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i 

Afoot and light-hearted I take to the open road, 

Healthy, free, the world before me, 

The long brown path before me leading me wherever I choose. 

Henceforth I ask not good-fortune, I myself am good-fortune, 

Henceforth I whimper no more, postpone no more, need nothing, 

Done with indoor complaints, libraries, querulous criticisms, 

Strong and content I travel the open road. 

W. Whitman, 1856, Song of the Open Road 

  



 

 

ii 

 



ACKNOWLEDGMENTS 

 

iii 

Acknowledgments 

This thesis only reflects a part of the amazing journey that my Ph.D. has been. Here they go all 

the publications, and successful findings, leaving out the struggles and fun moments that cannot 

be reported in a scientific journal. 

First and foremost, I am very grateful to Gonzalo for making this journey possible and guiding 

me through it, but also for your patience, enthusiasm, wide knowledge, and encouragement 

during these years. Not only I learned about process modeling, optimization and environmental 

assessment, but also how to take advantage of critical remarks as a chance to be more open-

minded and courteous, implementing improvements to my work.  

I had the opportunity to participate in many conferences, develop soft skills – which I 

discovered to be as valuable as the technical ones- and spend some time with my colleagues 

and new friends. 

All in all, four years passed really fast, diving into carbon capture while touching upon many 

different areas and applying various tools. And I enjoyed them a lot. 

I am also very grateful for the opportunity to visit Carnegie Mellon University. And there, to 

Prof. Ignacio Grossmann for welcoming me into his group. I really enjoyed our collaboration 

and was inspired by you as a researcher and person. 

My time in Pittsburgh has also been a really good occasion to explore another little bit of North 

America, discover a good friendship from house-sharing, and bond with many brilliant and fun 

colleagues overseas. 

I want to thank my collaborators as well for the interesting and enriching projects we worked 

on together. I have learned a lot from your suggestions and expert comments. These 

experiences reminded me how much I like interacting with different backgrounds and 

personalities. 

I also want to thank my students for teaching me more than what I think I taught them. It was 

an incredible experience to be able to collaborate with Sebastian, Matteo, Valentin, and all the 

students from the lectures. 

Additionally, my Ph.D. would not have been the same great experience without the support of 

the SuperLabers, among whom I found really good friends. I have many nice memories with 

you in Boston, Japan, Korea, London, and Phoenix. I was also lucky to be among the pioneers 



ACKNOWLEDGMENTS 

 

iv 

of the group, helping shape it and seeing it grow. During these years, I realized the enormous 

potential that this group has, and I can only wish my colleagues all the best. I hope to keep in 

touch with you. 

Certainly, I was not alone during this journey. Many people accompanied me all along. Do not 

take it personally if your name does not appear in this section. I only have a limited space to 

express my gratitude to all of you.  

To all my friends in Zurich, in Italy, and those spread across the rest of Europe and America: I 

am grateful to have you in my life.  

Thank you to the FAIL! team for the motivation and passion that each one of you transmits. It 

is exciting to be part of such an inspiring group.  

To Richard. Thank you for being like a mentor to me and a really dear close friend. 

Giulia, Silvia, ed Elia: voi meritate molto più di una dedica per avermi su/opportata ogni giorno 

e ascoltato ogni mio infinito audio messaggio riguardo quotidiane vicissitudini in questi anni. 

Grazie di cuore per esserci sempre. 

Ai miei genitori. Grazie per il vostro sostegno ed affetto. Questo traguardo è stato possibile 

grazie a voi. 

A mio fratello Alessandro, da cui continuo sempre ad imparare per migliorarmi.  

A David. No podría estar más feliz de cruzar esta meta a tu lado y más sabiendo que ahora se 

nos abren muchos nuevos caminos.  

 

 

 

 

Valentina Negri 

Zurich, Switzerland 

October 2023 

 



ABSTRACT 

 

v 

Abstract 

In response to the pressing challenge of climate change, this doctoral thesis explores diverse 

strategies in Sustainable Process Systems Engineering to advance carbon capture and removal 

technologies. With the aim of curbing greenhouse gas emissions and eventually reaching net 

negative emissions, this thesis consists of six interconnected research studies that tackle CO2 

emissions of the most contributing economic sectors, namely transportation, industrial 

processes, and heating in particular, and power. The works span different temporal and spatial 

scales, all together contributing practical tools and valuable insights into the technical, 

economic and environmental aspects of carbon capture, complemented by machine learning 

and process optimization.  

This thesis starts with an analysis focused on the conventional absorption-based carbon capture 

technology aimed at simplifying its modeling. Traditional models involving complex systems 

with carbon capture processes based on first principles can be computationally costly and 

challenging to use, particularly when the user faces convergence issues. To overcome these 

limitations, we propose an innovative approach using symbolic regression. We derive simple, 

interpretable correlations by applying this technique to rigorous process simulations. These 

analytical expressions streamline the process modeling task and enhance the accessibility of 

process models for experimental researchers. By employing synthetic data from two CO2 

capture processes, we successfully identify accurate and simplified equations for key variables 

dictating the process's economic and environmental performance. These models can then be 

used to study the relation between independent and dependent process variables or benchmark 

innovative technologies without relying on process simulators. 

Moving to the application of carbon capture to the transportation sector and recognizing the 

increasing concern about maritime emissions, we assess how a conventional chemical 

absorption-based CO2 capture plant retrofitted on-board cargo vessels can reduce the freight 

shipping industry’s direct emissions. A comprehensive assessment of its technical and 

economic feasibility highlights the potential of this alternative solution. Indeed, a 94% capture 

rate is achieved at 85 $2019/tonne CO2, displacing 7% of the cargo on a mass basis. Then, we 

analyze the carbon footprint and perform an absolute sustainability assessment based on the 

planetary boundaries framework. The results show that on-board CO2 capture significantly 

reduces direct emissions. In particular, it decreases the carbon footprint of the business as usual 
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by half, outperforming an alternative scenario that captures the same amount of CO2 using 

direct air capture. Additionally, the configuration proposed does not transgress the safe 

operating space of any Earth’s system. Therefore, this research highlights the attractiveness of 

on-board capture for decarbonizing cargo shipping in the short term while alternative 

carbon-free fuels and infrastructure are under development.  

Next, we investigate the potential of carbon capture in the context of the industrial heating 

sector, which is also highly critical regarding climate change. Intending to provide energy 

security and curb greenhouse gas emissions, we explore biomethane production from five 

biomass feedstocks using thermal gasification followed by a CO2 capture stage in the European 

Union and the United Kingdom. Rigorous process modeling demonstrates the technical 

feasibility and economic competitiveness of biomethane production, which meets the quality 

requirements for grid feed-in. Based on regional biomass availability and process efficiency, 

we identify the biomethane production potential in each country. A cradle-to-gate life cycle 

assessment analysis reveals that biomethane can remove up to 0.33 Gt CO2 if the syngas 

produced during the gasification is treated in a conventional CO2 capture plant before being 

converted into methane. However, burden-shifting toward other environmental categories, 

such as land use and freshwater ecotoxicity, occurs. Our findings suggest that an optimized 

blend of natural gas and biomethane should be explored to minimize environmental burden 

across all Earth’s systems.  

Then, the urgency of achieving the ambitious climate change targets by the end of the century 

drives us to explore the potential of combining carbon capture with bioenergy production, 

known as bioenergy with carbon capture and storage in the power sector. This technology is a 

reliable and clean energy source capable of providing negative emissions, which plays a crucial 

role in global carbon removal strategies. Therefore, we evaluate the implications of large-scale 

bioenergy with carbon capture and storage supply chains in the European Union and the United 

Kingdom, emphasizing the importance of cooperation among the countries to meet given 

carbon removal targets. Considering regional biomass availability and land use constraints, we 

optimize the system’s total cost and three selected environmental indicators. Within the given 

constraints, the system is able to reach net negative carbon emissions on a cradle-to-grave basis. 

Additionally, the analysis highlights trade-offs between cost optimization and environmental 

impact minimization, providing valuable insights into the hotspots of the supply chain. 
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Lastly, we expand the scope of the previous research further to explore the synergies between 

selected carbon removal technologies and the power sector. The former include bioenergy and 

direct air capture with CO2 storage, while the latter consists of dispatchable and 

non-dispatchable technologies. We investigate the optimal design of integrated carbon removal 

and power generation systems under uncertainty in electricity demand. A multi-stage stochastic 

programming model is proposed, and a tailored decomposition approach is developed to reduce 

its computational time. The latter allows us to explore various scenarios of carbon removal 

targets and assess the corresponding impact within a regional context in the European Union 

and the United Kingdom. We identify an optimal combination of technologies and bioenergy 

to achieve significant net CO2 removal from the atmosphere while satisfying the energy 

demand. Our findings emphasize the importance of accounting for uncertainty and the 

consequent model complexity that needs to be tackled in planning optimal carbon removal and 

energy systems. 

In summary, this doctoral thesis is a comprehensive contribution of valuable insights and tools 

into carbon capture and removal strategies for a sustainable future to decarbonize the sectors 

most contributing to CO2 emissions, namely transportation and industrial processes focusing 

on heating and power. Through process modeling, feasibility studies and environmental 

assessments within regionalized analyses, this research offers insights and practical solutions, 

including surrogate models and optimization frameworks, in addition to a novel decomposition 

algorithm. The findings presented herein aim to support policymakers, researchers, and 

industries in the pursuit of mitigating climate change impacts and facilitating the transition 

toward a low-carbon economy. 
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Riassunto 

In risposta alle sfide poste dal cambiamento climatico, la presente tesi di dottorato esplora 

diverse strategie nel campo dell’ingegneria di processo sostenibile per lo sviluppo di tecnologie 

che catturano e rimuovono l’anidride carbonica dall’atmosfera. Con lo scopo di ridurre le 

emissioni di gas serra e al fine di raggiungere un bilancio negativo delle emissioni, questa tesi 

presenta sei studi interconnessi, per contrastare le emissioni di CO2 nei settori a maggior 

impatto. Ciascuno di questi si estende su una scala spazio-temporale diversa e tutti assieme 

forniscono strumenti e considerazioni rilevanti sotto i profili tecnici, economici e ambientali 

della cattura del carbonio, in aggiunta a “machine learning” e ottimizzazione.  

Questa tesi si apre con un’analisi sul processo convenzionale di cattura del carbonio che si basa 

sull’assorbimento con lo scopo di semplificarne la modellazione. I modelli tradizionali che 

coinvolgono sistemi complessi di cattura del carbonio sono basati su modelli ad equazioni 

rigorosi che possono risultare dispendiosi sotto il profilo computazionale e in generale difficili 

da usare, specialmente quando sorgono problemi di convergenza. Per aggirare queste 

limitazioni, abbiamo proposto un approccio innovativo basato sulla regressione simbolica. 

Applicando questa tecnica a rigorose simulazioni di processo, sono state sviluppate semplici 

correlazioni che risultano facilmente interpretabili. Queste equazioni analitiche facilitano 

inoltre la modellazione di processo e provvedono ad un più ampio accesso ai modelli per 

ricercatori sperimentali. Utilizzando dati derivati da due simulazioni di processi di cattura della 

CO2, sono state identificate con successo equazioni accurate e semplici per alcune delle 

variabili che influenzano la prestazione economica e ambientale dei processi. Questi modelli 

possono poi essere usati per studiare le relazioni tra variabili dipendenti e indipendenti o per 

paragonare tecnologie emergenti senza dover ricorrere all’aiuto di simulatori di processo. 

Volendo applicare il processo di cattura del carbonio al settore del trasporto, riconosciuta la 

rilevanza crescente delle emissioni nel settore navale, lo studio valuta come un impianto 

convenzionale di cattura della CO2 ad assorbimento, installato a bordo di navi mercantili da 

carico, possa ridurre le emissioni dirette nel settore del trasporto merci. Una valutazione 

complessiva della fattibilità tecnica e delle conseguenze economiche evidenzia il potenziale di 

questa soluzione alternativa. Si ottiene infatti un tasso di cattura del 94% a 85 $2019/tonn di 

CO2, rimuovendo il 7% del carico in massa. Viene poi analizzata l’impronta di carbonio ed 

eseguita una valutazione della sostenibilità assoluta basata sui c.d. “planetary boundaries”. I 
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risultati mostrano che un sistema di cattura della CO2 a bordo riduce significativamente le 

emissioni dirette. In particolare, riduce della metà l’impronta di carbonio rispetto allo stato 

attuale, e con un risultato migliore rispetto ad uno scenario che cattura la stessa quantità di CO2 

tramite cattura diretta dall’aria. Inoltre, la configurazione proposta non viola alcun “planetary 

boundary”. Pertanto, questo lavoro mette in evidenza un interessante sistema di cattura a bordo 

per la decarbonizzazione del trasporto marittimo nel breve termine, mentre sono in fase di 

sviluppo combustibili e infrastrutture alternativi a basse o zero emissioni di anidride carbonica. 

Successivamente, si investiga il potenziale del processo di cattura del carbonio nel contesto del 

settore industriale, un altro settore critico per il riscaldamento globale. Con l’obiettivo di fornire 

una fonte sicura di energia e ridurre le emissioni di gas serra, lo studio esplora il processo di 

produzione di biometano da cinque risorse di biomassa utilizzando la gassificazione termica 

della biomassa e conseguente cattura della CO2 nell’Unione Europea e nel Regno Unito. Per 

dimostrare la fattibilità tecnica e la competitività economica della produzione di biometano che 

soddisfa i requisiti di qualità per l’immissione diretta nei gasdotti, viene sviluppato un modello 

dettagliato del processo. Sulla base della disponibilità regionale della biomassa e 

dell’efficienza del processo, si identifica il potenziale di produzione di biometano in ciascun 

paese. Un’analisi di valutazione del ciclo di vita completo rivela che il biometano può 

rimuovere fino a 0.33 Gtonn di CO2 se si effettua la cattura della CO2 prima che il gas prodotto 

durante la gassificazione termica sia convertito in metano. Tuttavia, si verifica un 

peggioramento della prestazione ambientale in altre categorie ambientali, come ad esempio 

l’utilizzo del terreno ed ecotossicità dell’acqua. Questi risultati suggeriscono che una miscela 

di gas naturale e biometano deve essere utilizzata per ridurre al minimo l’impatto ambientale 

in tutti gli indicatori. 

L’urgenza di raggiungere gli obiettivi posti per far fronte al cambiamento climatico entro la 

fine di questo secolo ci spinge ad esplorare il potenziale della cattura del carbonio combinata 

con la produzione di bioenergia, nota come bioenergia con cattura e stoccaggio del carbonio, 

nel settore energetico. Questa tecnologia è una fonte di energia affidabile e pulita in grado di 

fornire emissioni negative e svolge un ruolo cruciale nelle strategie globali di rimozione del 

carbonio dall’atmosfera. Qui viene valutato il potenziale della bioenergia con cattura e 

stoccaggio del carbonio su larga scala nell’Unione Europea e nel Regno Unito, sottolineando 

l’importanza della cooperazione tra i paesi per raggiungere determinati obiettivi di rimozione 

del carbonio dall’atmosfera. Considerando la disponibilità regionale della biomassa e i vincoli 
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di utilizzo del terreno, si ottimizza il costo totale del sistema e tre indicatori ambientali. Entro 

i limiti stabiliti, il sistema è in grado di raggiungere emissioni nette negative di carbonio su 

tutto il ciclo di vita. Inoltre, l’analisi evidenzia il compromesso tra ottimizzazione dei costi e 

minimizzazione dell’impatto ambientale, fornendo preziose informazioni sui punti critici della 

catena del processo. 

Infine, il presente studio espande ulteriormente l’ambito della precedente ricerca per esplorare 

sinergie tra le tecnologie di rimozione del carbonio e il settore energetico. Il primo comprende 

la bioenergia e la cattura diretta dell’aria con stoccaggio di CO2, mentre il secondo comprende 

tecnologie di produzione di energia elettrica sia a fonte stabile che intermittente. Viene 

analizzata la progettazione ottimale di sistemi integrati di rimozione del carbonio e di 

generazione di energia considerando incerta la domanda di elettricità in ciascun paese. Viene 

quindi proposto un approccio con un modello stocastico multistadio e conseguentemente 

sviluppato un algoritmo di decomposizione su misura per ridurre il tempo computazionale di 

soluzione del problema. Quest’ultimo consente di esplorare vari scenari di obiettivi di 

rimozione del carbonio e valutarne l’impatto in un contesto regionale nell’Unione Europea e 

nel Regno Unito. Identifichiamo una combinazione ottimale di tecnologie e bioenergia per 

ottenere una significativa rimozione netta di CO2 dall’atmosfera soddisfando al tempo stesso 

la domanda energetica. I nostri risultati evidenziano l’importanza di tenere conto 

dell’incertezza e della conseguente complessità del modello che deve essere affrontata per 

ottenere sistemi di rimozione del carbonio e produzione di energia ottimali. 

In sintesi, questa tesi di dottorato rappresenta un contributo completo e fornisce informazioni 

utili per la cattura e rimozione del carbonio per un futuro sostenibile per decarbonizzare settori 

che contribuiscono maggiormente alle emissioni di CO2, cioè trasporto, processi industriali ed 

energia. Attraverso la modellazione dei processi e un’analisi della loro fattibilità, le valutazioni 

ambientali e le analisi regionali, questo lavoro offre soluzioni pratiche, modelli surrogati e di 

ottimizzazione, oltre a un nuovo algoritmo di decomposizione. I risultati presentati nei capitoli 

successivi mirano a supportare politici, ricercatori e industrie nel tentativo di mitigare gli 

impatti dei cambiamenti climatici e facilitare la transizione verso un’economia a basse 

emissioni di carbonio.  
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1.1 Research background and state-of-the-art 

The Paris Agreement, stipulated in 2015, represents a critical milestone in global efforts to 

combat climate change. Intending to limit the temperature increase to 1.5 degrees Celsius (°C) 

above pre-industrial levels, the Agreement serves as a catalyst for implementing climate action 

plans1. However, despite a plethora of technological approaches, the level of greenhouse gas 

emissions (GHGs) remains at a record high2. Furthermore, even after the COVID-19 pandemic 

that drastically slowed down the global economy with a consequent unprecedented decline of 

emissions in recent years3, emissions are now on the rise again. This underlines the urgent need 

to accelerate emission reduction efforts and, at the same time, emphasizes the insufficiency of 

emissions reduction alone in meeting the ambitious goals outlined in the Agreement4. In 

particular, in 2019, direct emissions accounted for 59 Gt of carbon dioxide (CO2) equivalent, 

of which CO2 contributed 74%. Among the major economic sectors, transportation, industrial 

heating, and power generation accounted for more than 60% of the total CO2
5. 

In this framework, carbon capture and storage (CCS) has emerged as an effective solution for 

mitigating anthropogenic emissions, also at a large scale6. Many technologies encompassing a 

range of capture methods are currently available. They vary from those in the early stage of 

laboratory testing to commercially viable applications and are usually categorized based on 

their technology readiness level (TRL). Among these, chemical absorption using aqueous 

amine solutions has proven to be the most mature technology, having been employed for 

decades in the removal of CO2 from natural gas (sweetening process7). Despite their 

effectiveness, CCS technologies require extensive infrastructures to capture, transport and store 

CO2, either in countries with available storage capacity or by building a network for CO2 

transportation to exploit the overall global potential collaboratively. 

Having learned from the sweetening process, carbon capture technologies have been applied 

to various other concentrated sources of CO2, such as combustion, gasification and exhaust 

emissions. Therefore, they are particularly effective in reducing the emissions at point sources 

of highly carbon-intensive industrial sectors such as iron, steel, cement, and petrochemicals 

production8. However, given the high TRL of this technology, recent forecasts also indicate 

the potential for on-board capture systems to be implemented in the heavy-duty transportation 

sector, where emissions are captured while the vehicles are in motion. Membranes and 

adsorption systems are being explored for truck applications9, while conventional amine-based 

CO2 capture is being considered for future scenarios in the shipping industry10. Preliminary 
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technical studies have already assessed the feasibility of retrofitting this technology on board 

vessels11, while the wide environmental implications have not been explored yet.  

While CCS plays a crucial role in emissions reduction, there is a need for additional 

technologies to remove GHGs from the atmosphere. Carbon dioxide removal (CDR) has 

become a key approach to achieving the long-term objectives outlined in the Intergovernmental 

Panel on Climate Change (IPCC) Special Report on Global Warming of 1.5 °C4. CDR 

technologies shift the focus from reducing or completely avoiding emissions to lowering the 

atmospheric concentration of CO2 compared to present levels. These technologies, which 

combine CCS with other practices, often referred to as carbon sinks, aim to achieve a net 

negative emissions balance12. The amount of CO2 to be removed, known as CDR targets, can 

be determined based on optimal cost pathways13 or equity principles14 and can be achieved 

cooperatively or at a single country level, if feasible. However, it is important to emphasize 

that this shift in focus does not diminish the significance of other mitigation strategies: 

decarbonization efforts must still be accelerated15.  

Several negative emissions technologies and practices (NETPs) arise as capable of delivering 

CDR16. Among them, afforestation and reforestation (AR) and bioenergy combined with 

carbon capture and storage (BECCS) emerge as particularly attractive choices17–19. Some 

NETPs have been recently incorporated into the Integrated Assessment Models (IAMs), which 

represent the human interaction with the natural system18 and can combine economic, 

environmental and societal aspects in the scenario analyses. In almost all assessments run by 

IAMs, the results point to BECCS as an up-and-coming pivotal technology of choice15,20,21 to 

be integrated in the power system. Differently, only a few IAMs include direct air carbon 

capture and storage (DACCS) in the portfolio of CDR options22. However, the accessibility 

and transparency of IAM assumptions and models are often limited23, requiring the 

development of additional models to explore NETPs networks in more depth to ensure meeting 

the climate goals sustainably.  

Special focus should be placed on the European Union (EU), presently one of the biggest 

emitters on a global scale24. At the same time, based on its proven leadership in international 

climate legislation25–27, its role in the future deployment and application of CDR technologies 

is essential. However, conflicting political and economic goals of the EU member states have 

hindered technological integration, contrary to initial forecasts25,26. Indeed, nowadays, 

economic feasibility still remains a significant barrier to large-scale deployment of NETPs, as 
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decisions are predominantly driven by economic considerations28,29. Nonetheless, to favor the 

deployment of NETPs, a comprehensive analysis should include economic and environmental 

indicators.  

Specifically regarding BECCS and DACCS, process modeling and optimization are necessary 

for their rigorous technical assessment. However, studies are still scarce, even more so when 

considering standard life cycle assessment (LCA) and planetary boundaries (PBs) frameworks 

for the environmental assessment, and particularly in the context of the EU. While economic 

perspectives have been explored for BECCS30–32, and a few studies have considered major 

environmental metrics like carbon and water footprint33, a comprehensive analysis 

incorporating the full range of environmental indicators is necessary to avoid burden-shifting. 

This phenomenon occurs when an environmental problem, usually climate change, is mitigated 

by worsening another34. Large-scale deployment of BECCS has been shown to exceed core 

PBs such as freshwater use and biosphere integrity within the PBs framework35, but the level 

of detail in existing models is insufficient to draw definitive conclusions or assess regional 

implications in the EU. On the other hand, the impact of DACCS on the PBs still remains to 

be exhaustively explored. While models to assess the benefits of BECCS and DACCS in single 

countries’ energy sectors, such as the UK36–38, are numerous, only a few studies focus on the 

interplay of these technologies in the context of the EU, particularly in relation to the power 

sector, with which they display strong links39. Here, uncertainties are often overlooked despite 

their significance. Indeed, considering variability in the energy system electricity demand and 

NETPs technology learning curves33 might be decisive factors for the optimal deployment of 

these CDR options. Other uncertain parameters, such as land and CO2 storage availability, 

might be crucial as well. 

Lastly, net negative emissions can also be achieved through different biomass-based processes 

complemented by CCS, which can be evaluated using process simulation to identify technical 

challenges and energy-intensive steps. Therefore, innovative routes that replace current fossil-

based fuels and energy products contributing to CO2 removal during biomass growth have been 

explored. Following the recent Russia-Ukraine war, which led to disruptions in the natural gas 

supply40 and consequent volatility of the natural gas market prices, the EU Members were 

urged to step up the transition from fossil to renewable resources. Notably, natural gas can be 

produced from bioresources, e.g., different types of biomass, with the same quality as the 

conventional fossil one, therefore contributing to decarbonization efforts. Thus, the available 

biomass potential should be sustainably exploited to increase the EU energy security and 
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mitigate climate change, leveraging already commercially available options, i.e., anaerobic 

digestion followed by upgrading, while gradually increasing the share of biomethane 

production from gasification41. 

In light of the above, this thesis contributes to advancing our understanding of CO2 mitigation 

and removal by integrating CCS and NETPS into the countries’ climate agenda to tackle CO2 

emissions from major contributing sectors. By conducting process modeling, optimization, and 

environmental assessments, we provide valuable insights into the technical feasibility, 

economic and environmental implications, and uncertainties associated with the standalone 

carbon capture technology and its role within BECCS and DACCS. Such knowledge will 

contribute to informed decision-making and the development of effective strategies to address 

climate change within the EU and beyond. 
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1.2 Goals and objectives of this thesis 

This doctoral thesis investigates the technical, economic and environmental feasibility of CCS 

and its role within selected NETPs, with a particular focus on the EU1 context in the economic 

sectors that contribute the most to global CO2 emissions. Additionally, the research addresses 

the uncertainties associated with these systems, offering valuable insights and advancements 

in the field of Sustainable Process Systems Engineering regarding CCS.  

We start with a rigorous evaluation of the economic and environmental drivers of the 

standalone carbon capture technology. In particular, we aim at providing simple tools that can 

be used for economic and environmental analyses by everyone, independently of process 

modeling expertise, which can result particularly attractive for experimental researchers. From 

a broader perspective, this study aims to support achieving a deeper understanding of the 

factors influencing the viability and sustainability of CCS projects when integrated into larger 

chemical processes. 

Subsequently, this thesis explores the application of carbon capture technologies within 

complex systems to reduce the emissions from hard-to-abate point sources. Notably, at first, 

the focus is placed on two critical sectors: heavy-duty maritime transport and industrial heating. 

By integrating CCS into these systems, we seek to evaluate the associated technical and 

economic implications. Simultaneously, these scenarios provide CO2 mitigation and removal, 

respectively. 

Building upon the knowledge gained from the evaluation of carbon capture technology as a 

standalone solution, in this thesis, we then investigate a network of integrated technologies and 

practices that leverage CO2 capture in the power system. This network includes well-

established technologies such as BECCS and DACCS. These technologies are already 

integrated into the IAMs and hold significant potential for large-scale carbon removal. An 

optimization model is developed to optimize the deployment and configuration of this 

technology network. This model, which adheres to LCA principles, enables a comprehensive 

evaluation of both the cost and environmental impact of the technology network. By adopting 

a life cycle optimization (LCO) approach, we can identify the optimal pathway and 

corresponding configuration that minimize both the technology network’s total cost and 

 

1 In this thesis we refer to the EU before Brexit; therefore, including the United Kingdom. 
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environmental footprint. Environmental performance assessment relies on standard LCA 

metrics.  

Lastly, the research addresses uncertainties in the electricity demand across EU countries for 

the optimal deployment of NETPs within the regional power system. Given the computational 

challenges posed by the size of this problem, a tailored decomposition algorithm is developed 

to expedite its solution process without compromising solution quality, i.e., reaching the same 

solution as the starting problem. 

In summary, this doctoral thesis provides significant contributions to the field of Sustainable 

Process Systems Engineering and tackles many of its future scopes42. By presenting a thorough 

evaluation of the carbon capture technology, studying its integration into specific systems, and 

the optimization of a technology network, this research offers tools and valuable insights for a 

sustainable energy transition. Additionally, it provides a comprehensive framework to 

understand the challenges and opportunities associated with large-scale implementation of 

NETPs. Finally, it aims to inform decision-makers and contribute to the development of 

strategies for a sustainable net negative carbon future.  

This work aims to address the challenges and gaps discussed above and highlighted in 

Section 1.1. The overall objective is to develop tools and perform analyses to improve our 

understanding of the role of carbon capture in combating climate change. This overarching 

objective can be broken down into the following sub-objectives: 

1 Develop simplified interpretable equations for key variables dictating the CO2 capture 

process economic and environmental performance, which can be employed by any user to 

gain insights into the process without requiring process simulation expertise.  

2 Evaluate the economic, technical, and environmental feasibility of an interim solution for 

low-carbon shipping using the state-of-the-art CO2 capture technology, namely chemical 

absorption, on-board cargo ships. 

3 Assess the potential of biomethane production from gasification with carbon capture and 

storage in the EU through a regionalized framework, considering local constraints on 

feedstock availability to provide energy security and combat climate change. 
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4 Develop a detailed model of a BECCS supply chain on a multi-regional level in the EU to 

perform a comprehensive environmental analysis and identify critical hotspots in the 

supply chain. 

5 Investigate the synergies between the EU power system and selected NETPs. In particular, 

5.1 Develop a model that integrates negative emission technologies within regionalized 

power systems and the uncertainty in the energy demand to understand the synergies.  

5.2 Develop a tailored decomposition algorithm to reduce the computational time to solve 

the problem more efficiently.  



CHAPTER 1 

 

10 

1.3 Software and methods 

In this thesis, various tools and analyses were integrated, as depicted in Figure 1.1, to answer 

the research questions posed in the previous section, bringing together process modeling and 

simulation, optimization, and environmental assessment.  

At the process level, below the mega meter scale, process simulation plays a pivotal role, 

employing software packages such as Aspen Plus, Aspen HYSYS, and Aspen Absorption43. 

The selection of a particular software package depends on the specific requirements of the 

study. For instance, Aspen HYSYS is primarily employed for general complex systems 

involving distillation steps, while Aspen Absorption is utilized for the evaluation of absorptive 

processes. Leveraging the capabilities of these process simulators enables the accurate 

calculation of mass and energy balances of large and nonlinear systems. Furthermore, the 

utilization of Aspen Energy Analyzer facilitates rigorous heat integration by determining the 

full system’s heat exchanger network. In scenarios where an approximate energy analysis 

suffices, a composite curve is generated using the Python programming language44. This 

approach assumes perfect heat integration, resulting in the minimal consumption of utilities. 

Additionally, at the centimeter to meter scale, the Bayesian Machine Scientist (BMS)45 has 

been employed for symbolic regression and, in particular, to identify closed-form analytical 

expressions that represent a set of given data accurately. The BMS determines the models from 

the observed data by exploring the space of possible mathematical expressions using a Markov 

Chain Monte Carlo Algorithm. 

When moving to supply chain design, at a scale of megameters and larger, mathematical 

modeling and optimization are performed using the General Algebraic Modeling System 

(GAMS)46. The intrinsic advantages of GAMS lie in its simplicity and efficiency, allowing for 

the formulation of complex models in a concise manner. GAMS provides a versatile framework 

that seamlessly interfaces with optimization solvers, enabling an efficient solution to the 

problems at hand. 

All the processes described at different spatial scales span across a large temporal scale based 

on the scope of each analysis. Each chapter represented in Figure 1.1 is represented on the 

temporal scale according to the timeline of the study. For example, in Chapter 2, we evaluate 

a carbon capture system on-board cargo vessels that travel for a week. Consequently, the icon 

is placed at the week level on the temporal scale.  
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Figure 1.1: Overview of analyses and tools presented in this thesis. We first gather the input data and all 

necessary information for each research question, including technical, economic and environmental 

parameters. The studies carried out in each chapter (indicated by the circled number) span different 

temporal and spatial scales. Process simulation is employed to analyze processes at a spatial scale smaller 

than Mm, with the temporal scope of the analyses ranging from minutes to years. Chapter 2 is focused on 

the smallest engineering scale, where we only consider the conventional carbon capture and storage 

technology. Chapter 3 also involves modeling a capture process on-board cargo ships, and then the 

results are extrapolated for a week trip. Finally, in Chapter 4 we assess a biomethane production process, 

considering production targets in 2030. Mathematical modeling and optimization are used for larger 

scales involving the planning of supply chains and energy systems, such as those in Chapter 5 and 6. 

respectively. Additional tools such as symbolic regression are used in Chapter 2 to produce surrogate 

models, and decomposition algorithms are developed to speed up the computational time in Chapter 6. 

Complementing the previous analyses, environmental assessment is performed at different scales, from 

the conventional life cycle assessment to the planetary boundaries framework, which can be linked to the 

Sustainable development goals. Lastly, several alternatives can be compared with a reference process 

such as the business as usual scenario or among each other. 

In parallel to Process Systems Engineering approaches, environmental assessment is 

performed. It constitutes a crucial aspect of this thesis and is carried out using two fundamental 

frameworks. The first framework employed is standard LCA, a widely accepted methodology 

for evaluating the environmental impact of products or processes throughout their entire life 



CHAPTER 1 

 

12 

cycle. The LCA adheres to the requirements and guidelines outlined in the ISO standards 14040 

and 1404447. This methodology is well suited for comparative analyses of two products or 

processes with identical functional units. Initially, the SimaPro48 interface was used for 

conducting LCA, followed by the adoption of Brightway249, a Python-based LCA platform 

that offers enhanced flexibility and customization. The background system takes data from the 

Ecoinvent database50, while the foreground is based on our own calculations and process 

simulations. The selected Life Cycle Impact Assessment (LCIA) methods comprise Recipe 

201651 and the Environmental Footprint (EF) method52. Recipe 2016 includes a comprehensive 

set of indicators at mid-point and end-point levels, whereas the EF method focuses solely on 

mid-points. 

