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Significance

Predicting how populations 
persist and spread in patchy and 
fragmented habitats is a research 
challenge with significant 
implications for the conservation 
and management of species. 
We combined theory and an 
experiment with the springtail 
Folsomia candida to show that 
population spread—the time 
taken for a population to colonize 
a network of habitat fragments—
is predicted by the distances 
among habitat fragments and 
how easy it is for organisms to 
move between fragments. 
Depending on the pattern of 
connections among habitats and 
how frequently individuals 
successfully use them to move 
between habitat fragments, 
landscapes will promote spread 
in some species while impeding 
spread in other species. 
This knowledge can be used to 
manage real-world populations 
(e.g., reintroductions) in 
fragmented habitats.
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ECOLOGY

Spread of networked populations is determined by the interplay 
between dispersal behavior and habitat configuration
Bronwyn Rayfielda,1,2 , Celina B. Bainesa,1 , Luis J. Gilarranzb,1 , and Andrew Gonzaleza,3

Edited by Pablo Marquet, Pontificia Universidad Catolica de Chile, Santiago, Chile; received February 1, 2022; accepted February 6, 2023

Predicting the spread of populations across fragmented habitats is vital if we are to 
manage their persistence in the long term. We applied network theory with a model 
and an experiment to show that spread rate is jointly defined by the configuration of 
habitat networks (i.e., the arrangement and length of connections between habitat 
fragments) and the movement behavior of individuals. We found that population spread 
rate in the model was well predicted by algebraic connectivity of the habitat network. A 
multigeneration experiment with the microarthropod Folsomia candida validated this 
model prediction. The realized habitat connectivity and spread rate were determined 
by the interaction between dispersal behavior and habitat configuration, such that the 
network configurations that facilitated the fastest spread changed depending on the 
shape of the species’ dispersal kernel. Predicting the spread rate of populations in frag-
mented landscapes requires combining knowledge of species-specific dispersal kernels 
and the spatial configuration of habitat networks. This information can be used to design 
landscapes to manage the spread and persistence of species in fragmented habitats.

spatial habitat configuration | habitat fragmentation | Folsomia candida | dispersal kernel |  
algebraic connectivity

In the context of biological invasions (1), extinction due to habitat loss (2), emerging 
diseases (3), and climate-driven range shifts (4), we have an urgent need to understand and 
predict the spread of populations. The discovery of factors that predict movement and 
population spread can be used to design landscapes that maintain native species (5, 6) 
and restrict the spread of invasive species and diseases (e.g., ref. 7). The erection of barriers 
to slow invasions (8, 9) or the addition of corridors to support dispersal and migration 
(10–12) are examples of control through landscape design. The success of these interven-
tions requires models and indicators that link information about species-specific dispersal 
behavior and habitat spatial structure to predict spread rates and distribution.

Spatial networks (13–16) provide a powerful representation of patchy and fragmented 
habitats, where habitat patches (habitable nodes) are connected by movement paths and 
corridors (nonhabitable links). Studies have shown that habitat network configuration—
the arrangement of habitat nodes and the links connecting them in patchy landscapes—can 
strongly determine population persistence (17–20), range size (21), abundance (22–24), 
and ecosystem functioning (25). Habitat network configuration has also been shown to 
influence the dynamics of population spread (26, 27). However, spatial population pro-
cesses may not be simple reflections of habitat configuration; we hypothesized that knowl-
edge of how the dispersal behavior of species (i.e., the probability of movement) interacts 
with the habitat network would be required to understand the dynamics of popula-
tion spread. Conservation efforts rest on the need to understand how habitat networks and 
species movement ecology can be combined to predict spatial processes, and whether the 
same rules apply to different species.

