
ETH Library

Directed quantum communication

Journal Article

Author(s):
Åberg, Johan; Hengl, Stefan; Renner, Renato 

Publication date:
2013-03

Permanent link:
https://doi.org/10.3929/ethz-b-000065133

Rights / license:
Creative Commons Attribution 3.0 Unported

Originally published in:
New Journal of Physics 15, https://doi.org/10.1088/1367-2630/15/3/033025

Funding acknowledgement:
135048 - Information-theoretic methods for physics (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-5044-6113
https://doi.org/10.3929/ethz-b-000065133
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1088/1367-2630/15/3/033025
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


            

PAPER • OPEN ACCESS

Directed quantum communication
To cite this article: J Åberg et al 2013 New J. Phys. 15 033025

 

View the article online for updates and enhancements.

Related content
Long quantum channels for high-quality
entanglement transfer
L Banchi, T J G Apollaro, A Cuccoli et al.

-

Exponentially enhanced quantum
communication rate by multiplexing
continuous-variable teleportation
Andreas Christ, Cosmo Lupo and Christine
Silberhorn

-

Quantum capacity of dephasing channels
with memory
A D'Arrigo, G Benenti and G Falci

-

Recent citations
The symmetric extendibility of quantum
states
Marcin L Nowakowski

-

Perfect state transfer on spin-1 chains
Marzieh Asoudeh and Vahid Karimipour

-

This content was downloaded from IP address 129.132.180.48 on 08/11/2018 at 16:38

https://doi.org/10.1088/1367-2630/15/3/033025
http://iopscience.iop.org/article/10.1088/1367-2630/13/12/123006
http://iopscience.iop.org/article/10.1088/1367-2630/13/12/123006
http://iopscience.iop.org/article/10.1088/1367-2630/14/8/083007
http://iopscience.iop.org/article/10.1088/1367-2630/14/8/083007
http://iopscience.iop.org/article/10.1088/1367-2630/14/8/083007
http://iopscience.iop.org/article/10.1088/1367-2630/9/9/310
http://iopscience.iop.org/article/10.1088/1367-2630/9/9/310
http://iopscience.iop.org/1751-8121/49/38/385301
http://iopscience.iop.org/1751-8121/49/38/385301
http://dx.doi.org/10.1007/s11128-013-0676-8
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/306347007/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


Directed quantum communication

J Åberg1,2,3, S Hengl2 and R Renner2

1 Institute for Physics, University of Freiburg, Hermann-Herder-Strasse 3,
D-79104 Freiburg, Germany
2 Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland
E-mail: johan.aberg@physik.uni-freiburg.de

New Journal of Physics 15 (2013) 033025 (15pp)
Received 21 January 2013
Published 20 March 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/3/033025

Abstract. We address the question of whether there is a way of characterizing
the quantum information transport properties of a medium or material. For
this analysis, the special features of quantum information have to be taken
into account. We find that quantum communication over an isotropic medium,
as opposed to classical information transfer, requires the transmitter to direct
the signal toward the receiver. Furthermore, for large classes of media there
is a threshold, in the sense that ‘sufficiently much’ of the signal has to be
collected. Therefore, the medium’s capacity for quantum communication can
be characterized in terms of how the sizes of the transmitter and receiver
have to scale with the transmission distance to maintain quantum information
transmission. To demonstrate the applicability of this concept, an n-dimensional
spin lattice is considered, yielding a sufficient scaling of δn/3 with the distance δ.
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1. Introduction

The propagation of disturbances in materials, e.g. electric pulses in a piece of metal, sound in a
solid or spin waves in a spin lattice, can be regarded as a transmission of information. Evidently,
the ‘quality’ of this information transmission is determined by the transport properties of the
medium. In this work, we take an information-theoretic approach to transport properties, or
perhaps more accurately, we consider the capacity for information transfer to be a material
property.

To obtain an intuitive picture of the setting we consider, one can think of radio transmission
over free space, i.e. imagine a propagation medium that is translation symmetric and isotropic
(in a wide sense) and in which we are in control only of limited transmitter and receiver regions.
While radio transmission is typically modeled as classical information transfer over a classical
medium, here we consider quantum information transfer over quantum mechanical media.
Apart from the practical relevance of characterizing quantum information transfer properties
for the purpose of quantum communication or processing in physical media, it is a fundamental
theoretical issue to pinpoint how the special properties of quantum information alter the typical
scenarios we know from classical communication theory.

Here, we show that quantum communication in an isotropic medium, and as opposed to
classical information transfer, requires the transmitter to direct the signal toward the receiver,
as one would intuitively expect from the no-cloning theorem. The degree to which such a
directed quantum communication can be achieved is a property of the medium. We suggest to
characterize this quantum information transport property by how the sizes of the transmitter and
receiver regions should scale with increasing transmission distance in order to obtain quantum
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communication. To the best of our knowledge, such characterizations have not been considered
previously.

