
ETH Library

Rethinking Serverless Computing:
from the Programming Model to
the Platform Design

Conference Paper

Author(s):
Alonso, Gustavo ; Klimovic, Ana; Kuchler, Tom; Wawrzoniak, Michael

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000652749

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
CEUR Workshop Proceedings 3462

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4396-6695
https://orcid.org/0000-0002-1304-8420
https://doi.org/10.3929/ethz-b-000652749
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Rethinking Serverless Computing: from the Programming
Model to the Platform Design
Gustavo Alonso1, Ana Klimovic1, Tom Kuchler1 and Michael Wawrzoniak1

1Systems Group, Computer Science Department, ETH Zürich, Switzerland

Abstract
Serverless computing offers a number of advantages over conventional, Virtual Machine (VM) based deployments on the
cloud, e.g., greater elasticity, simplicity of use and management, finer granularity billing, and rapid deployment and start up
times. Naturally, there is a growing interest in exploring how to run applications in this new environment and data analytics
is not an exception. Unfortunately, current serverless platforms are limited along several dimensions, which makes things
quite difficult from the perspective of data analytics. In this paper we explore what serverless has to offer today, what is
missing, and what can be done to make serverless a better computing platform in general and for data analytics in particular.

Keywords
Cloud Computing, Serverless, Data Analytics, Functions as a Service

1. Introduction
Function as a Service (FaaS) or serverless represents an
evolution of cloud computing services, where most of the
complexities associated with deploying, starting, man-
aging, maintaining, and retiring applications and their
associated resources are hidden behind a much simpler
interface. While the details of the commercial offerings
differ somewhat [1, 2, 3] they all have several important
aspects in common: they provide finer granularity billing
than regular VMs, elasticity is managed automatically
with support for launching a large number of functions
concurrently, and the start-up time of the functions is
significantly faster than that of VM-based applications.

In practice, however, serverless means different things
depending on how one looks at it: as a user, as a cloud
provider, and as a researcher. These perspectives are of-
ten not entirely aligned sowe start by discussing each one
of them. We then provide some background about data
analytics on serverless before proposing an ambitious
research agenda around serverless in general and data an-
alytics on serverless in particular. This research agenda
takes into account the way the cloud has been evolv-
ing and, importantly, the perspectives on the technology
from both the user and the cloud provider, an essential
aspect to make any proposal around serverless succeed.
We propose a redesign of current serverless computing,

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Serverless Data Analytics (SDA’23),
August 28 - September 1, 2023, Vancouver, Canada
Envelope-Open alonso@inf.ethz.ch (G. Alonso); aklimovic@ethz.ch
(A. Klimovic); tom.kuchler@inf.ethz.ch (T. Kuchler);
michalw@inf.ethz.ch (M. Wawrzoniak)
Orcid 0000-0002-4396-6695 (G. Alonso); 0000-0001-8559-0529
(A. Klimovic); 0009-0002-8091-0313 (T. Kuchler);
0000-0002-1304-8420 (M. Wawrzoniak)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

from the programming model to the underlying system
software stack, which can lead to significant performance
and resource efficiency gains by freeing serverless from
some of the legacy infrastructure it is built on today.
With these ideas we put forward an alternative view on
serverless that goes beyond data analytics but that can
play a crucial role in making data analytics viable in the
medium and long term on top of future serverless plat-
forms. The view is based on our own research efforts in
making serverless a viable and more efficient alternative
to current cloud offerings and it encompasses all aspects
of the stack from the serverless platform itself to the pro-
gramming abstractions, interfaces, and support that are
made available to applications.

2. Perspectives on Serverless
In this section we briefly discuss how users see serverless,
what serverless represents for the provider, and different
ways to tackle serverless from a research perspective.
Here we focus on serverless platforms in general and dis-
cuss their current implementation on top of conventional
cloud system software technology. In Section 3, we will
revisit these concepts with data analytics in mind.

2.1. Serverless for the Users
From the perspective of the cloud user, for a narrow set
of tasks, serverless is attractive as there is no need to
deal with complex infrastructure or resource manage-
ment. Functions run only as long as needed, thereby
minimizing costs, and the automatic elasticity makes it
easier to deal with a large number of parallel tasks, such
as processing a collection of images or files in parallel.
The event driven programming model behind serverless
also makes it quite useful for doing things on the side of

mailto:alonso@inf.ethz.ch
mailto:aklimovic@ethz.ch
mailto:tom.kuchler@inf.ethz.ch
mailto:michalw@inf.ethz.ch
https://orcid.org/0000-0002-4396-6695
https://orcid.org/0000-0001-8559-0529
https://orcid.org/0009-0002-8091-0313
https://orcid.org/0000-0002-1304-8420
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

larger deployments, providing a low cost and efficient
way to extend existing functionality. A running applica-
tion only needs to raise an event that triggers the creation
of functions that perform a given task and then disappear
when finished. Such a mechanism has been proposed
as a way to, e.g., provide higher elasticity to data pro-
cessing platforms [4] or to implement ephemeral caching
services [5].

2.2. Serverless for the Provider
From the perspective of the cloud provider, serverless has
other merits. On the one hand, it is an opportunity for the
platform provider to optimize the infrastructure under
the hood for better resource efficiency. As it is offered
today, serverless is optimized for short, ephemeral tasks.
Managing workloads composed of short (currently on
AWS Lambda up to 15 minutes), simpler tasks allows
the provider to fit these tasks on resources that would
otherwise be too small to run larger jobs. One way to
look at serverless from the provider perspective is as a
way to fill in the cracks left by larger cloud application
deployments.