In addition to LCA, the PBs framework is employed to conduct absolute environmental 

assessments. This framework outlines global ecological thresholds that must not be 

surpassed53,54, serving as a robust reference for evaluating the environmental sustainability of 

processes or systems. Lastly, a recent publication55 that links nine PBs to five Sustainable 

Development Goals56 based on the EF method and updated LANCA57 method offers the 

broadest framework for environmental analyses. 

Complementing the previous tools, Python is employed for comprehensive data analysis and 

symbolic regression, exploiting its extensive libraries and robust analytical capabilities. 

The application of these integrated tools extends to a wide array of challenging problems 

addressed in this thesis, ranging from carbon capture and storage to the heavy-duty 

transportation sector. This research aims to provide solid insights and innovative solutions to 

address engineering and environmental concerns through the synergistic use of process 

modeling, simulation, optimization, and environmental assessment.  
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1.4 Thesis Outline  

The previous sections provided a general introduction of the background, research questions 

and methods. An exhaustive literature review and a detailed explanation of the methods 

employed are found in each chapter of this thesis, summarized below.  

Chapter 2: Bayesian symbolic learning to build analytical correlations from rigorous 

process simulations: Application to CO2 capture technologies 

Process modeling has become a fundamental tool to guide experimental work. Unfortunately, 

process models based on first principles can be expensive to develop and evaluate, and hard to 

use, particularly when convergence issues arise. This work proves that Bayesian symbolic 

learning can be applied to derive simple closed-form expressions from rigorous process 

simulations, streamlining the process modeling task and making process models more 

accessible to experimental groups. Compared to conventional surrogate models, our approach 

provides analytical expressions that are easier to communicate and manipulate algebraically to 

get insights into the process. We apply this method to synthetic data obtained from two basic 

CO2 capture processes simulated in Aspen HYSYS, identifying accurate simplified 

interpretable equations for key variables dictating the process economic and environmental 

performance. We then use these expressions to analyze the process variables' elasticities and 

benchmark an emerging CO2 capture process against the BAU. 

Chapter 3: Navigating within the safe operating space with carbon capture on board 

Despite the global pandemic affecting human and cargo transportation recently, the emissions 

of the maritime sector are projected to keep growing steadily. The International Maritime 

Organization focused on boosting the fleets’ efficiency to improve their environmental 

performance, while more sustainable fuels are currently under investigation. Here we assess 

the economic, technical and environmental feasibility of an interim solution for low-carbon 

shipping using state-of-the-art CO2 capture technology, namely chemical absorption, on board 

cargo ships. We compute the carbon footprint of this alternative and perform an absolute 

sustainability study based on seven planetary boundaries. Our results show that the capture 

on-board scenario can achieve 94 % efficiency on the net CO2 emissions at 85 $/tCO2 while 

substantially reducing impacts on core planetary boundaries (relative to the business as usual) 

and outperforming a direct air capture scenario in global warming and all planetary boundaries, 

except nitrogen flow. Hence, capture on board seems an appealing solution to decarbonize 
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shipping in the short term while alternative carbon free fuels and related infrastructure are 

developed and deployed. 

Chapter 4: Harnessing biomethane from thermal gasification with CCS for enhanced 

energy security and GHG emissions reduction in the EU 

Given the current international landscape, natural gas supply has been gaining importance in 

the political and climate agenda of the European Union Members. We build a rigorous process 

model to produce biomethane from different biomass feedstocks using thermal gasification. 

We show that the process is technically feasible, with biomethane production meeting the 

quality required for grid feed-in, and economically competitive. A cradle-to-gate life cycle 

assessment shows that a significant reduction in global warming leads to burden-shifting in 

other environmental categories, such as land use and freshwater ecotoxicity. The analysis is 

carried out for the average European activities and then regionalized to provide insights 

regarding the biomethane production potential in each of the EU-27 countries and the UK. An 

analysis of the availability of biomass in the EU shows that biomethane has the potential to 

substitute current volatile natural gas imports while providing 0.33 Gt of net CO2 removal on 

a cradle-to-gate basis. 

Chapter 5: Life cycle optimization of BECCS supply chains in the European Union 

Carbon dioxide removal options have been identified as key to achieving the climate change 

target laid out in the 2015 Paris Agreement. Bioenergy with carbon capture and storage 

(BECCS) is particularly attractive because it can provide negative emissions and is a reliable 

energy source. We explore the complexity of the infrastructures involved in realizing a large-

scale system and the sequestration potential of bioenergy in Europe. Starting from a minimum 

cost scenario, we develop cost-optimal solutions that minimize the environmental impact of 

the overall BECCS supply chain according to the life cycle impact assessment methodology. 

Our analysis is based on cooperation among the 28 countries of the European Union (as of 

2018) to achieve a global carbon removal target. Given regional biomass and marginal land 

availability inputs and a carbon removal target of 0.61 GtCO2/year, the minimum-cost scenario 

provides negative emissions, with an overall cost of 140 Eur/MWh of bioelectricity generated 

or 117 Eur/tCO2 removed, without considering revenues from selling the electricity produced. 

On the other hand, minimizing environmental impacts increased costs by 45% relative to the 

first scenario but improved the environmental performance by 23%. 
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Chapter 6: A tailored decomposition approach for optimization under uncertainty of 

carbon removal technologies in the EU power system 

The broad portfolio of technologies delivering negative emissions calls for integrated analyses 

to explore the synergies between them and the power sector, with which they display strong 

links. These analyses, encompassing carbon removal and power generation, should be 

conducted at a regional level, considering system uncertainties, assessing local benefits and the 

impact on carbon removal potential. This study investigates how uncertainty in electricity 

demand affects the optimal design of integrated carbon removal and power generation systems 

using multistage stochastic programming. Given the model complexity, we propose a tailored 

decomposition approach that reduces the computational time by 90%, enabling insights into 

various European scenarios. We find that a combination of conventional technologies and 

biomass could satisfy the electricity demand with up to 9 Gt of net CO2 removal from the 

atmosphere. Omitting uncertainties leads to an underestimation of the total cost and the 

selection of different technologies that might lead to suboptimal performance. 

Chapter 7: Conclusions 

Chapter 7 concludes this thesis by offering a critical assessment of the work presented, 

summarizing the key contributions, accomplishments, and findings, and exploring potential 

paths for future research.  

Scientific publications produced from this dissertation and oral presentations are also listed in 

this chapter. 
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2.1 Introduction 

In the current emissions reduction scenario and transition toward a greener energy system, 

sustainable technology development has become key in every industrial sector. Nonetheless, 

the diffusion and application of new technologies is a lengthy process requiring multiple 

intermediate steps 58,59: from the early conceptualization and planning phase to laboratory 

testing, pilot scale, and industrial operation. Moreover, every step requires specific 

experimental and modeling skills and tools in the quest for more sustainable technologies. 

Standard Process Systems Engineering (PSE) tools and, more recently, also machine learning 

(ML) methods are being used at different stages of such technology development process to 

assist in the transition from laboratory to pilot or industrial scale. Notably, a critical step for 

scientists at the early development stage is to compare the performance of a novel technology 

relative to the business as usual (BAU). Information on emerging and established technologies 

might not always be readily available, making it necessary to generate in silico data using 

modeling tools to ensure meaningful comparisons. In this context, experimentalists often 

collaborate with modeling experts to conduct techno-economic assessments of competing 

technologies. These analyses might be challenging and time-consuming, particularly when 

process simulations need to be developed from scratch and/or lead to convergence issues. In 

this context, simple closed-form mathematical expressions describing the technologies' 

performance could simplify preliminary techno-economic and environmental assessments 

during the early stages of technology development, avoiding the need for complex simulations. 

Besides being easier to develop and use compared to rigorous simulations, such equations 

could also be employed for simplifying the optimization of the original processes, feasibility 

analysis and hybrid modeling. 

Among the wide range of emerging technologies under investigation, here we focus on carbon 

dioxide (CO2) capture technologies. This technology, which is expected to play a significant 

role in meeting the Paris agreement goals 60,61, has been the focus of intense modeling efforts. 

Applications of CO2 capture technologies include flue gas treatment (e.g., pre- or post-

combustion 62), process streams purification, e.g., natural gas sweetening 63, and CO2 removal 

from the atmosphere, e.g., direct air carbon capture and storage (DACCS) 64
. Among all the 

available options for CO2 capture, post-combustion chemical absorption using amine-based 

solvents, historically developed to remove CO2 and hydrogen sulfides from natural gas 65–67, is 

considered the most mature technology. Despite its high technology readiness level, chemical 
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absorption still leads to significant energy requirements due to the solvent regeneration step 68. 

Consequently, novel solvents 69, hybrid configurations 70 and new technologies aiming at 

reducing energy consumption are under investigation 71,72. 

Peters and co-workers carried out a techno-economic analysis to compare chemical absorption 

with membranes technologies for a natural gas sweetening process using Aspen HYSYS 7. Two 

different inlet gases were tested, and the processes were optimized to reduce capital costs. The 

results showed that absorption leads to higher purity in the vented and sold gases (at the expense 

of higher capital costs). Other studies have also used Aspen HYSYS to optimize the CO2 

capture cost considering multiple configurations based on membranes, i.e., number of stages 

and recycle streams 73,74. Hasan and co-authors 75 modeled and optimized a flue gas dehydration 

and CO2 capture process based on absorption and membranes. They conclude that the CO2 

composition and gas flow rate dictate the most suitable technology. Other works modeled 

separations of CO2/N2 mixtures based on membranes to minimize the membrane area and 

energy consumption 76. Hybrid configurations of membranes and cryogenic processes were 

also investigated, which improved the energy consumption compared to monoethanolamine 

(MEA) absorption for flue gas mixtures with CO2 content by 12 to 25% 77. The number of 

publications in this area (over 7000 on hybrid CO2 capture technologies in the last decade, 16% 

of them about membrane-based processes 78) highlights the scientific community's great 

interest in alternative, more sustainable technologies. Standalone cryogenic separation of CO2 

from flue gas 79 and hydrate-based gas separation80 have also been studied, showing promising 

results in terms of energy consumption. 

Traditionally, techno-economic assessments of these and other chemical technologies have 

been based on first-principles models. Aspen Plus, Aspen HYSYS and gPROMS are examples 

of simulation tools based on mass and energy balances, transfer phenomena and 

thermodynamic equations widespread in the modeling and optimization of chemical processes 

and energy systems. However, the advent of ML algorithms has opened new avenues for data-

driven process modeling. Artificial neural networks (ANN), Gaussian processes and random 

forest, among others, are increasingly being used in process modeling 81–84, mostly to simulate 

complex unit operations hard to model based on first principles. For example, modeling 

bioreactors following complex kinetics is challenging and might be simplified using pure data-

driven or hybrid models 85–88. These approaches lead to mathematical models that often provide 

good approximations for time-constrained applications but are hard to interpret due to the 
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absence of closed analytical expressions. Additionally, the ability to extrapolate is usually 

minimal. 

Analytical expressions can be explicitly obtained from data using symbolic regression, an 

application of genetic programming where the algorithm is trained to solve high-level problems 

combining simple functions 89. Later, the expressions can be manipulated algebraically, 

differentiated, and more easily interpreted to generate valuable insights into the underlying 

principles governing the phenomena observed. As discussed in more detail later in this chapter, 

standard symbolic regression approaches rely on symbolic regression trees, i.e., superstructures 

of mathematical expressions, which can be coupled with optimization algorithms to find the 

best possible models. These representations can be optimized using either deterministic or 

stochastic optimizers. Deterministic methods guarantee convergence to a local solution or even 

to the global optimum within an epsilon tolerance90. In contrast, stochastic methods need to be 

run for an infinite time to guarantee global optimality, yet they tend to lead to lower CPU times 

to provide a satisfactory solution. 

The pioneering ALAMO algorithm (automated learning of algebraic models for optimization) 

emerged in the PSE literature to address the symbolic regression problem using mixed-integer 

linear programming (MILP) 91. This work was enlarged in scope to include a priori physical 

knowledge 92 and applied to a range of chemical reaction problems 93. The main limitation of 

ALAMO stems from the use of a finite number of basis functions. This assumption constrains 

the search space drastically, eventually hindering the algorithm's ability to reproduce the data 

precisely. Cozad and Sahinidis overcame this shortcoming by formulating an elegant mixed-

integer nonlinear programming (MINLP) model for symbolic regression that can be solved 

with deterministic optimization methods like the nonlinear branch and bound and outer 

approximation algorithms 94. Moreover, deterministic global optimizers (e.g., BARON) can 

also be applied to this MINLP to compute rigorous bounds on the minimum error that could be 

attained in the best possible regression model in the symbolic tree 89.  

To the best of our knowledge, the first studies that aimed at identifying interdependencies of 

process variables in CO2 capture and storage (CCS) systems are from Rao et al.95 and Zhou et 

al.96 by employing response surface methodology and multiple-regression technique, 

respectively. Zhou and co-workers later applied ANN and neuro-fuzzy modeling to the same 

set of pilot plant data97. The predictive accuracy of the models developed by Zhou et al. using 

the aforementioned techniques ranges between 70 and 99%98. Response surface methodology 
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has been used later in other works to retrieve technical and techno-economical equations from 

CCS process simulation data99. Focusing on examples that employ symbolic regression, a very 

recent application of ALAMO to post-combustion CO2 capture using an MEA solvent was 

proposed by Danaci and co-authors 100, who provided the capture costs for a range of input 

conditions. This work is based on an accurate model of the system and it explores a wide 

spectrum of operating conditions. However, the algorithm is constrained to a set of potential 

simple basis function forms that restrict the search significantly. The works by Pascual-

González et al. 101 and Miró et al. 102 also applied mixed-integer programming (MIP) to address 

symbolic regression problems constrained within the limits of a reduced set of canonical 

expressions. In addition, the generation of tree regression models has been investigated, where 

the size of a tree can be controlled to balance the model's accuracy and complexity 103. 

Differently, Ferreira and co-workers applied Kaizen Programming to solve symbolic 

regression problems, obtaining multi-output models in a single run, which were tested 

experimentally104. Recently, an MINLP for symbolic regression successfully recovered the 

relationship between shear stress and shear rate for both Newtonian and non-Newtonian fluids 

and chemical reactions kinetic laws 105. Ansari and colleagues investigated the relationship of 

the variables in computational fluid dynamics simulations combining artificial intelligence and 

symbolic regression using sure-independence screening and sparsifying operator 106,107. Lastly, 

linear sparse regression techniques, such as LASSO or elastic nets, can be deployed as an 

alternative to MI(N)LP formulations. ALVEN 108 is a recent approach part of the SPA 

framework109 based on these methods, which was explicitly designed for modeling 

manufacturing data. An exhaustive literature review of ML models in chemical engineering, 

comparing strengths and weaknesses of the previous cited approaches, was given by 

Dobbelaere et al. 110 and Schweidtmann et al. 111, while a methodological review of machine 

learning tool interpretability is presented by Otte112. 

Moving to stochastic symbolic regression, some of us introduced a Bayesian machine scientist 

(BMS) 45 for symbolic regression in a recent publication. Unlike genetic programming, this 

approach uses a Markov chain Monte Carlo (MCMC) algorithm and a principled performance 

metric, the description length, to find expressions representing a good balance between 

accuracy and model complexity. This approach proved to be more robust than other data-driven 

approaches also when data is scarce and noisy 45. 
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Lately, the BMS has been employed to identify energy consumption and pollution drivers in 

an automated way in the work by Vázquez et al., outperforming the well-established STIRPAT 

empirical method 113. Similarly, the relationship among emissions and economic parameters 

was previously assessed using symbolic regression, automatic identification, and search 

methods114,115. 

Here, we apply this novel ML method based on symbolic regression to simplify the modeling 

of a CO2 capture process, providing explicit equations that represent the interdependencies of 

variables of the whole system. Most of the existing models for CO2 capture are based on first 

principles, and analytical expressions to streamline the calculations and enable more 

straightforward comparisons are missing99, such as in the work of Danaci et al. 100 and 

Subraveti et al.116. From a survey of the literature as reported above, many applications of ML 

to PSE tackle very specific problems, often focusing on single process units or academic 

examples. Morgan and co-workers highlighted in their recent review that most of the 

applications of artificial intelligence or ML applied to CO2 capture are about predicting 

physical properties, such as components' miscibility and solubility117–119, rather than process 

performance120, e.g., CO2 storage efficiency121. Among the few studies that analyze the latter 

aspect, the majority employs ANN and similar conventional ML tools122–124. Bearing this in 

mind, we here apply the BMS to two CCS processes, generating closed-form expressions that 

provide key economic and environmental parameters considering the entire process for a range 

of feed conditions. In this first attempt, our results show that the BMS can be applied to identify 

simple analytical expressions that reproduce the process precisely and can easily be used to 

facilitate comparisons and carry out further in-depth analyses. Notably, these equations can be 

reworked or studied analytically using the concept of elasticity, borrowed from economics, to 

investigate the effect of the operating conditions on the process' performance, as shown at the 

end of this chapter. Our simplified equations could assist experimental scientists in 

benchmarking emerging CO2 capture technologies, such as membranes, cryogenic separation 

or adsorption 6,125, in their early development stages. From a broader perspective, this work 

opens up new avenues to bridge the gap between modeling and experimental communities by 

simplifying the adoption of modeling tools by experimental groups and streamlining the 

modeling calculations. Moreover, our models can be applied to solve standard PSE problems, 

especially in the areas of surrogate-based process optimization, feasibility analysis and hybrid 

modeling, exploiting their analytical structure. 



CHAPTER 2 

 

24 

This chapter is structured as follows. In the next section, we state the problem and introduce 

the two CCS case studies. Later, the methods employed to solve it are presented. Then, the 

results are analyzed and discussed for both cases. Lastly, we show two possible applications of 

the obtained surrogate models and discuss their use in different PSE areas before the 

conclusions and outlook for future works. 

2.2 Problem statement 

Figure 2.1 outlines the overall methodology adopted here. In essence, we are interested in 

generating simple analytical equations from process simulation data, which experimentalists 

could use to evaluate their technologies. We consider a process simulation implemented in 

Aspen HYSYS, which we run iteratively to generate |𝐾| scenarios for different inlet conditions. 

This data shall then be used to build an analytical expression reproducing the model precisely, 

as explained later. 

 

Figure 2.1: Sketch of the methodology adopted in this work. We first develop a process flowsheet, 

which is used to obtain data on key process variables Y linked to the economic and environmental 

performances from a set of inputs X (pressure (P), temperature (T), composition (xi)). Then, the data is 

processed to obtain a dataset used for the BMS algorithm training. Later, the equations derived from 

the data by the BMS are validated using an independently generated dataset. The flowsheet is here 

sketched in stages as absorption (A), desorption (D), CO2 storage (S), recycle (R) and makeup (MU). 

Let us consider a set of data points K, corresponding to experimental observations or generated 

in silico with a process model. These points are the basis for constructing the data-driven 

model. We classify the variables in the dataset as independent or dependent. The former refer 

to the degrees of freedom in the experimental setting (or process model), while the latter are 

obtained once the former are fixed, by either solving the process model or running the 

associated experiment. Let I denote the set of independent variables and J the set of dependent 

ones. The following notation is adopted: 𝑥𝑘𝑖 is the value of independent variable i in the 
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observed point k, while 𝑦𝑘𝑗 is the value of the dependent variable j in the same point. Therefore, 

the independent data takes the form of a matrix with dimension |K| x |I|, while the dependent 

data is represented by a matrix with dimension |K| x |J|.   

The analysis aims to find analytical expressions of the form given in Eq. (2.1) that predict the 

output data (values of the dependent variables,�̃�𝑘𝑗) from the input data while minimizing the 

approximation error (𝑒𝑘) and the risk of overfitting. 

�̃�𝑘𝑗 = 𝑓(𝑥𝑘1, … , 𝑥𝑘𝑖 , … , 𝑥𝑘|𝐼|) + 𝑒𝑘     ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (2.1) 

In Eq. (2.1), 𝑓(𝑥𝑘𝑖) is unknown, meaning that both the structure of the model and its parameters 

are to be learned from the data. Hence, three problems need to be solved simultaneously to find 

the best expressions. First, the features selection problem, i.e., identifying which independent 

variables are statistically relevant from the viewpoint of the dependent variables. The second 

problem is finding the model structure, i.e., identifying the best mathematical formulation to 

explain the data, which implies solving the previous task. Lastly, the third problem is the 

parameter estimation problem, i.e., finding the best model parameters for a given mathematical 

structure. We explain next how to solve these three problems simultaneously using the BMS. 

2.3 Methods 

2.3.1 Process models used for data generation 

We consider the natural gas sweetening and flue gas treatment processes simulated in Aspen 

HYSYS V11 with the Acid gas - chemical solvents fluid package. The synthetic data generated 

is based on simulation results at steady-state. Appendix A provides more details about the 

assumptions and limitations of the model flowsheets.  
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Figure 2.2: Natural gas sweetening process flow diagram. The process consists of an absorption stage (blue), 

desorption (red), CO2 compression (sand) and recycle with solvent makeup (orange). 

The first case study represented in Figure 2.2 refers to the sweetening of natural gas with CO2 

sequestration and storage. The process model considers a feed of sour natural gas, the 

absorption and desorption columns operating with an MEA aqueous solution, and the CO2 

compression stage. The natural gas (4986 kmol h-1) is assumed a binary mixture of CH4 and 

CO2, 80% and 20% molar fraction (mol.), respectively, at 30 bar and 50°C. For simplicity, the 

presence of H2S in the feed stream is neglected. We note that the flowsheet is based on 

published studies 7,126. Sensitivity analyses were carried out to adjust the operating conditions 

for our case study, as explained in Appendix A. 

The process operation is as follows. First, the natural gas pressure is decreased from 30 to 17 

bar in an expander. Then, the stream is heated up to the absorber operating condition (50°C) 

and fed to the last stage, where the CO2 is recovered. The sweet natural gas is obtained at the 

top at 99.6% mol. CH4, meeting the standard required for pipeline injection and distribution. 

The CO2-rich liquid stream is sent to the top of the stripper, where it is regenerated by CO2 

desorption with steam and subsequently recycled. The absorption and stripping columns 

operate at 17 and 11 bar, respectively, taking advantage of the inlet condition of the natural gas 

at high pressure. Indeed, in the first tower, a higher than atmospheric pressure favors the 

absorption of the CO2, while in the second one, higher pressure is meant to lower the reboiler 
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duty, decreasing water evaporation, based on Schach et al. 127. Both columns are designed with 

12 stages and are packed with plastic material to avoid corrosion due to the CO2-MEA mixture 

128. The stripper operates without a condenser, while the reboiler energy consumption is 5.4 

MJ/kg CO2 removed for 90% mol. CO2 recovery. The lean load in the recycle is 0.053 mole 

CO2/mole MEA. The CO2-rich stream extracted at the top of the stripper is compressed to a 

supercritical state (110 bar and 38°C) for pipeline transportation and injection at a selected 

storage site (not considered in this work) with a purity of 99% mol. The MEA and water 

makeup maintain the solvent solution in the recycle at 30% wt. MEA at 38°C. 

 

Figure 2.3: Flue gas treatment process flow diagram. The process consists of an absorption stage (blue), 

desorption (red), CO2 compression (sand) and recycle with solvent makeup (yellow). 

The second case study in Figure 2.3 investigates post-combustion CO2 removal from a typical 

power plant flue gas. The flowsheet is based on similar studies 125,129–131 and adjusted with 

sensitivity analyses, described in Appendix A. The flue gas composition at the inlet can vary 

significantly depending on the power plant. This study focuses on flue gas in coal-fired power 

plants after the SO2 scrubbing pre-treatment 132. The process flowsheet can be divided into 

three main stages: absorption, desorption, and CO2 compression. 

The mixture of N2, CO2, O2 and H2O (1000 kmol h-1) enters the post-combustion plant in Figure 

2.3 at 1 bar and 70°C. The feed is compressed to 2 bar to overcome the column pressure drop 

and cooled down to 50°C. The CO2 lean gas at the top contains 3% mol. CO2. We highlight 

that an even lower CO2 concentration can be achieved by increasing the amount of MEA and 
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consequently the reboiler duty, as discussed in Appendix A. The CO2-rich solution leaving the 

bottom of the absorber is sent to the first stage of the stripper to separate the CO2 using steam. 

The absorber and stripper columns operate under slight pressure at 2 and 5 bar to favor the 

absorption process and lower the reboiler duty, respectively, as done in the previous case study. 

The first tower has 17 stages and the second has 14. Both columns are packed with plastic 

material due to the corrosivity of the CO2-MEA mixture. The energy consumption of the 

stripper is 2.7 MJ/kg CO2 removed for a CO2 loading of 0.052, in accordance with literature 

data 133. The stripper operates under two design specifications: 90% mol. CO2 recovery and 

90% mol. CO2 purity in the distillate. The CO2-rich stream is compressed to supercritical 

conditions, at 110 bar and 38°C, prior to being transported and stored underground (not 

included in our analysis) with a purity of 99.6% mol. CO2. The recycle stream is a 30 % wt. 

MEA aqueous solution at 37°C whose concentration is maintained constant with fresh water 

and MEA makeup. 

In both case studies, we focus on predicting the cooling and heating utilities [kW], net power 

required [kW], and amount of MEA [kg/h] as output variables from the following input 

variables: feed pressure [bar], temperature [°C] and composition, and product composition. We 

hereafter refer to the product as the stream leaving at the top of the absorber in both examples. 

We note that the product composition in the absorber is a variable that depends on the amount 

of MEA in the recycle stream for a given inlet gas composition.  

The values of the input variables to the process are obtained using Latin hypercube sampling  

(LHS), which returns the desired number of randomly distributed points for each independent 

variable in given intervals. We carry out the calculations of the absorber top product purity and 

amount of MEA in MATLAB. This method allows us to simplify the solution of the flowsheet 

reducing the number of loops to one (the recycle stream) and prevent dependencies between 

the variables MEA and product composition, while maintaining the number of degrees of 

freedom. More precisely, we define the variable MEA within an interval of interest using LHS 

and we run the process models to obtain a range of compositions of the absorber top product. 

Later, the composition is considered as an independent variable for the surrogate model. 

In this regard, it is worth mentioning that, like other ML tools, the BMS has no physical 

knowledge about any of the two processes that are regarded as black box of which only inputs 

and outputs are relevant for building the simplified equations. The lack of information about 

physical and chemical laws that leads to poor interpretability of many black box models is a 
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well-known drawback of these tools and is extensively discussed in the literature110,111, where 

the hybrid modeling approach is instead preferred134. However, here we claim that our 

approach, although it cannot be directly interpreted in terms of chemistry and physics first 

principles, offers a mathematical form that links input and output variables more intuitively 

than other ML algorithms previously published. Specifically, we argue that interpretability is 

a continuum rather than a binary feature, with simple, first-principle models at one end and 

very complex models with many parameters (such as state-of-the-art deep learning models) at 

the other end. Certainly, the models derived by the BMS are not directly relatable to first 

principles, but they are interpretable in many important regards. For example, they can be used 

directly to answer questions: How does property Y scale when property X tends to 0, or in the 

limit of large X? Or why are predictions of Y very large at some values of X? Or what is the 

derivative of Y with respect to X? In these important ways, the models proposed in this work 

are much closer to first-principle models than to deep learning models. Moreover, the prior 

used in the calculations could be modified to consider specific problem-related equations, e.g., 

from chemical engineering books. Lastly, we build the simplified equations from rigorous 

process simulations, so the model should ultimately capture the main trends dictated by the 

first principles. 

The dependent variables we are interested in refer to the energy consumption of each process, 

which contributes most significantly to its economic and environmental performance. The 

utilities are calculated by computing the grand composite curves, assuming full heat integration 

(minimum utilities consumption), and that the utility requirements of the optimal heat 

exchanger network would approach the thermodynamic targets. The electricity consumption 

corresponds to the net power required to operate pumps and compressors, discounting the 

energy gained from the expander in the case of natural gas. The range of the sampling variables 

is defined based on the literature, as reported in Table 2.1. The feed composition in Table 2.1 

is given for all the components but one, which is adjusted such that the sum of the components 

molar fractions is equal to one. Note that here we work under the strong assumption that the 

inlet conditions vary without any change in the design of the plant, assumed to be fixed. The 

assumptions and limitations of the models are reported in Appendix A.  

In this work, we use a dataset for training and an independently generated set for validation. 

Firstly, we generated 1200 and 2500 scenarios in the natural gas and flue gas cases, 

respectively, out of which 1174 and 1245 converged in the simulation. More initial points were 
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run for the flue gas simulation to account for the increased complexity of the flowsheet, e.g., 

two more independent variables (two more components in the feed) and two design 

specifications for the stripper (CO2 mol. purity and recovery). Out of the 2500 points, those 

that did not satisfy the conditions of 30% wt. MEA solution were discarded. This data was used 

to generate the models reported in Section 2.4. Then, the expressions were validated using 

additional points generated for the same ranges of input variables using LHS. The validation 

set includes 199 converged points for the natural gas sweetening and 195 for the flue gas 

treatment process, as reported in Section 2.4. We refer to Appendix A for the results of the 

training set. 
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Table 2.1. Independent and dependent variables with their respective ranges explored for the natural 

gas sweetening and flue gas treatment case studies. The product stream always refers to the stream 

leaving at the top of the absorber 
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2.3.2 Mathematical approach for symbolic regression 

Typical symbolic regression methods combine three main ingredients: (i) a suitable 

representation of the problem based on symbolic trees; (ii) an appropriate objective function to 

drive the search; and (iii) an optimization engine to identify the best expressions. Although the 

BMS operates in slightly different terms (it samples models from the Bayesian posterior 

distribution and is not based on any MINLP formulation), it can also be cast into this scheme. 

The three ingredients are described in detail next.  

 

Figure 2.4: Example of a symbolic tree. The symbolic tree sketched represents the function 𝑓(𝑥) =

𝑎 + (𝑐 − 𝑥2)𝑥1. 

Closed-form mathematical expressions can be represented as trees: the internal nodes are 

simple mathematical operations (e.g., sum or exponential), while the leaves are variables and 

parameters, as represented in Figure 2.4.  

Concerning the objective function, the BMS uses the description length (approximated as in 

Eq. (2.2) to select the best model. The description length is calculated from the Bayesian 

Information Criterion (BIC) reported in Eq. (2.3), which considers the number of model 

parameters, the sample size and the mean square error of the model (MSE, see Eq. (2.4), and 

the prior over expressions (POE). Note that the sample size is only considered for estimating 

the BIC of each model explored.  

𝐿 ≈
𝐵𝐼𝐶

2
− log (𝑃𝑂𝐸) (2.2) 

𝐵𝐼𝐶 = 𝑝 · log(|𝐾|) + |𝐾|[𝑙𝑜𝑔(2𝜋) + log(𝑀𝑆𝐸) + 1] (2.3) 
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𝑀𝑆𝐸 =  
∑ (𝑦𝑘 − �̃�𝑘)𝑘

2

|𝐾|
 (2.4) 

In Eq. (2.3), p is the number of parameters of the learned model plus one. In Eq. (2.4), 𝑦𝑘 is 

the real value observed of a generic variable i, while �̃�𝑘 is the value predicted by the BMS for 

each point k.  

Based on the symbolic tree representation above, an MCMC algorithm explores the space of 

all the possible mathematical expressions implementing three moves on the trees: i) node 

replacement, ii) root addition or removal, and iii) elementary tree replacement. Each of these 

moves affects the mathematical expressions differently, by introducing minor variations or 

significant changes in the structure, or causing the trees to shrink/grow. Alternatively, 

deterministic optimization methods could be used to explore the tree, e.g., by capitalizing on 

the MINLP formulation of Cozad and Sahinidis 89 coupled with a standard MINLP solution 

algorithm 94. Finally, the BMS selects the most plausible model in an MCMC run, namely the 

one with the minimum description length. 

The prior used in the description length calculations is the maximum entropy distribution 

consistent with a corpus of 4080 closed-form mathematical expressions retrieved from 

Wikipedia. 

We apply the algorithm available in the online repository provided by the authors in a similar 

fashion as Žegklitz and Pošík138 previously did to compare different ML tools, and we adjust 

only the number of MCMC steps. We refer to the original article 45 for further details regarding 

the BMS algorithm.  
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2.3.3. Mathematical implementation 

 

Figure 2.5: Outline of the procedure to obtain closed-form mathematical expressions. From the 

data sampling, through simulation and data processing, to the application of the BMS and model 

validation. 

The inputs to the BMS include the training dataset (as small as 100 points 45), the 

hyperparameters of the priors (given in 45 for a fixed number of independent variables and 

model parameters), and the number of MCMC steps.  
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The maximum number of parameters in an expression is fixed to twice the number of 

independent variables. This choice controls the size of the regression tree to avoid too large 

search spaces, which would lead to large CPU times. The number of steps has been chosen 

based on the coefficient of determination (R2, described later) and description length obtained 

throughout the MCMC steps, reported in Appendix A. Notably, the description length tends to 

improve as iteration proceeds, often reaching a plateau after a sufficiently large number of 

steps, which is case-dependent. Here we generated the training and validation data by sampling 

process models. Therefore, the amount of data that can be obtained is in principle infinite, 

provided that the flowsheet converges. When dealing with an experimental setting, fewer 

points might be available as experiments are costly and time-consuming, and additional tools 

for the design of experiment might have to be coupled with the BMS120,139. To highlight the 

power of the BMS, we here report the results obtained at a relatively low number of MCMC 

steps to keep the computational time low. 

