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ROAD: The Road Event Awareness Dataset for
Autonomous Driving

Gurkirt Singh , Stephen Akrigg , Manuele Di Maio , Valentina Fontana , Reza Javanmard Alitappeh ,

Salman Khan , Suman Saha , Kossar Jeddisaravi , Farzad Yousefi , Jacob Culley ,

Tom Nicholson , Jordan Omokeowa , Stanislao Grazioso , Andrew Bradley ,

Giuseppe Di Gironimo , and Fabio Cuzzolin

Abstract—Humans drive in a holistic fashion which entails, in particular, understanding dynamic road events and their evolution.

Injecting these capabilities in autonomous vehicles can thus take situational awareness and decision making closer to human-level

performance. To this purpose, we introduce the ROad event Awareness Dataset (ROAD) for Autonomous Driving, to our knowledge

the first of its kind. ROAD is designed to test an autonomous vehicle’s ability to detect road events, defined as triplets composed by

an active agent, the action(s) it performs and the corresponding scene locations. ROAD comprises videos originally from the Oxford

RobotCar Dataset, annotated with bounding boxes showing the location in the image plane of each road event. We benchmark

various detection tasks, proposing as a baseline a new incremental algorithm for online road event awareness termed 3D-RetinaNet.

We also report the performance on the ROAD tasks of Slowfast and YOLOv5 detectors, as well as that of the winners of the

ICCV2021 ROAD challenge, which highlight the challenges faced by situation awareness in autonomous driving. ROAD is designed

to allow scholars to investigate exciting tasks such as complex (road) activity detection, future event anticipation and continual

learning. The dataset is available at https://github.com/gurkirt/road-dataset; the baseline can be found at https://github.com/gurkirt/

3D-RetinaNet.

Index Terms—Autonomous driving, action detection, road agents, situation awareness, decision making

Ç

1 INTRODUCTION

IN recent years, autonomous driving (or robot-assisted driving)
has emerged as a fast-growing research area.
The race towards fully autonomous vehicles pushed

many large companies, such as Google, Toyota and Ford, to
develop their own concept of robot-car [1], [2], [3]. While
self-driving cars are widely considered to be a major devel-
opment and testing ground for the real-world application of

artificial intelligence, major reasons for concern remain in
terms of safety, ethics, cost, and reliability [4]. From a safety
standpoint, in particular, smart cars need to robustly inter-
pret the behaviour of the humans (drivers, pedestrians or
cyclists) they share the environment with, in order to cope
with their decisions. Situation awareness and the ability to
understand the behaviour of other road users are thus cru-
cial for the safe deployment of autonomous vehicles (AVs).

The latest generation of robot–cars is equipped with a
range of different sensors (i.e., laser rangefinders, radar,
cameras, GPS) to provide data on what is happening on the
road [5]. The information so extracted is then fused to sug-
gest how the vehicle should move [6], [7], [8], [9]. Some
authors, however, maintain that vision is a sufficient sense
for AVs to navigate their environment, supported by
humans’ ability to do just so. Without enlisting ourselves as
supporters of the latter point of view, in this paper we con-
sider the context of vision-based autonomous driving [10]
from video sequences captured by cameras mounted on the
vehicle in a streaming, online fashion.

While detector networks [11] are routinely trained to
facilitate object and actor recognition in road scenes, this
simply allows the vehicle to ’see’ what is around it. The phi-
losophy of this work is that robust self-driving capabilities
require a deeper, more human-like understanding of
dynamic road environments (and of the evolving behaviour
of other road users over time) in the form of semantically
meaningful concepts, as a stepping stone for intention pre-
diction and automated decision making. One advantage of
this approach is that it allows the autonomous vehicle to
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focus on a much smaller amount of relevant information
when learning how to make its decisions, in a way arguably
closer to how decision making takes place in humans.

On the opposite side of the spectrum lies end-to-end rein-
forcement learning. There, the behaviour of a human driver
in response to road situations is used to train, in an imitation
learning setting [12], an autonomous car to respond in amore
‘human-like’ manner to road scenarios. This, however,
requires an astonishing amount of data from a myriad of
road situations. For highway driving only, a relatively simple
taskwhen compared to city driving, Fridman et al. in [13] had
to use a whole fleet of vehicles to collect 45 million frames.
Perhaps more importantly, in this approach the network
learns a mapping from the scene to control inputs, without
attempting to model the significant facts taking place in the
scene or the reasoning of the agents therein. As discussed
in [14], many authors [15], [16] have recently highlighted the
insufficiency of models which directly map observations to
actions [17], specifically in the self-driving cars scenario.

1.1 ROAD: A Multi-Label, Multi-Task Dataset

Concept. This work aims to propose a new framework for sit-
uation awareness and perception, departing from the disor-
ganised collection of object detection, semantic segmentation
or pedestrian intention tasks which is the focus of much cur-
rent work. We propose to do so in a “holistic”, multi-label
approach in which agents, actions and their locations are all
ingredients in the fundamental concept of road event (RE).
Road events are defined as triplets E ¼ ðAg;Ac; LocÞ com-
posed by an active road agentAg, the action(s)Ac it performs
(possiblymore than one at the same time), and the location(s)
Loc in which this takes place (which may vary from the start
to the end of the event itself), as seen from the point of the
view of an autonomous vehicle.

This takes the problem to a higher conceptual level, in
which AVs are tested on their understanding of what is going
on in a dynamic scene rather than their ability to describe
what the scene looks like, putting them in a position to use
that information to make decisions and a plot course of
action. Modelling dynamic road scenes in terms of road
events can also allow us to model the causal relationships
between what happens; these causality links can then be
exploited to predict further future consequences.

To transfer this conceptual paradigm into practice, this
paper introduces ROAD, the first ROad event Awareness in
Autonomous Driving Dataset, as an entirely new type of data-
set designed to allow researchers in autonomous vehicles to
test the situation awareness capabilities of their stacks in a
manner impossible until now. Unlike all existing bench-
marks, ROAD provides ground truth for the action per-
formed by all road agents, not just humans. In this sense
ROAD is unique in the richness and sophistication of its
annotation, designed to support the proposed conceptual
shift. We are confident this contribution will be very useful
moving forward for both the autonomous driving and the
computer vision community.

Features. ROAD is built upon (a fraction of) the Oxford
RobotCar Dataset [18], by carefully annotating 22 carefully
selected, relatively long-duration videos. Road events are rep-
resented as ’tubes’, i.e., time series of frame-wise bounding

box detections. ROAD is a dataset of significant size, most
notably in terms of the richness and complexity of its annota-
tion rather than the raw number of video frames. A total of
122K video frames are labelled for a total of 560K detection
bounding boxes in turn associated with 1:7M unique individ-
ual labels, broken down into 560K agent labels, 640K action
labels and 499K location labels.

The dataset was designed according to the following
principles.

� A multi-label benchmark: each road event is com-
posed by the label of the (moving) agent responsible,
the label(s) of the type of action(s) being performed,
and labels describing where the action is located.

� Each event can be assigned multiple instances of the
same label type whenever relevant (e.g., an RE can
be an instance of both moving away and turning left).

� The labelling is done from the point of view of the AV:
the final goal is for the autonomous vehicle to use
this information to make the appropriate decisions.

� The meta-data is intended to contain all the informa-
tion required to fully describe a road scenario: an
illustration of this concept is given in Fig. 1. After
closing one’s eyes, the set of labels associated with
the current video frame should be sufficient to recre-
ate the road situation in one’s head (or, equivalently,
sufficient for the AV to be able to make a decision).

In an effort to take action detection into the real world,
ROAD moves away from human body actions almost
entirely, to consider (besides pedestrian behaviour) actions
performed by humans as drivers of various types of
vehicles, shifting the paradigm from actions performed by
human bodies to events caused by agents. As shown in our
experiments, ROAD is more challenging than current action
detection benchmarks due to the complexity of road events
happening in real, non-choreographed driving conditions,
the number of active agents present and the variety of
weather conditions encompassed.

Tasks. ROAD allows one to validate manifold tasks associ-
ated with situation awareness for self-driving, each associ-
ated with a label type (agent, action, location) or combination
thereof: spatiotemporal (i) agent detection, (ii) action detection,
(iii) location detection, (iv) agent-action detection, (v) road event
detection, as well as the (vi) temporal segmentation of AV actions.
For each task one can assess both frame-level detection, which
outputs independently for each video frame the bounding
box(es) (BBs) of the instances there present and the relevant
class labels, and video-level detection, which consists in
regressing the whole series of temporally-linked bounding
boxes (i.e., in current terminology, a ’tube’) associated with
an instance, together with the relevant class label. In this
paper we conduct tests on both. All tasks come with both the
necessary annotation and a shared baseline, which is
described in Section 4.

1.2 Contributions

The major contributions of the paper are thus the following.

� A conceptual shift in situation awareness centred on
a formal definition of the notion of road event, as a
triplet composed by a road agent, the action(s) it
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performs and the location(s) of the event, seen from
the point of view of the AV.

� A new ROad event Awareness Dataset for Autono-
mous Driving (ROAD), the first of its kind, designed
to support this paradigm shift and allow the testing
of a range of tasks related to situation awareness for
autonomous driving: agent and/or action detection,
event detection, ego-action classification.