On the other hand, since serverless exposes a higher
level of abstraction of the cloud to users, this gives
providers the opportunity to better manage the infras-
tructure by limiting the user’s control over many of the
aspects of their application’s deployment. It is important
to keep in mind that many applications and the way they
run today in the cloud is a legacy of earlier years when
users ran applications on their own servers rather than
on cloud services. The option of renting VMs (Infras-
tructure as a Service) and many other existing services
in the cloud are there solely so that users can port their
application systems to the cloud. They are, by far, not the
most efficient way to use the cloud. Serverless is a step
towards removing part of that legacy and detaching the
application from the underlying infrastructure (hence
the name) so that the infrastructure can be better shared
among multiple users, with better resource allocation,
more control, tighter security, and less complexity to
both the user and the provider. It is in this sense that
serverless has been regarded as the next evolutionary
step in cloud computing [6, 7].

2.3. Serverless for Researchers
From a research perspective, serverless has attracted at-
tention from different areas, from systems to hardware
to data management. Researchers in academia and in-
dustry have been improving the start up times of func-
tions [8, 9, 10, 11], facilitating data sharing [12, 13, 14],
building workflows of functions to implement more com-
plex functionality [15, 16, 17], or enabling better hard-
ware support for serverless [18]. These are all valuable

ideas that will help to improve serverless as it evolves and
also expand the use cases where serverless makes sense.
However, serverless does not offer a seamless transition
for applications such as data analytics.

As indicated above, current serverless offerings reflect
many of the needs of cloud providers while still giving
users an attractive new cloud service for a narrow set of
use cases. As a result, researchers have pointed out severe
limitations in current offerings that make running data
analytics on serverless a major challenge [19]: lack of
direct communication between functions, stateless func-
tions, restricted life time, limited configuration choices
between compute and memory, pricing model, etc. To
deal with these limitations for serverless data analytics,
two main approaches have emerged.

One approach tries to work around the current limi-
tations. Examples of this line of work are Starling [20]
and Lambada [21]. These two data processing systems
demonstrate many of the complex techniques needed to
make data analytics work on serverless: need tominimize
data transfer through storage, speed up the launch of par-
allel functions at scale, overlap computation with I/O, etc.
Yet, a message often overlooked from these efforts is that,
from a cost point of view, serverless makes sense only at
very low throughput (on the order of a few tens of queries
per hour). For more intense workloads, it is cheaper to
execute queries with standard data processing platforms
on long-running VMs. The cost of serverless offerings is
a crucial decision of the provider. We can only speculate
why a unit of computation resources is significantly more
expensive on serverless platforms than on conventional
VMs. It could reflect the actual cost, in which case it
does not look good for heavy data analytics, or it could
be just a way to prevent cannibalizing the VM business
line. Whatever it might be, this is an important factor to
keep in mind at this stage before investing large efforts in
implementing data analytic platforms on top of current
serverless offerings.

Another approach tries to compensate for the limita-
tions of serverless by building additional infrastructure
that replaces missing functionality and provides the sup-
port needed to run data analytics as it is understood
today. This includes creating caching layers to maintain
state [22, 23], using proxies to facilitate better communi-
cation between functions [5], enabling limited forms of
communication [24], improving scalability for concrete
applications [25], etc. This work is often motivated by
how serverless platforms are today and typically resorts
to adding extra VM-based infrastructure for supporting
functionality. To a certain extent, this goes against the
goal of reducing infrastructure and facilitating manage-
ment as those extra services are not typically managed
by the serverless platform, but will have to be started,
monitored, and turned off by the user. In an event-driven
model, where the events triggering functions can appear

at any time, this burden may cancel out several of the
potential advantages of serverless.

3. Background
Serverless is part of the cloud and, as such, it cannot
be understood outside the context of cloud computing.
Before presenting our view, we describe the aspects of
cloud architecture relevant to the discussion here.

3.1. On the Cloud
Cloud computing has been evolving over the years to-
wards higher levels of abstraction that hide more and
more of the underlying computing infrastructure [26].
Hardware-as-a-Service, Platform-as-a-Service, Software-
as-a-Service, Query-as-a-Service, and now Function-as-a-
Service represent steps where what is being offered is an
increasingly improved interface that frees the user from
mundane administrative and management tasks: acquir-
ing computers, maintaining and updating the operating
system and supporting infrastructure like storage and
file systems, deploying complex software and supporting
its life cycle, etc.

This development is heavily influenced by the ability
of customers to move their workloads to the cloud. Since
applications evolve slower than hardware, it follows that
the cloud cannot make radical changes in its architec-
ture and the platforms it offers because otherwise users’
applications would not run on the cloud or would have
to be ported to the new environment made available by
the provider. Such migration exercises are expensive and
cumbersome so the cloud has always tried to provide a
path to move applications with minimal changes. This
is why VMs have played and still pay such a crucial role
and why legacy systems like block storage or file systems
are still provided since otherwise there are applications
(notably database engines) that will simply not be able
to operate in the cloud.

