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ABSTRACT 13 
 14 
Most COVID-19 antibody therapies rely on binding the SARS-CoV-2 receptor binding domain (RBD). However, 15 
heavily mutated variants such as Omicron and its sublineages, which are characterized by an ever increasing number 16 
of mutations in the RBD, have rendered prior antibody therapies ineffective, leaving no clinically approved antibody 17 
treatments for SARS-CoV-2. Therefore, the capacity of therapeutic antibody candidates to bind and neutralize current 18 
and prospective SARS-CoV-2 variants is a critical factor for drug development. Here, we present a deep learning-19 
guided approach to identify antibodies with enhanced resistance to SARS-CoV-2 evolution. We apply  deep mutational 20 
learning (DML), a machine learning-guided protein engineering method to interrogate a massive sequence space of 21 
combinatorial RBD mutations and predict their impact on angiotensin-converting enzyme 2 (ACE2) binding and 22 
antibody escape. A high mutational distance library was constructed based on the full-length RBD of Omicron BA.1, 23 
which was experimentally screened for binding to the ACE2 receptor or neutralizing antibodies, followed by deep 24 
sequencing. The resulting data was used to train ensemble deep learning models that could accurately predict binding 25 
or escape for a panel of therapeutic antibody candidates targeting diverse RBD epitopes. Furthermore, antibody breadth 26 
was assessed by predicting binding or escape to synthetic lineages that represent millions of sequences generated using 27 
in silico evolution, revealing combinations with complementary and enhanced resistance to viral evolution. This deep 28 
learning approach may enable the design of next-generation antibody therapies that remain effective against future 29 
SARS-CoV-2 variants.  30 
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INTRODUCTION 31 

The onset of the COVID-19 pandemic spurred the rapid discovery, development and clinical approval of several 32 

antibody therapies. The monoclonal antibody LY-CoV555 (bamlanavimab) (Eli Lilly)1 and the combination therapy 33 

consisting of REGN10933 (casirivimab) and REGN10987 (imdevimab) (Regeneron)2 were among the first to receive 34 

Emergency Use Authorization (EUA) from the United States FDA in late 2020. The primary mechanism of action 35 

for these therapies consist of virus neutralization by binding to specific epitopes of the RBD of SARS-CoV-2 spike 36 

(S) protein, thus inhibiting viral entry into host cells via the ACE2 receptor. However, the emergence of SARS-CoV-37 

2 variants such as Beta, Gamma and Delta, each characterized by numerous mutations in the RBD, exhibited reduced 38 

sensitivity to neutralizing antibodies, including LY-CoV5553,4, whose EUA was subsequently revoked. Of note, 39 

antibody combination therapies such as those from Regeneron and Eli Lilly (LY-CoV555+LY-CoV16 (etesevimab)) 40 

were more resilient to viral variants and maintained their EUA throughout most of 20213. However, the emergence 41 

and rapid spread of Omicron BA.1 in late 2021, a variant which has a staggering 35 mutations in the S protein, 15 of 42 

which are in the RBD resulted in substantial escape from nearly all clinically approved antibody therapies5. This 43 

includes the combination therapies from Regeneron and Eli Lilly, which also had their EUAs subsequently revoked6. 44 

Even antibody therapies with exceptional breadth, which were initially discovered against the ancestral SARS-CoV-2 45 

(Wu-Hu-1) and retained neutralizing activity against BA.1 – S309 (sotrovimab) (GSK/Vir)7 and LY-CoV1404 46 

(bebtelovimab) (Eli Lilly)8 – lost efficacy against subsequent Omicron sublineages (e.g., BA.2, BA.4/5, and 47 

BQ.1.1)9,10 and had their clinical use authorization revoked. Despite there being a critical need for antibody therapies 48 

for the protection of at-risk populations (young children, the elderly, individuals with chronic illnesses, and those 49 

with weakened immune systems)11–15, since March 2023, there are no antibody therapies with an active clinical 50 

authorization for COVID-1916. 51 

The ephemeral clinical life span of COVID-19 antibody therapies has emphasized that, in addition to established 52 

metrics for antibody therapeutics (e.g. neutralization potency, affinity, and developability)17, it is imperative to 53 

evaluate antibody breadth (ability of an antibody to bind to divergent SARS-CoV-2 variants) at early stages of 54 

clinical development. This may enable selection of lead candidates that have the most potential to maintain activity 55 

against a rapidly mutating SARS-CoV-2. To address this, high-throughput protein engineering techniques such as 56 

deep mutational scanning (DMS)18 have been extensively employed to profile the impact of single position mutations 57 

in the RBD on ACE2-binding and antibody escape5,19–24. While DMS has proven effective for profiling single 58 

mutations, many SARS-CoV-2 variants that have emerged possess multiple mutations in the RBD. For example the 59 

aforementioned Omicron BA.1 lineage, or the recently identified BA.2.86, which possesses an astonishing 13 RBD 60 

mutations relative to its closest Omicron variant (BA.2) and 26 RBD mutations relative to ancestral Wu-Hu-125–27. 61 

Experimental screening of combinatorial RBD mutagenesis libraries (e.g., using yeast surface display) vastly 62 

undersamples the theoretical protein sequence space, therefore computational approaches are increasingly being 63 

employed in concert. For instance, experimental measurements such as DMS data have been used to calculate 64 

statistical estimators28 or to train machine learning models that make predictions on ACE2 binding and antibody 65 

escape29–31. While such computational tools enable interrogation of a larger mutational landscape of SARS-CoV-2, 66 

their primary reliance on datasets that largely consist of single mutations from DMS experiments limits their ability 67 

to capture the effects of combinatorial mutations, especially in the context of high mutational variants such as 68 

Omicron sublineages (e.g., BA.1, BA.4/5, BA.2.86).  69 

 70 
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Here, we apply deep mutational learning (DML), which combines yeast display screening, deep sequencing and 71 

machine learning to address the emergence of Omicron BA.1 and its many sublineages. We expand the scope of 72 

DML from screening short, focused mutagenesis libraries32 to screening combinatorial libraries spanning the entire 73 

RBD for binding to ACE2 or binding/escape from antibodies. Ensemble deep learning models utilizing dilated 74 

residual network blocks were trained with deep sequencing data and shown to make accurate predictions for ACE2 75 

binding and antibody escape. Next, deep learning was used to determine the breadth of second-generation antibodies 76 

(with known binding to BA.1) across a massive sequence landscape of BA.1-derived synthetic lineages, allowing the 77 

rational selection of specific antibody combinations that optimally cover the RBD mutational sequence space. This 78 

approach provides a powerful tool to guide the selection of antibody therapies that have enhanced resistance to both 79 

current and future high mutational variants of SARS-CoV-2.  80 

 81 

RESULTS 82 

Design and construction of a high distance Omicron BA.1 RBD library 83 

A mutagenesis library was constructed based on BA.1, covering the entire 201 amino acid (aa) RBD region 84 

(positions 331 - 531 of SARS-CoV-2 S protein). To maximize the interrogated RBD sequence space, the library 85 

design was entirely synthetic and unbiased, as it did not consider evolutionary data or previous experimental 86 

findings. For the construction of the library, the RBD sequence was split into 11-12 fragments, each with an 87 

approximate length of 48 nucleotides (nt) (Supplementary Table 1). For each fragment, 136 different single-stranded 88 

oligonucleotides (ssODN) were designed, where each ssODN had either one codon or all combinations of two 89 

codons replaced by fully degenerate NNK codons (N = A, G, C, or T; K = G or T) (Fig. 1a) (Methods). For each 90 

fragment, ssODNs were amplified using PCR to generate double-stranded DNA. Each fragment was flanked by 91 

recognition sites for the type II-S restriction enzyme BsmBI, thus enabling assembly into full-length RBD regions by 92 

Golden Gate assembly (GGA)33. GGA utilizes type II-S restriction enzymes capable of cleaving DNA outside their 93 

recognition sequence, thereby allowing the resulting DNA overhangs to have any sequence. Based on the overhangs, 94 

individual fragments were assembled by DNA ligase to full-length RBD sequences with high fidelity34,35. The 95 

restriction sites were eliminated during the process, thus enabling scarless assembly of full length RBD sequences 96 

(Fig. 1b, Methods)34. This approach yielded approximately 98% correctly assembled RBD sequences 97 