As an illustration we use an n-dimensional spin lattice, where an upper bound to the scaling
can be determined. In the specific setting of spin lattices of higher dimensions (larger than 1),
this investigation can be regarded as a generalization of the idea to use permanently coupled
one-dimensional (1D) spin chains for information transmission [1, 2]. For 1D spin chains, it is
known that perfect state transfer can be obtained by tuning the interactions locally along the
chain [3]. One could imagine this to be possible also in higher dimensions [4]. However, as
we consider the ‘free space’ of a translation symmetric lattice, this excludes such local tunings.
In [5] it was shown that communication between arbitrary points can be achieved without the
transmitter and receiver knowing each other’s positions. However, this result assumes a finite
lattice, which is excluded in our case by the effectively infinite medium. We also note that
the propagation of information in a medium, as studied here, is related to the Lieb–Robinson
bound [6].4

2. Scaling characterization of media

Quantum information transport is possible when the medium admits a non-zero quantum
channel capacity. The latter measures how many qubits can be sent reliably when averaged over
many independently repeated uses of a channel, assuming optimal encodings and decodings.
(We consider the unassisted capacity where, e.g., no additional classical channels are assumed.)
To apply this concept we need to specify a channel, i.e. a well-defined physical mapping from
an input system to an output system. A channel can be set up by ‘injecting’ information from
an input system A into a bounded region of the medium, in the following referred to as the
‘transmitter region’. (For a concrete example in the special case of a spin lattice, see figure 1.) If
the input system A is initially uncorrelated with the medium, then the injection and the evolution
of the medium result in a quantum channel from A to a receiver region R. One could imagine
a qualitative characterization of the medium simply by asking whether the resulting channel
capacity is non-zero or not. However, the answer will depend on the sizes and distance between
the transmitter and receiver. To avoid this, we rather ask how the transmitter and receiver regions
have to scale with the transmission distance to obtain a non-zero capacity. (To use scaling as
a method to get rid of unimportant details is a common approach, e.g., in the context of area
law scaling of entanglement entropy [7].) The transmission still depends on other aspects of
the information injection (and the extraction at the receiver) but the optimal scaling achievable
(possibly under some constraints, e.g. a bound on the energy) can be taken as a characterization
of the medium. Needless to say, the optimal scaling would, in general, be very challenging to
determine. More realistically, we can find upper bounds (sufficient scaling) to the theoretically
optimal scaling. (This is analogous to the classical setting where one, in general, has to settle
for lower bounds on the channel capacity over a given medium.) With the aim to obtain such
scalings, we first elucidate some necessary and sufficient conditions for a non-zero channel
capacity. We begin with a simple argument which shows that if there is too much symmetry in
the system, then the quantum channel capacity is zero.

4 The Lieb–Robinson (LR) bound can be rephrased as an upper bound on the speed of information propagation.
Reasonably, the LR bound should limit how efficiently quantum information can be transmitted in a medium.
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A

R

Figure 1. To obtain a channel from a transmitter to a receiver over a spin lattice,
we may use a separate spin A as an input system. To ‘inject’ this information into
the lattice, we swap the input spin A with a selected spin in the lattice. A local
potential barrier acts as a transmitter antenna that directs the excitation toward
the receiver, where the wave packet reaches another antenna that collects the
excitation into the receiver area. By considering the state in the receiver region
R at a given time, we obtain a channel from the input spin A to the receiver R.

3. The need for symmetry breaking

Classical signals can be copied and transmitted in all directions, e.g., in radio broadcasting,
where the copying is done by ramping up the amplitude in the transmitter antenna. Since
quantum information cannot be cloned [8] or broadcast [9], one might suspect that there
is no quantum analogue of this. We can make this intuition more precise in terms of a
symmetry argument. For this purpose, we assume the medium to have some type of symmetry,
and furthermore assume that the state of the medium after the injection is invariant under
this symmetry, for all states of the input system A. (Since we typically imagine a localized
transmitter, the symmetries would be, e.g., rotations or reflections around this region.) The
symmetry generates copies of the receiver region R. If such a copy R′ does not overlap with
R, then they correspond to two distinct subsystems of the medium. By the assumed symmetries,
R and R′ will obtain the same state no matter what the input A is. Intuitively, the no-cloning
theorem thus implies that there is no quantum information transmission from A to R. More
formally, since the state of R can be reconstructed from R′, this implies that the channel
from A to R is anti-degradable [10], which gives a zero quantum channel capacity [10, 11]
(see appendix A for more details). We can thus conclude that the symmetry makes quantum
communication impossible. This is in contrast to the classical case where a similar symmetry
condition may lower the efficiency, but would not prevent information transmission per se.

