increases of ank reduce the aggregate profit (The
reverse holds for a positive first derivative). This condition on the first derivative is
equivalent to the following condition, which is central for the proof:

∀n ∈ r, k ∈ K.
∂

∂ank
π(A) < 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d ∑

n∈r
(ρn − ϕn0)− 1 (F.91)

f.7.2 Sufficiency of Conditions

After this characterization of the aggregate-profit function, we now demonstrate
that the conditions in Theorem 8.7 are sufficient, i.e., any A◦ with the conditions
optimizes the aggregate profit. Sufficiency can be demonstrated by performing the
following case distinction:

1. ∀(n, k) ∈ r× K. αr0 >
√

αnk
γnk

√
d ∑n∈r(ρn − ϕn0)− 1

According to Theorem 8.7, all optimal attribute values A◦ must be 0 in this
case:

vr(A◦) = v◦r
(8.26)
= αr0 ⇐⇒ A◦ = 0 (F.92)

Moreover, the first derivative ∂/∂ank π(A◦) for all n ∈ r, k ∈ K must be
negative:

∀n ∈ r, k ∈ K. vr(A◦) = αr0 >

√
αnk
γnk

√
d ∑

n∈r
(ρn − ϕn0)− 1

(F.91)⇐⇒ ∂

∂ank
π(A◦) < 0

(F.93)

Hence, the only way to further increase the aggregate profit π would be by
reductions in any ank. However, since every ank = 0, such reductions are not
possible given the restricted domain R≥0. Hence, A◦ = 0 is optimal.

2. ∃(n, k) ∈ r× K. αr0 ≤
√

αnk
γnk

√
d ∑n∈r(ρn − ϕn0)− 1

In this case, the attributes (n◦, k◦) ∈ r× K with the maximal ratio αn◦k◦/γn◦k◦

play a special role according to Theorem 8.7. We denote the set of these
attributes by K◦r :

K◦r =

{
(n◦, k◦) | (n◦, k◦) = arg max(n,k)∈r×K

αnk
γnk

}
. (F.94)
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This maximal ratio also determines the optimal path valuation vr(A◦) accord-
ing to Theorem 8.7:

∀(n◦, k◦) ∈ K◦r . vr(A◦) =
√

αn◦k◦

γn◦k◦

√
d ∑

n∈r
(ρn − ϕn0)− 1 (F.95)

In contrast, for all attributes (n⊘, k⊘) /∈ K◦r , the following condition holds:

∀(n⊘, k⊘) /∈ K◦r . vr(A◦) =
√

αn◦k◦

γn◦k◦

√
d ∑

n∈r
(ρn − ϕn0)− 1

>

√
αn⊘k⊘

γn⊘k⊘

√
d ∑

n∈r
(ρn − ϕn0)− 1

⇐⇒ ∂

∂an⊘k⊘
π(A◦) < 0

(F.96)

Hence, the only way to increase the aggregate profit π would be by reductions
in any an⊘k⊘ for (n⊘, k⊘) /∈ K◦r . However, since an⊘k⊘ = 0 ∀(n⊘, k⊘) /∈ K◦r
by Theorem 8.7, such reductions are not possible, and hence A◦ is optimal.

f.7.3 Necessity of Conditions

After demonstrating that the conditions in Theorem 8.7 are sufficient for optimal
aggregate profit, we now demonstrate that the conditions are also necessary, i.e., no
choice of attribute values A◦ that violates these conditions can be optimal. For the
sake of contradiction, we assume that some attribute values A◦ are optimal while
satisfying the following conditions:

∃(n⊘, k⊘) /∈ K◦r . a◦n⊘k⊘ > 0. (F.97)

A contradiction can be produced in all cases of the following case distinction:

1. ∀(n, k) ∈ r× K. αr0 >
√

αnk
γnk

√
d ∑n∈r(ρn − ϕn0)− 1

Since a◦n⊘k⊘ > 0 for the fixed attribute (n⊘, k⊘), the optimal path valua-
tion vr(A◦) exceeds αr0, and hence:

∀(n, k) ∈ r× K. vr(A◦) > αr0 >

√
αnk
γnk

√
d ∑

n∈r
(ρn − ϕn0)− 1

=⇒ ∂

∂an⊘k⊘
π(A◦) < 0

(F.98)
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The aggregate profit can thus be increased by reducing a◦n⊘k⊘ , and such a
reduction is also possible since an⊘k⊘ > 0. Hence, the attribute values A◦ are
not optimal, which causes a contradiction.