The sampling was performed using MATLAB R2020a interfacing with Aspen HYSYS v11. 

Then, the outputs were processed in Python 3.8 using Numpy and Pandas and used to determine 

the values of the four dependent variables that dictate the operating costs. The BMS was trained 

using the Jupyter notebook code available online 45. The algorithm returns one closed-form 

mathematical expression for each dependent variable of interest as a function of the 

independent variables and some parameters (multiple regression). Lastly, additional points 

were generated in the same interval of the training variables using LHS to validate the 

expressions. The methodology applied is summarized in Figure 2.5. 

We computed some statistical metrics for each output model to assess the goodness of the 

model fit in both the training and validation steps. For regression models, the R2 in Eq. (2.5) 

represents a measure of how well the regression predictions approximate the real data points 

on a convenient scale from 0% to 100%. Therefore, an R2 of one indicates that the regression 

predictions fit the data perfectly.  

R2 = 1 −
∑ (𝑦𝑘 − �̃�𝑘)

2
𝑘

∑ (𝑦𝑘 − �̅�)𝑘
2  (2.5) 

where 𝑦𝑘 is the real value and �̃�𝑘 the value predicted for each point k, and �̅� is the average 

value. 
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Additionally, the mean relative error (MRE) in Eq. (2.6) measures the precision of the model. 

The MRE is calculated as the absolute value of the relative error between real and predicted 

data, normalized by the number of data points.  

MRE =
𝑎𝑏𝑠 (

∑ (𝑦𝑘 − �̃�𝑘)𝑘

𝑦𝑘
)

|𝐾|
 

(2.6) 

The elasticities can be calculated once 𝑓(𝑥) is obtained. They provide insight into the extent to 

which changes in the various inputs affect the process performance. Notably, elasticities 

quantify the proportionate change in a dependent variable 𝑦 relative to a change in an 

independent variable 𝑥𝑖, keeping the other independent variables (𝑥𝑗 ≠𝑖) and parameters 

constant. In Eq. (2.7), we report the generic formula employed to calculate the elasticity (𝐸): 

E =
𝛿𝑦

𝛿𝑥
 
𝑥

𝑦
 (2.7) 

2.4. Results and discussion 

2.4.1 Natural gas 

We run the BMS for the data collected as described above, obtaining the closed-form 

mathematical expressions for the cooling (MinCU) and heating (MinHU) in Eqs. (2.8) and (2.9), 

respectively. The parameters (𝑎) are available in Appendix A.  

MinCU =  (𝑎0 ·  (𝑎3  +  exp (𝑎2 ·  exp (
𝑥4
𝑎1
) + 𝑎5

𝑥4
𝑎4

+ 𝑥3)))

𝑎1

 (2.8) 

 

MinHU = (sinh (𝑎4
𝑥4
𝑎3

·  𝑥4
𝑎5 ·  𝑎2

2) + 𝑎0 ·  
𝑥3

𝑎2 ·  𝑥4
) ·  𝑎1 + (

𝑎0
𝑎6  ·  𝑥4

)  + 𝑎2  (2.9) 

As seen, the cooling and heating utilities equations only select two out of the four independent 

variables reported in Table 2.1: the concentration of CO2 in the feed (𝑥3) and the CH4 product 

purity (𝑥4). Notably, for a fixed input flow, these variables are strongly connected to the cooling 

needs in the CO2 compression stage and heating requirements in the stripper reboiler, which 

represent a large percentage of the overall cooling and heating, respectively. In contrast, the 
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feed pressure and temperature almost do not influence the utilities consumption in the design 

reported in Figure 2.2, which is fixed in all the scenarios.  

The net electricity consumption (Net power) is calculated as the duty required by compressors, 

pumps and expanders. 

Net power =  𝑎6  ·  (𝑎0
𝑎2 + 𝑥3  +  𝑎4  ·  𝑥4  + 𝑥1

𝑎3  +  
𝑎6  + 𝑎1
𝑎5  +  𝑥2

) (2.10) 

As expected, the expression reported in Eq. (2.10) relates Net power to all the independent 

variables: feed pressure (𝑥1) and temperature (𝑥2), the concentration of CO2 (𝑥3) in the feed 

and the CH4 product purity (𝑥4). The concentrations influence the duty of the CO2 compressors 

and pumps for a fixed input flow, while the feed pressure and temperature determine how much 

power can be gained from the expansion. 

Lastly, we find that the amount of solvent (Amount of MEA) required to achieve a specific 

product purity is proportional to the amount of CO2 in the feed 140. 

Amount of MEA

= 𝑎0 · 𝑎3
𝑥4 · 𝑎7 · 𝑥3

· ((
𝑥4
𝑎2
)
𝑎6

 

+  (𝑎4 · 𝑥4  +
𝑎5 · tan(𝑎5  +  𝑥4

𝑎0) · (𝑎1  +  2 · 𝑎6  +  𝑥4)

𝑥3
)

2

)   

(2.11) 

Therefore, the amount of MEA in Eq. (2.11) is a function of the CO2 molar fraction in the feed 

(𝑥3) and the CH4 purity in the product (𝑥4). Consequently, the expression found by the BMS 

does not select the feed pressure and temperature.  

The variable selection problem (or feature selection problem) is summarized in Table 2.2. 

Notably, the BMS identifies that feed pressure and temperature do not influence three out of 

the four dependent variables selected, while the CO2 composition in the feed and the CH4 

product purity are included in all the expressions generated. All the closed-form mathematical 

expressions referring to the dependent variables in the natural gas flowsheet include fewer 

parameters than the maximum allowed, with the exception of the simplified equation predicting 

the MEA consumption. Eqs. (2.8) – (2.11) are quite compact and include elementary 
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operations, such as additions, multiplication, and exponentials. Trigonometric functions are 

also included in the case of MinHU and Amount of MEA.  

Table 2.2.Summary of the features selection problem for the natural gas sweetening process. The 

dependent variables are listed per row, while the independent ones are reported in the columns with a 

one (if selected), and zero otherwise. 

Independent/ 

dependent 

variables 

Feed pressure 

[bar] 

Feed 

temperature 

[°C] 

CO2 mol. 

feed 

CH4 mol. 

product 

Min CU 0 0 1 1 

Min HU 0 0 1 1 

Net power 1 1 1 1 

Amount of MEA 0 0 1 1 

The data scatter around the regression line is shown in Figure 2.6 for each dependent variable 

(Eqs. (2.8) – (2.11)). The corresponding values of R2, as well as MRE and MSE, are reported 

in Table.2.3. 

The statistics indicate that the model for Net power shows the best match between observed 

and predicted data. This is shown in Figure 2.6 c), where the data of the validation set lies very 

close to the diagonal. Contrarily, MinCU shows the highest MRE and a slightly lower R2 than 

the other variables, as shown by the broader distribution of the points on the diagonal in Figure 

2.6 a). The scatter plots of MinHU and Amount of MEA show a predicted vs. observed data 

pattern between the previous two. The variable Amount of MEA is depicted in Figure 2.6 d). 

As seen, the data is distributed close to the regression line in the lower interval of values 

explored. However, it tends to scatter close to the upper bound of the variable.  

It is also worth recalling that the utilities and power variables are processed data, i.e., they are 

not direct outputs of the simulation. Nevertheless, overall, the BMS is able to recover highly 

accurate models and identify the independent variables that physically influence the process, 

even when these have been processed. 
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Figure 2.6: Given vs. predicted values correlation for the four output variables in the validation dataset of 

the natural gas sweetening process. a) cooling and b) heating utilities, c) net power and d) amount of MEA. 
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Table.2.3. Coefficient of determination (R2), mean relative error (MRE) and mean square error (MSE) 

statistics for each output variable in the validation dataset of the natural gas sweetening process. 

Case study Variable R2 MRE MSE 

Natural gas Min CU 0.9818 0.0103 1.50E+06 

 Min HU 0.9921 0.0051 5.21E+05 

 Net power 0.9986 0.0072 3.15E+02 

 Amount of MEA 0.9922 0.0050 1.94E+07 

2.4.2 Flue gas treatment 

We repeat the analysis for the same outputs for the flue gas process, modifying the prior to 

consider six independent variables. 

The minimum cooling (MinCU) utilities of the flue gas treatment process are found by the BMS 

to be a function of five independent variables reported in Table 2.1: feed pressure (𝑥1) and 

temperature (𝑥2), CO2 (𝑥3) and O2 (𝑥5) molar concentration in the feed, and CO2 molar 

concentration in the product (𝑥6). 

MinCU =  

(

 
 𝑥3  +  𝑎0 · 𝑥1

𝑥2
+ 

(

 
 
𝑎2  +

(𝑥3  +
𝑎3 · 𝑥5 · 𝑥6
𝑥5
𝑎1 ) · (𝑎5  +  𝑥1)

𝑎4 · 𝑥2

)

 
 

𝑎2

)

 
 

4

   (2.12) 

In particular, feed pressure and temperature determine the amount of cooling necessary to reach 

the absorber operating conditions after the compression, while the CO2 concentration in the 

feed and the remaining CO2 in the product influence the cooling in the compression stage. The 

coolers in the CO2 compression stage consume most of the total utilities reported in Eq. (2.12). 

For a fixed inlet flue gas stream, a change in the water concentration mainly affects the heating 

and the recycle streams, while the utility requirements of the cooler are negligible compared to 

the compression stage. Therefore, Eq. (2.12) omits water concentration (𝑥4). The expression 

obtained for MinCU is rather simple, as it only considers additions, multiplications and 

exponentials. 

On the contrary, the total heating utility (MinHU) is a function of all six independent variables 

(Eq. (2.13)). 
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MinHU = (𝑎7  +  𝑥2  +  𝑎3 ∗ (𝑎2  + 𝑥4)

· (𝑎5 · 𝑥6 · exp(−𝑥3)  +
𝑎2  · 𝑥5 · (𝑎1 · (𝑎0 + 𝑥2))

𝑥1

𝑥2
) 

+
𝑥6 · (𝑎4  + 𝑎3 · 𝑥6  + 𝑎6 · 𝑥5)

𝑥3
)/ cos(𝑎6 + 𝑥5)      

(2.13) 

The water content (x4) in the feed stream is linked to the steam consumed by the reboiler of 

the stripper that regenerates the solvent. The amount of steam also depends on the CO2 (x3) 

and O2 (x5) feed concentration, and on the CO2 concentration in the clean flue gas (x6). We 

note that this expression is less compact than the previous ones and contains a trigonometric 

function. However, it can be simplified as follows. Parameter a6 is quite large (5.6e+3), so the 

cos() function can be considered a constant that becomes zero for any value of x5 (molar 

fraction between 0 and 1). 

The net electricity consumption (Net power) in the flue gas treatment process accounts for the 

energy consumed by pumps and compressors. 

Net power =  𝑎0 · 𝑥5  

+  (𝑎6  

+  (𝑥5  +  𝑠𝑖𝑛ℎ (𝑎7  −  𝑥1 · 𝑐𝑜𝑠(𝑎2) · (𝑥6  + 𝑥3
𝑐𝑜𝑠(𝑎1 + 𝑥6)))

+
𝑎3

𝑎2  +  𝑥2  + 𝑥5  +  𝑎4 · 𝑥2
+ 𝑎5 · 𝑒𝑥𝑝(𝑎7))

𝑎5

)

4

/𝑥2
2    

(2.14) 

In Eq. (2.14), Net power is expressed as a function of the feed pressure (𝑥1) and temperature 

(𝑥2), the CO2 (𝑥3) and O2 molar concentration in the feed (𝑥5), and the CO2 molar concentration 

in the product (𝑥6). Like in Eq. (2.12), the concentration of water in the feed is omitted. The 

compressors contribute much more to the total energy consumed than the pumps, and the flow 

rate of the CO2 mainly determines the compression duty. 
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Lastly, the closed-form expression of the amount of MEA (Amount of MEA) includes all the 

concentrations in the feed and the product (Eq. (2.15) because the stream composition dictates 

the amount of solvent needed. 

 

Amount of MEA 

=  

(

 
 
 
𝑎8  +  

𝑎8  +  𝑥3

𝑎9

𝑥6
2

 +  𝑎0 · (𝑥5 +  𝑠𝑖𝑛 (𝑎7 · 𝑥6  +
𝑎𝑏𝑠(𝑎1 · 𝑥3 · (𝑎5  +  𝑥5))

𝑎𝑏𝑠(𝑎5  +  𝑎3 · 𝑥3
𝑎4)

))

𝑎2

)

 
 
 

𝑎1

+ 𝑎6 · 𝑥4 

(2.15) 

Once again, feed pressure and temperature are not linked to the amount of MEA required. The 

abs() function can be simplified because all the independent variables and parameters 𝑎1 and 

𝑎5 are positive (see Appendix A). Conversely, 𝑎4 is negative but 𝑥3
𝑎4 is positive. Thus, the ratio 

of abs() functions can be calculated as the ratio of the arguments. 

As observed, the simplified equation for the amount of MEA includes 10 parameters (out of 

the 12 allowed). A summary of the selection of the independent variable for each dependent 

one is reported in Table 2.4. At first glance, the expressions reported in Eqs. (2.12) – (2.15) 

seem more complex than in the previous case. However, the building blocks of the expressions 

are still very simple additions, multiplications, and some trigonometric and exponential 

functions. Although the second case considers two more independent variables and one more 

design specification, we can still obtain equations that fit the data with an R2 value greater than 

0.94 for three of the four variables, two above 0.99, as reported in Table 2.5. Even in the case 

of the minimum cooling utilities, the MRE remains below 8%. Our ultimate goal is to predict 

the economic and environmental performance, so estimating the cooling utilities with less 

accuracy is not an issue as their contribution to the overall performance is low.  
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Table 2.4. Summary of the features selection problem for the flue gas treatment process. The 

dependent variables are listed per row, while the independent ones are reported in the columns with a 

one (if selected), and zero otherwise. 

Independent/ 

dependent 

variables 

Feed 

pressure 

[bar] 

Feed 

temperature 

[°C] 

CO2 feed 

[mol.] 

H2O feed 

[mol.] 

O2 feed 

[mol.] 

CO2 

product 

[mol.] 

Min CU 1 1 1 0 1 1 

Min HU 1 1 1 1 1 1 

Net power 1 1 1 0 1 1 

Amount of 

MEA 

0 0 1 1 1 1 

The scatter plots in Figure 2.7 represent the goodness of fit for the four output variables in 

Eqs. (2.12) – (2.15) considering the data in the validation set. Once again, Net power is the 

variable that shows the best model performance (R2 of 99.95%) and for which the data lies 

precisely on the regression line in Figure 2.7 c), while MinCU leads to the worst fit (R2 of 

45.06%) for the MCMC steps selected. The relationship between predicted and real values for 

MinCU shown in Figure 2.7 a) indicates that the model reproduces very well the data in the 

range 2500-3500, where it accumulates. However, some points are far from the regression line. 

We note that a low R2 value not always implies that the model is unacceptable. If, for example, 

the variability of the data is low, the MRE will still probably be low (indeed, here is around 

7%), and the model can still provide reliable predictions.  

On the contrary, the model for MinHU improves compared to MinCU, while it still shows some 

data variability across the regression line. Finally, the data fit of Amount of MEA shows that 

the data is more aggregated along the diagonal, approaching the goodness of fit of Net power. 

The R2, MRE and MSE values of the dependent variables are reported in Table 2.5. 
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Figure 2.7: Given vs. predicted values correlation for the four output variables in the validation dataset of the 

flue gas treatment process. a) cooling and b) heating utilities, c) net power and d) amount of MEA. 
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Table 2.5. Coefficient of determination (R2), mean relative error (MRE) and mean square error 

(MSE) statistics for each output variable in the validation dataset of the flue gas treatment process. 

Case study Variable R2 MRE MSE 

Flue gas Min CU 0.4506 0.0744 1.22E+05 

 Min HU 0.9405 0.0381 1.72E+04 

 Net power 0.9995 0.0090 5.74E+01 

 Amount of MEA 0.9965 0.0046 7.22E+03 

The residual plots for each output variable of the two case studies can be found in Appendix 

A, where the training results and corresponding R2, MRE and MSE values are also given.  

Additionally, the same dataset used to train the BMS was used to train an ANN with Bayesian 

regularization for both cases. The results are reported in Appendix A. The ANN models lead 

to an R2 above 99%, both in the training and validation dataset. However, the obtained models 

are hardly interpretable, and hard to employ in further analyses such as those presented in the 

following sections. 

2.5 Analytical application of the expressions 

2.5.1 Analysis of the elasticities 

The BMS has the advantage over other ML algorithms to provide closed-form mathematical 

expressions.  In turn, these can be manipulated analytically, differentiated, or used in 

optimization frameworks to investigate the processes performance further or compare different 

alternatives. In this regard, we claim that our models are more interpretable than conventional 

black box tools and can be used to answer questions about the influence of each variable on 

the process as explained in Section 2.1.  

In this section, we take a step forward to study the strength of the link between the independent 

variables selected to predict the minimum heating utilities (MinHU) and the value of this output 

variable. The choice of this variable is motivated by the high energy requirements of the 

absorption process, which can be ascribed almost entirely to the regeneration of the solvent 

(reboiler duty), ultimately dictating the economic and environmental performance. To carry 

out the calculations, we use Eq. (2.7) for each point of the training set, where 𝑦 is the dependent 

variable chosen (MinHU) and 𝑥 each independent variable 𝑦. We calculate the elasticities as 

described above for each 𝑥 in all the points k and then plot the distribution of these values. 

From a practical viewpoint, the elasticities provide insight into the relationship of independent 
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and dependent variables. Although the analysis of the elasticities is still possible using other 

ML tools, the BMS allows for a more in-depth study of the change in a dependent variable as 

a result of an increment of an independent one. For example, it is possible to calculate the 

elasticity using ANN, but the result would be a numerical value and not an expression that can 

be manipulated further. 

We provide in Figure 2.8 the histogram of the elasticities for the dependent variable MinHU in 

the natural gas sweetening process. Recall that the expression of this independent variable only 

includes two independent variables out of four: the CO2 concentration in the feed (𝑥3) and the 

CH4 product purity (𝑥4) (see Eq. (2.9). The mean of the CO2 feed concentration elasticity is 

above 1 (subplot a) ), representing a positive elastic relationship: for x% increase in the 

independent variable, the dependent variable increases by y%, where y>x, denoting a strong 

response in the output to changes in the input. The mean elasticity of the CH4 product purity 

(subplot b) ) is also positive elastic. However, the high value of the mean (620) is not 

representative of the majority of the points (median = 4.23). This behavior is due to the 

instability of the derivative, whose value skyrockets for 𝑥4 above 0.999, which, however, does 

not influence the accuracy of the model itself. On the contrary, this provides an interesting 

insight into the physical model by implying that for purities above 0.999, which is infeasible 

to reach from a practical standpoint, the energy consumption required for an increment of the 

purity would be prohibitive. 

Figure 2.8: Elasticities of the natural gas dependent variables for 𝑀𝑖𝑛𝐻𝑈 in the training dataset. a) 

E3 is the elasticity corresponding to the independent variable 𝑥3 CO2 concentration in the feed 

(mean = 1.0544), b) E4 to 𝑥4 CH4 product (mean = 620.6721). 

Next, we analyze the elasticities of the minimum heating utilities of the flue gas process 

(Eq. (2.13). We recall that the dependent variable chosen is a function of all six independent 

variables whose histograms of elasticities are shown in Figure 2.9. The feed pressure (subplot 
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a) ) shows a mean elasticity between 0 and 1, implying that the relationship is positive inelastic. 

An increase in the feed pressure (𝑥1) leads to higher heating utilities. On the contrary, the 

elasticity of the feed temperature (subplot b) ) lies from -1 to 0, denoting a negative inelastic 

response. As expected, for an increase in the feed temperature (𝑥2), the minimum heating 

utilities decrease. The mean elasticity of the CO2 feed concentration (𝑥3) is positive elastic 

(subplot c) ), as its mean value is greater than 1. As said before, the reboiler duty, which is the 

most significant contribution to the total heating utilities, depends on the initial amount of CO2. 

On the contrary, the concentration of water (subplot d) ) in the feed shows a negative inelastic 

relationship with a mean value between 0 and -1. It is worth noting that the mean elasticity of 

water is -0.02, which shows that the influence of this variable is almost negligible for the 

dependent variable considered. We recall that water is not chosen in the simplified equation of 

the minimum cooling (Eq. (2.12). Increasing O2 (subplot e) ) increases, in turn, the energy 

consumption since the mean elasticity of 𝑥4 is between 0 and 1 – positive inelastic. Finally, the 

elasticity of the CO2 concentration (𝑥6) in the product stream at the top of the absorber (subplot 

f) ) is smaller than -1, therefore indicating a negative elastic response, i.e., an increase in the 

CO2 concentration of the product stream lowers the heating requirements. 

Hence, the elasticities analysis clearly shows that the CO2 concentration in the feed is the 

variable influencing the heating needs the most, as expected. Moreover, the effect of the water 

concentration is negligible, despite appearing in the simplified equation. 
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Figure 2.9: Elasticities of the flue gas dependent variables for 𝑀𝑖𝑛𝐻𝑈 in the training dataset. a) E1 refers 

to the independent variable 𝑥1 pressure (mean = 0.4475), b) E2 to 𝑥2 temperature (mean = -0.3632), c) E3 

to 𝑥3 CO2 mol. concentration in the feed (mean = 3.1495), d) E4 to 𝑥4 water concentration in the feed 

(mean = -0.0202), e) E5 to 𝑥5 O2 concentration in the feed (mean = 0.1921) and f) E6 to 𝑥6 CO2 

concentration in the product (mean = -2.3001). 
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2.5.2 Emerging technologies assessment 

We next illustrate how the simplified equations could be used to benchmark emerging 

technologies. To this end, let us consider an alternative CO2 capture technology still under 

development, namely the cryogenic CO2 separation from flue gas based on the Stirling cooler 

system developed by Song and co-authors79. We shall compare the performance of the latter 

against that of the BAU using the expressions in Eqs. (2.8) – (2.15).  

The authors provide the feed specifications and the cooling and electricity needs of the 

compressors, with and without heat integration. We analyze the case without heat integration 

for simplicity and determine the CO2 concentration (mol.) in the clean gas from the mass 

balance provided. The CO2 concentration in the clean gas of the process developed by Song is 

0.005 mol., which is below our lower bound 0.023 (Table 2.1) and, thus, falls outside the limits 

of our training set. We then calculate the minimum cooling [kW] required and the net electricity 

consumption [kW] using Eqs. (2.12) and (2.15) for both concentrations. 

Moreover, since the input flow used by Song et al. is noticeably higher than in the case we 

explored here, we take the energy consumption per mass flow rate of the clean gas [kJ/kg]. In 

our process (Figure 2.3), the product is almost constant in all the scenarios analyzed. 

Nonetheless, we make predictions taking the maximum and minimum flow rate obtained from 

the sampling (which only differ by 13%, see Table A0.2 in Appendix A). The results are 

reported in Table 2.6 as the ratio between our dependent variables (subscript BAU) and the 

values of the Stirling process (subscript cry).  

Table 2.6. Comparison of cooling and electricity requirements for the process by Song et al.79 (cry) 

and our BAU (BAU). The values are calculated as the ratio of the processes' energy requirement: 

BAU/ cryogenic per absorber top product mass flow rate. 

  Case I: without heat integration 

  𝐌𝐢𝐧𝐂𝐔BAU/ 𝐌𝐢𝐧𝐂𝐔cry 𝐍𝐞𝐭 𝐩𝐨𝐰𝐞𝐫BAU / 𝐍𝐞𝐭 𝐩𝐨𝐰𝐞𝐫cry 

  Prod. low Prod. high Prod. low Prod. high 

CO2 mol. in reference work 79 

(0.5%) 

2.19 1.91 1.17 1.02 

Using the BMS models reported above, we conclude that the new process reduces energy 

consumption for the specific conditions analyzed, mainly owing to the lack of heating required. 

We note that our analysis here is just a simple example of an additional application of the BMS, 

and the conclusions we draw are based on the available data and assumptions. We point out 

that the extrapolation performed by using the equations for the CO2 molar concentration outside 
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of the trained bounds leads to a relative error of 8.5% and 5% for the cooling and electricity 

ratios given in Table 2.6, respectively. We note that the simplified equation retrieved by the 

BMS for the cooling duty is the one affected by the poorest performance in predicting the data 

(R2 of 45%). 

2.6 Potential applications of the Bayesian machine scientist to process 

systems engineering problems 

The models developed in this work aim to support experimentalists and guide their research in 

the quest for more sustainable technologies. For example, experimental groups could quickly 

benchmark their CO2 separation technologies against standard MEA-based capture processes 

using simplified analytical methods without the need to carry out detailed simulations. This 

would allow them to identify critical hotspots in energy consumption or purity specifications. 

Moreover, the streamlined equations obtained with the BMS could find multiple applications 

in PSE, mostly in the areas of surrogate-based process optimization, flexibility analysis, and 

hybrid model building, as discussed next.  

Surrogate-based optimization has recently emerged to overcome the challenges of simulation-

based optimization, which attempts to optimize the decision variables in a detailed process 

simulation. In the latter, functions with an algebraic form or derivative information might be 

absent or too costly and noisy to evaluate91. Stochastic algorithms, such as genetic algorithms, 

can be employed in these cases, requiring numerous samplings and iterations141; alternatively, 

derivative-free algorithms can also be used91. Here, process flowsheet optimization is treated 

as a black box problem because process simulators commonly present intractable gradients142. 

In this context, the BMS could provide analytical surrogates that could be solved with state-of-

the-art solvers using standard modeling systems. This would enable also the application of 

standard deterministic global optimization algorithms, which cannot be easily applied when 

dealing with ANNs and Gaussian processes (despite some recent work developed tailored 

deterministic global optimization algorithms for the said surrogates143,144). 

This approach could find applications in refrigeration cycles141, natural gas liquefaction145, 

supply chain inventory system146, carbon capture147, process synthesis148, pharmaceutical 

manufacturing industry149, semi-batch bioprocesses83, and biorefineries150, to mention a few in 

chemical engineering design. On the other hand, the applications are not limited to technology 

benchmarking, as discussed below. 
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Our approach could also be used in the context of surrogate-based feasibility and flexibility 

analyses. The former addresses the question of whether a system can remain feasible within a 

given region of parameters values. In contrast, the latter computes the maximum deviation from 

the nominal conditions such that the system would still be feasible. Seminal works by 

Grossmann and co-workers proposed solution strategies151 and especially a two-level 

optimization framework152 to tackle these problems, which cannot be directly applied to black 

box problems that are not explicitly differentiable. Hence, analytical surrogates could enable 

the use of such algorithms based on bi-level optimization in a range of problems. Examples of 

applications include, but are not limited to, problems with black box constraints, 

computationally expensive models and non-convex feasible regions, particularly in 

pharmaceutical applications153, planning, scheduling and control154,155, or chromatography 

design156.  

Surrogate models can be further combined with an algebraic objective, material and energy 

balances to formulate algebraic optimization problems under the framework of hybrid 

modeling91. Hybrid models fill the gap linked to the lack of exact knowledge of the physical 

mechanisms of the process, allowing the user to specify part of the process through a data-

driven model and requiring less data than pure black box models, particularly relevant in 

bioprocesses applications157. In this context, our approach could be used to build analytical 

hybrid models, where mechanistic equations would be combined with an analytical surrogate, 

leading to fully analytical formulations easier to handle. Moreover, it could also be used in 

tandem with deterministic global optimization algorithms for gray box models optimization, 

as presented by Boukouvala and Floudas158. Specifically, the BMS could help to approximate 

black box constraints, enabling the straightforward application of deterministic global 

optimization methods to hybrid models.  

In particular, applications of ANNs coupled with black box optimization, which could benefit 

from analytical surrogates as those developed here, include process synthesis, flexibility 

analysis, and dynamic optimization, as reviewed by Tsay159.  

Overall, our approach has the advantage of providing an explicit mathematical form, which can 

be manipulated algebraically, differentiated, and integrated, alone or together with mechanistic 

equations, e.g., mass and energy balances in gray box models. Moreover, while interpretability 

is not a binary value, the results obtained from the BMS are more interpretable than those 

obtained from ANNs, or Gaussian processes. 
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2.7 Conclusions 

In this chapter, we explored the application of machine learning to simplify the benchmarking 

of emerging technologies with a focus on carbon capture. We applied a Bayesian machine 

scientist algorithm to streamline the modeling of two basic processes for carbon dioxide 

removal, generating simple closed-form mathematical expressions of key variables dictating 

the economic and environmental performance of the whole system considered. 

We found that it is possible to build highly accurate simplified process model equations in an 

automatic manner in relatively low computational time, which can then be used to compare 

alternative technologies and perform further numerical analyses. The statistics of the goodness 

of fit, namely the R-squared, mean relative error and mean square error, indicate that the best 

predictions correspond to the net power requirement, while the minimum cooling utilities are 

harder to predict. Nonetheless, the Bayesian machine scientist is able to find precise 

expressions even for those variables that are not directly an output of the simulations, such as 

process utilities and the net power consumption. It can also identify critical process variables 

that influence the dependent variables the most. Moreover, the number of steps for the Markov 

Chain Monte Carlo algorithm can be increased further to identify even better expressions. 

An analysis of the elasticities was carried out to provide insights into how the process variables 

affect the technology performance. Moreover, the streamlined process equations were used to 

benchmark an emerging technology based on literature data with the standard amine capture 

process, finding that it could outperform the latter under the conditions and assumptions 

considered.  

Overall, this study proved that advanced machine learning methods could be applied to 

automatically derive simplified process equations that can accurately predict the behavior of 

technologies in carbon capture applications and beyond. These simplified equations, in turn, 

can be used to analyze the influence of the independent variables on the overall performance 

and enable a direct comparison of emerging technologies without the need to run a process 

simulation in each comparative assessment sought.  

This study represents a first proof of concept based on simple case studies, and future work 

should further explore how to control the shape and complexity of these expressions and 

include more specific a priori knowledge. Moreover, these simplified equations could also be 

applied to experimental and plant data and used for optimization purposes, i.e., in process 
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design, which could open new opportunities for developing machine learning-based 

optimization algorithms based on explicit symbolic equations.  

  



CHAPTER 2 

 

54 

2.A Nomenclature 

Acronyms  

ALAMO Automated learning of algebraic models for optimization 

ANN Artificial neural networks  

BAU  Business as usual 

BMS Bayesian machine scientist 

CCS CO2 capture and storage 

CO2  Carbon dioxide  

DACCS Direct air carbon capture and storage 

E Elasticity 

LHS Latin hypercube sampling 

MCMC Markov chain Monte Carlo 

MEA Monoethanolamine 

MILP Mixed-integer linear programming 

MINLP Mixed-integer nonlinear programming 

MIP Mixed-integer programming 

ML Machine learning  

PSE  Process systems engineering 

 

Sets, variables and parameters 

K {k: set of training points} 

I {i: set of independent variables} 

J {j: set of dependent variables} 

MinCU Minimum cooling utilities [kW] 

MinHU Minimum heating utilities [kW] 

Net power Net power [kW] 

Amount of MEA Amount of MEA [kg/hr] 

BIC Bayesian Information Criterion 

L Description length 

MRE Mean relative error 

MSE Mean square error 

POE Prior over expressions 
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3.1 Introduction 

The reduction of the carbon intensity of rail, road, air and sea transport modes must be set as a 

priority to cope with the forecasted increase in the global population and consequent freight 

business, despite the remarkable decline of emissions resulting from the COVID-19 global 

pandemic160–162. Considering that roughly 80 % of the cargo is transported by sea, shipping is 

regarded as a very efficient and cost-effective way of moving goods163. Nonetheless, since it is 

still a sector almost entirely powered by fossil fuels, it contributed to roughly 3 % of global 

anthropogenic greenhouse gas (GHG) emissions in 2018164.  

Given the relatively low share of emissions compared to other economic sectors, 

decarbonization of ships was never a priority and not even explicitly mentioned in the Paris 

Agreement165. However, maritime emissions are projected to increase due to population 

growth, while the average lifetime of vessels is 25–40 years166, implying that today’s actions 

will have long-lasting effects163. Historically, attention has been paid to particulate matter 

(PM), sulfur and nitrogen oxides (SOx and NOx) emissions, which motivated the International 

Maritime Organization (IMO) to introduce stricter policies to limit the effects of these 

components167 and increase the energy efficiency of marine activities168–170. Only recently, new 

initiatives and strategies have been proposed to tackle GHG emissions, with the European 

Union being at the forefront171. However, we are still far from reaching a scenario in line with 

a 50 % GHG emissions reduction target in 2050172. 