Yet, over the years, the cloud is evolving as the work-
loads are better understood, cloud native systems start
to appear, and users get a better handle of running appli-
cations in the cloud. This evolution encompasses many
aspects of the infrastructure: lightweight virtualization
for more efficient bin-packing of securely-isolated tasks
(e.g., Firecracker [8]), data representations suited to the
disaggregated storage prevalent in the cloud (Parket, Ar-
row, etc.), supporting services native to the cloud (e.g.,
Key Value Stores as main memory caches), etc. The same
can be said of the tools and systems the provider employs
to manage and run the cloud as efficiently as possible.

3.2. On Serverless
Serverless is a next step in cloud offerings but, like all its
predecessor services, it is necessarily bound by what is
available on the provider side and the need to support
an interface compatible with current applications. It pro-
vides a higher level of abstraction compared to renting
some infrastructure (amachine, a VM, a piece of software)
and it hides a great deal of the complexities of the cloud
through automatic starts and shut-downs, automatic elas-
ticity, finer granularity billing, etc. It also simplifies the
choices available: instead of having to pick from an ever
growing catalogue of machine configurations and sizes,
current offerings limit the parameters available to the
user (e.g., just memory size as in AWS Lambda). Finally,
it also restricts the execution environment, allegedly to
simplify the management of functions by the provider [7]
by not allowing direct network communication among
functions, enforcing data exchanges though storage ser-
vices or queues, limiting the running time, not providing
support for stateful services, etc.

Serverless functions today execute in MicroVMs (e.g.,
Firecracker [8]), which are lighter weight than regular
VMs so that their start-up time is faster and they can
be more densely bin-packed per machine. Functions are
connected to regular cloud services in the form of stor-
age, event management, or message queuing systems.
However, these MicroVMs are still derived from their
original VM counterparts and do not represent a signif-
icant departure from them in terms of functionality or
interface. This is helpful for application compatibility but
leaves significant opportunities for further performance
and energy efficiency optimizations on the table. For ex-
ample, MicroVMs still have significant startup times [27],
context switching overheads [28], and memory duplica-
tion [29]. Given the significant differences in spirit and
level of abstraction of serverless, it is worth revisitng
whether the VM model is the correct one. As we will
propose later, we think that it is not and a far more effi-
cient approach is possible when the underlying support
is built with a true serverless model in mind. This new
approach might not be adequate for legacy applications
but it will open up the way to implement serverless native
applications.

3.3. On Cloud Data Processing
Relational database engines, one of the most successful
forms of commercial software, provide the perfect exam-
ple of the situation that the cloud creates. Conventional
relational engines have an architecture designed decades
ago and mostly focused on optimizing the data path from
storage to the processor. Competitive commercial sys-
tems are built to run on the company’s own servers and
to take control of many aspects of the machine (mem-

ory management, data representation, I/O, scheduling,
etc.) to the point that historically they have always been
competing with the operating system for control of the
machine. Making such engines run on the cloud so that
users can port the stack running on top of the database
has not been easy and has required to implement support
for the legacy concepts that such engines need (e.g., block
storage interfaces). As they are, database engines are al-
most the opposite of what the cloud is meant to offer:
databases heavily depend on locality for performance,
as the data anchors the engine to certain machines and
data sources, the state that needs to be maintained is of-
ten huge making databases very cumbersome to migrate
from one node to another and that same state makes
databases very slow to start, the indirection layers of
VMs and hypervisors often get in the way of database
optimizations developed under the assumption there is
nothing else running on the machine, etc. Not surpris-
ingly, cloud providers often support custom systems to
run legacy database engines (e.g., Amazon RDS).

As with many other services in the cloud, alternative
designs have appeared that are better suited to the com-
puting environment. Implicit in what we are discussing
in the paper is the idea that data analytics refers to dis-
tributed query processing. In all fairness, that is not
the only way to perform data analytics. There are the
traditional database engines and data-warehouses, often
monolithic engines with limited scalability, less elasticity,
and not really suitable to the highly dynamic environ-
ment of serverless functions. As pointed out above, these
engines already have issues when operating in the cloud
and it is difficult to see how they could fit on top of server-
less. Distributed query processing uses engines different
from traditional ones (e.g., Snowflake [30]) or discards
the notion of an engine entirely (e.g., Spark, Hadoop, or
MapReduce can run queries at large scales but are not
engines in the sense that they do not actually manage
the data in the way a database engine does). The gap
between legacy systems and what can be actually run on
the cloud, together with the ever growing demand for
data management support, has also led to a proliferation
of cloud native data management and processing engines
for a variety of applications and data types.

Serverless data analytics is at the same junction as
database engines were with the cloud. Conventional data
warehousing architectures are ill suited to the serverless
model and, conversely, current serverless platforms are
less than supportive of large scale data processing [19, 20,
21]. One can come up with many different ways to try to
build analytics engines on serverless today but our own
experience shows it is a never ending exercise with often
only less than optimal options to choose from. If data
analytics is ever going to run on serverless, a redesign
from the ground up is necessary. In the next section
we discuss how such a redesign could look like and its

potential advantages over existing systems.

4. An Alternative View on
Serverless

When considering the ideas above, it emerges that server-
less, like the cloud in general, is likely to follow a path
where it evolves towards something increasingly more
optimized for the cloud but retains a certain degree of
compatibility with existing systems. Thus, our alterna-
tive view on serverless aims at addressing two key re-
search challenges that are particularly relevant for server-
less analytics but also apply to serverless in general:

1. From a user perspective, how to leverage existing
data analytics systems (e.g., Spark, Flink, Drill,
Hadoop) that users are familiar with, and seam-
lessly run these engines with themain advantages
of serverless: high elasticity, automated resource
management, and fine-grain billing?