2. ∃(n, k) ∈ r× K. αr0 ≤
√

αnk
γnk

√
d ∑n∈r(ρn − ϕn0)− 1

In that case, we perform a sub-case distinction on the value of vr(A◦):

a) vr(A◦) ≤
√

αn⊘k⊘
γn⊘k⊘

√
d ∑n∈r(ρn − ϕn0)− 1

Since an⊘k⊘ /γn⊘k⊘ < an◦k◦/γn◦k◦ , it follows that:

vr(A◦) <
√

αn◦k◦

γn◦k◦

√
d ∑

n∈r
(ρn − ϕn0)− 1 ⇐⇒ ∂

∂an◦k◦
π(A) > 0, (F.99)

which implies that the profit can be increased by increasing the value
of an◦k◦ ∀(n, k) ∈ K◦r , which contradicts the assumption that A◦ is opti-
mal.

b) vr(A◦) >
√

αn⊘k⊘
γn⊘k⊘

√
d ∑n∈r(ρn − ϕn0)− 1

This condition implies:

∂

∂an⊘k⊘
π(A◦) < 0. (F.100)

Hence, the profit can be increased by reducing an⊘k⊘ , which is possible
given an⊘k⊘ > 0. Therefore, we again produce a contradiction to the
optimality of A◦.

We have thus identified the conditions on A◦ that are sufficient and necessary
for optimal aggregate profit. Thereby, the theorem is proven.

f.8 proof of Theorem 8 .8 : equilibrium on heterogeneous paths

Since the equilibrium conditions in Theorem 8.8 are highly similar to the optimality
conditions in Theorem 8.7, the proof of Theorem 8.8 is analogous to the proof
of Theorem 8.7. The proof is analogous because the derivatives of the individual
profit functions πn have equivalent properties to the derivatives of the aggregate-
profit function π from Eq. (F.88). In particular, every first derivative satisfies:

∀n ∈ r, k ∈ K.
∂πn(A)

∂ank
< 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d(ρn − ϕn0)− 1 (F.101)
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Moreover, every individual profit function πn is consistently concave in any relevant
attribute ank:

∀n ∈ r, k ∈ K.
∂2

∂a2
nk

πn(A) = −d
2α2

nk

(1 + vr(A))3 (ρn − ϕn0) (F.102)

Building on these properties, the equilibrium conditions can be shown to be
sufficient and necessary analogously to Theorem 8.7.

f.9 proof of Theorem 8 .9 : suboptimal heterogeneous equilibrium

In order to show that vr(A+) ≤ vr(A◦), it is enough to show that:
√

αn+k+

γn+k+

√
d(ρn+ − ϕn+0)− 1 ≤

√
αn◦k◦

γn◦k◦

√
d ∑

n∈r
(ρn − ϕn0)− 1 (F.103)

where (n+, k+) ∈ K+
r and (n◦, k◦) ∈ K◦r . This inequality can be transformed into

the following form:

√
αn+k+

γn+k+

√
d(ρn+ − ϕn+0)

d ∑n∈r(ρn − ϕn0)
≤
√

αn◦k◦

γn◦k◦
. (F.104)

Thanks to the following two insights, this inequality is always satisfied:
√

d(ρn+ − ϕn+0)

d ∑n∈r(ρn − ϕn0)
≤ 1

αn+k+

γn+k+
≤ αn◦k◦

γn◦k◦
= max

(n,k)∈r×K

αnk
γnk

(F.105)

Hence, the theorem holds.

f.10 proof of Theorem 8 .10 : two-path heterogeneous equilibrium

f.10.1 Analogy to Theorem 8.8

To start off, we once more characterize the derivatives of the individual-profit
functions πn for any attribute value ank:

∀n ∈ N, k ∈ K, r = r(n). (F.106)

∂πn(A)

∂ank
= d

αnk (1 + vs(A))

(1 + vr(A) + vs(A))2 (ρn − ϕn0)− γnk (F.107)
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∂2πn(A)

∂a2
nk

= −d
2α2

nk (1 + vs(A))

(1 + vr(A) + vs(A))3 (ρn − ϕn0) (F.108)

For better readability, this proof denotes the alternative path r to path r by s.
Since the second derivative is never positive, every profit function πn is consis-

tently concave in the attribute values controlled by ISP n. Hence, a negative first
derivative ∂π(A)/∂ank < 0 indicates that ank must be reduced if the profit is to be
increased. The case of a negative first derivative in ank can be expressed as follows
(for r = r(n)):

∂πn(A)

∂ank
< 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d (ρn − ϕn0)

√
1 + vs(A)− (1+ vs(A)) (F.109)

When thinking of Eq. (F.109) as an extension of Eq. (F.91) with vs as a fixed
quantity, an analogous proof to the proof of Theorem 8.7 can be performed. The
extension by fixed vs does not change the finding that only attributes (n◦, k◦) ∈ K◦r
might have non-zero values in equilibrium. However, the extension by vs changes
the equilibrium path valuation v+r from Eq. (8.29) to:

v+r = max
(

αr0,
√

αn◦k◦

γn◦k◦

√
d (ρn◦ − ϕn◦0)

√
1 + vs − (1 + vs)

)
. (F.110)

Crucially, this condition simultaneously holds for both paths r and s in a two-path
scenario, creating an interdependence of the equilibrium path valuations:

∀r ∈ R. v+r = max
(

αr0,
√

αn◦k◦

γn◦k◦

√
d (ρn◦ − ϕn◦0)

√
1 + v+s −

(
1 + v+s

))

= max
(

αr0, ψr
√

d
√

1 + v+s −
(
1 + v+s

))

= max
(
αr0, v̂∗r

(
v+s
))

,

(F.111)

where v̂∗r (vs) is the unrestricted best-response valuation for path r given competing-
path valuation vs. The characteristic ratio ψr is reflected in Eq. (8.34).