In addition to the IMO measures to increase ship efficiency, long-term sustainable solutions 

involve a substantial change in the current infrastructure and the manufacturing of new 

propulsion systems where low or zero-carbon fuels can be employed. Great interest has been 

expressed in liquefied natural gas (LNG), hydrogen (H2), ammonia (NH3) and methanol 

(MeOH)167,173–175, which can be produced from sustainable biomass feedstock, solar energy or 

renewable electricity10,176. These alternative fuels, however, require compatible engines and 

large storage on-board, given their low volumetric energy density compared to heavy fuel oil 

(HFO)177–179. On the other hand, short-term solutions can be based on carbon dioxide (CO2) 

capture, either at the source of emissions or from the atmosphere (i.e., direct air capture, 

DAC180), while the new infrastructure is developed. CO2 capture, often coupled with geological 

storage (CCS), is a mature technology181 and a very efficient way of reducing direct emissions 

in industry and power plants182. Different configurations can be adopted, namely post-, oxy-, 

and pre-combustion, using physical or chemical adsorbents and absorbents6. Although carbon 
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capture on-board seems to represent a valid solution to tackle direct emissions in the short term 

and can be easily retrofitted on existing fleets, only a few studies were conducted on its 

technical and economic feasibility. Even more, a small number of those focused on deep-sea 

transportation, e.g., container ships11,183–186. The concept was firstly proposed by Det Norske 

Veritas and Process Systems Enterprise in 2013 and was recently reviewed by Baroudi and co-

workers187. In this context, the CO2 captured from the exhaust gas must be stored on-board in 

liquid form until a port is reached, competing with the cargo for the available space and being 

potentially hazardous188. Therefore, for this solution, little changes in the infrastructure of the 

ships are required, as they only require CO2 storage tanks on-board and extra energy for the 

CO2 capture system.  

The relevant studies of CO2 capture on-board mentioned above lack an absolute sustainability 

assessment and a comparison with alternative CO2 capture technologies. Specifically, one of 

the main shortcomings of current life cycle assessment (LCA) studies is the lack of thresholds 

to interpret the results globally. Recent works started to apply the planetary boundaries 

(PBs54,189), defining critical biophysical limits of the Earth, to the absolute sustainability 

assessment of industrial systems, including steel190 and fuels191 production. However, these 

studies are scarce and never evaluated the sustainability level of low-carbon technologies for 

shipping. In this work, we consider cargo carriers, which contribute to a relevant share of the 

maritime sector emissions (approximately 37 %192). We carry out the first comprehensive 

techno-economic and global environmental analysis of a state-of-the-art carbon capture plant 

on-board cargo vessels to reduce direct emissions, and we report the results for global warming 

(GW) and the PBs metrics. Additionally, we perform a comparative assessment with DAC and 

evaluate which option is most appealing in the short term compared to the business as usual 

scenario (BAU) until carbon-neutral fuels might eventually become competitive. Here, we 

consider a technical solution that can be implemented in the short term with few changes in the 

current fleet. Since some DAC facilities already exist, we provide the comparison with the 

carbon capture on-board as another valuable alternative that provides emissions reduction, 

although DAC technological readiness level is considerably lower. Finally, we also review and 

evaluate the different alternative fuels that could break into the market in the future. 
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3.2 Methods 

3.2.1 Reference ship 

We consider a reference ship that belongs to the liner shipping industry, therefore traveling 

fixed routes and distances193, with the following characteristics. We assume a cargo ship of an 

average size of 8500 twenty-foot equivalent units (TEU)194 powered by HFO in a conventional 

combustion engine. The emissions are calculated based on the rated speed of the ship193 and 

the type of fuel (HFO)195. Here we assume that the engine was characterized and optimized at 

26.5 knots, just above normal cruising speed194. Consequently, we consider a journey from the 

port of departure to the destination that lasts one week. As a reference for the reader, we report 

that the current route of the vessel GUDRUN MAERSK took four and half days from Tanjung 

Pelepas, Malaysia to Yantai port, China sailing at a speed of 18.5 knots, based on port calls 

data196. The exhaust gas composition analyzed in our case study is reported in Table B0.1 in 

Appendix B. We take into account CO2, oxygen (O2), nitrogen (N2), water vapor, SOx and 

NOx, although combustion emissions can include more than 400 different compounds187. 

3.2.2 Process modeling and scenarios definition 

Our study includes a detailed process modeling where we identify three necessary consecutive 

steps: exhaust gas cleaning, CO2 capture and CO2 liquefaction, which are interconnected in the 

energy analysis. The process is designed based on available data in the literature and further 

adapted to the final design of our case study by means of sensitivity analyses, as described in 

Appendix B. The process simulation is carried out in Aspen HYSYS v11. 

The exhaust cleaning section includes the technology that is currently already on-board of ships 

for the reduction of SOx and NOx. This section has been included in our simulation to the best 

of our knowledge to perform the heat integration of the full process. 

HFO is the most common and inexpensive fuel used in heavy maritime transport, and it comes 

with the downside of containing up to 4 % sulfur in its chemical composition195, which leads 

to the production of SOx during its combustion. Additionally, due to the high temperatures 

achieved in the engine, NOx are also formed along with PM. To comply with current emission 

regulations, a cleaning system designed to remove PM, NOx and, depending on the fuel, SOx 

is mandatory in the current generation of ships. These pretreatment units are very similar, if 

not the same, as those found in standard coal power plants197, and consist mainly of a trap for 
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PM, a selective catalytic reactor for NOx and a scrubber for SOx removal. In our study, we 

perform the pretreatment stage using the SNOX technology, which manages to remove 100 % 

of PM, 96 % of NOx and 94 % of SOx198. We refer to Figure 3.1 for the sketch of the process, 

while we report in Appendix B the simulation details such as temperatures of the streams and 

the reactions modeled. 

The exhaust stream is first mixed with air that provides the O2 necessary for the following 

steps. Then, the mixture enters the de-nitrification reactor (DeNOx) with NH3, where NOx and 

SOx are converted into N2 and sulfur trioxide (SO3), respectively. Additionally, any unreacted 

NH3 is also oxidized into N2. The resulting mixture is cooled down to 200.0 °C at the 

temperature of the wet scrubber, and it is put into contact with water, thus forming sulfuric acid 

(H2SO4). We consider that H2SO4 is not stored due to safety and weight issues; hence, this 

process is operated in an open loop. Therefore, the H2SO4 stream is mixed with seawater, which 

alkalinity neutralizes the acid effectively193 and is discharged into the ocean.  

In our design, the scrubber installed on-board for the SOx reduction is also necessary to avoid 

a fast degradation of the solvent used in the CO2 capture process188. We design a 

conventional199 carbon capture plant that can be installed on-board by retrofitting the current 

ship architecture without significant changes. Compared to the commercially available 

alternatives, such as solid adsorbents or membranes, the advantages of this technology are the 

high technology readiness level and consequent know-how that leads to easy installation and 

high efficiency200, at the expense of a considerable space reduction on-board due to the large 

scale system required. At this point, the exhaust gas that contains mainly CO2 as impurity is 

first sent to a flash to separate the wastewater and then enters the absorption column on the 

bottom tray. An aqueous solution of monoethanolamine (MEA) 30 % wt. gets in contact with 

the gas from the top and it leaves at the bottom of the absorber as CO2-rich solution. The CO2-

lean gas (CO2 less than 1 % mol.) is vented to the atmosphere from the top. The solvent solution 

is circulating in a closed loop: from the absorber is sent to a second column where the CO2 is 

desorbed by means of heat provided by the reboiler with a heat rate of 5.9 MJ/kg CO2. The 

gaseous stream containing 90 % mol. of CO2 leaves from the top to go to the refrigeration 

section. The MEA lean solution is recycled back to the absorber, with the addition of fresh 

solvent and water to keep it at the desired concentration due to losses in the system. The heat 

required by the reboiler, i.e., medium pressure steam, is provided by a natural gas (NG) furnace 

installed on-board. The flue gas from the combustion in the furnace is mixed with the exhaust 
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stream from the engine and sent together to the absorber to capture the net CO2 of the system. 

The CO2-rich stream that leaves the stripper at 74.0 °C is stored on-board and transported until 

destination as refrigerated liquid, following common commercial practices201. We design a first 

refrigeration step that makes use of the NG required in the furnace. The amount of NG, 

however, is not sufficient to bring the CO2 stream to the desired conditions. A refrigeration 

cycle with NH3 adapted from the literature202,203 is implemented in a closed loop to provide 

further cooling from −13.8 °C to the final temperature. The CO2 stream is then stored in 

commercially available tanks at 22.0 bar and −16.6 °C204 until the ship reaches the port where 

the CO2 is unloaded and transported to suitable storage sites. We report the operating conditions 

of the equipment, such as the number of plates, pressure, design specifications, and the 

commercial tanks used in Appendix B.  

 

Figure 3.1: Process flowsheet of the retrofitted CO2 capture plant. Three sections can be identified: 

pretreatment, carbon capture units, and refrigeration cycles for the storage of liquid CO2 on-board. 
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In our analysis, we consider three scenarios sketched in Figure 3.2. We compare a retrofitted 

carbon capture plant on-board of container ships (capture on-board scenario) with the BAU, 

i.e., the current fleet of container ships (BAU scenario). Lastly, the capture on-board is assessed 

against an alternative carbon capture technology. We consider that DAC facilities powered by 

heating with NG and electricity are installed to capture the CO2 emissions from the BAU, with 

a 90 % efficiency180 (BAU + DAC scenario). We impose that DAC achieves the same net CO2 

removal as in the CO2 capture plant on-board to provide a fair comparison, meaning that the 

CO2 from the exhaust and the furnace captured by the plant on-board is equal to the CO2 from 

the air and the NG heating captured by DAC. Further details about the activities considered in 

the BAU and the DAC plant are provided below and in Appendix B.  

 

Figure 3.2: Scenarios considered in the study. BAU is represented at the top as the current scenario 

where the shipping industry operates without introducing any measure to mitigate direct emissions. The 

capture on board and BAU + DAC scenarios are represented in the bottom left and right, respectively. 

In these scenarios, the net CO2 captured is the same. The increase in the port facilities in the capture on 

board scenario corresponds to the displacement of the cargo and consequent increase in ships. 

3.2.3 Feasibility and economic assessment 

The first step to assess the feasibility of the retrofitted carbon capture plant before carrying out 

the economic and environmental analysis is to ensure that the equipment can be placed 

on-board. In their recent work, Stolz and co-workers based this assessment on the maximum 

permissible draught176, while in our study we assume that the retrofitted plant displaces the 

current cargo in order to maintain the same total weight on the ship corresponding to 8500 

TEU. We estimate the volume and the weight of the capture plant, consisting of the absorber, 
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stripper, furnace, pumps and compressors, flash units, heat exchangers, including NH3, LNG, 

MEA and CO2 storage tanks, based on the design of each equipment. The weight considers 

only the extra units needed for the CO2 capture (i.e., the scrubber for the SOx and NOx 

reduction is already present on-board of current vessels and, therefore, it is not accounted for). 

Then, we translate this information into equivalent TEU based on the standard dimensions of 

the latter205 to obtain the cargo displacement on a volume basis. On the other hand, we compare 

the weight of the plant with the maximum cargo allowed on-board, which comes from the 

vessel dead weight tonnage subtracting the fuel, to calculate the cargo displacement on a mass 

basis. Since we impose that the final weight of the ship must be the same, the cargo that is 

displaced must be transported by additional ships with the same retrofitted CO2 capture plant 

design. We calculate the increase in the number of ships traveling the same route and the 

consequent increase in the port facilities to accommodate the bigger fleet in the year. More 

information about the calculation of the cargo displacement is reported in Appendix B. 

Given the large scale of the plant retrofitted on-board, the economic assessment is carried out 

based on the correlations and installation factors available in Towler and Sinnott206. We 

consider a shaft generator on-board that supplies the electricity to the additional components, 

i.e., pumps and compressors, and a marine seawater desalination system that provides 

high-quality fresh water. Both technologies are already commercially available, e.g., from 

Wärtsilä207.  

The calculations and a sketch of the technical feasibility are reported in Appendix B, together 

with the assumptions for the cost calculation. 

3.2.4 Environmental assessment 

The environmental analysis is carried out according to the LCA methodology following the 

ISO 14040/44 framework208,209. The goal is to assess the absolute environmental sustainability 

of the current cargo demand for container ships considering the environmental improvement 

of implementing CO2 capture on-board or sequestering the same amount of CO2 with DAC. 

The functional unit (FU) corresponds to the global annual tonne·kilometer (tkm) demand for 

container ships, estimated at 36 trillion tkm in 2019 by the International Energy Agency192. We 

adopt a well-to-propulsion scope following an attributional approach, meaning that average 

market data was used to model the system’s inventory, but introducing changes to the existing 

product system. Therefore, the system boundaries include all the upstream activities, i.e., HFO 
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production, utilities required for the capture on-board, and fuel combustion emissions in the 

engine. In the system boundaries of the scenarios assessed, we also consider the container ship 

manufacture and maintenance and the port facilities. A complete list of the activities used in 

the modeling of the environmental assessment is provided in Appendix B. 

The life cycle inventory (LCI) phase is implemented in SimaPro v.9.2.0.2 using the Ecoinvent 

v3.5 database, combining data of the foreground and background system. The former includes 

information on the mass and energy flows from the process simulation that was developed. In 

the BAU + DAC scenario, the data is retrieved from Keith et al.180, which is based on an existing 

commercial plant. The process is scaled to match the amount of CO2 captured in the capture 

on-board scenario. The inventory of the BAU scenario is defined to meet the specifications of 

the reference ship used in the study, based on activities available in the Ecoinvent database50. 

During the life cycle impact assessment, we quantify the absolute environmental sustainability 

performance of the proposed decarbonization solutions and the BAU using seven PBs metrics. 

The PBs define limits of allowable human perturbation that, if surpassed, could threaten the 

Earth’s stability; therefore, they delimit the safe operating space (SOS) in which humanity can 

operate. In order to quantify the impacts on the PBs, we use the characterization factors 

proposed by Ryberg et al.210 and Galán-Martín et al.211 that can convert the LCI elementary 

flows into impacts on the seven PBs. Additionally, we calculate the GW impact of the scenarios 

considered using the IPCC 2013 GWP 100a method.  

In the life cycle interpretation phase, we analyze the relative impacts with respect to the full 

SOS (%). We clarify that an impact above 100 % indicates the transgression of the 

corresponding PB. We note that by using the full SOS we are not allocating a share of the PBs 

to the container ships industry. Consequently, during the result interpretation phase, each 

scenario should be carefully evaluated and regarded as sustainable only if the SOS occupied 

leaves sufficient space for additional economic activities, which all together should operate 

within the PBs.   
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3.3 Results and discussion 

3.3.1 Technical and economic results 

The retrofitted CO2 capture plant on-board scenario is technically feasible and economically 

competitive compared to other carbon capture options, such as DAC or less mature 

technologies omitted in this analysis, e.g., solid adsorbents212. The design described in Figure 

3.1 has a net efficiency of 94 %, i.e., considering the CO2 from the exhaust gas and the furnace. 

The total cost of the additional equipment required on-board is 85 $2019/tCO2, annualized 

considering 7446 hours per year based on an annual utilization factor of 0.85213 and a 30 years 

lifetime of the units on the vessel, in agreement with literature results for conventional 

post-combustion capture applications at power plants100. The equipment needed to achieve 

94 % capture of the net CO2 emissions takes 7 % of the cargo on a mass basis and 4 % in 

volume for a week-long trip. The number of ships that fulfill the global tkm in 2019 featuring 

the new design proposed is calculated based on the nominal capacity of 8500 TEU. The 

increase in the number of vessels to transport the cargo displaced by the retrofitted plant 

on-board corresponds to 3 % of the current fleet in that year (weight and volume displacement 

of the cargo based on an average trip of a week). However, we estimate that for longer traveling 

times, such as four weeks, the displacement could be up to 25 and 12 % of the cargo in mass 

and volume, respectively, which would be economically unattractive.  

The CO2 sequestered is stored on-board in liquid form in commercial tanks until the ship 

reaches the port where it is unloaded and transported to suitable storage sites, e.g., saline 

aquifers, via pipeline. We note that the transport of liquid CO2 is a major safety concern due to 

its instability at the triple phase point186. However, at ambient pressure, gaseous CO2 requires 

large space available on-board, which would make this option infeasible even for a week trip.  

In the alternative scenario where CO2 is captured using DAC, the energy requirement and the 

total cost are estimated from the literature. This technology currently is rated at a capture cost 

of 300 $/tCO2 for high temperature liquid sorbents214 and 600 $/tCO2 for low temperature solid 

sorbents215, with an estimated CO2 levelized cost of 94 to 232 $/tCO2
180 for scaled-up systems, 

whose lower bound is already 10 % more expensive than our solution. However, even given 

the economic competitiveness of the capture on-board scenario, the capital investment should 

be supported by international policies and government incentives to build the network 

infrastructure for injecting the CO2 underground. 
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Our solution relies on the geological sequestration of CO2, whose elements, namely capture, 

transportation and injection technologies, are mature and commercially available for 

decades212. CCS projects are slowly spreading and increasing worldwide, with 27 operational 

projects for a total of 36.6 MtCO2 stored per year as of 2021. CCS is part of various countries’ 

strategy to fight global warming, benefiting from shared infrastructure (pipeline, storage 

wells)216, and positively impacting international climate policies. While lessons about cost 

projections and storage safety have been learned, legal and regulatory frameworks have still to 

be put in place to remove social and political barriers, especially for complex projects217. 

Although the scenario proposed is a temporary solution to mitigate direct emissions, the capital 

investment realized to retrofit the carbon capture plant on-board and the required infrastructure 

could be used in the future for circular low-carbon fuels, such as MeOH.  

3.3.2 Planetary boundaries 

We assess the performance of the capture on-board scenario compared to the BAU and 

BAU+DAC on the SOS of the seven PBs considered. The results are displayed in Figure 3.3. 

Our analysis shows that the global demand for container ships occupies up to 13 % of the full 

SOS. The most significant impacts occur in the GHG-related PBs (atmospheric CO2 

concentration (CO2), energy imbalance (EI), ocean acidification (OA), and biosphere integrity 

(BII)). Indeed, 13 % of the CO2, 12 % of EI, 4 % of OA and 1 % of BII are consumed by the 

current container ships sector to fulfill the global tkm demand. The impact on the remaining 

PBs is negligible (<1 %). However, we stress that the full SOS should accommodate all 

economic sectors that together should not surpass the given limits to operate sustainably. For 

example, the current chemical sector already takes up 25 % of the CO2 SOS211, which adds to 

the 13 % of the cargo shipping industry, contributing to 38 % of the global SOS for the CO2 

control variable. Alternatively, part of the SOS could be allocated to the container ships 

following downscaling principles218,219. For example, this share could be defined based on the 

sector gross value added (GVA), considering that the overall ocean economy contributed to 

conservatively 3 % of the global GVA in 2010220. Based on the sector GVA, the SOS space 

allocated to cargo ships would be greatly reduced and hence transgressed. 

Our analysis proves that the decarbonization options assessed can decrease the current pressure 

exerted by container ships on the Earth-system processes. More specifically, the capture 

on-board scenario proposed performs better than the BAU and BAU+DAC in all the GHG-

related PBs. Notably, a decrease of 58 % can be achieved in the CO2 concentration and OA, 
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57 % in EI and 48 % in BII PBs compared to the BAU. On the contrary, an 18-fold increase in 

the impacts is observed in the nitrogen flows (N) PB. Nonetheless, the impacts on the latter 

PBs remain negligible compared to the GHG-related ones. Finally, the BAU+ DAC scenario 

can decrease the impacts by 49 % in all the GHG -related PBs compared to the BAU, except 

BII that is decreased by 41 %. However, the impacts in N and freshwater use (FWU) PBs 

increase by two and almost five times, respectively, although they are still rather low compared 

to the impact in the carbon-related PBs. The remaining acronyms in Figure 3.3 are as follows: 

stratospheric ozone depletion (O3D), phosphorus flow (P) and land-system change (LSC). 

 

Figure 3.3: Scenarios performance on the PBs control variables. The impacts on the PBs most 

strongly connected to GHG emissions, namely CO2 atmospheric concentration (CO2), energy 

imbalance (EI), ocean acidification (OA) and biosphere integrity (BII) are the most significant in all 

the scenarios. dSOS represents the downscaled safe operating space, based on the contribution of the 

shipping sector to the global gross value added. 
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3.3.3 Global warming 

We report in Figure 3.4 the impacts of the three scenarios on GW (kg CO2-eq.), considering the 

activities common to both scenarios (‘HFO’, ‘freight ship’, ‘port’, ‘combustion emissions’, 

‘CO2 storage’), those specific to the capture on-board scenario (‘NG’, ‘MEA’ and ‘NH3 added 

on-board’), and finally the ones in the BAU+DAC scenario (‘CO2 removed’, NG (‘NG DAC’), 

calcium carbonate (‘CaCO3 DAC’), ‘water DAC’ and ‘electricity DAC’). CO2 storage refers 

to the CO2 transportation and injection underground.  

We find that Capture on-board performs better overall (1.71 1011 kgCO2eq.) compared to the 

BAU (3.53 1011 kgCO2eq.) and BAU + DAC (1.93 1011 kgCO2eq.) scenario, leading to a 

reduction in GW by 52 % and 11 %, respectively. We note that in the BAU the impact from the 

combustion emissions corresponds to 66 % of the total, followed by the port facilities (20 %) 

due to electricity consumption and finally the HFO fuel (10 %). The capture on-board scenario 

tackles the largest contributor of the impacts, achieving an 86 % reduction in the combustion 

emissions compared to the BAU. However, implementing the captured on-board scenario 

requires an increased construction and operation of the port facilities, which takes up 43 % of 

the impacts, while the HFO contributes 21 %. The BAU + DAC scenario requires electricity 

and natural gas as utilities to operate the DAC unit causing 3-fold impact on GW compared to 

the energy inputs of the capture on-board scenario. Notably, capturing the emissions at point 

source is less energy intensive than from the air. 

From Figure 3.4, it is evident that the impact of the port facilities is dominant in all the 

scenarios. Therefore, for further decarbonization efforts, renewable electricity should be 

considered to satisfy the requirement at the port facilities and zero or low carbon fuels should 

be considered for the propulsion of the vessel, as discussed next.  
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Figure 3.4: Global warming potential of the three scenarios considered. The capture on-board 

scenario performs best in global warming, outperforming the BAU and BAU + DAC scenarios by 

52 % and 11 %, respectively.  

3.4 Alternative fuels in the long-term solution 

The carbon capture scenario proposed could enable the maritime sector to meet the 50 % GHG 

emissions reduction target in 2050 until more sustainable fuels are deployed and does not 

intend to be a long-term solution relying on fossil resources, i.e., HFO. Among the fuels of 

interest currently under investigation in future fleets are liquid ones such as NH3, MeOH, bio-

based alternatives, and gaseous ones such as H2 and (bio)NG. The production routes include 

CO2 utilization, reformed NG with CCS and renewable electricity (electrofuels)10. Stolz and 

co-workers also considered the direct use of electricity in bulk cargo ships with Li-ion batteries, 

given their rapidly increasing energy density176. Despite a thorough techno-economic analysis 

of different options being carried out by these authors, alternative fuels should be analyzed 

from a life cycle perspective221.   

In particular, drop-in biofuels such as bio-MeOH, bio-dimethyl ether, or bio-oil have been 

assessed with prospective LCA222,223 to consider technological improvements, electricity mixes 

changes and other socio-economic factors usually set constant in LCA assessments. In the 

works of Mukherjee et al. and Watanabe and co-authors, sustainable feedstock such as waste 

biomass or manure and forest residues was investigated in different processes, e.g., 

gasification, anaerobic digestion, hydrothermal liquefaction or pyrolysis222,223.  
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According to the literature, all the aforementioned alternative fuels will face technical 

challenges due to their characteristics, e.g., toxicity, corrosiveness, low energy density leading 

to large storage on-board, and chemical composition, making them not suitable as drop-in at 

the moment221,224,225. Additionally, the switch to low- or zero-carbon fuels is hampered by the 

economic competitiveness of HFO and marine gas oil223 and their current high share in the 

market (86 %226), and it will unlikely happen without a solid regulatory framework10. 

Furthermore, the maritime industry will compete for these fuels with other transportation 

sectors, namely land-based transport and aviation223. Although it is challenging to identify a 

clear winner among the many suitable candidates, NH3 and MeOH may dominate the 2050 

mix10 if the infrastructure in place today is updated, although bio-based fuels might be preferred 

in the long run because they can be directly used in the current engines.  

From the discussion above, it seems unrealistic to think that a complete replacement of the 

current fuels will happen instantly, and interim solutions such as the one proposed in our work 

will be pivotal. Additionally, carbon capture technologies are mature and the implementation 

on-board will not require considerable changes in the existing infrastructure, especially for ship 

owners. Moreover, we may implement CO2 capture on-board today and switch from HFO to 

biomass-derived fuels in the future with the advancement of engines. In that case, we could 

even achieve negative emissions in the next generation of container fleets. 
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3.5 Conclusions 

The application of carbon capture by chemical absorption using monoethanolamine solvents to 

cargo ship exhaust was analyzed from a technical, economic and environmental perspective. 

The scenario was assessed compared to the business as usual and the direct air capture 

technology. Our analysis proves that carbon capture on-board is a technically feasible and 

economically attractive solution to reduce the direct emissions from the cargo shipping industry 

at 85 $2019/tCO2. The plant retrofitted on-board displaces 7 and 4 % of the freight on a mass 

and volume basis, respectively, which can be transported by additional ships with the same 

design. The solution proposed was assessed on seven planetary boundaries. The results show 

that it does not transgress the full safe operating space while halving the current pressure 

exerted by the business as usual on three core planetary boundaries. It also outperforms direct 

air capture, decreasing the carbon footprint of the current scenario by 52 %.  

Overall, the solution proposed can be implemented in the short term with minor modifications 

to the current fleet until engines running on alternative fuels will be developed and will operate 

on newbuilds. In the long-term solution, low or zero carbon fuels such as biofuels or 

electrofuels should be employed where employing electric power is challenging, e.g., for 

long-distance transportation. Moreover, a carbon negative scenario could also be achieved by 

retrofitting carbon capture on-board and deploying biomass-based fuels.  
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3.A Nomenclature 

Acronyms 

BAU   Business as usual scenario 

DAC  Direct air capture 

DeNOx  De-nitrification reactor 

FU   Functional unit 

GHG   Greenhouse gas 

GVA   Gross value added 

GW   Global warming 

IMO   International Maritime Organization 

LCA   Life cycle assessment 

LCI   Life cycle inventory 

PBs   Planetary boundaries 

PM   Particulate matter 

SOS   Safe operating space 

TEU   Twenty foot equivalent units 

tkm   Tonne·kilometer 

 

Chemicals 

CO2   Carbon dioxide 

H2   Hydrogen 

H2SO4  Sulfuric acid 

HFO   Heavy fuel oil 

LNG   Liquefied natural gas 

MEA   Monoethanolamine 

MeOH  Methanol 

N2   Nitrogen 

NG   Natural gas 

NH3   Ammonia 

NOx   Nitrogen oxides 

O2   Oxygen 

SO3   Sulfur trioxide 

SOx   Sulfur oxides 

 

Planetary boundaries categories 

BII   Biosphere integrity 

CO2   Climate change - atmospheric CO2 concentration 

EI   Climate change - energy imbalance 

FWU   Freshwater use 

LSC   Land system change 

N   Nitrogen flows 

O3D   Stratospheric ozone depletion 

OA   Ocean acidification 

P   Phosphorus flow 
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4.1 Introduction 

The Russian invasion of Ukraine in February 2022 has emphasized the issue of the European 

Union’s (EU) over-dependency on Russian natural gas. In 2021, the EU imported 83% of its 

natural gas, more than 45% of which came from Russia227. Within this context, the new 

geopolitical scenario has led to natural gas prices skyrocketing, exacerbating the economic 

crisis caused by the COVID-19 pandemic and resulting in a dramatic increase in electricity, 

heating and fuel prices weighing heavily on private consumers228. 

In March 2022, the EU Commission proposed REPowerEU, an action plan that focuses on 

incentivizing energy savings, boosting clean energy production, replacing natural gas in 

heating and power generation and promoting natural gas supply diversification229. Overall, 

REPowerEU is meant to completely phase-out the imports of Russian gas well before 2030. In 

the short term, the EU has drastically reduced gas imports from Russia by relying on other 

suppliers, such as Qatar and the United States (US)227. In the medium and long term, a more 

aggressive shift away from natural gas could be imperative to comply with climate policy 

targets230,231. In this challenging context, biomethane, a natural gas substitute produced from 

biomass, emerges as a promising alternative to help curbing greenhouse gas (GHG) emissions 

while enhancing energy security, i.e., alleviating the dependency of the EU on volatile fossil 

fuels imports, and mitigating the effects of current energy prices. Moreover, the potential of 

biomethane as a carbon dioxide removal (CDR) solution is particularly noteworthy if part of 

the carbon content of the biomass (i.e., the CO2 that has been previously uptake from the 

atmosphere) is captured and permanently stored underground232. In light of its potential, the 

EU has established an ambitious goal of increasing biomethane production tenfold by 2030, 

reaching up to 35 billion normal cubic meters annually (bNcum)229. 

Biomethane is primarily produced via two routes: i) anaerobic digestion of biodegradable 

feedstocks to produce a biogas (a mixture of CO2 and CH4) which is upgraded to biomethane 

through the removal of the CO2 (i.e., the biochemical route) and ii) thermal gasification of solid 

biomass coupled with subsequent methanation (i.e., thermochemical route)41. The biochemical 

route is a well-established technology with decades of deployment233. Meanwhile, gasification 

followed by methanation is an emerging technology which is gaining traction given its potential 

to produce biomethane at a larger scale41. Gasification uses solid biomass (e.g., woody 

feedstock and agricultural residues) which is broken down in a gasifier at high temperature and 

in the presence of oxygen and steam to produce syngas, a mixture of CO, H2, CH4, and other 
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gases234. After cleaning, the syngas undergoes the methanation stage, where the reaction 

between H2 and CO produces biomethane. Before the syngas is converted into a higher value 

product in the methanation reactor, the CO2 present in the syngas can be captured and stored 

underground, offering a unique CDR opportunity. 

Previous studies have extensively analyzed the global and regional biomethane production 

potential via biomass gasification41,235–237 as well as the process’ economics, often using 

process simulations238–246, while the literature on the potential environmental footprint is much 

more limited. Most environmental assessments have a rather narrow scope, often focusing on 

the life cycle GHG emissions of gasifying specific feedstocks (e.g., wood chips247, 

lignocellulosic feedstock248,249 and wheat straw250). Only a few studies have addressed the 

environmental implications of a large-scale deployment of thermochemical biomethane 

production, particularly concerning the climate change mitigation potential (e.g., in the US237 

and the Occitania region in France251). Notably, the possibility of coupling biomass gasification 

with carbon capture and storage (CCS) to deliver carbon-negative biomethane based on 

domestic resources remains largely overlooked in the literature.  

Here we cover this knowledge gap by assessing the broad environmental implications of 

biomethane production via biomass gasification with CCS in the EU and United Kingdom 

(hereafter referred to as EU, before Brexit). We use a holistic framework that combines 

country-specific biomass availability with a detailed process simulation and the standardized 

life cycle assessment (LCA) methodology. Moreover, we also determine the optimal 

deployment of biomethane production that enables negative emissions without transgressing 

other critical environmental categories. 

4.2 Results 

4.2.1 Large biomethane potential in the EU 

We first estimate the biomethane production potential via biomass gasification in the EU 

considering two biomass residues, namely wheat straw and forest, and three energy crops 

cultivated on marginal land, namely Miscanthus, willow and poplar according to the supply 

chain sketched in Figure 4.1. These five feedstocks account for the majority of the biomass 

available in the EU and do not compete for land with food production. By considering country-

specific biomass availability and the process efficiency, we find that 151 billion normal cubic 

meters (bNcum)/year of biomethane could be produced cumulatively in the EU. Spain, Poland, 
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Germany, France and the United Kingdom provide 53% of the total biomethane production 

potential (Figure 4.2a). Spain, with 33.5 bNcum/year, has by far the largest potential, mainly 

due to the large availability of Miscanthus and poplar crops. Poland shows the second largest 

potential, equivalent to half of the Spain potential, i.e., 16 bNcum/year, and also mainly based 

on Miscanthus and poplar crops. Differently, Germany and France have a potential of roughly 

12 and 11 bNcum/year, respectively, more than 50% and 35% of which comes from forest 

residues. Lastly, the United Kingdom has a biomethane potential of 9 bNcum/year almost split 

equally among the three investigated energy crops (Miscanthus, willow and poplar).  

A previous study has reported a biomethane production potential via biomass thermal 

gasification of 67 bNcum/year by 2050252. However, this study omitted feedstocks cultivated 

on marginal land. According to our estimates, energy crops cultivated on marginal land may 

account for roughly 90% of the total biomethane potential. Overall, the estimated biomethane 

potential is similar to the volume of Russian gas imported by the EU in 2021, i.e., 155 

bNcum227, and substantially higher than the EU’s target of 35 bNcum annually by 2030. 

 

Figure 4.1: Biomethane routes explored. Biomethane for grid injection can be produced from five 

different feedstocks, two types of residues and three energy crops. The biomass is transported via truck 

to the processing plant, which consists of five steps. The final product has the same characteristics of 

the fossil natural gas and it is ready to be injected in the existing grid. 
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4.2.2 Biomethane can remove up to 0.33 Gt of CO2-eq in the EU 

We next compute the carbon footprint of producing biomethane via biomass gasification with 

CCS in each country (Figure 4.2b). Notably, biomethane achieves net negative emissions on a 

cradle-to-gate basis across all the studied feedstocks and countries, compared to 0.4 kg CO2-eq 

per Ncum of the business as usual (BAU). The carbon footprint of biomethane varies greatly 

across countries, i.e., from -3.3 kg CO2-eq in Sweden to -1.8 kg CO2-eq in Poland in the case of 

forest residues. This large variability is primarily due to the composition of the electricity mix 

in each country, as gasification and especially methanation are highly energy-intensive 

processes. Regarding feedstocks, wheat straw and forest residues show the lowest carbon 

footprint, as residues are assumed to be supplied burdens-free (i.e., zero emissions embodied 

from the cultivation stage253,254). More detailed analysis of the impacts of the energy crops 

cultivation stage can be found in Appendix C. 