(Supplementary Fig. 1). Since GGA required four nt homology between individual fragments for ligation, this led to 98 

portions of the sequence which needed to remain constant, thereby restricting library diversity36. To overcome this 99 

limitation, four sub-libraries were designed and individually assembled. Using sub-library 1 as a reference, sub-100 

library 2 is shifted by 12 nt, sub-library 3 by 24 nt and sub-library 4 by 36 nt. These sub-libraries provided an 101 

increase in the mutational space covered by the RBD combinatorial mutagenesis library, since at the GGA homology 102 

for a given library, the remaining three libraries can have mutations (Fig. 1c).  103 
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 104 
 105 
Figure 1. Construction of a high edit distance (ED) synthetic variant library based on Omicron BA.1 RBD. a, 106 
The RBD sequence was split into 11-12 fragments, each being approximately 48 nt in length. For each fragment, a 107 
ssODN library with either zero, one or two mutations was designed. b, To introduce mutations, NNK codons were tiled 108 
across the fragments (1). Each fragment was flanked by BsmBI sites (2). The ssODNs were flanked by primer binding 109 
sites for double stranded synthesis through PCR (primers are represented by black arrows and primer binding sites 110 
are peach colored) (3). The type II-S restriction enzyme BsmBI gives rise to orthogonal four nt overhangs, which are 111 
used by a ligase to assemble individual fragments into full-length RBD sequences (4). c, The use of GGA for library 112 
construction required the presence of constant regions for ligation between fragments (in black), thereby restricting 113 
the library diversity. To overcome this drawback, four staggered sub-libraries were constructed. Due to limitations in 114 
sequencing length, it was further necessary to split the RBD into two separate libraries. The extent of seq-library A is 115 
indicated in orange and seq-library B in cyan. The primer binding sites for deep sequencing are indicated using 116 
orange and cyan arrows. d, Targeted sequencing of seq-libraries A and B showed comprehensive mutational 117 
coverage for both libraries. The same color scheme as in (c) was used to indicate the extent of both libraries. e, To 118 
adjust the mutational rate of the library, three different conditions were tested. Different amounts of fragments with 119 
zero, one or two mutations were pooled in different ratios which yielded libraries with different mutational distributions. 120 
 121 

The current read length of Illumina does not allow coverage of the entire RBD with a single sequencing read (paired-122 

end). Therefore, two separate sequencing libraries (seq-library A and B) were individually constructed. The seq-123 

library A and B possessed mutations in positions 331 - 475 and 386 - 531, respectively (Fig. 1c). The seq-libraries 124 

were constructed separately but all subsequent steps were performed in a pooled fashion. Following deep 125 

sequencing, complete mutational coverage for each residue was observed in both seq-libraries (Fig. 1d). 126 

Interestingly, the mutational frequency is somewhat variable across the seq-libraries, showing a marked decrease in 127 
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mutations every 16 residues. The low mutational frequencies line up with GGA homologies of sub-library 1. We 128 

hypothesize that when pooling the sub-libraries, sub-library 1 was more prominent than the other sub-libraries and 129 

therefore less mutations at these sites are observed.  130 

 131 

Next, to optimize the number of mutations per RBD sequence, titration of the fragment assembly step was 132 

performed. Wild-type (WT) fragments (BA.1 sequence) and fragments with one and two mutations respectively were 133 

pooled in different ratios for assembly. Separately, assembly was performed with 60%, 70% and 80% of WT 134 

fragments, with the remaining percentage split evenly between fragments with one and two mutations. Deep 135 

sequencing of these libraries revealed a clear trend in mutational distribution based on the different ratios, 136 

highlighting the tunable nature of our approach. Based on these results, all subsequent work was carried out using the 137 

60% WT library as it has the highest mean number of mutations, therefore providing an appropriate approximation 138 

for extensively mutated Omicron sublineages.  139 
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Figure 2. Screening RBD libraries for ACE2 binding and antibody escape by yeast display and deep 141 
sequencing. a,b, Workflow for sorting of yeast display RBD libraries and FACS dot plots for a, ACE2 and b, 142 
antibodies Brii-198 and ZCB11. Gating schemes correspond to binding and non-binding (escape) RBD variant 143 
populations. c,d,e Heatmaps depict the binding score of each aa per position of full-length RBD following sorting and 144 
deep sequencing of libraries for c, ACE2 d, Brii-198 e, and ZCB11; higher binding score indicates greater frequency in 145 
the binding population vs non-binding population. WT BA.1 residues are in gray. f, Heatmaps for seq-libraries A and B 146 
depict binding scores for ACE2 and antibodies of key mutations seen in major Omicron sublineage variants.  147 

 148 

Screening RBD libraries for ACE2 binding and antibody escape 149 

Co-transformation of yeast cells (S. cerevisiae, strain EBY100) using the PCR amplified RBD library and linearized 150 

plasmid yielded more than 2 x 108 transformants (Methods). Yeast surface display of RBD variants was achieved 151 

through C-terminal fusion to Aga237. Next, fluorescence-activated cell sorting (FACS) was used to isolate yeast cells 152 

expressing RBD variants that either retained binding or completely lost binding to dimeric soluble human ACE2 153 

(Fig. 2a). Notably, RBD variants with only partial binding to ACE2 were not isolated, as such intermediate 154 

populations could not be confidently classified as either binding or non-binding. Removing these variants is essential 155 

to obtain cleanly labeled datasets for training supervised machine learning models.  156 

 157 

Since binding to ACE2 is a prerequisite for cell entry and subsequent viral replication, only this population is 158 

biologically relevant. Thus, only the ACE2-binding population was used in following FACS sorts to isolate RBD 159 

variants that either retained binding or completely lost binding (escape) activity to a panel of eight neutralizing 160 

antibodies (Fig. 2b, Supplementary Fig. 2 and Supplementary Table 2). The antibodies selected target different 161 

epitopes, and are well characterized for their neutralizing activity to BA.1 and its sublineages, which provide a good 162 

internal control to assess the accuracy of our method38–40. The panel consists of the following antibodies: A23-58.141, 163 

COV2-219642, Brii-19843, ZCB1144, 2-745, S2X25946, ADG2047, and S2H9720. 164 

 165 

Following ACE2 and monoclonal antibody sorting, pure populations of RBD variants (binding and non-binding) 166 

were subjected to deep sequencing (Supplementary Table 3). Reads covering the RBD sequence were then extracted 167 

from the NGS data and heatmaps were constructed depicting binding scores (relative aa frequencies per position in 168 

the RBD of binding vs non-binding variants) (Fig. 2c-e and Supplementary Fig. 3). The heatmaps demonstrate nearly 169 

complete coverage of mutations across the RBD within all sorted populations. A heterogeneous distribution of 170 

mutations is observed for ACE2 binding, with no specific positions or mutations showing dominance (Fig. 2c). This 171 

agrees with previous studies that suggest the Q498R and N501Y mutations present in BA.1 exhibit strong epistatic 172 

effects that compensate for many mutations that cause loss of binding48. In contrast, for certain antibodies, clear 173 

mutational patterns could be observed, including escape mutations that correspond with previous DMS studies (Fig. 174 

2d-f and Supplementary Fig. 3). For example, RBD escape variants for Brii-198 are enriched for mutations in 175 

positions 346 and 452 (Fig. 2d), which are present in BA.1 and BA.4/BA.5, respectively and correspond to previous 176 

work that shows they drive a drastic loss of binding to Brii-19849. In contrast, enrichment of these escape mutations 177 

are not observed for antibody 2-7 (Supplementary Fig. 3), even though Brii-198 and 2-7 share a similar epitope, 178 

suggesting that the binding modality between these two antibodies are different, which is also reflected by their 179 

difference in resistance to Omicron variants (e.g., 2-7 shows strong binding to BA.2 and BA.4/BA.5, while Brii-198 180 

does not bind BA.2.12 and BA.4/BA.5)39,50. Similarly, the F486V mutation, which has been demonstrated to 181 

drastically reduce the neutralization potency of ZCB11 by over 2000-fold10, is highly enriched in the RBD escape 182 

population (Fig. 2e, f). These mutations are also seen in A23-58.1 and COV2-2196, which bind to a similar epitope 183 
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(Supplementary Fig. 3). Lastly, for ADG20, we observe a high enrichment of escape mutations in 408(Fig. 2f, 184 

Supplementary Fig. 3); this position is also mutated in BA.2 and BA.4/BA.5 variants, which have been shown to 185 

have drastically reduced neutralization by ADG2010.  186 

 187 

While heatmap analysis allows specific mutational patterns to be linked with antibody escape profiles, the high-188 

dimensional nature – and potentially higher order impact – of combinatorial mutations is not reflected in this format. 189 

It is apparent that protein epistasis and combinatorial mutations can modify the effect of known escape mutations, 190 

either amplifying or reducing antibody binding. For example, individual RBD mutations (G339D, S371F, S373P, 191 