The above arguments show that symmetry breaking is a necessary condition for quantum
communication. However, in the following we show that for large classes of systems this is
not enough; the quantum signal needs to be directed in a stronger sense. Loosely speaking,
we need to gather ‘sufficiently much’ of the signal to achieve quantum information transmission.
We begin by demonstrating this threshold effect in a very simple system.
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4. Thresholds for quantum communication: an illustration

Consider a medium where information is transmitted via single excitations or particles. (We do
not specify whether the medium is discrete or a continuum.) In this setting, one can determine a
simple necessary and sufficient condition for a non-zero quantum channel capacity. We assume
that the medium preserves the total number of particles, i.e. its Hamiltonian commutes with the
total number of operators. We furthermore assume that the medium has a vacuum state |ν〉 that
can be written as a product state |ν〉 = |0R〉|0c

R〉 of local zero-excitation states |0R〉 and |0c
R〉 in

the receiver R and its complement Rc, respectively. Moreover, the single-excitation sector is
spanned by states of the form |χR〉|0c

R〉 and |0R〉|χ c
R〉, where |χR〉 and |χ c

R〉 are single-excitation
states on R and Rc, respectively5.

The input A is a single qubit, the medium starts in the vacuum state, and the injection can
be described by a unitary operator UI. If A is in state |0〉, then the injection does nothing, i.e.
UI|0〉|ν〉 = |0〉|ν〉, while it puts a single-excitation state, |ηT 〉, in the transmitter region if A is in
|1〉, i.e. UI|1〉|ν〉 = |0〉|ηT 〉. The dynamics of the lattice evolves |ηT 〉 into a new single-excitation
state |ψp〉 =

√
p|χR〉|0c

R〉 +
√

1 − p|0R〉|χ c
R〉, where p is the probability of finding the excitation

in the receiver region. If the state of the input qubit A is ρ, then the state of the receiver region
R can be written as

8p(ρ)= 〈0|ρ|0〉|0R〉〈0R| + p〈1|ρ|1〉|χR〉〈χR| +
√

p〈1|ρ|0〉|χR〉〈0R| +
√

p〈0|ρ|1〉|0R〉〈χR|

+(1 − p)〈1|ρ|1〉|0R〉〈0R|.

Effectively,8p is a qubit amplitude damping channel, and for these it is known that the channel
capacity is non-zero if and only if p > 1/2 [12]. (For another example see appendix C.) If
combined with the previous symmetry argument, we see that it is not enough to break the
symmetry in order to get a non-zero capacity, but that the receiver furthermore has to collect
most of the amplitude of the particle.

5. Thresholds in sufficiently noisy transmissions

In general media, a disturbance can be an arbitrarily complicated combination of multi-
excitations that may decay or disperse relative to some, possibly noisy, equilibrium distribution,
e.g. a thermal state of the medium. Here we show that under wide conditions, the quantum
transmission still shows threshold effects, which can be regarded as a channel version of
‘entanglement sudden death’ [13].

As we bring the transmitter and receiver further apart (assuming otherwise fixed setups),
the state in the receiver should reasonably become less and less distinguishable from the
background. In the limit of infinite distance the resulting channel would thus be the replacement
map 3σ (ρ)= σ , for all input states ρ, where σ is the reduced density operator of the receiver
resulting from the equilibrium state of the medium. For finite distances, the difference between
the actual channel 8 and the limiting channel 3σ (e.g. as measured by the ‘diamond norm’
‖8−3σ‖� [14, 15]) can thus be taken as a measure of the extent to which the actions of the
transmitter can be distinguished from the background. (This quantity generalizes the role of

5 One can relax these assumptions. The vacuum does not have to be a product state, and it is essentially enough
if the single-excitation sector is spanned by states that can be generated from the vacuum (and removed again)
coherently, via local operations.
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the pick-up probability in the example above.) If σ is mixed enough to have full rank, then
there exists a neighborhood of 3σ where all channels have zero quantum channel capacity (see
appendix B). This tells us that even if ‖8−3σ‖� never becomes identically zero as we increase
the separation between transmitter and receiver, the resulting quantum channel capacity will
nevertheless be zero beyond some threshold distance. This threshold can be increased if we
increase the sizes of the transmitter and receiver regions. Thus, it is possible to characterize
the medium in terms of the scaling of the transmitter and receiver regions needed to maintain
a non-zero quantum channel capacity with increasing distance (see appendix D). This is in
contrast to the case of classical information transfer (over classical or quantum channels)
where we generically would expect a non-zero (albeit small) classical capacity for all distances,
which makes a characterization in terms of a scaling for a non-zero capacity meaningless (see
appendix E).