The remainder of the proof illustrates how to derive the equilibrium path valua-
tions v+r and v+s .
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f.10.2 Unrestricted Equilibrium v̂+r

Considering a relaxed setting in which the constraint A+ ∈ R
|N|×|K|
≥0 ⇐⇒ v+r ≥ αr0

is ignored, the unrestricted equilibrium path valuations v̂+r satisfy the following
system of equations:

∀r ∈ R. v̂+r = v̂∗r (v̂
+
s ). (F.112)

In this relaxed setting, this system of two equations can be conventionally solved
for the unrestricted equilibrium path valuations v̂+r , r ∈ R, resulting in the unique
solution denoted in Eq. (8.33).

Moreover, we make the following important observation:

v̂∗r (v̂
∗
s (vr)) ≤ vr ⇐⇒ vr ≥ v̂+r . (F.113)

f.10.3 Restricted Equilibrium v+r

We now rely on the equilibrium gained by relaxation to characterize the equilibrium
under the re-introduced constraint v+r ≥ αr0 ∀r ∈ R. In particular, we want to show
that the calculation provided in Theorem 8.10 is correct:

∀r ∈ R. v+r = max
(
αr0, v̂∗r

(
max

(
αs0, v̂+s

)))
(F.114)

In other words, v+r as calculated by Eq. (F.114) should satisfy the equilibrium
conditions on v+r in Eq. (F.111). To satisfy these conditions, we consider all cases
regarding v̂+r and v̂+s :

1. v̂+r ≥ αr0:

a) v̂+s ≥ αs0: In that case, Eq. (F.114) suggests that

v+r
1.(a)
= max

(
αr0, v̂∗r

(
v̂+s
)) (F.112)

= max
(
αr0, v̂+r

)
1.
= v̂+r , and

v+s
1.
= max

(
αs0, v̂∗s

(
v̂+r
)) (F.112)

= max
(
αs0, v̂+s

) 1.(a)
= v̂+s .

(F.115)

These values satisfy the equilibrium conditions in Eq. (F.111):

v+r
(F.111)
= max

(
αr0, v̂∗r

(
v+s
)) (F.115)

= max
(
αr0, v̂∗r

(
v̂+s
))

(F.112)
= max

(
αr0, v̂+r

)
1.
= v̂+r ,

(F.116)

and symmetrically for v+s .



F.10 proof of Theorem 8 .10 : two-path heterogeneous equilibrium 369

b) v̂+s < αs0: In that case, Eq. (F.114) suggests that

v+r
1.(b)
= max (αr0, v̂∗r (αs0))

v+s
1.
= max

(
αs0, v̂∗s

(
v̂+r
)) (F.112)

= max
(
αs0, v̂+s

) 1.(b)
= αs0.

(F.117)

For that case, we perform another level of sub-case distinctions:

i. v̂∗r (αs0) ≥ αr0: In that case, Eq. (F.117) is simplified to

v+r
(F.117)
= max (αr0, v̂∗r (αs0))

1.(b).i
= v̂∗r (αs0)

v+s
(F.117)
= αs0

(F.118)

Using Eq. (F.113) and case condition 1.(b), we can also deduce:

v̂∗s (v̂
∗
r (αs0)) < αs0. (F.119)

Then, we can again verify that these values satisfy the equilibrium
conditions from Eq. (F.111):

v+r
(F.111)
= max

(
αr0, v̂∗r

(
v+s
)) (F.118)

= max (αr0, v̂∗r (αs0))
1.b.i
= v̂∗r (αs0)

v+s
(F.111)
= max

(
αs0, v̂∗s

(
v+r
)) (F.118)

= max (αs0, v̂∗s (v̂
∗
r (αs0)))

(F.119)
= αs0.
(F.120)

ii. v̂∗r (αs0) < αr0: In that case, Eq. (F.117) is simplified to

v+r
(F.117)
= max (αr0, v̂∗r (αs0))

1.(b).ii
= αr0

v+s
(F.117)
= αs0

(F.121)

Moreover, as proven in F.10.3.1, the current case implies

v̂∗s (αr0) ≤ αs0. (F.122)

Based on these findings, the equilibrium conditions from Eq. (F.111)
are satisfied:

v+r
(F.111)
= max

(
αr0, v̂∗r

(
v+s
)) (F.121)

= max (αr0, αr0) = αr0

v+s
(F.111)
= max

(
αs0, v̂∗s

(
v+r
))

(F.121)
= max (αs0, v̂∗s (αr0))

(F.122)
= αs0.