The negative carbon footprint indicates that the GHG emissions across the biomethane supply 

chain are lower than the amount of CO2 uptake from the atmosphere via photosynthesis. After 

accounting for the hypothetical emissions from biomethane combustion, we find that a slightly 

negative carbon footprint would be achieved even on a cradle-to-grave basis, i.e., between 

- 0.009 and - 0.07 kg CO2-eq/Ncum on average. This is possible because from the original 

carbon content of the biomass, more carbon is captured and stored underground than the one 

transferred into the biomethane. 

Lastly, we determine the potential for curbing carbon emissions through the substitution of 

natural gas with biomethane in the EU (Figure 4.2c). Our results show that we can achieve a 

reduction in the global warming impact compared to the current scenario. If the total potential 

of 151 bNcum were supplied by BAU natural gas, the global warming impact would be 

0.06 Gt CO2-eq. By replacing 100% of the amount of natural gas with the potentially available 

biomethane, we achieve a maximum net removal of 0.33 Gt CO2-eq.  
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Figure 4.2: Potential and carbon footprint of biomethane production via biomass gasification with 

carbon capture and storage (CCS) in the EU. Subplot (a) shows the biomethane production potential 

in each EU country based on regional biomass availability. Subplot (b) represents the cradle-to-gate 

carbon footprint of biomethane production from each feedstock in each country. Subplot (c) shows the 

maximum global warming potential reduction based on the total biomass availability in the EU. The 

total global warming reduction is independent of the sequence by which BAU natural gas is replaced 

by biomethane. By exploiting the full biomethane potential, it is possible to achieve 0.33 Gt CO2 

removal on a cradle-to-gate basis. 
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4.2.3 Biomethane can shift burdens to 13 out of 15 impact categories  

We next investigate the broader environmental implications of deploying biomethane at scale 

by studying impacts beyond climate change (Figure 4.3). We find that its large-scale 

deployment would shift burdens to other categories. Specifically, only 2 of the 15 

Environmental Footprint and LANCA metrics investigated would improve, namely ozone 

depletion and non-renewable energy resources, while the rest would worsen, some of them 

quite substantially. In freshwater ecotoxicity, non-carcinogenic human toxicity and land use, a 

switch to biomethane would lead to impact values up to three orders of magnitude above the 

natural gas scenario. It is worth noting that the robustness of the impact categories varies 

widely, with ecotoxicity, human toxicity, resource depletion, and land and water use categories 

involving the highest level of uncertainty. While these impact categories are recommended by 

the European Commission’s Environmental Footprint method, they should be applied with 

caution255. 
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Figure 4.3: Environmental performance of biomethane production scenarios on non-climate change 

metrics relative to the BAU. The table shows the biomethane scenario impact over the impact of the 

BAU. A ratio lower than one means that biomethane has a lower impact than BAU. For ratios greater 

than 1, biomethane performs worse than the BAU. In the latter case, burden-shifting occurs, i.e., 

biomethane reduces global warming but worsens other categories. 

Analyzing the breakdown of impacts (Figure C0.6, Appendix C), we note that among the 

human-related impacts, ecotoxicity freshwater is strongly linked to the process direct emissions 

and ash disposal, whose content is the highest in wheat straw. Similarly, ash disposal is the 

major responsible for the impacts on non-carcinogenic human toxicity, which is particularly 

relevant in the wheat straw scenario. Regarding the non-toxic categories, land use is affected 

by the cultivation stage of the energy crops on marginal land, being the worst in the case of 

willow production. This is not the case for the residues scenarios, whose impact on land use is 

mainly given by the feedstock transportation.  
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Overall, by looking at the breakdown of the impacts, we highlight that the ash content of the 

crops is a major concern in the biomethane process, followed by the crop cultivation stage. 

Other contributors to the impacts are the use of monoethanolamine solvent in the CO2 capture 

plant and the electricity mix. Regarding the latter, we note that the impact may vary 

substantially depending on the location, as shown in Figure 4.2b.  

Forest residues are an appealing choice among the feedstocks analyzed for biomethane 

production due to high process efficiency (Appendix C Table C0.17) and environmental 

performance. However, they are not the most abundant feedstock among the ones considered 

(Figure 4.2a), which makes it necessary to deploy a portfolio of different biomass types instead. 

Wheat straw, on the other hand, is characterized by low carbon content, which implies a low 

biomass to natural gas conversion. This low efficiency, however, leads to greater CO2 removal 

potential for the same production capacity, as more feedstock is needed compared to other 

biomass types investigated. This comes with the downside of large amounts of ash due to the 

composition of the biomass, which has significant effects in all the toxicity-related categories. 

Among the energy crops investigated, poplar has the highest biomass-to-natural gas conversion 

(Appendix C Table C0.17) while showing the best environmental performance on critical 

indicators, e.g., ecotoxicity freshwater and land use, compared to other crops (Figure 4.3). 

On a cradle-to-grave basis (Appendix C Figure C0.8), the impacts of the biomethane scenarios 

improve substantially, being at most up to two order of magnitude more than BAU and the 

majority of the categories being less than ten times the current scenario. The most critical 

indicators still remain ecotoxicity freshwater and land use. 

4.2.4 An optimal natural gas blend could avoid significant burden-shifting 

Our results show that biomethane has the potential to reduce global warming significantly 

(Figure 4.2c); however, burden-shifting takes place in almost all the non-climate change impact 

categories compared to the BAU (Figure 4.3). We contextualize these impacts considering 

some limits proposed in the literature55 and regionalized to the EU. We find that only a subset 

of the 13 indicators transgressed are the most critical. Therefore, we can calculate the optimal 

potential that maximizes biomethane deployment without transgressing critical environmental 

categories by developing a linear programming optimization model described in Appendix C. 

Firstly, we calculate the maximum deployment of a natural gas blend (BAU and biomethane) 

to meet the EU industrial heat and power demand, restricted to 10 and 100 times transgression 
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(TF) of the current scenario (Figure 4.4 a). Our results show that in the first scenario, 86% of 

the total methane is supplied by conventional natural gas and the remaining by forest residues. 

When a higher level of transgression is allowed (TF100), only 56% of the total methane comes 

from fossil resources, complemented by wheat straw (10%) and forest residues (31%), and 

poplar. 

The results computed for TF10 and TF100 only show the optimal portfolio of biomass 

feedstock that satisfies all the constraints. However, these results do not imply that the use of 

other biomass types is to be excluded. Therefore, we look at the maximum amount of the single 

feedstocks that can be deployed and still satisfies a BAU transgression of 10 and 100 times on 

non-climate change indicators (Figure 4.4b). We find that if BAU transgression is restricted to 

10, only biomethane from forest residues is carbon negative, which could provide 7 tCO2 

removed. Even when 100 times transgression is allowed, none of the other scenarios leads to 

negative emissions, except forest residues, leading to 63 tCO2 removed (Appendix C 

Table C0.18). Additionally, wheat straw residues and forest residues are fully deployed in the 

TF100 scenario. Land use is the limiting category for the deployment of the energy crops, as 

they worsen substantially the pressure on this indicator compared to BAU. 
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Figure 4.4: Optimal deployment of BAU natural gas and biomethane that avoids critical transgression 

on selected Environmental Footprint categories. Subplot (a) shows the maximum available potential 

of biomethane based on the total resources in the EU, compared to the natural gas blend that optimally 

meets the heat and power demand in the EU without transgressing the BAU more than 10 and 100 

times (TF10 and TF100). Subplot (b) reports the maximum biomethane production per feedstock and 

the maximum amount that is possible to deploy without transgressing the BAU more than 10 and 100 

times. 

4.3 Discussion and conclusions 

One of REPowerEU main goals is to provide a strategy to boost energy savings and renewable 

power generation. In this section, we discuss the potential applications of biomethane, while 

being aware that biomass is a finite resource, which many sectors are increasingly competing 

for, i.e., food, including manure food, transportation41. Indeed, biomass can be used to produce 

fuels or energy carriers such as hydrogen via syngas.  

When biomass is employed to produce biomethane through thermal gasification with CCS, the 

substitute natural gas can be used directly as fuel, e.g., as a clean substitute to fossil fuels in 

road and sea transportation, for heat (domestic and industrial) and power production. Here, we 
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focus our discussion on industrial heating applications. Since the latter involves high 

temperature processes, it is a hard-to-decarbonize sector. Differently, low to medium 

temperature heat processes can be decarbonized through electrification, such as in the case of 

housing heating using heat pumps234. Therefore, we see clear potential for biomethane to play 

a key role in decarbonizing the industrial heating sector, replacing the conventional natural gas 

in boilers and furnaces. We foresee one competitor in decarbonizing high-temperature 

processes, which is the use of heat pumps powered by bioenergy with carbon capture and 

storage. However, given the current technology readiness level, we expect biomethane to 

produce roughly five times the amount of heat than heat pumps based on our calculations and 

assumptions. 

Here we explored the environmental benefits of biomethane production via thermal gasification 

to tackle two main current concerns: energy security in the European Union and United 

Kingdom and climate change. Regarding the former, we estimated the maximum available 

potential of biomethane production from locally available feedstocks based on marginal land 

energy crops and residues considering sustainable removal rates. The amount of biomethane 

meeting grid feed-in quality resulted being of the same order of magnitude of Russian gas 

imports. This implies a potential to reduce the dependence of the European Union on volatile 

fossil fuels imports. Concerning the second issue, we have demonstrated that biomethane 

reduces greenhouse gas emissions, as it is a carbon-negative energy source on a cradle-to-gate 

basis, by removing up to 0.33 Gt CO2-eq. However, biomethane production shifts the burden to 

13 out of 15 environmental indicators considered compared to the business as usual scenario. 

Nonetheless, by computing optimal blends of conventional natural gas and biomethane it is 

possible to reduce the pressure on these indicators and still achieve carbon negative scenarios. 
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5.1. Introduction  

In 2015, 196 Parties agreed in the Paris Agreement to hold the temperature rise by 2100 to well 

below 2 °C while ‘pursuing efforts’ to limit temperatures to 1.5 °C above pre-industrial levels 

and finding a solution to the consequences of climate change1.  

Insufficient mitigation actions are maintaining record levels of world greenhouse gas (GHG) 

emissions, especially from fossil fuel combustion and cement production 256, such that existing 

commitments to reduce emissions will be insufficient to achieve the Paris climate goals4, even 

accounting for the dramatic decline in emissions in 2020 resulting from the COVID-19 

pandemic162. Most of the scenarios in the Intergovernmental Panel on Climate Change (IPCC) 

Special Report on Global Warming of 1.5°C identify carbon dioxide (CO2) removal (CDR) as 

the key to achieving the ambitious long-term objective4. Unlike conventional mitigation 

technologies that reduce or avoid GHG release, CDR measures focus on CO2 already present 

in the atmosphere and aim at reducing its concentration compared to its level today (i.e., 

providing a net negative emissions balance)12. However, CDR should not be used as a 

mitigation deterrent and decarbonization should still be accelerated15, since the response of the 

carbon cycle to negative emissions remains uncertain and CDR measures may not be free of 

associated risks257.  

Several negative emissions technologies and practices (NETPs) may be capable of delivering 

CDR and have been included in the Integrated Assessment Models (IAMs). Among all possible 

NETPs, bioenergy with carbon capture and storage (BECCS) emerges as particularly 

appealing15,18,21,258, as it delivers net negative emissions while providing sustainable and 

reliable energy. In essence, BECCS technologies involve a combination of bioenergy 

applications and carbon capture and storage (CCS). Fossil CO2 is removed from the atmosphere 

by plants via photosynthesis and is fixed into biomass during its growth. The biomass is then 

processed and transported to be used as renewable feedstock and eventually converted into a 

set of valuable products such as electricity, biofuels or hydrogen 215,259–262. Focusing on the 

application of BECCS to biopower, the biomass resources can either be combusted or gasified 

(alone or co-fired with coal). The CO2 released during the process is then captured and 

sequestered permanently in geological reservoirs or materials (e.g., depleted gas fields or 

cement), thus potentially generating negative emissions over the life cycle263. This series of 

processes, together with the possibility of replacing fossil fuels with bioenergy, creates a net 

carbon sink264.  
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There is proven evidence of the benefits of BECCS deployment physically removing CO2 from 

the atmosphere, and the technology already shows a high maturity level that would make its 

integration into energy systems straightforward265. Despite these advantages, there are only 

five operating BECCS projects worldwide, storing a total of 0.85 Mt of CO2 per year6.  

In a world where most policy decisions are economically driven, the main barrier for the large-

scale deployment of BECCS is its economic feasibility 28,29. Other concerns arise from the 

extensive land and water requirements of primary biomass, compromising the sustainability of 

biomass supply and potentially competing with food production266 or causing biodiversity loss 

in natural environments, in addition to the need for substantial storage capacity for the 

CO2
256,6,20. Furthermore, BECCS faces a lack of policy incentives28,29 as well as socio-political 

challenges267, especially when it comes to deciding who will deliver the CDR required to 

achieve the Paris goals14.  

The large-scale deployment of CDR measures seems inevitable, yet a few parties have 

explicitly mentioned their intention to deploy NETPs in their nationally determined 

contributions (NDCs)25,26. Given its historical leadership in international climate policy25–27, 

the European Union (EU) is once more expected to play a key role in CDR policy design and 

deployment25. Targeted policy (such as the European Green Deal 268 and the Circular Economy 

Action Plan269) and investment plans should be developed to incentivize the deployment of 

NETPs such as BECCS, grounded on sound scientific analyses of its merits and potential 

drawbacks. Indeed, carbon taxes imposed by some countries in the EU as a penalty on CO2 

emissions will not be sufficient to achieve the Paris Agreement target and promote the large-

scale deployment of CDR270. The EU could be one of the protagonists in meeting the 2 °C 

target, delivering a cumulative global CDR of 20 to 70 Gt CO2 by 2100 using BECCS13. 

Additionally, environmental taxes cannot be applied to encourage the implementation of 

BECCS because the emissions due to biomass combustion are, in principle, carbon-neutral271. 

The necessary policies should be agreed upon by the individual Members of the EU, allowing 

each to consider national political and cultural differences as well as priorities272. This is a core 

concept already embedded in the NDCs of the Paris Agreement, which encourages Parties to 

reduce domestic emissions and adapt to the consequences of climate change, instead of 

imposing global measures273.  
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Accordingly, in recent years BECCS has gained considerable attention in the scientific 

literature, focusing on the technological challenges and the climate impacts and only partially 

on the social and broader environmental effects.  

A spatially explicit framework was developed to identify the main drivers of the optimal sizing 

of BECCS facilities274. This framework determined that economies of scale support centralized 

infrastructures and transportation for BECCS, and pretreatment and location have a small 

influence on costs. The effect of high and low efficiency BECCS power plants has also been 

investigated275, leading to the conclusion that lower capital cost, lower efficiency plants 

outperform higher capital cost, higher efficiency ones, assuming that there is some revenue 

associated with the removal of CO2. 

In the context of the UK, several models have been published coupling BECCS with the power 

sector to meet the UK’s emissions reduction target276 or focusing on the potential of BECCS 

combined with DACCS to decarbonize the energy system while reducing the power generation 

investment costs36. An assessment of the water, land and carbon footprint, and embodied 

energy associated with the cultivation, transportation and conversion of biomass coupled with 

CCS has also been performed33. 

The value of collaboration and cooperation among the US, India, China, the EU and Brazil has 

been assessed deploying regional CDR targets and trading biomass and CDR credits39. The 

importance of yield, labor and electricity cost in determining the total cost has been highlighted 

as well. Lastly, BECCS has been assessed using the planetary boundaries (PB)35 framework, 

finding that the CDR target can only be achieved if transgression of the boundaries is allowed, 

for the specific feedstock, infrastructure and region considered.  

An extensive literature review on the topic of multi-objective biomass supply chain (SC) 

design277 pointed out that global warming potential minimization is the most studied scenario, 

among the possible environmental and social objectives. In terms of social impact, a recent 

study looked at the impact of retrofitting coal plants to become BECCS plants with respect to 

job retention and creation in the US278. 

The majority of the works mentioned above aim to identify a cost-optimal solution, while 

almost always neglecting the environmental impacts or considering at most only a selection of 

climate indicators. Hence, the whole spectrum of implications of a multi-country BECCS SC 

on human health and the environment remains unclear.  
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To address this knowledge gap, this study provides a detailed optimization model of a BECCS 

SC in the EU that selects the optimal configuration to achieve a given global CDR target while 

simultaneously minimizing impacts on human health, ecosystems and resources. Following 

previous studies, human health can also be considered a social sustainability indicator to 

account for the years of life lost37. 

In the next section, the problem is defined and the input data are described. Next, the life cycle 

assessment (LCA) methodology used to calculate the SC's environmental performance is 

presented. The mathematical model is introduced in the fourth section, where the key equations 

are described. The results are conveyed and interpreted in the fifth section. Finally, the 

conclusions provide the reader with the main outcomes of the study and an outlook for future 

work.  

5.2. Problem statement 

 

Figure 5.1: BECCS SC problem. The available biomass feedstock consists of a set of energy crops and 

residues that are harvested or collected and transformed into chips or bales. Then, they are transported 

to the pelleting stage by lorry, train, or ship. Later, the pellets are transported to the combustion site. 

Direct CO2 emissions at the power plant are captured and transported via pipeline to a storage site (i.e., 

depleted hydrocarbon fields or saline formations). The colored background represents the “cradle-to-

grave” system boundaries of the LCA analysis. 

Our analysis is based on a five-echelons BECCS SC within the European Union (EU-28) linked 

by transportation, as shown in Figure 5.1. The region of interest (EU-28) is divided into its 

member states, each of them regarded as a potential location for farming, processing, pelleting, 

combustion and electricity production and CO2 storage.  

The objective of the optimization problem presented in this chapter is to determine the optimal 

configuration of the five-echelon BECCS SC to minimize costs and environmental impacts. 

Three environmental metrics have been chosen for this study, in order to carry out a holistic 
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analysis of a range of impacts using aggregated endpoint metrics of the ReCiPe 2016, which 

cover the full spectrum of environmental midpoint indicators. The decisions to be made include 

the location of the facilities, the transportation means, and the material and energy flows 

between the echelons.  

The information available includes the costs per unit flow of each activity in the different 

regions and specific technical parameters for each stage, e.g., the combustion plant's efficiency 

and the amount of solvent needed for CO2 capture. For each country, we consider the available 

marginal land, crop yield, residue abundance, and specific carbon content of each biomass 

feedstock. The distances between countries are also given, calculated for each transportation 

mean. 

As an illustrative case, a global CDR target reported by Peters and Geden13 is enforced to be 

met jointly by the EU-28 countries by 2100. This target is only one of many proposed over the 

last decade and was calculated based on cost-optimal scenarios from IAMs. In this study, we 

annualized the Peters and Geden target value linearly. We consider a cooperative system that 

allows for free shipment of biomass and CO2 among the members.  

5.3. Life cycle approach  

The optimization model is based on LCA for both costs and impacts, and therefore follows a 

life cycle optimization (LCO) approach.  

Goal and scope definition. We consider each particular activity to assess the entire network 

represented in Figure 5.1, from biomass growth to CO2 storage underground, hence following 

a “cradle-to-grave” approach to sequester a minimum amount of CO2. The system under study 

is divided into seven subsystems: farming, processing, transportation from farmland to 

processing, pelleting, transportation from processing to combustion, combustion with carbon 

sequestration and, lastly, transportation of CO2 to the geological sites. The electricity generated 

is considered a sub-product of biomass combustion that cannot be exchanged among the 

countries.   

Life cycle inventory (LCI). The inventory of data used in this study come from different sources. 

Secondary data for biomass growth, transportation, combustion and storage have been 

collected from previously published studies or calculated based on available data (when the 
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information was missing in the literature). The SC stages are modeled in SimaPro 9.0.0.48279 

using Ecoinvent v3.5280 database activities.  

Life cycle impact assessment (LCIA). The impact categories selected are the three endpoints of 

the ReCiPe 2016 Hierarchist (H) method51, which considers a time horizon of 100 years. These 

metrics correspond to the protection of human health, natural environment and resource 

scarcity, i.e., damage to human health (HH) [DALY], damage to ecosystem quality (ED) 

[Species.yr] and damage to mineral and fossil resource availability (RA) [USD2013], 

respectively. LCIA provides environmental scores to facilitate the interpretation of the LCA 

results281. The categories selected in our work are particularly meaningful for BECCS, a land-

based mitigation technology that consumes resources and competes with other human primary 

needs, e.g., food production.  

Interpretation. The results interpretation is performed by analyzing the solutions provided by 

the optimization model integrating LCA principles.  

5.4. Mathematical model and life cycle impacts 

The model presented here, referred to as NETCOM (Negative Emissions Technologies 

COoperation Model), provides a snapshot of the optimal BECCS SCs to meet a given CDR 

target in any given year rather than the best pathway to achieve the cumulative CDR target in 

2100. NETCOM has been implemented in GAMS46 30.3.0 on an Intel 1.8 GHz machine and 

solved with CPLEX. The emission and environmental activities have been calculated in 

SimaPro 9.0.0.48279, using Ecoinvent v3.5280 and the ReCiPe 2016 Hierarchist (H) method. 

The mathematical model comprises techno-economic, environmental constraints and objective 

functions-related equations, with 1,121,041 variables and 1,077,348 equations in total. 

The mathematical model reported hereunder and represented in Figure 5.2 only shows the life 

cycle impacts equations. The underlying mass and energy balances, as well as emission and 

cost equations, are reported in Appendix D. 
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Figure 5.2: NETCOM optimization model. The output variables are computed in GAMS from the input 

data collected on a spreadsheet, either sourced from literature studies or calculated based on these or 

the Ecoinvent database in SimaPro. Mass and energy balances, emissions and cost equations are 

reported in Appendix D. 

5.4.1 Biomass growth and cultivation stage  

The cultivation stage entails two opposing contributions to the environmental impacts. On the 

one hand, Eq. (5.1) models the negative emissions, i.e., the CO2 removed from the atmosphere 

during the biomass growth. Each activity-specific ecovector is retrieved from Ecoinvent 

accessed via SimaPro. Each ecovector (ECOVEC) includes the ReCiPe 2016 mid- and endpoint 

impacts of each stage of the SC per unit of stressor, following a hierarchist perspective. The 

ecovector (ECOVECibe
grw

) contains the benefits deriving from the negative CO2 emissions 

(𝑒𝑚𝑖𝑏
𝑔𝑟𝑤

) at the mid- and endpoints for each biomass type b in country i. The gross negative 

impact is embedded in the variable 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑔𝑟𝑤

. In this process, the CO2 is absorbed from the 

atmosphere and therefore contributes to bringing impacts down. 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑔𝑟𝑤

= 𝑒𝑚𝑖𝑏
𝑔𝑟𝑤
ECOVECibe

grw
  ∀𝑖, 𝑏, 𝑒 (5.1) 

The other -opposite- contributions of cultivation to the total damage are related to farming and 

include the impacts of the use of land, land-use change (LUC) and those associated with 

biomass losses. The impact of land use (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑) results from the use of fertilizers, 

pesticides and other farm inputs that are harmful to the environment. The ECOVECibe
land 
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parameter includes the impacts associated with these farm inputs, modeled from the FEAT 

database (Table D0.23) for the cultivation of 1 ha of 𝑙𝑎𝑛𝑑𝑖𝑏 of each biomass feedstock of type 

energy crop (EC) (Eq. (5.2)). 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑 = 𝑙𝑎𝑛𝑑𝑖𝑏ECOVECibe

land  ∀𝑖, 𝑏, 𝑒 ∈ 𝐸𝐶 (5.2) 

At the cultivation stage, residues are assumed to have no impact and, consequently, the variable 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑 is set to zero in Eq. (5.3). The amount of residues available in each country already 

assumes environmentally-compatible production282. Higher amounts of biomass utilized could 

indeed increase the pressure on the environment.  

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑 = 0  ∀𝑖, 𝑏, 𝑒 ∈ 𝑅𝐷 (5.3) 

The losses occurring at the cultivation stage represent an additional impact source that needs 

to be considered. These impacts (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠) stem from the release of carbon from 

decayed biomass and they are calculated based on the land loss emissions (𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠) and the 

corresponding ecovector (ECOVEC𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠). Once the CO2 emissions have been calculated, the 

ecovector translates each ton of CO2 released into the corresponding contribution to mid- and 

endpoints. Note that this is only applicable for the impact of energy crops (Eq. (5.4)) since 

residues are allocated no impact and therefore their impact (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠) is set to zero in 

Eq. (5.5).  

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 = 𝑒𝑚𝑖𝑏

𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 ECOVEC𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠  ∀𝑖, 𝑏, 𝑒 ∈ 𝐸𝐶 (5.4) 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 = 0  ∀𝑖, 𝑏, 𝑒 ∈ 𝑅𝐷 (5.5) 

Here we consider the effect of LUC on the environment due to the change of the purpose of 

the land, from marginal to agricultural land. It is calculated based on the amount of land used 

(𝑙𝑎𝑛𝑑𝑖𝑏) and the corresponding ecovector (ECOVECibe
luc), referred to 1 ha (Eq. (5.6)). LUC 

impact is usually negligible in the case of marginal land, while the activity chosen from 

Ecoinvent in SimaPro considers not only marginal land, but also different land types. 

Therefore, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑢𝑐 overestimates the true impact.  

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑢𝑐 = 𝑙𝑎𝑛𝑑𝑖𝑏 ECOVECibe

luc  ∀𝑖, 𝑏, 𝑒 ∈ 𝐸𝐶 (5.6) 
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The impact of residues (biomass type of the set RD) for LUC 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑢𝑐 is not considered, as 

shown in Eq. (5.7), because it is assumed that the impact of the cultivation stage is allocated to 

the original product. 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑢𝑐 = 0  ∀𝑖, 𝑏, 𝑒 ∈ 𝑅𝐷 (5.7) 

5.4.2 Processing into bales or chips 

The biomass harvested is processed on the cultivation site into bales or chips. The activity of 

baling is retrieved from SimaPro as reported in Appendix D Table D0.22. It considers primarily 

machines, but also emissions to air and soil. The reference flow used for the calculation of the 

impact 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑏𝑎𝑙 is 1 bale, equivalent to 160 kg of straw (Ecoinvent280 from FAOSTAT data 

2011). In Eq. (5.8) the conversion is already considered in ECOVECibe
bal to calculate the impact 

of the number of bales produced 𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 at mid- and endpoints. 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑏𝑎𝑙 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑏𝑎𝑙 ECOVECibe
bal   ∀𝑖, 𝑏, 𝑒 (5.8) 

As for the case of baling, the chipping activity is retrieved from Ecoinvent interfaced with 

SimaPro and reported in Table D0.22. ECOVECibe
chip

 includes the contributions of machinery 

and electricity for the production of 1 t of chips. The environmental impact (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑐ℎ𝑖𝑝

) is 

calculated based on the amount of chips produced 𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝

 on a wet basis in Eq. (5.9). 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑐ℎ𝑖𝑝 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝 ECOVECibe
chip
   ∀𝑖, 𝑏, 𝑒 (5.9) 

The impacts of the losses of the baling and chipping processes are considered proportional to 

the direct emissions due to the decay of biomass losses occurring during baling (𝑒𝑚𝑖𝑏
𝑏𝑎𝑙𝑙𝑜𝑠𝑠) and 

chipping (𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠

). ECOVEC𝑖𝑏𝑒
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 and ECOVEC𝑖𝑏𝑒

𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠
 embed the impact of losses of 1 t 

of CO2 and they are used to calculate 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 and 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠
 in Eqs. (5.10) and 

(5.11) for baling and chipping, respectively.  

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 = 𝑒𝑚𝑖𝑏

𝑏𝑎𝑙𝑙𝑜𝑠𝑠ECOVEC𝑖𝑏𝑒
𝑏𝑎𝑙𝑙𝑜𝑠𝑠   ∀𝑖, 𝑏, 𝑒 (5.10) 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠 = 𝑒𝑚𝑖𝑏

𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠 ECOVEC𝑖𝑏𝑒
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠  ∀𝑖, 𝑏, 𝑒 

 

(5.11) 
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5.4.3 Transport from farmland to the processing site 

Chips and bales are transported from the cultivation site to the pelleting plant for further 

processing. The transportation activity is retrieved from SimaPro (Appendix D), from which 

ECOVEC𝑖𝑏𝑣𝑒
𝑡𝑙𝑝

 is calculated per tkm. The impact (𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝
) in Eq. (5.12) depends on the 

amount of bales and chips transported (𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑏𝑎𝑙  or 𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
), the distance between the countries 

i and i’ (DISTvii′) and the correction factors for bales and chips (CORFv
bal and CORFv

chip
). The 

correction factors are used to relate the density of the biomass to the capacity of the 

transportation mean, as explained in Appendix D. 

 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝
=∑(DISTvii′ECOVEC𝑖𝑏𝑣𝑒

𝑡𝑙𝑝 (CORFv
bal𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙

𝑣

+ CORFv
chip
𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
))  ∀𝑖, 𝑖′, 𝑏, 𝑒 

(5.12) 

The losses of biomass that occur during transportation (𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
) are related to the impact of 

this activity 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
 using the ecovector of impacts of losses at mid- and endpoints 

(ECOVEC𝑖𝑏𝑒
𝑡𝑙𝑝𝑙𝑜𝑠𝑠

) in Eq. (5.13).  

 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
= 𝑒𝑚

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
 ECOVEC𝑖𝑏𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠  ∀𝑖, 𝑖′, 𝑏, 𝑒 (5.13) 

5.4.4 Pelleting stage 

Bales and chips are transported from the farmland to the pelleting stage, which is modeled in 

SimaPro (Table D0.22). The ecovector ECOVEC𝑖𝑏𝑒
𝑝𝑟𝑜

 includes the equipment used in the activity, 

in addition to water and production wastes to calculate the impact of 1 t of pellets at the mid- 

and endpoints (Eq. (5.14)). The total impact 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑟𝑜

 depends on the amount of pellets 

produced 𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜

, where here the parameter ECOVEC𝑖𝑏𝑒
𝑝𝑟𝑜

 already accounts for the 

transformation from dry basis (product output of Ecoinvent). 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑟𝑜 = 𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏

𝑝𝑟𝑜ECOVEC𝑖𝑏𝑒
𝑝𝑟𝑜  ∀𝑖, 𝑏, 𝑒 (5.14) 

The pelleting process also includes biomass losses which contribute to the total environmental 

impact. The impact of losses derived from processing the biomass into pellets (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

) 

is considered in Eq. (5.15) based on the emissions associated with the decay of biomass losses 
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produced at the pelleting stage (𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

). The ecovector of the mid- and endpoints is of 

1 t CO2 (ECOVEC𝑖𝑏𝑒
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

) relates the pelleting direct emissions to the impacts.  

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑟𝑜𝑙𝑜𝑠𝑠 = 𝑒𝑚𝑖𝑏

𝑝𝑟𝑜𝑙𝑜𝑠𝑠 ECOVEC𝑖𝑏𝑒
𝑝𝑟𝑜𝑙𝑜𝑠𝑠  ∀𝑖, 𝑏, 𝑒 (5.15) 

5.4.5 Transport from pelleting to the combustion plant 

Once the biomass has been transformed into pellets, it is transported to the power plant to be 

combusted for electricity production. The activity used to model 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐
 in Eq. (5.16) is 

the same as in Eq. (5.12). The impact is calculated based on the amount of pellets transported 

(𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
), the distance between the countries DISTvii′ and the relation between the density of 

the transportation mode and the one of the biomass (CORFv
pell

). 

 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐
=∑DISTvii′CORFv

pell
𝑡𝑝𝑐

𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
 ECOVEC𝑖𝑏𝑣𝑒

𝑡𝑝𝑐   ∀𝑖, 𝑖′, 𝑏, 𝑒

𝑣

 (5.16) 

Eq. (5.17) relates the losses occurred during the transportation of the pellets (𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
) to the 

impact 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
, based on the impacts at mid- and endpoint embedded in ECOVEC𝑖𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
. 

 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
= 𝑒𝑚

𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
ECOVEC𝑖𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠  ∀𝑖, 𝑖′, 𝑏, 𝑒 (5.17) 

5.4.6 Power generation 

At the power generation plant, only direct CO2 emissions are considered, while the 

infrastructure or the utilities and other emissions such as nitrogen oxides deriving from the 

combustion are omitted. In Eq. (5.18) the impacts of the direct emissions (𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑜𝑤

) are 

calculated based on the amount of CO2 released into the atmosphere (what is not captured by 

the monoethanolamine (MEA) post-combustion unit). The ecovector of impacts at the mid- 

and endpoints embedded in ECOVEC𝑖𝑏𝑒
𝑝𝑜𝑤

 links the impacts to the direct emissions (𝑒𝑚𝑖𝑏
𝑝𝑜𝑤

). 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑝𝑜𝑤 = 𝑒𝑚𝑖𝑏

𝑝𝑜𝑤 ECOVEC𝑖𝑏𝑒
𝑝𝑜𝑤  ∀𝑖, 𝑏, 𝑒 

 
(5.18) 
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5.4.7 CO2 transportation and storage 

The impact of the CO2 transportation 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑒

𝑝2𝑠
 in Eq. (5.19) has been modeled in Ecoinvent 

interfaced with SimaPro from the inventory proposed by Wildbolz283 and it depends on the 

amount of CO2 transported via pipeline 𝑡𝐶𝑂2
𝑖′𝑖

𝑝2𝑠
 and the distance between the combustion plant 

and the storage site DISTii′
pipe

. The mid- and endpoints per 1 tkm are calculated and included in 

ECOVECibe
p2s

. The inventory of the activity used in SimaPro is reported in Table D0.22 in 

Appendix D. 