2. From a provider perspective, how to improve the
performance and resource efficiency of the server-
less infrastructure under the hood, which today
is still rooted in a bloated system stack originally
designed for long-running virtual machines?

These two questions are not orthogonal to each other.
Addressing the first one by providing the means to
run unmodified, existing distributed data processing
systems on serverless would start to provide insights
to inform future platform designs. It would also help
identify which features of these systems collide with the
serverless model. This information can then be used
to change the way serverless is implemented and the
interfaces the platform exposes to the application, so that
the second challenge can be addressed while enabling
a richer and more suitable interface to developers
of serverless applications in general and serverless
analytics in particular.

To address the first challenge, we propose to build an
overlay system on top of the serverless platform that
abstracts the FaaS infrastructure and provides the fa-
miliar POSIX-like environment of networked processes
that existing distributed data analytics expect. This ap-
proach should enable running existing off-the-shelf data
analytics engines on serverless platforms. The overlay
system is responsible for filling the gap in functional-
ity that the application expects (e.g., a distributed data
engine like Spark expects to be able to exchange data
directly over the network between workers) and what
the underlying serverless platform supports (e.g., AWS
Lambda and other commercial offerings today do not ex-
pose direct support for inter-function networking). The
overlay will have to perform several tasks to turn current

serverless functions into something equivalent to regu-
lar VMs. Some of these tasks include: (1) intercepting
system calls and redirecting them as needed so that appli-
cation code that operates thinking it is running over an
OS or a VM does not need to be modified; (2) establishing
a group of communicating functions that will run the
distributed application through services such a name and
directory service, bootstrap processes, group coordina-
tion, etc.; and (3) provide basic fault tolerance on top of
what the serverless platform provides to be able to react
to issues caused by the platform itself, e.g., stragglers or
functions failing. As we will discuss later, providing an
initial version of such an interposition layer between the
application and the serverless function already points
out to interesting research directions such as the need to
make I/O and communication more declarative so that
the concrete implementation and runtime management
can be done by the underlying serverless platform and
not by the application as it is today. Section 5 explores
these ideas and the prototype we are building in more
detail.

Since the starting point is to better understand server-
less analytics by enabling current systems to run on
serverless platforms, we are addressing the first challenge
by building a prototype of the overlay on top of a current
commercial serverless offering (AWS Lambda). However,
to address the second challenge (i.e., improve the perfor-
mance and resource efficiency of serverless computing
services), it is necessary to rethink the function execution
model and system software stack of current serverless
platforms. Hence, as a next step, we propose a new plat-
form design. Importantly, by still leveraging the overlay
on top of the platform, the changes we propose to the
platform system software can be implemented transpar-
ently to user applications.

To address the second challenge, we propose to move
away from AWS Lambda’s approach of executing func-
tions as MicroVMs. Instead, we advocate to treat server-
less functions as true functions: bodies of code which
take in a declared list of inputs and produce a list of
outputs which can be fed to other functions or cloud
data services. This enables a clear separation of com-
putation (the function logic itself) and I/O (which can
now be handled completely outside of the function by
the platform, before and after the function’s execution).
Section 6 elaborates on the proposed platform design.

The separation of computation and I/O has several
key advantages. First, compute tasks can be supported
without the need for system calls, since the platform can
prepare data for each function in a dedicated memory
region before the function starts executing. Avoiding sys-
tem calls removes a large attack surface of the untrusted
user code and allows the platform to move away from
the traditional VM-based isolation technologies, which
introduce significant software bloat to provide secure

isolation. Treating functions as true functions (which
do not need to interact directly with the OS during their
execution) enables adopting more lightweight sandbox
designs, which can leverage emerging software and hard-
ware isolation mechanisms, such as WebAssembly-based
Software Fault Isolation [31, 32, 12], Memory Protection
Keys (MPK) [33], and CHERI memory capabilities [34].
Second, separating compute and I/O directly exposes all
dataflow to the platform, which enables optimizations
like locality-aware function scheduling and overlapping
data fetching and function execution. Finally, separating
compute and I/O also makes functions more amenable to
hardware acceleration, as pure compute tasks can more
readily be accelerated on hardware platforms like GPUs
and FPGAs. Meanwhile, the I/O tasks that the platform
executes (i.e., to prepare data before function execution
and to manage function outputs after execution) are good
candidates to offload and accelerate on SmartNICs.

Note that this redesign of the serverless infrastructure
is particularly interesting for data analytics. Queries can
be easily represented as a dataflow (whether a tree or a
DAG makes no difference) and the inputs and outputs of
each stage are easily specified in a declarative manner.
To a large extent, the serverless infrastructure can take
advantage of the declarative nature of the I/O in func-
tions to implement optimizations tasks that a traditional
database engine performs: pre-fetching, caching, partial
result reusing, view materialization, locality aware func-
tion scheduling, etc.; all tasks that are today missing from
distributed data processing tools.

