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ABSTRACT 
 
Indoor positioning with different technical solutions is omnipresent in industrial and 
academic research. The most important applications are Location Based Services (LBS), 
which objects require reference in a coordinate system. Research and development 
target  for example the automation of processes in smart warehousing and logistics, or 
the monitoring of people during rescue missions. Indoor positioning is also highly 
relevant to robotics and autonomous navigation. The poor performance of Global 
Navigation Satellite Systems (GNSS) in indoor environments calls for other solutions. 
Diverse requirements and different environmental conditions, in particular Non-Line-
of-Sight (NLoS) signal propagation, are reasons for the current insufficient level of 
performance in indoor positioning and navigation. Wireless devices (e.g. RFID systems) 
enjoy widespread use in numerous diverse applications including sensor networks, 
deployed in all environments and organizing themselves in an ad-hoc fashion. 
However, knowing the correct positions of network nodes and their deployment is an 
essential precondition. Optical sensors do not require the deployment of physical 
reference infrastructure inside buildings and offer several solutions covering all 
required accuracy levels. 
 
The aim of this thesis is to apply range images from a Time-of-Flight (ToF) range 
camera for indoor positioning. Range Imaging (RIM) is a special technique in the 
spectra of electro-optic and video-metric principles. It is capable to capture the 
environment three-dimensionally in real-time. Single camera systems offer a high 
potential for indoor applications. Camera position and possible movements can be 
derived after insignificant details have been eliminated. Furthermore, semantic 
information can be extracted from the purely metrical data using geometric 
constraints to establish a connection between the spatio-semantic information of 
installations and objects in the scene. 
 
This thesis is based on five scientific publications, which have been framed, by an 
introduction and a concluding chapter. Publication 1 focuses on the localization and 
tracking/monitoring of a robot. Publication 2 describes human computer interaction 
based motion detection of people. Publications 3 to 5 concentrate on the location 
estimation of a ToF range camera itself in a scene compared to a spatio-semantic 
interior building  model. Such models can be referenced to any arbitrary coordinate 
system. The proposed approach can therefore be used for absolute positioning of 
objects/installations and human operators in real time with centimeter accuracy. 
However, the camera position in relation to surrounding objects, which are compared 
with their database models, is derived with decimeter accuracy. Simultaneous 
Localization And Mapping (SLAM) generates 3D modeled environments in the proposed 
method.  
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ZUSAMMENFASSUNG 
 
Innenraumpositionierung und die verschiedenen technischen Lösungsmöglichkeiten 
erfahren ein immenses Interesse in der Industrie und Forschung. Die wichtigsten 
mobilen Anwendungen beziehen sich auf den aktuellen Ort, um so genannte Location 
Based Services (LBS) zu ermöglichen. Lagerhaltung, Logistik und deren Automatisierung 
sowie das Verfolgen von Personen bei Rettungseinsätzen oder in Krankenhäusern und 
in Heimen liefern die Grundlage für die Forschung und Entwicklung in diesem Gebiet. 
Weiterhin ist die Positionierung ein wichtiges Element in der Robotik und der 
autonomen Navigation. Die komplexen Anforderungen und die verschiedenen 
Umgebungsbedingungen, mit ihren oftmals ungünstig en Signalausbreitungs-
verhältnissen sind die Ursachen für die Schwierigkeiten bei der Innenraum-
positionierung und Navigation. Das weitgehende Fehlen von Satellitensignalen 
innerhalb von Gebäuden fordert andere Lösungen. Drahtlose Geräte geniessen weit 
verbreiteten Einsatz in unterschiedlichsten Anwendungen, darunter zahlreichen 
Sensor-Netzwerken in allen Umgebungen in denen sie sich in einem Ad-hoc-Modus 
organisieren. Exakte Informationen über die Positionen der Netzwerkknoten sind 
jedoch eine wesentliche Funktionsvoraussetzung. Optische Sensoren benötigen keine 
zusätzlichen Referenzobjekte und bieten Lösungsansätze, welche alle 
Genauigkeitsklassen abdecken. 
 
Das Ziel dieser Arbeit ist es, semantisch-geometrische Zusammenhänge von 
Installationen und Objekten in Gebäuden mit akquirierten Punktwolken einer Time-of-
Flight (ToF) Kamera zu vergleichen, bzw. in weiteren Schritten Informationen über 
Position und Bewegung abzuleiten. Unter den vielen elektro-optischen und 
videometrischen Verfahren nimmt Range Imaging (RIM) einen speziellen Stellenwert 
ein. Die Möglichkeit die Umgebung in Echtzeit dreidimensional mit 
Zentimetergenauigkeit mit einer Kamera zu erfassen lässt ein immenses Potential 
erwarten. Die Position der Kamera und eventuelle Bewegungen können erst nach dem 
entfernen unwichtiger  Details und der Extraktion von relevanten geometrischen 
Elementen aus den reinen geometrischen Daten bestimmt werden . 
 
Die vorliegende Dissertation stützt sich auf fünf wissenschaftlichen Publikationen 
umrahmt von einer Einleitung, Schlussfolgerungen und einem Ausblick. Dabei wird in 
Publikation 1 auf das Lokalisieren und Verfolgen/Überwachen eines Roboters 
eingegangen, während in Publikation 2 das Erkennen von Personen und deren 
Bewegungen vor Bildschirmen zur interaktiven Steuerung behandelt wird. Die 
Publikationen 3 bis 5 behandeln die Positionierung der Kamera anhand der Erkennung 
ihrer Umgebung und dem Vergleich dieser mit semantisch-geometrischen 
Innenraummodellen. Diese Modelle können mit jeglichen Koordinatensystemen 
versehen werden und erlauben damit eine absolute Positionierung. Die Installation 
zusätzlicher Sensoren im Gebäude ist unnötig , welches einen Vorteil gegenüber 
üblichen Sender-Empfänger gebundenen Positionierungsverfahren (z.B. RFID 
Systemen) in dieser Genauigkeitsklasse bieten kann. 
 
Die vorgestellte Methode ermöglicht die Bestimmung der Position von 
Objekten/Installationen und Personen mit Zentimetergenauigkeit. Die Bestimmung 
der Position der Kamera, aus dem Vergleich der sie umgebenden Objekte mit deren 
Datenbankmodellen, erfolgt jedoch nur mit Dezimetergenauigkeit. Die gleichzeitige 
3D-Modellierung der Räume ist ein Zusatzprodukt der hier vorgestellten Methode. 
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1 INTRODUCTION 
 
Humans and most animals have the capability to acquire spatial information of a 
scene by stereo vision (Richter, 2012)���� �!�M�E�L�G�R�G�T�C�� �N�C�P�A�C�N�R�G�M�L�� �@�C�E�G�L�Q�� �U�G�R�F�� �i�E�J�M�@�?�J��
�C�T�?�J�S�?�R�G�M�L�j�� �G�L�� �U�F�G�A�F�� �R�F�C�� �M�T�C�P�?�J�J�� �G�K�N�P�C�Q�Q�G�M�L�� �M�D�� �R�F�C�� �Q�A�C�L�C�� �G�Q�� �?�A�O�S�G�P�C�B���� �1�S�@�Q�C�O�S�C�L�R�J�W�
�� �?��
detail analysis is carried out where the information is categorized and the attention is 
focused on striking objects or relevant parts of the scene. Insignificant details are 
filtered out and will not be further processed. Practice and experience optimize the 
selection and sequence of the important details (Helmholtz, 1867). It is a natural 
process for humans to locate their position in indoor environments relative to doors, 
windows and any kind of objects. 
 
The absolute location estimation of an object, its monitoring as well as the monitoring 
of its surroundings became increasingly important for many applications in all 
environments. Global Navigation Satellite Systems (GNSS) cover the positioning 
requirements, like overall availability and centimeter accuracy for outdoor applications. 
However, these systems perform poorly indoors. Due to the importance to cover the 
indoor environment  for automatization or monitoring , various alternative approaches 
have been developed. Mautz (2012) presents a survey through state-of-the-art indoor 
positioning methods. Indoor positioning systems covering ranges from 1 �l 2000 m 
with typical accuracies between micrometers to meters are detailed and categorized 
into 13 technologies. For many applications the required positioning accuracy is 
millimeters to centimeters. Geodetic methods, such as total stations or rotational 
lasers (e.g. iGPS (Müller et al., 2006)), reach this level of accuracy. Vision based methods 
have become a dominating technique in indoor positioning and navigation. They can 
be categorized in static sensors or ego-motion systems (Mautz and Tilch, 2011). The 
image coordinates reflect angular measurements that can be used to determine the 3D 
pose of a device by spatial resection. In a further step the position can be referenced to 
a 3D building model or floor plan, like it is presented in Kitanov et al. (2007) or Hile and 
Borriello (2008). 
 
This thesis is based on range finding techniques (Jarvis, 1983) as an optical indoor 
positioning system. State-of-the-art sensors with active illumination can be 
categorized in Time-of-Flight (ToF) and Triangulation devices. Time-Correlated Single 
Photon Counting (TCSPC) in Single Photon Avalanche Diodes (SPAD) or phase shift 
measurements in Photonic Mixer Devices (PMD) are used for image acquisition in ToF 
sensors. Triangulation technique became a consumer application for completely 
hands-free control of electronic devices �U�G�R�F���R�F�C���J�?�S�L�A�F���M�D���+�G�A�P�M�Q�M�D�R�h�Q���)�G�L�C�A�R�o���G�L��������0. 
�)�G�L�C�A�R�h�Q�� �B�C�N�R�F�� �Q�C�L�Q�M�P�� �A�M�L�Q�G�Q�R�Q�� �M�D�� �?�L�� �G�L�D�P�?�P�C�B�� �J�?�Q�C�P�� �N�P�M�H�C�A�R�M�P�� �A�M�K�@�G�L�C�B�� �U�G�R�F�� �?��
monochrome Complementary Metal�lOxide�lSemiconductor (CMOS) sensor. The 3D 
coordinate of the observed target is calculated in a stereovision system by 
triangulation.  Popescu et al. (2003) presented a hand-held prototype for scene 
modeling using a video camera and attached 16 laser pointers. The system worked with 
five frames per second registering the color and triangulation data. Three years later 
Popescu et al. (2006) presented an advanced version with a pattern of 7 x 7 laser beams 
and a progressive scan mode of 15 frames per second resulting in a depth error of 
3.5 cm of a target in 3 m distance. However, in contrast to observing the object with a 
ToF range camera, the object must be visible for projector and camera at the same time 
and the length of the stereo baseline directly drives the performance of a stereo 
system. These three techniques vary vastly in their properties, which is presented in a 
brief overview in Table 1. 
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Table 1 Overview of state-of-the-art RIM sensors with active illumination 

Properties Single photon 
counting 

Phase shift 
measurement Triangulation  

Sensor size 
(pixel) 32 x 32 max. 204 x 204 640 x 480 

Frame rate  
(frames/second) 49000  up to 90 30 

Range  
(m) 3 (0.8) up to 20 0.8 �l 3.5 

Depth 
resolution (mm) < 2 10  

(for ranges < 10m) 
10  

(at 2 m range) 

Example 

 

 

SPAD camera SPC2 
(Laser 2000 GmbH, 2012) 

 

 

SR4000 
(Mesa® Imaging AG, 2009) 

 

 
PrimeSense sensor 

(Leadbetter, 2010) 
 
Due to their high acquisition rate so called Range Imaging (RIM) sensors (Besl, 1988) 
collect three-dimensional (3D) data of a real-world scenes. Marszalec et al. (1995) used 
a Light Emitting Diode (LED) array based sensor for 3D profile measurement. R. Lange 
and Seitz (2001) presented a solid-state ToF range camera that enables to measure 3D 
Cartesian coordinates up to a distance of 10 m. Ranges are measured for each 
individual pixel using only one camera. The actual coordinate accuracy is driven by the 
distance measurement accuracy, which is in the order of centimeters for RIM sensors 
�Q�S�A�F�� �?�Q�� �+�#�1���•�� �'�K�?�E�G�L�E�h�Q�� �1�U�G�Q�Q�0�?�L�E�C�P�o��(Mesa® Imaging AG, 2011a) or 
�.�+�"�2�C�A�F�L�M�J�M�E�G�C�Q�h�� �!�?�K�!�S�@�C��(PMDTechnologies GmbH, 2007). Miniaturized size 
(including the modulated infrared light source), non-movable components and 
recording of kinematic processes (90 frames per second) are important advantages in 
contrast to laser scanners and stereovision systems. RIM cameras are suitable for 
detection and localization of objects/humans in indoor environments and can be used 
for simultaneous localization and mapping (SLAM), for example, onboard of 
autonomous Unmanned Vehicle Systems (UVS) (Weingarten et al., 2004; May et 
al., 2009). 
 
Starting from this context, I will address four Research Questions within this thesis, 
which cover relative and absolute positioning in indoor environments. 

Shortcomings and Research Questions  

Ineffective 3D monitoring of industrial robots for decision making:  

Industrial robots are able to execute given programs at high speed precisely with high 
repeatability (F. Lange and Hirzinger, 2006). Faultless functionality is important and 
performance to a specified speed and position accuracy has to be assured. For security 
reasons the working space of robots has to be monitored (ifm electronics, 2010). Shut-
off mats or light barriers are used to minimize collision risk but cannot by adapted 
dynamically to the robots working space, which leads to larger security zones around 
the robot. An operator can analyze the present condition of the robot on his personal 
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experiences. However, due to frequent personal rotation, sufficient experience cannot 
be guaranteed (Blanc and Sjostrand, 2012). Visual camera control can offer dynamic 
adapted security zones as well as higher efficiency and better results in monitoring. 
 
Research Question 1: Are ToF range camera measurements accurate enough to detect 
the path of an industrial robot  in real-time to minimize potential risk of collision? 
 
In populated environments robots and humans interact together. Simultaneous 
tracking and motion analysis leads to the research in Human-Computer 
Interaction (HCI). HCI �?�Q���?���i�Q�A�G�C�L�A�C���M�D �B�C�Q�G�E�L�j��(Carroll, 1997) supports the interaction of 
human beings with technology. Cameras are mostly used as input devices for video 
communication. However, tracking of human body parts in front of an imaging sensor 
(e.g. Gorodnichy et al. (2002)) can be used for interaction and decision making. 
 
Research Question 2: Can RIM sensors be used for HCI despite their limited range? 
 
Lack of absolute positioning in indoor environment:  

In the outdoor space location estimation and navigation is covered by Global 
Navigation Satellite Systems (GNSS). GNSS directly deliver absolute reference through 
their globally defined coordinate systems, like WGS84. In indoor environments, other 
solutions, for example ultra-wideband (e.g. Blankenbach and Norrdine (2010)), radio 
frequency identification (e.g. Kimaldi Electronics (2012)) or optical methods (e.g. 
Gorostiza et al. (2011)), can be considered due to the poor performance of GNSS. 
 
Research Question 3: Is it possible to determine the absolute position of RIM sensors 
from prior known �M�@�H�C�A�R�h�Q���J�M�A�?�R�G�M�L���?�L�B���E�C�M�K�C�R�P�W? 
 
Research Question 4: Can RIM be used to generate 3D maps of indoor environments? 

Objectives  

The objective of this thesis is to present the usability of RIM in indoor navigation and 
location estimation tasks. The thesis is written in such a way that prior knowledge 
about ToF range cameras/RIM sensors is not an obligation, but basic knowledge in 
photogrammetry and/or computer vision and experience in dealing with image or 
point cloud processing will be helpful . 
 
The suggested solutions rely entirely on open source technology and standardized 
code/GIS, aiming at enhancing the public usability of RIM for variable indoor 
environmental tasks. The introduction of IndoorGML should help to propagate 
geospatial standards that provide useful information and service exchanges in any 
applications that need to be geospatially enabled. Furthermore, standardized services 
are commonly trusted, widely accepted and highly valued. 

Overview of the T hesis 

This cumulative dissertation is structured in five chapters. Subsequent to this 
introductory chapter, the state-of-the-art and background of relevant research topics 
are detailed in Chapter 2. 
 
The usability of ToF range cameras for object detection and monitoring (Research 
Question 1) as well as for HCI (Research Question 2) are addressed in Chapter 3. The 
SwissRanger�o��3000 (SR3000) (Oggier et al., 2005) is used as a static sensor to monitor 
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the scene from a single viewpoint. Its 16 bit gray value coded range images have been 
processed for object detection. Each grey value presents a coded distance where a grey 
color value of 65535 is equal to the non-ambiguity range of 7.5 m. The identified 
shortcomings in robot monitoring and decision-making based on 2.5D data processing 
are presented in Publication 1. Publication 2 focuses on multi -user operability in HCI. 
Following an overview of optical input devices and the presentation of other unique 
ideas, an example application using the SR3000 as input device is given, focusing on 
face and index finger detection. 
 
During the last 5 years, several efficient 3D data processing algorithms have been made 
available, for example, the point cloud library (pcl). In Chapter 4 the potential of a RIM 
sensor as ego-motion system for indoor positioning (Research Question 3) is discussed. 
A case study based on a CityGML database model is presented in Publication 3. A model 
point cloud could be registered to acquired point clouds of the ToF range camera 
SR4000 (Mesa Imaging AG, 2011a) �R�M���A�?�J�A�S�J�?�R�C���R�F�C���A�?�K�C�P�?�h�Q���N�M�Q�G�R�G�M�L���@�W���P�C�Q�C�A�R�G�M�L�����2�F�C��
advantage of integrating pcl algorithms for real-time 3D data processing is presented 
in Publication 4. Furthermore, the possibility to use the SR4000 simultaneously as 
mapping device (Research Question 4) is pointed out in Publication 5 when it was 
mounted on an Unmanned Vehicle System (UVS). 
 
In Chapter 5 concluding remarks are presented and achievements are summarized. The 
scientific relevance of ToF cameras in indoor positioning is explained and an outlook on 
potential future activities in the field of RIM applications is given.  
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2 BACKGROUND1 

This section provides important historical context as well as the state-of-the-art of the 
most relevant topics of this research. It encompasses topics of photogrammetry and 
computer vision for robot monitoring and navigation as well as for Human-Computer 
Interaction  (HCI) and indoor positioning through point cloud processing. 