Several pieces of information are needed to understand species’ dispersal behavior and 
spread on a network of habitats (28). Aspects of dispersal ability such as movement capacity 
and the ability to withstand inhospitable conditions (e.g., low food availability, suboptimal 
physical conditions, greater predation risk) dictate how dispersal success declines with 
distance and the link lengths that can be successfully traversed by a species (29, 30). Aspects 
of dispersal propensity also strongly influence the shape of the dispersal kernel (31). Some 
organisms move faster through inhospitable environments (e.g., ref. 32) to reduce the 
time spent at risk and/or because they spend time evaluating hospitable habitat patches 
for settlement. Species also vary in how willing they are to disperse (even if they have the 
capacity), how much they assess link properties such as distance before embarking on 
dispersal, and how likely they are to alter their behavior (e.g., reverse their path) once they 
have begun the dispersal process (29). All these factors contribute to the shape of a species’ 
dispersal kernel, which quantifies dispersal probability as a function of distance, and which 
varies across species. We expect that the shape of a species’ dispersal kernel will interact 

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
T

H
 B

ib
lio

th
ek

 o
n 

Ja
nu

ar
y 

16
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
9.

13
2.

10
9.

62
.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:andrew.gonzalez@mcgill.ca
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201553120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201553120/-/DCSupplemental
https://orcid.org/0000-0003-1768-1300
http://orcid.org/0000-0002-6918-3648
https://orcid.org/0000-0002-3493-1335
mailto:
https://orcid.org/0000-0001-6075-8081
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2201553120&domain=pdf&date_stamp=2023-3-9


2 of 8   https://doi.org/10.1073/pnas.2201553120� pnas.org

with habitat network configuration to determine the rate of spread 
across a network.

At the same time, network-based measures provide powerful 
metrics to quantify the connectivity of habitat networks. These 
connectivity metrics can be used to predict metapopulation per-
sistence (20, 33) as well as rates of colonization (28, 34, 35). The 
connectivity (or adjacency) matrix D whose elements di,j denote 
the strength of the link connecting habitat nodes i and j , is a 
fundamental mathematical representation of the metapopulation 
network (36, 37). The eigenvalues of the Laplacian matrix derived 
from the adjacency matrix D (38) are used to describe features 
related to global and mesoscopic network structure and dynamic 
interactions among network components. Here, we focus on alge-
braic connectivity, the second smallest eigenvalue of the Laplacian 
matrix (38). Algebraic connectivity is known to play an important 
role in many relevant dynamical processes on networks such as 
synchronization, diffusion, and extinction (39, 40) and was there-
fore a strong candidate for a metric to predict how quickly indi-
viduals move through a habitat network.

We combined theory and an experiment to study the spatial 
population dynamics of nonequilibrium populations expanding into 
spatial habitat networks with different link configurations. Ecological 
dynamics within and across nodes (e.g., population growth and 
spread) are known to be mediated by the degree of randomness of 
the links allowing dispersal between nodes of the spatial graph (41). 
By combining knowledge of dispersal behavior and habitat network 
configuration, we hypothesized that habitat network configuration 
influences the rate of spread, and this will be strongly explained by 
differences in the algebraic connectivity of networks.

We used a metapopulation model parameterized using experi-
mental data describing population growth of the microarthropod 
Folsomia candida (42) that has been used as a biological model for 
movement and growth on networks (43). We then used the model 
to understand the movement and spread process on habitat net-
works of different configurations. We assessed whether spread in 
the model was predicted by habitat configuration and algebraic 
connectivity of the entire network. Algebraic connectivity predicted 
spread dynamics in both the model and experimental networks. 
We used the model to show that spatial spread dynamics observed 
during the experiment are well explained by linking the shape of 
the kernel describing the probability of movement between nodes 
to the spatial configuration of the habitat network.

Modeling and Measuring the Effect of Habitat 
Configuration on Population Size and Spread

To investigate the effects of habitat configuration on population 
size and spread, we designed habitat networks with three different 
levels of link rewiring [Fig. 1 and SI Appendix, Fig. S1, (44)]. In 
lattice configurations, all nodes were linked to their four nearest 
neighbors. Then, we created another set of networks by randomly 
rewiring 20% of the links while fixing node coordinates. We call 
these “partially rewired” networks. Finally, fully “random” net-
works were created by randomly rewiring all links of the lattice 
networks. All networks had the same number of nodes, links, and 
the same average degree. We used these three habitat configura-
tions in both the population model and the laboratory experiment 
we describe below.