Instrumental to the introduction of ROAD as the bench-
mark of choice for semantic situation awareness, we pro-
pose a robust baseline for online action/agent/event
detection (termed 3D-RetinaNet) which combines state-of-
the-art single-stage object detector technology with an
online tube construction method [19], with the aim of link-
ing detections over time to create event tubes [20], [21].
Results for two additional baselines based on a Slowfast
detector architecture [22] and YOLOv51 (for agent detection
only) are also reported and critically assessed.

We are confident that this work will lay the foundations
upon which much further research in this area can be built.

1.3 Outline

The remainder of the paper is organised as follows. Section 2
reviews related work concerning existing datasets, both for
autonomous driving (Section 2.1) and action detection (Sec-
tion 2.2), as well as action detection methods (Section 2.3).
Section 3 presents our ROAD dataset in full detail, includ-
ing: its multi-label nature (Section 3.1), data collection (Sec-
tion 3.2), annotation (Section 3.3), the tasks it is designed to
validate (Section 3.4), and a quantitative summary (Sec-
tion 3.5). Section 4 presents an overview of the proposed
3D-RetinaNet baseline, and recalls the ROAD challenge
organised by some of us at ICCV 2021 to disseminate this
new approach to situation awareness within the autono-
mous driving and computer vision communities, using
ROAD as the benchmark. Experiments are described in Sec-
tion 5, where a number of ablation studies are reported and

critically analysed in detail, together with the results of the
ROAD challenge’s top participants. Section 6 outlines addi-
tional exciting tasks the dataset can be used as a benchmark
for in the near future, such as future event anticipation,
decision making and machine theory of mind [14]. Conclu-
sions and future work are outlined in Section 7.

The Supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2022.3150906, reports
detailed class-wise results, a qualitative analysis of success
and failure cases, and a link to a 30-minute footage visually
illustrating the baseline’s predictions versus the ground
truth.

2 RELATED WORK

2.1 Autonomous Driving Datasets

In recent years a multitude of AV datasets have been
released, mostly focusing on object detection and scene seg-
mentation. We can categorise them into two main bins: (1)
RGB without range data (single modality) and (2) RGB with
range data (multimodal).

Single-Modality Datasets. Collecting and annotating RGB
data only is relatively less time-consuming and expensive
than building multimodal datasets including range data
from LiDAR or radar. Most single-modality datasets [23],
[24], [25], [26], [27], [28] provide 2D bounding box and scene
segmentation labels for RGB images. Examples include City-
scapes [24], Mapillary Vistas [25], BDD100k [26] and Apollo-
scape [27]. To allow the studying of how vision algorithms
generalise to different unseen data, [25], [26], [28] collect
RGB images under different illumination andweather condi-
tions. Other datasets only provide pedestrian detection
annotation [29], [30], [31], [32], [33], [34], [35]. Recently, MIT
and Toyota have released DriveSeg, which comeswith pixel-
level semantic labelling for 12 agent classes [36].

Multimodal Datasets. KITTI [37] was the first-ever multi-
modal dataset. It provides depth labels from front-facing
stereo images and dense point clouds from LiDAR along-
side GPS/IMU (inertial) data. It also provides bounding-

Fig. 1. Use of labels in ROAD to describe typical road scenarios. (a) A green car is in front of the AV while changing lanes, as depicted by the arrow
symbol. The associated event will then carry the following labels: in vehicle lane (location), moving left (action). Once the event is completed, the
location label will change to: in outgoing lane. (b) Autonomous vehicle turning left from lane 6 into lane 4: lane 4 will be the outgoing lane as the traffic
is moving in the same direction as the AV. However, if the AV turns right from lane 6 into lane 4 (a wrong turn), then lane 4 will become the incoming
lane as the vehicle will be moving into the incoming traffic. The overall philosophy of ROAD is to use suitable combinations of multiple label types to
fully describe a road situation, and allow a machine learning algorithm to learn from this information.

1. https://github.com/ultralytics/yolov5
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box annotations to facilitate improvements in 3D object
detection. H3D [38] and KAIST [39] are two more examples
of multimodal datasets. H3D provides 3D box annotations,
using real-world LiDAR-generated 3D coordinates, in
crowded scenes. Unlike KITTI, H3D comes with object
detection annotations in a full 360� view. KAIST provides
thermal camera data alongside RGB, stereo, GPS/IMU and
LiDAR-based range data. Among other notable multimodal
datasets [18], [40] only consist of raw data without semantic
labels, whereas [41] and [42] provide labels for location cate-
gory and driving behaviour, respectively. The most recent
multimodal large-scale AV datasets [43], [44], [45], [46], [47],
[48] are significantly larger in terms of both data (also cap-
tured under varying weather conditions, e.g., by night or in
the rain) and annotations (RGB, LiDAR/radar, 3D boxes).
For instance, Argovers [43] doubles the number of sensors
in comparison to KITTI [37] and nuScenes [49], providing
3D bounding boxes with tracking information for 15 objects
of interest. Similarly, Lyft [44] provides 3D bounding boxes
for cars and location annotation including lane segments,
pedestrian crosswalks, stop signs, parking zones, speed
bumps, and speed humps. In a setup similar to KITTI’s [37],
in KITTI-360 [48] two fisheye cameras and a pushbroom
laser scanner are added to have a full 360� field of view.
KITTI-360 contains semantic and instance annotations for
both 3D point clouds and 2D images, which include 19
objects. IMU/GPS sensors are added for localisation pur-
poses. Both 3D bounding boxes based on LiDAR data and
2D annotation on camera data for 4 objects classes are pro-
vided in Waymo [45]. In [46], using similar 3D annotation
for 5 objects classes, the authors provide a more challenging
dataset by adding more night-time scenarios using a faster-
moving car. Amongst large-scale multimodal datasets, nuS-
cenes [49], Lyft L5 [44], Waymo Open [45] and A*3D [46]
are the most dominant ones in terms of number of instances,
the use of high-quality sensors with different types of data
(e.g., point clouds or 360� RGB videos), and richness of the
annotation providing both semantic information and 3D
bounding boxes. Furthermore, nuScenes [49], Argoverse
[43] Lyft L5 [44] and KITTI-360 [48] provide contextual
knowledge through human-annotated rich semantic maps,
an important prior for scene understanding.

Trajectory Prediction. Another line of work considers the
problem of pedestrian trajectory prediction in the autono-
mous driving setting, and rests on several influential RGB-
based datasets. To compile these datasets, RGB data were
captured using either stationary surveillance cameras [50],
[51], [52] or drone-mounted ones [53] for aerial view. [54],
[55] use RGB images capturing an egocentric view from a
moving car for future trajectory forecasting. Recently, the
multimodal 3D point cloud-based datasets [37], [38], [43],
[44], [45], [49], initially introduced for the benchmarking of
3D object detection and tracking, have been taken up for
trajectory prediction as well. A host of interesting recent
papers [56], [57], [58], [59] do propose datasets to study the
intentions and actions of agents using cameras mounted
on vehicles. However, they encompass a limited set of
action labels (e.g., walking, standing, looking or crossing),
wholly insufficient for a thorough study of road agent
behaviour. Among them, TITAN [59] is arguably the most
promising.

Our ROAD dataset is similar to TITAN in the sense that
both consider actions performed by humans present in the
road scene and provide spatiotemporal localisation for each
person using multiple action labels. However, TITAN’s
action labels are restricted to humans (pedestrians), rather
than extending to all road agents (with the exception of
vehicles with ‘stopped’ and ‘moving’ actions). The dataset
is a collection of much shorter videos which only last 10-20
seconds, and does not not contemplate agent location (a cru-
cial source of information). Finally, the size of its vocabulary
in terms of number of agents and actions is much smaller
(see Table 1).

As mentioned, our ROAD dataset is built upon the multi-
modal Oxford RobotCar dataset, which contains both visual
and 3D point cloud data. Here, however, we only process a
number of its videos to describe and annotate road events.
Note that it is indeed possible to map the 3D point clouds
from RobotCar’s LiDAR data onto the 2D images to enable
true multi-modal action detection. However, a considerable
amount would be required to do this, and will be consid-
ered in future extensions.

ROAD departs substantially from all previous efforts, as:
(1) it is designed to formally introduce the notion of road
event as a combination of three semantically-meaningful
labels such as agent, action and location; (2) it provides both
bounding-box-level and tube-level annotation (to validate
methods that exploit the dynamics of motion patterns) on
long-duration videos (thus laying the foundations for future
work on event anticipation and continual learning); (3) it
provides temporally dense annotation; (4) it labels the
actions not only of physical humans but also of other rele-
vant road agents such as vehicles of different kinds.

Table 1 compares our ROAD dataset with the other state-
of-the-art datasets in perception for autonomous driving, in
terms of the number and type of labels. As it can be noted in
the table, the unique feature of ROAD is its diversity in
terms of the types of actions and events portrayed, for all
types of road agents in the scene. With 12 agent classes, 30
action classes and 15 location classes ROAD provides
(through a combination of these three elements) a much
more refined description of road scenes.