5. An Overlay on Serverless
The motivation to build an overlay on top of current
serverless platforms arose from the experience accumu-
lated trying to do query processing on serverless. While
designing Lambada [21], looking at results from other
groups [20], and examining attempts to run data heavy
tasks on serverless [35, 36] we realized the big gap be-
tween what it is commercially available and what is
needed to support data processing. Serverless works
very well in narrow use cases with embarrassingly paral-
lel tasks that can run independently of each other, have
a short life time, do not exchange much data, and with
a simple control flow between them (e.g., [37]). None
of those are properties of analytic queries where opera-
tors create dependencies between the different stages of
the computation, there is a well defined and potentially
complex dataflow defining how and when to invoke the
operators, and exchange potentially large amounts of
intermediate results.

Focusing on the obvious limitation of today’s offer-
ings that forces data exchanges to occur through stor-
age (S3 in AWS Lambda), we have developed an initial

prototype (Boxer 1.0) of the overlay that addressed ba-
sic communication between functions [38]. Using well
known NAT-punching techniques, Boxer 1.0 was able
to establish TCP-IP connections between functions and
enabled us to implement distributed query processing as
done in Lambada but without having to write and read
to storage between stages of the query. This initial proto-
type showed the advantages of a more flexible serverless
platforms and what could be gained by removing the un-
derlying limitations rather than working around them.

Encouraged by that initial prototype, we have contin-
ued development towards Boxer 2.0, a more extensive
implementation that incorporates not only the ability to
communicate but also necessary services to, e.g., manage
a distributed set of functions, ensure quick start up times
of all the necessary functions through redundancy, better
management of the function life cycle, etc. With the addi-
tion of an interposition layer that selectively intercepts C
Library calls, the newer version of Boxer enables running
off-the-shelf data processing engines like Apache Spark
on top of serverless without any modifications.

We are in the process of porting a variety of data
processing engines to Boxer 2.0. Doing so enables us
to explore interesting ideas around serverless analyt-
ics like automatic instantiation of query engines on a
per query basis [39]. But more importantly for the pur-
poses here, Boxer 2.0 allows us to start running different
query engines on serverless to identify how they need
to be changed to take advantage of the unique features
of serverless and also to study how the interface offered
by serverless can be improved to better facilitate data
analytic applications.

Although our first step is prototyping Boxer on top of
existing commercial serverless platforms, such as AWS
Lambda, we next plan to explore how to continue pro-
viding the familiar abstractions that traditional data an-
alytics engines expect while evolving the underlying
platform under the hood for greater performance and
resource efficiency.

6. A New Serverless Platform
A serverless platform must meet several requirements
from a provider perspective, requirements that also have
an impact on how the platform is perceived by users:
Secure isolation: The platform must prevent un-

trusted user code from tampering with the infrastructure
or accessing the data or code of other users.1

Low latency: A function should complete with low
(ideally ≤ 10%) overhead compared to its execution on a
dedicated, bare-metal server.

1We assume the typical cloud computing threat model [40], in which
the provider does not trust users, users do not trust each other, but
users trust the cloud provider.

High throughput per machine: The platform
should serve a high rate of function invocations per
physical machine (i.e., dense bin-packing) to maximize
throughput at low cost.

The current platforms offered by cloud providers like
AWS, Google, and Microsoft Azure try to satisfy these re-
quirements based on lightweight VMs or secure contain-
ers [8, 41]. As described in Section 3.2, this approach leads
to a bloated system software stack rooted in a more con-
ventional cloud execution model based on long-running
virtual machines and processes. Current platforms in-
troduce high overhead when executing many fine-grain,
short-lived tasks at high churn [12].

To optimize function execution latency and through-
put while still satisfying the secure isolation requirement,
we propose to rethink the serverless function execution
model. Our key idea is to treat functions as true func-
tions, which consist of a declarative list of inputs and
outputs as well as the actual computation logic that op-
erates on the inputs. This delcarative model enables a
strict separation of computation and I/O. With this clear
separation, functions now consist of pure computations
and I/O is handled by the platform before/after function
execution. The platform provides each function with a
dedicated memory region prepared with the function’s
inputs and the function does not do any I/O (or in fact
any system calls) during its execution. Avoiding system
calls removes a large attack surface (VMs are used today
as an isolation mechanism since the OS itself is consid-
ered too large of a TCB to securely isolate functions from
untrusted users [8, 41]) and allows us to rethink function
sandbox design. With our new execution model, we can
leverage lighter weight isolation mechanisms optimized
for performance (e.g., WASM [31], MPK [33], and CHERI
memory capabilities [34]) rather than defaulting to the
legacy approach of executing each function in a separate
virtual machine, bundled with its own operating system.

We are currently building a prototype of a serverless
platform, Dandelion, which adopts this declarative func-
tion execution model. We design the system software
to efficiently schedule functions and execute them with
support for a variety of hardware and software isolation
mechanisms under the hood through a unified abstrac-
tion. In our initial prototype, we leverage CHERI mem-
ory capabilities [34] to isolate function memory regions
while running the Dandelion system infrastructure and
compute functions within a single virtual address space.
We compare Dandelion’s performance to a Firecracker
system running functions in separate MicroVMs. We
sweep function invocations for each system, with each
function executing a matrix multiplication computation.
Our initial results show that Dandelion achieves 3.4×
higher peak throughput per machine and over 14× lower
latency compared to Firecracker.

