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Abstract
Quagga mussels have expanded their range across the northern hemisphere in recent decades
owing to their dispersal abilities, prolific reproduction rates, and broad ecological tolerances. Their
remarkable capacity to filter particulates from the water column has had profound effects on
inland aquatic ecosystems. In the North American Great Lakes, quagga mussel populations have
increased inexorably since the late 1980’s, but it remains unclear whether quagga mussels will
follow a similar trajectory in Europe where they have appeared more recently. Here we apply
knowledge from a long-term quagga population monitoring effort in the North American lakes to
predict future quagga populations in deep European lakes, where quaggas are quickly becoming a
conspicuous part of the underwater landscape. We predict that quagga mussel biomass in Lakes
Biel, Constance, and Geneva may increase by a factor of 9–20 by 2045. Like in North America, this
increase may be characterized by a shift to larger individuals and deeper depths as the population
matures. If realized, this rapid expansion of quagga mussels would likely drive the largest aquatic
ecosystem change in deep European lakes since the eutrophication period of the mid-20th century.

1. Introduction

The range of the quagga mussel (Dreissena rostri-
formis bugensis (Andrusov)) has rapidly expanded
in the Northern Hemisphere since the 1980’s due
to human activities that provided new means of
spreading (Bij de Vaate et al 2013, Matthews et al
2014, Karatayev and Burlakova 2022b). After arriv-
ing in a new water body, their spread is ampli-
fied by the downstream transport of their plank-
tonic, free-swimming larvae (Matthews et al 2014,
Karatayev and Burlakova 2022b). The suitability of
a waterbody for quaggas is governed by various
factors including temperature, oxygen, salinity, and
the concentration of ions such as Ca2+ which are
important for shell formation. Food availability and
the presence of competitors and predators can also

determine how large and abundant quagga become
over time. Nonetheless, quaggas have been docu-
mented to thrive in a wide range of waterbodies
(Karatayev and Burlakova 2022a).

However, perhaps the most important vari-
able controlling quagga mussel population dynam-
ics over time is the local depth within the water-
body (Karatayev et al 2021, Karatayev and Burlakova
2022a). Quagga biomass tends to reach higher levels
at greater depths where they are less susceptible to
predation, competition, and water turbulence which
can inhibit their settlement and growth. As a con-
sequence, lakes of similar maximum depth also have
similar total quagga biomass, mussel sizes, and depth
distributions (Karatayev et al 2021, Karatayev and
Burlakova 2022a). These similarities across lakes sug-
gests that documented long-term quagga population
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dynamics from deep lakes in one part of the world
could be used to estimate the likely quagga pop-
ulation trajectories in other lakes of similar depth.
Here we apply knowledge from a long-term quagga
population monitoring effort in the North American
Great Lakes to assess the probability that deep lakes
in Europe will experience similar patterns based
on comparisons of (1) their total quagga biomass,
mean individual mass, and biomass depth distribu-
tions early on post detection, and (2) their clima-
tological, morphometric, sedimentological, and bio-
logical characteristics. Depending on the results of
those comparisons, we also project potential future
quagga populations in deep lakes in Europe, where
they have appeared more recently and are expanding
their range (Haltiner et al 2022).

2. Method

2.1. Study areas
Quagga mussel population dynamics were studied in
four lakes in North America (Erie, Huron, Michigan,
Ontario) and three lakes in Europe (Biel, Constance,
Geneva) (figure 1). Quagga mussels were first detec-
ted in Lake Erie (1989) followed by Ontario (1990),
Michigan/Huron (1997), Geneva (2015), Constance
(2016), andBiel (2019) (Karatayev et al 2021,Haltiner
et al 2022). These seven lakes represent a range of
climate (mean annual watershed precipitation: 829–
1493 mm yr−1; mean watershed annual air temper-
ature: 3.5 ◦C−7.1 ◦C), sedimentological (clay: 10%–
18%; silt: 35%–38%; sand: 43%–54%), and morpho-
metric characteristics (surface area: 38–59 399 km2;
mean depth: 16–156 m; maximum depth: 64–310 m
(Lehner et al 2022)). The European lakes largely fall
within the range of climatic, sedimentological, and
morphometric characteristics of the North American
lakes except in terms of their precipitation (European
lake watersheds are wetter), sediments (European
lakes have more clay and less sand), mean depths
(Geneva and Constance are deeper), surface areas
(European lakes are smaller) and watershed popula-
tion densities (European lake watersheds have smal-
ler total human populations but higher population
densities) (Lehner et al 2022). The European lakes are
also slightly warmer on average, and, unlike theNorth
American lakes, have not experienced substantial ice
cover since the end of the 20th century. The European
lakes typically mix over a short period in February
and March, whereas the North American lakes typ-
ically mix twice a year in autumn and spring. Due
to the larger fetch, the mixing depths are deeper in
the Great Lakes compared to the European lakes. The
seven study lakes are biologically similar in the lack
of major interspecific competitors for quagga mus-
sels. Zebra mussels were present in all seven lakes
prior to the detection of quaggas, but were largely dis-
placed by them shortly after quaggas were detected
(Matthews et al 2014, Karatayev et al 2021, Haltiner