 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑒

𝑝2𝑠
= DISTii′

totpipe
 𝑡𝐶𝑂2

𝑖′𝑖

𝑝2𝑠
ECOVECie

p2s
   ∀𝑖, 𝑖′, 𝑒 (5.19) 

As in the previous stage, the injection of CO2 is modeled in SimaPro according to the 

inventories reported in Wildbolz283 and the impact depends on the amount of CO2 stored in 

each site  𝐶𝑂2𝑖,𝑔
𝑠𝑖𝑡𝑒. The reference flow used to calculate the impact of the different storage sites 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑔𝑒
𝑠𝑖𝑡𝑒  using the ecovector ECOVEC𝑖𝑏𝑔𝑒

𝑠𝑖𝑡𝑒  is 1 t CO2 stored (see Eq. (5.20)). 

 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑔𝑒
𝑠𝑖𝑡𝑒 = 𝐶𝑂2𝑖,𝑔

𝑠𝑖𝑡𝑒ECOVEC𝑖𝑔𝑒
𝑠𝑖𝑡𝑒   ∀𝑖, 𝑔, 𝑒 (5.20) 

5.4.8 Global impact 

𝑖𝑚𝑝𝑒 =∑∑(𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑔𝑟𝑤

+ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑙𝑎𝑛𝑑 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑙𝑢𝑐 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑐ℎ𝑖𝑝

𝑏𝑖

+ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑏𝑎𝑙 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠 + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑏𝑎𝑙𝑙𝑜𝑠𝑠)

+ ∑∑∑((𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝
+ 𝑖𝑚𝑝𝑎𝑐𝑡

𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
)W + (𝑖𝑚𝑝𝑎𝑐𝑡

𝑖′𝑖𝑏𝑒

𝑡𝑙𝑝

𝑖′𝑏𝑖

+ 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
)(1 −W)) +∑∑𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑝𝑟𝑜

𝑏𝑖

+ ∑∑∑((𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑖′𝑏𝑒
𝑡𝑝𝑐 +𝑖𝑚𝑝𝑎𝑐𝑡

𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
)W + (𝑖𝑚𝑝𝑎𝑐𝑡

𝑖′𝑖𝑏𝑒

𝑡𝑝𝑐

𝑖′𝑏𝑖

+ 𝑖𝑚𝑝𝑎𝑐𝑡
𝑖𝑖′𝑏𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
)(1 −W )) +∑∑𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑒

𝑝𝑜𝑤

𝑏𝑖

 

+∑∑(𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑖′𝑒
𝑡2𝑠W + 𝑖𝑚𝑝𝑎𝑐𝑡𝑖′𝑖𝑒

𝑡2𝑠 (1 −W )) 

𝑖′𝑖

+∑∑𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑔𝑒
𝑠𝑖𝑡𝑒

𝑔𝑖

        ∀𝑒 ∈ 𝐸 

(5.21) 

The total environmental impact on the mid- and endpoints in each country i (𝑖𝑚𝑝𝑒) is calculated 

in Eq. (5.21), where W symbolizes the share of the impact between country i and i’. 
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5.4.9 Objective functions 

We consider four objectives for the LCO problem detailed above, i.e., the total cost and the 

three endpoints of the ReCiPe 2016 (human health, ecosystems and resources). The total cost 

of the SCs (𝑔𝑙𝑜𝑐𝑜) is calculated in Eq. (5.22), while the three different endpoint categories 

included in e - human health (hh), ecosystem quality (ed) and resource availability (ra) - are 

expressed in Eqs. (5.23) – (5.25). 

 𝑔𝑙𝑜𝑐𝑜 =∑𝑐𝑜𝑖
𝑖

 (5.22) 

ℎℎ = 𝑖𝑚𝑝𝑒   ∀𝑒 = human health (5.23) 

𝑒𝑑 = 𝑖𝑚𝑝𝑒  ∀𝑒 = ecosystem quality (5.24) 

𝑟𝑎 = 𝑖𝑚𝑝𝑒   ∀𝑒 = resource availability (5.25) 

For simplicity, we analyze only the single-objective solutions resulting from optimizing one 

separate objective at a time. To make these solutions comparable, the value of the net electricity 

produced by BECCS (NETELGENmincost), calculated for the minimum cost case has been 

fixed in the other solutions as an additional constraint (Eq. (5.26)). 

 NETELGENmincost = ∑ (∑ (𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤) − 𝑒𝑙𝑐𝑐𝑠𝑖

𝑝𝑜𝑤 − 𝑒𝑙𝑐𝑜𝑚𝑖
𝑝𝑜𝑤

𝑏 )𝑖  (5.26) 

The optimization problem can, therefore, be expressed in compact form (Eq. (5.27)). 

𝑚𝑖𝑛𝑥 ∑∑𝑐𝑖𝑏
𝑇 𝑥𝑖𝑏

𝑏∈𝐵𝑖∈𝐼

𝑠. 𝑡. ∑∑𝑒𝑚𝑖𝑏𝑥𝑖𝑏
𝑏∈𝐵𝑖∈𝑃

≤ 𝑇𝐺

𝐴𝑖𝑏𝑥𝑖𝑏 ≤ 𝑎𝑖𝑏 ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵
𝑥 ∈ ℝ

 (5.27) 

Here, the objective function changes for each scenario: the total cost in the first scenario 

(Eq. (5.22)), and the three environmental endpoints (Eq.(5.23)-(5.25)) in the others. The 

problem is subject to the constraints included in Appendix D, in addition to Eq. (5.26) for the 

environmental scenarios. 
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Since multiple SC configurations are possible in the case of a degenerative solution, for each 

environmental scenario the minimal cost solution is sought using an ε-constrained method. To 

this end, we first perform a LCO on one of the endpoints and, for the value obtained, we 

minimize the total cost of the SC. This is equivalent to ensuring these anchor points are strong 

Pareto in the bi-dimensional space of given endpoint-cost. 

Note that the main purpose of the BECCS here is to deliver negative emissions, relegating 

electricity supply to a secondary consideration. Consequently, the model does not include 

environmental nor economic credits for the electricity produced in any of the scenarios 

analyzed, as the SC is not linked to the power sector. If considered, this would substantially 

decrease the total cost of the supply chain and have an impact on the three endpoints. 

5.5. Results and discussion 

5.5.1 Overview of the optimal scenarios 

  

Figure 5.3: Overview of the four optimized scenarios. Each axis displays a variable of interest: cost 

[Eur2018], net removal of carbon dioxide (𝑡𝐶𝑂2), human health [DALY], ecosystem quality [Species.yr] 

and resource availability [USD2013].  
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An overview of the four scenarios investigated and the values of the respective objective 

functions is shown in Figure 5.3, in addition to the net carbon dioxide removal [𝑡𝐶𝑂2] for each 

of the extreme Pareto solutions to the problem. In the plot, the grey pentagon represents the 

solution to the first optimization problem: the minimization of the total cost of the SC. This 

case is taken as a baseline to analyze the performances of the other solutions in a second step, 

with a fixed net electricity production of 511 TWh, calculated according to Eq. (5.26). Figure 

5.3 illustrates that the blue and the green pentagons, the minimum human health and minimum 

ecosystem quality scenario, respectively, nearly overlap, meaning that the two solutions present 

similar decisions provided by the optimization model. The total cost of these two solutions 

differs by only 0.5%, while both achieve a CDR of 0.63 G tCO2. The distinction between the 

two scenarios is given by minor differences in the configuration of the SCs at the regional level, 

which will be explained in the next section. Lastly, the orange pentagon corresponds to the 

minimum resource availability solution.  

The results indicate that BECCS provides credits for human health and ecosystem quality in 

all the scenarios analyzed, because they reach negative values, despite depleting resource 

availability, which is, in turn, a positive figure. Credits for human health can be interpreted as 

years of sickness that would be avoided or deaths potentially prevented, while for ecosystems 

quality they represent species whose extinction would be averted. These credits are the result 

of the CO2 uptake, which is removed permanently. Compared to the minimum cost solution, 

an improvement in human health of 18% and a 21% reduction of ecosystem quality can be 

achieved at the expense of an increase in the total cost of almost 45%. Furthermore, a 30% 

decrease in impact on resource availability can be attained at an additional financial cost of 

43%. These improvements are achieved by changing the configuration of the SC in the EU-28. 

While an increase in the total cost can be intuitively understood and easily compared among 

different scenarios, the improvement of deleterious impacts requires further explanation. 

Negative values of the environmental indicators (i.e., total emissions, human health, ecosystem 

quality or resource availability) imply that impacts are prevented. These negative values denote 

environmental credits that are beneficial to the environment, e.g., preventing human or species 

loss. 

The target imposed on net carbon removal is an active constraint in the case of the minimum 

cost scenario, because of the trade-off between costs and environmental performance, i.e., 

removing more carbon leads to higher costs. By contrast, the environmental scenarios deliver 
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more CDR than required by the target (i.e., more than 0.61 GtCO2/year removed). In the latter 

case, roughly the same amount of biomass is deployed and, therefore, the same amount of CO2 

is captured, owing to the electricity generation target, but the life cycle emissions are greatly 

reduced. This is because the minimization of the environmental objectives is driven by the 

CDR delivered: indeed, negative emissions signify that CO2 is removed from the atmosphere 

and this is precisely one of the main stressors affecting both human health and ecosystem 

quality.  

Table 5.1 shows the cost of the optimal SC design per net CO2 removal for each scenario. The 

results reported consider the balance between negative (CO2 uptake) and positive (direct and 

indirect) emissions, and the cost per net electricity produced, i.e., discounting the energy 

required for the CO2 capture, regeneration of the solvent and the compression of CO2. As seen, 

the economic performance per unit of CO2 and electricity worsens substantially as we move 

from the minimum cost to the minimum impact solutions, yet the latter removes more CO2 per 

unit of electricity generated.  

The results obtained indicate that the BECCS SCs designed for the EU-28 based on a model of 

cooperation can deliver the CDR target imposed and simultaneously provide a secure and 

renewable source of electricity21,199, which represents more than 70% of the 2018 electricity 

demand of the residential sector in the EU284. At a levelized cost of electricity of 124 

Eur2018/MWh285 for biomass combustion technologies, the electricity produced could lead to a 

revenue of 63 billion Eur2018, which represents more than 85% of the total cost in the minimum 

cost scenario SC. 

In addition to the electricity production, bio-based fuels and heat will boost the reduction of 

transportation and processes carbon footprint if they will replace the current fossil-based 

options. Several models already identified that the deployment of BECCS in the bioenergy 

sector to be well above 50% already in 2050[55]286. Additionally, it is expected that the costs 

reported in Table 5.1 will decrease considering the technology learning curve. 

For comparative purposes, we report the impact of 511 TWh generated with the 2018 EU-28 

power mix, assuming no CDR deployment. The electricity generation with conventional power 

mix leads to an impact on human health of 459 kDALY, on ecosystem quality of 1.09 

kSpecies.yr and a depletion of resource availability of 13.1 bUSD2013. In contrast, the same 



CHAPTER 5 

 

105 

electricity production via BECCS generates credits for human health and ecosystem quality, 

while the impact on resource availability is halved.  

Table 5.1: Total cost of the BECCS SC per net ton of carbon dioxide removed and net electricity 

production for each scenario investigated. The net electricity generated per net removal is also 

calculated. The cost increases sharply when shifting from the minimum cost to the minimum impact 

solutions. 

Scenario Cost per net ton 

removed 

[Eur2018/𝒕𝑪𝑶𝟐] 

Cost per net MWh 

produced 

[Eur2018/MWh] 

Net MWh produced 

per net ton removed 

[MWh/𝒕𝑪𝑶𝟐] 

Min 𝑔𝑙𝑜𝑐𝑜 117 140 0.84 

Min ℎℎ 164 203 0.81 

Min 𝑒𝑑 163 202 0.81 

Min 𝑟𝑎 165 200 0.83 

5.5.2 Breakdown of cost and emissions 

The main share of the cost (Figure 5.4, subplot (a)) is at the combustion stage (60% of the total 

cost for the minimum cost solution). Additional critical stages are pelleting, transportation to 

the pelleting site and storage, which contribute more than 10% of the total cost.  Indeed, 

pelleting and combustion are highly energy-intensive processes, while transportation requires 

fuels inputs, in addition to labor and maintenance. The effect of transportation is also higher in 

reaching the pelleting stage than between pelleting and the combustion plant because of the 

lower density of the biomass (note that during the pelleting stage the biomass is dried and 

therefore the density increases, in addition to the reduced volume).  

The same trend can be observed in the breakdown of the total emissions in Figure 5.4, subplot 

(b). In this case, the emissions are linked to the activity's carbon intensity factor. 

Transportation, pelleting and combustion are the principal sources of positive emissions, with 

the chipping stage playing a significant role as well. In the case of transportation (making up 

about 30% of the positive emissions) the emissions are related to the fuel consumption, whereas 

the heat and electricity requirements for chipping and pelleting lead to positive emissions of 

16% and 30%, respectively.  It is worth noting again that the emissions at the combustion stage 

only include the share of CO2 that is not captured by the MEA plant. However, the positive 

contributions are offset by the negative emissions of the biomass growth stage (CO2 uptake) 

such that, the process is overall carbon negative (as indicated by the red star in Figure 5.4 (b)). 
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The results show that the three minimum impact solutions lead to very similar results in terms 

of total cost and emissions. These three solutions are forced to produce the same amount of net 

electricity (related to the amount of biomass combusted) and the same minimum CDR potential 

(also linked to the amount of biomass due to the CO2 absorbed during growth). Only when 

minimizing the total cost do significant differences appear, which are driven by the asymmetric 

regionalized costs linked to purchasing power parity (PPP). Among other things, this leads to 

a higher contribution of transportation in the minimum cost scenario than in the minimum 

environmental impacts, as explained in the following section. 

From Figure 5.4, we can conclude that technical improvements aimed at reducing costs and 

emissions should focus on the pelleting and combustion stages. Combining two or more SC 

echelons, e.g., pelleting the biomass right after the first biomass processing step in the same 

location, could help lower costs and impacts by removing the requirement for biomass 

transportation.  
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Figure 5.4: Breakdown of costs and emissions of the BECCS SCs for each scenario. Subplot a) shows 

the breakdown of the total cost, while subplot b) corresponds to the emissions breakdown. The stacked 

bar plots represent the contribution of each activity on the total cost and emission. LP = farmland to 

pelleting, PC = pelleting to combustion. The red star represents the net emissions value, which is 

negative in all four cases.  

5.5.3 Life cycle assessment endpoints breakdown 

Figure 5.5 shows the contributions of individual SC stages to the environmental endpoints, i.e., 

(a) minimum human health, (b) ecosystem quality and (c) resource availability.  

In all the scenarios chipping, combustion and especially pelleting have the most significant 

positive impact per ton of biomass in all endpoint categories. The contribution of pelleting is 

conspicuously high due to the electricity and heat requirements to dry the biomass. 

Furthermore, CO2 transportation and storage play a crucial role in the impact on resource 

availability because of the infrastructure and input materials needed283. Biomass transportation 

from land to pelleting plants substantially contributes to worsening the environmental 

performance of the SC due to the large distances between countries and the feedstock’s low 
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density (accounted for in the correction factor CORFv ). On the other hand, the impacts of land 

usage and LUC are less relevant because of the extensive use of residues are assumed to have 

no impact. However, more land is cultivated in the minimum cost solution (1.95 Mha) than in 

the environmental scenarios (1.20-1.35 Mha), resulting in an impact of land in the latter 

equivalent to 60-70% of that of the minimum cost solution.  

Figure 5.5 shows that the primary difference between the first scenario and the minimum 

impacts cases is a great reduction in the impact of transportation of the biomass from the land 

to the pelleting stage (LP). As a result of more decentralized SCs, the transportation occurs 

within the borders of each country, which results in shorter distances. This leads to a noticeable 

reduction of the impacts of transportation: e.g., transportation LP almost halves in the three 

minimum environmental impacts scenarios compared to the minimum cost scenario, from 82 

kDALY to 45 kDALY on average. All the SCs consider the chipping of the biomass rather 

than baling because the former results in a lower impact. Similarly, transportation by train is 

preferred over lorry for land connections for the amount transported. Lastly, saline formations 

offer better environmental performance than coal seams or depleted hydrocarbon sites due to 

the smaller required drilling area 283.  

Overall, BECCS can lead to negative endpoints in human health and ecosystem quality due to 

the uptake of carbon dioxide during biomass growth. Indeed, the main stressor of human health 

is CO2, in addition to particulate formation. CO2 is also the primary stressor of ecosystem 

quality, together with land use. Negative results in these two endpoints therefore imply that we 

can prevent the loss of years of life [DALYs] or species [Species.yr] by meeting the given CDR 

target.  

While we present the aggregated environmental indicators here, we refer to Appendix D 

(Figure D0.1) for the breakdown of the midpoints of each optimal ReCiPe 2016 endpoint 

calculated. 
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Figure 5.5: Breakdown of the three LCA endpoint solutions human health a), ecosystem quality b) and 

resource availability c) for each scenario. The stacked barplots represent the contribution of the 

individual activities on the total of each endpoint.  LP = farmland to pelleting, PC = pelleting to 

combustion. The star represents the net effect on human health and ecosystem quality, negative in all 

cases. The error bars represent the uncertainty of the data calculated as the standard deviation of 1000 

scenarios generated in SimaPro using Monte Carlo sampling. The limits of the error bars denote the 

worst- and best-case scenario of the total impact. 
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5.5.4 Regional implications 

In all the optimal solutions, the CDR target is satisfied almost entirely by the residues 

feedstock. Residue availability is exploited in all scenarios, as it is assumed to have negligible 

costs and environmental impacts (the percentage of residues deployed in each scenario is 

reported in Appendix D, Figure D0.2). Only Miscanthus is selected among the available energy 

crops because of its higher yield [twb/ha/yr] in all the countries considered, as well as its high 

carbon content [%C in wet biomass]. Hence, more crops can be harvested and more CO2 can 

be sequestered. At the next step, in all the studied scenarios, all the harvested biomass is 

converted into chips. In every case, every country is exporting biomass at a certain stage of the 

SC except Bulgaria, Poland and Romania, where indigenous biomass is harvested, processed, 

combusted and stored domestically. In the minimum total cost solution, these three countries 

are the only ones deploying a complete SC spanning from biomass harvest to CO2 stored. This 

is because these countries offer the lowest processing costs per unit of biomass at each stage.  

Minimization of the three environmental endpoints results in common modeling choices in the 

design of the SCs. The biomass feedstock consists of all the residues available and Miscanthus 

as the only energy crop harvested; biomass transportation occurs via train and ship; saline 

storage is the preferred option for CO2 storage.  
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Figure 5.6: Biomass growth and CO2 storage for the minimum cost a) and minimum human health b) 

scenarios. The size of the pie chart is proportional to the amount of CO2 absorbed by each type of 

biomass feedstock (wet basis) via photosynthesis during the growth, with Cyprus being the reference 

point, while the countries are color-coded according to the amount of CO2 stored.  
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In the following paragraphs we provide a detailed description of the minimum cost and 

minimum human health scenarios. 

The amount of CO2 absorbed by each type of biomass feedstock on a wet basis during 

photosynthesis and the amount of CO2 stored by each country are shown in Figure 5.6 for the 

(a) minimum cost and (b) minimum human health scenarios (as representative of the 

environmental scenarios). The pie charts are scaled based on the minimum amount of CO2 

absorbed, for which Cyprus is taken as the reference point. In both cases, the strong reliance 

on residues to achieve the CDR is evident, with Germany and France being the countries with 

the greatest availability of secondary biomass282. However, in the minimum cost solution, 

Miscanthus is grown in Bulgaria, Germany, Italy and Romania, while in the minimum human 

health scenario, this is done in Germany, Italy, the Netherlands, Romania and Slovenia. The 

harvesting location is chosen primarily based on the yield and how much carbon the biomass 

can absorb, in addition to the cost of cultivation. The latter is a key parameter in the case of the 

minimum cost scenario, because it drives the choice of the cultivation site. In the above-

mentioned scenarios, not all the available land is used in the countries mentioned, as the CDR 

target is already met.  
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Figure 5.7: Supply chain configuration for the minimum cost (a) and minimum human health (b) 

scenarios. The main plots on the right refer to biomass transportation from the land to the pelleting 

stage, where the transportation means are indicated in black for train and blue for ship. The inserts in 

the top left corner represent the connections for the CO2 transportation, where the CO2 pipeline 

connections between two countries are represented by red lines.  

Cost and human health LCO problems represent two opposite configurations which are 

displayed in Figure 5.7. On the one hand, the minimum cost solution is a centralized SC where 
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all the biomass feedstock is sent to Bulgaria and Poland, to take advantage of the lower 

processing costs. On the other hand, in the minimum human health solution, all the countries 

are actively involved at all SC stages, except for the storage stage, which depends on geological 

availability. 

In the minimum cost solution, the biomass is transported by train (black line, Figure 5.7) to 

Bulgaria and Poland from other countries, or by ship from locations with maritime access (e.g., 

Spain, Denmark, Finland). Transportation of biomass via ship (blue lines, Figure 5.7) is 

favorable from both economic and environmental perspectives.  

In the minimum human health scenario, transportation across borders takes place only for a 

few countries and mainly via ship or via pipeline due to limited storage capacity. For example, 

Sweden has no geological sites and features processing and combusting costs that are among 

the highest in the EU; thus, shipping biomass chips abroad is preferred. To minimize the cost, 

CO2 is stored in coal seams and depleted hydrocarbon sites, while saline formations are 

preferred to reduce the environmental impact because of the lower drilling area required283. 

Due to limited geological capacity, only 20 countries can permanently lock away domestically 

absorbed CO2 from the atmosphere, while a network of pipelines across the EU is built to 

transport the remaining CO2 captured among the other countries.  

The configuration of the SCs of minimum ecosystem quality and resource availability are 

designed similarly to the one of the human health scenario for the reasons explained above. In 

particular, ecosystem quality and human health lead to remarkably comparable configurations 

as well as total cost and emissions. At a regional level, only a few aspects of these two models 

are different. In the ecosystem quality solution, a pelleting site, not present in the human health 

solution, is installed in Finland to process biomass into chips. Meanwhile, Germany and 

Slovakia store CO2 from Latvia and Austria, respectively. Finally, the transportation of biomass 

via ship from the land to the pelleting stage is less frequent than in the minimum human health 

scenario. The reason for this is that, for a given amount of biomass, there are different 

breakeven distances in the two cases for which using trains is more or less advantageous than 

ships. A more comprehensive explanation of the design of the SCs in each scenario can be 

found in Appendix D. 
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5.6. Conclusions  

During this investigation of the optimal design of a BECCS supply chain to deliver a specific 

amount of carbon dioxide removal, we considered four different objectives: the total cost and 

three life cycle impacts. We have proposed a model to design supply chains based on 

cooperation among the EU-28 members, which would profit from regional components, but 

also address shortfalls at the national level, e.g., lack of geological storage.  

Our results show that the target of negative CO2 emissions can be met in the minimum cost 

scenario by leveraging cheaper processes in certain EU countries. In contrast, when the 

minimum environmental impacts are sought, every Member State contributes to each stage of 

the supply chain, resulting in an almost 45% increase in the total cost on average for the three 

endpoints.  

In all scenarios, the optimal supply chain design relies mostly on residues as the primary source 

of biomass feedstock, complemented by dedicated energy crops grown on marginal land to 

avoid competition with food production. Only Miscanthus is chosen among the available 

options because of its higher yield and carbon content in the EU-28. The choice of a suitable 

feedstock, namely residues, ensures that the impact on land and water is minimized while 

satisfying the carbon removal imposed.  

Transportation, pelleting and combustion processes are the main contributors to the 

environmental impacts endpoints in all the scenarios. A substantial improvement of these 

energy-demanding activities must be sought, although it is expected that these impacts will be 

lower in the future as the energy mix becomes decarbonized. On the other hand, biomass 

transportation should be avoided by combining multiple steps of the supply chain where 

possible. 

The minimum cost supply chain provides the imposed carbon removal target at an average cost 

of 117 Eur2018/𝑡𝐶𝑂2 removed, producing, in turn, 511 TWh of electricity. This solution gives 

rise to negative impacts on two out of three endpoints of the ReCiPe 2016 methodology, i.e., 

human health and ecosystem quality, while resource availability is depleted (i.e., its impact is 

not negative). Despite the solution already being extremely favorable for the environmental 

indicators, when they are optimized as single objectives an average improvement of 23% can 

be achieved for the three environmental endpoints, with a cost increase of less than 45%. The 

three resulting supply chains feature almost the same modeling choices, i.e., 1 to 3% 
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differences in the values achieved in the three optimizations. These similarities are explained 

by the extensive deployment of biomass residues as feedstock and the constraint on net 

electricity production. Consequently, the outcome of the analysis is exceptionally favorable for 

human health, species and resources at the same time, even when only one of them is minimized 

as the objective function. Furthermore, we found that the solutions to the minimum human 

health and minimum ecosystem quality cases were comparable. 

In addition to the environmental benefits obtained, the BECCS supply chains provide a 

significant amount of reliable and carbon-negative electricity, which can help to meet the future 

energy demand while simultaneously improving environmental performances. Additional 

carbon removal via BECCS can also be explored in the EU if the net electricity production is 

not constrained in the optimization of the environmental scenarios. 

We argue that the optimal large-scale deployment of the BECCS should be designed to 

embrace impacts beyond climate change. The solution herein proposed could be considered as 

a starting point by policymakers to achieve the goals set out in the Paris Agreement by 

explicitly expanding the scope beyond a narrow climate focus to address other dimensions and 

draw support from a wider set of actors.  
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5.A Nomenclature  

Acronyms 

BECCS bioenergy with carbon capture and storage 

CCS carbon capture and storage  

CDR carbon dioxide removal 

CO2 carbon dioxide 

ED ecosystem quality endpoint of Recipe 2016 

EU European Union 

EU-28 European Union of 28 countries 

GHG greenhouse gas 

H Hierarchist perspective of Recipe 2016 

HH human health endpoint of Recipe 2016 

I Individualist perspective of Recipe 2016 

IAMs Integrated assessment models 

IPCC Intergovernmental Panel on Climate Change 

LCA Life cycle assessment 

LCI life cycle inventory 

LCIA life cycle impact assessment  

LCO Life cycle optimization  

LP linear programming 

LUC land-use change 

MEA monoethanolamine 

NDCs nationally determined contributions 

NETCOM Negative Emissions Technology COoperative Model 

NETPs negative emissions technologies and practices 

PB Planetary boundaries method 

PPP purchasing power parity 

RA resource availability endpoint of Recipe 2016 

SC supply chain 
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A tailored decomposition approach for optimization 

under uncertainty of carbon removal technologies in 

the EU power system6 

  

 

6 Under review in Computers and Chemical Engineering Journal as V. Negri, D. Vázquez, I. 

E. Grossmann and G. Guillén-Gosálbez. A tailored decomposition approach for optimization 

under uncertainty of carbon removal technologies in the EU power system 
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6.1 Introduction 

The urgent need to counteract the adverse effects of climate change has led to a growing 

emphasis on reducing greenhouse gas (GHG) emissions, the rising concentration of which is 

primarily attributed to anthropogenic activities 270. Among all the economic industries, the 

energy sector, which includes heat and electricity, contributed substantially to direct CO2-eq 

emissions in 2019, accounting for 23% of the total 5. Given the significant mitigation potential, 

it is considered a key player in meeting climate targets.  

The European Union (EU), responsible for roughly 10% of global emissions and one major 

leader in climate policies 287, in 2019 published the European Green Deal to push a political 

shift toward a carbon-neutral society in 2050 268,288. This includes efforts to decarbonize the 

energy sector through renewable energy deployment (amounting to 32% of the gross final 

energy consumption) and measures to improve energy efficiency to cut GHG emissions by 

55% 289.  

While these actions, already included in Integrated assessment models (IAMs), are underway, 

there is also the need to explore comprehensive strategies that not only prevent emissions but 

also actively reduce the current concentration of GHG in the atmosphere 5. This could be 

accomplished via carbon dioxide (CO2) removal (CDR) strategies or negative emissions 

technologies and practices (NETPs). Some of these, namely bioenergy 290 and direct air capture 

with carbon capture and storage (CCS) (BECCS and DACCS, respectively), are already 

included in the IAMs 291. Yet, IAMs do not incorporate social or political dimensions 292 and 

do not have the technological or spatial resolution for detailed energy systems planning. 

Moreover, trade-offs appear when assessing multiple key performance indicators of these 

technologies, suggesting that a regionalized portfolio of NETPs integrated into the energy 

systems should be evaluated to exploit their complementary strengths 16. In particular, 

technology readiness level and removal potential can be disproportionate to cost. Additionally, 

there might be a mismatch between removal potential and storage availability in some 

locations, requiring additional infrastructure.  

Only a few studies model this coupling explicitly 293,294. A few regional studies were carried 

out by Daggash et al. 36 and Prado et al. 295 in the context of the United Kingdom and by Sagues 

et al. 296 in the United States. Recently, a model that integrates the EU power system together 

with BECCS and DACCS was developed to shed light on the consequences of delaying the 
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deployment of CDR options 253. Despite this work providing valuable insights into the optimal 

deployment pathways, the conclusions were drawn based on a deterministic model, which 

should be reevaluated every future time that updated data becomes available, such as energy 

demand and technology learning rate, as explored by Rathi and Zhang 297. This work does not 

consider the handling of uncertain parameters. 

Uncertainty is an inherent characteristic of energy systems, as they are influenced by a complex 

interplay of factors such as technological advancements, policy frameworks, economic 

fluctuations, and societal behaviors. Incorporating uncertainty analysis in energy system 

models is crucial for robust decision-making, particularly in the context of evaluating carbon 

removal options. Specifically for BECCS and DACCS, since they are often evaluated within 

long-term energy plans, the results are affected by a considerable degree of uncertainty 298, 

which is usually neglected, while in practice their large-scale deployment in the EU energy 

system is subject to numerous challenges. These challenges include technological readiness, 

high costs, geographical constraints such as land availability for biomass cultivation, regional 

factors for renewable power generation, in addition to CO2 storage availability, scalability of 

the modularity of DACCS technologies, and social acceptance. Moreover, the variability and 

uncertainty in electricity demand pose additional complexities for the integration of these 

technologies into the energy system. Indeed, these CDR options are interconnected with the 

system because they either provide or require electricity. Thus, it is important to address the 

uncertain nature of the EU energy system, which has been highlighted especially in recent 

years, due to the COVID-19 pandemic and the Russian invasion of Ukraine. 

Traditional deterministic energy system models often overlook the uncertain nature of 

electricity demand, assuming all the parameters to be known, and thus potentially leading to 

suboptimal or even infeasible decisions and unrealistic outcomes 299,300. Hence, here we argue 

that including uncertainty within a suitable optimization framework is essential to 

comprehensively assess the impact of the power system and the potential role of BECCS and 

DACCS in the EU energy system. 

We refer to a recent review published by Li and Grossmann 300 for a list of selected articles on 

stochastic programming, one of the possible modeling frameworks to perform optimization 

under uncertainty. It is evident from the list compiled by Li and Grossmann 300 and a recent 

review on uncertainty frameworks by Bevan 301 that the Process Systems Engineering (PSE) 
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literature on stochastic problems is quite rich, yet the literature on sustainability problems under 

uncertainty is scarce, despite CCS being recognized in the field as pivotal to the future 

transition 302 and sustainability becoming an important focus in the PSE community 42,303.  

In particular, we found that there are studies assessing the standalone impact of uncertain 

parameters of CCS and BECCS, such as cost, carbon removal availability, and soil inputs 304–

306. However, to our knowledge, energy system models that include CDR options and 

exogenous uncertainty are yet to be explored. Along these lines, Grant and co-authors 307 

carried out a pioneering work evaluating the policy implications of uncertain removal potential 

at a global scale using the TIAM-Grantham model in stochastic scenarios.  

Analyzing the CDR-power nexus including uncertainty, leads to more complex problems than 

their deterministic counterparts. Despite recent developments in hardware and software, 

stochastic problems might still be intractable and require decomposition approaches to speed 

up the solution time to get insights from different case studies with reduced computational 

time. Traditional decomposition methods to solve large energy systems stochastic models 

include time-series aggregation 308,309, Benders and Lagrangean decomposition 310, sequential 

scenario decomposition 311, and shrinking and rolling horizon 312. Tailored approaches have 

also been developed as a combination of these methods 313–315. Lastly, new approaches based 

on neural networks or genetic algorithms have been proposed to deal with the challenging size 

of these models 316,317. 

To close the literature gap highlighted above, the scope of this work is twofold. Here we 

evaluate the impact of uncertainty in electricity demand on the deployment of BECCS and 

DACCS in the EU energy system via multistage stochastic programming. Given the 

computational challenges that arise from the large size of the problem, a tailored algorithm is 

introduced to decompose the problem, reducing the computational time by 90%, combining 

decomposition techniques and heuristics. This allows us to generate insights into the optimal 

integration of these technologies within the EU energy system by investigating different 

scenarios of carbon removal by BECCS and DACCS. To the best of our knowledge, a 

multiregional CDR-power nexus model with rigorous modeling of uncertainty via multistage 

stochastic programming has never been proposed before. 