We created a stochastic population model parameterized for 
the life-history of the microarthropod Folsomia candida [a standard 
model organism (45)] that we used in the experiment [Methods; 
(42)]. We modelled the metapopulation dynamics taking place in 
the networks described above. To inoculate the landscapes, we 
introduced individuals into a single source node in each network 

(node S in Fig. 1C). Dispersal distances in F. candida are described 
by a negative exponential probability distribution with exponent 
b (b = −0.043 ± 0.007; thick black line + grey area in Fig. 1B; see 
SI Appendix for methods on estimating the dispersal kernel for  
F. candida). We developed a distance-dependent model in which 
dispersal probability between nodes was dependent on link length 
(i.e., a dispersal kernel), given by the dispersal kernel that was 
estimated for F. candida. The model captures essential information 
about individual movement encoded in the dispersal kernel and 
uses this to successfully predict the dynamics observed in our 
experiment. We compared the distance-dependent model to a 
distance-independent model in which we set the probability of 
dispersal to be constant across all links. To enable comparison 
between the two model versions, the dispersal probability of every 
link in the distance-independent model is equal to the average 
dispersal probability given the dispersal kernel with exponent b 
(SI Appendix, Methods).

We tested the predictions of our model by conducting a mul-
tigeneration experiment with F. candida, using physical habitat 
networks of the same configurations as those in the model. Link 
lengths in the experiment matched those used in the model. In 
the experiment, patches of artificial habitat were connected via 
flexible tubes providing nonhabitable corridors to form networks 
of nodes and links (SI Appendix, Fig. S1). F. candida individuals 
were then introduced—as in the model—into a single source node 
(node S in Fig. 1C) in each network at the start of the experiment. 
Food (in the form of granulated dry baker’s yeast) was applied to 
the nodes as a two-state (“food added” or “no food”) Markov 
series. The food added to each node therefore followed a unique 
feeding regime [sensu (46)]. This created spatiotemporally variable 
resource heterogeneity to encourage movement among the nodes 
(SI Appendix). We used automated image recognition analysis to 
count the number of individuals present in each node at a frequency 
of 1 to 2 (maximum 5) d over 182 d.

In both the model and experiment, we measured population 
size at the node level (the count of juvenile and adult springtails 
observed in a node; SI Appendix, Fig. S8) and the network level 
(the sum of the observed population sizes of all nodes comprising 
the network). At the network level, spread was defined as the time 
to full network occupancy (number of days from initiation of 
experiment to population size of all nodes in a network being 
greater or equal to 1; SI Appendix, Fig. S9).

Once the model was validated, we used it to determine the joint 
effects of habitat configuration and the shape of the dispersal 
kernel (described by the exponent b) on spread rate. We conducted 
simulations with varying values of b and predicted the rate of 
population spread on networks with different degrees of rewiring. 
Values of b close to zero indicate populations in which long- 
distance dispersal is common, while as b becomes more negative, 
long-distance dispersal becomes less likely (Fig. 1B).

Habitat Network Configuration Predicts Time 
to Full Network Occupancy

Population spread was predicted by habitat network configuration—
the configuration of links among habitat nodes—in the model 
parameterized for the dispersal kernel estimated for F. candida. The 
model predicted that full network occupancy should occur 5.1 and 
3.4 times more quickly in lattice and partially rewired networks, 
respectively, than in random networks (Fig. 2A). Time to full net-
work occupancy was predicted to be similar in lattice and partially 
rewired networks.