2.2 Action Detection Datasets

Providing annotation for action detection datasets is a
painstaking process. Specifically, the requirement to track
actors through the temporal domain makes the manual
labelling of a dataset an extremely time consuming exercise,
requiring frame-by-frame annotation. As a result, action
detection benchmarks are fewer and smaller than, say,
image classification, action recognition or object detection
datasets.

Action recognition research can aim for robustness
thanks to the availability of truly large scale datasets such
as Kinetics [65], Moments[66] and others, which are the de-
facto benchmarks in this area. The recent ’something-some-
thing’ video database focuses on more complex actions per-
formed by humans using everyday objects [67], exploring a
fine-grained list of 174 actions. More recently, temporal
activity detection datasets like ActivityNet [68] and Char-
ades [69] have come to the fore. Whereas the latter still do
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not address the spatiotemporal nature of the action detec-
tion problem, however, datasets such as J-HMDB-21 [70],
UCF24 [71], LIRIS-HARL [72], DALY [73] or the more recent
AVA [63] have been designed to provide spatial and tempo-
ral annotations for human action detection.

In fact, most action detection papers are validated on the
rather dated and small LIRIS-HARL[72], J-HMDB-21 [70],
and UCF24 [71], whose level of challenge in terms of pres-
ence of different source domains and nuisance factors is
quite limited. Although recent additions such as DALY [73]
and AVA [63] have somewhat improved the situation in
terms of variability and number of instances labelled, the
realistic validation of action detection methods is still an
outstanding issue. AVA is currently the biggest action
detection dataset with 1:6M label instances, but it is anno-
tated rather sparsely (at a rate of one frame per second).

Overall, the main objective of these datasets is to validate
the localisation of human actions in short, untrimmed vid-
eos. ROAD, in opposition, goes beyond the detection of
actions performed by physical humans to extend the notion
of other forms of intelligent agents (e.g., human- or AI-
driven vehicles on the road). Furthermore, in contrast with
the short clips considered in, e.g., J-HMDB-21 and UCF24,
our new dataset is composed of 22 very long videos (around
8 minutes each), thus stressing the dynamical aspect of
events and the relationship between distinct but correlated
events. Crucially, it is geared towards online detection
rather than traditional offline detection, as these videos are
streamed in using a vehicle-mounted camera.

2.3 Online Action Detection

We believe advances in the field of human action recogni-
tion[22], [74], [75], [76] can be useful when devising a

general approach to the situation awareness problem. We
are particularly interested in the action detection prob-
lem [21], [63], [77], [78], in particular online action detec-
tion [19], given the incremental processing needs of an
autonomous vehicle. Recent work in this area [19], [79], [80],
[81], [82], [83] demonstrates very competitive performance
compared to (generally more accurate) offline action detec-
tion methods [20], [63], [75], [84], [85], [86], [87], [88] on
UCF-101-24 [71]. As mentioned, UCF-101-24 is the main
benchmark for online action detection research, as it pro-
vides annotation in the form of action tubes and every sin-
gle frame of the untrimmed videos in it is annotated (unlike
AVA [63], in which videos are only annotated at one frame
per second).

A short review of the state-of-the-art in online action
detection is in place. Singh et al. [19]’s method was perhaps
the first to propose an online, real-time solution to action
detection in untrimmed videos, validated on UCF-101-24,
and based on an innovative incremental tube construction
method. Since then, many other papers [81], [82], [87] have
made use of the online tube-construction method in [19]. A
common trait of many recent online action detection meth-
ods is the reliance on ’tubelet’ [81], [82], [84] predictions
from a stack of frames. This, however, leads to processing
delays proportional to the number of frames in the stack,
making these methods not quite applicable in pure online
settings. In the case of [81], [82], [84] the frame stack is usu-
ally 6-8 frames long, leading to a latency of more than half a
second.

For these reasons, inspired by the frame-wise (2D) nature
of [19] and the success of the latest single-stage object detec-
tors (such as RetinaNet [89]), here we propose a simple
extension of [19] termed ’3D-RetinaNet’ as a baseline algo-
rithm for ROAD tasks. The latter is completely online when

TABLE 1
Comparison of ROADWith Similar Datasets for Perception in Autonomous Driving in Terms of Diversity of Labels

Dataset Class Num. Location label Action Ann Tube Ann

Ped. Veh. Ped. Veh.

SYNTHIA [60] 13 pixelwise ann. - - - -
SemKITTI [61] 28 3D sem. seg. - - - -
Cityscapes [24] 30 pixel level sem. - - - -
A2D2 [47] 14 3D sem. seg. - - - -
Waymo [45] 4 - - - ✓ ✓
Apolloscape [27] 25 pixel level sem. - - ✓ ✓
PIE [58] 6 - ✓ - ✓ -
TITAN [59] 50 - ✓ ✓ ✓ ✓
KITTI360 [48] 19 sem. ann. - - - -
A*3D [46] 7 - - - - -
H3D [38] 8 - - - ✓ ✓
Argoverse [43] 15 - - - ✓ ✓
NuScense [49] 23 3D sem. seg. - - ✓ ✓
DriveSeg [36] 12 sem. ann. - - - -

Spatiotemporal action detection datasets

UCF24 [62] 24 - ✓ - ✓ -
AVA [63] 80 - ✓ - ✓ -
Multisports [64] 66 - ✓ - ✓ -

ROAD (ours) 43 ✓ ✓ ✓ ✓ ✓

The comparison is based on the number of classes portrayed and the availability of action annotations and tube tracks for both pedestrians and vehicles, as well as
location information. Most competitor datasets do not provide action annotation for either pedestrians or vehicles. Ped. Pedestrian, Veh. Vehicle, ann. annotation,
sem. seg. semantic segmentation.
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using a 2D backbone network. One, however, can also insert
a 3D backbone to make it even more accurate, while keeping
the prediction heads online. We benchmark our proposed
3D-RetinaNet architecture against the above-mentioned
online and offline action detection methods on the UCF-
101-24 dataset to show its effectiveness, twinned with its
simplicity and efficiency. We also compare it on our new
ROAD dataset against the state-of-the-art action detection
Slowfast [22] network. We omit, however, to reproduce
other state-of-the-art action detectors such as [90] and [91],
for [90] is affected by instability at training time which
makes it difficult to reproduce its results, whereas [91] is too
complicated to be suitable as a baseline because of its sparse
tracking and memory banks features. Nevertheless, both
methods rely on the Slowfast detector as a backbone and
baseline action detector.

3 THE DATASET

3.1 A Multi-Label Benchmark

The ROAD dataset is specially designed from the perspec-
tive of self-driving cars, and thus includes actions per-
formed not just by humans but by all road agents in specific
locations, to form road events (REs). REs are annotated by
drawing a bounding box around each active road agent
present in the scene, and linking these bounding boxes over
time to form ’tubes’. As explained, to this purpose three dif-
ferent types of labels are introduced, namely: (i) the cate-
gory of road agent involved (e.g., Pedestrian, Car, Bus,
Cyclist); (ii) the type of action being performed by the agent
(e.g., Moving away, Moving towards, Crossing and so on), and
(iii) the location of the road user relative the autonomous
vehicle perceiving the scene (e.g., In vehicle lane, On right
pavement, In incoming lane). In addition, ROAD labels the
actions performed by the vehicle itself. Multiple agents
might be present at any given time, and each of them may
perform multiple actions simultaneously (e.g., a Car may be
Indicating right while Turning right). Each agent is always
associated with at least one action label.

The full lists of agent, action and location labels are given
in the Supplementary material, available online, Tables 1, 2,
3 and 4.

Agent Labels. Within a road scene, the objects or people
able to perform actions which can influence the decision
made by the autonomous vehicle are termed agents. We
only annotate active agents (i.e., a parked vehicle or a bike
or a person visible to the AV but located away from the
road are not considered to be ’active’ agents). Three types of
agent are considered to be of interest, in the sense defined
above, to the autonomous vehicle: people, vehicles and traf-
fic lights. For simplicity, the AV itself is considered just like
another agent: this is done by labelling the vehicle’s bonnet.
People are further subdivided into two sub-classes: pedes-
trians and cyclists. The vehicle category is subdivided into
six sub–classes: car, small–size motorised vehicle, medium–
size motorised vehicle, large–size motorised vehicle, bus,
motorbike, emergency vehicle. Finally, the ‘traffic lights’
category is divided into two sub–classes: Vehicle traffic light
(if they apply to the AV) and Other traffic light (if they apply
to other road users). Only one agent label can be assigned to
each active agent present in the scene at any given time.

Action Labels. Each agent can perform one or more actions
at any given time instant. For example, a traffic light can
only carry out a single action: it can be either red, amber,
green or ‘black’. A car, instead, can be associated with two
action labels simultaneously, e.g., Turning right and Indicat-
ing right. Although some road agents are inherently multi-
tasking, some action combinations can be suitably
described by a single label: for example, pushing an object
(e.g., a pushchair or a trolley-bag) while walking can be sim-
ply labelled as Pushing object. The latter was our choice.