S375, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H) in BA.1 and 192 

BA.1.1 do not enhance escape to COV2-2196, with each mutation causing an average fold reduction of 2.2, but 193 

together cause over 200-fold reduction in neutralization51. Conversely, the introduction of the single R493Q mutation 194 

in BA.2 substantially rescued the neutralizing activities of Brii-198, REGN10933, COV2-2196 and ZCB1110.  Thus, 195 

while the heatmaps indicate specific mutational contributions to antibody escape, other techniques such as deep 196 

learning are required to capture the high-dimensional nature of combinatorial mutations, and generalize to future 197 

mutations. 198 

 199 

 200 
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Figure 3. Training and testing of deep learning ensemble models for prediction of ACE2 binding and antibody 201 
escape based on full-length RBD sequences. a, Deep sequencing data of sorted yeast display libraries are 202 
encoded by one-hot encoding and used to train CNN models with several dilated convolutional residual blocks. The 203 
models perform a final classification by predicting binding or non-binding to ACE2 or antibodies based on the encoded 204 
RBD sequence. b, Performance of CNN models trained on all datasets shown by accuracy, Matthews Correlation 205 
Coefficient (MCC) and precision. Scores are a result of five rounds of cross-validation with mean performance 206 
displayed, and standard deviation indicated by error bars. c, Majority voting by an ensemble of models is used to 207 
determine the final label for each variant. d, Predicted labels of antibodies to well-characterized Omicron variants; 208 
colors indicate final labels, and mis-classifications are marked with an “X”. e, Comparison of predicted labels to 209 
experimental Kd reported in He et al. (2023)39 for antibodies 2-7, COV2-2196, S2H97, and S2E12 (as a proxy for A23-210 
58.1), region highlighted in gray indicates model “sensitivity” threshold. 211 

 212 

Deep learning ensemble models accurately predict ACE2 binding and antibody escape 213 

To address the high dimensionality of our dataset and to understand epistatic effects between mutations in the full 214 

RBD mutational sequence space, which is far too vast to be comprehensively screened experimentally, we trained 215 

deep learning ensemble models. Deep sequencing data from FACS-isolated yeast populations underwent pre-216 

processing and quality filtering prior to being used as training data for machine learning. In the datasets for all 217 

antibodies, using the BA.1 RBD sequence as a reference, the mean rate of mutations ranged between ED two (ED2) 218 

and three ED3, with a max ED8 (Methods and Supplementary Fig. 5 and 6). Following nucleotide to protein 219 

translation, one-hot encoding was performed to convert aa sequences into an input matrix for machine and deep 220 

learning models (Fig. 3a). Supervised machine learning models were trained to predict the probability (P) that a 221 

specific RBD sequence will bind to ACE2 or a given antibody. A higher P signifies a stronger correlation with 222 

binding, whereas a lower P corresponds to non-binding (escape). The machine learning models tested included K-223 

nearest neighbor (KNN), logistic regression (Log Reg), naive Bayes (NB), support vector machines (SVM) and 224 

Random Forests (RF). Additionally, as a baseline for deep learning models, a multilayer perceptron (MLP) model 225 

was also tested. Finally, we implemented a convolutional neural network (CNN) inspired by ProtCNN52, which 226 

leverages residual neural network blocks and dilated convolutions to learn global information across the full RBD 227 

sequence (Fig. 3a).  228 

 229 

Each model was trained using an 80/10/10 train-validate-test split of data. Inputs were one-hot encoded RBD 230 

sequences, with the CNN using a 2D matrix and others using a 1D flattened vector. For initial benchmarking, a 231 

collection of different baseline machine learning models were trained on each dataset with hyperparameter 232 

optimization through random search, and were evaluated with 5-fold cross validation based on several common 233 

metrics (accuracy, F1, MCC, precision and recall). In the baseline machine learning models, class balancing was 234 

achieved by random subsampling from the majority class. Unsampled majority class sequences were set aside and 235 

merged with the held-out test set for use in model evaluation. Following training, most of the baseline models 236 

resulted in relatively high accuracy scores (0.7-0.9) across all datasets, however for smaller datasets (under 20,000 237 

sequences) substantially lower values of F1 (0.2-0.3) and MCC (0.2-0.4) were observed (Supplementary Fig. 7). In 238 

contrast, the baseline MLP and CNN deep learning models performed substantially better, including large 239 

improvements in F1 and MCC scores (Fig. 3b and Supplementary Fig. 7). While in most cases, the MLP models 240 

resulted in relatively high MCC scores (up to > 0.9), CNN models performed substantially better, with MCC scores 241 

up to 0.15 higher than MLPs (Supplementary Fig. 7).  242 

 243 

Having determined that the CNN models performed superior to the machine learning models and MLP, we next 244 

applied an exhaustive hyperparameter search on CNN models to optimize their performance (Supplementary Table 245 
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4). Training data was balanced through rejection sampling, while the held-out test set remained imbalanced to 246 

accurately evaluate F1 and MCC scores. To prevent data leakage during training, the held-out test set was fixed and 247 

multiple models were trained on different training-validation splits of the remaining dataset to make sure each model 248 

learned slightly different parameters of the data. When tested on the held-out test set, the final models yielded robust 249 

predictive performance up to an ED of eight from the WT BA.1 sequence (Supplementary Fig. 8). 250 

 251 

For our final ensemble, we selected three CNN models from each library with the highest MCC scores to  252 

generate the predicted labels for each variant through majority voting (Fig. 3c). In short, each model outputs P of 253 

binding for each input sequence, and labels are assigned based on a threshold. Here, P > 0.75 was classified as 254 

binding, P < 0.25 was classified as non-binding (escape), and those in between were labeled as “uncertain”. The final 255 

classification label was taken as the majority label across the three models. An RBD variant was assigned a predicted 256 

“escape” label if either the ensemble models of seq-library A or seq-library B predicted escape, and assigned a 257 

predicted “binding” label only if both models predicted binding. This leads to a more conservative prediction of 258 

antibody binding to variants, and minimizes false-positives. We tested the performance of the ensemble models on 259 

published experimental data of antibody binding (or neutralization) to Omicron sublineages10,38,49,53–56. In general, the 260 

ensemble model predictions performed well, assigning accurate labels to over 80% of the antibody-variant pairs, 261 

with only four mis-classifications (Fig. 3d). Three of these mis-classifications were false-negatives, which is likely 262 

due to the more conservative approach used for binding classification (Fig. 3d, Supplementary File). Comparing 263 

model predictions with published data on antibody affinity values (equilibrium dissociation constant, Kd), revealed 264 

that uncertain and mis-classifications were confined to antibodies with intermediate affinities (Kd = 75 - 250 nM), 265 

suggesting that there may be a sensitivity limit correlated with lower antibody affinity (Fig. 3e).  266 
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Figure 4. Evaluating antibody breadth on synthetic Omicron lineages. a, Example of a synthetic lineage tree of 268 
sequences generated containing mutations unseen in major Omicron variants, with heatmap indicating the deep 269 
learning predictions of binding or escape for individual antibodies. b, Total mean predicted breadth of individual 270 
antibodies and combinations on synthetic lineages generated from 2022 mutational probabilities. c, The fraction (%) of 271 
sequences bound by individual antibodies at different ED from BA.1. d, UMAP displays a subsample of ZCB11 272 
escape variants in protein sequence space with antibody-specific binding clusters highlighted. e, Sequence logos 273 
show the top 25 positions with greatest Kullback-Leibler (KL)-divergence in ZCB11 escape variants at ED6, and 274 
sequences re-captured by Brii-198, ADG20 and A23-58.1. f, The top 50 predicted mutations ranked by their escape 275 
scores (see Methods) from the generated synthetic lineages, with new mutations seen in the BA.2.86 variant 276 
highlighted. 277 

 Designing antibody combinations by predicting resistance to synthetic Omicron lineages  278 

After validating the performance of CNN models on test and validation data, we next deployed them to evaluate the 279 

resistance of antibodies to viral evolution. While antibody breadth is normally evaluated retroactively based on 280 

neutralization or binding to previously observed variants, here we aimed to leverage this machine learning-guided 281 

protein engineering approach to prospectively characterize and assess the breadth of antibodies against Omicron 282 

variants that may emerge in the future. This was achieved by generating synthetic lineages stemming from BA.1. 283 

Since the potential sequence space of combinatorial RBD mutations is exceedingly massive, it was necessary to 284 

reduce this to a relevant subspace, therefore mutational probabilities were calculated across the RBD using SARS-285 

CoV-2 genome sequencing data (available on Global Initiative on Sharing Avian Influenza Data, GISAID 286 