Robot Monitoring for Online Collision Avoidance  

Online collision avoidance in unmanned factories is based on the Find-Path 
Problem (Brady et al., 1983) in multi -robot systems illustrated  in Fig. 1 and can be traced 
�@�?�A�I�� �R�M�� �R�F�C�� �J�?�R�C�� ���������h�Q�� �2�F�C�� �P�M�@�M�R�h�Q�� �K�M�R�G�M�L�� �A�?�L�� �@�C�� �A�M�L�Q�G�B�C�P�C�B�� �?�Q�� �?�� �N�?�R�F�� �G�L�� �G�R�Q��
workspace. All movements must be accompanied by automatic online collision 
avoidance between all robots and all obstacles (Freund and Hoyer, 1986). The previous 
offline trajectory planning is not sufficient to  totally  avoid interferences with obstacles 
due to the fact that obstacles could move into the workspace (Chien et al., 1988). 
Therefore an online supervision of interacting robots is inevitable to handle situations, 
which cannot be preplanned. Information about the workspace depends on fast 
sensory input of the actual situation (Hoyer et al., 1994). �2�F�C���i�0�M�@�M�R�G�A�G�?�L�Q�j��(Laumond, 
1998) �M�D�� �R�F�C�� ���������h�Q��developed a variety of heuristic and approximate methods for 
collision avoidance. 
 

 
Fig. 1 Multi-robot system (KUKA Robot Group, 2006). 

With the growth of performance in low -cost computing and free-distributed software, 
efficient  prototyping tools have been developed (Macchelli and Melchiorri, 2002). 
Kahane and Rosenfeld (2004) gave an overview of �i�P�M�@otic-assistant �Q�W�Q�R�C�K�Q�j�� �?�L�B��
�i�F�G�E�F�J�W�� �?�S�R�M�L�M�K�M�S�Q�� �Q�W�Q�R�C�K�Q�j. Furthermore, the implementation of artificial vision, 
laser range sensors and machine vision devices in agricultural and construction tasks 
as well as in medical surgical operations is presented. A visual control system, like it is 
presented in Xu et al. (2006) makes autonomous robot manufacturing more efficient 
and reduces unnecessary production costs. Furthermore, the robot system needs to be 

                                                           
1 Background section contains excerpts from (Kohoutek, 2008), (Kohoutek, 2009), (Kohoutek 
et al., 2010), (Kohoutek, Mautz, et al., 2013) and (Kohoutek, Dröschel, et al., 2013) of this 
thesis. 
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independent from any a-priori knowledge about its position and orientation (Cefalu 
and Böhm, 2010). �0�C�A�C�L�R�J�W�� �K�?�A�F�G�L�C�� �T�G�Q�G�M�L�� �G�Q�� �S�Q�C�B�� �R�M�� �K�M�L�G�R�M�P�� �R�F�C�� �P�M�@�M�R�h�Q�� �A�M�L�B�Gtion to 
detect malfunctions (Blanc and Sjostrand, 2012). Since 2007 the multi-camera system 
SafetyEye® (Pilz GmbH & Co. KG, 2007) is available on the market. While mounted on 
the roof the system covers an area of approximately 72 m2

2 at its maximum range of 
7.5 m but suffers from its dependency on background illumination. 
 
The here presented work, Publication ���� �i���L�?�J�W�Q�G�Q�� �?�L�B�� �N�P�M�A�C�Q�Q�G�L�E�� �M�D�� ���"-range-image-
�B�?�R�?���D�M�P���P�M�@�M�R���K�M�L�G�R�M�P�G�L�E�j�
��complements the previous works about robot monitoring 
to avoid collision in case of obstacles. The ToF range camera is placed in front of the 
robot and used as a Vision Based Protective Device (VBPD) (Hauke and Bömer, 2005). 
The robot will be detected in the scene and its path will be monitored. Any object or 
person that enters the hazardous area around the robot will cause a stop of the 
working process. The challenge is to provide enough safety of detection to limit the risk 
of collision. It is important to take worst-case scenarios into account due to the use of 
VBPDs. However, the �P�M�@�M�R�h�Q���A�M�L�B�G�R�G�M�L���G�Q���L�M�R���K�M�L�G�R�M�P�C�B���B�G�P�C�A�R�J�W�
���@�C�A�?�S�Q�C���R�F�C��accuracy 
of ToF range cameras may not be sufficient. 
 

Tracking of B ody Parts  for Human Computer Interaction  

�'�L�� �R�F�C�� ���������h�Q�� �4�G�P�R�S�?�J�� �0�C�?�J�G�R�W�� ���4�0����(Rheingold, 1991) technology, the possibility to 
simulate the real-world with computers, became common in research. VR systems 
required the user to wear special gear like goggles, position tracker and gloves for 
gesture recognition. Arthur et al. (1993) �N�P�C�Q�C�L�R�C�B���i�$�G�Q�F���R�?�L�I���T�G�P�R�S�?�J���P�C�?�J�G�R�W�j���?�L�B��choose 
a head-tracking device (stereoscopic vision) and a high-resolution workstation 
monitor  (Fig. 2) to overcome the use of head-mounted displays and the effect of 
separating the user from the real world. 
 

 
Fig. 2 Fish tank VR system (Arthur et al., 1993). 

Progress in hardware allowed using mid-range workstations for image processing to 
�B�C�R�C�A�R�� �R�F�C�� �S�Q�C�P�h�Q�� �F�C�?�B�� �N�M�Q�G�R�G�M�L�� �G�L�� �P�C�?�J�� �R�G�K�C�����#�Q�R�G�K�?�R�G�L�E�� �R�F�C�� �S�Q�C�P�h�Q�� �N�M�Q�G�R�G�M�L�� �?�L�B��
orientation towards the screen plus simple image processing techniques like template 
matching and background subtraction facilitated the head-tracking even in single 
camera approaches (Rekimoto, 1995). Facial recognition by characteristic feature points 
in frontal or profile view adapts the head-tracking to the user and can be used for 
training of neural networks and generic 3D facial modeling (Sarris et al., 2001). 
 
Cipolla and Hollinghurst (1996) and Li et al. (1997) used stereovision respectively 
monocular vision to detect hand gesture without additional gloves. These approaches 
have been challenged by noise or bad lightning conditions. Applying active shape hand 
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models for estimation  of the hands�h position and pose are presented in Hu et al. (2000) 
as another hand tracking and gesture recognition approach. Hahn et al. (2007) present 
a Multiocular  Contracting Curve Density algorithm (MOCCD) to track the human hand-
forearm limb. They chose a multi-camera system consisting of three calibrated 
cameras to avoid effects, which occur during pose estimation and tracking by the 
aperture problem. A 3D hand-forearm contour model consisting of five truncated cones 
is projected into each image. However, to compute the ground truth markers have to 
be labeled manually on the limb in the image. Furthermore, the contour model does 
not support gesture recognition of a single finger. 
 
Correlating body templates with the camera frame makes the body tracking algorithm  
more robust (Betke et al., 2002). However, templates make the object detection process 
scale dependent, such that a limit ed number of predefined scales is applied, while 
people come in different shape, size and color (Koenig, 2007). Furthermore the tracking 
will be unsuccessful if the user rotates his/her head in angles that are not covered by 
the templates. Malassiotis and Strintzis (2005) and Srivastava et al. (2006) present a 3D 
head pose estimation approach based on active triangulation to track the tip of the 
�S�Q�C�P�h�Q���L�M�Q�C�����2�F�C���Q�F�?�N�C���M�D���R�F�C���L�M�Q�C���G�Q���T�G�Q�G�@�J�C���B�S�P�G�L�E���?���J�?�P�E�C���P�?�L�E�C���M�D head rotation and 
unaffected by facial expressions.  
 
Liu and Fujimura (2004) used ToF range cameras for hand gesture recognition. 
However, the authors used range data only for segmentation while the motion 
analysis is carried out based on 2D image data. Breuer (2005) used a calibrated ToF 
camera and principal component analysis for full 3D hand gesture recognition. Sabeti 
et al. (2008) combined color cameras with a ToF camera and realized scale independent 
face detection and tracking. Haker et al. (2009) fit a simple human body model into the 
acquired point cloud. With the estimation of a virtu al touchscreen and their monocular 
computer vision approach for fingertip interaction Cheng and Takatsuka (2005) 
presented a concept for HCI that was used in an adapted form for �.�S�@�J�G�A�?�R�G�M�L�������i�+�S�J�R�G-
�S�Q�C�P�� �T�G�Q�G�M�L�� �G�L�R�C�P�D�?�A�C�� �@�?�Q�C�B�� �M�L�� �0�?�L�E�C�� �'�K�?�E�G�L�E�j�� The algorithm was later improved 
within the Bachelor thesis of Krähenbühl (2010). The achieved pointing interaction 
could be used to access object-based related information like it is presented in Haala 
and Böhm (2003). 
 
Remark: In 2009 when Publication 2 was presented, Microsoft had not launched the 
Kinect�o yet. The presented research has to be seen in the context that real time body 
tracking in 3D was not a consumer market application. However, with the launch of 
Kinect�o interactive real-time human pose recognition as consumer hardware became 
reality. While Xia et al. (2011) proposed a model based approach to detect the human 
head Shotton et al. (2011) present a computational efficient and high accurate 
algorithm to predict 3D positions of body parts from a single depth image using a 
random forest classifier. The provided pose estimation algorithm was evaluated on real 
and synthetic data across differing body shapes and sizes. Furthermore, it handles self-
occlusion and multiple people in the image. However, detected body parts roughly 
align with the body joints, which are inside the body. Moreover, the location of a joint 
cannot be estimated when its associated surface is occluded (Girshick et al., 2011). 
Taylor et al. (2012) used dense correspondences between vertices of an articulated 
mesh model and image pixels to estimate human pose in single depth and multi-view 
silhouette images. Besides the human pose and/or gesture a full body model can be 
calculated. It could be used for virtual fitting rooms or 3D avatars. Tong et al. (2012) as 
well as Böhm (2012) presented approaches using multiple natural user interfaces (NUI) 
���C���E�����)�G�L�C�A�R�o�����R�M���?�A�O�S�G�P�C���D�S�J�J���F�S�K�?�L���@�M�B�W���K�M�B�C�J�Q�� 
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Camera Based Location Estimation  in Indoor Environments  

Navigation through unexplored environments is an important aspect of an 
autonomous mobile robot. There is a demand alternative indoor positioning methods 
due to the poor performance of GNSS within buildings and because of the lack of 
sufficiently accurate and recent maps of the interior. The main part of this thesis will 
focus on the investigation of Time-of-Flight (ToF) cameras for ego-motion 
determination in indoor environments.  
 
Since the ���������h�Q��several projects have been initialized with the goal to use mobile 
robots for the production of real world maps of indoor environments in an absolute 
coordinate system (Brooks, 1985). For example, the Hilare project (Giralt et al., 1984) 
deployed fix reference beacons for positioning and a directable laser range finder to 
produce models of the environment in an absolute coordinate system. The positioning 
method of Iyengar et al. (1986) does not need any initial previously learned model, but 
is able to continuously learn and apply results of previous acquisitions until the 
environment is fully described. Such incremental learning from mapping with range 
imaging devices was performed by Iijima and Yuta (1989) with the so-called 
�iYamabico M�j�
 displayed in Fig. 3 and Freyberger et al. (1990) �U�G�R�F�� �R�F�C�G�P�� �iMacrobe-
robot�j, which reduced the 3D range information to a 2D description moving space. Lux 
and Schaefer (1991) presented real-time obstacle detection from range images acquired 
by a laser scanner for terrain analysis. In contrast to the approach of Reid and 
Brady (1992) their robot is able to modify its path  in real-time to avoid collisions. 
 

 
Fig. 3 Yamabico M (Iijima and Yuta, 1989) 

El-Hakim et al. (1997) developed a multi-camera system consisting of eight CCD 
cameras that is using previously surveyed targets in a global reference system for 
location estimation. Besides the requirement of deploying dedicated markers, the 
natural scene can be used in a view-based approach. Objects with complicated 
structural elements are expected to be recognized in noisy images with the 
disadvantage of large memory and high computational costs for modeling and 
matching  (Matsumoto et al., 2000). However, artificial and natural landmarks are 
distinct features with a fixed position in the absolute reference system, where the 
camera can be referenced to after a transformation has been carried out (Adorni et al., 
2001). Böhm (2007) presented a point-based environmental model (PEM) to store prior 
knowledge of the scene in the reference coordinate system. 
 
Bostelman et al. (2005) and Sheh et al. (2006) used ToF range cameras for rescue 
robotics to automatically generate textured 3D maps of almost unstructured 
environments. May et al. (2009) investigated simultaneous localization and mapping 
with a ToF camera, comparing Kanade-Lucas-Tomasi feature tracker (KLT) and Scale-
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invariant feature transform (SIFT) algorithm  to a depth-image based Iterative Closest 
Point (ICP) algorithm  and the hybrid Efficient Second Order Minimization (ESM) 
technique. The drawback of ICP is its lead of convergence at an incorrect local 
minimum if the input point clouds are not already nearly aligned. Henry et al. (2010) 
used visual features in their RGB-D mapping approach to provide a first alignment 
witho ut requiring initialization . Fusing RGB-D frames and ICP exploits the advantages 
of each to create 3D indoor maps. Their integration of color and depth information 
yields to robust frame matching and loop closure detection and generates 3D maps of 
indoor environments with low price RGB-D cameras. Sturm et al. (2011) proposed the 
first RGB-D dataset for benchmarking visual SLAM algorithms. 
 
Publications 3 �l 5 present an approach that does not require the deployment of any 
physical reference infrastructure inside buildings, which can be a requirement for a 
widespread implementation. The absolute position of the ToF camera is obtained with 
decimeter accuracy by a transformation from the camera coordinate system into the 
coordinate system of a Building Information Model (BIM). The advantages of the 
chosen spatio-semantic 3D CityGML (Gröger et al., 2008) database model are presented 
in Table 2. 

Table 2 Classification criteria for 3D models of indoor space 

 BIM CityGML 

Creation process 
Construction before building 

process 
+ Reconstruction after building 

process (e.g. laser scanning) 

Geometric 
modeling 

Constructive Solid Geometry 

 
(Nagel et al., 2009) 

+ Boundary Representation 

 
(Nagel et al., 2009) 

Semantic modeling No Yes 

Data format  
Computer graphics (VRML, X3D), 

CAAD/BIM-world (Industry 
Foundation Classes - IFC) 

+ GIS-world  

 
Geography Markup Language (GML) (Cox et al., 2002) is the standardized data storage 
format  and interface of geographic information. The Standards Working Group (SWG) 
of the Open Geospatial Consortium (OGC) is developing a new GML for indoor 
navigation applications (Open Geospatial Consortium Inc., 2012a). The aim of the 
proposed IndoorGML is to provide a standard framework of interoperability between 
services and systems (Open Geospatial Consortium Inc., 2012b). IndoorGML will be used 
to describe the topology of buildings. The geometry however, will be described in 
existing standards like the CityGML. CityGML is a detailed Geographic Information 
System (GIS) model that  contains information about geometry a nd semantics of indoor 
environments (Fig. 4) with all coordinates given in a global reference system. 
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Fig. 4 Semantic 3D Building Information Model (modified from Nagel et al. (2009)). 

Each object class, like BuildingInstallation or BuildingFurniture, has the attributes class, 
function and usage to capture semantic information. The range of possible models 
starts with small objects like barstools and goes up to huge objects like storage 
reservoirs. Objects, which are present several times in a room and have the same 
geometry, can be modeled in so-called implicit geometries. Their geometries can be 
saved in Cartesian coordinates in a database (e.g. CAD of the producer). CityGML links 
to those objects with an insertion point and a transformation matrix  and there is no 
multi -storage of the same object geometry inside the CityGML. 
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3 OBJECT TRACKING USING A TOF RANGE CAMERA 
 
Publication 1 

Analysis and processing of 3D-Range-Image-data for robot  monitoring  

 
 
Tobias K. Kohoutek 

Geodezija ir Kartografija / Geodesy and Cartography, 2008, Vol. 34, No. 3, pp. 92-96, 
DOI: 10.3846/1392-1541.2008.34.66-70 

(Author version; for typeset version please refer to the original journal article on 
http://versita.metapress.com/content/w7k6310gv4876246/fulltext.pdf)  
 
 
 
Abstract Industrial robots are commonly used for physically stressful jobs in 
complex environments. In any case collisions with heavy and high dynamic machines 
need to be prevented. For this reason the operational range has to be monitored precisely, 
reliably and meticulously. The advantage of the SwissRanger�o SR3000 is that it delivers 
intensity images and 3D-information simultaneously of the same scene that conveniently 
allows 3D-monitoring. Due to that fact automatic real time collision prevention within 
the robots working space is possible by working with 3D-coordinates. 
 
Keywords: Range-Image, Motion Analysis, Object Tracking, Real-Time, Robot 
Monitoring, Security Zone, Optical Flow 
 
1. Introduction  

To record a moving object in 3D is possible using different methods. This paper shows 
the analysis and processing of images containing the local brightness and the distance 
for 25344 pixels. Those 3D-images are taken with  the SwissRanger�o SR3000 using the 
ToF principle for measuring ranges. The miniaturized size (including the modulated 
infra-red light source of 54 LEDs), non-movable components and the recording of 
kinematic processes (30 frames/seconds) are important advantages in contrast to laser 
scanners. 
 
Camera systems are rarely used for monitoring working processes of machine tools 
and industrial robots. Nowadays it is usual to use shut-off mats or light barriers to 
detect objects entering the security zone shown in Fig. 1. 
 

 
Fig. 1 Robot working space (KUKA Robot Group, 2006). 
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2. Components 

2.1 SwissRanger�o SR3000 

This distance measuring camera, based on combining CMOS/CCD-technology, is 
�B�C�T�C�J�M�N�C�B�� �@�W�� �!�C�L�R�P�C�� �1�S�G�Q�Q�C�� �B�h�#�J�C�A�R�P�M�L�G�O�S�C�� �C�R�� �B�C�� �+�G�A�P�M�R�C�A�F�L�G�O�S�C�� �1���� ���!�1�#�+���
�� �8�S�P�G�A�F��
Switzerland (R. Lange and Seitz, 2001). This camera is possible to acquire an amplitude 
image that shows the local brightness in gray values (16 Bit), and a range image for the 
distances in every pixel. The distances are coded into gray values (16 Bit) in the range 
image. The distance measurements are realized for each individual pixel by exploiting 
the ToF principle, working with a modulated infrared light source. Objects in a scene 
reflect the emitted l ight pulses back to the camera, where their precise time of arrival is 
measured at four points. In Oggier, Lehmann, et al. (2004) the phase map and finally a 
complete distance map can be acquired by detecting the phase delay between the 
emitted and the reflected signal in Fig. 2a. By sampling this signal the three unknown 
parameters of the modulated signal in Fig. 2b, the amplitude �#, the offset �$ and the 
phase �î  can be determined by the equations (1) to (3). 
 