(F.123)
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2. v̂+r < αr0:

a) v̂+s ≥ αs0: This case is symmetric to case 1.(b).

b) v̂+s < αs0: In that case, Eq. (F.114) suggests that

v+r
2.(b)
= max (αr0, v̂∗r (αs0))

v+s
2.
= max (αs0, v̂∗s (αr0))

(F.124)

Hence, we again need to perform another level of sub-case distinctions:

i. v̂∗r (αs0) ≥ αr0: For that case, we show in F.10.3.2 that

v̂∗s (αr0) ≤ αs0. (F.125)

Hence, Eq. (F.124) simplifies to:

v+r
2.(b)
= max (αr0, v̂∗r (αs0))

2.(b).i
= v̂∗r (αs0)

v+s
2.
= max (αs0, v̂∗s (αr0))

(F.125)
= αs0

(F.126)

Moreover, using Eq. (F.113) and case condition 2.(b), we can again
deduce:

v̂∗s (v̂
∗
s (αr0)) < αs0. (F.127)

Based on these findings, the equilibrium conditions from Eq. (F.111)
are satisfied:

v+r
(F.111)
= max

(
αr0, v̂∗r

(
v+s
))

(F.126)
= max (αr0, v̂∗r (αs0))

2.(b).i
= v̂∗r (αs0)

v+s
(F.111)
= max

(
αs0, v̂∗s

(
v+r
))

(F.126)
= max (αs0, v̂∗s (v̂

∗
r (αs0)))

(F.127)
= αs0

(F.128)

ii. v̂∗r (αs0) < αr0: In that case, Eq. (F.124) simplifies to:

v+r
2.(b)
= max (αr0, v̂∗r (αs0))

2.(b).ii
= αr0

v+s
2.
= max (αs0, v̂∗s (αr0))

(F.129)

To further simplify Eq. (F.129), we perform another sub-case distinc-
tion:



F.10 proof of Theorem 8 .10 : two-path heterogeneous equilibrium 371

v̂∗r (αs0) αr0 v̂+rṽ+r

v̂+s

αs0

νs

v̂∗s (αr0)

ṽ+s

v̂↑s

v̂∗r (vs)

v̂∗s (vr)

vr

v s

Figure F.1: Visualization of non-unique equi-
librium (v̂+r , v̂+s ) in F.10.3.1.

v̂∗r (αs0)αr0v̂+r

v̂+s

αs0

ν→s
v̂∗s (αr0)

v̂∗s (αr0)

ν←s

v̂∗r (vs)

v̂∗s (vr)

vr

v s

Figure F.2: Visualization of non-unique equi-
librium (v̂+r , v̂+s ) in F.10.3.2.

A. v̂∗s (αr0) ≥ αs0: This case is symmetric to case 2.(b).i.

B. v̂∗s (αr0) < αs0: In that case, Eq. (F.129) directly simplifies to:

v+r
2.(b)
= max (αr0, v̂∗r (αs0))

2.(b).ii
= αr0

v+s
2.
= max (αs0, v̂∗s (αr0))

2.(b).ii.B
= αs0

(F.130)

Clearly, the equilibrium conditions from Eq. (F.111) are satisfied
by these values:

v+r
(F.111)
= max

(
αr0, v̂∗r

(
v+s
))

(F.130)
= max (αr0, v̂∗r (αs0))

2.(b).ii
= αr0

v+s
(F.111)
= max

(
αs0, v̂∗s

(
v+r
))

(F.130)
= max (αs0, v̂∗s (αr0))

2.(b).ii.B
= αs0

(F.131)

Since the values calculated according to Eq. (F.114) always satisfy the restricted-
equilibrium conditions from Eq. (F.111), the theorem is proven.

f.10.3.1 Upper Bound on v̂∗s (αr0) for Case 1.(b).ii

We can show that case 1.(b).ii implies

v̂∗s (αr0) ≤ αs0. (F.132)
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In particular, let us assume the opposite for the sake of contradiction, i.e., we
assume

v̂∗s (αr0) > αs0. (F.133)

For this proof, we first investigate the functions v̂∗r and v̂∗s more thoroughly, and
then produce a contradiction by showing the existence of a second unrestricted
equilibrium (ṽ+r , ṽ+s ) ̸= (v̂+r , v̂+s ). The proof idea is visualized in Fig. F.1.

v̂∗r . In case 1.(b).ii, we can more precisely characterize the function v̂∗r based on the
case conditions. In particular, we know that v̂∗r evolves from value v̂∗r (v̂+s ) = v̂+r ≥
αr0 (1.) at argument v̂+s down to value v̂∗r (αs0) < αr0 (1.(b).ii) at argument αs0 > v̂+s
(1.(b)). Hence, the intermediate-value theorem and the concavity of v̂∗r stipulate

∃νs ∈ [v̂+s , αs0). v̂∗r (νs) = αr0 and ∀vs > νs. v̂∗r (vs) < αr0. (F.134)

v̂∗s . The assumption in Eq. (F.133) suggests that v̂∗s reaches a value above αs0 at
argument αr0. Hence, the maximum of v̂∗s is also at least αs0:

v̂↑s = max
vr

v̂∗s (vr) ≥ αs0
(F.134)
> νs. (F.135)