The rest of the article is organized as follows. The problem statement is given next, followed 

by the optimization methods, including the multistage stochastic model and the decomposition 
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algorithm. The results section includes a comparison of the computational performance of the 

stochastic model without and with the decomposition algorithm for different case studies. 

Lastly, the conclusions and outlook for future work are presented. 

6.2 Problem statement 

Given are 15 state-of-the-art power technologies and the most prominent CDR-engineered 

options. These technologies are divided into dispatchable, which can produce heat, electricity, 

or both, at demand, and non-dispatchable, which require a backup capacity of dispatchable 

technologies to account for the time they cannot be operated. Among these, we also consider 

conventional fossil technologies, i.e., coal and natural gas, and their retrofit with carbon capture 

and storage. Among the CDR options, we include biomass-based energy, which also acts as a 

dispatchable energy source, and direct air capture. We consider learning cost curves and 

realistic diffusion rates limiting the deployment of all technologies 318. The region of interest 

of this study is the EU with the United Kingdom, where its member states are considered 

potential locations for the installation of power technologies. These 28 countries are modeled 

as load nodes with specific energy demands and resource availability. 

The goal is to determine the optimal planning of the EU energy system to satisfy the electricity 

demand  and its associated uncertainty in each country, by minimizing the system's total cost 

subject to a given cumulative CDR target at the end of the time horizon of 30 years. The 

decisions to be made include the capacity and location of the power technologies and the 

electricity, heat and electricity required by DACCS, and CO2 flows between the EU states. The 

problem statement is presented graphically in Figure 6.1. 
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Figure 6.1: RAPIDU (RemovAl oPtImization model under Uncertainty) problem statement. We are 

given a set of power technologies and two already commercially available carbon dioxide removal 

technologies, namely bioenergy and direct air capture with CO2 storage (BECCS and DACCS). Given 

is also a set of input data, including regionalized parameters for BECCS and DACCS, such as land 

availability and biomass CO2 uptake, natural gas and electricity requirement, respectively. We model 

the 27 EU countries and the UK as load nodes with specific energy demands and resource availability. 

The goal is to determine the optimal deployment pathway under electricity demand uncertainty 

(exogenous uncertainty) that meets a given CO2 removal (CDR) target at the end of the time horizon of 

30 years, minimizing the system's total cost. 

6.3. Methods 

6.3.1 Deterministic model 

We build on RAPID, a linear programming (LP) model model previously proposed to 

understand the implications of delaying the deployment of CDR options at a regional level, 

focusing on BECCS and DACCS within the EU power system 253. RAPID was developed to 

investigate two scenarios: maximization of carbon removal and minimization of total cost 

subject to a carbon removal target. Perfect foresight for the input parameters was assumed in 

the time horizon 2020 – 2100, modeled as a set of discrete time periods. The carbon removal 

is computed as the difference between the positive CO2 emissions and the CO2 removed from 
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the atmosphere by BECCS and DACCS. In essence, given a set of power technologies and 

BECCS and DACCS that can be deployed in each country of the EU, the goal is to find the 

optimal capacity installed and the removal by the two NETPs, to meet the CDR target at the 

end of the time horizon and the energy demand in each country.  

In this work, we include binary variables (𝑏𝑡
𝑠) that account for the installation of the 

technologies at the beginning of each time period following 319,320 making the model mixed-

integer linear. We shorten the time horizon to 30 years, from 2020 to 2050, for a more realistic 

evaluation of the uncertainty within the EU’s net-zero emissions target. Therefore, we impose 

a cumulative CDR target equal to zero in the year 2050, which is achieved jointly by all the 

countries in a cooperative strategy, and we solve for the minimum total cost of the system. 

6.3.2 Uncertainty definition 

Depending on how the uncertainty is revealed, it can be characterized as exogenous or 

endogenous 321. The former is decision-independent and is revealed automatically at each time 

period, e.g., market prices. In contrast, the latter is decision-dependent; therefore, it is not 

associated with a particular time period, e.g., the size of an oil field, which is revealed only 

when the drilling starts 322. Multiple approaches to deal with uncertainty in optimization 

problems have been developed, including stochastic programming 323, chance-constrained 324, 

and robust optimization 325, which differ in the way uncertainty is characterized and the degree 

of risk aversion. Stochastic programming is often considered a risk-neutral approach 326, in 

which the expected value of the objective function is optimized, and where the uncertainty is 

characterized by a given probability distribution. In contrast, in chance-constrained there is the 

possibility to deal with reliability and risk management. In essence, it requires solving a 

stochastic programming problem with some probabilistic constraints. Robust optimization is 

also a risk-averse approach, which tries to find an optimal solution to the “worst-case scenario” 

that satisfies given constraints over a defined uncertainty set.  

The method of choice depends, among others, on the information available on the uncertain 

data, whether the emphasis is on feasibility or optimality, and if corrective actions can be taken. 

For more details on approaches for decision-making under uncertainty, we refer the reader to 

Apap and Grossmann 311 and Li and Grossmann 300. 
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Here, we consider exogenous uncertainty in the electricity demand by formulating a multistage 

stochastic mixed-integer linear programming (MSS - MILP) model 311. We consider that at 

each time period the electricity demand of each country varies ± 20% from the nominal 

deterministic value, which is instead updated over the time periods considering a constant 

annual growth 253. The choice of the demand as an uncertain parameter is justified by the fact 

that this parameter is dependent on multiple external factors, and hence can be highly uncertain. 

Some of the factors that affect demand are seasonality, economic growth and contraction, 

population growth and urbanization, technological innovation, e.g., increased efficiency, 

natural disasters, and even political and socio-cultural landscape changes. 

6.3.3 Multistage stochastic model 

In two-stage stochastic programming with exogenous uncertain parameters, we distinguish 

between first-stage and second-stage decision variables. The former are also called “here and 

now” variables, and are fixed at the beginning of the time period before knowing how the 

uncertainty will unfold. The latter, also known as recourse actions (“wait-and-see”), perform a 

corrective action after the uncertainty is revealed. When the models include multiple time 

periods within a time horizon, multistage stochastic problems are developed where decisions, 

realizations, and recourse actions occur sequentially as represented in Figure 6.2. Here, 

multiple recourse actions can be taken as uncertainties are gradually revealed.  

 

Figure 6.2: Sequence of events in stochastic programming with one exogenous uncertain parameter 311. 

In what follows, we first describe the general modeling approach and then provide the 

stochastic formulation taken as a basis. In stochastic programming, uncertainty is assumed to 

be described via scenario trees obtained from discretized probability distribution functions. Let 

us consider three time periods and two realizations of one uncertain parameter, high and low. 

For these assumptions, the standard scenario tree is represented in Figure 6.3a. Hereafter, the 

following notation is used. A node is a possible state in a time period 𝑡. An arc is a possible 
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transition from a state in 𝑡 to a new state in 𝑡+1. A scenario is the complete path from the root 

node to a leaf node. We refer to the scenario probability as the probability of reaching a leaf 

node from the root node. 

The number of exogenous scenarios (N) is equal to the product of the number of realizations 

for each exogenous parameter. If we consider two realizations of the uncertain parameter at 

each time period, the cardinality of the scenarios set is computed as 2𝑡 and the number of nodes 

is 2𝑡+1 − 1. 

An alternative form of the scenario tree in Figure 6.3b proposed by Ruszczyński 327 gives each 

scenario a unique set of nodes. When moving from the standard to the alternative representation 

we create several copies of the same states that contain the same information at that point in 

time. Scenarios with the same information at time 𝑡 are said to be indistinguishable at that time. 

Therefore, in indistinguishable scenarios, we must make the same decisions. This behavior is 

enforced through non-anticipativity constraints (NACs) represented by the red horizontal lines 

in Figure 6.3b. 

 
Figure 6.3: Exogenous uncertainty representation: standard (A) and alternative scenario tree (B). t 

represent the time periods, within tstart and tend, each dot is a node and the black lines connecting the dots 

are called arc, which represent a possible transition between two states from time t to time t+1. The 

node at the top is the root node and the ones at the bottom are the leaf nodes. A complete path from the 

root node to a leaf node corresponds to a scenario, which occurs with a given probability. 

We report in Eqs. (6.1) – (6.5) the compact mathematical formulation of RAPIDU (RemovAl 

oPtImization model under Uncertainty), hereafter referred to as MSS1. The stochastic model 

is represented in the deterministic-equivalent form using non-anticipativity constraints ((6.3a)-

(6.4c)). MSS1 includes all the equations reported in the Supplementary information by Galán-

Martín et al. 253 (see Eq. (6.2)), and therefore not repeated hereafter in their extensive form but 

summarized later in this section. The constraints introduced in this work are Eqs. (6.3a)-(6.4c) 

and the respective bounds in Eq. (6.5). 
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𝑚𝑖𝑛
𝑏,𝑦,𝑥

𝜙 =∑𝑝𝑠

𝑠∈𝒮

∑( 𝑐 
𝑦
𝑡
𝑠𝑦𝑡
𝑠 + 𝑐 

𝑥
𝑡
𝑠𝑥𝑡
𝑠 + 𝑐 

𝑏
𝑡
𝑠𝑏𝑡
𝑠)

𝑡∈𝒯

 (6.1) 

s. t. 𝐴 
𝑦

𝑡
𝑠𝑦𝑡
𝑠 + 𝐴 

𝑥
𝑡
𝑠𝑥𝑡
𝑠 + 𝐴 

𝑏
𝑡
𝑠𝑏𝑡
𝑠 ≤ 𝑎𝑡

𝑠   ∀ 𝑡 ∈ 𝒯,   𝑠 ∈ 𝒮 (6.2) 

𝑏1
𝑠 = 𝑏1

𝑠′  ∀ (𝑠, 𝑠′) ∈ 𝒮𝒫𝐹 (6.3a) 

𝑦1
𝑠 = 𝑦1

𝑠′  ∀ (𝑠, 𝑠′) ∈ 𝒮𝒫𝐹 
(6.3b) 

𝑥1
𝑠 = 𝑥1

𝑠′  ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋 
(6.4a) 

𝑏𝑡+1
𝑠 = 𝑏𝑡+1

𝑠′  ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋 
(6.4b) 

𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′  ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋 
(6.4c) 

𝑏𝑡
𝑠 ∈ {0,1},   𝑦𝑡

𝑠 ∈ 𝒴𝑡
𝑠 ,   𝑥𝑡

𝑠 ∈ 𝒳𝑡
𝑠   𝑡 ∈ 𝒯,   𝑠 ∈ 𝒮 

(6.5) 

The objective function in Eq. (6.1) is the total expected cost, computed as the weighted sum of 

the costs in each scenario multiplied by the probability in each scenario, 𝑝𝑠. The general 

techno-economic constraints correspond to Eq. (6.2). Eqs. (6.3a) and (6.3b) represent the first-

period NACs, and Eqs. (6.4a) – (6.4c) the exogenous NACs. These constraints enforce that the 

same decisions are taken in all the nodes that are indistinguishable. Lastly, in Eq. (6.5) the 

variables' bounds and integrality restrictions are specified.  

Here, we adopt the same nomenclature used in Apap and Grossmann 311 for the mathematical 

formulation. The multistage stochastic optimization model includes 𝑦𝑡
𝑠 first-stage investment 

decisions at the beginning of each time period, e.g., power technology capacity installed; 𝑥𝑡
𝑠 

second-stage operation decisions that follow the investment decisions, e.g., the electricity 

generated from the installed capacity. These decisions are optimized over every country j ∈ 𝐽 

considering a set of technologies i ∈ 𝐼 whose sets are omitted in the mathematical formulation 

for clarity (i.e., 𝑦𝑡
𝑠 corresponds to 𝑦𝑖𝑗𝑡

𝑠 ). Each variable is scenario-dependent, identified by the 

set 𝒮, indicated by the superscript on the right of each variable. MSS1 is presented in its most 

general form, where the left superscript of the 𝐴 matrix indicates to which variable the 

parameters refer and even the cost parameters are indexed for s to allow for different values 

according to the scenario. E.g.,  𝐴 
𝑦

𝑡
𝑠 means that the parameters included in 𝐴 refer to the 𝑦𝑡

𝑠 
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decision variable at time period 𝑡 in scenario 𝑠 (omitting sets 𝑖 and 𝑗). We refer to Apap and 

Grossmann 311 for the mathematical definition of the sets 𝒮𝒫𝐹 and 𝒮𝑃𝑋. 

The number of scenarios, corresponding to the cardinality of set 𝒮, is 64 (2𝑡) given two 

realizations of the uncertainty, high and low, at each time period. The realization of the 

uncertainty is the same for each country, i.e., in all EU countries and the United Kingdom the 

electricity demand either increases or decreases, which is a sensible assumption given the 

strong political ties in the region and assuming that the extent to which the economy will be 

electrified, particularly concerning transportation but also in hard-to-abate sectors like 

petrochemicals production, will be similar across countries. Therefore, here we do not consider 

the combination of all the scenarios, which would increase the complexity of the problem 

substantially. 

For consistency with Galán-Martín et al. 253, each time period is defined with a length of five 

years at first. Therefore, the chosen time horizon 2020 – 2050 is divided into six time periods 

𝑡 ∈ 𝒯 of equal length. Then, we also assess the case of different lengths depending on the time 

period, with shorter time periods closer to the beginning of the time horizon and a rougher 

discretization towards the end of it. We report in Section 6.4 the two sets of results obtained. 

We adjust the input data accordingly to account for CAPEX and OPEX to match the new 

definition of the time periods. 

A detailed description of the general techno-economic model constraints that are included in 

Eq. (6.2) can be found in the supplementary material of Galán-Martín et al. 253. In essence, 

load-meeting and operation constraints are defined in Eqs. 1 – 31, accounting for the distinction 

between dispatchable and non-dispatchable technologies and ensuring that the electricity 

demand is fulfilled. We note that the electricity demand is met as an equality constraint in the 

work presented here. The modeling of the supply chain of biomass, regarding land use, 

availability of residues, etc., is also included. CO2 emission constraints include Eqs. 32 – 42, 

and model the carbon balance regarding positive and negative emissions, as well as the trade, 

capture, and storage of CO2 and its sequestration underground. Finally, cost equations include 

Eqs. 43 – 48, and model how the CAPEX and OPEX of the different power energy sources are 

obtained, as well as the cost of negative technologies. 
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6.3.4 Decomposition algorithm 

The full space multistage stochastic programming in Eqs. (6.1) – (6.5) leads to large-scale 

problems that quickly become intractable. For example, for two uncertainty realizations, six 

periods and 28 countries, the MILP has more than 8.2 million variables and 4.2 million 

constraints. Hence, we propose the decomposition algorithm sketched in Figure 6.4 for its 

efficient solution. 
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Figure 6.4: Decomposition algorithm 

steps. First, we decompose the original 

problem into single scenarios and we 

solve them individually. This step is 

performed by dualizing the NACs using 

zero multipliers. Afterward, we analyze 

the results to the optimization problems 

and extract information about which 

technologies are selected or not in the 

scenarios. We then use this information 

fixing the binary variables accordingly to 

obtain a reduced form of the original 

problem that we can solve faster. This 

reduced problem is further manipulated 

replacing it with a series of two-stage 

stochastic (2SS) problems solved in a 

rolling horizon approach. 
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The decomposition algorithm comprises two steps. First, we decompose the problem into 

single scenarios dualizing the first-period and exogenous NACs. This step can be compared to 

the first iteration of the Lagrangean decomposition where the NACs constraints are transferred 

to the objective function as penalty terms multiplied by Lagrange multipliers 311. Yet, we do 

not perform any update of the dual bounds. 

We note that for the problem presented in Section 2, the conventional Lagrangean 

decomposition algorithm proved to be inefficient, leading to high computational times to close 

the gap between the lower and upper bound, as described in Apap and Grossmann 311. This can 

be caused by the relatively low number of scenarios, as already observed in Apap and 

Grossmann 311, which led to the same oscillatory behavior reported by Uribe-Rodríguez et al. 

328 for the convergence. 

For simplicity, let us consider only the decision variables 𝑦𝑡
𝑠. Then, after relaxing the NACs, 

Eq. (6.1) becomes 

𝑚𝑖𝑛
𝑦
𝜙𝐿𝑅(𝜆) =∑𝑝𝑟𝑠

𝑠∈𝒮

∑ 𝑐 
𝑦
𝑡
𝑠𝑦𝑡
𝑠

𝑡∈𝒯

+ ∑ 𝜆 
𝐹
1
𝑠,𝑠′(𝑦1

𝑠 − 𝑦1
𝑠′)

(𝑠,𝑠′)∈𝒮𝒫𝐹

+ ∑ 𝜆 
𝑋
𝑡
𝑠,𝑠′(𝑦𝑡+1

𝑠 − 𝑦𝑡+1
𝑠′ )

(𝑡,𝑠,𝑠′)∈𝒮𝒫𝑋

 
(6.6) 

We rearrange the equations of MSS1 for all the variables as in Eq. (6.6) to obtain a number of 

problems equal to the cardinality of 𝒮. At this point, we set the multipliers to zero and we solve 

each problem individually. 

Then, we can explore the solutions of the scenarios to collect information about the technology 

deployment. In particular, we want to know which technologies are not selected in any scenario 

or the technologies selected in every scenario in all countries in a given time period for capacity 

expansion. We note that if the binary variable that indicates the capacity expansion of a given 

technology is zero, it does not imply that that technology is not deployed at all. We then use 

the information gathered in step 1 to reduce the size of the original problem by eliminating 

elements from the set of technologies, i.e., setting the binary variables to zero or fixing 

investment decisions. However, this problem, which we call MSS1-red, might still be very 

large. Therefore, we decompose it further.  
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In the second step of our approach, we approximate the multistage stochastic problem with a 

series of two-stage stochastic problems (2SS) that we solve iteratively in a shrinking horizon 

approach, as described in Balasubramanian and Grossmann 312. Moreover, in the first iteration, 

which corresponds to the first node over the entire time horizon, we solve for a subset of 

scenarios. The number of scenarios and the method for their selection can be chosen depending 

on the application. In our case studies, we use a heuristic approach dependent on the shape of 

the decision tree. Out of |𝑆|, we select ten representative scenarios of the whole set. 

An alternative approach, although computationally more expensive, is to use sample average 

approximation (SAA), firstly introduced by Kleywegt et al 329. In SAA, a sample of scenarios 

N < |𝑆| that best represents the initial problem is selected to form a reduced set 𝑆𝑟𝑒𝑑. The 

probability of each scenario is adjusted to sum up to one by dividing the probability of each 

scenario in 𝑆𝑟𝑒𝑑 by the sum of the probabilities of all scenarios in 𝑆𝑟𝑒𝑑 330. Since the probability 

distribution of the uncertainty is known a priori, here we choose N scenarios such that they are 

representative of the full set 𝑆. This set is used to solve an approximation of MSS1. 

We then store the decision variables from each scenario (𝑦𝑡
𝑠) and fix the ones at the first time 

period (𝑦1
𝑠) according to the values of the solution obtained in the first iteration. From the 

second iteration onward, we solve one problem that considers all the scenarios of the 

corresponding 2SS problems. At each iteration, we fix the decision variables at the beginning 

of the time period until no more time periods are to be fixed. Notably, all the integer variables 

are fixed when solving the leaf nodes. Therefore, the last 64 iterations are LP problems, which 

can be solved efficiently. Lastly, we compute the total expected cost as a probability-weighted 

sum of the costs at the final nodes. 

A 5% optimality gap is enforced at each iteration as termination criteria, and convergence is 

checked before solving the next node. The optimality gap is chosen consistently with Galán-

Martín et al. 253 and set larger than zero due to the complexity of the model. 

Priorities on the discrete variables are also used to speed up the algorithm further. We expect 

that BECCS is deployed before DACCS because of its lower cost, higher initial capacity 

installed and diffusion rate until no more capacity can be installed to meet the CDR target. This 

translates into heuristic-based constraints involving binary variables that reduce the 

combinatorial complexity of the problem. 



CHAPTER 6 

 

135 

RAPIDU is solved using GAMS 41.5.0 on an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz 

with 32.0 GB RAM using 16 parallel threads with the solver CPLEX 22.1.  

6.3.5 Value of the stochastic solution for multistage stochastic models 

To quantitatively assess the additional value of adding uncertainty to the optimization problem, 

we compute the value of the stochastic solution (VSS) 323. Indeed, a decision-maker might 

argue that including recourse decisions in the model might not be worth the additional 

computational effort, to which the VSS provides insights into the potential value left on the 

table when not considering uncertainty in the decision-making process. 

In the case of two-stage stochastic problems, the procedure to calculate VSS is straightforward 

and widely used. Firstly, the solution to the model with a mean value of the uncertain parameter 

is computed. This is called the expected value problem or mean value problem (EV). Once the 

solution to this problem is known, it is used to solve the stochastic model by fixing the first 

stage “here and now” variables. This is known as the expected result of using the EV solution. 

For a minimization problem, the VSS is computed as the difference between EEV and RP 

(Eq. (6.7), where RP is the solution to the fully stochastic problem. A small VSS denotes that 

the deterministic model is a good approximation of the stochastic one. 

VSS = EEV − RP (6.7) 

In the case of multistage problems, however, computing the VSS is not as simple because each 

time period has “here and now” decision variables and it is not clear which variables should be 

fixed. Therefore, obtaining EEV would require solving a sequence of models. The issues in 

computing the values above and an approach to calculate the VSS for multistage stochastic 

problems are discussed in Escudero et al. 331. 

In this work, we use an approximation of the procedure to calculate the VSS, also reported in 

Escudero et al. 331, where we fix only the first stage decisions in all time periods to obtain EEV. 

Then, the VSS is calculated as the difference between EEV and RP as in Eq. (6.7). 



CHAPTER 6 

 

136 

6.4. Computational results and discussion 

6.4.1 Homogeneous discretization of the time horizon 

First, we analyze the case for time periods of equal lengths. The results are discussed in this 

section comparing the full space model to the decomposed version. 

Hereafter, we refer to the full space model, i.e., the problem which includes all equations and 

variables and is solved at once, as MSS1, and the version solved by applying a decomposition 

algorithm as MSS1-D. 

6.4.1.1 Net-zero target 

At the end of the time horizon, we impose a net-zero cumulative CDR target, i.e., the positive 

emissions are fully balanced by the CO2 removed by BECCS and DACCS. 

The number of variables, equations, and solution time of MSS1 are summarized in Table.6.1. 

Notably, the computational time to solve MSS1 in its full form to a 5% optimality gap is 

considerable (around 13 hours). The total cost of the system is 10.7 trillion Euros calculated as 

the weighted average of each scenario objective function value, and computed according to a 

net present value calculation, accounting for fixed and variable costs (see 253 for more 

information on the cost calculation). Compared to the deterministic solution (9.9 trillion Euros) 

it represents an increase of 7.2%, which is not negligible. In the context of the EU, this 

economic burden is borne by all the Members according to some fairness principle. 

Table.6.1. Model statistics of the multistage stochastic problem MSS1 for the minimization of the 

expected cost. 

 MIP - MSS 64 scenarios 

Number variables [millions] 7.9 

Number binary variables [thousands] 300.7 

Number equations [millions] 4.2 

Resource usage (solution + generation time) [hr] ~13 

Solver CPLEX 22.1 

Termination criteria: opt. gap [%] 5 

Optimal objective function value [trillion Eur] 10.7 

Given the large computational time, we apply our decomposition approach and solve the 

problem again as MSS1-D. 

From step 1, which is based on the relaxation of the NACs with zero multipliers, we find that 

many technologies are not selected for capacity expansion in any country at any time period. 
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We group all these technologies in a set and force their decision binary variables to zero when 

solving step 2. In order to further reduce the size of the model, we identify technologies that 

are selected for capacity expansion in the first time period in specific countries in all time 

scenarios. Again, we define a set for these technologies and we impose that the decision 

variable in the first period is equal to one. Both sets of technologies are reported in Table 6.2. 

Notably, many technologies among those available for power generation are not selected 

because the time horizon we assess in this work is relatively short and the target is not very 

ambitious compared to what it is possible to achieve 253. The existing capacity of conventional 

technologies already installed in addition to the new capacity of technologies reported in Table 

6.2 is sufficient to satisfy the electricity demand while satisfying all the model constraints. 

Thus, only biomass-based removal is employed, while DAC installed capacity is zero in all the 

countries. 

Table 6.2. Information on technology expansion from the solution of single scenarios (step 1) for a 

net-zero CDR target in 2050. 

Technologies not selected in any scenario 

for capacity expansion at any time period 

Technologies selected (country) in all the 

scenarios for capacity expansion at 𝒕=t1  

•Coal  •Geothermal (Germany) 

•Coal with CCS •Natural gas (Denmark) 

•Hydropower •Forest residue with CCS (Poland) 

•Hydropower reservoir •Woody residues with CCS (Greece) 

•Nuclear •Solar PV open (Luxembourg and Malta) 

•Concentrated solar power  

•Solar PV roof  

•Switchgrass  

•Wind offshore  

We make use of the information obtained in step 1 as described in Section 6.3 and proceed to 

step 2. We solve step 2 iterating over the number of nodes (127). At the first iteration, we use 

heuristics to determine the subset of scenarios used to solve MSS1-red. Indeed, MSS1-red is 

still very large.  

We obtain a 90% reduction in the computational time while achieving the same objective 

function value (10.7 trillion Euros). The latter is calculated as a probability-weighted sum of 

the leaf nodes, as explained in Section 6.3.3. In Table 6.3, we compare the solutions between 

the full space model and the decomposed one in terms of computational time and optimal 

objective function value. The time reported in the table includes step 1 and 2 where the 

Lagrangean decomposition step is approximately 14 minutes. The precise resource usage of 

generation and solution time in seconds is reported in Table E0.5. 
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Table 6.3. Comparison of full space and decomposed multistage stochastic models for the 

minimization of the expected cost. A reduction in computational time of 90% is achieved by 

implementing the decomposition algorithm. * probability-weighted sum at final nodes 

 MIP - MSS 

64 scenarios 

Decomposed 

MIP - MSS 

Resource usage (generation + solution time) [hr] ~13 ~1.2 
Optimal objective function value [trillion Eur] 10.7 10.7* 

We point out that the decomposition algorithm modifies the original structure of the problem 

MSS1. Despite reaching the same expected total cost while meeting the electricity demand, 

there are differences in the decisions taken during the time horizon. For example, in MSS1 

forest residues and natural gas with CCS capacities are also chosen and expanded at the first 

time period (Table E0.1). Additionally, comparing the information in Table 6.2 and Table E0.1, 

we notice that the algorithm only selects a few countries 𝑗 where a technology 𝑖 is selected in 

all the scenarios. In other words, in the decomposed problem, it is preferred to increase the 

capacity installed in selected countries 𝑗 by 100% or more, while in MSS-1 the capacity of 

more technologies is increased less but across different countries. 

Lastly, we compare the stochastic results with the deterministic ones.  

First, we fix the binary decision variables from the solution of the deterministic problem in all 

time periods of the stochastic problem to obtain EEV (Table 6.4). We find that the cost of EEV 

is 10.98 trillion Eur. Compared to the value of RP in Table 6.3, the VSS is 285 billion Eur, 

which is roughly 3% of the RP, on the same order of magnitude as the examples presented in 

Birge and Louveaux 323 and Li and Grossmann 300.  

Table 6.4. Objective function value for different case studies. Given the solution of the deterministic 

problem, we find the EEV value to later compute the VSS.  

Deterministic variables to be fixed Time period Value of objective function 

[B Eur] 

Binary decisions Up to t5 10791.2 

Binary decisions Up to t6 10982.6 

Binary and capacity decisions Up to t5 Infeasible 

Binary and capacity decisions Up to t6 Infeasible 

Then, we provide a graphical summary of the two sets of solutions. Let us assume that the 

deterministic model is run only one time at the beginning of the time horizon, although in 

practice it would be run in a rolling horizon fashion. Then, the solution that we obtain can be 

outside the range of all the possible solutions obtained considering uncertainty. 

In Figure 6.5 we show the electricity generated per country (subplot A) and per technology 

type (subplot B). We notice that the majority of the total electricity generated comes from a 
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reduced set of countries (subplot A), i.e., France, Germany, Italy, Spain, and the United 

Kingdom, and also affected by the greatest variability among all the countries. Additionally, 

the deterministic solution lies outside of the range observed for the given scenarios, i.e., it is 

suboptimal, in some countries such as the Netherlands, where the point lies outside of the 

boxplot of stochastic solutions. 

Subplot B represents the same information, this time aggregated by technology. Here, it is even 

more evident that the solution to the deterministic problem is not one of the solutions found by 

the stochastic model. In particular, we highlight the case of wind onshore and solar PV open 

technologies. Wind onshore and nuclear follow natural gas in production volume. Among all 

the technologies, natural gas is the main source of electricity and also has the highest 

variability, while the capacity of wind offshore does not change across the scenarios. 

 



CHAPTER 6 

 

140 

 

Figure 6.5: Total electricity generated aggregated by country (subplot A) and technology (subplot B). 

Stochastic range vs deterministic value. The box and whiskers plots are generated using the solution of 

all 64 scenarios of the stochastic model and they show ±25 the median value. 

6.4.1.2 CDR scenarios 

The decomposition algorithm presented in Section 6.3.3 allows us to more easily explore a 

range of case studies. We can do so by imposing a different CDR target at each iteration. In 

particular, our interest lies in assessing the feasibility of a carbon balance beyond the net-zero 

target and proving that it is possible to attain such levels by mid-century. This would imply 

that the electricity sector would be responsible for offsetting emissions from hard-to-abate 

industries, such as cement and steel. Considering that the electricity sector accounted for 
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approximately 30% of the total CO2 emissions in the EU in 2021 332, it seems reasonable for it 

to contribute significantly to the overall reduction in CO2 emissions. 

Our findings demonstrate that the deployment of BECCS and DACCS can potentially enable 

the removal of up to 9 Gt of CO2 by 2050 by deploying BECCS and DACCS within the 

constraints of our model. In other words, the global carbon balance of the integrated sector, 

i.e., including the power technologies in addition to NETPs in the system boundaries, would 

result in the net removal of 9 Gt. Figure 6.6 illustrates the expected total cost of implementing 

solutions for the various CDR scenarios explored. A negative sign of emissions indicates that 

more CO2 is removed via BECCS and DACCS than the amount emitted from all the 

technologies, i.e., natural gas, solar, and wind, resulting in negative emissions. We observe that 

the steepest increase in total cost occurs when we push the system to achieve more ambitious 

targets, ranging from 0 to ─9 Gt of CO2, while the cost does not decrease significantly for 

different positive targets, where the deployment of NETPs is minimal. Additionally, we find 

that DACCS, powered by electricity and heating, is only selected and deployed starting at the 

─9 Gt CO2 target. 

It is important to note that even in scenarios where the emissions balance is positive, bioenergy 

and BECCS are still deployed (Table E0.2). This is because the advantage of bioenergy is 

twofold: it removes CO2 from the atmosphere while simultaneously generating electricity. 

Thus, it serves as a valuable technology for achieving emissions reductions. This matches 

previous observations made by the authors 254, where even considering the impacts of a highly 

detailed BECCS supply chain, negative emissions were achieved in the EU. 

Our analysis reveals that achieving a target beyond 10 Gt CO2 removal is not feasible 

(considering the assumptions and technologies in our analysis) within the computational time 

limit allowed (12 hours). This limitation is primarily driven by the rate of technology 

deployment rather than the availability of CO2 storage. The high electricity demand in the most 

uncertain scenarios poses a significant challenge in achieving higher levels of CO2 removal 

within the given timeframe. 
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Figure 6.6: Expected total cost and technology deployed for different CDR targets. The icons of 

BECCS (green plant) and DACCS (gray box) indicate which CDR option is proving the required 

removal. Only in the case of 9 GtCO2 removal, both technologies are deployed. 

In Appendix A.1, we report the information relative to the technology selection in the 

decomposition algorithm step 1 and the computational time. We see that fewer technologies 

are installed as the target becomes less ambitious, and eventually the system is even allowed 

to reach a positive emissions balance.  

6.4.2 Inhomogeneous discretization of the time horizon with net-zero target 

As a last step, we are interested in the implications of discretizing the time horizon in time 

periods of different lengths (see Figure 6.7 A and B). This modeling decision is driven by the 

fact that the consequences of the years closer to the start of the horizon have greater economic 

and social impacts over the ones of the years further in time.  

 

Figure 6.7: Discretization of the time periods. In the analysis presented in Section 6.4.1 (subplot A), 

the time horizon is divided into six time periods of equal length corresponding to five years. In this 

Section 6.4.2, we present the results for a non-homogenous discretization of the time horizon: six total 

time periods of length 2-4-4-5-5-10 years. 

We report the results of the inhomogeneous time horizon discretization in Table 6.5 for the 

minimization of the expected total cost at a net-zero target. First, we highlight that in the full 

space problem we were able to reach a solution within the specified optimality gap although 
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infeasibilities on the original MIP problem were not resolved. On the other hand, our 

decomposition algorithm can reach a solution within the given tolerance without any numerical 

challenges highlighting the robustness of the proposed solution method. The total expected 

cost, calculated as the probability-weighted average of the last nodes, is 2% higher than the full 

space objective function, within the optimality gap. Lastly, we mention that the total expected 

cost in this case study is higher than the previous (10.7 trillion Eur, see Table 6.3) due to the 

duration of the periods being different. 