 
Fig. 2 Phase delay between the emitted and the reflected signal:  

a) phase delay (Zhang, 2004); b) modulated signal (Weingarten et al., 2004). 
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With (4) and (5) the distance and the accuracy of the depth measurements �¿�& can be 
calculated. �&�à�Ô�ë represents the maximum unambiguous distance range of 7.50 m. 
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This robot was used to imitate the movements of an industrial robot. The Robotic 
Invention System (RIS) includes a RCX-Microcomputer, a USB-Infra-red-Transmitter and 
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�R�F�C�� �0�'�1�� �1�M�D�R�U�?�P�C�� ���5�G�L�B�M�U�Q�o���� �?�Q�� �U�C�J�J�� �?�Q�� �A�M�L�T�C�L�R�G�M�L�?�J�� �*�#�%�-�•�� �@�P�G�A�I�Q�� �?�L�B�� �B�G�D�D�C�P�C�L�R��
sensors and motor types. 
 
Interactive controlling is not possible with the RIS Software. Here the V2.1-Interface by 
Berger (2005) programmed in Microsoft® Visual C++ was adapted. Due to that fact the 
RCX-Microcomputer works only as an interface between the motors/sensors of the 
robot model and a desktop computer. 
 

 
Fig. 3 Experimental setup. 

3. Analysis and Processing of 3D-Image-Information  

3.1. Robot Detection 

With the experimental setup shown in Fig. 3 two different kinds of segmentation could 
be realized by using Microsoft® Visual C++ and the Open Source Computer Vision 
Library OpenCV (OpenCV dev team, 2011). First method of segmentation is based on 
detection by using a background image. Here the difference image of the background 
image and the first image with the robot displays as result only the robot itself. It  is not 
possible to work with a background image for the second method if  segmentation is 
used. 
 
Thresholding, morphological operations and edge detection are utilized algorithms for 
the segmentation. In every case the initial image presents the mean over 25 images to 
reduce the noise level. For �0 images the Signal to Noise Ratio (SNR) in a mean image is 
�s �¾�0�¤  (Jähne, 2005). The range image was used for the edge detection, due to the fact 
that the scattering of the pixel values is bigger compared to the amplitude image. In 
Fig. 4 different edge detection algorithms were used like Sobel- (Fig. 4a and 4b), 
LaPlace- (Fig. 4c) and Canny-algorithm  (Fig. 4d). 
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Fig. 4 Edge detection algorithms. 

The best result, a binary image, was given by the Canny-algorithm. Because more 
edges can be detected than actually are on the robot itself, a threshold was set up to 
remove those outlines with a fewer number of pixels as those at the robot contour. 
This step is followed by a dilation operation to fill the gaps in the contour. In a last step 
the robot structure is filled out white and features become marked is the binary image 
using a fixed raster over the white area shown in Fig. 5. 
 

 
Fig. 5 Robot edges and features. 

In the following steps only features at the robot's contour are required. A simple 
neighborhood operation is used to minimize the features by proofing every feature and 
its four neighbors (up, down, left and right) whether they belong to the robot (white) or 
to the background (black). A feature is an edge feature when three neighbors belong to 
the robot and the fourth to the background. It also counts as an edge feature when 
only two neighbors belong to the robot, but both should not be on opposite sides. In 
this case, the feature is a corner feature. (Fig. 6) The result is a new image that contains 
only features at the robot contour. 
 

 
Fig. 6 Template for edge features. 
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3.2. Virtual Security Zones 

For monitoring and collision prevention a virtual security zone around the robot is 
created. There are two different shapes shown in Fig. 7, where the first one is similar to 
�?���A�S�@�C���?�P�M�S�L�B���R�F�C���P�M�@�M�R���?�L�B���A�?�J�J�C�B���i�Q�R�?�R�G�A���Q�C�A�S�P�G�R�W���X�M�L�C�j�����2�F�C���Q�C�A�M�L�B���Q�F�?�N�C���D�G�R�Q���K�S�A�F��
better to the robot shape and is call�C�B�� �i�B�W�L�?�K�G�A���Q�C�A�S�P�G�R�W���X�M�L�C�j�� �@�C�A�?�S�Q�C���G�R���U�G�J�J�� �B�M���R�F�C��
same movements like the robot. 
 

 
Fig. 7 Security zones; a) static, b) dynamic. 

In order to create the static zone, three special points at the robot contour have to be 
known. These points are the furthest features to the left, right and top of the robot 
edges. Knowing the X- and Y-values in the image it is possible to append the virtual 
cube to these features around the robot. The cube thickness of the cube is correlated to 
the robot�hs velocity and describes the security area. The stopping distance increases 
with higher speeds so consequently as faster the robot moves as thicker the cube has 
to be. It is obvious that much more image space than necessary is controlled or not 
usable for other image operations �@�W�� �S�Q�G�L�E�� �Q�S�A�F�� �?�� �i�Q�R�?�R�G�A�j�� �@�M�V���� �"�S�C�� �R�M�� �R�F�?�R�� �D�?�A�R�� �R�F�C��
dynamic zone was created. It fits much better to the robot contour because the shape 
is created by all edge detected features. Now it is important to find out whether a 
feature is on the left or the right side of the robot, or at the top or the ground. 
Therefore a more sophisticated neighborhood operation was used. 
 
For all features (shown in green) it is known on which side at the robot contour they 
are. Using that information, they are shifted in radial direction for five pixels on a line 
from the focal point (yellow) to the image edge. These virtual inner boarder 
points (blue) were shifted a second time in the same direction for eight more pixels in 
order to create the outer barrier (red). After definition and preparation of the security 
zones in the 2-dimensional image space a concept for the 3D robot working space was 
generated. As seen in the top view in Fig. 8, the monitored working space was split into 
three areas (front, robot depth, rear). 

 
Fig. 8 Monitored areas. 
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The idea is to detect other objects entering the chosen security zone in three different 
distances. If there is an object entering the security zone between the camera and the 
robot (front), the robot has to stop immediately. In that case the robot would be in the 
so-called phantom space (detailed information in  Franz (2005)) of the other object and 
it is not possible anymore to guarantee a risk free working of the robot. The following 
�A�M�L�R�P�M�J�J�C�B�� �X�M�L�C�� �G�Q�� �A�?�J�J�C�B�� �i�P�M�@�M�R�� �B�C�N�R�F�j�� �?�L�B�� �G�Q�� �?�Q�� �B�C�N�R�F�� �?�Q�� �R�F�C�� �P�M�@�M�R�� �G�R�Q�C�J�D���� �"�G�P�C�A�R�J�W��
behind the robot there is again a phantom space, which is not controllable. It seems 
that objects entering the security zone from behind cannot be detected. But if they 
�A�M�K�C�� �L�C�?�P�C�P�� �R�M�� �R�F�C�� �P�M�@�M�R�� �R�F�C�W�� �i�E�P�M�U�j�� �G�L�� �R�F�C�� �G�K�?�E�C�� �Q�N�?�A�C�� �?�L�B�� �R�F�C�� �E�P�?�W�� �T�?�J�S�C�Q�� �G�L��
amplitude image and range image will change. 
 
The conditions that have to be fulfilled to stop the robot�hs work are simple. An object is 
entering the security zone if there are changes in the gray values of the amplitude 
image as well as changes in the range image. There are three different distance 
thresholds for contr�M�J�J�G�L�E���R�F�C���P�?�L�E�C���G�K�?�E�C���G�L���R�F�C���B�G�Q�R�?�L�A�C�Q���i�D�P�M�L�R�j�
���i�P�M�@�M�R���B�C�N�R�F�j���?�L�B��
�i�P�C�?�P�j�� 
 
4. Robot Monitoring/ Tracking and Motion Analysis 

Motion in image sequences is always associated with changes between two images. By 
subtracting these two images all differences become visible. It is important to know 
that gray value changes are not always related to object motions. Also changes of the 
light source or camera position generate such differences in the gray values as can be 
seen in Fig. 9. 

 
Fig. 9 Motion field vs. optical flow (Franz, 2005);  

a) Motion of the sphere without grey value changing;  
b) Motion of the light source with grey value changing. 

The results are the motion field and the optical flow, where the motion field describes 
the real motion of an object in the 3D-scene projected onto the image plane (Jähne, 
2005). The optical flow (Horn and Schunk, 1981) is defined by the flow of gray values in 
the image. The existence of a constant light source and a pixel neighborhood, that 
moves similar to the center pixel (Fig. 10), during the exposures are pre-conditions for 
using the optical flow. 

 
Fig. 10 Displacement vector field at optical flow. 

This displacement vector field is the projected 3D physical motion filed to the image 
plane and provides information about the arrangement and the changes of objects. 
The gray value�h�Q�� �i�D�J�M�U�j�� �M�T�C�P�� �R�F�C�� �G�K�?�E�C�� �N�J�?�L�C�� �G�Q�� �C�O�S�G�T�?�J�C�L�R�� �R�M�� �R�F�C�� �D�J�M�U�� �M�D�� �T�M�J�S�K�C��
elements in liquids or gases. Motion is closely related to spatial and temporal gray 
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value changes. That is why only the component of the displacement vector, which is 
normal to an edge, can be determined while the component parallel remains unknown. 
That problem is called aperture problem and applies only local operators. In Fig. 11a an 
unambiguou s determination is only possible for an object corner that lies within the 
operator mask. The aperture problem is a special case of the correspondence problem, 
because distinguishing different points of an edge is not possible.  
 
A solution for that problem is shown in Fig. 11b by an image pyramid that reduces the 
resolution of an image gradually. While the original image I is the 0 th pyramid level the 
resolution and size of the following IL decreases by a factor of two. Using pyramids into 
a magnitude of local neighborhood operations scales large pictures down. Smaller 
image size neighborhood operations made in the upper level of a pyramid can be 
performed more efficiently than for finer scales. Important image features build the 
basis for the hierarchical image classification. Image pyramids express a high 
robustness and a good local accuracy. 
 

 
Fig. 11 a) Aperture problem, b) Image pyramid (Siebold, 2004). 

During the working process of the robot the motion of all object features will be 
calculated by the optical flow with sub-millimeter accuracy. Their displacements will 
be added to their corresponding points of the dynamic security zone and so this zone 
follows the same movements as the robot. During the real time robot 
monitoring  (30 frames/second) the security zone will be controlled in amplitude image 
and range image. The robot will stop when there is a detected gray value changing in 
both images at the same feature and its direct neighborhood. If an object is detected, 
the robot will stop in time to avoid a collision and the object will also be marked and 
displayed in the image displayed in Fig. 12. 
 

 
Fig. 12 Detected object. 
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5. Conclusion 

The determination of a robot working space and its automatic real-time monitoring 
was carried out successfully. The results for the analysis and processing of the 3D-
images are reliable. Multipath effects, temperature, distortion and effects of the 
objective influence the distance measurement. The data for absolute and relative 
accuracy of the recorded objects will become reliable after a camera calibration of the 
SwissRanger�o SR3000. 
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Abstract For common computer interaction the mouse is established as a standard 
device. The recognition of freehand 3D-interaction has already been implemented by 
detecting the fingertips and the eyes of the user. This application is based on the stereo-
photogrammetry approach with two webcams. Attempts with a single webcam have 
been performed as well to quit the synchronization of two video streams. Using the 
range-imaging technology the user can move in front of the display from 30 cm up to the 
maximal ranging distance that is supported by the camera. The body, especially head and 
hand, can be detected in 3D within the operating range and an additional gesture-
analysis tool is able to interpret the commands of the user. With this approach, the 
computer mouse is not needed anymore. The main topic of this paper is the multi-user 
interaction. Operating the computer at the same time with several users is not supported 
by the actual operating systems. The simultaneous detection of several users and their 
hands in 3D was achieved. A fast switching between the users to control the computer in 
turns is explained. 
 
Keywords: 3D-tracking, Real-time, Range Imaging, Human Computer Interaction, 
Multi -user interface 
 
1. Introduction 

Computer screens and displays have become larger in the past; also digital projectors 
have been used much more often. This has inspired research to use other input devices 
then keyboard and mouse. Since the early 1990's much research has been carried out in 
Human Computer Interaction (HCI). According to Erol et al. (2005) the human hand is 
the most effective interaction tool for HCI. Gorodnichy et al. (2002) carried out research 
for completely hands-free interaction that requires motion measurement and tracking 
of various human body parts. Most research in computer vision uses stereo 
photogrammetric approaches, for example Cipolla and Hollinghurst (1996); Grätzel et 
al. (2004); Erol et al. (2005) or the single camera (webcam, digital video cam) approach, 
for example Gorodnichy et al. (2002); Cheng and Takatsuka (2005) or Lertrusdachakul 
et al. (2005). On the other hand there are some less known methods. Oka et al. (2002) 
used an infrared camera to detect areas close to the temperature of the human body. 
Banker et al. (2007) designed a 3D computer mouse while using an ultrasonic 
transmitter . The active triangulation principle by Malassiotis and Strintzis (2005) is 
based on the coded light approach for 3D data acquisition. 
 
Besides the detection of the user�hs head a detection of the user�h�Q���i�N�M�G�L�R�G�L�E���B�C�T�G�A�C�j�
���R�F�C��
hand/fingertip, is required in many applications. Nickel and Stiefelhagen (2003) 
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explained �R�F�C�� �G�K�N�M�P�R�?�L�A�C�� �M�D�� �N�M�G�L�R�G�L�E�� �B�C�T�G�A�C�� �B�C�R�C�A�R�G�M�L�Q�� �U�G�R�F���� �i�&�S�K�?�L�Q�� �N�C�P�D�M�P�K�� �R�F�C��
arm towards a pointing target in the communication with others to mark a specific 
�M�@�H�C�A�R�
�� �J�M�A�?�R�G�M�L�� �M�P�� �B�G�P�C�A�R�G�M�L���j�� �2�F�C�� ���"�� �E�C�M�K�C�R�P�W�� �?�L�B�� �R�F�C�� �E�C�Q�R�S�P�C�� �G�L�� �L�?�R�S�P�?�J�� �?�P�K��
movements have to be detected and the pointing direction has to be estimated. 
Consequently several problems have to be solved to implement a virtual mouse. 
 
The acquisition and distance measurement is realized for each individual pixel by a ToF 
range camera exploiting the ToF principle. Objects in a scene reflect the emitted light 
pulses back to the camera, where their time of arrival is measured. A ToF range camera 
combines the benefits of single and multi-camera systems. RIM enables to measure 
�R�F�C���S�Q�C�P�hs position in 3D using only one camera. 
 
The second step is to create a multi-user interface by upgrading the existing image 
processing algorithms from a one user to a multi user system independent from the 
user�hs movements. However, it is not possible to operate with multi users at the same 
time due to limitation s of the operating systems (MS Windows�o, Mac OS, Linux). Only 
one pointing device can be implemented. The advantage is to switch among the 
several users who were detected during image processing. 
 
2. Range Imaging 

While using a single camera, the distance between the user and the camera/display is 
�B�C�R�C�P�K�G�L�C�B�� �C�?�Q�G�J�W�� �@�W�� �R�F�C�� �S�Q�C�P�hs head size (Cheng and Takatsuka, 2006). In contrast, 
�?�N�N�P�M�V�G�K�?�R�G�M�L�� �M�D�� �R�F�C�� �B�G�Q�R�?�L�A�C�� �@�C�R�U�C�C�L�� �R�F�C�� �S�Q�C�P�hs hand and the screen/camera 
remains a different task. Stereo or multi vision photogrammetry acquires a 3D-model 
but analyses and matching of multiple video streams is needed. Common methods to 
measure 3D are stereo triangulation, sheet of light triangulation, structured light 
projection or interferometry. RIM however uses the ToF principle. 
 
There are two different ways to measure distances using ToF. One method is the time 
measurement of a laser pulse, which is reflected at an object. Laser scanners use this 
principle. Another type of ToF is working with a modulated infrared light source to 
measure the phase delay as it is done in this work. The accuracy of the distance 
measurement is the limiting factor in HCI for computer vision. 
 
ToF cameras provide real time distance data at video frame rates up to 50 frames per 
second. They acquire an amplitude image and a range image. The local brightness as 
well as the distances for every pixel is coded in 16 bit gray values. For each pixel the 
distance is measured directly by calculating the phase shift between the emitted and 
reflected signal. The phase map and finally a complete distance map can be acquired 
by detecting the phase delay between both signals (Oggier, Kaufmann, et al., 2004) as 
it is shown in Fig. 1a. By sampling this signal the three unknown parameters of the 
modulated signal in Fig. 1b, the amplitude �#, the offset �+ and the phase �î  can be 
determined by the following equations (1) to (3), where �I �s�å �I �v are the measured 
phase delays. 
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Fig. 1 Phase delay between the emitted and the reflected signal: 

a) phase delay (Zhang, 2004); b) modulated signal (Weingarten et al., 2004). 
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The maximal operating range of the camera is represented by �&�à�Ô�ë. Every object, 
which is further away, will be shown in a wrong gray value due to the repetition of the 
modulated signal. State-of-the-art ToF cameras operate with a wavelength of 850 - 
870 nm and a modulated frequency of 25...30 MHz. The current array size dithers 
between 60 x 60 up to 205 x 205 pixels. 
 
3. Virtual Touchscreen 

In a first step the camera position has to be related to a large screen. Usually, the 
camera is placed on the top of the screen. Fig. 2 shows that the view frustum between 
user and display is flexible while the user moves in the operating distance of the ToF 
range camera. While using this technology, the frustum will be adjusted to the user's 
body and get re-adjusted with the user's movement in real time. A virtual touch screen 
appears in front of the user by pointing to the display. The virtual screen will always be 
within the frustum and is adjusted to the user�hs arm length. 
 

 
Fig. 2 View frustum and virtual touchscreen (modified from Cheng and Takatsuka (2006)). 
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3.1 Hand-Head Line Model 

People tend to look towards an object and use one finger to point in the direction of 
the object when they show it to somebody else. The extension of the finger and the 
eyes are in the line of gaze with the object, shown in Fig. 3. The same happens here 
with display and user. All objects on the screen are not touchable from the distance but 
at the fingertip the virtual display will be placed (Cheng and Takatsuka, 2006), due to 
checking the range image for the closest point to the camera by histogram evaluation. 
Remember, that the distance is stored in a 16 bit gray value image. While the fingertip 
will always be the closest point to the camera, the gray value will be an extreme of the 
image values. The minimal gray value presents the fingertip of the user. 
 

 
Fig. 3 Hand-head line model (modified from Cheng and Takatsuka (2006)). 

Pointing to the four corners of the screen is one possibility to calibrate the system. This 
way the view frustum becomes adjusted to the user�hs arm length. Because of the RIM 
technology the user is now able to move forward or backward, left and right in front of 
the display. By pointing towards the display the mouse pointer is now driven by the 
fingertip. The fingertip interaction, left click, right click and mouse wheel scrolling are 
parts of the gesture recognition but are beyond the scope of this work. There are 
several papers dealing with gesture recognition, for example Hu et al. (2000); Nickel 
and Stiefelhagen (2003); Erol et al. (2005); Breuer (2005) or Argyros and 
Lourakis (2006). 
 