Contradiction. Based on these properties of v̂∗r and v̂∗s , we now show that there exist
ṽ+r < αr0 and ṽ+s > νs, with the unrestricted-equilibrium properties ṽ+r = v̂∗r (ṽ+s )
and ṽ+s = v̂∗s (ṽ+r ). To verify the existence of these valuations, note that the value ṽ+s
satisfies the condition:

ṽ+s = v̂∗s (ṽ
+
r ) = v̂∗s (v̂

∗
r (ṽ

+
s )) ⇐⇒ v̂∗∗s (ṽ+s ) := ṽ+s − v̂∗s (v̂

∗
r (ṽ

+
s )) = 0. (F.136)

We now evaluate the ‘reflector’ function v̂∗∗s at two arguments vs, namely νs

and v̂↑s . For vs = νs, it holds that

v̂∗∗s (νs)
(F.136)
= νs − v̂∗s (v̂

∗
r (νs))

(F.134)
= νs − v̂∗s (αr0)

(F.133)
< νs − αs0

(F.134)
< 0 (F.137)

For vs = v̂↑s > νs, it holds that

v̂∗∗s (v̂↑s )
(F.136)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(F.135)
= 0. (F.138)

Since v̂∗∗s is continuous, the intermediate-value theorem stipulates that a ṽ+s ∈
(νs, v↑s ] exists that satisfies v̂∗∗s (ṽ+s ) = 0. Then, since ṽ+s > νs, it follows from
Eq. (F.134) that

ṽ+r = v̂∗r (ṽ
+
s ) < αr0. (F.139)
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Since the unrestricted equilibrium valuations (v̂+r , v̂+s ) are unique, it must hold
that v̂+r = ṽ+r . However, the case condition v̂+r ≥ αr0 conflicts with the derived
condition ṽ+r < αr0 from Eq. (F.139). We thus arrive at a contradiction, which
invalidates Eq. (F.133) and confirms Eq. (F.132).

f.10.3.2 Upper Bound on v̂∗s (αr0) for Case 2.(b).i

The following proof is similar in structure and goal as the proof in F.10.3.1, namely
to prove v̂∗s (αr0) ≤ αs0 by assuming

v̂∗s (αr0) > αs0. (F.140)

The arguments of the proof are visualized in Fig. F.2.

v̂∗r . In case 2.(b).i, the strict concavity of v̂∗r , together with the knowledge of
v̂∗r (αs0) ≥ αr0 (2.(b).i), imply:

∃ ν←s , ν→s . αs0 ∈ [ν←s , ν→s ] and v̂∗r (ν
←
s ) = αr0 and v̂∗r (ν

→
s ) = αr0 and

∀vs ∈ [ν←s , ν→s ]. v̂∗r (vs) ≥ αr0 and

∀vs /∈ [ν←s , ν→s ]. v̂∗r (vs) < αr0.

(F.141)

v̂∗s . Given Eq. (F.140), we find the maximum of v̂∗s :

v̂↑s = max
vr

v̂∗s (vr) ≥ v̂∗s (αr0)
(F.140)
> αs0. (F.142)

Contradiction. Similar as in F.10.3.1, we show the existence of (ṽ+r , ṽ+s ) ̸= (v̂+r , v̂+s ),
which satisfy the unrestricted-equilibrium properties ṽ+r = v̂∗r (ṽ+s ) and ṽ+s =
v̂∗s (ṽ+r ), and thus contradict the uniqueness of the unrestricted equilibrium val-
uations (v̂+r , v̂+s ). To that end, we again introduce a reflector function v̂∗∗s with

v̂∗∗s (ṽ+s ) = ṽ+s − v̂∗s (v̂
∗
r (ṽ

+
s )) = 0. (F.143)

However, unlike in F.10.3.1, we additionally have to consider the relative position
of ν→s from Eq. (F.141) and v̂∗s (αr0).

• v̂∗s (αr0) ≥ ν→s : For that case, we evaluate the reflector function v̂∗∗s at argu-
ments ν→s from Eq. (F.141) and v̂↑s ≥ ν→s :

v̂∗∗s (ν→s )
(F.143)
= ν→s − v̂∗s (v̂

∗
r (ν
→
s ))

(F.141)
= ν→s − v̂∗s (αr0) ≤ 0

v̂∗∗s (v̂↑s )
(F.143)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(F.142)
≥ 0

(F.144)
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By the intermediate value theorem, there must thus exist a ṽ+s ∈ [ν→s , v̂↑s ]
with v̂∗∗s (ṽ+s ) = 0. Since ṽ+s ∈ [ν→s , v̂↑s ], Eq. (F.141) implies that ṽ+s ≥ ν→s ≥ αs0,
which conflicts with v̂+s < αs0 from case condition 2.(b) and the uniqueness
of the unrestricted equilibrium.