[www.gisaid.org]) and used to generate synthetic lineages that mimic natural mutational frequencies. Starting with 287 

the BA.1 sequence, mutational frequencies from 2021 and 2022 were utilized to generate ten sets of 250,000 288 

synthetic RBD sequences through six rounds of in silico evolution, where the 100 variants with the highest predicted 289 

score for ACE2 binding (averaged across the ensemble CNN models) in each round were used as seed sequences for 290 

the next round of mutations. Next, the ensemble deep learning models were used to predict antibody binding or 291 

escape (or uncertain classification) for the synthetic variants. This provides an estimation of each individual 292 

antibody’s binding breadth in the generated sequence space and thus correlates with resistance to prospective 293 

Omicron lineages (Fig. 4a,b, Supplementary Fig. 9).  294 

 295 

Since several of the clinically used antibody therapies for COVID-19 consisted of a cocktail of two antibodies (e.g., 296 

LY-CoV555+LY-CoV16, REGN10933+REGN10987, COV2-2130+COV2-2196), we also determined antibody 297 

breadth across all two-way combinations. For the 2022-based synthetic lineages, ZCB11 showed the greatest 298 

predicted breadth, followed by A23-58.1, Brii-198 and ADG20 (Fig. 4b). The ensemble models predict very low 299 

breadth for 2-7 and COV2-2196, despite both maintaining binding to BA.2 and beyond39. This is likely due to the 300 

high uncertainty of these models. The predicted coverage of ZCB11 corresponds well with experimental 301 

measurements that show it maintains high affinities and neutralization to several Omicron variants (BA.2, BA.4/5)10. 302 

Similarly, Brii-198 and A23-58.1 have been shown to bind BA.2, BA.2.12 and BA.2.75 variants40, aligning with the 303 

predictions of their relatively high breadth. Examining breadth profiles of each antibody as a function of ED revealed 304 

differing profiles, such as ZCB11 and Brii-198 maintaining high breadth at larger ED (>ED4), while A23-58.1 and 305 

ADG20 have substantially lower breadth at large ED (Fig. 4c). The predicted breadth of several antibodies were 306 

substantially different for synthetic lineages generated using 2021 mutational probabilities. For example, the breadth 307 

of ADG20 is substantially higher as it is predicted to bind over 50% of variants, while the breadth of Brii-198 and 308 

A23-58.1 is reduced by 9% and 15%, respectively (Supplementary Fig. 9 and 10). This suggests that correctly 309 

anticipating antigenic drift and changes in mutational frequencies play an important role in determining breadth 310 

predictions.  311 
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 312 

It is worth noting that calculating the breadth of antibody combinations is not simply additive. For example, while 313 

Brii-198 ranks lower than A23-58.1 in total breadth, Brii-198 provides more complementary coverage to ZCB11 314 

(Brii-198 binds to more variants that escape ZCB11), resulting in an overall increase in variant coverage in a 315 

simulated cocktail. Examining the distribution of escape variants for ZCB11 at ED6, where it sees its most significant 316 

breadth reduction— the three other highly ranked antibodies (A23-58.1, Brii-198 and ADG20) re-establish coverage 317 

over unique clusters in the sequence space (Fig. 4d). However, only ADG20 and Brii-198 cover and mitigate variants 318 

that include the key F468V mutation (e.g., BA.4/5). Furthermore, Brii-198 covers the most diverse clusters that 319 

contain additional critical mutations at the F468 position, in addition to the surrounding residues in this epitope (Fig. 320 

4e and Supplementary Fig. 11). Thus, while any of the three antibodies would be complementary to ZCB11 by 321 

nature of targeting a different epitope10, our breadth analysis aids in identifying the most complementary antibody by 322 

variant coverage. 323 

 324 

To quantify the impact of how individual mutations can drive antibody escape, an escape score (𝑆_𝑚^	)	was 325 

computed for each mutation (𝑚) within the synthetic lineages. This metric is a normalized product of the number of 326 

antibodies escaped by a given mutation and the mutation's frequency within the lineage (see Methods). When 327 

examining individual RBD mutations across the synthetic lineages (Fig. 4f), it was revealed that T523P has the 328 

highest escape score. Comparatively, DMS results showed that mutations at position 523 have a slightly negative 329 

influence on RBD protein expression level 19, which may explain its low occurrence in natural variants, having only 330 

been observed in 70 sequences in the GISAID database. Furthermore, the combination of D339R, F486A and T523P 331 

mutations in the simulated BA.1 lineages caused the most antibody escape among mutations not previously observed 332 

in major variants (Fig. 4f). Out of these, the positions 339 and 486 are mutated in BA.2.75 and XBB and their 333 

sublineages. The top 50 mutations with the highest escape scores include K356T and R403K, which are present in 334 

the recently reported and highly mutated BA.2.86 variant and had not been previously reported in any other major 335 

variant (Fig. 4f). Additionally, positions V445 and N481 were also mutated in BA.2.86. Taken together, this suggests 336 

that DML-derived escape scores may reveal mutations or positions that emerge in future variants.  337 

 338 

DISCUSSION 339 

The emergence of SARS-CoV-2 lineages with a high number of mutations has resulted in substantial viral immune 340 

evasion, including ineffective neutralization by previously developed therapeutic antibodies5. This rapid pace of viral 341 

evolution has underscored the need for novel approaches to adequately profile antibody candidates and predict their 342 

robustness to emerging variants early on during drug development. To this end, we leverage DML, a machine 343 

learning-guided protein engineering method to prospectively evaluate clinically relevant antibodies for their breadth 344 

against potential future Omicron variants across a large mutational sequence space.  345 

 346 

We first demonstrate the feasibility of assembling full-length RBD mutagenesis libraries with high fidelity using a 347 

large number of relatively short ssODNs in a one-pot reaction and obtaining library sizes in excess of 108. This is 348 

despite the fact that previous studies have reported a decrease in GGA when increasing the number of DNA 349 

fragments39. Screening of these libraries for ACE2 binding and antibody escape yielded high-dimensional data sets 350 

with combinatorial mutations spanning the entire RBD sequence, which is not obtainable through frequently 351 

employed approaches such as DMS. In addition, the RBD library design can be updated to accommodate mutations 352 
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present in emerging variants, and the average number of mutations can be titrated to generate data suitable for the 353 

training of machine learning models. This library design and screening approach could also be exploited to profile 354 

viral surface proteins from other rapidly evolving viruses such as influenza or HIV, two viruses which undergo 355 

substantial antigenic drift that drives their immune escape57–59.  356 

So far, the breadth of SARS-CoV-2 therapeutics has been assessed through the use of past variants and observed 357 

mutations20,60–62. Measuring breadth in this way does not adequately predict long-term resistance against future 358 

variants. The deployment of ensemble deep learning models to make predictions on synthetic mutational trajectories 359 

of the RBD enabled an effective quantitative method to evaluate the breadth of each antibody based on its coverage 360 

of RBD mutational sequence space. DML predictions confirm that ZCB11 has exceptionally broad breadth to major 361 

Omicron lineages that emerged in 2022, while many other antibodies fail against Omicron variants39. Furthermore, 362 

our results suggest that the standard structure-based approach of selecting antibodies targeting different epitopes in a 363 

cocktail does not sufficiently determine which combinations offer the most cumulative breadth. High breadth 364 

cocktails would ensure that even if a variant escapes one antibody in the cocktail, it has a high chance to be re-365 

captured by the other antibody - thus potentially maintaining the clinical effectiveness of the therapy. For example, 366 

this occured with the combination antibody therapy from Eli Lilly (LY-CoV555+LY-CoV16), which continued to be 367 

used clinically when only a single antibody in the combination was effective after the emergence of Beta, Gamma 368 

and Delta variants22,63. Interestingly, a comprehensive search through a SARS-CoV-2 antibody database (Cov-369 

AbDab, accessed April 2023)64 reveals that a number of neutralizing antibodies discovered early in the pandemic 370 

from patients infected with the ancestral Wu-Hu-1 are still able to neutralize Omicron variants such as BA.5, BQ.1 371 

and XBB.1. DML could therefore be a powerful tool to identify such variant-resistant antibodies for therapeutic 372 

development.  373 

 374 

Analysis of DML breadth predictions also highlights specific and positional mutations that are associated with 375 

greater immune escape, with four such mutations being observed in the recently discovered and highly mutated 376 

BA.2.86 variant. In contrast, other recently published deep learning methods, which rely on models trained using a 377 

combination of DMS and protein structure data, were able to only correctly forecast one new mutation each that 378 

appeared in the XBB.1.5 and BQ.1 variants, respectively30,31,65. While this demonstrates the value of using protein 379 

structural information to better infer higher-order effects between mutations, these models are still limited by the use 380 

of low-distance (most often single-mutation) DMS data. Thus, it would be worthwhile to explore whether the use of 381 

combinatorial DML data can further improve the accuracy and forecasting performance of models trained using a 382 

multi-task objective, similar to those mentioned above.  383 

  384 

The accuracy of antibody breadth predictions is dependent on having an accurate forecast of future mutations in the 385 