4. Multi -User Interface 

As previously mentioned, detection and tracking of a single user in front of a camera 
has been achieved already in many different works. The challenge here is to generate 
multi -user interface functionality by 3D image processing. The idea for multiple users 
on a computer screen originates from a blackboard where several users can write or 
draw simultaneously. This work will show the possibility of detecting and tracking 
multiple users in 3D. The used ToF range camera SR4000 is developed by MESA® 
Imaging (Mesa® Imaging AG, 2009). Its pixel array size is 176 x 144, working with a 
wavelength of 850 nm and a modulated frequency of 30 MHz. The operating range 
with standard settings is 0.3 to 5.0 meters. 
 
The complete source code is written in MS Visual Studio 2008 C++ enhanced to the 
offered library files for camera acquisition and image processing. In a first step a real 
time face tracking with scale invariance could be realized. Therefore the Haar-face 
detection method was used. The Haar-like feature classifier is given by the Open Source 
Computer Vision Library OpenCV (OpenCV dev team, 2011). This algorithm uses a face 
template to match it with the users �h faces. The mimic of the users has no influence to 
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the template matching. Not yet implemented is a real time tracking of the eyes such as 
provided by Savas (2005). Tracking the eyes is important when the users are close to 
the display (< 1.5 m). In this case, the hand-head line is established between eyes and 
hand. Actually, the mid-eye position and the fingertip build the line of gaze. 
 
Normally one computer is operated by a single user who only needs one keyboard and 
one mouse to control the system. Currently a second pointing device is not supported 
by the operating systems of today. A second courser cannot appear on the screen by 
simply connecting a second mouse with the computer. It is only possible to move one 
screen courser with both devices. In a multi-user application there are at least two 
users (A and B). The face of user A has to be detected as well as the one of user B. Also 
both mid -eye positions have to be calculated. Each position has its own view frustum 
towards the display. By detecting the fingertips of A and B there will be four lines of 
gaze. Of course, only two of them are correct. Fingertip of user A has to be connected 
with the mid -eye position of user A. The same has to be done for user B. If fingertip A is 
combined with mid -eye B or vice versa then a wrong object in- or outside the view 
frustums is pointed at. The bodies of the users give the correct combination between 
the hands and the heads of users A and B. A fingertip is always connected to a hand, 
which is connected to an arm that is connected to the body where the user�hs head is on 
top. A 3D body-tracking, like it is presented in (Guillaume, 2006), is necessary to fix the 
users lines of gaze. All necessary information can be obtained from the range image. 
 
The screen courser is calculated where the line of gaze of a user intersects with the 
display. Assuming that user A is controlling the operating system, the arm and 
fingertip of user B should not be raised. If user B wants to control the system now he 
has to rise up his arm not before user A brought his arm down. This order is crucial to 
pass the pointing device on user B. The reason for that order is that both users do not 
have to stay in the same distance to the display. If user A would be closer to the camera 
he would stay in front of user B, even when user B would lift his arm. The fingertip 
detection is based on the definition of distance regions. The minimal distance obtained 
by the minimal gray value in the range image represents the finger of the user. If user A 
is closer to the display its body represents the minimal gray value. To solve this 
problem a threshold is used. A body is represented by more pixels then a hand or 
fingertip. The solution is to count the pixels close to the camera. If there are more 
pixels than the defined threshold then the detected object cannot be the fingertip. The 
algorithm has to start again and search for the next points close to the camera. While 
head and hand of user B are detected he will be the new system operator. 
 
5. Results 

It can be observed from Fig. 4 that the ToF range camera captures the distance 
information for each pixel. The closest point to the camera is the pointing fingertip  
towards the screen. The detection algorithm was successful.  
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Fig. 4 3D scene (mirror-inverted) and top view to the same scene. 

The face detection performs best between 130 cm to 400 cm. If the user is too close to 
the camera too much reflected light gets on the sensor, and if too far away, the face is 
too small for the detection. Fig. 5 shows, that the face detection algorithm lost the 
tracking of a head when the user turned around because the used algorithm is not 
rotation invariant and the template for the matching requires a face to be oriented 
towards the front. This phenomenon occurred for larger distances even under small 
rotations. Solving this problem will be a part of future works. 
 

 
Fig. 5 Face detection in distance of 3 m; faces towards the camera (left), one 

face with small rotation (right). 

6. Conclusion 

A set of experiments with real-time head and hand tracking was performed. 
Volunteers were asked to move their heads in a natural way and point one by one 
towards the display. The fingertip was found successfully for every user. The screen 
courser was set to the position where the line of gaze intersects with the display. 
 
Another challenge is the gesture recognition with the ToF range camera. For instance, a 
fast forward-backward motion could be implemented as a click. In order to enable this, 
the distance measurement accuracy in the range image has to be increased (Kahlmann 
et al., 2006) to adjust the view frustum more accurately. However, a simultaneous 
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interaction of multiple users could not be realized because of the limitation of pointing 
devices by the operating systems. A fast switching between users has been found to be 
the only possibility to allow several users operating the same computer 
simultaneously.  
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Abstract: This paper considers a novel indoor positioning method that is currently under 
development at the ETH Zurich. The method relies on a digital spatio-semantic interior 
building model CityGML and a Range Imaging sensor. In contrast to common indoor 
positioning approaches, the procedure presented here does not require local physical 
reference infrastructure, such as WLAN hot spots or reference markers. 
 
Keywords: Range Imaging, CityGML, Indoor Navigation, Building Information Modeling 
 
1. Introduction 

The development of indoor positioning techniques is booming at the moment. For 
industrial applications such as automation, warehousing and logistics there is a 
significant demand for systems that have the capability to determine the 3D location 
of objects in indoor environments without the requirement of physically deployed 
infrastructu re. In particular, tracking of persons in indoor environments has become 
vital during firefighting operations, in hospitals and in homes for vulnerable people 
especially vision impaired or elderly people. 
 
In contrast to the majority of indoor positioning methods, the novel method described 
in this paper does not require any physical reference infrastructure (e.g. Wi-Fi hot 
spots) inside buildings, which can be a decisive advantage in respect to other methods 
at the same level of accuracy. Instead of a locally deployed reference infrastructure, the 
method relies on a digital spatio-semantic interior building model, based on the 
CityGML scheme (DeSouza and Kak, 2002). The paper describes the status of current 
research conducted at the ETH Zurich. The research questions behind this work are: 
 
 What should be the ideal concept for an indoor positioning method that is 

based on RIM and semantically rich geospatial data (CityGML) instead of relying 
on physically deployed infrastructure (e.g. Wi-Fi access points)? 

 Which level of accuracy can be achieved and what application scenario has the 
method? 
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 What are the strengths and drawbacks of the method compared to methods 
that rely on physical reference infrastructure and do not make use of a spatio-
semantic model for indoor environments? 

 
2. CityGML as a Method for Modeling Indoor Environments 

2.1 Overview of Approaches for Interior Building Models 

Different disciplines such as Computer Aided Architectural Design (CAAD) / Building 
Information Modeling (BIM), Computer Graphics and Geographic Information 
Systems (GIS) are dealing with three-dimensional interior building models with each of 
the disciplines having developed a different design that has been tailored to their 
application. The following criteria can be used for classifying these approaches: 
 

1. Creation process: CAAD/BIM models are normally generated during the 
planning process of a building before the construction phase and therefore 
represent the building as it was designed before it has been built. Computer 
Graphic Models (e.g. for virtual tours) and 3D GIS (e.g. for Computer Aided 
Facility Management applications) represent the state of the building after its 
completion. These models are often derived from measurements taken inside 
the building. The models that were created during the planning phase of a 
building often contain information that is no longer visible after completion of 
the building (e.g. columns, which are integrated in walls, cables and pipes or 
beams under suspended ceilings). In contrast, models that have been created 
after completion of the building normally contain only the visible parts of the 
building interior.  
 

2. Geometric modeling: There are two paradigms for modeling 3D vector 
geometry (Kolbe and Plümer, 2004). In the Boundary Representation (b-rep) 
paradigm, where a room is represented by its bounding surfaces and the 
boundaries being lines or curves. The 3D coordinates for each vertex of a 
boundary are stored individually. B-rep is the common modeling paradigm for 
vector geometries in GIS. CAAD/BIM models often apply the Constructive Solid 
Geometry (CSG) paradigm. In CSG, complex 3D solids are derived by combining 
3D primitives such as cuboids, spheres and cylinders with the help of Boolean 
operators union, difference or intersection. The parameters of the primitives 
and coordinates of insertion points are stored. 
 

3. Semantic modeling: Models of indoor environments that are used for 
visualization purposes only, usually contain little explicitly modeled semantic 
information. Those models focus on the geometry and the data that is used for 
controlling the graphical representation of geometry such as textures. In 
contrast, models from the CAAD or BIM domain provide a large amount of 
semantic information as they rely on detailed semantic information for each 
construction component of a building. For example, the standard IFC defines 
more than 600 semantic object classes in a building model (Gröger et al., 2008). 

 
Depending on the application different data formats are used for the codes and data 
transfer. In applications for the purpose of visualization, VRML or X3D formats are 
common. The standard IFC format (buildingSMART, 2008) fulfills  the requirements for 
applications in architecture and construction. The standard CityGML that is designed 
for GIS applications and used in our application is discussed in more detail below. 
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2.2. The CityGML Indoor Space Model 

The standard CityGML (DeSouza and Kak, 2002) defines a data model and an XML data 
format for 3D city and topography models. CityGML defines several Levels of 
Detail (LoD) with the highest LoD 4 having the capability for modeling the interior of 
buildings. In particular for the purpose of indoor modeling, the semantic model 
provides an object class �gRoom�h that can capture semantic data and contains the 
attributes class for the classification of rooms, function for the intended use and usage 
for the current use of the room such as living room or office. 
 
An object of the class �gRoom�h can be associated with its geometry in two different ways. 
One way of defining the outer shell of a room is to establish a link to a geometric object 
of type Solid or MultiSurface (both types are defined by the GML 2.1.2 specification (Cox 
et al., 2002)). Alternatively, the outer shell can be decomposed into semantic objects of 
the types InteriorWallSurface, CeilingSurface and FloorSurface. These semantic objects 
refer to geometric objects of type MultiSurface. Openings in the outer shell of a room 
can be modeled by the use of the object classes Window and Door that can belong to 
one or two InteriorWallSurfaces. This data structure can be used to express topological 
relationships between rooms. Permanent fixed objects belonging to a room (e.g. 
radiators, columns, beams) can be modeled using the semantic object class 
IntBuildingInstallation. In order to model the mobile components of a room such as 
desks and chairs, the object class BuildingFurniture can be used. IntBuidlingInstallation 
and BuildingFurniture provide the attributes class and function and usage for 
semantically describing the objects.  
 
The geometry of these fixed installed objects can be defined by the standard GML 3.1.1. 
In addition, the geometries of the variable components of a room can be modeled 
using the so-called implicit geometries. Hereby the shape of an object is stored only 
once in the library even if multiple objects of the same shape are present (e.g. pieces of 
furniture). For each occurrence of such an object, only the local coordinates of an 
insertion point and a transformation matrix are stored. They are then linked to the 
geometry that is captured in the CityGML. Using this mechanism, the model could 
have a direct link to the 3D-CAD-�B�P�?�U�G�L�E�Q���M�D���N�G�C�A�C�Q���M�D���D�S�P�L�G�R�S�P�C���G�L���R�F�C���K�?�L�S�D�?�A�R�S�P�C�P�h�Q��
catalog. Fig. 1 shows the indoor model of a room using the semantic classification of 
CityGML. 

 
Fig. 1 ETH Zurich lecture room HIL C71.3 in CityGML (Donaubauer et al., 2010). 
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3. Range Imaging as a Method for the Purpose of Indoor-Positioning  

Positioning awareness and navigation capabilities have become increasingly important 
for many applications in all environments. Global Navigation Satellite Systems (GNSS) 
and surveying total stations are able to cover the positioning requirements for outdoor 
applications. However, these systems have weaknesses indoors. Due to the importance 
to deliver position in indoor environments, various alternative approaches such as 
those exploiting signal strengths indicators, intermodal ranges by ToF for trilateration 
or angular measurements for triangulation have been developed with not yet 
satisfying performance. A drawback of these approaches is the often missing 
connection to the global geodetic coordinate reference that is used outdoors. 
 
Fig. 2 gives an overview of current positioning systems according to their specific 
coordinate accuracies and coverage. On the left side of the graphic, the high precision 
systems used for applications in industrial metrology are shown. The drawback of 
systems with positioning capabilities in sub-millimeter precision is the small coverage 
and the requirements for expensive local installations. In contrast, inexpensive systems 
that have been developed for low-accuracy applications are shown on the right side of 
Fig. 2. These systems exploit the Received Signal Strength Indicators (RSSI) in order to 
obtain positioning capabilities within meter accuracy or to resolve the position of a 
device within room level. 
 
For many applications the requirements of positioning accuracy is within millimeters 
to centimeters. This level of accuracy can be reached with geodetic methods such as 
total stations or rotational lasers. In recent years, network based methods that obtain 
range or time of flight measurements between the network nodes have become 
significant for applicati ons at decimeter level accuracy. The measured distances can be 
used to determine the 3D position of a device by spatial resection or multilateration. 
 

 
Fig. 2 �d�}�����Ç�[�•���‰�}�•�]�š�]�}�v�]�v�P���•�Ç�•�š���u�•���]�v�������‰���v�����v�������š�}���������µ�Œ�����Ç�����v�������}�À���Œ���P���X 

In particular vision based methods have become an interesting alternative for indoor 
positioning and navigation. The performance, the size and the speed of CCD and CMOS 
sensors have grown rapidly in the last view years. The computing speed and the 
algorithms for feature recognition i n images obtained by digital cameras have reached 
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an unprecedented performance. Optical methods use digital images to recognize 
points, codes, features and objects in order to determine their image coordinates. 
These 2D image coordinates can be transformed into the reference coordinate system 
with the goal to determine the camera position by spatial resection. 
 
Manufactures of optical indoor positioning systems such as AICON 3D Systems 
GmbH (2009) with their camera system ProCam offer high precision positioning 
systems in the range of 1/10 mm for applications in optical metrology, in particular for 
surface inspection or reverse engineering. However, these systems require the 
installation of an active field of reference points and a prior calibration of the system. 
 
One approach to avoid the dependency on a reference field is the project CLIPS (Camera 
and Laser Indoor Positioning System) launched by Mautz (2010). The system uses the 
fundamentals of stereo photogrammetry, where the position and the rotation of a 
camera relative to another camera are derived. But instead of using a second camera, it 
is replaced with a device called laser-hedgehog that projects well distributed  laser 
spots as flexible reference points on the ceiling, walls and furnishings in any indoor 
environment. The projection creates a flexible field of reference points that can be 
observed by the real digital camera. Tilch and Mautz (2010) have shown that the CLIPS 
camera could be located with an accuracy of sub-millimeter. 
 
Matsumoto et al. (2000) and DeSouza and Kak (2002) present an overview of attempts 
that have been made to exploit view- or map-based indoor positioning systems for 
mobile robot navigation in indoor environments. 
 
The method based on RIM that is subject of this article belongs to the optical map-
based indoor positioning systems. In contrast to traditional optical sensors, the range 
image does not reflect the brightness of the objects in the scene, but the distance of 
these objects to the ToF camera. The expected 3D position accuracy for objects seen by 
a ToF camera (in terms of a 1-�1 standard deviation) is 1 cm for distances of 2 m and 1 dm 
for distances of 10 m. The largest error budget contributes the low-accuracy distance 
measurement. According to the manufacturer the ranging accuracy of the current 
model SR4000 is 1.5 cm for objects in 8 m distance at a level of reflectivity of 100 %. 
 
RIM can be particularly used for the purpose of indoor positioning, because in contrast 
to the other methods mentioned above RIM can exploit semantic 3D geoinformation 
models. The methods will be detailed in Chapter 4. 
 
3.2. Range Imaging 

Common methods to measure 3D point clouds are stereo triangulation, sheet of light 
triangulation, structured light projection or interferometry. In contrast to these 
techniques, RIM uses the ToF principle. There are two different ways to measure 
distances using ToF (Kahlmann and Ingensand, 2005). One method is the time of flight 
measurement of a laser pulse, which is reflected at an object. Most laser scanners use 
this principle. The other method that is applied by the sensor used in this research, 
measures the phase delay of a modulated infrared light signal. ToF cameras (Fig. 3) 
provide real time distance observations at video frame rates up to 50 frames per 
second. 
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Fig. 3 ToF cameras, left: PMD Technologies: CamCube 2.0, right: MESA® Imaging: SR 4000. 

4 Positioning Using Range Imaging and CityGML 

4.1. Overview of the Proposed Method 

The presented positioning method consists of two main components, RIM 
sensor (described in Section 3) and a semantic-geometric 3D database that is modeled 
in CityGML (details given in Section 2). Details on the processing, data storage, 
analyzing and data transfer remain critical for the realization of the system, but cannot 
be given within the scope of this paper. A description of the method is given below. 

4.2. Room Identification Through Object Detection and Processing Using the CityGML 

Database 

This first step has the goal to identify the room in the CityGML database, where the 
camera is located. The detection and identification of objects is the key part of this 
step, which can be achieved from the amplitude image of the range imager that is 
similar to a grayscale optical image of the scene. In order to identify the objects such as 
�A�F�?�G�P�Q�
���R�?�@�J�C�Q�
���C�R�A���
���I�L�M�U�L���M�P���i�J�C�?�P�L�C�B�j���N�P�G�K�G�R�G�Tes, features and image samples from the 
libraries (that are described in Section 2.2) are matched with the image data from the 
camera. The detected object properties such as the size, geometry or quantity of a 
certain object are the main criteria for the comparison with the database. This way, the 
unknown camera position can be reduced to a small number of possible rooms. By 
detecting distinct properties the room can be identified uniquely and additional 
semantic and geographic information can be extracted from the 3D geo-database. 
Fig. 4 shows the comparison between an observed 3D point cloud from the RIM sensor 
and a form primitive of a database model. 

4.3. Accurate Positioning from Distance Measurements 

The second step of camera localization is the precise positioning part, described in this 
section. This step compares and transforms the local coordinates of the objects that 
have been recognized by the camera into the reference coordinate system of the 
database. The reference points for the transformation are the corners of the room, 
vertices of doors, windows and other fixed installation or furniture. The accuracy of the 
objects in CityGML should be at centimeter level2 and should lead to position 
determination of the camera with centimeter-accuracy using a least squares 
adjustment with a redundant number of reference points to determine the 3D camera 
position. One requirement for the camera is that its inner orientation has been 
determined previously. The outer camera orientation and position are determined by a 
technique that combines trilateration (based on the distance measurements) and 
spatial resection (based on the image coordinates that are translated into horizontal 
and vertical angles). If there has been an ambiguous solution in the identification at 
room level in step 1, the precise positioning step has the potential to disambiguate and 
deliver only one unique solution for the correct room. Further research needs to be 

                                                           
2 The Standard CityGML at level of detail 4 (LoD 4) defines a horizontal and vertical accuracy of 0.2 m. 
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investigated with the goal to exploit the semantic information that the CityGML 
database holds. 
 