AV Own Actions. Each video frame is also labelled with
the action label associated with what the AV is doing. To
this end, a bounding box is drawn on the bonnet of the AV.
The AV can be assigned one of the following seven action
labels: AV-move, AV-stop, AV-turn-left, AV-turn-right, AV-
overtake, AV-move-left and AV-move-right. The full list of AV
own action classes is given in the Supplementary material,
available online, Table 4. Note that these are separate classes
only applicable to the AV, with a different semantics than
the similar-sounding classes. For instance, the regular Mov-
ing action label means ’moving in the perpendicular direc-
tion to the AV’, whereas AV-move means that the AV is on
the move along its normal direction of travel. These labels
mirror those used for the autonomous vehicle in the Honda
Research Institute Driving Dataset (HDD) [92].

Location Labels. Agent location is crucial for deciding what
action the AV should take next. As the final, long-term
objective of this project is to assist autonomous decision
making, we propose to label the location of each agent from
the perspective of the autonomous vehicle. For example, a
pedestrian can be found on the right or the left pavement, in
the vehicle’s own lane, while crossing or at a bus stop. The
same applies to other agents and vehicles as well. There is
no location label for the traffic lights as they are not movable
objects, but agents of a static nature and well-defined loca-
tion. To understand this concept, Fig. 1 illustrates two sce-
narios in which the location of the other vehicles sharing the
road is depicted from the point of view of the AV. Traffic
light is the only agent type missing location labels, all the
other agent classes are associated with at least one location
label. A complete table with location classes and their
description is provided in Supplementary material, avail-
able online.

3.2 Data Collection

ROAD is composed of 22 videos from the publicly available
Oxford RobotCar Dataset [18] (OxRD) released in 2017 by
the Oxford Robotics Institute,2 covering diverse road scenes
under various weather conditions. The OxRD dataset, col-
lected from the narrow streets of the historic city of Oxford,
was selected because it presents challenging scenarios for
an autonomous vehicle due to the diversity and density of
various road users and road events. The OxRD dataset was
gathered using 6 cameras, as well as LIDAR (Light Detec-
tion and Ranging), GPS (Global Positioning System) and
INS (Inertial Navigation System) sensors mounted on a Nis-
san LEAF vehicle [18]. To construct ROAD we only anno-
tated videos from the frontal camera view.

2. http://robotcar-dataset.robots.ox.ac.uk/
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Note, however, that our labelling process (described
below) is not limited to OxRD. In principle, other autono-
mous vehicle datasets (e.g. [26], [93]) may be labelled in the
same manner to further enrich the ROAD benchmark,: we
plan to do exactly so in the near future.

Video Selection. Within OxRD, videos were selected with
the objective of ensuring diversity in terms of weather con-
ditions, times of the day and types of scenes recorded. Spe-
cifically, the 22 videos have been recorded both during the
day (in strong sunshine, rain or overcast conditions, some-
times with snow present on the surface) and at night. Only
a subset of the large number of videos available in OxRD
was selected. The presence of semantically meaningful con-
tent was the main selection criterion. This was done by man-
ually inspecting the videos in order to cover all types of
labels and label classes and to avoid ’deserted’ scenarios as
much as possible. Each of the 22 videos is 8 minutes and 20
seconds long, barring three videos whose duration is 6:34,
4:10 and 1:37, respectively. In total, ROAD comprises 170
minutes of video content.

Preprocessing. Some preprocessing was conducted. First,
the original sets of video frames were downloaded and
demosaiced, in order to convert them to red, green, and
blue (RGB) image sequences. Then, they were encoded into
proper video sequences using ffmpeg

3 at the rate of 12
frames per second (fps). Although the original frame rate in
the considered frame sequences varies from 11 fps to 16 fps,
we uniformised it to keep the annotation process consistent.
As we retained the original time stamps, however, the vid-
eos in ROAD can still be synchronised with the LiDAR and
GPS data associated with them in the OxRD dataset, allow-
ing future work on multi-modal approaches.

3.3 Annotation Process

Annotation Tool. Annotating tens of thousands of frames rich
in content is a very intensive process; therefore, a tool is
required which can make this process both fast and intui-
tive. For this work, we adopted Microsoft’s VoTT.4 The
most useful feature of this annotation tool is that it can copy
annotations (bounding boxes and their labels) from one
frame to the next, while maintaining a unique identification
for each box, so that boxes across frames are automatically
linked together. Moreover, VoTT also allows for multiple
labels, thus lending itself well to ROAD’s multi-label anno-
tation concept. A number of examples of annotated frames
from the two videos using the VOTT tool is provided in
supplementary material, available online.

Annotation Protocol. All salient objects and actors within
the frame were labelled, with the exception of inactive par-
ticipants (mostly parked cars) and objects/actors at large
distances from the ego vehicle, as the latter were judged to
be irrelevant to the AV’s decision making. This can be seen
in the attached 30-minute video5 portraying ground truth
and predictions. As a result, pedestrians, cyclists and traffic
lights were always labelled. Vehicles, on the other hand,
were only labelled when active (i.e., moving, indicating,
being stopped at lights or stopping with hazard lights on on

the side of road). As mentioned, only parked vehicles were
not considered active (as they do not arguably influence the
AV’s decision making), and were thus not labelled.

Event Label Generation. Using the annotations manually
generated for actions and agents in the multi-label scenario
as discussed above it is possible to generate event-level labels
about agents, e.g., Pedestrian/Moving towards the AVOn right
pavement or Cyclist/Overtaking/In vehicle lane. Any combina-
tions of location, action and agent labels are admissible. If
location labels are ignored, the resulting event labels
become location-invariant.

In addition to event tubes, in this workwe do explore agent-
action pair instances (see Section 5). Namely, given an agent
tube and the continuous temporal sequence of action labels
attached to its constituent bounding box detections, we can
generate action tubes by looking for changes in the action label
series associated with each agent tube. For instance, a Car
appearing in a videomight be firstMoving away beforeTurning
left. The agent tube for the car will then be formed by two con-
tiguous agent-action tubes: a first tubewith label pairCar/Mov-
ing away and a second onewith pairCar/Turning left.

3.4 Tasks

ROAD is designed as a sandbox for validating the six tasks
relevant to situation awareness in autonomous driving out-
lined in Section 1.1. Five of these tasks are detection tasks,
while the last one is a frame-level action recognition task
sometimes referred to as ’temporal action segmentation’ [69],
Table 2 shows themain attributes of these tasks.

All detection tasks are evaluated both at frame-level and
at video- (tube-)level. Frame-level detection refers to the prob-
lem of identifying in each video frame the bounding box(es)
of the instances there present, together with the relevant
class labels. Video-level detection consists in regressing a
whole series of temporally-linked bounding boxes (i.e., in
current terminology, a ’tube’) together with the relevant
class label. In our case, the bounding boxes will mark a spe-
cific active agent in the road scene. The labels may issue
(depending on the specific task) either from one of the indi-
vidual label types described above (i.e., agent, action or
location) or from one of the meaningful combinations
described in 3.3 (i.e., either agent-action pairs or events).

Below we list all the tasks for which we currently provide
a baseline, with a short description.

1) Active agent detection (or agent detection) aims at local-
ising an active agent using a bounding box (frame-
level) or a tube (video-level) and assigning a class
label to it.

TABLE 2
ROAD Tasks and Attributes

Task type Problem type Output Multiple labels

Active agent Detection Box&Tube No
Action Detection Box&Tube Yes
Location Detection Box&Tube Yes
Duplex Detection Box&Tube Yes
Event Detection Box&Tube Yes
AV-action Temp segmentation Start/End No

3. https://www.ffmpeg.org/
4. https://github.com/Microsoft/VoTT/
5. https://www.youtube.com/watch?v¼CmxPjHhiarA
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2) Action detection seeks to localise an active agent occu-
pied in performing a specific action from the list of
action classes.

3) In agent location detection (or location detection) a label
from the relevant list of locations (as seen from the
AV) is sought and attached to the relevant bounding
box or tube.

4) In agent-action detection the bounding box or tube is
assigned a pair agent-action as explained in Section 3.3.
We sometimes refer to this task as ’duplex detection’.

5) Road event detection (or event detection) consist in
assigning to each box or tube a triplet of class labels.

6) Autonomous vehicle temporal action segmentation is a
frame-level action classification task in which each
video frame is assigned a label from the list of possi-
ble AV own actions. We refer to this task as ’AV-
action segmentation’, similarly to [69].

3.5 Quantitative Summary

Overall, 122K frames extracted from 22 videos were
labelled, in terms of both AV own actions (attached to the
entire frame) and bounding boxes with attached one or
more labels of each of the three types: agent, action, location.
In total, ROAD includes 560K bounding boxes with 1:7M
instances of individual labels. The latter figure can be bro-
ken down into 560K instances of agent labels, 640K instan-
ces of action labels, and 499K instances of location labels.
Based on the manually assigned individual labels, we could
identify 603K instances of duplex (agent-action) labels and
454K instances of triplets (event labels).

The number of instances for each individual class from
the three lists is shown in Fig. 2 (frame-level, in orange).
The 560K bounding boxes make up 7,029, 9,815, 8,040, 9,335
and 8,394 tubes for the label types agent, action, location,
agent-action and event, respectively. Fig. 2 also shows the
number of tube instances for each class of individual label
types as number of video-level instances (in blue).