6. Possibility of directed quantum communication

To illustrate the possibility of directed quantum communication, we take a square lattice L of
uniformly coupled spin-half particles that interact according to the Heisenberg XY model

H = −
1

2

∑
〈 j,k〉

(σ x
j σ

x
k + σ y

j σ
y

k )+
∑

j

(σ z
j + 1̂ j), (1)

where σ j denotes Pauli matrices at position j and 〈 j, k〉 the nearest neighbor pairings. In the
1D case (allowing for different coupling constants) this is a common model for information
transfer in spin chains (see, e.g., [3]). Since [H,

∑
j σ

z
j ] = 0, the total number of excitations

is conserved, and the ground state is a product state |0〉 · · · |0〉, where 0 denotes spin down.
The simple dynamics of this model facilitates numerical calculation of the pick-up probability
(and thus the channel capacity). Due to computational limitations we only consider the two-
dimensional (2D) case.

In [16], it was observed that a single excitation can propagate along diagonals of the 2D
square lattice XY model in a remarkably confined manner (see figure 7 of [16]). However, the
wave packet disperses more rapidly in other directions. In other words, the pick-up probability
in the receiver region and hence the channel capacity depend on the direction of propagation,
similar to other transport properties. In the present calculations, we consider propagation along
the favored diagonals.

One can imagine several different methods to direct the excitations toward the receiver. One
way is to construct local potential barriers, as depicted in figure 1. These potentials are obtained
by adding terms of the form w jσ

z
j to (1), where w j are real numbers. We use this simple type of

antennas for the calculation of the dashed line in figure 2(a), which gives the pick-up probability
p as a function of the time t between the swap-in from A and the time when we record the state
in R. As figure 2(a) shows, p reaches above the critical value 1/2 for this specific arrangement.
Another method for obtaining the necessary directionality (which numerical tests suggest is
superior to the antenna construction) is to put a suitably shaped wave packet directly on the
lattice. The solid line in figure 2(a) gives one example of this for a modulated Gaussian wave
packet cropped to a small transmitter region.
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Figure 2. (a) Pick-up probability: the probability p of finding the excitation in
the receiver area is plotted as a function of the evolution time t measured relative
to the propagation time tprop of the peak. The dashed line corresponds to the
setting schematically depicted in figure 1, with a 256 × 256 lattice with lossy
edges and a 20 × 20 receiver area. The distance between the inner corners of
the antennas is 110 sites. The solid line corresponds to a 2048 × 2048 lattice,
with 21 × 21 transmitter and receiver regions. The distance between the centers
of these two squares is 1969 sites. In this case we have no antennas, but use
as the initial state a suitably modulated Gaussian wave packet, cropped to the
transmitter region. As seen, both the cases reach above the critical value 1/2.
(b) Scaling: with a transmitter and a receiver at the distance of δ sites in the
lattice, we let the initial wave package be a Gaussian, modulated to travel at the
maximal group velocity and cropped to a square transmitter region with a side
length that scales as δ1/3. For this transmission system, we determine the side
length w of a square-shaped receiver region needed to obtain a given pick-up
probability p as a function of δ. We plot log2w against log2δ, and repeat this for
the pick-up probabilities p = 0.9, 0.8, 0.7, 0.6, 0.5. The lines in the background
are set to the slope 1/3.

7. Sufficient scaling: an example

Using the above model, with transmission along the diagonals of the lattice, we here turn to the
question of how fast the transmitter and receiver have to grow with the transmission distance in
order to obtain a non-zero channel capacity. A crucial issue is how fast a given single-particle
wave packet spreads as it propagates, and thus minimally dispersive wave packets should be
useful. For the 1D XY model, it was found [17, 18] that a good choice of such wave packets
yields a pick-up probability close to 1, for transmitter and receiver regions that scale as δ1/3,
where δ is the number of spins in the spin chain6. This suggests an analogous approach for
the XY model on an n-dimensional square lattice, since the evolution is decoupled along the n
different dimensions, which would yield a volume scaling of δn/3 of the transmitter and receiver
regions. This reasoning is confirmed in figure 2(b) by a numerical calculation of the scaling

6 For single excitations, the Heisenberg model in [17, 18] is equivalent to the Heisenberg XY model we used.
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in the 2D case. Since we have used a specific transmission system, this is an upper bound to
the theoretically optimal scaling. However, restricted to the set of single excitations, it appears
reasonable to expect this result to be near optimal.

8. Conclusions

We have found that quantum communication requires us to direct and collect a sufficiently
large part of the signals into the receiver. This makes it possible to characterize the quantum
information transport in media in terms of the scaling of the transmitter and receiver region
needed to maintain a non-zero quantum channel capacity. For single-particle transmission in an
n-dimensional Heisenberg XY model, a scaling of δn/3 is sufficient.