 
Fig. 4 Object comparison between a range image (left) and form primitives 

from database (right). 

4.4. Opportunities and Limits of the Proposed Method 

Kinematic acquisition of 3D-coordinates in real-time allow for efficient recognition of 
rooms and the position of objects in those rooms in relation to a given model. The 
identification of objects can be trained with the help of neuronal networks. Currently, 
the relatively small distance measurement range limits the proposed method. Modern 
RIM sensors are able to measure distances unambiguously between 5 �l 10 m at an 
accuracy level of centimeters. The ambiguity problem arises from the frequency of the 
modulated signal of the RIM sensor. For example, the SR4000 camera has a unique 
distance range of 5 m, i.e. an object in 6 m distance from the camera could also be 
in 1 m or 11 m distance. The ambiguity problem can only be solved with additional prior 
information.  
 
Another problem pose the so-called mixed pixels that are obtained when the signal 
from the ToF camera hits an edge of an object. Then, the signal is partially reflected at 
the foreground, but also reflected at the background. Both signal parts arrive at a 
single CCD element. As a result, the values of the mixed pixels consist of an average 
between the foreground and background distance. In the point cloud, these pixels 
appear as single unconnected points that seem to float in the air and that do not 
belong to any object. This is also a common problem in terrestrial laser scanning. Note 
that systematic optical influences such as focussing, vignetting3 and aberation4 must 
also be determined by a prior calibration and need to be corrected accordingly. 
 
  

                                                           
3 Vignetting  �G�Q���R�F�C���C�D�D�C�A�R���P�C�B�S�A�R�G�M�L���G�L���?�L���G�K�?�E�C�h�Q���@�P�G�E�F�R�L�C�Q�Q���M�P���Q�?�R�S�P�?�R�G�M�L���?�R���R�F�C���N�C�P�G�N�F�C�P�W���A�M�K�N�?�P�C�B��

to the image center. 

4 Aberaction is the optical distortion that leads to a local variation in scale due to geometric errors of 
an optical system. 
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CityGML seems to be an appropriate basis for the positioning method for the following 
reasons: 
 

1. The coherent spatio-semantic model with its high level of detail and the 
positioning method are complementing one another. Range-imaging and other 
imaging methods used for positioning can capture visible objects. Also in 
CityGML, only visible objects are modeled. Partially visible objects are split in 
such a way that only their visible part is modeled. This approach is different 
from semantic interior building models from the CAAD/BIM domain, which 
contain a high amount of objects, which are invisible (like cables or pipes) or 
just partially visible (like beams spanning several rooms) and therefore do not 
fit the RIM method very well. 

 
2. For CityGML there is a standardized Web access interface, the OGC 

WFS (Vretanos, 2005), which provides access to data and associated operations 
(e.g. geometric and thematic filtering of data). 

 
3. In contrast to models from the CAAD/BIM domain, CityGML supports any 

geodetic reference system. If an interior building model is already in the 
geodetic reference system, the coupling of indoor and outdoor positioning 
methods is straightforward. 

 
Further practical tests and an assessment will show whether our optimistic view for 
the use of CityGML turns out to be justified or whether CityGML needs to be further 
extended as shown in Bleifuß et al. (2009) in the facility management domain. 
 
5 Outlook 

First steps towards a realization of the proposed indoor positioning method have been 
carried out with a ToF camera. In parallel, parts of an office building at the ETH Zurich 
have been modeled in CityGML. The next steps are the implementation of the coarse 
and the fine positioning method. These methods need to be tested in order to have an 
answer to the questions that have been raised in the beginning of this paper. 
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Abstract: We present a novel approach for autonomous location estimation and 
navigation in indoor environments using range images and prior scene knowledge from a 
GIS database (CityGML). What makes this task challenging is the arbitrary relative spatial 
relation between GIS and Time-of-Flight (ToF) range camera further complicated by a 
�M�A�R�K�E�R�L�E�S�S�� �C�O�N�F�I�G�U�R�A�T�I�O�N���� �7�E�� �P�R�O�P�O�S�E�� �T�O�� �E�S�T�I�M�A�T�E�� �T�H�E�� �C�A�M�E�R�A�j�S�� �P�O�S�E�� �S�O�L�E�L�Y�� �B�A�S�E�D�� �O�N��
matching of GIS objects and their detected location in image sequences. We develop a 
coarse-to-fine matching strategy that is able to match point clouds without any initial 
parameters. Experiments with a state-of-the-art ToF point cloud show that our proposed 
method delivers an absolute camera position with decimeter accuracy, which is sufficient 
for many real-world applications (e.g., collision avoidance). 
 
Keywords: Indoor positioning; ToF cameras; range imaging; CityGML; point cloud 

library 
 
1. Introduction 

Even though indoor positioning is a comparatively new research topic, the 
development of indoor positioning techniques has become a major research field. 
Three-dimensional (3D) geometries of objects or scenes need to be captured for a 
variety of applications, such as scene mapping, robot navigation, and video surveillance 
where physically deployed infrastructure should not be required during data 
acquisition to minimize the costs. Several hundred approaches have been made in the 
past few years, as no localization technology is able to cover the indoor space like 
Global Navigation Satellite Systems (GNSS) do for the open sky. Mautz (2012) 
summarizes the state-of-the-art in indoor positioning techniques. The majority of 
systems relies on active transmission of electromagnetic or sound waves and often 
approximate methods (proximity, scene analysis, etc.) are applied to obtain a rough 
estimate of the unknown location (Blankenbach and Norrdine, 2010). Beacon-based 
positioning techniques require knowledge of the geospatial location of their 
transmitters, which can be cumbersome to achieve. Laser scanners, measuring each 
point sequentially, triangulation methods (e.g., stereo-vision and photogrammetry), 
and interferometry are commonly used for optical based indoor positioning. 
Drawbacks of these techniques include time-consuming data acquisition due to the 
sequential scanning process of terrestrial laser scanners, challenging stereo image 
analysis for stereo camera systems or visual odometry (Scaramuzza and Fraundorfer, 
2011), and limited depth range for interferometric methods (Kavli et al., 2008). 
Monocular vision systems based on smartphone camera images and their discovery in 
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an image database (Werner et al., 2011; Mautz, 2012) or floor plans (Blankenbach and 
Norrdine, 2010; Huang and Gao, 2012) are difficult to interpret due to scale 
ambiguities. Additional information about landmarks (door frames, etc.) is needed and 
the expected accuracy of such technique is at meter level. 
 
An alternative technique that is able to rapidly acquire large amounts of indoor depth 
data in a video-like fashion is range imaging (RIM). ToF range cameras measure depth 
information directly without need for stereo matching. Depth ranges of several tens of 
meters with centimeter to decimeter precision of state-of-the-art systems are largely 
sufficient for indoor applications. 
 
We propose to estimate camera positions via matching of range image sequences to 
already available GIS data. Since relative orientations of objects and absolute position 
are known therein, we can use this information to pose our measuring device once 
newly acquired point clouds are accurately matched to the model. Such models have 
become widely available because various disciplines like Computer Aided Architectural 
Design (CAAD)/BIM, Computer Graphics, and Geographic Information Systems (GIS), 
which deal with 3D interior building models (e.g., IFC (buildingSMART, 2008; 
Scaramuzza and Fraundorfer, 2011) or CityGML (Kavli et al., 2008; Gröger et al., 
2008)). Note that such models do not only store 3D shape and position of objects, but 
represent their precise interior topography including semantics, too. For example, a 
cupboard in an office does not only appear as a cuboid but is explicitly tagged as a 
cupboard. Thus, single objects of interest for matching to newly acquired point clouds 
can rapidly be found in extensive datasets and can also be processed successfully. 
 
Our method combines absolute and relative orientation to achieve decimeter accuracy 
of a mono-camera system (ToF range camera) while no dedicated markers nor any 
other locally deployed infrastructure (e.g., Wi-Fi hot spots) inside the building is 
required (Guðmundsson et al., 2007). Moreover, no additional devices like inertial 
measurement units (IMU) or odometers are used. Matching and estimation of the 
camera position solely relies on range measurements and an a priori given building 
model. Note that a value adding service of our approach is the generation of a 3D 
building model from the observed point cloud. 
 
In the following we first review works related to ours. After a conceptual overview of 
our approach, we provide a detailed methodological step-by-step explanation of the 
proposed point cloud matching and camera positioning procedure. Thereafter, 
experiments with a challenging dataset are described and discussed. Finally, we give 
conclusions and an outlook 
 
2. Related Work 

Arman and Aggarwal (1993) proposed a definition for the exact estimation of location 
and orientation of an object, namely its pose, as the object recognition problem. Some 
prior knowledge about the object (e.g., shape, color, etc.) is relevant and can be 
contained in an object model. This model represents the object adequately if it is 
unique, not sensitive, unambiguous and convenient to use. Bosche and Haas (2008) 
presented a model-based approach, which automatically registers 3D CAD models with 
laser scanner data. Therefore, the proprietary data format from CAD is converted into 
the Stereo-�*�G�R�F�M�E�P�?�N�F�W�� ���1�2�*���� �D�M�P�K�?�R�� �?�L�B�� �G�Q�� �R�F�C�L�� �P�C�D�C�P�C�L�A�C�B�� �G�L�� �R�F�C�� �J�?�Q�C�P�� �Q�A�?�L�L�C�P�h�Q��
spherical frame. The conversion to STL reduces computational complexity. 
Furthermore, the vertices of STL triangles are expressed with spherical coordinates. 
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Prusak et al. (2008) mounted a ToF range camera and a Fisheye camera to a mobile 
robot. The pose is estimated using a model-tracking/structure from motion (SfM ) 
algorithm. In a first step range and fisheye images are mapped to a 3D-panorama to 
generate 2D-3D-correspondences therein. Further on, the 3D-points and estimated 
poses are used as input data for mapping the building based on a SLAM algorithm. 
Fuchs and May (2008) reconstructed �?�� �A�S�@�C�h�Q�� �Q�S�P�D�?�A�C�� �U�G�R�F�� �?�L�� �'�R�C�P�?�R�G�T�C�� �!�J�M�Q�C�Q�R��
Point (ICP) algorithm merging ToF range camera point clouds. The pose of the cameras 
was known a priori in a global coordinate system with a precision of 1 mm in 
translation and 0.1° in rotation. After depth and photogrammetric calibration of the 
cameras the cube was reconstructed during an ICP algorithm with an accuracy of 
approximately 3 mm in translation and 3° in rotation. Sheh et al. (2006) merged a 
generated point cloud with color and thermal image data. The ICP algorithm was used 
to generate textured and accurate maps of unstructured indoor environments. 
Therefore the data acquisition involved rotation by a pan-tilt unit, which took ten 
range images at intervals of 36°, stopping at each location long enough to avoid 
motion blur. However, a human operator, who identified landmarks, assisted the 
mapping procedure. Due to the drawback of ICP to often converge to an incorrect local 
minimum if the input point clou ds are not already nearly aligned, May et al. (2009) 
investigated modifications in a SLAM algorithm. They provide a performance 
benchmark comparing Kanade-Lucas-Tomasi feature tracker (KLT) and Scale-invariant 
feature transform (SIFT) algorithm to a depth-image based ICP algorithm and the 
hybrid Efficient Second Order Minimization (ESM) technique. 
 
In Kohoutek et al. (2010) we have shown how to construct the object database in 
�!�G�R�W�%�+�*���� �!�G�R�W�%�+�*�� �G�Q�� �?�� �Q�R�?�L�B�?�P�B�G�X�C�B�� �G�L�D�M�P�K�?�R�G�M�L�� �K�M�B�C�J�� �U�F�G�A�F�� �A�M�L�Q�G�B�C�P�Q�� �R�F�C�� �M�@�H�C�A�R�Q�h��
geometry as well as their semantics, topology, and appearance (Nagel et al., 2009). In 
particular for the purpose of indoor modeling, the semantic model provides an object 
�A�J�?�Q�Q���g�0�M�M�K�h���R�F�?�R���A�M�L�R�?�G�L�Q���?�R�R�P�G�@�S�R�C�Q���R�M���A�J�?�Q�Q�G�D�W���P�M�M�K�Q���?�L�B���R�F�C�G�P���D�S�L�A�R�G�M�L�
���D�M�P���C�V�?�K�N�J�C�
��
�?�Q�� �?�� �J�G�T�G�L�E�� �P�M�M�K�� �M�P�� �M�D�D�G�A�C���� �-�@�H�C�A�R�Q�h (e.g., installations, furniture) geometric 
relation/const ellation and label (name) identify a specific room or at least minimize the 
possible number of rooms in a building in which the camera is located. 
 
Based on this background we will present in this work how the transformation from 
acquired point clouds to an object model is realized. The main challenge of our 
approach is that we face the problem of datasets with total different amounts of 
points. Furthermore, a 3D model needs to be matched to a 2.5D scan. In the present 
system only geometric information is used. The advantage of CityGML, its semantic 
data, can be used in future for room identification. 
 
3. Autonomous Indoor Positioning 

The basic concept is to position a ToF range camera indoors via matching of range 
image sequences to GIS building models (Fig. 1). A coarse-to-fine matching procedure 
consisting of three steps is developed and will be explained in the following. Range 
point clouds are transformed to the GIS model, where all relative and absolute point 
positions are known a priori, via a 3D transformation within an iterative matching 
framework. Once matching is accomplished the camera pose is estimated. 
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Fig. 1 Overall concept of the presented approach. 

The database needs to be given a priori by a Building Information Model (BIM). Such 
models are nowadays established during the construction phase of a building and 
measured by other sensors, e.g., laser scanners. Recall that we neither assume any 
particular markers nor other locally deployed infrastructure inside the building. 
Although this assumption makes our method applicable to a wide range of objects and 
tasks, it makes sensor orientation and positioning challenging. Furthermore, the ToF 
range camera is used as a self-contained sensor where no additional information from 
other sensors as IMUs or odometers is used. Positioning solely relies on the range 
camera and a given building model. 
 
3.1. Matching 

A matching procedure for different spatial datasets being somehow located apart from 
each other always consists of two main parts: First, a suitable transformation that is 
capable of mapping the input to the reference and second, a metric that measures the 
fitting quality between both datasets after each transformation. Such metric can also 
be interpreted as a score function where an optimal score is aimed at. The exterior 
camera orientation is determined by a Cartesian 3D coordinate transformation with 
three shift and three rotational parameters. Transformation parameters are improved 
iteratively, for example using gradient descent methods, and after each run the metric 
measures the quality of fit. The goal is to find those transformation parameters that 
lead to an optimal fit between the datasets with respect to the metric. In practice, this 
sequence of transformation and metric evaluation is repeated iteratively until 
convergence of the metric value. 
 
It should be noted that coordinates of the building model are usually given in an 
absolute national coordinate system (e.g., LV95 in Switzerland (swisstopo, 2010)) 
whereas camera range measurements are recorded in a local camera-specific reference 
system. It goes without saying that we initially have to convert both datasets, the 
acquired 3D object point clouds from the ToF range camera �I �Ü and the a priori known 
object models �@�Ü���EL �s�å �0, to the same reference system otherwise the following 
matching algorithms would not be applicable due to huge global coordinate offsets. 
 
In a first step the absolute coordinates of the GIS object model are reduced such that 
the camera is located inside the building of interest. Therefore, the integer part of the 
first point of the object model is subtracted from all other model points thus 
accounting for large offsets. This translation �6�Ü

�À provides an initial guess for the 

GIS object model 

Coarse 3D matching 

Fine 3D matching 

Final transformation 
parameters 

Camera pose 

Acquired point cloud 
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translation vector ���g. The entire following matching process then has the goal of 
�C�Q�R�G�K�?�R�G�L�E���R�F�C���A�?�K�C�P�?�h�Q���N�M�Q�C���U�G�R�F���P�C�Q�N�C�A�R���R�M���R�F�C���%�'�1���M�@�H�C�A�R���K�M�B�C�J�
���G���C���
���U�C���K�?�R�A�F���R�F�C��
ToF point clouds to the GIS object model. Once the global offset has been accounted 
for, we assume that input point cloud and target point cloud may have arbitrary 
orientation and position, both, relative to each other and in absolute coordinates. 
Literally speaking, we suppose that it is already known in which particular building the 
camera is located, but we do not know where exactly, e.g., in what room, on which floor 
etc. The transformation is calculated with: 
 

�†�gL �� �g���• �gE���gE���g (1) 

where �� �g�Ð�9�7�� is a standard 3 x 3 rotation matrix, �6�Ü is a 3D translation vector and �8�Ü a 
noise vector (Büttgen et al., 2005). Due to the fact that acquired point clouds and 
object models are metrical, a scaling operator is not needed. ToF cameras are able to 
measure the absolute distance (Kohoutek et al., 2010). Suitable reference points for 
the transformation (with six degrees of freedom) are the corners and walls of the 
room, vertices of doors, windows and other fixed installations or objects (e.g., 
furniture).  
 
Generally, it is essential to keep prior assumptions as relaxed as possible because they 
could potentially limit applicability in practice. In a real-world scenario any kind of 
orientation and positioning from one point cloud with respect to the other one inside a 
building is possible and our method has to cope with this situation. Therefore, we use a 
coarse-to-fine matching procedure. A first coarse matching is done without need for 
precise initial values. 
 
After the initial translation ���g

�K which basically shifts the ToF camera into the building 
of interest, the remaining displacement needs to be found. Most state-of-the-art 
algorithms establish correspondences between primitives of both datasets. A common 
solution for the registration problem is the Iterative Closest Point (ICP) algorithm or 
one of its variants (Besl and McKay, 1992). ICP iteratively refines the relative pose of 
two pre-aligned point clouds by minimizing the sum of squared distances of 
corresponding points. Corresponding point pairs are identified via Euclidean distances 
of neighboring points in both scans. However, if point clouds are not pre-aligned with a 
certain precision, ICP tends to converge in a local minimum because nearest neighbor 
points do not correspond to the same points in the second point cloud if datasets are 
located far apart. In our case there is no pre-alignment of both point clouds because of 
the absence of any precise initial transformation parameters. Therefore, we cannot use 
ICP for matching. 
 