4 BASELINE AND CHALLENGE

Inspired by the success of recent 3D CNN architectures [74]
for video recognition and of feature-pyramid networks

(FPN) [94] with focal loss [89], we propose a simple yet
effective 3D feature pyramid network (3D-FPN) with focal
loss as a baseline method for ROAD’s detection tasks. We
call this architecture 3D-RetinaNet.

4.1 3D-RetinaNet Architecture

The data flow of 3D-RetinaNet is shown in Fig. 3. The input is
a sequence of T video frames. As in classical FPNs [94], the
initial block of 3D-RetinaNet consists of a backbone network
outputting a series of forward feature pyramid maps, and of
lateral layers producing the final feature pyramid composed
by T feature maps. The second block is composed by two
sub-networks which process these features maps to produce
both bounding boxes (4 coordinates) and C classification
scores for each anchor location (overA possible locations). In
the case of ROAD, the integer C is the sum of the numbers of
agent, action, location, action-agent (duplex) and agent-
action-location (event) classes, plus one reserved for an
agentness score. The extra class agentness is used to describe
the presence or absence of an active agent. As in FPN [94],
we adopt ResNet50 [95] as the backbone network.

2D versus 3D Backbones. In our experiments we show
results obtained using three different backbones: frame-
based ResNet50 (2D), inflated 3D (I3D) [74] and Slow-
fast [22], in the manner also explained in [22], [75]. Choos-
ing a 2D backbone makes the detector completely
online [19], with a delay of a single frame. Choosing an I3D
or a Slowfast backbone, instead, causes a 4-frame delay at
detection time. Note that, as Slowfast and I3D networks
makes use of a max-pool layer with stride 2, the initial fea-
ture pyramid in the second case contains T=2 feature maps.
Nevertheless, in this case we can simply linearly upscale
the output to T feature maps.

AV Action Prediction Heads. In order for the method to
also address the prediction of the AV’s own actions (e.g.,
whether the AV is stopping, moving, turning left etc.), we
branch out the last feature map of the pyramid (see Fig. 3,
bottom) and apply spatial average pooling, followed by a
temporal convolution layer. The output is a score for each
of the Ca classes of AV actions, for each of the T input
frames.

Fig. 2. Number of instances of each class of individual label-types, in logarithmic scale.
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Loss Function. As for the choice of the loss function, we
adopt a binary cross-entropy-based focal loss [89]. We
choose a binary cross entropy because our dataset is multi-
label in nature. The choice of a focal-type loss is motivated
by the expectation that it may help the network deal with
long tail and class imbalance (see Fig. 2).

4.2 Online Tube Generation via Agentness Score

The autonomous driving scenario requires any suitable
method for agent, action or event tube generation to work in
an online fashion, by incrementally updating the existing
tubes as soon as a new video frame is captured. For this rea-
son, this work adopts a recent algorithm proposed by Singh
et al.[19], which incrementally builds action tubes in an online
fashion and at real-time speed. To be best of our knowledge,
[19] was the first onlinemultiple action detection approach to
appear in the literature, and was later adopted by almost all
subsequent works [81], [82], [87] on action tube detection.

Linking of Detections. We now briefly review the tube-
linking method of Singh et al. [19], and show how it can be
adapted to build agent tubes based on an ’agentness’ score,
rather than build a tube separately for each class as pro-
posed in the original paper. This makes the whole detection
process faster, since the total number of classes is much
larger than in the original work [19]. The proposed 3D-Reti-
naNet is used to regress and classify detection boxes in each
video frame potentially containing an active agent of inter-
est. Subsequently, detections whose score is lower than
0.025 are removed and non-maximal suppression is applied
based on the agentness score.

At video start, each detection initialises an agentness tube.
From that moment on, at any time instance t the highest scor-
ing tubes in terms of mean agentness score up to t� 1 are
linked to the detections with the highest agentness score in
frame t which display an Intersection-over-Union (IoU) over-
lap with the latest detection in the tube above a minimum

threshold �. The chosen detection is then removed from the
pool of frame-t detections. This continue until the tubes are
either assigned or not assigned a detection from current frame.
Remaining detections at time t are used to initiate new tubes.
A tube is terminated after no suitable detection is found for n
consecutive frames. As the linking process takes place, each
tube carries scores for all the classes of interest for the task at
hand (e.g., action detection rather than event detection), as pro-
duced by the classification subnet of 3D-RetinaNet. We can
then label each agentness tube using the k classes that show
the highestmean score over the duration of the tube.

Temporal Trimming. Most tubelet based methods [81],
[82], [96] do not perform any temporal trimming of the
action tubes generated in such a way (i.e., they avoid decid-
ing when they should start or end). Singh et al. [19] pro-
posed to pose the problem in a label consistency
formulation solved via dynamic programming. However,
as it turns out, temporal trimming [19] does not actually
improve performance, as shown in [87], except in some set-
tings, for instance in the DALY [73] dataset.

The situation is similar for our ROAD dataset as opposed
to what happens on UCF-101-24, for which temporal trim-
ming based on solving the label consistency formulation in
terms of the actionness score, rather than the class score,
does help improve localisation performance. Therefore, in
our experiments we only use temporal trimming on the
UCF-101-24 dataset but not on ROAD.

4.3 The ROAD Challenge

To introduce the concept of road event, our new approach to
situation awareness and the ROAD dataset to the computer
vision and AV communities, some of us have organised in
October 2021 the workshop ”The ROAD challenge: Event
Detection for Situation Awareness in Autonomous Driving”.6

Fig. 3. Proposed 3D-RetinaNet architecture for online video processing.

6. https://sites.google.com/view/roadchallangeiccv2021/
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For the challenge, we selected (among the tasks described in
Section 3.4) only three tasks: agent detection, action detection
and event detection, which we identified as the most relevant
to autonomous driving.

As standard in action detection, evaluation was done in
terms of video mean average precision (video-mAP). 3D-
RetinaNet was proposed as the baseline for all three tasks.
Challenge participants had 18 videos available for training
and validation. The remaining 4 videos were to be used to
test the final performance of their model. This split was
applied to all the three challenges (split 3 of the ROAD eval-
uation protocol, see Section 5.3).

The challenge opened for registration on April 1 2021,
with the training and validation folds released on April 30,
the test fold released on July 20 and the deadline for submis-
sion of results set to September 25. For each stage and each
Task the maximum number of submissions was capped at
50, with an additional constraint of 5 submissions per day.
The workshop, co-located with ICCV 2021, took place on
October 16 2021.

In the validation phase we had between three and five
teams submit between 15 and 17 entries to each of three
challenges. In the test phase, which took place after the sum-
mer, we noticed a much higher participation with 138 sub-
missions from 9 teams to the agent challenge, 98
submissions from 8 teams to the action challenge, and 93
submission from 6 teams to the event detection challenge.

The methods proposed by the winners of each challenge
are briefly recalled in Section 5.4.

Benchmark Maintenance. After the conclusion of the
ROAD @ ICCV 2021 workshop, the challenge has been re-
activated to allow for submissions indefinitely. The ROAD
benchmark will be maintained by withholding the test set
from the public on the eval.ai platform,7 where teams can
submit their predictions for evaluation. Training and valida-
tion sets can be downloaded from https://github.com/
gurkirt/road-dataset.

5 EXPERIMENTS

In this section we present results on the various task the
ROAD dataset is designed to benchmark (see Section 3.4),
as well as the action detection results delivered by our 3D-
RetinaNet model on UCF-101-24 [62], [97].

We first present the evaluation metrics and implementa-
tion details specific to ROAD in Section 5.1. In Section 5.2
we benchmark our 3D-RetinaNet model for the action
detection problem on UCF-101-24. The purpose is to show
that this baseline model is competitive with the current state
of the art in action tube detection while only using RGB
frames as input, and to provide a sense of how challenging
ROAD is when compared to standard action detection
benchmarks. Indeed, the complex nature of the real-world,
non-choreographed road events, often involving large num-
bers of actors simultaneously responding to a range of sce-
narios in a variety of weather conditions makes ROAD a
dataset which poses significant challenges when compared
to other, simpler action recognition benchmarks.

In Section 5.3 we illustrate and discuss the baseline
results on ROAD for the different tasks (Section 5.3.2), using
a 2D ResNet50, an I3D and a Slowfast backbone, as well as
the agent detection performance of the standard YOLOv5
model. Different training/testing splits encoding different
weather conditions are examined using the I3D backbone
(Section 5.3.3). In particular, in Section 5.3.4 we show the
results one can obtain when predicting composite labels as
products of single-label predictions as opposed to training a
specific model for them, as this can provide a crucial advan-
tage in terms of efficiency, as well as give the system the
flexibility to be extended to new composite labels without
retraining. Finally, in Section 5.3.5 we report our baseline
results on the temporal segmentation of AV actions.