• v̂∗s (αr0) < ν→s : For that case, we evaluate the reflector function v̂∗∗s at argu-
ments ν←s from Eq. (F.141) and v̂↑s from Eq. (F.142):

v̂∗∗s (ν←s )
(F.143)
= ν←s − v̂∗s (v̂

∗
r (ν
←
s ))

(F.141)
= ν←s − v̂∗s (αr0)

(F.140)
< ν←s − αs0

(F.141)
≤ 0

v̂∗∗s (v̂↑s )
(F.143)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(F.142)
≥ 0

(F.145)

By the intermediate value theorem, there must thus exist a ṽ+s ∈ [ν←s , v̂↑s ]
with v̂∗∗s (ṽ+s ) = 0. Since ṽ+s ∈ [ν←s , v̂↑s ] ⊂ [ν←s , ν→s ], Eq. (F.141) implies
that ṽ+r = v̂+r (ṽ+s ) ≥ αr0, which conflicts with v̂+r < αr0 from case condi-
tion 2 and the uniqueness of the unrestricted equilibrium.

f.11 proof of Theorem 8 .11 : stability of heterogeneous equilibrium

f.11.1 Proof Idea

To confirm the asymptotic stability of an equilibrium A+, we demonstrate that the
Jacobian matrix J(A) of the process in Eq. (8.35) is negative definite when evaluated
at the equilibrium A+. On a high level, the Jacobian matrix J(A) is defined as
follows:

∀(n, k), (n′, k′) ∈ N × K. JI(n,k),I(n′ ,k′)(A) =
∂

∂an′k′
(a∗nk(A−nk)− ank) (F.146)

where I(n, k) is an index corresponding to attribute (n, k). The derivatives of the
restricted best-response a∗nk in any attribute prevalence an′k′ are as follows:

∂

∂an′k′
a∗nk(A) =

∂

∂an′k′
max(0, â∗nk(A)) =





∂
∂an′k′

â∗nk(A) if â∗nk(A) ≥ 0,

0 otherwise.
(F.147)

To show this negative definiteness of J+ = J(A+), we demonstrate that every
eigenvalue λ of J+ has a negative real part Re(λ). To find the eigenvalues λ of J+,
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we solve the equation system J+x = λx for λ ∈ C, λ ̸= 0, and x ∈ C|N||K|, x ̸= 0.
This equation system can be represented in the following form:

∀(n, k) ∈ N × K.
(

J+I(n,k),I(n,k) − λ
)

xI(n,k)+

∑
(n′ ,k′)∈N×K.
(n′ ,k′) ̸=(n,k)

J+I(n,k),I(n′ ,k′)xI(n′ ,k′) = 0 (F.148)

f.11.2 Simplification of Eq. (F.148)

To concretize Eq. (F.148), we instantiate the Jacobian matrix J+. As a∗nk is indepen-
dent of ank, the diagonal entries of J+ are:

∀(n, k) ∈ N × K. J+I(n,k),I(n,k)
(F.146)
=

∂

∂an′k′
(a∗nk(A−nk)− ank) = −1, (F.149)

Now, we consider the entries not on the diagonal of J+, i.e., J+I(n,k),I(n′ ,k′) for

all (n, k) ̸= (n′, k′). First, we specifically consider the rows of J+ associated with
attributes (n, k) ∈ L+, where L+ is the set of attributes which must have zero
prevalence a+nk = 0 in equilibrium:

L+ = N × K \ (K+
r ∪ K+

r ). (F.150)

The following inequality holds on the equilibrium path valuation v+r for each path r
(cf. Theorems 8.8 and 8.10):

∀(n, k) ∈ L+. v+r(n) ≥ ψr
√

d
√

1 + v+r(n) − (1 + v+r(n))

>

√
αnk
γnk

d(ρn − ϕn0)
√

1 + v+r(n) − (1 + v+r(n))
(F.151)

Then, remember the following equivalence from Theorem 8.8 for any attribute (n, k):

v+r(n) >
√

αnk
γnk

d(ρn − ϕn0)
√

1 + v+r(n) − (1 + v+r(n)) ⇐⇒
∂πn(A+)

∂ank
< 0. (F.152)

Together with the concavity of πn, we thus note that the attribute value ank needs
to be decreased to optimize the profit πn in ank. Given a+nk = 0, we note that the
unrestricted best-response attribute â∗nk for (n, k) ∈ L+ is thus negative in the
equilibrium:

∀(n, k) ∈ L+. â∗(A+
−nk) < 0 (F.153)
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Given the definition of the Jacobian entries in Eq. (F.146) and the derivative of the
restricted best response a∗nk in Eq. (F.147), we note that:

∀(n, k) ∈ L+. ∀(n′, k′) ̸= (n, k). J+I(n,k),I(n′ ,k′) = 0. (F.154)

The eigenvalue equation system in Eq. (F.148) can thus be written as:

∀(n, k) ∈ K+
r ∪ K+

r . − (λ + 1)xI(n,k) (F.155)

+ ∑
(n′ ,k′)∈N×K.
(n′ ,k′) ̸=(n,k)

J+I(n,k),I(n′ ,k′)xI(n′ ,k′) = 0 (F.156)

∀(n, k) ∈ L+. − (λ + 1)xI(n,k) = 0 (F.157)

Interestingly, the equation system in Eqs. (F.156) and (F.157) can be considerably
simplified in our proof, which can be shown by a case distinction on L+ = (N ×
K) \ (K+

r ∪ K+
r ), i.e., the set of attributes that certainly have zero prevalence in the

equilibrium.