The predicted effect of configuration on time to full network 
occupancy was supported by the results of the experiment: Habitat D
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configuration explained 29% of the variation in time to full network 
occupancy (ANOVA: F2,21 = 5.68, P = 0.011; Fig. 2B). Spread 
occurred, on average, 1.4 and 1.3 times faster, in lattice and partially 
rewired networks, respectively, than in random networks (random 
vs lattice: t21 = 3.22, P = 0.011; random vs partially rewired: t21 = 
2.16, P = 0.10). The effect of configuration on colonization rate 
remained after controlling for differences in link length (SI Appendix, 
Fig. S10). These results, however, are explained by the differences 
in algebraic connectivity between network configurations.

Algebraic Connectivity Predicts Time to Full 
Network Occupancy

Algebraic connectivity was a stronger predictor of spread (time to 
full network occupancy) than network configuration (lattice, 

partially random, and random), defined here by the fraction of 
rewired links in the network (see SI Appendix, Tables S2 and S3 for 
comparison between algebraic connectivity and network diameter). 
Time to full network occupancy decreased with increasing algebraic 
connectivity in the model (Fig. 2C). The experiment supported this 
prediction; fully one third (33%) of the variability in time to full 
network occupancy in the experiment was explained by algebraic 
connectivity alone (OLS: F1,22 = 12.40, P = 0.0019; Fig. 2D).

Crucially, algebraic connectivity does not increase monotoni-
cally with the fraction of rewired links (i.e., randomness; 
SI Appendix, Fig. S11), since due to the geographical embedding 
of spatial networks, rewiring a link most likely results in changing 
its length. Algebraic connectivity captures the effect of both 
changes in link configuration and in link length on spread rate. 
While the fraction of rewired links does predict days to full 

Fig.  1. Habitat network configurations and demographic characteristics of the model system. (A) Depiction of Folsomia candida’s life cycle, size stages, 
reproduction, and dispersal. (B) Dispersal kernel. Open black circles show dispersal probabilities of F. candida estimated experimentally. The thick black line 
shows the negative exponential function fitted to these experimental data points; the grey shaded area shows the 95% CI of this fitted function. Thin black lines 
show alternative dispersal kernels used in the model. (C and D) Representative replicates of each of the three habitat configurations used in this study. From 
left to right: lattice, partially rewired, and random. (C) Network structure. Circles are nodes (habitat patches), and black lines are links (movement corridors). 
The diameter of nodes and lengths of links are shown to scale. “S” indicates the location of the source node—the initial location of the individuals added to 
the network at the start of the experiment. (D) Node population size over the course of the experiment; each line represents a single node. Vertical dashed 
lines indicate the number of days to full network occupancy. Color of circles (C) and lines (D) indicates the number of days it took for that node to be colonized.
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occupancy (Fig. 2 A and B), algebraic connectivity can discrimi-
nate between networks with the same fraction of rewired links 
and is thus a more informative predictor of spread (Fig. 2 
C and D). Therefore, the algebraic connectivity of the dispersal 
probability network emerges as a metric to measure how easily a 
species can disperse within a landscape. We now investigate how 
different dispersal kernels affect the algebraic connectivity of a 
given configuration, therefore affecting spread rate.

Spread Rate Depends on Interplay Between 
Habitat Network Configuration and the Shape 
of the Dispersal Kernel

When dispersal is independent of distance, that is, when the prob-
ability of an individual dispersing between habitat fragments is 
constant regardless of the distance between those fragments, we 
see that spread always occurs fastest on random networks and 
slowest on lattice networks along the full gradient of dispersal 
probabilities (Fig. 3A). Distance independent dispersal is, however, 
an unrealistic scenario that ignores the fact that movement pro-
cesses occur in habitats that are geographically embedded.

When dispersal is dependent on distance, according to a dis-
persal kernel, our model showed that the shape of the dispersal 
kernel (exponent b) interacts with habitat configuration to deter-
mine spread rate. The network that promoted the fastest spread 
changed depending on the value of b (Fig. 3B). When long- 
distance dispersal is less likely (b is a large negative value), full 
network occupancy occurred fastest in lattice networks, followed 
by partially rewired and then fully random networks. In contrast, 
when long-distance dispersal becomes more likely (when b is closer 
to zero), the ranking between the different network configurations 
completely reverses. Full network occupancy occurred fastest in 
fully random networks, followed by partially rewired networks, 
with lattices being the slowest.