A point cloud matching method with out need for relatively precise initial 
transformation parameters is proposed in Biber and Straßer (2003). The two main 
advantages of the so-called Normal-Distributions Transform (NDT) are neither need for 
pre-alignment nor establishment of point correspondences between datasets for their 
registration. While ICP does a point-to-point matching, NDT is based on finding linear 
combinations of normal distributions. Normal distributions represent a piecewise 
smoothing of the scan and standard numerical optimization methods can be used for 
registration. Furthermore, computation time is increased because there is no need for 
nearest-neighbor search, which is a computational bottleneck of ICP. 
Magnusson (2009) extends the NDT registration to 3D and introduces some 
refinements. Such extended NDT algorithm uses a voxel data structure to represent 
local surfaces of objects compactly and carries out a More-Thuente line search (Moré 
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and Thuente, 1992). The voxel grid data structure does not use individual points, but 
instead measures distribution statistics contained in each of its voxel cells to model 
point clouds as a set of multivariate Gaussian distributions. As a consequence, point 
cloud filt ering as pre-processing step before registration is thus not necessary. NDT 
represents the probability of measuring a sample for each position. It is possible to 
adjust and optimize the probability of the existence of points at any position within 
the voxel. If the voxel size is chosen too small the registration will succeed only if point 
clouds are close to each other, similar to the pre-alignment for ICP. On the other hand it 
should not be chosen too big so that small objects can still be detected (Okorn, 2012). 
The lower cell size bound is given by the prerequisite to reliably compute a covariance 
matrix calling for at least five points per cell. A threshold (the epsilon parameter) is 
setup that defines the minimal change of the final transformation vector ( ���g

�R�H�X (x, y, z) 
and �� �g

�R�H�X (roll, pitch and yaw)) (Okorn, 2012). The iterative alignment terminates when 
the incremental change reaches the threshold. The step length should shrink as it 
approaches the optimal solution. Larger distances can be covered by a smaller number 
of iterations using a larger maximum step length but at the risk of overshooting and 
ending up in an undesirable local minimum. We use the extended and refined NDT for 
coarsely registering ToF point cloud and GIS object model. It should be noted that the 
GIS object model originally only has points at plane intersections, which leads to 
several magnitudes less points than the ToF point cloud. Direct registration with such 
high point density difference is usually impossible and thus the GIS object model is 
augmented by randomly distributing points on each object plane. 
 
Due to the fact that the point clouds have total different amounts of points, the NDT 
algorithm might not converge in its best solution. Therefore, NDT is used to achieve a 
coarse registration which is followed by fine registration with Correspondence 
Grouping (CG) (Cavallari and Tombari, 2011). The CG algorithm is capable to handle 
cases where the number of matched point correspondences is quite small compared to 
the total number of points like in our case. The object of interest is only a small part of 
the acquired ToF point cloud because the field of view of the sensor captures the entire 
environment like presented in Fig. 2. 
 

 
Fig. 2 Acquired point cloud from ToF range camera. 

Due to the fact that the ToF point cloud contains not only points of the object of 
interest and the CG algorithm is not based on a voxel data structure like NDT the ToF 
point cloud needs to be filtered. A promising algorithm is given by plane model 
segmentation to delete for example the floor and walls. Okorn (2012) uses two 
clustering algorithms, one is based on a 3D Hough voting scheme (Tombari and Di 
Stefano, 2010), the other one is based on evaluating the consistency of the 
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geometry (Chen and Bhanu, 2007). We decided to focus on 3D Hough voting to detect 
free-form objects in range images because of the promising results of Tombari and Di 
Stefano (2010). In the Hough voting approach random feature points and their local 
neighborhoods are extracted in GIS object model and ToF point cloud. By using a 
threshold, e.g., the Euclidean distance between points in a neighborhood, a set of 
correspondences can be determined, which is robust to wrong correspondences caused 
by noise or occlusions. Note that Hough voting in 3D space basically detects planes in 
the point clouds and results in matching of straight edges. The final transformation 
matrix includes values for the six degrees of freedom (���g

�G�K (x, y, z) and �� �g
�G�K (roll, pitch 

and yaw)) as needed to transform the GIS object model to the local coordinate system 
of the ToF sensor. The final parameter set is passed to camera pose estimation.  
 
3.2. Estimation of Camera Position 

After the first translation of the object model coordinate system into the camera 
coordinate system the acquired point cloud will from now on be transformed into the 
object model. Once point clouds have been matched the camera pose can be estimated 
in a user specified interval (e.g., every 80 frames) by adding the translation vector ���g

�K. 
The final transformation is calculated with: 
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�K E���g
�R�H�XE���g

�G�K and �� �gL �� �g
�R�H�XE�� �g

�G�K. 
 
It has to be mentioned that the camera coordinate system of the MESA® ToF range 
camera is by construction not the same as usually used in the literature on perspective 
camera projection models. It lies in the center of the lens and X and Y are rotated 
around Z positively about �N �t�¤ . 
 
�'�R�� �G�Q�� �?�� �i�P�G�E�F�R-�F�?�L�B�C�B�j�� �A�?�K�C�P�?�� �A�M�M�P�B�G�L�?�R�C�� �Q�W�Q�R�C�K�
�� �U�G�R�F�� �6-coordinate increasing 
horizontally to the left, Y-coordinate increasing vertically upwards and Z-coordinate 
increasing along the optical axis away from the camera. Fig. 3 displays the origin of the 
coordinate system (0, 0, 0) which is located at the intersection of the optical axis with 
the front face of the camera. 
 

 
Fig. 3 Origin (x,y,z) as delivered by the camera (Mesa® Imaging AG, 2011a). 

 
4. Experiments 

We implement all previously described algorithms in the framework of the open source 
Point Cloud Library (PCL) containing a wide range of state-of-the-art algorithms like 
filtering, registration, model fitting, etc. (Rusu and Cousins, 2011). It offers well-
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elaborated algorithms in C++ and is also capable of handling 3D point clouds in real 
time. 
 
We evaluate the proposed method on point clouds acquired with a MESA® ToF camera 
SwissRanger 4000 (Mesa® Imaging AG, 2011a). Acquired point clouds have an 
approximate 3D position accuracy of 1 cm for distances of up to 5 m and < 1 dm 
accuracy for distances up to 15 m (in terms of a 1-�1 standard deviation). For many 
indoor applications this level of accuracy is sufficient, e.g., collision avoidance. We 
chose a frame rate of 30 frames per second to acquire a point cloud over all 25344 
pixels of the sensor. 
 
Our chosen test object is a block of wood that is uniquely identifiable in its orientation 
from all view directions. The object model was generated as a small VRML model in the 
Swiss coordinate system LV95. The VRML model is only represented by the ten edge 
points and the information which point is a member of which plane (Fig. 4). However, 
the matching algorithm performs well with all other objects like installations and 
furniture. Nevertheless, the amount of points has to be increased to perform the 
matching algorithm successful because our approach calls for two point clouds with 
similar point densities as input. Therefore, up to 1000 random points will be added to 
each plane of the object. 
 

 
Fig. 4 VRML model of the test object with seven surfaces and ten object points (left), as wire frame model (middle) 

and with added random points (right). 

4.1. Sensor Specifications 

The measuring principle of the MESA® ToF camera SwissRanger 4000, schematically 
shown in Fig. 5, is based on the phase shift between light emitted from a light source 
and the reflected light received at a sensor using Complementary Metal Oxide 
Semiconductor technology (CMOS/CCD) (R. Lange and Seitz, 2001). The emitted light 
is pulsed at the modulation frequency �B�à�â�×. The sensor samples the reflected light 
regularly and calculates the phase shift �î  of the modulation with an autocorrelation 
function (Möller et al., 2005). Since �î  is proportional to the target range, it is possible 
to calculate an absolute target distance:  

�&L��
�?���î
�v���è

 (3) 

where �? is the speed of light. In addition to the signal phase shift, the amplitude and 
the offset can be measured. Here, the amplitude indicates the strength of the 
modulated signal, which is an indication for the measurement accuracy. While the 
offset represents the local brightness of the scene, i.e., a gray scale value similar to gray 
scale images. 
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Fig. 5 Time-of-flight principle (Kahlmann and Ingensand, 2007). 

The maximal non-ambiguity distance �&�à�Ô�ë of 10 m is limited to half the modulation 
wavelength �I�à�â�×. Distances larger than �&�à�Ô�ë are folded back to the non-ambiguity 
distance. Camera specifications of the device we use are listed in Table 1. 
 

Table 1. SR4000 specifications (modified from Mesa Imaging AG (2011a)). 

Modulation frequency (MHz) 14.5�l31 

Measurement range (m) calibrated 0.8�l8 

Sensor pixels 176 x 148 

Field of view (degree) 43.6 x 34.6 

Scan resolution at 3 m (mm) 13.6 

Footprint area at 3m (m2) 4.48 

Camera weight (g) 470 

Camera dimensions (mm) 65 × 65 x 68 

Frame rate (f/s) 54 

Illumination wavelength (nm)  850 

�.�P�G�A�C�����â�� ~ 5500 
 

4.2. Camera Calibration 

To increase the precision of the result the cameras interior orientation has to be 
determined previously. The SR4000 camera used had been calibrated by the 
manufacturer MESA® Imaging. Fig. 6 shows the final test result from the manufacturer 
during an ambient temperature of 25°C (tests 9 and 10 performed at slightly higher 
housing temperature) without presence of background light. 
 

 
Fig. 6 Final test results after calibration by manufacturer. All deviations are within the 20 mm tolerance. 

The absolute error represents the deviation between a reference distance and the distance 
measurements (Mesa® Imaging AG, 2011b). 
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The camera was given a warm up phase for at least one hour prior to data acquisition 
to ensure it reached internal temperature stability (Kahlmann and Ingensand, 2005). 
However, to reduce the signal to noise ratio (SNR) a mean point cloud was averaged 
over 100 measurements. The object was placed on the floor (dark brown colored 
carpet) and the ToF range camera was facing the object in a distance of 1.60 m from 
above (angle of incidence ca. 45°). 
 
4.3. GIS Data Format 

The a priori known GIS object models are stored as Virtual Reality Modeling Language 
(VRML) files with spatio-semantic information in CityGML (Gröger et al., 2008) that 
supports any coordinate system and also provides the missing link between the indoor 
and outdoor space. VRML files represent the 3D geometry of objects in simple text files 
to keep the data storage small. The accuracy of the objects in CityGML is expected to be 
at centimeter level and should lead to position determination of the camera within 
centimeter accuracy. In CityGML geometries of variable components of a room can be 
modeled using so-�A�?�J�J�C�B�� �G�K�N�J�G�A�G�R�� �E�C�M�K�C�R�P�G�C�Q���� �-�L�J�W�� �?�� �Q�G�L�E�J�C�� �G�L�Q�R�?�L�A�C�� �M�D�� �R�F�C�� �M�@�H�C�A�R�h�Q��
shape is stored in the library in form of a VRML file even if multiple objects of the same 
shape are present (e.g., pieces of furniture). For each occurrence of such an object, only 
the local coordinates of an insertion point and a transformation matrix need to be 
stored in CityGML (Kohoutek et al., 2010). VRML was chosen instead of Extensible 3D 
(X3D) due to a smaller file size, which allows quick downloads of the object models via 
mobile Internet access. However, our approach is not restricted to VRML, objects could 
be modeled in X3D, too. GML database objects can be expressed in any coordinate 
system, in our case Swiss coordinates LV95 (e.g., X = 680589.100 m, Y = 251368.100 m, 
Z = 524.100 m). The 3D Cartesian coordinate system of the acquired point cloud by the 
SR4000 is in metrical values too, but with a maximum value of around 10 m in indoor 
environments (e.g., X = 1.23 m, Y = 3.67 m, Z = 7.46 m). 
 
4.4. Matching and Positioning Results 

As we mentioned before, we chose a wooden block with plane surfaces as test object 
for our experiments. However, our proposed matching procedure works with any kind 
of object which is available in the database like cupboards, chairs, tables etc. Recall that 
our two-step matching procedure consists of an initial coarse registration applying the 
Normal-Distributions Transform (NDT) (Biber and Straßer, 2003; Magnusson, 2009) 
followed by a fine registration via Correspondence Grouping (CG) (Cavallari and 
Tombari, 2011). 
 
In order to successfully register the point cloud acquired by the ToF camera with the 
GIS object model point cloud, the amount of points representing the model had to be 
increased to achieve roughly equal point densities in both datasets. The amount of 
additional model points was increased by randomly distributing between 300 and 
1000 points on each plane. 
 
The modification of the scale dependent parameters of the NDT algorithm in our 
approach is based on the example in Okorn (2012). Fig. 7 shows a possible example of 
the point clouds after translation ���g

�K. In the following transformation steps the ToF 
point cloud is transformed to the object model. 
 



 45 

 
Fig. 7 Acquired and model point cloud after ���g

�K translation (SR4000 point cloud without floor in white and model 
point cloud in red). 

We performed a grid search to find the optimal NDT parameter setting, which are 
shown in Table 2.  

Table 2. Parameters of NDT used to produce Fig. 8. 

pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ> ndt; 
ndt.setTransformationEpsilon (0.01); // min. transform. difference for termination condition (m)  
ndt.setStepSize (0.3);   // max. step size for More-Thuente line search (m) 
ndt.setResolution (2.0);   // resolution of NDT grid structure (VoxelGridCovariance) (m2) 
ndt.setMaximumIterations (100);  // max. number of registration iterations.   

 
Based on the chosen parameters, the algorithm took eight seconds to determine the 
location and calculate the transformation parameters ���g

�R�H�X and �� �g
�R�H�X. Fig. 8 shows the 

acquired point cloud (white) transformed into the model point cloud (green). It remains 
a visible deviation in rotation. However, the NDT algorithm provides a good 
approximate solution that serves as input to a refinement with the CG algorithm . 

 

Fig. 8 Solution of NDT algorithm (input data: object model point cloud in green and SR4000 
point cloud in white). 

The implemented CG algorithm is based on the tutorial of Cavallari and 
Tombari (2011) that explains how 3D object recognition can be carried out using a 
PCL_Recognition module. In this work the algorithm based on 3D Hough voting scheme 
was used and the chosen parameters are presented in Table 3.  

Table 3. Code example for the used CG algorithm. 

// Compute Descriptor for keypoints 
pcl::SHOTColorEstimationOMP<PointType, NormalType, DescriptorType> descr_est; 
descr_est.setRadiusSearch (0.1f);     // unit: (m)  
// Clustering  
pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer; 
clusterer.setHoughBinSize (0.07f); 
clusterer.setHoughThreshold (16.5); 

 
Recall that our ToF point cloud covers much more than only the object itself. Thus we 
have to filter out non-relevant parts prior to fine registration. We adopt the plane 
model segmentation algorithm of Rusu (2012), which is based on the number of points 
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per surface with equal normal directions. Once surfaces have been segmented, all large 
ones with more points than a certain threshold alpha are assumed to belong to wall, 
floor or ceiling. Surfaces with fewer points are considered belonging to our object of 
interest located inside the room. A suitable threshold alpha is found empirically 
through multiple tests. In our case we achieve optimal results with alpha = 1600. All 
surfaces with more than 1600 points are discarded. Fig. 9 shows the result of the CG 
algorithm after filtering the input point cloud and using the solution from NDT 
algorithm as input. The CG algorithm converges in roughly ten seconds. 
 

 
Fig. 9 Solution of CG algorithm from different viewing angles; filtered SR4000 point cloud (white) and GIS object 

model point cloud (green). 

The model point cloud fits significantly better to the SR4000 point cloud than the 
original output from the NDT algorithm does (Fig. 7). Due to the fact, that there are no 
identical points in the model object and acquired point cloud a quality for point 
correspondences cannot be given. Depending on the input data, other, more unique 
information like cluster of points and/or empty spaces and features give a better 
estimation for the matching quality than points. However, like in NDT algorithm a 
small but visible deviation in rotation remains after the transformation ( ���g

�G�K and �� �g
�G�K). 

This can be explained through data acquisition and multipath reflections. A large 
portion of the infrared light is reflected first on the floor and then on the measured 
object into the camera. The region of the wall in Fig. 10 will be seen further away than 
it is in reality and turns out in a concave structure (see orange line). 
 

 

Fig. 10 Multiple path reflections on a concave scene-in that case a corner between two walls. 
(Mesa® Imaging AG, 2011a). 

Maximum overestimation is in the region where multiple reflection paths are both, 
maximum in number and in intensity. This explains the shape of the measured values, 
as shown in orange on Fig. 10 (right hand side). Due to the fact that the light travels the 
direct and the indirect path the apparent distance is then a weighted average of the 
paths, weighted by the signal strengths. This results in over-estimated distance 
measurements. 
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The Template Alignment algorithm (TA) presented in Dixon (2011) was additionally 
�R�C�Q�R�C�B�� �R�M�� �B�C�R�C�P�K�G�L�C�� �R�F�C�� �M�@�H�C�A�R�h�Q�� �N�M�Q�G�R�G�M�L�� �?�L�B�� �M�P�G�C�L�R�?�R�G�M�L���� �2���� �S�Q�C�Q�� �?�� ���"�� �R�C�K�N�J�?�R�C�� ���R�F�C��
object model) as input and aligns it to the target cloud by applying the Sample 
Consensus Initial Alignment (SAC-IA) method to align source to target. The sample 
consensus method samples large numbers of correspondences and ranks them very 
quickly (Rusu et al., 2009). It maintains the geometric relations of the correspondences 
without testing all combinations. The maximum correspondence distance is specified 
as the squared distance with a value of 2 cm2. After calling a SAC-�'���h�Q���?�A�A�C�Q�Q�M�P�W���K�C�R�F�M�B��
the final transformation matrix ( ���g

�X�E and �� �g
�X�E) and fitness score are obtained. Fitness 

scores indicate the matching quality. It can readily be used as evaluation criterion 
where smaller values indicate better matching results (Dixon, 2011). 
 
The template alignment algorithm takes the longest computation time compared with 
the other two tested algorithms and did not work with our input data; the ToF point 
cloud was transformed to a completely wrong location. We conclude that this is a 
result of the large difference in the density of points between the two input point 
clouds causing the failure of the TA approach. In order to provide a better initial 
solution for the algorithm the input model point cloud was exchanged with the output  
point cloud from the NDT algorithm, like it was done in the GC algorithm. 
Nevertheless, there was no improvement. 
 
5. Conclusions 

Efficient absolute positioning of a ToF range camera based on object acquisition in 
form of measured points in 3D Cartesian coordinates is possible. The absolute position 
of the camera can be calculated with decimeter accuracy based on the transformation 
parameters obtained in the presented coarse and fine registration with NDT and CG 
algorithm. The position of the ToF camera can be transformed into the reference 
coordinate system, i.e., the coordinate system of the spatio-semantic 3D model. The 
possibility of using original VRML text format, which allows data compression for the 
purpose of quick download from the Internet and keeping the database small-sized. 
 