It is an open question how the scalings of general physical media, e.g. solid-state systems or
optical lattices depends on various aspects of the dynamics, especially if we incorporate more
realistic settings and include, e.g., Anderson localization, thermal noise and decoherence. To
directly determine the optimal scalings appears challenging, but estimates for sufficient scalings
appear to be tractable.

In this investigation, we have made the tacit assumption that a sequence of transmissions
can be described as independent and identically distributed (iid) repetitions of a single
transmission. If the medium in some sense relaxes to its initial state after each transmission, this
approximation is justifiable, as the scaling does not take into account the time it takes to transmit
signals, thus allowing sufficient delays between subsequent transmissions. However, if we wish
to determine the transmission per time unit, rather than per channel use, the iid assumption may
not be useful, e.g., as the number of excitations in the medium potentially increases for rapidly
repeated transmissions. Techniques that go beyond the iid assumption [19–22] could potentially
be applied in this case.
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Appendix A. Quantum communication requires symmetry breaking

In the main text, we sketched in mere words the argument for why symmetry breaking is needed
to obtain a non-zero quantum channel capacity. Here, we make the argument a bit more precise,
and we begin by recapitulating the notion of degradable and anti-degradable channels.

Given a finite-dimensional Hilbert space H, we let L(H) denote the set of linear operators
on H. We let TPCPM(Hi,Hf) denote the set of trace preserving completely positive maps
(channels) from L(Hi) to L(Hf).

For every channel8 there exists a Steinspring dilation, i.e. a Hilbert-spaceHC and a partial
isometry V :HA →HB ⊗HC , with V †V = 1̂A, such that

8(ρ)= trC(VρV †), ∀ρ ∈ L(HA). (A.1)
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We define the complementary channel 8c to 8 as

8c(ρ) := trB(VρV †), ∀ρ ∈ L(HA). (A.2)

The original channel,8, is called degradable if there exists some channelN : L(HC)→ L(HB)

such that8c
=N ◦8. In other words, a channel is degradable if it is possible to reconstruct the

state of the output C from the state of B. Conversly, 8 is called anti-degradable if there exists
a channel 3 such that 8=3 ◦8c. It is a well-known fact that anti-degradable channels have a
zero quantum channel capacity [10, 11].

As described in the main text, we obtain a channel by ‘injecting’ information from a system
A, initially uncorrelated to the medium. For this we use a channel8T

i : L(HT ⊗HA)→ L(HT ),
where T is the transmission region in the medium. (It is useful to include the transmitter region
T at the input of this channel, as this makes it possible to handle cases where T is initially
correlated with an environment, or other parts of the medium.)

After the propagation in the medium, one can furthermore imagine to ‘eject’ the
information from the receiver into an output system B, by using a channel 8R

e : L(HR)→

L(HB). In most discussions, we will simply use the partial trace trRc , i.e. we consider the receiver
region itself as the output system, although in some cases it can be convenient to use a separate
output system and other maps.

To model the propagation in the medium in full generality, we assume the medium M
to initially be in some joint state σM E with an ‘environment’ E . We furthermore assume the
propagation to be described by a unitary VM E (as generated by some joint Hamiltonian HM E ).
In total, we can thus describe the resulting channel from the input to a receiver region R as

8R(ρA)= trE Rc[VE M[8T
i ⊗ IET c](σE M ⊗ ρA)V

†
M E ]. (A.3)

Note that by including the environment E we allow all types of decay, decoherence and noise
effects.

In the following, we wish to express the idea that the medium and the injection possess
a symmetry. Let us, therefore, consider some symmetry group G with a unitary representation
{Ug}g∈G on the Hilbert space HM E of the medium. (A reasonable special case is to let Ug =

Ũg ⊗ 1̂E , with Ũg only acting onHM .) What we require is that the state of the medium, after the
injection and the evolution, be invariant under the action of the group, irrespective of what state
we feed to the input system. In other words,

trE

[
UgVE M[8T

i ⊗ IET c](σE M ⊗ ρA)V
†
M EU †

g

]
= trE

[
VE M[8T

i ⊗ IET c](σE M ⊗ ρA)V
†
M E

]
(A.4)

for all g ∈ G and all ρ ∈ L(HA). We discuss this assumption further below, but for the moment,
let us assume that (A.4) holds.

Given a subsystem R in the medium, every element g of the group maps R to a new
subsystem gR. Assume that R and gR are two independent subsystems, i.e. we can decompose
the total Hilbert space of the medium as HM =HR ⊗HgR ⊗Hleftovers. In our setting, R is a
bounded region in the medium and g is a symmetry operation, like a reflection or a rotation,
and thus the necessary independence is obtained when the regions R and gR have no overlap.
Considering the maps 8R and 8gR as in (A.3), for independent subsystems R and gR, and
assuming the symmetry condition (A.4) to be true, it follows directly that 8R and 8gR are
isomorphic. Consequently, both of them are anti-degradable and thus have zero quantum
channel capacity.