This pattern can again be explained by algebraic connectivity. 
When we rank networks according to algebraic connectivity, the rank 
order remains consistent as average dispersal probability increases, as 
long as dispersal is independent of distance (Fig. 4 A and C). However, 
when dispersal is distance-dependent, networks change ranks as aver-
age dispersal probability or the shape of the dispersal kernel changes 
[i.e., a network can flip from facilitating spread to impeding spread, 
compared to other networks, as the shape of the dispersal kernel 

Fig. 2. The differences in spread rate among habitat configurations in both the model and the experiment. Time to full network occupancy—number of days 
until all nodes within a network contained at least one springtail—in each habitat configuration (A and B) and as a function of the weighted algebraic connectivity 
of each network (C and D). Panels on the left (A and C) show distance-dependent model predictions for F. candida, assuming the exponent of the dispersal kernel, 
b = −0.0430; panels on the right (B and D) show experiment results. Bars and regression lines show predicted values from linear mixed models (A and C) or 
linear models (B and D) with 95% CIs. Sample sizes: each model treatment is represented by 50 replicate simulations; each experiment treatment is represented 
by 8 replicate networks.
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changes (Fig. 4 B and D); this is a general effect that holds true regard-
less of network size (SI Appendix, Fig. S12)]. In other words, the 
interaction between species’ dispersal traits and habitat configuration 
can have large effects on population spread, even changing which 
habitat network configuration is best at promoting spread. The prac-
tical consequence of this result is that information about both distance 
dependence in dispersal (the dispersal kernel) and the configuration 
of the habitat network is critical for predicting spread rate.

Discussion

Our results show that connectivity is realized by the dispersal kernel 
interacting with the habitat network with a particular configuration 
of nodes and links (47). This means that the habitat network that 
enables the fastest spread of populations changes depending on the 
shape of the species’ dispersal kernel. The same networks will have 
different demographic effects depending on the movement traits 
of the species considered. This knowledge should guide reserve 
design and the conservation of multiple species (48).

Algebraic connectivity of the distance-dependent dispersal prob-
ability network succinctly encodes the link between the dispersal ker-
nel and the configuration of the habitat and thus is a powerful predictor 
of spread dynamics. This result corroborates theoretical results from 
general network theory (39). While previous ecological studies have 
demonstrated that habitat network configuration influences spread 
(26, 27, 35), and algebraic connectivity has been theoretically linked 
to synchronization (49) and coevolutionary dynamics (50), ours 
provides strong evidence from theory and experiment that algebraic 
connectivity in weighted networks can predict spatial ecological 
dynamics. We show that algebraic connectivity can distinguish 
between networks when the re-wiring fraction of the network is not 
an extreme value (i.e., not 0 or 1), a condition met by most real-world 
networks (44). This result suggests that algebraic connectivity is sen-
sitive to small changes in network configuration and is an effective 
predictor of spread. It is thus a strong candidate metric for predicting 

ecological dynamics including population spread in fragmented hab-
itats. Tests with data derived from field experiments or movement 
surveys could validate this prediction in nature.

Species have different perceptions of and responses to the net-
work structure of habitat in the landscape. Consequently, species 
vary in the impact that habitat configuration has on spread, as their 
different dispersal kernels are realized on landscapes. We found that 
when long distance dispersal was rare, spread occurred fastest in 
lattice networks and slowest in random networks. As the probability 
of long-distance dispersal increased, the ranked order of configu-
rations flipped such that spread occurred faster in random networks 
than in lattice and partially rewired networks. This has implications 
for managing multiple species: a single configuration will not uni-
versally facilitate spread equally in all species. This will complicate 
reserve design and its use, for example, to promote the poleward 
spread of communities challenged by climate change. Interestingly 
however, this nonuniversality could be leveraged to preserve native 
species while discouraging the movement of introduced species (7) 
as long as their dispersal kernels are different enough.