RBD. The use of deep learning models that predict ACE2 binding allowed us to capture evolutionary pressures 386 

correlated with host receptor binding, which is a mandatory feature of any emerging SARS-CoV-2 variant66. 387 

However, a myriad of other factors impact antigenic drift and variant emergence, such as transmissibility, host cell 388 

infectivity, crossover, reproductive rate, etc.67, thus generating training data related to these factors, for example 389 

through the use of an advanced pseudovirus mutational library screening system68, may further support the 390 

generation of deep learning models that can predict future mutations and variants with higher accuracy.  391 

 392 
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METHODS 393 

Construction of a high distance Omicron RBD library for yeast surface display 394 

Synthetic ssODNs (oPools from IDT) were designed with either one or all possible combinations of two degenerate 395 

NNK codons for each fragment (Supplementary Table 1). For each fragment, 136 ssODNs were designed (16 single 396 

NNK codons and 120 (= (!"# )) double NNK codon combinations). Each fragment was flanked by BsmBI recognition 397 

sites and ~20 nt for second strand synthesis through PCR. For high fidelity library assembly, the overhangs were 398 

optimized using the NEB ligase fidelity viewer (https://ligasefidelity.neb.com/viewset/run.cgi). Using the NEBridge® 399 

Golden Gate Assembly Kit (NEB, E1602), individual fragments were assembled to full-length RBD gene segments. 400 

A custom entry vector based on pYTK001 (addgene, Kit #1000000061) was designed. Double stranded fragments 401 

were mixed with 75 ng entry vector in a 2:1 molar ratio. As suggested by the manufacturer’s instructions, 2 μL NEB 402 

Golden Gate Enzyme Mix was used. For the assembly, the following protocol was used: (42°C, 5 min → 16°C, 5 403 

min) x 30 → 60°C, 5 min. The assembled libraries were transformed into E. coli DH5α ElecroMAX (Thermo Fisher 404 

Scientific, 11319019), resulting in ~4 x 108 transformants. According to the manufacturer’s instructions (Zymo, 405 

D4201), the RBD library plasmid was extracted from E. coli.  406 

 407 

The RBD library was PCR amplified and the yeast display vector (pYD1) was linearized using the restriction 408 

enzyme BamHI (Thermo Fisher Scientific, FD0054). Both insert and backbone were column purified according to 409 

the manufacturer’s instructions (D4033) and drop dialyzed for 2 h using nuclease-free water (Millipore 410 

VSWP02500). The RBD library insert and linearized pYD1 backbone were co-transformed into yeast (S. cerevisiae, 411 

strain EBY100) using a previously described protocol69. Briefly, EBY100 (ATCC, MYA-4941) was grown overnight 412 

in YPD [20 g/L glucose (Sigma-Aldrich, G8270), 20 g/L vegetable peptone (Sigma-Aldrich, 19942), and 10 g/L 413 

yeast extract (Sigma-Aldrich, Y1625) in deionized water]. On the day of the library preparation, yeast cells from the 414 

overnight culture were inoculated in 300 mL YPD at an OD600 of 0.3. The cells were grown to an OD600 of 1.6 before 415 

washing the cells twice with 300 mL ice cold 1 M Sorbitol solution (Sigma-Aldrich, S1876). In a subsequent step, 416 

the cells were conditioned using a solution containing 100 mM lithium acetate (Sigma-Aldrich, L6883) and 10 mM 417 

DTT (Roche, 10197777001) for 30 min at 30 °C. This was followed by a third wash using 300 mL ice cold 1 M 418 

Sorbitol solution. Using 50 μg insert and 10 μg pYD1 backbone, electrocompetent EBY100 were transformed using 419 

2 mm electroporation cuvettes (Sigma-Aldrich, Z706086). The cells were recovered for 1 h in in recovery medium 420 

(YPD:1 M Sorbitol solution mixed in a 1:1 ratio) before passageing the cells into selective SD-CAA medium [20 g/L 421 

glucose (Sigma-Aldrich, G8270), 8.56 g/L NaH2PO4·H2O (Roth, K300.1), 6.77 g/L Na2HPO4·2H2O (Sigma-Aldrich, 422 

1.06580), 6.7 g/L yeast nitrogen base without amino acids (Sigma-Aldrich, Y0626) and 5 g/L casamino acids (Gibco, 423 

223120) in deionized water]. The cells were grown for 2 days at 30 °C. To estimate the transformation efficiency, 424 

dilution plating was performed. Approximately 2 x 108 transformants were obtained. 425 

 426 

Screening RBD libraries for ACE2-binding or non-binding 427 

Yeast cells containing the RBD library plasmid were grown in SD-CAA for 18 - 24 h at 30°C. Surface display of 428 

Omicron RBD was induced by passageing the cells into SG-CAA medium [20 g/L galactose (Sigma-Aldrich, 429 

G0625), 8.56 g/L NaH2PO4·H2O, 6.77 g/L Na2HPO4·2H2O, 6.7 g/L yeast nitrogen base without amino acids and 5 430 

g/L casamino acids in deionized water]. The cells were incubated at 23°C for 48 hours, as previously described37. 431 

Approximately 109 cells were spun down by centrifugation at 3500 x g for 3 min and washed once with 5 mL cold 432 

wash buffer [DPBS (PAN Biotech, P04-53500)+0.5% BSA (Sigma-Aldrich, A2153)+2 mM EDTA (Biosolve, 433 
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051423)+0.1% Tween20 (Sigma Aldrich, P1379)]. Next, cells were labeled with 50 nM of biotinylated human ACE2 434 

protein (Acro Biosystems, AC2-H82E6) for 30 minutes at 4°C at 700 RPM on a shaker (Eppendorf, ThermoMixer 435 

C). The cells were subsequently washed. In a secondary staining step, cells were labeled with Streptavidin-436 

Phycoerythrin (PE) (Biolegend 405203) (1:80 diluted) and anti-FLAG Tag Allophycocyanin (APC) (Biolegend 437 

637308) (1:200 dilution) at 4°C for 30 min at 700 RPM. Afterwards, cells were centrifuged at 3500 x g for 3 min. 438 

The supernatant was discarded and the tube was protected from light and stored on ice until sorting. Binding 439 

(PE+/APC+) and non-binding (PE-/APC+) populations of yeast cells were collected by FACS (BD FACSAria 440 

Fusion or BD Influx) (Fig. 2a,b and Supplementary Fig. 2). Collected cells were pelleted at 3500 x g for 3 min to 441 

remove the FACS buffer. The cells were resuspended using SD-CAA and grown for two days at 30°C. The sorting 442 

process was repeated until the desired populations were pure. 443 

 444 

Screening RBD libraries for antibody binding or escape 445 

The ACE2-binding population of yeast cells expressing the RBD library was grown and induced as described above. 446 

Approximately 108 cells were pelleted by centrifugation at 3500 x g for 3 min at 4°C and washed once with 1 mL 447 

wash buffer. The washed cells were incubated with antibodies (concentrations listed in Supplementary Table 2). 448 

Suitable concentrations approximately corresponding to the EC90 were experimentally determined beforehand 449 

(Supplementary Fig. 12). Cells were incubated for 30 min at 4 °C and 700 RPM. After an additional washing step, a 450 

secondary stain was performed using 5 ng/ml anti-human IgG-AlexaFluor647 (AF647) (Jackson Immunoresearch, 451 

109-605-098) (1:200 dilution). The cells were incubated for 30 minutes at 4 °C and 700 RPM. Subsequently, cells 452 

were washed and stained in a tertiary staining step using 1 ng/ml anti-FLAG-PE (1:200 dilution) for 30 min at 4 °C 453 

and 700 RPM. Cells were pelleted by centrifugation at 3500 x g for 3 min at 4 °C. The supernatant was discarded and 454 

the tube was protected from light and stored on ice until sorting. Cells expressing RBD that maintained antibody-455 

binding (AF647+/PE+) or showed a complete loss of antibody binding (AF647-/PE+) were isolated using FACS (BD 456 

Aria Fusion or Influx BD). Collected cells were pelleted by centrifugation at 3500 x g for 3 min at room temperature. 457 

The FACS buffer was discarded and the cells were resuspended using SD-CAA. The cells were cultured for 48 h at 458 

30 °C. The sorting process was repeated once for the binding population and twice for the non-binding population. 459 

This procedure yielded pure binding and non-binding (escape) populations.  460 

 461 

Deep sequencing of RBD libraries 462 

The pYD1 plasmid encoding the RBD library was extracted from yeast cells per manufacturer’s instructions (Zymo, 463 