5.1 Implementation Details

The results are evaluated in terms of both frame-level
bounding box detection and of tube detection. In the first
case, the evaluation measure of choice is frame mean average
precision (f-mAP). We set the Intersection over Union (IoU)
detection threshold to 0.5 (signifying a 50% overlap between
predicted and true bounding box). For the second set of
results we use video mean average precision (video-mAP), as
information on how the ground-truth BBs are temporally
connected is available. These evaluation metrics are stan-
dard in action detection [19], [81], [98], [99], [100].

We also evaluate actions performed by AV, as described
in 3.1. Since this is a temporal segmentation problem, we
adopt the mean average precision metric computed at
frame-level, as standard on the Charades [69] dataset.

We use sequences of T ¼ 8 frames as input to 3D-Retina-
Net. Input image size is set to 512� 682. This choice of T is
the result of GPU memory constraints; however, at test
time, we unroll our convolutional 3D-RetinaNet for sequen-
ces of 32 frames, showing that it can be deployed in a
streaming fashion. We initialise the backbone network with
weights pretrained on Kinetics [65]. For training we use an

TABLE 3
Comparison of the Action Detection Performance (Frame-

mAP@0.5 (f-mAP) and Video-mAP at Different IoU Thresholds)
of the Proposed 3D-RetinaNet Baseline Model With the State-

of-the-art on the UCF-101-24 Dataset

Methods/d = f-mAP 0.2 0.5 0.75 0.5:0.9

RGB + FLOWmethods
MR-TS Peng et al. [85] – 73.7 32.1 00.9 07.3
FasterRCNN Saha et al. [98] – 66.6 36.4 07.9 14.4
SSD + OJLA Behl et al. [80]� – 68.3 40.5 14.3 18.6
SSD Singh et al. [19]� – 76.4 45.2 14.4 20.1
AMTnet Saha et al. [84]� – 78.5 49.7 22.2 24.0
ACT Kalogeiton et al. [81]� – 76.5 49.2 19.7 23.4
TraMNet Singh et al. [87]� – 79.0 50.9 20.1 23.9
Song et al. [101] 72.1 77.5 52.9 21.8 24.1
Zhao et al. [86] – 78.5 50.3 22.2 24.5
I3D Gu et al. [102] 76.3 – 59.9 – –
Li et al. [82]� 78.0 82.8 53.8 29.6 28.3
RGB only methods
RGB-SSD Singh et al. [19]� 65.0 72.1 40.6 14.1 18.5
RGB-AMTNet Saha et al. [84]� – 75.8 45.3 19.9 22.0
3D-RetinaNet / 2D (ours)� 65.2 73.5 48.6 22.0 22.8
3D-RetinaNet / I3D (ours) 75.2 82.4 58.2 25.5 27.1

�Online methods.

7. https://eval.ai/web/challenges/challenge-page/1059/overview

SINGH ETAL.: ROAD: THE ROAD EVENTAWARENESS DATASET FOR AUTONOMOUS DRIVING 1045

eval.ai
https://github.com/gurkirt/road-dataset
https://github.com/gurkirt/road-dataset
https://eval.ai/web/challenges/challenge-page/1059/overview


SGD optimiser with step learning rate. The initial learning
rate is set to 0.01 and drops by a factor of 10 after 18 and 25
epochs, up to an overall 30 epochs. For tests on the UCF-
101-24 dataset the learning rate schedule is shortened to a
maximum 10 epochs, and the learning rate drop steps are
set to 6 and 8.

The parameters of the tube-building algorithm (Sec-
tion 4.2) are set by cross validation. For ROAD we obtain
� ¼ 0:5 and k ¼ 4. For UCF-101-24, we get � ¼ 0:25 and k ¼
4. Temporal trimming is only performed on UCF-101-24.

5.2 Baseline Performance on UCF-101-24

First, we benchmarked 3D-RetinaNet on UCF-101-
24 [62], [97], using the corrected annotations from [19]. We
evaluated both frame-mAP and video-mAP and provided a
comparison with state-of-the-art approaches in Table 3. It
can be seen that our baseline is competitive with the current
state-of-the-art [82], [102], even as those methods use both
RGB and optical flow as input, as opposed to ours. As
shown in the bottom part of Table 3, 3D-RetinaNet outper-
forms all the methods solely relying on appearance (RGB)
by large margins. The model retains the simplicity of single-
stage methods, while sporting, as we have seen, the flexibil-
ity of being able to be reconfigured by changing the back-
bone architecture. Note that its performance could be
further boosted using the simple optimisation technique
proposed in [103].

5.3 Experimental Results on ROAD

5.3.1 Three Splits: Modelling Weather Variability

For the benchmarking of the ROAD tasks, we divided the
dataset into two sets. The first set contains 18 videos for

training and validation purposes, while the second set con-
tains 4 videos for testing, equally representing the four
types of weather conditions encountered.

The group of training and validation videos is further
subdivided into three different ways (’splits’). In each split,
15 videos are selected for training and 3 for validation.
Details on the number of videos for each set and split are
shown in Table 4. All 3 validation videos for Split-1 are
overcast; 4 overcast videos are also present in the training
set. As such, Split-1 is designed to assess the effect of differ-
ent overcast conditions. Split-2 has all 3 night videos in the
validation subset, and none in the training set. It is thus
designed to test model robustness to day/night variations.
Finally, Split-3 contains 4 training and 3 validation videos
for sunny weather: it is thus designed to evaluate the effect
of different sunny conditions, as camera glare can be an
issue when the vehicle is turning or facing the sun directly.

Note that there is no split to simulate a bias towards
snowy conditions, as the dataset only contains one video of
that kind. The test set (bottom row) is more uniform, as it
contains one video from each environmental condition.

5.3.2 Results on the Various Tasks

Results are reported for the tasks discussed in Section 3.4.
Frame-level results across the five detection tasks are sum-

marised in Table 5 using the frame-mAP (f-mAp) metric,
for a detection threshold of d ¼ 0:5. The reported figures are
averaged across the three splits described above, in order to
assess the overall robustness of the detectors to domain var-
iations. Performance within each split is evaluated on both
the corresponding validation subset and test set. Each row
in the Table shows the result of a particular combination of
backbone network (2D, I3D, or Slowfast) and test-time
sequence length (in number of frames, 8 and 32). Frame-
level results vary between 16.8% (events) and 65.4% (agent-
ness) for I3D, and between 23.9% and 69.2% for Slowfast.
Clearly, for each detection task except agentnness (which
amounts to agent detection on ROAD) the performance is
quite lower than the 75.2% achieved by our I3D baseline
network on UCF-101-24 (Table 3, last row). This is again
due to the numerous nuisance factors present in ROAD,
such as significant camera motion, weather conditions, etc.
For a fair comparison, note that there are only 11 agent clas-
ses, as opposed to e.g., 23 action classes and 15 location
classes.

TABLE 4
Splits of Training, Validation and Test Sets for the ROAD

Dataset With Respect to Weather Conditions

Condition sunny overcast snow night

Training and validation 7 7 1 3
Split-1 7/0 4/3 1/0 3/0
Split-2 7/0 7/0 1/0 0/3
Split-3 4/3 7/0 1/0 3/0
Testing 1 1 1 1

The table shows the number of videos in each set or split. For splits, the first
figure is the number of training videos, the second number that of validation
videos.

TABLE 5
Frame-Level Results (mAP%) Averaged Across the Three Splits of ROAD

Model Agentness Agents Actions Locations Duplexes Events

2D-08 51.8/63.4 30.9/39.5 15.9/22.0 23.2/30.8 18.1/25.1 10.6/12.8
2D-32 52.4/64.2 31.5/39.8 16.3/22.6 23.6/31.4 18.7/25.8 10.8/13.0
I3D-08 52.3/65.1 32.2/39.5 19.3/25.4 24.5/34.9 21.5/30.8 12.3/16.5
I3D-32 52.7/65.4 32.3/39.2 19.7/25.9 24.7/35.3 21.9/31.0 12.6/16.8
Slowfast-08 68.8/69.2 41.9/47.5 26.9/31.1 34.6/37.3 31.6/36.0 18.1/23.7
Slowfast-32 69.3/68.7 42.6/43.7 27.3/31.7 34.8/36.4 32.0/36.1 18.0/23.9
YOLOv5 - 57.9/56.9 - - - -

The considered models differ in terms of backbone network (2D, I3D, and Slowfast) and clip length (08 versus 32). The performance of YOLOv5 on agent detec-
tion is also reported. Detection threshold d ¼ 0:5. Both validation and test performance are reported for each entry.
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Video-level results are reported in terms of video-mAP in
Table 6. As for the frame-level results, tube detection perfor-
mance (see Section 4.2) is averaged across the three splits.
One can appreciate the similarities between frame- and
video-level results, which follow a similar trend albeit at a
much lower absolute level. Again, results are reported for
different backbone networks and sequence lengths. Not
considering the YOLOv5 numbers, video-level results at
detection threshold d ¼ 0:2 vary between a minimum of
20.5% (actions) to a maximum of 33.0% (locations), com-
pared to the 82.4% achieved on UCF-101-24. For a detection
threshold d equal to 0.5, the video-level results lie between
4.7% (actions) and 11% (locations) compared to the 58.2%
achieved on UCF-101-24 for the same IoU threshold. The
difference is quite dramatic, and highlights the order of
magnitude of the challenge involved by perception in
autonomous driving compared to a standard benchmark
portraying only human actions. Furthermore, we can notice
a few important facts.