In addition to enabling lightweight function sandbox

technology for low latency and high-density bin-packing
without compromising secure isolation, the declarative
function execution model offers cloud providers addi-
tional opportunities to optimize the underlying infras-
tructure. A major benefit of declaring applications as
compositions of compute functions (containing untrusted
user code) and I/O tasks (handled by the platform) is that
application dataflow becomes explicit and directly ex-
posed to the platform. The cloud provider can leverage
information about how data flows between functions
and cloud data services to prefetch function inputs and
avoid functions wasting CPU cycles while waiting for
data by guaranteeing that a function only starts execut-
ing when its inputs are available [42]. The provider can
also leverage dataflow information in applications for
locality-aware scheduling, i.e., collocating functions that
exchange data on the same nodes.

Finally, the declarative function execution model and
strict separation of compute and I/O also lends itself well
to hardware acceleration. User functions become easier
to offload to hardware accelreators such as GPUs when
they are pure functions that do not rely on close interac-
tion with the host OS. We also plan to explore offloading
the I/O tasks performed by the platform to SmartNICs.
We believe this declarative execution model under the
hood of a serverless platform is a promising way to lever-
age heterogeneous hardware, while the overlay presented
in Section 5 can maintain a convenient abstraction for
user applications.

7. Discussion
In this section we explore how the ideas just proposed
could influence serverless data analytics. We also discuss
the interplay between an overlay system like Boxer and
our ideas around Dandelion about how to optimize the
underlying serverless infrastructure.

7.1. Engines, Platforms, and Services
What we are proposing, even in the initial use case where
we run existing, unmodified query platforms on top
of serverless functions, brings query processing closer
to the notion of query-as-a-service. As discussed else-
where [39], the approach makes it possible to create a
distributed query engine when a query arrives and dis-
mantle it when it finishes. The resulting functionality is
very similar to that of services such as Amazon Athena
[43] or Google Big Query [44] except that the user can
select the engine where the query runs.

When considering the modified serverless platform we
have inmind, the opportunity arises to turn the serverless
platform into an actual data processing engine providing
much of the functionality missing on distributed query

processing systems today. Current systems do not run on
an actual engine in the sense that systems such as Spark
do not maintain permanent data structures and function-
ality (indexes, lock tables, access statistics, schema, views,
access controls, etc.) across executions. Thus, they do
not perform common database optimizations.

In addition to running off-the-shelf engines on the
overlay, an optimized platform like Dandelion enables
building data processing engines directly on top of the
declarative function execution model interface, as op-
posed to through the overlay. Through the declarative
specification of I/O, function scheduling can be enhanced
with features such as data pre-fetching from storage if
that is where the data resides so when the function starts,
the data has already been brought to it. This would sig-
nificantly speed up running, e.g., a join of a base table
with the intermediate results produced by another join of
other tables. Similarly, it should be possible to implement
different query execution models beyond the batch mode
enforced by today’s serverless platforms. Direct commu-
nications should enable vectorized and even volcano style
execution models that are far more suitable to modern
analytics and have much better performance. Providing
such functionality would make serverless an excellent
vehicle to implement a completely new generation of
data analytic engines where the system functionality is
directly embedded in the computational model. Such
an architecture is likely to improve performance while
allowing the provider to optimize internal bottlenecks
in the cloud like the latency of accessing disaggregated
storage or network congestion.

7.2. System Optimizations
Data analytics has many decades of experience on opti-
mizing queries, predicting cardinalities, calculating costs
of operations, etc. Many of these advantages are lost
when operating on the distributed query processing set-
tings found in the cloud today. This leads, in several
subtle ways, to a number of inefficiencies that need to
be addressed. Among them, the most relevant is over-
provisioning: reserving a much larger set of resources
than actually needed just in case, e.g., a load spike ar-
rives. Overprovisioning affects all aspects of the system:
memory, CPU capacity, number of machines, etc.

For instance, stranded memory [45] results from ma-
chines running out of virtual CPUs to allocate before
they run out of memory. It is tempting to think that the
current configuration of functions based solely on the
memory size could be related to this provider-side prob-
lem. In the serverless data analytics view we propose, the
problem could be addressed differently: apply traditional
query optimization techniques and knowledge of the op-
erators to estimate the amount of memory a function will
need to execute. This would yield a far more accurate

allocation of resources on a per-query basis and, as a
result, a lower budget for running queries than when the
size of the functions is chosen on a worst case scenario
basis.

Similarly, the notion of declarative interfaces at the
function level can be used beyond I/O and be applied
to networking and communication. Rather than using
sockets as the current Boxer prototypes does, functions
would specify a number of other functions and the re-
quired topology that the underlying system would au-
tomatically instantiate as needed. This opens up the
opportunity for the provider to optimize the location
of the functions, reuse them when possible, collocate
them in the same machine if the opportunity arises, etc.
It is not difficult to see how this would benefit parallel
query execution and minimize data movement while still
preserving the elasticity of serverless and hiding of the
underlying infrastructure form the user.

Finally, the declarative nature of functions we propose
would support the automatic creation and management
of caching layers. The system can observe the declara-
tions of function compositions and and decide which data
can be moved to a faster storage layer (whether in mem-
ory, on a dedicated key value store, or even in accelerated
storage) for faster access if used often enough.