Although (A.4) gives a clear condition, it might nevertheless be good to illustrate it with
a couple of extreme cases. In the simplest case, we do not include any environment, and thus
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only consider unitary evolution generated by a Hamiltonian H of the medium. In this case Ug

of course only acts on HM and the symmetry of the medium is guaranteed by [Ug, H ] = 0 for
all g ∈ G. That the information injection always results in a symmetric state, we can express as
Ug[8T

i ⊗ IT c](σM ⊗ ρA)U †
g = [8T

i ⊗ IT c](σM ⊗ ρA) for all g and all ρA. These two assumptions
yield the ‘environment-free’ special case of (A.4).

Another extreme case is to assume that the environment is Markovian, e.g. replacing the
Hamiltonian evolution by a Markovian master equation on the medium alone [23, 24]. The
unitary operator VM E describing a time step of the medium is thus replaced by a channel
E : L(HM)→ L(HM). The symmetry of the injection is expressed identically as in the previous
example, while the symmetry of the evolution can be stated as UgE(ρ)U †

g = E(UgρU †
g ). This

yields a ‘channel version’ of (A.4).

Appendix B. Zero quantum capacity neighborhoods around full rank replacement maps

In the main text, we claimed that for each full rank replacement map on finite-dimensional
Hilbert spaces there exists a neighborhood where all channels have zero quantum channel
capacity. (Given a replacement map 3σ (ρ)= σ we say that 3σ is ‘full rank’ whenever σ has
full rank. We also say that3σ is ‘rank-deficient’ if σ is not full rank.) As mentioned in the main
text, this can be viewed as a channel analogue of what is sometimes referred to as ‘entanglement
sudden death’ (ESD) [13]. The rather extensive literature on this subject (see e.g. [13, 25–30]) in
essence shows that the entanglement in many decoherence models can reach zero after a finite
time. The link to channel capacities is apparent, and one can translate results from ESD to the
present setting using the Choi isomorphism [31]. However, here we directly use the PPT criteria
to obtain a radius around full rank replacement maps, within which all channels have zero
quantum channel capacity. This can be used for an upper bound to the scaling characterization
described in appendix D. (In appendix C, we also discuss thresholds in restricted neighborhoods
of rank-deficient replacement maps.)

We let Lin(Hi,Hf) denote the set of all linear maps from L(Hi) to L(Hf). Given an
orthonormal basis {| j〉}N

j=1 of Hi the Choi representation [31] of an element 8 ∈ Lin(Hi,Hf)

is defined by

M(8) :=
1

N

∑
j, j ′

8(| j〉〈 j ′
|)⊗ | j〉〈 j ′

|. (B.1)

Lemma 1 ([32, 33]). If the Choi representation of a channel8 has a positive partial transpose
(we say that 8 is a PPT channel), then 8 has zero quantum channel capacity.

For any linear operator Q, we denote the standard operator norm as ‖Q‖ :=
sup

‖ψ‖=1 ‖Q|ψ〉‖, the trace norm ‖Q‖1 := tr
√

Q† Q and the Hilbert–Schmidt norm ‖Q‖2 :=√
Tr(Q† Q). For any 8 ∈ Lin(Hi,Hf), we can define the diamond norm [14, 15] as

‖8‖� := sup
X∈L(Hi⊗Hc):‖X‖161

‖[8⊗ Ic](X)‖1, (B.2)

where dim(Hc)> dim(Hi) [15].
Given an orthonormal basis {|k〉}k of the Hilbert space H, we define the transpose of

an operator Q on H as 2(Q) :=
∑

k,k′ |k〉〈k ′
|Q|k〉〈k ′

|. We let HP(Hi,Hf) denote the set of
Hermiticity preserving linear maps from L(Hi) to L(Hf). For any 8 ∈ HP(Hi,Hf), we define

ξ(8) := λmin(2f M(8)), (B.3)
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where λmin is the smallest eigenvalue of 2f M(8). This is essentially the negativity [34] of
the state M(8). Note that it does not matter whether we use 2f or 2i in the definition.
Furthermore, if 2f M(8) has negative eigenvalues, then ξ(8) is to be understood as its most
negative eigenvalue.

If A is a Hermitian operator, we let λ↓(A) denote the eigenvalues of A in non-increasing
order, i.e. λ↓

1 (A)> λ
↓

2 (A)> · · ·> λ↓

N (A).