D2004). The mutagenized part of the RBD was PCR amplified using custom designed primers for seq-library A and 464 

seq-library B (Supplementary Table 5). In a second PCR amplification step, sample specific barcodes (Illumina 465 

Nextera) were introduced, which allowed pooling of individual populations for sequencing. The populations were 466 

sequenced using the Illumina MiSeq v 3 kit which allows for 2 X 300 paired-end sequencing.  467 

 468 

Preprocessing of deep sequencing data 469 

Sequencing reads were paired, quality trimmed and merged using the BBTools suite70 with a quality threshold of 470 

qphred R>25. RBD nt sequences were then extracted using custom R scripts, followed by translation to aa sequences. 471 

Read counts per sequence were calculated and singletons (read count = 1) were discarded. Sequencing datasets used 472 

for training machine and deep learning models were created by combining the binding and non-binding datasets. 473 

Sequences present in both populations were removed.  474 
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 475 

Binding scores for heatmaps shown in Fig. 2c-e were created by calculating aa counts per position in the RBD from 476 

both binding and non-binding sequences. WT (BA.1) aa residues were then removed, relative frequencies were 477 

calculated with a pseudocount of 1 added, and final binding scores were calculated as binding frequencies divided by 478 

non-binding frequencies. The results were then log-transformed before plotting in the heatmap for visualization.    479 

 480 

Training and testing machine and deep learning models 481 

All machine learning code and models were built in Python (3.10.4)71. For data processing and visualization, numpy 482 

(1.23.3), pandas (1.4.4), matplotlib (3.5.3) and seaborn (0.12.0) packages were used. Baseline benchmarking models 483 

were built using Scikit-Learn (1.0.2), while Keras (2.9.0) and Tensorflow (2.9.1) were used to build the MLP and 484 

CNN models.  485 

 486 

Each model was trained using 80/10/10 train-val-test data random splits. RBD library protein sequences (from seq-487 

library A or B deep sequencing data) were one-hot encoded prior to being used as inputs into the models. For the 488 

CNN, the 2D one-hot encoded matrix was used as the input, while for others, the matrix was flattened into a one-489 

dimensional vector. All reported model performances were evaluated using 5-fold cross-validation, and evaluated 490 

based on the metrics for accuracy, f1, MCC, precision, and recall. 491 

 492 

When training baseline machine learning models, class balancing was performed through random downsampling 493 

from the majority class so that it was equal to the counts from the minority class; this was performed at each ED. 494 

RBD sequences that were not sampled from the majority class were then reserved separately as additional ‘‘unseen 495 

sequences’’. These were then combined with the held-out test set during model evaluation to ensure that the models 496 

could perform well with an imbalanced test set. Hyperparameter optimization was performed during model training 497 

using up to 30 rounds of RandomSearchCV (from Scikit-Learn), and the best model performances were kept for 498 

comparison to deep learning models. 499 

 500 

To train the deep learning models, exhaustive hyperparameter search was performed on the CNN models to optimize 501 

performance through the hyperparameters listed in (Supplementary Table 4). The training dataset was balanced at 502 

different ratios (see Minority Ratio row, Supplementary Table 3) while validation and test sets remained unbalanced 503 

to appropriately evaluate MCC, precision and recall scores on imbalanced data. Dataset balancing was performed 504 

through rejection sampling using a custom dataset sampler created in Tensorflow. To prevent data leakage during 505 

training of the models for ensembles, the held-out test set was fixed, while multiple models were trained on random 506 

splits of the training and validation sets to make sure each model learned slightly different parameters of the dataset, 507 

while being evaluated on the same held-out test sequences.  508 

 509 

Predictions made with ensemble deep learning models  510 

Natural and in silico generated synthetic RBD variant sequences were assigned “binding”, “escape” and “uncertain” 511 

labels for ACE2 and antibodies using an ensemble of trained models. For a given RBD sequence, each model assigns 512 

a binding label if output P > 0.75, escape if output P < 0.25, or uncertain otherwise. For each of the two libraries 513 

(seq-library A and B), the three models with the highest MCC scores were used to independently assign labels to 514 

each sequence, followed by majority voting, where the most common label was taken as the label for each variant. 515 
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The labels from models trained with seq-library A or seq-library B were used to determine the final label for each 516 

variant: “binding” if both libraries agree on a “binding” label, “escape” if either library predicts “escape”, and 517 

“unsure” otherwise. For experimentally measured variants, antibodies-variant pairs were labeled as “escape” if their 518 

measured Kd was > 100nM or IC50 was > 1ug/mL. 519 

 520 

 521 

 522 

Calculating mutational probabilities of the RBD based on SARS-CoV-2 genome data 523 

To generate the mutational probability matrices used for synthetic lineages, SARS-CoV-2 spike protein sequences 524 

were obtained from the GISAID database (most recent access of June 2023) The regions corresponding to the RBD 525 

were extracted, along with the date when each sequence was deposited into the database. Sequences were separated 526 

by the year they were added (e.g., 2021 or 2022). From these sequences, mutations were counted at each position per 527 

position, and per aa. Mutational frequencies at each position were calculated using these counts. Finally, a log 528 

softmax function was applied to obtain mutational probabilities for each position. For each position, only residues 529 

that were observed in GISAID sequences were counted, while all unseen residues were not included in the softmax 530 

transform, preventing them from being generated in synthetic lineages.  531 

 532 

In silico generation of synthetic Omicron lineages  533 

Using BA.1 as the initial seed variant, in silico sequences were generated in a stepwise fashion over six rounds of 534 

mutations. In the first round, single mutations were randomly generated across the RBD. Positions and aa for each 535 

mutational round were selected using probabilities from the 2021 or 2022 substitution matrices; as a control, 536 

sequences were also generated using no substitution matrix (where all mutations were sampled from a uniform 537 

probabilities distribution). Then binding probability scores were assigned to variants in each generation by taking the 538 

average of all P predicted by each of the ACE2 models in the ensemble. The top 100 variants ranked by ACE2-539 

binding P were used as seed sequences for the next round of mutations. For each round, new variants were only 540 

accepted if they contained mutations not previously seen in other generated variants, or else the process was repeated 541 

again and new mutations selected until the maximum number of variants were reached (250,000).  542 

 543 

Calculating escape scores  544 

n An escape score (𝑆$) was calculated that aims to quantify the impact of a given mutation on driving escape from 545 

the antibodies tested herein and was calculated by:  546 

𝑆$ =
∑ (𝐸 ∗ 𝑓 ∗ 𝑑)

𝑛
%
&'(

𝑁  547 

 548 

𝑆$ is the escape score of a mutation m, 𝐸 is the number of antibodies that are predicted to escape from m, and within 549 

the group of sequences with the same number of E, f is the frequency that m appeared in the sequence group, 𝑑 is the 550 

mean of sequence ED from BA.1, n is the number of sequences, N is how many times one mutation appeared in 551 

different groups of E, a is the total number of groups, according to how many antibodies were tested (here, 𝑎 = 6). 552 

For better visualization, the adjusted escape score was used (Fig 4a, f) and is calculated by the following equation:  553 

 𝑆%)* = 𝑙𝑜𝑔(!()𝑆$ + 7.  554 

 555 
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Additional statistical analysis and plots 556 

Statistical analysis was performed using Python (3.10.4) with the Scipy package (1.9.3). Dimensionality reduction 557 

was performed using UMAP-learn (0.5.3). Graphics were generated using matplotlib (3.5.3), seaborn (0.12.0), and 558 

ggtree (3.8.0). Sequence logo plots were created using Seq2Logo (5.29.8)72 or the dsmlogo package from the Bloom 559 

Lab (https://github.com/jbloomlab/dmslogo).  560 

 561 

The KL-divergence was calculated by adapting a recently described method30. In short, a probability-weighted KL 562 

logo plot was used to visualize differences between a subset of sequences to the full background dataset. Let M1 = 563 

(f1, f2, f3…, fn) represent the position frequency matrix (PFM) of the background sequence set, where the length of 564 

the initial sequence is n = 201 and each frequency fi = (a1, a2, a3,...a20)T, represents the frequency of each aa per 565 

position i. At the same time, M2 = (f1`, f2`, f3`,...fn`) represents the PFM of the subset of sequences, each fi` = (a1`, 566 

a2`, a3`,...a20`)T. The KL divergence at each position is computed as: 567 

𝐷!"(𝑓#$||𝑓#) = 	'𝑎#$ ∙ ln ,
𝑎#$

𝑎#
-

%&

#'(

 568 

The KL divergence is used to set the total height at each position in the logo plots (Fig. 4e). The height and direction 569 

of each aa letter are calculated through probability-weighted normalization as part of the Seq2Logo package using: 570 