• L+ = ∅ : In this case, the equation system can be simplified in two respects.
First, we note that L+ = ∅ implies that no equations in the form of Eq. (F.157)
exist in the equation system. Second, we note that we only investigate net-
works with a unique equilibrium, i.e., non-zero equilibrium prevalence is
possible for only one attribute on each path (|K+

r | = |K+
r | = 1). Hence,

if L+ = ∅, we know that K+
r ∪ K+

r covers both of the two attributes of the
network, one on each path:

K+
r ∪ K+

r = N × K = {(n(r), k(r)), (n(r), k(r))} (F.158)

where (n(r), k(r)) is the single attribute with possibly non-zero equilibrium
prevalence on path r. These insights allow to reduce the equation system
in Eq. (F.156) to only two equations (No equations like Eq. (F.157) exist):

−(λ + 1)xr + J+r xr = 0 − (λ + 1)xr + J+r xr = 0 (F.159)

where we have abbreviated:

J+r = J+I(n(r),k(r)),I(n(r),k(r)) xr = xI(n(r),k(r)) (F.160)

Since the eigenvector x in the current case only has the two entries xr and xr,
we require x = (xr, xr)

⊤ ̸= 0. We find that λ = −1 is an eigenvalue of the
system in Eq. (F.159) if and only if J+r = 0 or J+r = 0, i.e., at least one of the
two relevant Jacobian entries is zero. Since λ = −1 would preserve negative
definiteness of J+, we do not need to consider this case further.
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• L+ ̸= ∅ : If L+ ̸= ∅, the equation system contains equations in the form
of Eq. (F.157). Then, λ = −1 may be an eigenvalue of J+, which would
preserve negative definiteness of J+; hence, this case is not further considered.
Conversely, if λ = −1 is not a solution of the system, the equations in the
form of Eq. (F.157) imply that xI(n,k) = 0 for all (n, k) ∈ L+. This insight
then again allows the simplification to the equation system in Eq. (F.159).
Crucially, since xI(n,k) = 0 for all (n, k) ∈ L+, it must hold that (xr, xr)

⊤ ̸= 0
such that x ̸= 0, i.e., such that x is a valid eigenvector.

f.11.3 Solution of Eq. (F.159)

In summary, we only need to consider the equation system in Eq. (F.159) and the
case λ ̸= −1. Furthermore, we require (xr, xr)

⊤ ̸= 0. Without loss of generality,
let r be the path with xr ̸= 0. Then, we can perform the following transformation:

−(λ + 1)xr + J+r xr = 0 =⇒ λ + 1 = Jr
xr

xr
(F.161)

−(λ + 1)xr + J+r xr = 0 =⇒ xr =
Jr

λ + 1
xr (F.162)

Inserting Eq. (F.162) into Eq. (F.161) yields a quadratic equation in λ:

(λ + 1)2 − J+r J+r = 0 =⇒ λ1,2 = −1±
√

J+r J+r (F.163)

If J+r J+r = 0, then λ1,2 = −1 produces a contradiction to the assumption λ ̸= −1,
which implies that no eigenvalue λ ̸= −1 exists.

If J+r J+r ̸= 0, then we know that

Re(λ1,2) < 0 ⇐⇒ Re
(√

J+r J+r

)
< 1 ⇐⇒ J+r J+r < 1. (F.164)

f.11.4 Bounding of λ1,2

To verify that the condition in Eq. (F.164) always holds, we first find J+r for any
path r:

J+r =





αn(r)k(r)
αn(r)k(r)

(
ψr
√

d
2
√

1+v+r
− 1
)

if â∗n(r)k(r)
(

A+
−n(r)k(r)

)
≥ 0,

0 otherwise.
(F.165)
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Given J+r J+r ̸= 0, stability requires:

J+r J+r
(F.165)
=


 ψr

√
d

2
√

1 + v+r
− 1



(

ψr
√

d

2
√

1 + v+r
− 1

)
(F.164)
< 1 (F.166)

⇐⇒ ψrψrd− 2
√

d
(

ψr

√
1 + v+r + ψr

√
1 + v+r

)
< 0 (F.167)

Moreover, J+r J+r ̸= 0 implies that the restricted equilibrium valuation v+r for each
path r corresponds to the unrestricted equilibrium valuation v̂+r from Theorem 8.10:

∀r ∈ R. J+r J+r ̸= 0 =⇒ ∀r ∈ R. â∗n(r)k(r)(A
+
−n(r)k(r)) ≥ 0

=⇒ ∀r ∈ R. v̂+r ≥ αr0 =⇒ ∀r ∈ R. v+r = v̂+r .
(F.168)

Hence, we can expand (symmetrically for ψr

√
1 + v+r ):

ψr

√
1 + v+r

(F.168)
= ψr

√
1 + v̂+r

Th8.10

= ψr

√√√√ ψ3
r ψr

(ψ2
r + ψ2

r )
2

(√
d
(
ψ2

r + ψ2
r
)
+

1
4
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We use this equality to rewrite the inequality in Eq. (F.167):
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The last upper bound holds because we can exclude ψr = 0 for any path r in the
current case v+r = v̂+r , as ψr = 0 produces the contradiction v+r < v+r :

v+r
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(F.171)

In summary, we now have shown that J+r J+r < 1, which ensures a negative real
part Re(λ1,2) < 0 (Eq. (F.164)) of the eigenvalues λ1,2 from Eq. (F.163), and thus con-
firms that J+ is negative definite. Since J+ is negative definite, the equilibrium A+

from Theorem 8.10 is asymptotically stable with respect to the process in Eq. (8.35),
which concludes the proof.

f.12 proof of Theorem 8 .12 : heterogeneous competition (improve-
ment)

For the competitive network N4, the unrestricted equilibrium network valuation V̂+

is given by

V̂+(N4) = v̂+r + v̂+r =
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where v̂+r and v̂+r are as in Theorem 8.10. The restricted equilibrium network
valuation V+(N4) is equal to V̂+(N4) if v̂+r ≥ αr0 and v̂+r ≥ αr0. These unrestricted
equilibrium path valuations are monotonically increasing in the demand limit d
(cf. Theorem 8.10). Hence, if d is high enough, it holds that V+(N4) = V̂+(N4).

For the competition-free network N3, the unrestricted equilibrium network valu-
ation V̂+ is

V̂+(N3) = ψr
√

dr − 1 + ψr
√

dr − 1. (F.173)

Among all demand distributions (dr, dr) with dr + dr = d, the demand distribution
maximizing V̂+(N3) can be found as follows:

∂

∂dr

(
ψr
√

dr + ψr
√

d− dr − 2
)
= 0 ⇐⇒ dr =

ψ2
r

ψ2
r + ψ2

r
d, (F.174)

where the maximum character of this value is ensured by a consistently non-positive
second derivative of V̂+(N3) in dr. In the following, we thus consider only the
maximum unrestricted equilibrium network valuation V̂+(N3):
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Again, for V+(N3) = V̂+(N3), d must be high enough such that
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If d is high enough, the difference of the equilibrium network valuations is thus:

∆V+ = V+(N4)−V+(N3)
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Clearly, this difference is eventually positive when increasing the demand limit d,
meaning that V+(N4) exceeds V+(N3) for high enough d:

lim
d→∞

∆V+ = ∞. (F.178)

This last insight proves the theorem.
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f.13 proof of Theorem 8 .13 : heterogeneous competition (degrada-
tion)

The following proof is constructive, i.e., we demonstrate how to choose (ψr, ψr) and
(αr0, αr0) such that V+(N4) < V+(N3) holds given demand distribution (dr, dr). In
this construction, the goal is to create a scenario where the competitive network N4
will be at minimum valuation αr0 + αr0, but the competition-free network has a
path r with an equilibrium valuation v+r exceeding the minimum path valuation αr0.

Regarding the path-characteristic ratios (ψr, ψr), our first step consists of choosing
the ratios such that the competitive network is at minimum valuation, i.e., such
that v+r = αr0 and v+r = αr0. To do so, we first determine ψr such that v̂+r ≤ αr0 for
all ψr, which is achieved by ψr = 0:

lim
ψr→0

v̂+r
Th8.10

= −1
αr0≥0
< αr0. (F.179)

Having selected ψr such that v̂+r ≤ αr0, it holds that v+r = αr0 by Theorem 8.10.
As a result, the equilibrium path valuation for path r in the competitive network N4
is:

v+r (N4)
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d
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. (F.180)

To ensure that v+r is minimal (i.e., equals αr0), the following condition must hold:
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d
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d
√
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(F.181)

If ψr is chosen according to Eq. (F.181), the equilibrium network valuation in the
competition-free network is minimal, i.e., V+(N4) = αr0 + αr0.

To let V+(N3) of the competition-free network exceed V+(N4) of the competitive
network, we further need to choose ψr such that v̂+r (N3) > αr0. This condition can
be transformed in the following fashion:

ψr
√

dr − 1 > αr0 ⇐⇒ ψr >
1 + αr0√

dr
(F.182)

To allow a selection of ψr that achieves v+r (N4) = αr0 but v+r (N3) > αr0, it must
thus hold that
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This condition always holds when choosing αr0 = 0 and αr0 > dr/dr:
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Hence, (ψr, ψr) and (αr0, αr0) can be chosen such that V+(N3) > V+(N4), which
concludes the proof.
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