et al 2022). A variety of potential fish and bird pred-
ators inhabit all seven lakes, and the planktonic life
stages of quaggamusselsmay be preyed on by fish and
planktivorous microbiota. However, top-down limit-
ation is likely restricted to the upper water column
and is not considered an important factor influen-
cing whole-lake quagga populations (Karatayev and
Burlakova 2022b). All seven lakes have calcium ion
concentrations which are considered suitable for effi-
cient quagga growth (>10 mg l−1; supplementary
table 1) (Davis et al 2015, Weyhenmeyer et al 2019).

Available data from the central and western basin
of Erie were excluded from our analyses because they
have distinct features that affect quagga mussel pop-
ulation dynamics (Karatayev et al 2021). The cent-
ral basin of Lake Erie was excluded because regular
hypoxia develops by the end of the growing season
at depths >20 m which restricts quagga populations
to shallow areas (Karatayev et al 2018a). The western
basin of Lake Erie was excluded because it is too shal-
low to be comparable to the other deep lakes in the
analysis (Karatayev et al 2021). The shallow Saginaw
Bay was also excluded from the greater Lake Huron as
it has well documented differences in its ecology and
human influence which affect quagga mussel popu-
lation dynamics (Karatayev et al 2021, Kraemer et al
2022). These decisions to exclude certain areas from
our analysis were made prior to comparing the actual
quagga biomass data from these locations.

2.2. Sampling
Quaggamussel samples were collected usually in trip-
licate at 1357 sites distributed across all lakes using a
combination of grab sampling (PONAR or Ekman)
and videography (Benthic Imaging System (BIS)).
The number of sampling points varied across lakes
(Biel: 29 sites, Constance: 103, Geneva: 69, Huron:
171, Michigan: 430, Ontario: 373, Erie eastern basin:
182). The years in which the lakes were sampled
also varied across lakes (Biel: 2021; Constance: 2021–
2022; Geneva: 2022; Huron: 2000, 2003, 2007, 2012,
and 2017; Michigan: 1994, 2000, 2005, 2010, 2015,
2021; Ontario: 1990, 1995, 1997–1999, 2003, 2008–
2009, 2013; and Erie eastern basin: 1992–1993, 1998,
2004, 2009, 2014). For the grab samples, all indi-
viduals retained following elutriation with a 1 mm
(European lakes) or 0.5 mm (North American lakes)
sieve were counted and data were reported as densit-
ies (individuals m−2). To ensure comparability across
sites with different sieve sizes, all individuals smal-
ler than 5 mm were excluded from our analysis.
Quagga samples were collected using either reg-
ular (0.052 m2 or 0.0483 m2) or petite PONAR
(0.0231 m2) or Ekman samplers. All mussels were
preserved in 10% formalin (NorthAmerica) or frozen
at −20 ◦C (Europe) on the same day and later meas-
ured and counted in the laboratory. In all cases,
mussels were further processed following the NOAA
Technical Memorandum GLERL-164 (Nalepa et al
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Figure 1.Map of the 1357 study sites showing the locations of quagga sampling efforts across 7 large lakes. Each circle represents a
study site and the color of the circle represents the lake. Most study sites were sampled more than once except Biel and Geneva.
Within each lake, the study sites are distributed across a large geographic area and depth range. Lake boundary map data come
from the HydroLAKES database v1.0 which is licensed under a Creative Commons Attribution (CC BY 4.0) International License.
(www.hydrosheds.org/products/hydrolakes).