ℎ(𝑎#$) =
𝑎#$ ∙ ln /

𝑎#$
𝑎#
0

∑ 𝑎#$ ∙ 2ln /
𝑎#$
𝑎#
02%&

#'(

	𝐷!"(𝑓#$||𝑓#) 571 

 572 

Data availability 573 

The main data supporting the results in this study are available within the paper and its Supplementary Information. 574 

The raw and analysed datasets generated during the study will be made available at: https://github.com/LSSI-575 

ETH/Omicron_DML.  576 

 577 

Code availability 578 

The code and models used to perform the work in this study will be available at the following: 579 

https://github.com/LSSI-ETH/Omicron_DML.  580 
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SUPPLEMENTARY FIGURES 594 

 595 

596 
Supplementary Figure 1. After assembling the RBD sequence from short fragments and transformation into E. coli, 597 

single colonies were picked and colony PCRs (cPCR) were performed. For the amplification, primers binding 598 

directly upstream and downstream of the RBD were used. As a control, WT BA.1 plasmid was used. When running 599 

the cPCR products on a 2% agarose gel, 46 out of 47 reactions showed the right band size of 663 base pairs (bp) 600 

(wrongly assembled variant highlighted in red), roughly corresponding to 98% correctly assembled full length RBD 601 

sequences.  602 
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 603 
Supplementary Figure 2. Representative FACS dot plots of yeast RBD libraries during antibody screening; sorting 604 

gates for binding and non-binding (escape) populations are shown. 605 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.09.561492doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561492
http://creativecommons.org/licenses/by-nd/4.0/


Frei, Gao et al., Deep learning on Omicron variants, 2023. 

22 

 606 
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 607 
Supplementary Figure 3. Heatmaps showing binding scores per position across the RBD for libraries sorted against 608 

each target (ACE2 or antibodies, respectively). Blue regions indicate mutations seen in greater frequency in the 609 

binding variant pool, while red regions indicate mutations with greater frequency in escape variants. WT (BA.1) 610 

residues are depicted by grey boxes.  611 

 612 

 613 
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Supplementary Figure 4. Line plots show the frequencies of selected mutations in the binding and escape fractions 614 

of the deep sequencing data. The selected mutations have been observed in previously identified Omicron 615 

sublineages.  616 

 617 

 618 
Supplementary Figure 5. Total unique sequences (aa) in each deep sequencing dataset (following pre-processing). 619 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.09.561492doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561492
http://creativecommons.org/licenses/by-nd/4.0/


Frei, Gao et al., Deep learning on Omicron variants, 2023. 

25 

 620 
Supplementary Figure 6. Number of unique sequences (aa) in each dataset per ED from WT BA.1 RBD sequence. 621 

To allow visual comparison between datasets, the maximum of the y-axis in all antibody datasets has been set to the 622 

highest count in all datasets (20,000). 623 
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 624 
Supplementary Figure 7. Barplots show MCC scores of all baseline machine learning models: Logistic Regression 625 

(Log Reg), Naive Bayes (NB), Radial Basis Function kernel SVM (RBF), Random Forest (RF), Stochastic Gradient 626 

Descent (SGD), and deep learning models: MLP and CNN, for a, seq-library A and b, seq-library B. All scores were 627 

evaluated through 5-fold cross-validation with a 80/10/10 train-val-test split. 628 
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629 
Supplementary Figure 8. CNN model performances on test sequences based on ED from BA.1; shown area, 630 

accuracy, b, MCC, and c, precision. All scores shown are combined results from 5-fold cross-validation with a 631 

80/10/10 train-val-test split.  632 

 633 
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634 
Supplementary Figure 9. Percent of predicted binding and escape variants per ED (from BA.1) for each antibody. 635 

Predictions were run on 10 sets of synthetic lineages: BA.1-derived lineages based on GISAID mutational 636 
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frequencies from a, 2021, b, 2022 or c, randomized probabilities (see Methods). Each synthetic lineage contains up 637 

to 250,000 sequences. 638 

 639 

 640 
Supplementary Figure 10. a, predicted total antibody breadth and b, antibody breadth per ED (from BA.1) on 641 

synthetic lineages (BA.1-derived lineages based on 2021 GISAID mutational frequencies, see Methods). c, predicted 642 

total antibody breadth and d, antibody breadth per ED (from BA.1) on randomized synthetic lineages (BA.1-derived 643 

lineages based on uniform random sampling frequencies, see Methods).  644 
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 645 
Supplementary Figure 11. UMAPs show synthetic lineage variants in protein sequence space. a,sequences from 646 

Figure 4e, coloured to indicate their ED relative to WT (BA.1), and b, coloured to highlight sequences that bind (in 647 

gray) or escape (in red) from ZCB11. c, dimensionality reduced subsample of sequences taken from synthetic 648 

lineages from 2021, 2022 or random (none) probabilities coloured by their ED (from BA.1) and d, by the 649 

probabilities used to generate each lineage (“None” indicates sequences that were generated by random sampling 650 

from a uniform probability distribution across the RBD, with all aa substitutions allowed) 651 

 652 

 653 
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Supplementary Figure 12. Titration curves of individual antibodies tested against yeast-displayed Omicron BA.1 654 

RBD.  655 

 656 

SUPPLEMENTARY TABLES 657 
 658 

 Sub-library 1 Sub-library 2 Sub-library 3 Sub-library 4 

Fragment 1 tgatgatagctatcggcacacgtctcgc
tccAATATCACGAACCTT
TGTCCTTTCGATGAGGT
CTTCAATGCTACTAGAT
tcgcagagacggaactgagtcggcgc
cgatg 

tgatgatagctatcggcacacgtctcgct
ccAATATCACGAACCTTT
GTCCTTTCGATGAGGTCT
TCAATGCTACTAGATTC
GCATCCGTGtatgcgagacgga
actgagtcggcgccgatg 

tgatgatagctatcggcacacgtctcgc
tccAATATCACGAACCTT
TGTCCTTTCGATGAGGT
CTTCAATGCTACTAGAT
TCGCATCCGTGTATGCA
TGGAATAgaaaggagacggaa
ctgagtcggcgccgatg 

tgatgatagctatcggcacacgtctcgc
tccAATATCACGAACCTT
TGTCCTTTCGATGAGGtc
ttcgagacggaactgagtcggcgccg
atg 

Fragment 2 gatagcggactttcggtcaacgtctctt
cgcATCCGTGTATGCATG
GAATAGAAAGAGAATT
AGTAATTGTGTAGCGGA
CTacagtgagacgtctgaatgtacaa
gcaaccc 

gatagcggactttcggtcaacgtctcgt
atgCATGGAATAGAAAGA
GAATTAGTAATTGTGTA
GCGGACTACTCTGTACTT
TAtaactgagacgtctgaatgtacaag
caaccc 

gatagcggactttcggtcaacgtctcag
aaaGAGAATTAGTAATTG
TGTAGCGGACTACAGTG
TACTTTATAACTTGGCCC
ccttcgagacgtctgaatgtacaagcaa
ccc 

gatagcggactttcggtcaacgtctcgt
cttCAATGCTACTAGATT
CGCATCCGTGTATGCAT
GGAATAGAAAGAGAAT
TAgtaatgagacgtctgaatgtacaa
gcaaccc 

Fragment 3 aagtgggccgagcctggactcgtctct
acagTGTACTTTATAACT
TGGCCCCCTTCTTTACA
TTCAAGTGTTACGGTGT
ATCtcccagagacgcagctggttcc
tgcgtgagc 

aagtgggccgagcctggactcgtctcat
aacTTGGCCCCCTTCTTTA
CATTCAAGTGTTACGGT
GTATCTCCCACCAAGTtg
aatgagacgcagctggttcctgcgtga
gc 

aagtgggccgagcctggactcgtctcc
ccttCTTTACATTCAAGTG
TTACGGTGTATCTCCCA
CCAAGTTGAATGATCTA
Tgctttgagacgcagctggttcctgcgt
gagc 

aagtgggccgagcctggactcgtctca
gtaaTTGTGTAGCGGACT
ACAGTGTACTTTATAAC
TTGGCCCCCTTCTTTAC
ATtcaaggagacgcagctggttcctg
cgtgagc 

Fragment 4 tcgagactcgggatgacagccgtctcc
tcccACCAAGTTGAATGA
TCTATGCTTTACAAACG
TTTACGCCGATAGTTTC
Gtaattgagacgtcatagtacctcgg
gtacca 

tcgagactcgggatgacagccgtctctt
gaaTGATCTATGCTTTAC
AAACGTTTACGCCGATA
GTTTCGTAATTAGAGGC
Gatgaagagacgtcatagtacctcggg
tacca 

tcgagactcgggatgacagccgtctctg
cttTACAAACGTTTACGCC
GATAGTTTCGTAATTAG
AGGCGATGAAGTGCGTC
agatcgagacgtcatagtacctcgggt
acca 

tcgagactcgggatgacagccgtctctt
caaGTGTTACGGTGTATC
TCCCACCAAGTTGAATG
ATCTATGCTTTACAAAC
Gtttacgagacgtcatagtacctcggg
tacca 