7.3. Next Steps
The transition from the current Boxer overlay system
to a radically different function execution system like
Dandelion will involve exploring how to develop applica-
tions under the new interface. In our current prototype
of Dandelion, we develop a domain specific language
for developers to directly express their applications as
compositions of pure compute and platform library I/O
functions. However, in the future, we aim to explore how
off-the-shelf applications can be automatically transpiled
to compositions that strictly separate their compute and
I/O tasks under the hood.

Running arbitrary legacy applications on Dandelion
can be a challenge but less so for data processing and data
analytics. Note that the declarative I/O model closely re-
sembles the execution model of database engines with
operators implementing the logic to be applied to sup-
plied by a pre-defined execution model and interface (i.e.,
volcano, vectorized, or batched). To a first approximation,
queries can be expressed as a DAG of functions that are
connected through well defined I/O interfaces. An inter-
esting research direction is to define such interfaces so
that they fulfill the requirements of the serverless infras-
tructure while facilitating the execution of distributed
query processing. Nevertheless, the ultimate goal of our
vision for serverless is to have native engines that take
full advantage of the new model rather than being an-
chored on architectures more suitable for conventional

deployments on servers or VMs.

8. Conclusions
In this short paper we have put forward an alternative
view on serverless that accommodates the perspectives of
both the users and the providers. It defines a path of mi-
gration for existing distributed query processing systems
to serverless and proposes a redesign of the interface
offered to function code that truly hides the underlying
execution platform. The idea is not exclusive to data
analytics but we have show how data processing, even
being an application ill suited for serverless, can greatly
benefit from this alternative view.

The systems we are developing should help to inform
how to better support data analytics on serverless by
enabling running off-the-shelf systems on today’s plat-
forms. At the same time, the experience gathered from
these initial experiments will help better define what the
serverless infrastructure should become, to eliminate a
lot of the legacy and bloat present in current systems,
and provide an interface that unleashes all the potential
of serverless as the next generation of cloud computing.

References
[1] Google Cloud Functions, 2023. URL: https://cloud.

google.com/functions, visited 2023-8-9.
[2] AWS Lambda, 2023. URL: https://aws.amazon.com/

lambda, visited 2023-08-9.
[3] Microsoft Azure Functions, 2023. URL: https://

azure.microsoft.com/en-us/services/functions, vis-
ited 2023-08-9.

[4] H. Bian, T. Sha, A. Ailamaki, Using cloud functions
as accelerator for elastic data analytics, Proc. ACM
Manag. Data 1 (2023).

[5] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht,
D. Skourtis, V. Tarasov, F. Yan, Y. Cheng, Infinicache:
Exploiting ephemeral serverless functions to build
a cost-effective memory cache, in: USENIX FAST,
2020.

[6] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski,
The rise of serverless computing, Commun. ACM
62 (2019) 44–54.

[7] J. Schleier-Smith, V. Sreekanti, A. Khandelwal,
J. Carreira, N. J. Yadwadkar, R. A. Popa, J. E. Gon-
zalez, I. Stoica, D. A. Patterson, What serverless
computing is and should become: The next phase of
cloud computing, Commun. ACM 64 (2021) 76–84.

[8] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, D.-M. Popa, Firecracker:
Lightweight virtualization for serverless applica-
tions, in: NSDI, 2020.

https://cloud.google.com/functions
https://cloud.google.com/functions
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions

[9] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter,
A. Arpaci-Dusseau, R. Arpaci-Dusseau, SOCK:
Rapid task provisioning with serverless-optimized
containers, in: USENIX ATC, 2018.

[10] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu,
H. Chen, Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less boot-
ing, in: ASPLOS, 2020.

[11] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer,
S. Sati, K. Yasukata, C. Raiciu, F. Huici, My vm is
lighter (and safer) than your container, in: SOSP,
2017.

[12] S. Shillaker, P. Pietzuch, Faasm: Lightweight iso-
lation for efficient stateful serverless computing,
in: 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020.

[13] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pf-
efferle, C. Kozyrakis, Pocket: Elastic ephemeral
storage for serverless analytics, in: OSDI, 2018, p.
427–444.

[14] M. Yu, T. Cao, W. Wang, R. Chen, Following the
data, not the function: Rethinking function orches-
tration in serverless computing, in: 20th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 23), 2023.

[15] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety,
S. Chaterji, S. Bagchi, ORION and the three rights:
Sizing, bundling, and prewarming for serverless
DAGs, in: 16th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 22),
2022.

[16] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic,
S. Chaterji, S. Bagchi, SONIC: Application-aware
data passing for chained serverless applications, in:
USENIX Annual Technical Conference (USENIX
ATC 21), 2021.

[17] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S.
Mishra, M. T. Kandemir, C. Das, Kraken: Adaptive
container provisioning for deploying dynamic dags
in serverless platforms, in: Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’21, 2021,
p. 153–167.

[18] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, H. Chen,
Serverless computing on heterogeneous comput-
ers, in: Proceedings of the 27th ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS
’22, 2022.

[19] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez,
J. Schleier-Smith, V. Sreekanti, A. Tumanov, C. Wu,
Serverless computing: One step forward, two steps
back, in: CIDR, 2019.

[20] M. Perron, R. Castro Fernandez, D. DeWitt, S. Mad-

den, Starling: A scalable query engine on cloud
functions, in: SIGMOD, 2020.

[21] I. Müller, R. Marroquín, G. Alonso, Lambada: Inter-
active data analytics on cold data using serverless
cloud infrastructure, in: SIGMOD, 2020.