2014) and standard operating procedure for Benthic
Invertebrate Laboratory Analysis (US EPA 2015). For
videographic samples, the percent coverage and num-
ber of individuals were obtained from bottom images
recordedwith BIS usingAdobe Photoshop (for details
see Karatayev et al 2022). To fully cover the time
sequence since quagga detection, author-collected
samples were supplementedwith data frompublished
literature for the North American lakes. Detailed
sampling protocols for grab samples and videography
can be found in the primary papers (Karatayev et al
2014, 2021, Nalepa et al 2014, 2018, 2018a, 2018b,
2020). The quagga biomass and density data can be
found in the supplementary material accompanying
this article (supplementary table 2).

Quagga tissue ash-free dry weight (AFDW)–the
biomass lost after oxidation–was used to compare
quagga biomass across sites in a standard way which
eliminates the variability introduced by the inorganic
component of the sample, which can vary greatly

depending on the type of sample and the conditions
under which it was collected. After separating quagga
mussels from other species, their tissues (excluding
their shells) were dried for 48 h at 60 ◦C to obtain
dry weight. Then, the dry mussel tissues were ashed
at 550◦ for 2 h and weighed. Tissue AFDW was cal-
culated as the difference between dry and ash weight.
In Lake Constance only 65 out of 103 sites included
PONAR samples, so BIS density and percent cov-
erage data were converted to a PONAR-equivalent
AFDW estimate using statistical relationships cap-
tured with a general additive model (GAM) (adjus-
ted R2 = 0.90, p-value = < 0.001, n = 1444). While
quagga densities are available for all lakewide sur-
veys conducted in the North American lakes, quagga
tissue AFDW was not always measured directly. In
Lake Ontario, quaggas were not weighed from 1990
to 2003, but AFDW was estimated using a constant
conversion factor per mussel following Birkett et al
(2015) with some adjustments (Karatayev et al 2022).

3
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Figure 2.Modeled quagga total biomass (A), mean individual mass (B), and total biomass depth distributions (C) in deep
European lakes follow similar patterns in deep North American lakes. Modeled quagga mussel biomass values represent those at
5 years after quagga mussels were detected to ensure comparability across lakes. Error bars in panels (A) and (B) represent 95%
confidence intervals for the mean. Size data for Lake Ontario do not appear in panel (B) because it does not have sufficient size
data needed to calculate quagga mass (mg AFDW ind−1).

In Lake Huron, Dreissena biomass was not recorded
from 2000 to 2007 and was estimated using a mean of
5.19 mg AFDW per mussel, as calculated from 2012
samples (reviewed in Karatayev et al 2021). For con-
sistency across studies, all historic and current data
on quagga biomass were converted into tissue AFDW
in the same units (g m2) (Karatayev et al 2021) using
standard equations (Nalepa et al 2014, Glyshaw et al
2015, Karatayev et al 2021, 2022).

2.3. Modeling
Wemodeled quagga tissueAFDWvariation andmean
individual mass (AFDW ind−1) as a function of the
lake name, time in years since quaggas were detec-
ted, and the site-specific sampling depth in a 3-step
model chain (Lin et al 2023). In the model chain,
three models were fit in order of increasing complex-
ity; first a linear model (LM), followed by a GAM
followed by a boosted regression tree (BRT) where
the residuals from the simpler model are used as the
response variable in the next model so that, with each
model, more of the variation is explained. The model
chain included a combination of models to effect-
ively balance the known tradeoffs between these stat-
istical approaches. LMs and GAMs are better at extra-
polation and interpolation (Chow and Lin 1971). By
fitting the LM and GAM first, we ensured that the
extrapolative/interpolative component of the model
performs as well as possible. But LM and GAM do
not fully capture the interactions between predictor
variables, so we used BRTs as the final model in the
stack to account for these complexities. The summed
predictions of all three models were used to gen-
erate the full set of bias-corrected predicted values
(figures 2–4) following previous work (Kraemer et al
2022). When summed, the multi-model chain res-
ults in a ‘best of all worlds’ scenario where the super-
ior extrapolation performance of LM and GAM are

combined with the superior capacity of BRTs to cap-
ture complexity in the predictor-response relation-
ships.