However, ToF cameras still suffer from a set of error sources that hamper the goal of 
infrastructu re-free indoor positioning. State-of-the-art range imaging sensors measure 
distances unambiguously between 0.5�l10 m at an accuracy level of centimeters. 
Besides the influence of the incidence angle (Karel et al., 2007) and scattering 
artifacts (Mure-Dubois and Hügli, 2007; Kavli et al., 2008) the distance measurement 
errors are also a result of differing reflectivity of objects in the scene (Gut, 2004). It can 
be seen in the input SR4000 point cloud, where vertical planes in reality are not vertical 
in the acquired point cloud. This is due to multipath reflections. Another influence is 
given by the reflective properties of the model object like material, color and gloss. 
Furthermore, we did no self-calibration of the camera. 
 
Nevertheless, the algorithms provided in the point cloud library can deal with any kind 
of point clouds. The generated point clouds from ToF cameras are small in their data 
amount in comparison to laser scanner data and can therefore be processed in near 
real time. Due to fast processing of 3D data at high frame rates, ToF cameras are well 
suited for kinematic applications, such as 3D obstacle avoidance, gesture 
recognition (Open Geospatial Consortium Inc., 2012b) or generating indoor 
maps (Sheh et al., 2006; May et al., 2009). 
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6. Outlook 

The proposed location approach using only a range imaging sensor could be improved 
by self-calibration as well as considering additional sensors. Adding observations of an 
electronic compass and/or a tilt sensor would provide approximate values of some 
transformation parameters and therefore stabilize the search for the correct 
transformation set. Furthermore, if our approach will be used for an UVS equipped 
with a ToF camera additional problems like so-called mixed pixels or motion artifacts 
have to be solved by using filtering methods (e.g., Lindner and Kolb (2009) or 
Kohoutek, Dröschel, et al. (2013)). Furthermore, the usage of spatial and semantic 
information of CityGML can be expended for pose estimation. The spatial relation of 
objects can help to estimate the pose more robustly, for example, if another object 
occludes one object but its surroundings can be detected. In such case the semantic 
information could support room identification, for example, if the amount of 
objects (e.g., tables, monitors, etc.) inside a room is determined and compared with the 
database. The current demonstrator implementation determines the camera 
pose, (position and rotation) offline on a consumer PC. The future goal is to run the 
location estimation on a mobile device with data link to the ToF range camera and to 
the object database. 
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1. Introduction 

The development of indoor positioning techniques is booming. There is a significant 
demand for systems that have the capability to determine the 3D location of objects in 
indoor environments for automation, warehousing and logistics. Tracking of people in 
indoor environments has become vital during firefighting operations, in hospitals and 
in homes for vulnerable people and particularly for vision impaired or elderly 
people (Kohoutek et al., 2010). Along with the implementation of innovative methods 
to increase the capabilities in indoor positioning, the number of application areas is 
growing significantly. The search for alternative indoor positioning methods is driven 
by the poor performance of Global Navigation Satellite Systems (GNSS) within 
buildings. Geodetic methods such as total stations or rotational lasers can reach 
millimeter level of  accuracy, but are not economical for most applications. In recent 
years, network based methods, which obtain range or time of flight measurements 
between network nodes have become a significant alternative for applications at 
decimeter level accuracy. The measured distances can be used to determine the 3D 
position of a device by spatial resection or multilateration. Wireless devices enjoy 
widespread use in numerous diverse applications including sensor networks, which 
can consist of countless embedded devices, equipped with sensing capabilities, 
deployed in all environments and organizing themselves in an ad-hoc fashion (Mautz 
and Ochieng, 2007). However, knowing the correct positions of network nodes and 
their deployment is an essential precondition. There are a large number of alternative 
positioning technologies (Fig. 1) that cannot be detailed within the scope of this paper. 
An exhaustive overview of current indoor position technology is given in Mautz (2012). 
Further focus will be on optical methods. 
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Fig. 1 Today's positioning systems in dependence to accuracy and coverage (Kohoutek et al., 2010) 

Optical indoor positioning systems can be categorized into static sensors that locate 
moving objects in the images and ego-motion systems whose main purpose is the 
position determination of a mobile sensor (i.e. the camera) (Mautz and Tilch, 2011). 
Some optical system architectures do not require the deployment of any physical 
reference infrastructure inside buildings, which can be a requirement for a widespread 
implementation.  
 
This article investigates the use of Time-of-Flight (ToF) cameras for ego-motion 
determination in indoor environments. ToF cameras are suitable sensors for 
simultaneous localization and mapping (SLAM), e.g. onboard of autonomous 
Unmanned Vehicle Systems (UVS), or the detection and localization of objects in indoor 
environments. They are an attractive type of sensor for indoor mapping applications 
owing to their high acquisition rate collecting three-dimensional (3D) data. ToF 
cameras consist of compact, solid-state sensors that provide depth and reflectance 
measurements at high frame rates of up to 50 Hz independent from surrounding light.  
 
The approximate 3D position accuracy for objects seen by the used MESA® Imaging ToF 
camera SwissRanger�o SR4000 (in terms of a 1-�1 standard deviation) is 1 cm for 
distances of up to 5 m and 1 dm for distances up to 15 m. Such a level of accuracy is 
sufficient for some indoor applications, e.g. collision avoidance. Currently, ranges larger 
than 15 m and accuracies better than 1 cm are not applicable to ToF cameras. In these 
cases 3D laser scanners or stereo/multiple camera systems need to be used instead. As 
a drawback of two-dimensional (2D) cameras, the prerequisite for multiple views 
induces a high computational load since point correspondences between at least two 
images from different perspectives have to be determined. In addition, distances to 
structureless surfaces cannot be measured, because the correspondence 
problem (Julesz, 1960) cannot be solved. Furthermore, passive 2D vision suffers from 
shadowing effects and sensitivity to changes in illumination. The use of 3D laser range 
finders (Kessler et al., 2011) that actively illuminate the scene can avoid these issues but 
needs mechanical moving parts and have high power consumption as well as a low 
frame rate due to sequential point acquisition. 
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Our procedure is as follows. Image features, e.g. edges, corners or flat surfaces are 
detected based on reflectance data for object recognition in the indoor environment. In 
Section 2 we will show how the indoor positioning with the ToF camera can be realized. 
As a novelty, the proposed method combines absolute and relative orientation of a ToF 
camera without the need for dedicated markers or any other locally deployed 
infrastructure. This can be achieved, because in comparison to other methods RIM 
directly provides 3D point clouds that are compared with a spatio-semantic 3D 
geoinformation model offered by the City Geographic Markup Language (CityGML) 
that supports any coordinate system and enables the missing link between the indoor 
and outdoor space. As higher the level of semantic information as more accurate is the 
geometrical integration. The entrance door of a building for example is always 
connected to a walkable surface. The camera motion is estimated based on depth data 
and will be explained within the mapping process in Section 3. Collision avoidance 
becomes important if the navigation path is unknown. Section 4 will show that ToF 
cameras are ideally suited for that task. A welcome side effect of our approach is the 
generation of 3D building models from the observed point cloud. 
 
2. Positioning Inside the Room Based on a CityGML Model 

The standard CityGML (Gröger et al., 2008) defines a data model and an XML data 
format for 3D city and topography models. CityGML defines several Levels of 
Detail (LoD) with the highest LoD 4 having the capability for modeling the interior of 
buildings. In particular for the purpose of indoor modeling, the semantic model 
�N�P�M�T�G�B�C�Q�� �?�L�� �M�@�H�C�A�R�� �A�J�?�Q�Q�� �g�0�M�M�K�h�� �R�F�?�R�� �A�?�L�� �A�?�N�R�S�P�C�� �Q�C�K�?�L�R�G�A�� �Bata (Gröger et al., 2007), 
including attributes for the intended and current use of the room �Q�S�A�F���?�Q���g�*�G�T�G�L�E���0�M�M�K�h��
�M�P�� �g�-�D�D�G�A�C�h���� ���L�� �M�@�H�C�A�R�� �M�D�� �R�F�C�� �A�J�?�Q�Q�� �g�0�M�M�K�h�� �A�?�L�� �@�C�� �?�Q�Q�M�A�G�?�R�C�B�� �U�G�R�F�� �G�R�Q�� �E�C�M�K�C�R�P�W�� �G�L�� �R�U�M��
different ways. In one way the outer shell of a room can be defined by establishing a 
link to a geometric object of type Solid or MultiSurface (both types are defined by the 
GML 3.1.1 specification (Cox et al., 2002)). Alternatively, the outer shell can be 
decomposed into semantic objects of the types InteriorWallSurface, CeilingSurface and 
FloorSurface, which are referred to geometric objects of type MultiSurface. Openings in 
�R�F�C���M�S�R�C�P���Q�F�C�J�J���M�D���?���P�M�M�K���A�?�L���@�C���K�M�B�C�J�C�B���U�G�R�F���R�F�C���M�@�H�C�A�R���A�J�?�Q�Q�C�Q���g�5�G�L�B�M�U�h���?�L�B���g�"�M�M�P�h��
that can belong to one or two InteriorWallSurfaces. This data structure can be used to 
express topological relationships between rooms. 
 
The semantic object class IntBuildingInstallation can be used to model permanent fixed 
objects belonging to a room e.g. radiators, columns and beams. In order to model the 
mobile components of a room such as desks and chairs, the object class 
BuildingFurniture can be used. IntBuidlingInstallation and BuildingFurniture provide the 
attribute class for semantic description of the objects (Fig. 2). The geometry of these 
fixed installed objects can be defined by the standard GML 3.1.1. So-called implicit 
geometries are used to model simplified shapes of the movable objects in a room. 
Hereby the shape of an object is stored only once in the library even if multiple objects 
of the same shape are present (e.g. pieces of furniture). The shapes could be obtained 
directly from the 3D �!���"���B�P�?�U�G�L�E�Q���M�D���N�G�C�A�C�Q���M�D���D�S�P�L�G�R�S�P�C���G�L���R�F�C���K�?�L�S�D�?�A�R�S�P�C�P�h�Q���A�?�R�?�J�M�E����
For each occurrence of such an object, only the local coordinates of an insertion point 
�?�L�B�� �R�F�C�� �M�@�H�C�A�R�h�Q�� �M�P�G�C�L�R�?�R�G�M�L�� �?�P�C�� �Q�R�M�P�C�B���� �2�F�C�� �M�P�G�C�L�R�?�R�G�M�L�� �N�?�P�?�K�C�R�C�P�Q�� �?�P�C�� �J�G�L�I�C�B�� �R�M�� �R�F�C��
geometry that has become an object of CityGML. 
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Fig. 2 Decision tree for room identification 

Nowadays, Building Information Models (BIMs) are created within the planning and 
construction phase of a building (Nagel et al., 2009). The acquisition of BIMs for already 
existing buildi ngs requires manual measurements using total stations, terrestrial laser 
scanners or photogrammetric techniques. Fig. 3 illustrates semantic classification of 
CityGML exemplified with an indoor model of a room that has been obtained by total 
station survey. 
 

 
Fig. 3 ETH Zurich lecture room modeled in CityGML (Donaubauer et al., 2010) 

 

2.1. Room Identification Through Object Detection 

Object detection is the key challenge for the correct identification of the room where 
the sensor is located. The detection of objects can be achieved by exploiting the 
amplitude image. In order to identify objects such as chairs, tables, etc., the known or 
�i�J�C�?�P�L�C�B�j�� �N�P�G�K�G�R�G�T�C�Q�
�� �D�C�?�R�S�P�C�Q���?�L�B���G�K�?�E�C���R�C�K�N�J�?�R�C�Q���Rhat have previously stored in the 
database are matched with the current image. The detected object properties such as 
the size, geometry or quantity of a certain object are the main criteria for the 
comparison with the database. This way, the unknown camera position can be limited 
to a small number of possible rooms in the building. The room can be identified 
uniquely by detecting its distinct properties, e.g. position of installations. After a 
successful identification additional semantic and geographic information can be 
extracted from the 3D geo database. 
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2.2 Accurate Positioning Using Distance Measurements 

This step compares and transforms the in real time acquired Cartesian 3D coordinates 
of the objects into the reference coordinate system of the database. All room and 
object models in the CityGML database are saved as Virtual Reality Modeling 
Language (VRML) files. Suitable reference points for the transformation (with six 
degrees of freedom) are the corners of the room, vertices of doors, windows and other 
fixed installations. The accuracy of the objects in CityGML should be at centimeter level 
and should lead to position determination of the camera with centimeter accuracy 
using a least squares adjustment with a redundant number of reference points to 
determine the 3D camera position. One requirement for the camera is that its interior 
orientation has been determined previously. The exterior camera orientation (three 
translations and three rotations) is determined by a Cartesian 3D coordinate 
transformation with three shift and three rotational parameters. There is no need to 
estimate a scale parameter, since calibrated ToF cameras measure the absolute 
distance. 
 
3. Mapping and Ego-Motion Estimation  

Dense depth measurements from ToF cameras enable the generation of 3D maps of 
�R�F�C�� �A�?�K�C�P�?�h�Q�� �C�L�T�G�P�M�L�K�C�L�R���� �&�M�U�C�T�C�P�
�� �R�F�C�� �?�A�A�S�P�?�A�W�� �M�D�� �K�C�?�Q�S�P�C�K�C�L�R�Q�� �G�L�� �S�L�I�L�M�U�L��
scenes varies considerably, due to error effects inherent to their functional principle. 
Therefore, a set of preprocessing steps to discard and correct noisy and erroneous 
measurements need to be applied in order to achieve accuracy according to the 
specification. 
 
3.1 Sensor Data Processing 

First, mixed pixels at so-called jump edges are filtered out. Mixed pixels are a result of 
false measurements that occur when the signal from the ToF camera hits an edge of 
an object. Then, the signal is partially reflected at the foreground, but also at the 
background. Both signal parts arrive at the same CCD element. The true distance 
changes suddenly at the object border, but the values of the mixed pixels consist of an 
average between the foreground and background distance. In the point cloud, these 
pixels appear as single unconnected points that seem to float in the air and that do not 
belong to any object. This is also a common problem in terrestrial laser scanning. Jump 
edges are filtered by local neighborhood relations comparing the opposing angles of a 
point �L�Ü and its eight neighbors �L�Ü�á�á (May et al., 2009). From a set of 3D points  
�2 L [�L�Ü�Ð�4�7���EL �s�å �0�ã_, jump edges are detected by comparing opposing angles �à�Ü�á�á 
of the triangle spanned by the focal point �BL �r and its eight neighbors  
�2�á L �<�L�Ü�á�á �Ð�4�7���EL �s�å �0�ã�ã�J L �s�å �z�= and filtered with a threshold  �à�ç�Û: 

�à�ÜL �•�ƒ�š�=�?�N�O�E�J���F
�.�L�Ü�á�á�.

�.�L�Ü�á�á F �L�Ü�.
�O�E�J�î�G 

(1) 

�, L �<�L�Ü�����à�ÜP �à�ç�Û�= (2) 

where �î  is the apex angle between two neighboring pixels. Since the jump edge filter 
is sensitive to noise, a median filter is applied to the distance image beforehand. 
Besides mixed pixels, measurements with low amplitude are neglected since the 
accuracy of distance measurements is dependent on the amount of light returning to 
the sensor. 
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ToF cameras gain depth information by measuring the phase shift between emitted 
�?�L�B�� �P�C�D�J�C�A�R�C�B�� �J�G�E�F�R�
�� �U�F�G�A�F�� �G�Q�� �N�P�M�N�M�P�R�G�M�L�?�J�� �R�M�� �R�F�C�� �M�@�H�C�A�R�h�Q�� �B�Gstance modulo the 
wavelength of the modulation frequency. As a consequence, a distance ambiguity 
�?�P�G�Q�C�Q���� �K�C�?�Q�S�P�C�K�C�L�R�Q�� �@�C�W�M�L�B�� �R�F�C�� �Q�C�L�Q�M�P�h�Q�� �U�?�T�C�J�C�L�E�R�F�� �?�P�C�� �U�P�?�N�N�C�B�� �@�?�A�I�� �A�?�S�Q�G�L�E��
artifacts and spurious distance measurements. Wrapped distance measurements can 
be corrected by identifying a number of so-called phase jumps in the distance image, 
i.e., the relative wrappings between every pair of neighboring measurements. Dröschel 
et al. (2010) proposed attempt a probabilistic approach that detects discontinuities in 
the depth image to infer phase jumps using a graphical model. Every node in the 
graphical model is connected to adjacent image pixels and represents the probability 
of a phase jump between them. Belief propagation is used to detect the locations of 
the phase jumps, which are integrated, into the depth image by carrying out the 
respective projections, thereby correcting the erroneously wrapped distance 
measurements. The application of phase unwrapping for an indoor scene is shown in 
Fig. 4. 
 

 
Fig. 4 Phase unwrapping of an indoor scene. (a) Image of the scene. (b) and (c) 3D point clouds that have been 
�P���v���Œ���š�����������•�������}�v���š�Z���������u���Œ���[�•�������‰�š�Z���]�u���P���X�����}�o�}�Œ���}�(���š�Z�����‰�}�]�v�š�•���]�v���]�����š���•���š�Z�����Œ���•�µ�o�š���}�(���š�Z�������o�P�}�Œ�]�š�Z�u�V���Á�Œ���‰�‰������
measurements are shown in red. Bright Brightness encodes distance to the camera center. (b) Point cloud without 
�X�Q�Z�U�D�S�S�L�Q�J���� �0�H�D�V�X�U�H�G�� �G�L�V�W�D�Q�F�H�V�� �E�H�\�R�Q�G�� �W�K�H�� �V�H�Q�V�R�U�¶�V�� �Q�R�Q-ambiguity range are wrapped into it, which results in 
artifacts between distances of 0 and 3 meters. (c) Unwrapped depth image. 

3.2 Mapping and Ego-Motion Estimation  

�2�M���C�Q�R�G�K�?�R�C���R�F�C���A�?�K�C�P�?�h�Q���K�M�R�G�M�L���@�C�R�U�C�C�L���R�U�M���A�M�L�Q�C�A�S�R�G�T�C���D�P�?�K�C�Q�
�� �G�K�?�E�C���D�C�?�R�S�P�C�Q���G�L��
the reflectance image of the ToF camera are extracted to determine point 
correspondences between the frames. To detect image features, the Scale Invariant 
Feature Transform (SIFT) (Lowe, 2004) is used. SIFT features are invariant in rotation 
and scale and are robust against noise and illumination changes.  
 