Streaming Deployment. Increasing test sequence length
from 8 to 32 does not much impact performance. This indi-
cates that, even though the network is trained on 8-frame
clips, being fully convolutional (including the heads in the
temporal direction), it can be easily unrolled to process lon-
ger sequences at test time, making it easy to deploy in a
streaming fashion. Being deployable in an incremental fash-
ion is a must for autonomous driving applications; this is a
quality that other tubelet-based online action detection
methods [81], [82], [87] fail to exhibit, as they can only be
deployed in a sliding window fashion. Interestingly, the lat-
est work on streaming object detection [104] proposes an
approach that integrates latency and accuracy into a single
metric for real-time online perception, termed ‘streaming
accuracy’. We will consider adopting this metric in the
future evolution of ROAD.

Impact of the Backbone. Broadly speaking, the Slowfast [22]
and I3D [74] versions of the backbone perform as expected,
much better than the 2D version. A Slowfast backbone can
particularly help with tasks which require the system to

‘understand’ movement, e.g., when detecting actions,
agent-actions pairs and road events, at least at 0.2 IoU.
Under more stringent localisation requirements (d ¼ 0:5), it
is interesting to notice how Slowfast’s advantage is quite
limited, with the I3D version often outperforming it. This
shows that by simply switching backbone one can improve
on performance or other desirable properties, such as train-
ing speed (as in or X3D [76]). The 3D CNN encoding can be
made intrinsically online, as in RCN [105]. Finally, even
stronger backbones using transformers [106], [107] can be
plugged in.

Level of Task Challenge. The overall results on event detec-
tion (last column in both Tables 5 and 6) are encouraging,
but they remain in the low 20s at best, showing how chal-
lenging situation awareness is in road scenarios.

Comparison Across Tasks. From a superficial comparison
of the mAPs obtained, action detection seems to perform
worse than agent-action detection or even event detection.
However, the headline figures are not really comparable
since, as we know, the number of class per task varies. More
importantly, within-class variability is often lower for com-
posite labels. For example, the score for Indicating right is
really low, whereas Car/Indicating-right has much better per-
formance (see Supplementary material, available online,
Tables 11– 13 for class-specific performance). This is because
the within-class variability of the pair Car / Indicating-right is
much lower than that of Indicating right, which puts together
instances of differently-looking types of vehicles (e.g.,
buses, cars and vans) all indicating right. Interestingly,
results on agents are comparable among the four baseline
models (especially for f-mAP and v-mAP at 0.2, see Tables 5
and 6).

YOLOv5 for Agent Detection. For completeness, we also
trained YOLOv58 for the detection of active agents. The
results are shown in the last row of both Tables 5 and 6.
Keeping is mind that YOLOv5 is trained only on single

TABLE 6
Video-Level Results (mAP%) Averaged Across the Three ROAD Splits

Model Agents Actions Locations Duplexes Events

Detection threshold d ¼ 0:2
2D-08 22.2/25.1 10.3/13.9 18.2/24.8 16.1/21.9 12.8/14.7
2D-32 22.6/25.0 11.2/14.5 18.5/25.9 16.2/22.7 13.0/15.3
I3D-08 23.2/26.5 14.1/15.8 20.8/25.8 21.1/24.0 14.9/17.4
I3D-32 24.4/26.9 14.3/17.5 21.3/27.1 21.4/25.5 15.9/17.9
Slowfast-08 24.1/29.0 16.0/20.5 28.3/33.0 24.0/27.3 18.9/22.4
Slowfast-32 24.2/28.6 16.0/19.55 29.0/29.7 24.3/26.1 19.1/22.5
YOLOv5 38.8/43.3 - - - -

Detection threshold d ¼ 0:5
2D-08 8.9/7.5 2.3/3.0 5.2/6.1 6.5/6.1 5.1/5.3
2D-32 8.3/8.0 2.7/3.3 5.6/7.1 6.3/6.8 5.0/5.7
I3D-08 9.2/9.6 4.0/4.3 5.8/6.9 7.2/7.4 4.6/5.4
I3D-32 9.7/10.2 4.0/4.6 6.4/7.7 7.1/8.3 4.8/6.1
Slowfast-08 7.1/8.9 3.9/4.7 7.1/11.0 7.3/7.7 6.5/6.6
Slowfast-32 8.3/9.8 3.7/4.4 8.4/10.0 7.1/9.0 5.3/7.3
YOLOv5 18.7/13.9 - - - -

The models differ in terms of backbone network (2D, I3D and Slowfast) and test time clip length (08 versus 32). The performance of YOLOv5 on agent detection
is also reported. Both validation and test performance are reported for each entry.

8. https://github.com/ultralytics/yolov5
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input frames, it shows a remarkable improvement over the
other baseline methods for active agent detection. We
believe that is because YOLOv5 is better at the regression
part of the detection problem – namely, Slowfast has a recall
of 71% compared to the 94% of YOLOv5, so that Slowfast
has a 10% lower mAP for active agent detection. We leave
the combination of YOLOv5 for bounding box proposal
generation and Slowfast for proposal classification as a
promising future extension, which could lead to a general
improvement across all tasks.

Validation versus Test Results. Results on the test set are,
on average, superior to those on the validation set. This is
because the test set includes data from all weather/visibility
conditions (see Table 4), whereas for each split the valida-
tion set only contains videos from a single weather condi-
tion. E.g., in Split 2 all validation videos are nighttime ones.

5.3.3 Results Under Different Weather Conditions

Table 7 shows, instead, the results obtained under the three
different splits we created on the basis of the weather/envi-
ronmental conditions of the ROAD videos, discussed in Sec-
tion 5.3.1 and summarised in Table 4. Note that the total
number of instances (boxes for frame-level results or tubes
for video-level ones) of the five detection tasks is compara-
ble for all the three splits.

We can see how Split-2 (for which all three validation
videos are taken at night and no nighttime videos are used
for training, see Table 4) has the lowest validation results,
as seen in Table 7 (Train-2, Val-2). When the network
trained on Split-2’s training data is evaluated on the (com-
mon) test set, instead, its performance is similar to that of
the networks trained on the other splits (see Test columns).
Split-1 has three overcast videos in the validation set, but

also four overcast videos in the training set. The resulting
network has the best performance across the three valida-
tion splits. Also, under overcast conditions one does not
have the typical problems with night-time vision, nor
glares issues as in sunny days. Split-3 is in a similar situa-
tion to Split-1, as it has sunny videos in both train and vali-
dation sets.

These results seem to attest a certain robustness of the
baseline to weather variations, for no matter the choice of
the validation set used to train the network parameters (rep-
resented by the three splits), the performance on test data
(as long as the latter fairly represents a spectrum of weather
conditions) is rather stable.

5.3.4 Joint versus Product of Marginals

One of the crucial points we wanted to test is weather the
manifestation of composite classes (e.g., agent-action pairs
or road events) can be estimated by separately training
models for the individual types of labels, to then combine
the resulting scores by simple multiplication (under an
implicit, naive assumption of independence). This would
have the advantage of not having to train separate net-
works on all sort of composite labels, an obvious positive
in terms of efficiency, especially if we imagine to further
extend in the future the set of labels to other relevant
aspects of the scene, such as attributes (e.g., vehicle speed).
This would also give the system the flexibility to be
extended to new composite events in the future without
need for retraining.

For instance, we may want to test the hypothesis that the
score for the pair Pedestrian/Moving away can be approxi-
mated as PAgðPedestrianÞ � PAcðMoving awayÞ, where PAg

and PAc are the likelihood functions associated with the

TABLE 8
Comparison of Joint versus Product of Marginals Approaches With I3D Backbone

No instances Frame-mAP@0.5/Video-mAP@0.2

Eval-method Joint Prod. of marginals

Eval subset All Val Test Val Test

Duplexes 603274/9335 21.9/21.4 31.0/25.5 21.6/21.2 30.8/24.3
Event 453626/8394 12.6/15.9 16.8/17.9 13.7/15.4 16.3/16.1

Number of video-/frame-level instances for each composite label (’No instances’ column) and corresponding frame-/video-level results (mAP@%) averaged across
all three splits, on both validation and test sets.

TABLE 7
Number of Video- and Frame-Level Instances for Each Label (Individual or Composite), Left

Corresponding frame-/video-level results (mAP@%) for each of the three ROAD splits (right). Val-n denotes the validation set for Split n. Results produced by an
I3D backbone.
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individual agent and action detectors9. This boils down to
testing whether we need to explicitly learn a model for the
joint distribution of the labels, or we can approximate that
joint as a product of marginals. Learning-wise, the latter
task involves a much smaller search space, so that marginal
solutions (models) can be obtained more easily.

Table 8 compares the detection performance on compos-
ite (duplex or event) labels obtained by expressly training a
detection network for those (’Joint’ column) as opposed to
simply multiplying the detector scores generated by the net-
works trained on individual labels (’Prod. of marginals’).
The results clearly validate the hypothesis that it is possible
to model composite labels using predictions for individual
labels without having to train on the former. In most cases,
the product of marginals approach achieves results similar
or even better than those of joint prediction, although in
some case (e.g., Traffic light red and Traffic light red, see Sup-
plementary material again, available online) we can observe
a decrease in performance. We believe this to be valuable
insight for further research.