Lemma 2 (Theorem VIII.4.8 in [35]). Let A and B be Hermitian operators on the same finite-
dimensional Hilbert space. Then max j |λ

↓

j (A)− λ
↓

j (B)|6 ‖A − B‖.

Lemma 3. Regarded as a linear map, the partial transpose, 2f ⊗ Ii , satisfies the following
properties:

sup
X∈L(Hf⊗Hi):‖X‖161

‖2f ⊗ Ii(X)‖2 = 1, (B.4)

sup
X∈L(Hf⊗Hi):‖X‖161

‖2f ⊗ Ii(X)‖6 1. (B.5)

The left-hand side of (B.5) should not be confused with the completely bounded norm [36]
of 2f, which would be obtained if we replaced the condition ‖X‖16 1 with ‖X‖6 1 (for
dimHi > dimHf).

Proof. If |α〉, |β〉 ∈Hf ⊗Hi are normalized, one can use the Schmidt decomposition to show
that

‖[2⊗ I ](|α〉〈β|)‖2 = 1. (B.6)

Let X ∈ L(Hf ⊗Hi) be such that ‖X ‖16 1. Using a singular value decomposition X =∑
n sn|αn〉〈βn|, together with (B.6), yields ‖ [2⊗ I ](X) ‖26 1, which proves (B.4). Due to the

general fact that ‖ · ‖6‖ · ‖2, we can conclude that (B.5) also holds. ut

Lemma 4. Let 8,9 ∈ HP(Hi,Hf) then

|ξ(8)− ξ(9)|6 ‖8−3‖� (B.7)

Proof.

|ξ(8)− ξ(9)|6 max
j

|λ
↓

j (2f M(8))− λ
↓

j (2f M(9))|

6 ‖2f M(8)−2f M(9)‖

6 ‖M(8−9)‖1

6 ‖8−9‖�.

The first inequality follows trivially from the definition of ξ(·), the second from lemma 2, and
the third follows from (B.5) in lemma 3. ut

Corollary 1. If 9 ∈ TPCPM(Hi,Hf) is such that ξ(9)> 0, then all channels with a distance
in the diamond norm less than or equal to ξ(9) to 9 are PPT.

If ξ(9) < 0, then all channels with a distance in the diamond norm strictly less than −ξ(9)

to 9 are in the complement of PPT.

Corollary 2. Let3σ ∈ TPCPM(Hi,Hf) be the replacement map3σ (ρ)= σ . Then all elements
in TPCPM(Hi,Hf) with a distance to 3σ less than or equal to λmin(σ )/ dimHi, in the diamond
norm, are PPT.
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Appendix C. Restricted zero quantum capacity neighborhoods

In the previous appendix, we focused on full rank replacement maps. It is certainly reasonable to
ask whether also rank-deficient replacement maps have zero quantum capacity neighborhoods.
We, unfortunately, do not provide an answer here, but merely observe that there exist physically
relevant restricted families of channels within which there still exist thresholds around low rank
replacement maps.

One simple example is the family of channels 8p, corresponding to the single-excitation
transmission described in the main text. In this case the relevant replacement map is 3|0〉〈0|,
which is clearly not full rank. However, as was shown in the main text, within this (very
restricted) class of channels, there is a threshold for zero capacity at p = 1/2.

We can also obtain a multi-excitation generalization of this example. We let |ηT 〉 be a
N -excitation state, rather than a single-excitation state. Thus, after the evolution, the new
N -particle state can be written as |ψ〉 =

√
p|0c

R〉|χ N
R 〉 +

√
q|χ N

Rc〉|0R〉 +
√

r |χ〉, where |χ N
R 〉 is

an N -particle state in the receiver region, |χ N
Rc〉 an N -particle state in the complement and |χ〉

is an N -particle state with more than zero excitations in both the receiver and the complement.
Here, p is the probability that we find all the excitations in the receiver, q the probability that
we find none in the receiver and r = 1 − p − q is the probability that we find some particles in
both the receiver and its complement. The channel from the input qubit A to the receiver R can
be written as

8(ρ)= 〈0|ρ|0〉|0R〉〈0R| + p〈1|ρ|1〉|χ N
R 〉〈χ N

R | +
√

p〈1|ρ|0〉|χ N
R 〉〈0R| +

√
p〈0|ρ|1〉|0R〉〈χ N

R |

+q〈1|ρ|1〉|0R〉〈0R| + r〈1|ρ|1〉σ,

where σ is a density operator with support on the orthogonal complement to the space spanned
by |0R〉 and |χ N

R 〉. Using degradability and anti-degradability one can prove that this channel
has a non-zero channel capacity if and only if p > q. Hence, the channel capacity is non-zero
if and only if the probability to pick up all the particles is strictly larger than the probability to
pick up none. Like for the single-particle transmission, we thus obtain a threshold effect for the
channel capacity.