The performance of the model chain was evalu-
ated using cumulative adjusted R2 and median abso-
lute deviation in cross validation with a 50–50 split
between test and training datasets. Test and training
datasets were randomly selectedwith 1000 repetitions
and stratified by lake so that each lake’s data were split
50–50. To estimate the uncertainty in the future pro-
jected quagga biomass, we added randomly sampled
values from the error distribution in the test data-
sets to the future modeled values of quagga biomass
using a bootstrapped error propagation approach
with 1000 repetitions. The model chain performed
well when predicting quagga mussel biomass and
mean individual mass with each successive model in
the model chain explaining more of the variation in
the response. In the model chain predicting variation
in biomass (g AFDW m−2) across depth, lakes, and
years since quagga detection, the cumulative adjusted
R2 increased from 0.36 to 0.43 to 0.56 with the addi-
tion of each model in the stack. In the model chain
predicting variation in mean individual mass (mg
AFDW ind−1), the cumulative adjusted R2 increased
from 0.38 to 0.47 to 0.51. The model chain also per-
formedwell in cross validation as themean Spearman
rank correlation between predicted and observed val-
ues in the test datasets were similar to the training
datasets (0.60 versus 0.53 for biomass and 0.52 versus
0.43 for mean individual mass) with a median abso-
lute deviation between predicted and observed values
of 1.3 g AFDW m−2 and 1.9 mg AFDW ind−1 in the
test datasets.

In an ideal case, raw data from each lake at a con-
sistent time since detection would be used to com-
pare early quagga population dynamics in each of the
7 lakes. However, quagga mussel sampling was made
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irregularly along the time sequence following detec-
tion, making it difficult to compare raw data at the
exact same time since detection for all lakes. Instead,
we used summed model output at year 5 since detec-
tion for each lake so that we could control for modest
differences across lakes in the timing of their initial
sampling events.

To determine the potential ecological impact of
quagga mussels, we calculated the intensity of their
filter feeding on phytoplankton during periods when
the lakes are below 10 ◦C. We used modeled estim-
ates of quagga mussel biomass and observed site-
specific depths, along with moderate estimates of
quagga mussel growth (0.06 g day−1) (Rowe et al
2017) and clearance rates (10 mL water mg AFDW−1

h−1) (Vanderploeg et al 2010) to calculate the fraction
of the water column cleared per day by quagga filter
feeding at each site. Our calculations were based on
conditions typically observed during seasonal mix-
ing where lakewide temperatures are less than 10 ◦C,
with moderate food quality, as reported in previous
studies (Vanderploeg et al 2010, Rowe et al 2017,
Karatayev et al 2021). These seasonal conditions were
chosen because quagga filtration can have an espe-
cially potent effect on water clarity and productivity
at that time of year (Karatayev et al 2021).

We used the statistical software R (R Core Team
2022) for statistical computing and data analysis. We
used several R packages including the ‘data.table’
package for datamanipulation (Dowle and Srinivasan
2021), the ‘ggplot2′ package for data visualization
(Wickham et al 2016), the ‘mgcv’ package for general
additive modeling (Wood and Wood 2015), and the
‘dismo’ and ‘gbm’ packages (Elith et al 2008, Hijmans
et al 2017, Greenwell et al 2019) for BRT modeling.

3. Results

Despite the numerous differences between the cli-
mate, sediments, and morphometry, early popula-
tion dynamics suggest that European lakes have thus
far followed a similar path to that of the North
American lakes (figure 2). At five years post detec-
tion, the quagga total AFDW in the European lakes
fell within the range of the North American lakes
and was most similar to lakes Huron, Michigan, and
Ontario (figure 2(A)). European lakes also had sim-
ilar mean individual mass to those in North America
(mg AFDW individual−1; figure 2(B)). The quagga
AFDW depth distribution in the North American
lakes peaked above 50 m and decreased substantially
with depth (figure 2(C)). At five years post detection,
the depth distribution of quagga biomass in Biel was
most similar to Ontario/Huron, Constance was most
similar to Michigan, and Geneva was most similar to
the Erie eastern basin (figure 2(C)). These similar-
ities (figures 2(A)–(C)) suggest that quagga popula-
tion dynamics early on post detection in the European
lakes have followed those of the North American

lakes, providing justification for further analyses pro-
jecting the potential future of quaggas in lakes Biel,
Constance, and Geneva.