Our networks contained populations of a single species, and so 
we have not considered how species interactions may mediate 
connectivity and spread (51–53). Metacommunity models show 
that interspecific interactions can strongly impact the speed and 
success of population spread along environmental gradients (54). 
Differences in species’ responses to configuration could positively 
or negatively impact biodiversity, depending on the type of inter-
specific interaction. Future studies should explore the spread of 
whole communities including other methods such as algebraic 
connectivity of multiplex networks (55, 56).

Conclusion

The major finding of our study is that dispersal behavior, captured 
by the dispersal kernel, and habitat network configuration jointly 
predict the rate of spread of populations occupying networks of 

Fig. 3. The interaction between habitat configuration and the shape of the dispersal kernel predicts population spread. Model predictions for mean time to 
full network occupancy as a function of the exponent of the dispersal kernel, b, for the model with distance-independent dispersal (A) and distance-dependent 
dispersal (B). Each point represents one simulated network (points are jittered to improve visibility). Lines show the bootstrapped mean values for each habitat 
configuration. The vertical black line and grey shaded area show the estimated value of b ± 95% CI for F. candida. To make the two panels comparable, the 
dispersal probability in panel A is calculated as the average probability of a given dispersal kernel with exponent b (SI Appendix, Methods).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
T

H
 B

ib
lio

th
ek

 o
n 

Ja
nu

ar
y 

16
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
9.

13
2.

10
9.

62
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2201553120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201553120#supplementary-materials


6 of 8   https://doi.org/10.1073/pnas.2201553120� pnas.org

fragmented habitat; the network that best facilitates spread cannot 
be determined by solely knowing either the dispersal ability or the 
habitat configuration. We found a strong relationship between 
population spread and algebraic connectivity, which captures 
essential information about how the dispersal kernel (species-spe-
cific dispersal distances) is realized on habitat networks. We rec-
ommend that future studies of population processes on spatial 
habitat networks either control for distance or use connectivity 
metrics, like algebraic connectivity, incorporating information 
about the dispersal kernel. Our findings may be used to improve 
conservation outcomes, especially when modifying habitat con-
nectivity is part of an integrated strategy to protect species in 
fragmented landscapes.

Materials and Methods

Network Design. Each network was comprised of 10 nodes and 20 links. 
Within a network, the 10 nodes were fixed in a ring with 15 mm between 
neighboring nodes (node edge–node edge). In lattice networks, each node 

was connected to its two nearest neighboring nodes via 15-mm links, and to 
its two second-nearest neighboring nodes via 90-mm links (Fig. 1). For partially 
rewired and random networks, we started with hypothetical lattice networks. 
Each link then had a probability of being “rewired” to a randomly selected node. 
Rewiring probability was 20% for partially rewired networks and 100% for ran-
dom networks. Since node placement was fixed, rewiring had the potential to 
change the length of the link required to span the distance between nodes. Link 
length ranged from 15 mm to 190 mm in both partially rewired and random 
networks, with mean ± SD link length 65 ± 3 mm and 120 ± 8 for partially 
rewired and random networks, respectively. We created eight versions of par-
tially rewired networks and eight versions of random networks (variation in 
topology is impossible for lattice configuration), for a total of 17 unique network 
topologies. Complete information detailing each unique network topology is 
provided in the shared data.