Appendix D. Threshold distances and scaling

Here, we argue that the results of the previous appendices translate into the existence of a
threshold distance for quantum communication.

Imagine an effectively infinite, in some sense isotropic, and at least two-dimensional
medium where bounded transmitter and receiver are embedded. Assume that we fix the size and
shape of the transmitter and receiver regions, as well as the injection and ejection maps, while
we are allowed to vary the distance between the transmitter and receiver. It appears reasonable
to assume that as we increase this distance, the transmitted signal will gradually fade away,
and in the limit of an infinite distance, the receiver perceives only the background noise of the
medium. Another way of putting this is to say that the actual transmission channel8 approaches
a replacement map3σ . The state σ is the image of the equilibrium state ρeq of the medium in the
receiver, i.e. σ =8R

e (ρeq) or simply σ = trRcρeq. Note that we do not necessarily require that the
medium globally reach an equilibrium state ρeq; it is enough if the receiver sees something that
locally looks like the equilibrium ρeq. One example of the latter is the single-excitation model
in the main text, where ρeq = |ν〉〈ν|. In this case, the excitation will eventually propagate away
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from the receiver, out into the effectively infinite medium. In other words, even though globally
there can be an excitation present in the medium, it will eventually look to the receiver as if the
medium is empty.

Apart from the assumption that 8 approaches a limiting replacement map 3σ as we
increase the distance, we also assume that 3σ is full rank. As shown in appendix B, this
implies that 8 for some sufficiently large distance will eventually enter the zero capacity
neighborhood indefinitely. Beyond this threshold distance the quantum channel capacity is
identically zero. (As an alternative to the full-rank assumption, we may also use restricted
models as in appendix C.)

When we consider the question of how the sizes of the transmitter and receiver have to
scale with increasing distance to maintain a non-zero capacity, it maybe goes without saying
that we implicitly mean the scaling of regular and reasonably shaped regions. As we increase the
size of the (e.g. sphere-shaped) transmitter or receiver regions, the threshold distance increases
monotonically. This is due to the fact that we can always restrict ourselves to only using the
original smaller region. One should also note that every medium has at least a trivial scaling.
The reason is that we can always make the transmitter and receiver regions so large that they
overlap. This would allow the transmitter to directly put the signal into the receiver, and thus
trivially obtain perfect transmission. Hence, in the worst case, the radius of the transmitter or
receiver scales linearly with the distance.

Given the above arguments it is reasonable to ask when we can expect σ to be a full
rank operator. (Although one should keep in mind that it is not clear whether the full-rank
assumption is essential or merely an artifact of limited proof techniques.) For example, if ρeq is
the ground state of the Hamiltonian of the medium, then σ = trRcρeq is full rank when the ground
state is sufficiently entangled between R and Rc, in the sense of having the maximal Schmidt
rank. Another example is when ρeq would be the Gibbs state of the medium Hamiltonian (i.e.
ρeq = e−βH/Z(β)). Whenever the underlying Hilbert space is finite-dimensional the Gibbs state
has to be full rank.

Appendix E. The generic non-zero classical capacity of quantum channels

Here, we briefly clarify the statement in the main text that the classical channel capacity in the
neighborhood of a replacement map generically is non-zero. This follows from the fact that a
quantum channel has zero classical capacity if and only if it is a replacement map. A direct
consequence of this is that every neighborhood of a replacement map consists almost only of
channels with non-zero classical capacity. The following proves that only replacement maps
have zero classical capacity.

The Holevo quantity [37, 38] of a channel is defined as

χ(8) := sup
px ,ρx

χ({px}x , {ρx}x ,8),

χ({px}x , {ρx}x ,8) := H

(
8

(∑
x

pxρx

))
−

∑
x

px H(8(ρx)),

where the supremum is taken over all possible px > 0,
∑

x px = 1, and density operators
ρx in the domain of the channel. The classical capacity C(8) of a quantum channel 8
is the regularized version of the Holevo quantity C(8)= limn→∞χ(8

⊗n)/n [37, 38].
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Clearly, every replacement map has zero capacity. For the converse, we note that C(8)>
χ(8)> 0. Furthermore, χ({px}x , {ρx}x ,8)= H(X : B)ρ̃ > 0, where H(X : B)ρ̃ := H(ρB)+
H(ρX)− H(ρX B) is the mutual information between X and B in the state ρ̃ :=

∑
x px |x〉〈x | ⊗

8(ρx), where {|x〉}x is an orthonormal basis in an auxiliary Hilbert space HX . By the condition
χ(8)= 0 we thus find that H(X : B)ρ̃ = 0 for all states ρ̃. We can conclude that ρ̃ must be a
product state for all choices of px and ρx , and thus 8 is a replacement map.
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