If quagga populations continue on a course sim-
ilar to the North American lakes, quagga biomass in
Europe is expected to increase in the coming decades
(figure 3).We find that quaggamussel biomass in Biel,
Constance, and Geneva may increase by a factor of
9–20 by 2045. The projected biomass at year 30 post
quagga detectionwere similar in Lakes Geneva (18.4 g
m−2, 95% CI: 14.4–22.4 g m−2) Biel (17.9 g m−2,
95% CI: 12.9–22.3 g m−2) and Constance (16.8 g
m−2, 95% CI: 12.7–20.9 g m−2). As in the case of
the early population dynamics post quagga detection
(figure 2), the European lakes aremost similar to lakes
Ontario and Huron in their projected increases in
quagga biomass (figure 3(A)).

Like in the North American lakes, the projected
increase in quagga biomass will likely be character-
ized by a shift to larger individuals, deeper depths,
and higher filtration capacity as the quagga popula-
tion matures (figure 4). The mean individual mass
for the European lakes is projected to increase by a
factor of 8.2 (from2.9mgAFDW ind−1 at 5 years post
quagga detection to 23.7 mg AFDW ind−1 at 30 years
post quagga detection). The differences across lakes
in their projected mean individual masses at year 30
post detection were modest (22.1, 19.8, and 27.8 mg
AFDW ind−1 for Biel, Constance, and Geneva). Over
the same time interval, the depth with the highest
mussel biomass is projected to shift deeper from 14m
to 78 m on average (peak biomass at year 30 post
detection was 74, 79, and 81 m for Biel, Constance,
and Geneva). As a first approximation, these changes
are expected to increase the capacity of the quagga
population to filter the water column during sea-
sonal mixing by 370%–510%, potentially resulting in
strong effects on the water column phytoplankton
biomass, suspended sediment, and overall water clar-
ity. Taken together, these changes may strongly affect
the ecosystem functioning of European lakes in the
coming decades.

4. Discussion

Based on the comparisons with invaded lakes in
North America, we estimate that the cumulat-
ive quagga biomass across lakes Geneva, Biel, and
Constance will increase to approximately 18 mil-
lion kg of AFDW over the course of the 3 dec-
ades since they were detected (sum of mean lakewide
quagga AFDW per unit area at year 30 post quagga
detection× surface area of each lake)–a total weight
approximately equivalent to 3150 fully-grown male
African elephants. If realized, this projected expan-
sion of quagga mussels would likely drive the largest
aquatic ecosystem change in deep European lakes
since the eutrophication period of the mid-20th cen-
tury. But unlike the problem of eutrophication which
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Figure 3. Projected biomass of quagga mussels suggest that quagga mussel biomass will increase in deep European lakes. In panel
(A), each line represents the mean predicted biomass across all sites within each lake. The dot on each line in panel (A) represents
the current point on the quagga population trajectory as of year 2022 for each lake. The lines to the right of each dot represent
projected future values. Panel (B) shows a range of possible outcomes (n= 1000) specifically for Lakes Biel, Constance, and
Geneva after accounting for uncertainty due to random model errors using bootstrapped error propagation. Lake basin colors
and line types are consistent in all panels to aid visual comparison.

had an apparent and feasible solution (i.e. reduce
nutrient pollution), quagga mussels are a less tract-
able target for management because their appearance
in lakes is largely considered irreversible. Because of
this irreversibility, quagga mussels are likely to be a
lightning rod in lake management until they equi-
librate with the local biological community which
may not occur for decades. In the meantime, we
encourage the development and implementation of
a comprehensive monitoring and management plan
that takes into account the expected local effects
of quagga on lake ecosystems and the benefits that
people derive from those ecosystems (Boltovskoy et al
2022, Burlakova et al 2022). We also caution that the
ultimate consequences of quagga mussels in Europe
will depend on how they interact with other neobi-
ota and other anthropogenic forces such as climate
change.