[22] C. Wu, J. M. Faleiro, Y. Lin, J. M. Hellerstein, Anna:
A KVS for Any Scale, in: ICDE, 2018.

[23] F. Romero, G. I. Chaudhry, I. n. Goiri, P. Gopa, P. Ba-
tum, N. J. Yadwadkar, R. Fonseca, C. Kozyrakis,
R. Bianchini, Faa$t: A transparent auto-scaling
cache for serverless applications, in: Proceedings of
the ACM Symposium on Cloud Computing, SoCC
’21, Association for Computing Machinery, New
York, NY, USA, 2021, p. 122–137.

[24] S. Thomas, L. Ao, G. M. Voelker, G. Porter, Particle:
Ephemeral endpoints for serverless networking, in:
Proceedings of the 11th ACM Symposium on Cloud
Computing, 2020, p. 16–29.

[25] Z. Jia, E. Witchel, Nightcore: Efficient and scalable
serverless computing for latency-sensitive, inter-
active microservices, in: Proceedings of the 26th
ACM International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, 2021, p. 152–166.

[26] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, A view of cloud
computing, Commun. ACM 53 (2010) 50–58.

[27] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion,
B. Grot, Benchmarking, analysis, and optimization
of serverless function snapshots, in: Proceedings of
the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, 2021, p. 559–572.

[28] N. C. Wanninger, J. J. Bowden, K. Shetty, A. Garg,
K. C. Hale, Isolating functions at the hardware limit
with virtines, in: Proceedings of the Seventeenth
European Conference on Computer Systems, Eu-
roSys ’22, 2022.

[29] D. Saxena, T. Ji, A. Singhvi, J. Khalid, A. Akella,
Memory deduplication for serverless computing
with medes, Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems (2022).

[30] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,
A. Motivala, T. Cruanes, Building an elastic query
engine on disaggregated storage, in: Proceedings of
the 17th Usenix Conference on Networked Systems
Design and Implementation, NSDI’20, USENIX As-
sociation, USA, 2020, p. 449–462.

[31] Webassembly, 2023. Available at https:
//webassembly.org, visited 2023-8-9.

[32] K. Varda, Webassembly on cloudflare
workers, https://blog.cloudflare.com/
webassembly-on-cloudflare-workers, 2018.

https://webassembly.org
https://webassembly.org
https://blog.cloudflare.com/webassembly-on-cloudflare-workers
https://blog.cloudflare.com/webassembly-on-cloudflare-workers

[33] S. Park, S. Lee, W. Xu, H. Moon, T. Kim, libmpk:
Software abstraction for intel memory protection
keys (intel MPK), in: 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19), 2019.

[34] R. N. Watson, J. Woodruff, P. G. Neumann, S. W.
Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis,
K. Gudka, B. Laurie, S. J. Murdoch, R. Norton,
M. Roe, S. Son, M. Vadera, Cheri: A hybrid
capability-system architecture for scalable software
compartmentalization, in: 2015 IEEE Symposium
on Security and Privacy, 2015.

[35] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso,
A. Klimovic, A. Singla, W. Wu, C. Zhang, Towards
demystifying serverless machine learning training,
in: Proceedings of the 2021 International Confer-
ence on Management of Data, 2021, p. 857–871.

[36] Y. Wu, T. T. A. Dinh, G. Hu, M. Zhang, Y. M. Chee,
B. C. Ooi, Serverless data science - are we there yet?
A case study of model serving, in: SIGMOD ’22:
International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, 2022.

[37] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,
C. Kozyrakis, M. Zaharia, K. Winstein, From laptop
to lambda: Outsourcing everyday jobs to thousands
of transient functional containers, in: USENIX ATC,
2019.

[38] M. Wawrzoniak, I. Müller, R. Bruno, G. Alonso,
Boxer: Data analytics on network-enabled server-
less platforms, in: CIDR, 2021.

[39] M. Wawrzoniak, R. Bruno, A. Klimovic, G. Alonso,
Ephemeral per-query engines for serverless analyt-
ics, in: 1st Workshop on Serverless Data Analytics
(SDA’23) at VLDB 2023, 2023.

[40] Amazon Web Services, Security overview of
AWS Lambda, https://docs.aws.amazon.com/
whitepapers/latest/security-overview-aws-lambda/
security-overview-aws-lambda.html, 2021.

[41] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, The true cost of
containing: A gVisor case study, in: 11th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 19), 2019.

[42] Y. Deng, A. Montemayor, A. Levy, K. Winstein,
Computation-centric networking, in: Proceedings
of the 21st ACM Workshop on Hot Topics in Net-
works, HotNets ’22, 2022.

[43] Amazon Athena, 2023. URL: http://docs.aws.
amazon.com/athena/, visited 2023-08-9.

[44] Google BigQuery, 2023. URL: https://cloud.google.
com/bigquery/, visited 2023-08-9.

[45] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti,
S. Novakovic, M. Shah, S. Rajadnya, S. Lee, I. Agar-
wal, M. D. Hill, M. Fontoura, R. Bianchini, Pond:
Cxl-based memory pooling systems for cloud plat-
forms, in: Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Vol-
ume 2, ASPLOS 2023, 2023.

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
http://docs.aws.amazon.com/athena/
http://docs.aws.amazon.com/athena/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/