In order to estimate the camera motion between two frames, the features of one 
frame are matched against the features of the other frame. The best match is the 
nearest neighbor in a 128-dimensional keypoint descriptor space. To determine the 
nearest neighbor, the Euclidean distance is used. In order to measure the quality of a 
match, a distance ratio between the nearest neighbor and the second-nearest 
neighbor is considered. If both are too similar, the match is rejected. Hence, only 
features that are unambiguous in the descriptor space are considered as matches. 
 
Fig. 5 (a) and (b) show the reflectance image of two consecutive frames with detected 
features. Fig. 5 (c) shows the matching result of the two images. Each match 
constitutes a point correspondence between two frames. By knowing the depth of 
every pixel, a point correspondence in 3D is known. 
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Fig. 5 SIFT feature extraction and matching applied on two consecutive camera frames on a ToF reflectance 
image. The numbers of detected features are 475 (a) and 458 (b). (c) Matching result: 245 features from image (a) 
are matched to features from image (b). White lines indicate feature displacement. 

The set of points from the current frame is called the data set, and the set of 
corresponding points in the previous frame is called the model set. The scene is 
�R�P�?�L�Q�J�?�R�C�B���?�L�B���P�M�R�?�R�C�B���@�W���R�F�C���Q�C�L�Q�M�P�h�Q���C�E�M���K�M�R�G�M�L�����2�F�S�Q�
���R�F�C���Q�C�L�Q�M�P�h�Q���C�E�M���K�M�R�G�M�L���A�?�L��
be deduced by finding the best transformation that maps the data set to the model 
set. A common approach for estimating a rigid transformation uses a closed form 
solution for estimating the 3 × 3 rotation matrix R and the translation vector t, which is 
based on singular value decomposition (SVD) (Arun et al., 1987). The distances between 
corresponding points, after applying the estimated transformation are used to 
compute the root mean square error (RMSE), which is often used in range registration 
to evaluate the scene-to-model consistency. It can be seen as a measure for the quality 
of the match: if the RMSE is significantly high, the scene-to-model registration cannot 
be consistent. On the other hand, a low RMSE does not imply a consistent scene-to-
model registration, since it also depends on the number and distribution of the point 
correspondences. 
 
With the estimated ego motion between consecutive frames, accumulating 3D points 
of every frame generates a point-based map. A resulting map is shown in Fig. 6. 

 
Fig. 6 The resulting 3D map based on the estimated trajectory (red). The 
colors of the points correspond to the distance of the point from the ground 
plane. 
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4. 3D Collision Avoidance 

If the navigation path is unknown in dynamic environments, collision avoidance 
becomes important. ToF cameras are ideally suited for collision avoidance since they 
measure distances to surfaces at high frame rates. A typical example of a point cloud 
taken in an indoor environment is shown in Fig. 7 (a). This point cloud can be used to 
build a so-called height image as shown in Fig. 7 (b). A point �L�Ü�á�Ý is classified as 
belonging to an obstacle if 

�:�� �à�Ô�ëF �9�à�Ü�á�; P �*  (3) 

where �9�à�Ô�ë and �9�à�Ü�á are the maximum and minimum height values from a local 
window �9 , spanned by the 8-connected neighborhood around �L�Ü�á�Ý. The threshold �*  
thereby corresponds to the minimum tolerable height of an obstacle. It needs to be 
�A�F�M�Q�C�L�� �?�N�N�P�M�N�P�G�?�R�C�J�W�� �Q�G�L�A�C�� �G�R�� �Q�F�M�S�J�B�� �L�M�R�� �@�C�� �Q�K�?�J�J�C�P�� �R�F�?�L�� �R�F�C�� �Q�C�L�Q�M�P�h�Q�� �K�C�?�Q�S�P�C�K�C�L�R��
�?�A�A�S�P�?�A�W���� �"�S�C�� �R�M�� �C�T�?�J�S�?�R�G�L�E�� �?�� �N�M�G�L�R�h�Q�� �J�M�A�?�J�� �L�C�G�E�F�@�M�P�F�M�M�B�
�� �D�J�M�M�P�� �N�M�G�L�R�Q�� �?re inherently 
not considered as obstacles. Points classified as belonging to obstacles are shown in 
Fig. 7 (c). 
 

 
Fig. 7 (a) 3D Point cloud of an exemplary scene. The color of the points corresponds to the distance, brighter color 
relates to shorter distances and darker color to farther distances. (b) The generated height image. The grayscale 
value of every pixel corresponds to the z-coordinate of the respective point in the point cloud. (c) The resulting 
obstacle points (red). 

The resulting obstacle points are used to extract a 2D virtual scan similar to an obstacle 
map by 1.) projecting the 3D data into the xy-plane and 2.) extracting relevant 
information.  
 
The number of range readings in the virtual scan as well as its apex angle and 
resolution correspond to the acquired 3D data. For the SR4000, the number of range 
readings is 176, which is the number of columns in the image array. The apex angle and 
the angular r�C�Q�M�J�S�R�G�M�L���?�P�C�������•���?�L�B�����������•�
���U�F�G�A�F���A�M�P�P�C�Q�N�M�L�B���R�M���R�F�C���A�?�K�C�P�?�h�Q���F�M�P�G�X�M�L�R�?�J��
�?�N�C�V�� �?�L�E�J�C�� �?�L�B�� �P�C�Q�M�J�S�R�G�M�L���� �$�M�P�� �C�T�C�P�W�� �A�M�J�S�K�L�� �M�D�� �R�F�C�� �2�M�$�� �A�?�K�C�P�?�h�Q�� �B�G�Q�R�?�L�A�C�� �G�K�?�E�C�
�� �R�F�C��
obstacle point with the shortest Euclidean distance to the robot is chosen. This 
distance constitutes the range reading in the scan. If no obstacle point is detected in a 
column, the scan point is marked invalid. 
 
The resulting virtual scan is fused with a 2D laser range scan obtained at 30 cm height 
yielding a common obstacle map modeling the closest objects in both sensors. The 
obstacle map from the 2D laser range finder and the ToF camera for the 
aforementioned example scenario is visualized in Fig. 8. By fusing the information of 
both sensors, the robot possesses correct information about traversable free 
space (light gray) in its immediate vicinity. 
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Fig. 8 The resulting virtual scan of the scene is compared with the scan from 
the laser range finder. The dashed green line illustrates the base laser scan. 
The red line illustrates the virtual laser scan. The chair shows only a few 
points in the base laser scan since only the legs of the chair are in the scan 
plane, whereas the virtual scan outlines the contour of the chair. 

5. Conclusions and Outlook 

Efficient and precise position determination of a ToF camera is possible based on 
kinematic object acquisition in form of 3D Cartesian coordinates. The absolute position 
of the camera can be obtained by a transformation from the camera coordinate system 
into the reference coordinate system, i.e. the coordinate system of the spatio-semantic 
3D model. Positions of detected objects are reported in respect to the coordinate 
system of the 3D model. The described mapping approach can also be used for data 
acquisition of such 3D building models. The advantage of such models is the use of the 
VRML file text format allowing data compression for the purpose of quick Internet 
transfer and maintenance of a small-sized database. We conclude that rooms can be 
identified by detection of unique objects in images or point clouds. Such method is to 
be implemented in further research based on a data set, which includes multiple 
rooms. 
 
Due to their measurement of a volume at high frame rates, ToF cameras are well suited 
for applications where either the sensor or the measured objects moves quickly, such 
as 3D obstacle avoidance or gesture recognition (Dröschel et al., 2011). 
 
Difficulties of the proposed method arise from ToF cameras suffering from a set of 
error sources that hamper the goal of infrastructure-free indoor positioning. Current 
RIM sensors are able to measure distances unambiguously between 5 �l 15 m at an 
accuracy level of centimeters. Until now so-called mixed pixels posed a problem in the 
literature. Filtering methods presented in Section 3 could solve this problem. 
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5 CONCLUDING REMARKS 

Synopsis of results  

In this thesis three different applications using Time-of-Flight  range cameras in indoor 
environments are presented. Time-of-Flight range cameras are well suited for 
kinematic applications. However, motion compensation needs to be taken into account 
to unambiguously measure distances between 0.5 �l 10 m at an accuracy level of 
centimeters. The acquired point clouds are small in their amount of data compared to 
laser scanner data such that all experiments based on image and point cloud 
processing could be carried out in near real-time. 
 
In the first application (Publication 1) the position of a robot was detected and its path 
could be monitored to avoid collision with objects or humans entering its working 
space. Feature points were tracked using Optical Flow algorithm and a security zone 
�U�?�Q���?�B�?�N�R�C�B���R�M���R�F�C���P�M�@�M�R�h�Q���K�M�T�C�K�C�L�R�Q�� The camera was mounted in a fixed position 
facing the robot from the front. The specific setup chosen in the experimental part of 
this paper was not ideal; a camera position above the robot is proposed. Objects and 
their  positions were detected in respect to �R�F�C���A�?�K�C�P�?�h�Q local coordinate system. 
 
Tracking human body parts in 3D is common nowadays in the gaming industry for 
Human Computer Interaction . To realize applicable pointing devices the face/eye 
tracking and hand gesture recognition needs to be improved in accuracy and reliability. 
In 2009, briefly �@�C�D�M�P�C�� �+�G�A�P�M�Q�M�D�R�h�Q�� �)�G�L�C�A�R�o was launched in the consumer market, it 
was suggested in Publication 2 to use Time-of-Flight range cameras as an input device 
for Human Computer Interaction �����2�F�C���S�Q�C�P�h�Q���J�G�L�C���M�D���E�?�X�C���G�Q���A�?�J�A�S�J�?�R�C�B���@�W���B�C�R�C�A�R�G�L�E��the 
�S�Q�C�P�h�Q fingertip of the index finger and eyes�h�� �Q�G�E�F�R. The Time-of-Flight range camera 
was placed on top of the screen facing the user and the cursor could be directed by 
pointing towards the monitor.  
 
As opposed to applications with a static camera, Publications 3 �l 5 present algorithms 
and applications for determining the motion of the camera itself (ego-motion ). Using 
such algorithms the Time-of-Flight range camera can be used for example on an 
Unmanned Vehicle System observing the environment for efficient and precise 
absolute positioning  in indoor environments. Within Publication  4 spatio-semantic 
�G�L�D�M�P�K�?�R�G�M�L�� �U�?�Q�� �S�Q�C�B�� �R�M�� �A�?�J�A�S�J�?�R�C�� �R�F�C�� �A�?�K�C�P�?�h�Q�� �N�M�Q�G�R�G�M�L�� �@�W�� �Q�N�?�R�G�?�J�� �P�C�Q�C�A�R�G�M�L�� �?�L�B��
transformation into the absolute Cartesian coordinate reference system. Instead of 
using a standard Iterative Closest Point algorithm for registration of point clouds (e.g. 
O'Leary (2012)), Normal Distributions Transformation and Correspondence Grouping 
algorithm offer ed a more robust registration. For both algorithms input point clouds 
do not need a good initial estimation  and therefore both algorithms will  not lead to 
converge in an incorrect local minimum. However, the presented approach is not yet a 
real-time applicat ion and needs around 5 minutes to conclude. The chosen voxel size in 
�,�"�2�� �G�Q�� �C�Q�Q�C�L�R�G�?�J�� �D�M�P�� �R�F�C�� �N�M�G�L�R�� �A�J�M�S�B�h�Q�� �Q�S�P�D�?�A�C�� �P�C�N�P�C�Q�C�L�R�?�R�G�M�L�� �?�L�B�� �R�F�C�� �P�C�Q�S�J�R�G�L�E��
matching outcome. The matching of sharp edges in CG causes the final transformation 
step. In spite of measurement errors and multipath effects caused by the ToF 
measurement decimeter accuracy was achieved using a Building Information Model 
stored in the CityGML format. 
 
Observing the unknown environment (e.g. around an Unmanned Vehicle System) is 
important for collision avoidance in particular when navigating an unknown path . 
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Mobile robots are equipped with additional sensors, like electronic compass and/or tilt 
sensors or an inertial navigation system (INS) to provide approximate values of the 
rotational transformation parameters and therefore facilitate the search for the correct 
transformation set.  
 
Time-of-Flight range cameras are ideal for collision avoidance due to high frame rates 
in 3D data acquisition, as presented in Publication 1. In Publication 5 we used 
Simultaneous Localization And Mapping to generate 3D point based maps in real-time 
during the ego-motion estimation.  

Outlook  

ToF cameras can be used in indoor and outdoor environments (Nitsche et al., 2010; 
Nitsche et al., 2012) and can connect coordinate systems of both spaces. However, there 
are some major disadvantages of Time-of-Flight range cameras with respect to other 
sensors, which are used for similar applications. They are affected by a number of 
systematic effects, like multipath effects, changes in temperature, distortion, differing 
reflectivity of the observed object etc. that limit the attainable accuracy and hamper 
robust infrastructure -free indoor positioning. Therefore the most challenging task for 
future research is the provision of reliable indoor positioning  capabilities. Furthermore, 
object classification needs to be improved for example by self-calibration of the ToF 
range camera and Look-up tables for different materials and colors. 
 
Combining a ToF range camera with a normal 2D color camera can improve the 
theoretical 3D point accuracy. Furthermore it will enhance the directional 
resolution (Lipkowski and Scherer, 2012). Information on color, pattern and texture will 
be added to distance information and can improve object segmentation and 
identification (Hauke and Bömer, 2005). Izadi et al. (2011) presented with 
KinectFusion (KinFu) a geometrically precise real-time 3D modeling tool �M�L�� �)�G�L�C�A�R�h�Q�•��
depth measurement. Object reconstruction grows continually with each added depth 
measurement while tracking the six degrees of freedom pose of the camera. RGB 
camera data can be used to texture the reconstructed model or indoor scene. Scanned 
and modeled data enable realistic forms of Augmented Reality (AR) in which real-world 
physics aspects can be simulated. Heredia and Favier (2012a) implemented an 
extension to large areas to KinFu. The new module named KinFu Large Scale offers all 
functionalities of KinFu to produce a mesh of a room. However, KinFu Large Scale is 
more time consuming and less robust to fast movements of the camera (Heredia and 
Favier, 2012b). Nakano et al. (2012) show�C�B���R�F�C���N�M�R�C�L�R�G�?�J���M�D���)�G�L�C�A�R�o���.�M�Q�G�R�G�M�L�G�L�E���1�W�Q�R�C�K��
(KPS), detecting multiple moving targets in a range of up to 10 m. 
 
The wish for bigger sensor size and longer measurement range remains on the 
research and consumer part. State-of-the-art ToF range cameras that analyze the 
phase difference of a modulated continuous wave have a manufacture calibrated 
unambiguity range of up to 10 m and a maximum sensor size of 200 x 200 pixels. 
Longer measurement range (up to several hundred meter (McCarthy et al., 2009)) can 
be achieved with ToF range cameras using Time-Correlated Single Photon 
Counting (TCSPC) based on Single-Photon Avalanche Diodes (SPADs) in standard CMOS 
technology. But also TCSPC techniques have disadvantages like for example detector 
dead time where the detection system is shut down to reset after the recording of an 
event (Gatt et al., 2009) or limited spectral range of practical single-photon 
detectors (Buller et al., 2007). 
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The Open Geospatial Consortium  will provide a suitable database and standard in 
communication and protocols for indoor positioning along with the development of 
IndoorGML. This will simplify providing suitable databases, which can be used by a 
variety of sensor systems for indoor positioning.  
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ABBREVIATIONS 

Acronym  Expansion / Meaning 

2D  Two Dimensional 

3D  Three Dimensional 

AR  Augmented Reality 

BIM  Building Information Model  

b-rep  Boundary Representation 

CAD  Computer Aided Design 

CAAD  Computer Aided Architectural Design 

CCD  Charge Coupled Device 

CityGML  City Geography Markup Language, a common information model for 
the representation of 3D urban objects 

CLIPS  Camera and Laser Indoor Positioning System 

CMOS  Complementary Metal Oxide Semiconductor 

CG  Correspondence Groups 

CSEM  �!�C�L�R�P�C���1�S�G�Q�Q�C���B�h�#�J�C�A�R�P�M�L�G�O�S�C���C�R���B�C���+�G�A�P�M�R�C�A�F�L�G�O�S�C���1�� 

CSG  Constructive Solid Geometry 

DOI  Digital Object Identifier  

DOF  Degree Of Freedom 

ESM  Efficient Second Order Minimization 

FOV  Field Of View 

GIS  Geographic Information System 

GML  Geography Markup Language 

GNSS  Global Navigation Satellite System, any of the existing or proposed 
satellite�æbased positioning systems, such as GPS, GLONAS, Galileo and 
Beidou 

GPS  Global Positioning Service 

HCI  Human-Computer Interaction 
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ICP  Iterative Closest Point 

IFC  Industry Foundation Classes 

IGP  Institute of Geodesy and Photogrammetry at ETH Zurich 

IndoorGML  Indoor Geography Markup Language, schema framework for 
interoperability between indoor navigation applications  

IMU  Inertial Measurement Unit  

INS  Inertial Navigation System 

KinFu  KinectFusion 

KLT  Kanade-Lucas-Tomasi Feature Tracker 

LBS  Location Based Services 

LED  Light Emitting Diode 

LoD  Level of Detail 

LV95  Landesvermessung LV95 

MOCCD  Multiocular Contracting Curve Density algorithm 

MS  Microsoft  

NDT  Normal-Distributions Transform 

NLoS  Non Line of Sight 

OGC  Open Geospatial Consortium 

OpenCV  Open Source Computer Vision Library 

OS  Operating System 

PEM  Point-based Environmental Model 

PCL  Point Cloud Library 

PMD  Photonic Mixer Device 

RCX  Robotic Command Explorer 

RFID  Radio Frequency Identification  

RGB-D  RGB color space and depth or distance information  

RIM  Range Imaging 

RIS  Robotic Invention System 
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RMSE  Root Mean Square Error 

RSSI  Received Signal Strength Indicators 

SAC-IA  Sample Consensus - Initial Alignment  

SFM  Structure From Motion 

SIFT  Scale Invariant Feature Transform 

SLAM  Simultaneous Localization And Mapping 

SNR  Signal to Noise Ratio 

SPADs  Single-Photon Avalanche Diodes 

SR  SwissRanger 

STL  Stereo-Lithography 

SVD  Singular Value Decomposition 

SWG  Standards Working Group 

TA  Template Alignment 

TCSPC  Time-Correlated Single Photon Counting 

ToF  Time-of-Flight 

USB  Universal Serial Bus 

UVS  Unmanned Vehicle Systems 

VBPD  Vision Based Protective Device 

VR  Virtual Reality 

VRML  Virtual Reality Modeling Language 

WFS  Web Feature Service 

WGS84  World Geodetic System 1984 

WLAN  Wireless Local Area Network 

X3D  Extensible 3D 

XML  Extensible Markup Language  
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