The major ecosystem consequences of quagga
mussels include increased water clarity, modified
food webs, altered hydrodynamics, and changes
to biogeochemical cycles (Hecky et al 2004,

Karatayev et al 2021, Li et al 2021). Most of these
changes arise from their efficient filter feeding which
removes zooplankton, phytoplankton, suspended
organic material, and sediment from the water
column. By filtering these particulates, quaggas can
dominate the uptake of lake nutrients, offsetting or
even overshadowing the effects of external nutri-
ent loading (Li et al 2021). Their filtration also
allows light to penetrate deeper where it supports
benthic primary production and may also stimu-
late benthic mats of cyanobacteria (Francoeur et al
2015). Food webs are further altered by reducing
the resource availability for planktivorous organisms
including larval fish with cascading effects through-
out the food web (Cunningham and Dunlop 2023).
But, quagga mussels themselves can be an import-
ant albeit lower-quality food source for some fish
(Pothoven and Madenjian 2008, Baer et al 2022a,
2022b, Karatayev and Burlakova 2022a, 2022b).
For instance, in Lake Constance, benthic whitefish
(Coregonus macrophthalmus), roach (Rutilus rutilus)
and tench (Tinca tinca) are all capable of high levels

6
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Figure 4. Over time, quagga mussels may become larger (A), spread deeper (B), and increase their capacity to filter the water
column (C). In panel (A), each line represents the mean predicted individual mass across all sites within each lake. The dot on
each line in panel (A) represents the current point on the quagga population trajectory as of year 2022 for each lake. The lines to
the right of each dot represent projected future values. Panel (B) shows the predicted change in quagga biomass across depth for
Constance (Geneva and Biel show similar patterns). Panel (C) shows the modeled increase in filtration capacity between year 5
(solid bar) and year 30 (partially transparent bar) post quagga mussel detection.

of quagga consumption (Baer et al 2022a, 2022b).
Waterfowl populationsmay also feed heavily on quag-
gas that grow in shallow areas of lakes (Molloy et al
1997, Petrie and Knapton 1999).

By affecting food availability, changing habitats,
and altering food webs, quagga mussels may also
affect fishery productivity in the coming decades

(Lauber et al 2020, Chiapella et al 2023). For instance,
fishery productivity may decrease with the loss of
planktonic food resources, or increase if the growth
of benthic food resources exceeds the planktonic
losses. But the ultimate effect of quaggas on fisheries
productivity in Europe will depend on how they
interact with other ongoing environmental changes.
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For example, the re-oligotrophication of lakes in
Europe has already caused changes in lake fisheries
in recent decades (Eckmann et al 2006, Baer et al
2017), and these effects may be further compoun-
ded by quagga mussels. The three-spined stickleback
(Gasterosteus aculeatus), first detected in the open
water fish community of Lake Constance in 2013,
quickly became the dominant fish species (50%−70%
of all fish individuals are stickleback) and may have
already reduced Lake Constance fish catches (Baer
and Brinker 2022). Quaggas may exacerbate or mit-
igate the effects of three-spined sticklebacks on pela-
gic fisheries, but at the moment, such anticipated
effects are speculative. Interactions between quagga
and other neobiota may increase fishery productiv-
ity (Madenjian et al 2015, Karatayev and Burlakova
2022a, 2022b). For instance, round gobies (Neogobius
melanostomus) consume quaggamussels (Wilson et al
2006, Kornis et al 2012) and are in turn an import-
ant food source for commercially and recreationally
valuable fish species including lake trout, burbot, yel-
low perch, smallmouth bass, lake sturgeon, and wal-
leye (Karatayev and Burlakova 2022a). Round gobies
are currently not present in the three European lakes
studied here, but may appear soon (Kalchhauser et al
2013, Cerwenka et al 2023) with a potential to limit
quagga biomass in shallow areas and affect fishery
productivity.

The effects of quagga filter feeding has con-
sequences for how people will interact with deep
European lakes in the future. For instance, clearer
water can be more inviting for swimming, boat-
ing, and scuba diving, although quaggas also foul
beaches, boats, docks and piers. Increases in water
clarity can increase the value of shoreline properties
(Limburg et al 2010, Burlakova et al 2022). Water
infrastructure including collecting stations for drink-
ing water are typically placed around 60meters depth
in deep European lakes because the bivalves which
were present at the time of construction were restric-
ted to the upper 40 m of water (Wacker and Von Elert
2003). According to our projections, quagga mussels
will soon become abundant down to 70 meters or
more, requiring millions of euros annually to cover
damages to water intakes alone. Existing and future
water infrastructure projectsmustmodify their intake
depths or account for these additional costs.