Theory. To explore the interplay between dispersal and habitat network 
configuration, we used a stochastic individual-based model based on the 
life history of the model organism Folsomia candida. Life history parameter 
estimates were taken from (ref. (42). The model was run on the 17 spatial 
networks described above, with 50 replicate simulations on each network. At 

Fig. 4. Algebraic connectivity changes as a function of species’ dispersal traits. Each line represents a single network. Algebraic connectivity as a function of the 
exponent of the dispersal kernel when dispersal is independent of distance (A), and when dispersal is dependent on distance – i.e., dispersal probability decays 
with distance between habitat fragments following the dispersal kernel (B). When dispersal probability decays with distance, the rank order of networks depends 
on the shape of the dispersal kernel. The same result can be observed if algebraic connectivity is plotted against the average dispersal probability (C and D), 
as the average dispersal probability is a function of the dispersal kernel (SI Appendix, Fig. S7). The networks highlighted in red were chosen to visualize the fact 
that network ranking stays constant when dispersal is distance-independent, but it changes as a function of the dispersal kernel when dispersal is distance-
dependent. This is a general effect that holds true regardless of network size (SI Appendix, Fig. S12).
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the beginning of the simulation, the network was empty but at the first time 
step, 200 individuals were randomly assigned among the four size classes 
and added to the source patch S (Fig. 1C). For each subsequent time step, we 
first calculated the probability that individuals reproduce, then disperse, and 
then die. Each time step was considered to have a length of 1 d. The model 
duration was 200 d.

We created two versions of the model: a distance-dependent and a distance- 
independent version. In the distance-dependent version, dispersal probability 
was a function of the distance between two nodes. Based on empirical information 
(SI Appendix), we assumed that the dispersal kernel followed a negative expo-
nential function. The dispersal probability of an individual between two patches 
j and k, was calculated as follows:

	
[1]Dj,k = a ⋅ exp (b ⋅ W (j, k)),

where W
(

j, k
)

 is the distance between those two nodes, a is the probability of 
moving from one node to another when the distance between two nodes is zero, 
and b is the exponent that controls the shape of the dispersal kernel (how fast the 
dispersal probability decays with distance, Fig. 1B). In the distance-independent 
version—to draw fair comparisons between the outputs of the distance-depend-
ent dispersal and distance-independent dispersal models for a given value of 
b—the dispersal probability between any two adjacent nodes in the network is 
equal to the average dispersal probability of the kernel with that specific expo-
nent (SI Appendix, Fig. S7). To obtain this average value, the kernel function is 
evaluated between 15 and 190 mm (minimum and maximum distance in our 
experimental setup).

In both versions of the model, an individual in patch j moves to a neigh-
boring patch k if a random number drawn from a uniform pseudorandom 
distribution is equal or smaller than Dj,k . To give all neighboring patches an 
equal chance to receive individuals, we randomized the order in which we 
iterated through the neighboring patches. Only individuals older than 7 d 
dispersed; we assumed that juveniles did not disperse, and that the dispersal 
probability does not depend on the age of the individual once it is no longer a 
juvenile. We also assumed that dispersal operates on a faster time scale than 

demography, so when an individual moved, it remained in the same age class. 
Full details on model methods can be found in SI Appendix.

Experiment. To test the predictions of the theoretical model, we created physical 
habitat networks for F. candida to inhabit that matched the 17 networks described 
above and used in the theoretical model. We created all 17 unique network topologies 
and replicated the lattice configuration eight times. All habitat configurations (lattice, 
partially rewired, random) were therefore represented by eight physical replicate net-
works in the experiment, for a total of 24 networks. Habitable nodes in these networks 
were cylindrical vials with a base of an artificial soil substrate. Nodes were linked using 
tubes but these were not habitable and acted only as movement corridors. To begin 
the experiment, we placed 10 randomly selected collembola into node S of each 
network (Fig. 1C). To estimate population sizes, we photographed each node typically 
every 1 to 2 (maximum 5) d, and then used automated image-processing analysis to 
count the number of individuals in each photograph. The experiment lasted a total of 
182 d. For a full description of the experiment methods see SI Appendix.

Data, Materials, and  Software Availability.  All code and data can be 
downloaded from the permanent institutional repository Eawag Research Data 
Institutional Collection (https://doi.org/10.25678/0005V2), and from GitHub 
(https://github.com/GonzalezBiodiversityLab/Springtail-networks). 
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