5.3.5 Results of AV-Action Segmentation

Finally, Table 9 shows the results of using 3D-RetinaNet to
temporally segment AV-action classes, averaged across all
three splits on both validation and test set. As we can see,
the results for classes AV-move and AV-stop are very good,
we think because these two classes are predominately pres-
ent in the dataset. The performance of the ’turning’ classes
is reasonable, but the results for the bottom three classes
are really disappointing. We believe this is mainly due the
fact that the dataset is very heavily biased (in terms of
number of instances) towards the other classes. As we do
intend to further expand this dataset in the future by
including more and more videos, we hope the class imbal-
ance issue can be mitigated over time. A measure of per-
formance weighing mAP using the number of instances
per class could be considered, but this is not quite standard
in the action detection literature. At the same time, ROAD
provides an opportunity for testing methods designed to
address class imbalance.

5.4 Challenge Results

Table 10 compares the results of the top teams participat-
ing in our ROAD @ ICCV 2021 challenge with those of the
Slowfast and YOLOv5 baselines, at a tube detection thresh-
old of 0.2. The challenge server remains open at https://
eval.ai/web/challenges/challenge-page/1059/overview,
where one can consult the latest entries.

Agent detection. The agent detection challenge was won
by a team formed by Chenghui Li, Yi Cheng, Shuhan
Wang, Zhongjian Huang, Fang Liu of Xidian University,
with an entry using YOLOv5 with post-processing. In their
approach, agents are linked by evaluating their similarity
between frames and grouping them into a tube. Discontin-
uous tubes are completed through frame filling, using
motion information. Also, the authors note that YOLOv5
generates some incorrect bounding boxes, scattered in dif-
ferent frames, and take advantage of this by filtering out
the shorter tubes. As shown in Table 10, the postprocessing
applied by the winning entry significantly outperforms
our off-the-shelf implementation of YOLOv5 on agent
detection.

Action Detection. The action detection challenge was won
by Lijun Yu, Yijun Qian, Xiwen Chen, Wenhe Liu and Alex-
ander G. Hauptmann of team CMU-INF, with an entry
called “ArgusRoad: Road Activity Detection with Connec-
tionist Spatiotemporal Proposals”, based on their Argus++
framework for real-time activity recognition in extended
videos in the NIST ActEV (Activities in Extended Video
ActEV) challenge.10 The had to adapt their system to be run
on ROAD, e.g., to construct tube proposals rather than
frame-level proposals. The approach is a rather complex
cascade of object tracking, proposal generation, activity rec-
ognition and temporal localisation stages [108]. Results
show a significant (5%) improvement over the Slowfast
baseline, which is close to state-of-the-art in action detec-
tion, but still at a relatively low level (25.6%).

Event Detection. The event detection challenge was won
by team IFLY (Yujie Hou and Fengyan Wang, from the
University of Science and Technology of China and IFLY-
TEK). The entry consisted in a number of amendments to
the 3D-RetinaNet baseline, namely: bounding box interpo-
lation, tuning of the optimiser, ensemble feature extraction
with RCN, GRU and LSTM units, together with some data
augmentation. Results show an improvement of above 2%
over Slowfast, which suggests event better performance
could be achieved by applying the ensemble technique to
the latter.

TABLE 10
Results (in video-mAP) of the Winning Entries to the ICCV 2021
ROAD Challenge Compared With the Slowfast and YOLOv5

Baselines, at a Detection Threshold of 0.2

Task Top team Slowfast YOLOv5 Winners

Agent detection Xidian 29.0 43.3 52.4
Action detection CMU-INF 20.5 - 25.6
Event detection IFLY 22.4 - 24.7

TABLE 9
AV-Action Temporal Segmentation Results (Frame mAP%)

Averaged Across All Three Splits

No instances Frame-mAP@0.5

Model I3D 2D

Eval subset All Val Test Val Test

Av-move 81196/233 92.0 96.6 83.0 87.8
Av-stop 31801/108 92.2 98.5 65.3 68.4
Av-turn-right 3826/50 46.1 63.0 35.0 57.7
Av-turn-left 3787/56 69.0 59.8 55.1 42.9
Av-overtake 599/12 4.9 1.1 2.7 2.5
Av-move-left 537/15 0.5 0.8 0.5 0.5
Av-move-right 408/16 10.5 0.6 4.0 2.0
Total/Mean 122154/490 45.0 45.8 35.1 37.4

9. Technically the networks output scores, not probabilities, but
those can be easily calibrated to probability values. 10. https://actev.nist.gov/
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6 FURTHER EXTENSIONS

By design, ROAD is an open project which we expect to
evolve and grow over time.

Extension to Other Datasets and Environments. In the near
future we will work towards completing the multi-label
annotation process for a larger number of frames coming
from videos spanning an even wider range of road condi-
tions. Further down the line, we plan to extend the bench-
mark to other cities, countries and sensor configurations, to
slowly grow towards an even more robust, ’in the wild’ set-
ting. In particular, we will initially target the Pedestrian
Intention Dataset (PIE, [58]) and Waymo [109]. The latter
one comes with spatiotemporal tube annotation for pedes-
trian and vehicles, much facilitating the extension of
ROAD-like event annotation there.

Event Anticipation/Intent Prediction. ROAD is an oven-
ready playground for action and event anticipation algo-
rithms, a topic of growing interest in the vision community
[110], [111], as it already provides the kind of annotation
that allows researchers to test predictions of both future
event labels and future event locations, both spatial and
temporal. Anticipating the future behaviour of other road
agents is crucial to empower the AV to react timely and
appropriately. The output of this Task should be in the form
of one or more future tubes, with the scores of the associated
class labels and the future bounding box locations in the
image plane [88]. We will shortly propose a baseline method
for this Task, but we encourage researchers in the area to
start engaging with the dataset from now.

Autonomous Decision Making. In accordance with our
overall philosophy, we will design and share a baseline for
AV decision making from intermediate semantic represen-
tations. The output of this Task should be the decision
made by the AV in response to a road situation [112], rep-
resented as a collection of events as defined in this paper.
As the action performed by the AV at any given time is
part of the annotation, the necessary meta-data is already
there. Although we did provide a simple temporal seg-
mentation baseline for this task seen as a classification
problem, we intend in the near future to propose a baseline
from a decision making point of view, making use of the
intermediate semantic representations produced by the
detectors.

Machine theory of mind [113] refers to the attempt to pro-
vide machines with (limited) ability to guess the reasoning
process of other intelligent agents they share the environ-
ment with. Building on our efforts in this area [14], we will
work with teams of psychologists and neuroscientists to
provide annotations in terms of mental states and reasoning
processes for the road agents present in ROAD. Note that
theory of mind models can also be validated in terms of
how close the predictions of agent behaviour they are capa-
ble of generating are to their actual observed behaviour.
Assuming that the output of a theory of mind model is
intention (which is observable and annotated) the same
baseline as for event anticipation can be employed.

Continual Event Detection. ROAD’s conceptual setting is
intrinsically incremental, one in which the autonomous
vehicle keeps learning from the data it observes, in
particular by updating the models used to estimate the

intermediate semantic representations. The videos forming
the dataset are particularly suitable, as they last 8 minutes
each, providing a long string of events and data to learn
from. To this end, we plan to set a protocol for the continual
learning of event classifiers and detectors and propose
ROAD as the first continual learning benchmark in this area
[114].

7 CONCLUSION

This paper proposed a strategy for situation awareness in
autonomous driving based on the notion of road events,
and contributed a new ROad event Awareness Dataset for
Autonomous Driving (ROAD) as a benchmark for this area
of research. The dataset, built on top of videos captured as
part of the Oxford RobotCar dataset [18], has unique fea-
tures in the field. Its rich annotation follows a multi–label
philosophy in which road agents (including the AV), their
locations and the action(s) they perform are all labelled, and
road events can be obtained by simply composing labels of
the three types. The dataset contains 22 videos with 122K
annotated video frames, for a total of 560K detection bound-
ing boxes associated with 1.7M individual labels.

Baseline tests were conducted on ROAD using a new 3D-
RetinaNet architecture, as well as a Slowfast backbone and
a YOLOv5 model (for agent detection). Both frame–mAP
and video–mAP were evaluated. Our preliminary results
highlight the challenging nature of ROAD, with the Slow-
fast baseline achieving a video-mAP on the three main tasks
comprised between 20% and 30%, at low localisation preci-
sion (20% overlap). YOLOv5, however, was able to achieve
significantly better performance. These findings were rein-
forced by the results of the ROAD @ ICCV 2021 challenge,
and support the need for an even broader analysis, while
highlighting the significant challenges specific to situation
awareness in road scenarios.

Our dataset is extensible to a number of challenging
tasks associated with situation awareness in autonomous
driving, such as event prediction, trajectory prediction,
continual learning and machine theory of mind, and we
pledge to further enrich it in the near future by extend-
ing ROAD-like annotation to major datasets such as PIE
and Waymo.
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