Quagga mussels may also interact with the anti-
cipated effects of climate change on water temperat-
ure and hydrodynamics. For instance, climate change
is expected to reduce lake mixing leading to reduc-
tions in deep water oxygen (Jane et al 2021). Anoxia
could limit quagga depth distributions or even their
total populations as has occurred in the central basin
of Lake Erie (Karatayev et al 2018a). Lake Geneva in
particular is expected to havemorewidespread anoxia
especially below150m (Schwefel et al 2016,Deyle et al
2022) which will limit quagga populations. Episodic
anoxia could affect quagga survival and reproduction

at shallower depths as well. The capacity of quag-
gas to filter the water column would also depend on
climate change’s anticipated effects on lake hydro-
dynamics. Periods of lake mixing are an import-
ant time when quaggas have potent effects on water
column suspended material (Rowe et al 2015). Thus
climate change-mediated reductions in lakemixing as
predicted for the European lakes (Peeters et al 2007,
Kraemer et al 2015) could reduce the capacity of
quaggas to filter the entire water column during these
critical seasonal periods. The consequences of higher
temperatures for the mussel metabolism and growth
are also unclear as higher temperatures typically lead
to higher metabolic rates (Kraemer et al 2017), but
quagga mussel metabolism and growth rates may be
suppressed if not supported by an increase in food
supply (Karatayev et al 2018b). Thus, the cumulat-
ive effects of climate change on quagga mussel pop-
ulations and their ecosystem consequences are highly
uncertain.

Although our models suggest that early quagga
population dynamics in deep North American and
European lakes are similar, the future quagga bio-
mass in the European lakes may be higher because
they have higher chlorophyll-a (chl-a) concentra-
tions, except for Lake Erie eastern basin (supple-
mentary table 1). As an indicator of food availabil-
ity, higher mean chl-a concentrations could make the
European lakes more suitable for quagga and may
cause higher quagga total biomass in the long run
(Karatayev et al 2018b). This potential future boost to
quaggas in deep European lakes may have the largest
effects on Geneva and Constance whose substantial
depth offers greater potential for quaggas to escape
the effects of water turbulence and benthivorous birds
and fish. However, quaggas may not fully benefit
fromhigher planktonic biomass in the European lakes
because planktonic food resources are less evenly dis-
tributed across the water column due to less frequent
or shallower mixing. Furthermore, the lower chl-a
in the North American lakes may already be a con-
sequence of quagga mussels rather than an indicator
of their lower suitability for quagga. Nonetheless, to
better constrain how regional differences in lake chl-
a and mixing might affect future quagga populations,
we encourage global investigations into the relation-
ship between lake productivity, quagga populations,
and their ecosystem impacts.

5. Conclusions

An abundant future may lie ahead for quaggamussels
in deep European lakes. The ultimate ecosystem con-
sequences of quagga mussels in Europe will depend
on their complex interactions with the local context
and other anthropogenic drivers of change. But based
on past dynamics in other lakes, quaggas in lakes
Biel, Constance, and Geneva are likely to increase
water clarity, damage important water infrastructure,
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alter fisheries productivity, and redirect nutrients
and energy flow. Should quaggas continue to spread
across Europe, we would expect similar ecosystem
effects to play out in other deep lakes (e.g. Hallstädter,
Lucerne, Maggiore, St. Bartholomew’s, Starnberg,
Thun, Wolfgang, and Zurich) where quagga pres-
ence has not yet been confirmed. In North American
lakes, the strong ecosystem consequences of quagga
mussels started to appear approximately 10 years
after they were first detected (Karatayev et al 2022).
Thus, it may still be too early to detect substan-
tial changes in European lakes now, in less than
10 years after they first appeared. But, with new
tools like remote sensing, high frequency monitor-
ing platforms, and eDNA,managers and scientists are
more equipped today to monitor and detect quaggas
and their ecological consequences than ever before.
The development of an international scientific mon-
itoring strategy for quagga mussels should rely on
these advanced tools to efficiently detect the spread
of quagga and their environmental ramifications.
Whether quaggamussels are harmful or beneficial for
European society ultimately depends on the values of
the various stakeholders in the region. We encourage
careful consideration of both the costs and benefits of
quagga mussels in the development of a comprehens-
ive multinational management strategy (Schlaepfer
et al 2011, Sax et al 2022). Thewindow of opportunity
to develop and implement such a plan is narrowing.
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