Fragment 5 acttactcaggttattgcttcgtctcgta
atTAGAGGCGATGAAGT
GCGTCAGATCGCACCA
GGCCAGACGGGCAATA
TAGCagattgagacggaacgccc
atctagcggctg 

acttactcaggttattgcttcgtctcgatg
aAGTGCGTCAGATCGCA
CCAGGCCAGACGGGCAA
TATAGCAGATTATAATTa
taaggagacggaacgcccatctagcg
gctg 

acttactcaggttattgcttcgtctccaga
tCGCACCAGGCCAGACG
GGCAATATAGCAGATTA
TAATTATAAGCTGCCTG
Atgactgagacggaacgcccatctag
cggctg 

acttactcaggttattgcttcgtctcgttt
aCGCCGATAGTTTCGTA
ATTAGAGGCGATGAAGT
GCGTCAGATCGCACCAG
gccaggagacggaacgcccatctagc
ggctg 

Fragment 6 gcgtcttgaatgctcggtcccgtctcca
gatTATAATTATAAGCTG
CCTGATGACTTCACCGG
CTGTGTGATAGCTTGGA
Acagcagagacggcttgcgaagtcta
cattgg 

gcgtcttgaatgctcggtcccgtctctat
aaGCTGCCTGATGACTTC
ACCGGCTGTGTGATAGC
TTGGAACAGCAATAAAC
tagatgagacggcttgcgaagtctacat
tgg 

gcgtcttgaatgctcggtcccgtctcatg
acTTCACCGGCTGTGTGA
TAGCTTGGAACAGCAAT
AAACTAGATTCCAAGgtg
tcgagacggcttgcgaagtctacattgg 

gcgtcttgaatgctcggtcccgtctcgg
ccaGACGGGCAATATAG
CAGATTATAATTATAAG
CTGCCTGATGACTTCAC
CGGctgtggagacggcttgcgaagt
ctacattgg 

Fragment 7 tatatgaatgcgacctagaacgtctcac
agcAATAAACTAGATTCC
AAGGTGTCTGGCAATTA
CAATTATTTGTACCGTCt
gttcgagacgacggccgggaaaggt
acgcg 

tatatgaatgcgacctagaacgtctccta
gaTTCCAAGGTGTCTGGC
AATTACAATTATTTGTAC
CGTCTGTTCCGTAAAAgc
aatgagacgacggccgggaaaggtac
gcg 

tatatgaatgcgacctagaacgtctcgg
tgtCTGGCAATTACAATT
ATTTGTACCGTCTGTTCC
GTAAAAGCAATTTGAAA
Ccatttgagacgacggccgggaaag
gtacgcg 

tatatgaatgcgacctagaacgtctcgc
tgtGTGATAGCTTGGAAC
AGCAATAAACTAGATTC
CAAGGTGTCTGGCAATta
caagagacgacggccgggaaaggta
cgcg 

Fragment 8 cgcggtatgggaggatcaagcgtctc
ctgttCCGTAAAAGCAATT
TGAAACCATTTGAAAG
AGACATAAGCACTGAA
ATTTaccaagagacggggccaata
gagaggctcct 

cgcggtatgggaggatcaagcgtctca
gcaaTTTGAAACCATTTGA
AAGAGACATAAGCACTG
AAATTTACCAAGCAGGG
aacaagagacggggccaatagagag
gctcct 

cgcggtatgggaggatcaagcgtctcc
cattTGAAAGAGACATAA
GCACTGAAATTTACCAA
GCAGGGAACAAACCGTG
CAacggcgagacggggccaataga
gaggctcct 

cgcggtatgggaggatcaagcgtctct
tacaATTATTTGTACCGTC
TGTTCCGTAAAAGCAAT
TTGAAACCATTTGAAAG
AGAcataagagacggggccaatag
agaggctcct 

Fragment 9 ctctcactcgctaggaggcacgtctcta
ccaAGCAGGGAACAAAC
CGTGCAACGGCGTAGCT
GGCTTTAACTGTTATTT
CCcattagagacgaatgtaaaacaat
ggttact 

ctctcactcgctaggaggcacgtctcga
acaAACCGTGCAACGGCG
TAGCTGGCTTTAACTGTT
ATTTCCCATTAAGATCTT
Atagttgagacgaatgtaaaacaatggt
tact 

ctctcactcgctaggaggcacgtctcaa
cggCGTAGCTGGCTTTAA
CTGTTATTTCCCATTAAG
ATCTTATAGTTTCAGAC
Ctacgtgagacgaatgtaaaacaatgg
ttact 

ctctcactcgctaggaggcacgtctcac
ataAGCACTGAAATTTAC
CAAGCAGGGAACAAAC
CGTGCAACGGCGTAGCT
ggcttgagacgaatgtaaaacaatggtt
act 
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Fragment 10 gcatcgatacataaaacatgcgtctccc
attAAGATCTTATAGTTT
CAGACCTACGTATGGA
GTCGGGCATCAGCCGTA
CCgtgttgagacgctgtccatcggtt
gcccaaa 

gcatcgatacataaaacatgcgtctcata
gtTTCAGACCTACGTATG
GAGTCGGGCATCAGCCG
TACCGTGTTGTGGTTCtttc
agagacgctgtccatcggttgcccaaa 

gcatcgatacataaaacatgcgtctcct
acgTATGGAGTCGGGCAT
CAGCCGTACCGTGTTGT
GGTTCTTTCATTTGAACt
gctggagacgctgtccatcggttgccc
aaa 

gcatcgatacataaaacatgcgtctctg
gctTTAACTGTTATTTCCC
ATTAAGATCTTATAGTT
TCAGACCTACGTATGGA
gtcgggagacgctgtccatcggttgcc
caaa 

Fragment 11 gtgttaagtgtctatcaccccgtctccgt
gtTGTGGTTCTTTCATTT
GAACTGCTGCACGCGCC
CGCAACCGTATGCGGG
CCGAAGAAATCAACGga
ttagagacggtcgctgtactaatagttg
t 

gtgttaagtgtctatcaccccgtctccttt
cATTTGAACTGCTGCACG
CGCCCGCAACCGTATGC
GGGCCGAAGAAATCAAC
Ggattagagacggtcgctgtactaata
gttgt 

gtgttaagtgtctatcaccccgtctcctg
ctGCACGCGCCCGCAACC
GTATGCGGGCCGAAGAA
ATCAACGgattagagacggtcgc
tgtactaatagttgt 

gtgttaagtgtctatcaccccgtctcagt
cgGGCATCAGCCGTACC
GTGTTGTGGTTCTTTCAT
TTGAACTGCTGCACGCG
Cccgcagagacggggccgtttcccgc
atataa 

Fragment 12 - - - acgccaggttgtatccgcatcgtctccc
cgcAACCGTATGCGGGCC
GAAGAAATCAACGgattag
agacggtcgctgtactaatagttgt 

Supplementary Table 1. Sequences for fragments by sub-library. Sequences marked with uppercase letters are 659 

derived from the RBD open reading frame. The NNK codons are exclusively in this region. Bold lowercase 660 

sequences are the four nt homologies for GGA. The remaining lowercase sequences contain BsmBI recognition sites 661 

and primer binding sites for double strand synthesis.  662 

 663 

Therapeutic antibodies Concentration [nM] 

S2X259 12.5 

S2H97 2.5 

COV2-2196 12.5 

ZCB11 6.25 

2-7 60 

ADG20 7.5 

A23-58.1 5 

Brii-198 10 

Supplementary Table 2: Antibody concentrations used for FACS of yeast displayed RBD libraries. The 664 

concentrations were determined based on the titration curves shown in Supplementary Fig. 12.  665 
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666 
Supplementary Table 3: Deep sequencing statistics for sorted RBD libraries. 667 

 668 

 669 
Supplementary Table 4: Hyperparameter Search Conditions for CNN and MLP models 670 

 671 

Primer name Sequence (5’ to 3’) 

seq-library A fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGTGCCCGATTATGCG 

seq-library A rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCGTTGCACGGTTTGTT 

seq-library B fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGTTACGGTGTATCTCCC 
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seq-library B rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCACTTGTCATCATCGTC
C 

Supplementary Table 5: Primers used to amplify seq-libraries A and B in a targeted fashion for subsequent deep 672 

sequencing.  673 
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