The underlying assumption in the original model 253 is that the demand is maintained constant 

within the years of the first time period, and only updated at the start of the following period 

according to the following equation 𝑑𝑡 = 𝑑𝑡−1 ∗ F, where F is a constant factor greater than 

one. Therefore, it is updated more frequently when there are shorter periods. For example, since 

in the case of identical time periods the first time period comprises five years while here only 

two, the demand at the end of the time horizon is higher in the case presented in this section. 

We provide a clarifying example in the time horizon 2020 – 2025 with reference to Figure 6.7. 

In case A, it is assumed that there is no increase in the first five years, meaning that the 

cumulative final demand is equal to five times the one in 2020. In the inhomogeneous time 

period case (B), the first time period of two years follows the same assumption and therefore 

the cumulative demand in 2022 is two times the one in 2020, while the remaining years are 

updated according to the given correlation.  

Table 6.5. Comparison of full space and decomposed multistage stochastic models with 

inhomogeneous time horizon discretization for the minimization of the expected cost to meet the 

net-zero target in 2050. Reduction in computational time given by the decomposition algorithm: 43%. 

* probability-weighted sum at final nodes. ** GAMS output: Fixed MIP status (5): optimal with 

unscaled infeasibilities 

 MIP - MSS 64 

scenarios 

Decomposed 

MIP - MSS 

Number variables [Millions] 7.9 7.9 

Number binary variables [Thousands] 300.7 300.7 

Number equations [Millions] 4.2 4.2 

Resource usage (generation + solution time) [hr] ~3.2 ~2 

Solver Cplex 22.1 Cplex 22.1 

Termination criteria: Opt. gap [%] 5 5 

Objective function value [Trillion Eur] 12.3** 12.5* 

Next, we look into the technology deployment to meet the energy demand (Table E0.3 and 

Table E0.4). In this case, since the first time period is shorter, a reduced set of technologies is 

selected in all the scenarios, comprising wind onshore (Germany), solar PV open 

(Luxembourg), and forest residues with CCS (Poland). Additional capacity of solar PV open 
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is installed in Belgium at t3 and t5. The capacity of solar PV open and forest residues with CCS 

is expanded at the beginning of t4 in 50% of the countries included in our model. This happens 

because the length of time periods t1 and t2 are 2 and 4 years, respectively, while in t4 it is five 

years and more capacity is needed to cover the increase in electricity demand. 

Overall, the net-zero target is achieved by deploying the same set of technologies shown in 

Figure 6.5 B. 
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6.5 Conclusions 

In this study, we have highlighted the importance of considering uncertainty in energy system 

planning, particularly in relation to the implications on the total cost and technology capacity 

installed arising from the variability in electricity demand. The consequent complexity of the 

multistage stochastic programming model required the development of a tailored 

decomposition approach, which reduces the computational time significantly up to 90%. We 

observed that in the case of inhomogeneous time periods, which lead to numerical challenges 

to solve the full-space model, our algorithm provides a numerically robust solution within the 

optimality tolerance while still providing a significant speedup with respect to the monolithic 

model. 

We found that among all the countries in the European Union, France, Germany, Italy, Spain, 

and the United Kingdom provide the majority of the electricity with the greatest variability 

across all the scenarios’ solutions. The technologies with the highest capacity deployed for 

electricity production include natural gas, nuclear, wind onshore, solar PV and BECCS. 

Biomass emerged as a crucial component within the model, where its deployment was not only 

selected to achieve negative emission targets but also in scenarios where overshooting was 

allowed with capacity expansion at each time period for selected feedstocks. 

Overall, effectively managing uncertainties is paramount for the successful implementation of 

projects, particularly in the context of climate action. Further research and attention to these 

uncertainties will contribute to the advancement and realization of sustainable energy systems, 

especially focusing on the learning curves of carbon removal options. While our analysis 

focused on the technical aspects, it is important to acknowledge that successful implementation 

of BECCS and DACCS technologies requires addressing additional considerations such as 

public acceptance, community engagement, policy incentives, and economic viability, which 

are beyond the scope of this study. 

  



CHAPTER 6 

 

146 

6.A Nomenclature 

Abbreviations 

BECCS bioenergy with carbon capture and storage 

CCS carbon capture and storage 

CO2 carbon dioxide 

CDR carbon dioxide removal 

DACCS direct air capture with carbon capture and storage 

EU European Union 

EV expected value problem  

GHG greenhouse gas 

IAMs Integrated assessment models  

LP linear programming model 

MILP mixed-integer linear programming model 

MSS multistage stochastic programming model 

NETPs negative emissions technologies and practices 

NACs non-anticipativity constraints 

RAPIDU RemovAl oPtImization model under Uncertainty 

SAA sample average approximation 

RP solution to the fully stochastic problem 

2SS two-stage stochastic programming model 

VSS value of the stochastic solution 

 

Sets 

𝐼 {𝑖 | 𝑖 is a technology} 
𝐽 {𝑗 | 𝑗 is a country} 
𝒮 {𝑠 | 𝑠 is a scenario} 

𝒮𝒫𝐹 {𝑠 | 𝑠 is a scenario included in the first period NACs} 

𝒮𝑃𝑋. {𝑠 | 𝑠 is a scenario included in the exogenous period NACs} 

𝑆𝑟𝑒𝑑 {𝑠 | 𝑠 is a scenario included in the solution of step 1} 

𝒯 {t | t is a time period} 

 

Variables 

𝑦𝑖𝑗𝑡
𝑠  first-stage investment decisions for technology 𝑖, country 𝑗 and time period 𝑡 in 

scenario 𝑠 
𝑏𝑖𝑗𝑡
𝑠  first-stage binary decisions for technology 𝑖, country 𝑗 and time period 𝑡 in scenario 𝑠 

𝑥𝑖𝑗𝑡
𝑠  second-stage operation decisions for technology 𝑖, country 𝑗 and time period 𝑡 in 

scenario 𝑠 

 

Parameters 

N number of exogenous scenarios 𝑠 
𝐴 
𝑦

𝑖𝑗𝑡
𝑠  parameters matrix, dependent on the variable and scenario 𝑠, for technology 𝑖, 

country 𝑗 and time period 𝑡 
𝑝𝑠 probability of occurrence of scenario 𝑠 
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7.1 Main findings of this dissertation 

This thesis provided tools and valuable insights into carbon capture, starting from a thorough 

evaluation of its standalone value, and its integration within an optimal large-scale technology 

network in the European Union and the United Kingdom (EU, before Brexit) regional context 

for applications in the most contributing sectors to CO2 emissions, namely transport, industrial 

heating and power generation, some of them deemed as hard-to-abate.  

The ultimate objective was to inform decision-makers and contribute to the development of 

strategies for a sustainable transition to net negative carbon emissions by the end of this 

century. 

In order to fulfill the goal of this thesis, several tools and frameworks were developed, which 

are summarized hereafter, highlighting significant accomplishments and findings of the 

research work presented in the previous chapters. 

In Chapter 2, we presented how using straightforward models, developed with machine 

learning algorithms, particularly symbolic regression, can be applied to benchmark climate 

change mitigation technologies, such as carbon capture with storage. By applying the Bayesian 

machine scientist (BMS)45 to two case studies, i.e., natural gas sweetening and flue gas 

cleaning, we have generated simple closed-form mathematical expressions of key variables 

that determine the process economic and environmental performance, i.e., net power, utilities, 

and solvent makeup, for a range of initial operating conditions. These equations can then be 

used to compare different alternatives within the models’ training range. Additional analyses 

can be performed using these expressions, such as investigating the variables’ elasticities and 

optimizing processes. 

Here, we determined that the approach proposed is particularly suited to describe the relation 

between independent variables and the total power required in the system, i.e., the electricity 

needed to drive pumps and compressors. Additionally, in both case studies analyzed we found 

a strong correlation between the inlet gas composition, specifically the carbon dioxide (CO2) 

concentration, and the dependent variables chosen. 

Overall, the proposed approach aims to facilitate the transition toward new sustainable 

technologies by providing simple correlations for a more straightforward comparison with the 

business as usual (BAU). Furthermore, we demonstrated how the BMS can be employed to 

derive input-output analytical models of complex processes, whose modeling often requires 
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specific technical knowledge and is time-consuming. Therefore, we believe that the approach 

investigated is beneficial especially for experimental researchers. 

Moving to applications in the transportation sector, in Chapter 3, we demonstrated how carbon 

capture retrofitted on-board cargo ships is an economically and environmentally viable solution 

to curb greenhouse gas (GHG) emissions from the freight industry in the short term. We tested 

this scenario on a representative ship with a conventional engine powered by heavy fuel oil, 

and compared it with the BAU and direct air capture (DAC).  

Firstly, we assessed its feasibility based on the volume and weight of the equipment required 

for the CO2 capture on-board. Based on this information, we determined that only 4% and 7% 

of the cargo on a volume and mass basis, respectively, are displaced to retrofit the plant for a 

one-week trip. The integrated system shows comparable performance to conventional 

post-combustion plants, with a 94% capture efficiency at 85 $2019/ t CO2. Additionally, we 

analyzed the environmental performance of this solution within the planetary boundaries (PBs) 

framework. Our results show that carbon capture on-board does not transgress the full 

operating space, halving the pressure of the BAU on three core PBs, and outperforming DAC. 

We stress the importance that this solution has in the short term, while new engines powered 

by alternative low- or zero-carbon fuels are developed, since it can be implemented with minor 

modifications to the current infrastructure. Additionally, if applied to future bio-based fuels, it 

can even lead to a net negative emissions shipping industry. 

In Chapter 4, we analyzed another potential application of carbon capture that simultaneously 

addresses EU climate targets and energy security. Given the recent political instabilities due to 

the Russian invasion of Ukraine that caused natural gas supply shortages, we investigated the 

production of synthetic natural gas, also known as biomethane, from biomass gasification with 

carbon capture and storage to be used for industrial heating. We considered two residues 

feedstocks, namely wheat straw and forest, and three dedicated energy crops grown on 

marginal land, i.e., Miscanthus, willow and poplar, for biomethane production at grid feed-in 

quality. We focus on the industrial heating sector since residential heating can be easily 

electrified and chemicals’ production is performed directly from the syngas. Then, we 

compared the performance of each of the five scenarios between them and with the BAU.  

We developed a detailed process simulation to determine the biomass-to-product conversion 

efficiency for each scenario. Based on literature data on the availability of the selected 

feedstocks, we concluded that 151 billion cubic meters (bcm)/year of biomethane can be 
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produced (i.e., theoretical potential), which is sufficient to satisfy the EU industrial heating 

demand. Among the EU countries, Spain, Poland, Germany and France are the largest 

biomethane producers, mainly based on forest residues, Miscanthus and poplar. In addition to 

being a secure energy source, biomethane is carbon negative on a cradle-to-gate basis and the 

theoretical potential could remove up to 0.33 Gt CO2. We then assessed the impact of the 

biomethane with respect to the BAU finding that it benefits non-renewable energy resources 

and ozone depletion, while shifting the environmental burden to ecotoxicity freshwater and 

land use environmental metrics. Therefore, we developed an optimization problem to 

determine the optimal blend of natural gas and biomethane that limits the overall burden-

shifting. Here, we found that reducing the pressure on these critical indicators is possible by 

deploying forest residues when little transgression is allowed, while wheat straw and forest 

residues and poplar for a greater transgression allowed. 

In Chapter 5, we broadened the scope of the previous analyses and estimated the potential of 

bioenergy with carbon capture and storage (BECCS) supply chains by developing a detailed 

optimization model. We considered six feedstocks, e.g., three types of residues and three 

dedicated energy crops on marginal land, transportation links between the countries and 

regionalized parameters (crops carbon content, yield, land availability, costs) in the EU to meet 

a minimum yearly CO2 removal target while producing electricity that can be integrated in the 

power system. Following a life cycle optimization approach, we conducted an economic and 

environmental assessment of the BECCS supply chain. The environmental indicators are 

finally aggregated into three metrics related to human health, ecosystem quality and resource 

availability according to the Recipe 2016 methodology. These are minimized in three 

independent scenarios, in addition to the cost minimization one.  

We determined that, if residues and energy crops are deployed, the BECCS supply chain can 

provide benefits for human health and ecosystem quality even in the minimum total cost 

scenario. When the three endpoint indicators are minimized individually, an average 

improvement of 23% in the environmental indicators with less than 45% cost increase is 

achieved. Moreover, our model provides the configuration of the supply chain for the four 

scenarios analyzed on a regional level, i.e., regarding biomass transportation, amount of 

electricity produced from biomass combustion, and CO2 storage location and type. 

Lastly, in Chapter 6, we formulated a multistage stochastic programming model to address the 

uncertainty in the electricity demand in an integrated system that includes power generation 
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and carbon dioxide removal technologies, namely BECCS and DAC with CO2 storage 

(DACCS), in the EU. Given the large size of the model and the consequent computational time 

to solve it, we developed a tailored decomposition algorithm that reduces the solution time by 

90%. We then used this algorithm to investigate different case studies of carbon removal targets 

and gain insights into the power generation technologies and carbon removal options deployed. 

Our results show that neglecting uncertainties might lead to suboptimal solutions, particularly 

related to the total cost and technology capacity installed, i.e., a cost increase of roughly 10%, 

and different technology selection compared to the deterministic model are found when 

considering the uncertainty. Additionally, a decomposition algorithm tackling the specific 

structure of the problem was necessary, given the high complexity, for which conventional 

decomposition algorithms, e.g., Lagrangean decomposition, show poor performance. 

Furthermore, with our approach, we gained insights into the electricity generation technologies 

at a regional level in the EU (type, capacity and location) by determining which technologies 

are selected for capacity expansion and which ones are not necessary. Lastly, we demonstrated 

that BECCS plays a pivotal role in all the scenarios toward low- or net negative emissions. 

Indeed, even when a carbon positive emissions balance is allowed, there is electricity 

production from biomass and BECCS. 

In conclusion, we provided simplified mathematical expressions to determine the economic 

and environmental performance of carbon capture and storage processes. Additionally, we 

demonstrated that carbon capture can serve as an interim solution for reducing direct emissions 

in the shipping industry and, when combined with biomass for biomethane production, for 

enhancing energy security for industrial heating while mitigating the effects of climate change 

in the EU. Furthermore, we developed a detailed optimization framework to analyze how to 

best deliver negative emissions while producing electricity in the EU via BECCS, which 

provides information on the supply chain at a regional level. Taking a step further, we have 

integrated DACCS and the power system in a single framework to assess the consequences of 

the electricity demand uncertainty on the total cost and power technology capacity installed in 

an integrated power system.  

We expect that the combination of these tools and the insights that can be derived from their 

application will help decision-makers implement measures toward a more sustainable future.  
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7.2 Thesis limitations and future research directions 

In Chapter 2, we provided analytical correlations for key economic and environmental process 

indicators that are valid for a range of input conditions. However, these operating conditions 

were run on a fixed flowsheet, i.e., the design of the equipment was optimal for the base case 

but not adapted to the new independent variables at each iteration. Additionally, we used the 

default BMS prior provided by the authors, which is based on mathematical expressions 

retrieved from Wikipedia, without adding specific field knowledge, i.e., from chemical and 

process engineering. We claim that the analytical models developed would become more 

accurate and simpler by tailoring the prior to include explicit chemical engineering laws. An 

additional improvement for future work is to develop gray box models, which combine first 

principles and black box approaches, and compare the performance with our correlations, at 

the expense of model simplicity. In Chapter 2, we presented a proof of concept; therefore, more 

case studies should be investigated including different and/or more independent variables, even 

beyond CCS processes. In particular, the approach is attractive when applied to experimental 

and industrial plant data. We also see the potential of this tool in many other research areas of 

Process Systems Engineering, such as surrogate-based optimization, and feasibility and 

flexibility analyses. Finally, the application of symbolic regression is not limited to process 

parameters, but can also embrace life cycle assessment metrics. 

In Chapter 3, we proved that carbon capture on-board cargo ships could favor the transition 

toward a sustainable freight industry while new engines and the necessary infrastructure are 

developed. This solution, which we tested on a representative cargo ship, should be validated 

for a broader range of vessels, traveling at different speeds and considering varied routes. This 

extended analysis would bring insights into how technical, economic and environmental 

performance change. Additionally, this approach can still be implemented in the future to 

achieve negative emissions if combined with bio-based fuels. Indeed, in this scenario, the 

biomass absorbs the CO2 from the atmosphere during the growth phase, which is then captured 

with a 94% efficiency after the combustion in the engine. Furthermore, our approach should 

be investigated for a shipping circular carbon economy, where the CO2 is captured on-board 

and used to regenerate the fuel that powers the vessel’s engine. 

In Chapter 4, we evaluated the technical and environmental implications of biomethane 

production for enhancing energy security and curbing GHG emissions in the EU. In addition 

to the biomass availability, the logistics of the transportation of the biomass and the natural gas 
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imports from outside the EU to meet given transgression levels should be considered. In this 

case, the tools provided in this thesis should be integrated. In particular, the optimization model 

presented in Chapter 5 could be employed to design the optimal biomethane supply chain. 

Furthermore, we note that here we explored a potential future route using the gasification 

technology. However, as of today, the majority of the biomethane is produced by anaerobic 

digestion of biodegradable feedstocks followed by biogas upgrading, i.e., capturing the CO2. 

These two production paths should be evaluated jointly to exploit the full potential, considering 

that there is competition for biomass for food, including the one for manure, and transportation 

fuels.  

In Chapter 5, we provided an optimization model to evaluate the economic and environmental 

performance of a BECCS supply chain in the EU. Although the integration of more 

technologies would yield a more detailed framework where synergies can be exploited, we 

argue that the most significant coupling is the one with DACCS and the energy system, which 

was already investigated in this thesis and presented in Chapter 6. The reason of this claim is 

that other negative emissions technologies, such as afforestation and reforestation (AR), do not 

depend on electricity inputs, nor their characteristic parameters, such as the albedo for AR, 

show significant differences within the EU countries.  

Additional constraints that limit the biomass transportation across countries or the design of 

the CO2 pipeline network would lead to more realistic scenarios worth exploring. 

In Chapter 6, we provided an optimization model of an integrated carbon removal – power 

technologies system in the EU and a tailored decomposition algorithm to speed up its 

computational time to evaluate the importance of considering uncertainty in the electricity 

demand, particularly in the total cost and technology deployment. As a next step, the model 

should also consider endogenous uncertainty parameters, such as carbon removal technologies 

learning curves. Given the current complexity of the model, we foresee that further 

decomposition will be required for the solution. Furthermore, the model should include a 

rigorous financial risk evaluation, which might lead to an intractable model. 

In this thesis, uncertainty was not considered consistently and instead reported in each chapter 

on a case-by-case basis. In Chapter 2 uncertainty was not addressed, as the BMS models are 

stochastic. In Chapter 3 we also omit to consider uncertainty in the exhaust emissions due to 

lack of data. Instead, we provide one case study and estimate the equipment on-board weight 

and volume change for longer trips. Further work addressing different exhaust gas 
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compositions should be carried out in the future. In Chapter 4 we plan to include a qualitative 

assessment of the uncertainties that derive from the life cycle impact assessment method 

chosen. Based on the literature, we are aware that the impact categories of the Environmental 

Footprint can be characterized by low, medium or high uncertainty. A discussion of how this 

uncertainty affects the results reported in this thesis will be included. In Chapter 5 we assess 

the uncertainty of the life cycle assessment endpoint results considering the uncertainty in the 

life-cycle inventories provided by SimaPro. Lastly, in Chapter 6 we explicitly incorporate 

uncertainty in the optimization model to understand the implications on the power-carbon 

removal technologies nexus. 

In summary, the work presented in this thesis leaves space for future methodological 

improvements and additional applications. From a methodological viewpoint, the models could 

be expanded to include different carbon capture technologies models and other sustainability 

metrics. Additional methods to tackle uncertainties, not only concerning the technical 

parameters but also the environmental assessment metrics, could be applied. In terms of 

application domains, the tools presented here are versatile to be implemented in the context of 

different problems, such as conventional chemical processes and their supply chains, and other 

heavy-duty transport means. Finally, the integration of the tools provided, such as surrogate 

models within supply chain optimization frameworks, should be explored.  
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7.3 List of contributions produced from this thesis: publications, 

conference proceedings, and oral presentations 
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European Union Power System. 2022 AIChE Annual Meeting, Phoenix (AZ), USA. 

November 17, 2022 

• Absolute Life Cycle Optimization of the CDR-Power Nexus. FOCAPO / CPC 2023, 

San Antonio (TX), USA. January 10, 2023 

• Sustainable Development Goals assessment of carbon capture on-board. ESCAPE 33, 

Athens, Greece. June 19, 2023 

 



 

 

158 

  



APPENDIX A 

 

159 

 

 

APPENDIX A 

Supplementary information to Chapter 2 

  



APPENDIX A 

 

160 

  



APPENDIX A 

 

161 

A.1 Model parameters and MCMC steps  

The number of Markov chain Monte Carlo (MCMC) steps chosen to obtain the mathematical 

expression of each output variable, and the respective parameters are reported in Table A0.1 

for the two case studies analyzed. The goodness of fit for the natural gas process variables 

results in an R-squared (R2) above 99% for three out of four output variables, at low (1000-

10000) MCMC steps. On the contrary, in the case of the flue gas, we require more steps (up to 

50000) to achieve similar performance. 
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Table A0.1 MCMC steps and parameters of the dependent variables mathematical expressions for each 

case study analyzed. 

Case study Variable MCMC steps Parameters 

Natural gas Min CU 1000 a0 4648399064    
a1 0.515205668    
a2 0.08127544    
a3 -5.251595861    
a4 22554.25141    
a5 1.203644142      

 
Min HU 5000 a0 2.92526E+18    

a1 3.73775E-08 

   a2 351315.5 

   a3 17571.65 

   a4 9.752716 

   a5 1752.488 

   a6 -8.4617E+12 

     

 Net power 1000 a0 6.692334 

   a1 -13459 

   a2 -0.85238 

   a3 -0.37024 

   a4 0.507276 

   a5 -7115.09 

   a6 20657.74 

     

 Amount of MEA 10000 a0 14112.78686 

   a1 -2935.415061 

   a2 0.998725114 

   a3 0.063845319 

   a4 8.823491621 

   a5 3.99600556 

   a6 1467.217871 

   a7 26.01699426 
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Flue gas Min CU 50000 a0 -36.05539994 

   a1 1.166973668 

   a2 0.110793704 

   a3 -0.439532683 

   a4 3.14E-12 

   a5 -0.211170691 

     

 Min HU 20000 a0 -27.03351235 

   a1 0.009314512 

   a2 -10.34924972 

   a3 -8979.599802 

   a4 -1284.685929 

   a5 0.189841719 

   a6 5647.160388 

   a7 854.5832804 

     

 Net power 10000 a0 396.2374688 

   a1 -86.10050791 

   a2 -1.158995964 

   a3 10.59161605 

   a4 -1.026713473 

   a5 1.990606682 

   a6 17.65652763 

   a7 1.494928476 

     

 Amount of MEA 20000 a0 0.011393358 

   a1 132.8078147 

   a2 11.80288973 

   a3 0.000671093 

   a4 -2.290336089 

   a5 0.602889551 

   a6 -4420.333972 

   a7 -117.5256979 

   a8 6.326634953 

   a9 1.233677766 
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A.2 Models assumptions and limitations  

The case studies in Chapter 2 are designed based on the following assumptions:  

• The natural gas feed is considered a binary mixture, similarly to other literature studies 

about emerging technology such as membranes 73,333,334. 

• With the underlying idea of including a wider range of product purity in the natural gas 

case study, we also consider scenarios where further processing of the sweet gas 

product is required before pipeline distribution (about 50% of the results meet the 

specification for immediate distribution). 

• The cooling and heating utilities requirements are calculated based on the composite 

curves for each point without determining the optimal heat exchanger network. 

• Further optimization of the process design could be achieved in both case studies to 

decrease the amount of solvent, energy consumption, and increase the product purity. 

Both processes are simulated based on literature studies as a starting point. Then, 

sensitivity analyses are carried out on the characteristic parameter of each unit 

operation. For example, coolers and heaters outlet temperatures, compressor pressure, 

feed stage and number of trays in the absorber and stripper columns were varied in 

ranges of interest. The effect of the design on the product stream (sweet gas or clean 

gas for the first and second case study, respectively) and the CO2 stream was monitored. 

We note that no optimization tool was used to define the final design of either process. 

• Our designs differ from previous literature studies as we include a purge in the process. 

We account for pressure drop in the unit operations to represent a real system more 

closely. The pressure drop is fixed to 0.2 bar in the heat exchangers and 0.04 bar/stage 

in the columns. No pressure drop is considered in the flashes. 

• The energy requirement for CO2 injection and storage in a selected site is not considered 

in the models, and only the energy demand to obtain supercritical CO2 is accounted for.  

• Specifically for the flue gas treatment process, the design of the base case has not been 

improved further to allow for greater flexibility to explore a range of six input variables, 

despite the low CO2 removal compared to the majority of literature studies. However, 

some literature about low CO2 capture rate is also available 100,335. We here aim at 
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exploring a wider range of input conditions while proving a lower bound for the proxies 

of the operating costs. Nonetheless, we report that for the same design in Fig. 3 and an 

overall capture rate of 90%, the reboiler duty is 3.3 MJ/kg of CO2 captured. We obtain 

6804 kW and 5280 kW from the Aspen energy analyzer as the target of cooling and 

heating utilities.    

• The training and validation dataset depend on the ranges of the input variables chosen 

and are limited by the flowsheet convergence. 

• To improve the goodness of fit, a higher number of MCMC steps can be explored for 

each output variable. At infinite MCMC steps, the error of the prediction should be 

zero. 

Additionally, we report in Table A0.2 the upper and lower bounds of the two product streams 

in both case studies analyzed. 

Table A0.2 Maximum and minimum flow rate values of the clean gas and CO2 stream obtained during 

the sampling of the two case studies. 

Case study  Clean gas 

[kg/s] 

CO2 stream 

[kg/s] 

CO2 stream  

[%mol. fraction CO2] 

Natural gas 

sweetening 

Minimum 16.08 11.47 98.79 

Maximum 22.12 17.32 99.17 

    

Flue gas treatment 
Minimum 7.17 7.93E-3 99.57 

Maximum 8.21 1.84E-2 99.59 

The sampling and training steps are carried out on an Intel Core i9-9900 machine at 3.10GHz 

and 32 GB RAM running Windows 10. The training of each output variable required 3 to 24 

hours, depending on the number of MCMC steps. The validation is done using an Intel Core 

i7-10510U machine at 1.80GHz and 16 GB RAM running Windows 10. 

A.3.1 Variables selection 

Table 2.1 reports the selected independent and dependent variables for the two case studies 

analyzed. Here, we are interested in two processes that provide a CO2-free product, natural gas 

or flue gas, for a wide range of inlet conditions of the untreated gas. Therefore, the independent 

variables are the properties of the input flow, i.e., temperature, pressure and composition. On 

the contrary, the dependent variables are selected based on the goal of the analysis. In our work, 

we want to analyze the process performance with indicators related to the economics and 



APPENDIX A 

 

166 

environmental impacts, such as heating and cooling energy requirement. We note that different 

performance indicators can be chosen, e.g., CO2 absorption efficiency or recovery, CO2 storage 

conditions or alternative process design parameters. These parameters can be easily calculated 

when working with process simulators. However, it might be more challenging when the data 

are obtained from an experimental setup. In the case of experimental systems, it might not 

always be possible to measure the variables of interest, which can limit the choice of dependent 

variables substantially. The configuration of the setup might be very similar to the flowsheets 

presented in Figure 2.2 and 2.3, but on a smaller scale (see, for example, the pilot scale setup 

presented by Morgan and co-workers120). 

A.3.2 Interpretability of the models 

The most critical aspect of data-driven machine learning algorithms is the poor interpretability 

due to the lack of components based on chemical and physical laws in the algorithm's structure. 

We note that our model is trained with data based on the solution of a complex system of 

nonlinear equations comprising mass and energy balances and thermodynamic equations, 

which might be impossible to express in the form of a single simple equation based on first-

principles. Noticeably, the original first-principles model is more accurate than the simplified 

model, but the latter comes with the great advantage of substantially simplifying the 

modeling156. As already mentioned, building mechanistic models can be time-consuming, 

especially when convergence issues arise. Therefore, the streamlined equations presented here 

can facilitate access to the modeling tools by experimental groups, with applications in a wide 

range of process systems engineering problems, as discussed in Section 2.5.3, and eventually 

in industry. 

Although machine learning methods can be applied to a great variety of problems, including 

chemical engineering-specific problems, the trained models are valid within the range of the 

training set, often with very limited extrapolation capabilities. Consequently, the models 

presented in this work cannot be applied to a different solvent, either reactive or physical, or a 

different solvent composition. However different surrogate models could be conveniently 

introduced for all the cases. On the other hand, hybrid models are developed by integrating 

mass and energy balances and approximating other relationships with data-driven models. The 

advantage of the so-called black box models, such as those presented in our work, is having a 

single compact expression for each dependent variable representing the entire flowsheet. 

Regarding the drawbacks mentioned above, we argue that the lower accuracy shown by the 
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simplified model, relative to the fully mechanistic analog, would also be found in gray box 

(hybrid) models. 

A.3.3 Application of the Bayesian machine scientist to time-dependent analyses 

In our work, we show how the BMS is able to retrieve simplified equations based on synthetic 

data generated from simulations at steady-state. However, the BMS is also suitable to deal with 

time-dependent analyses, provided that time is given as an input variable. Alternatively, the 

BMS can be used to model differential equations instead of the time-variable quantities. In the 

original publication45, the BMS is shown to accurately recover a system of coupled nonlinear 

differential equations. 

More established machine learning methods, such as artificial neural networks (ANN), can also 

be applied to deal with time-dependent data. In this case, they can include internal "recycle" 

connections to deal with dynamic problems and time-series data336. 

A.4 Residual plots 

Once the closed-form expression of a dependent variable has been obtained using the BMS, 

various metrics are calculated to determine the goodness of the regression. The R2, mean 

relative error (MRE) and mean squared error (MSE) of the validation set are reported in the 

Chapter 2, while the residuals are shown in Figure A0.1 for the two case studies. The residuals 

are calculated as the difference between given and predicted values of the output variables in 

the training set. 
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Figure A0.1: Scatter plot of the residual vs. predicted values in the training set. The plots on the left 

column refer to the analytical expressions of the natural gas sweetening process (1), while on the right 

one to the flue gas treatment (2) for the dependent variables a) cooling, b) heating utilities, c) net power 

required and d) amount of MEA.  

  



APPENDIX A 

 

169 

A.5 Model training performance 

We generated 1200 and 2500 scenarios in the natural gas and flue gas cases, respectively, out 

of which 1174 and 1245 converged, which were employed to determine the closed-form 

mathematical expressions for each output variable of the two case studies reported in Chapter 2. 

The scatter plot of the data around the regression line is shown in Figure A0.2 and Figure A0.3 

for the natural gas and flue gas training dataset, respectively. The corresponding R2, MRE and 

MSE are reported in Table A0.3 and Table A0.4. 
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Figure A0.2: Given vs. predicted values correlation for the four output variables in the training dataset 

of the natural gas sweetening process. a) cooling and b) heating utilities, c) net power and d) amount of 

MEA. The regression line is shown in black. 

Table A0.3 R2, MRE and MSE statistics for each output variable of the natural gas sweetening 

process in the training dataset. 

Case study Variable R2 MRE MSE 

Natural gas Min CU 0.9842 0.0102 1.27E+06 

 Min HU 0.9922 0.0054 5.04E+05 

 Net power 0.9986 0.0071 2.97E+02 

 Amount of MEA 0.9930 0.0051 1.70E+07 
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Figure A0.3: Given vs. predicted values correlation for the four output variables in the training dataset 

of the flue gas treatment process. a) cooling and b) heating utilities, c) net power and d) amount of 

MEA. The regression line is shown in black. 

Table A0.4 R2, MRE and MSE statistics for each output variable of the flue gas treatment process in 

the training dataset. 

Case study Variable R2 MRE MSE 

Flue gas Min CU 0.4909 0.0707 1.16E+05 

 Min HU 0.9434 0.0359 1.64E+04 

 Net power 0.9993 0.0099 7.71E+01 

 Amount of MEA 0.9962 0.0046 7.77E+03  
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A.6 Comparison with neural networks 

Lastly, we want to compare the performance of the BMS to a standard machine learning 

approach. Numerical methods are well established in the process engineering community, and 

successful examples of input-output relationships applied to industrial processes have been 

presented337–339. However, we argue that symbolic regression offers more advantages in terms 

of interpretability, complexity and flexibility of the mathematical structure than neural 

networks, making it particularly suited to understanding complex systems340. ANNs, even the 

simplest feedforward fully connected networks, present a specific predefined structure where 

the number of neurons, layers, and hyperparameters must be determined beforehand. Usually, 

these hyperparameters are chosen through different tuning methodologies. Similarly, Gaussian 

processes require the selection of a kernel function, together with its hyperparameters.  

In these numerical methodologies, the model has a pre-defined structure that is trained, i.e., the 

weights are fitted. On the contrary, the BMS does not present a singular structure, but it 

develops one while fitting the parameters. Additionally, the BMS can successfully identify 

rigorous models with as little as 100 points using less than ten parameters45.  

We use the ANN built-in function in MATLAB341 and we activate the Bayesian regularization. 

The results of the ANN are given in Figure A0.4 and Figure A0.5 for the training and testing 

of natural gas, while Figure A0.6 and Figure A0.7 for training and testing of the flue gas, 

respectively. The R2 value of the regression is reported on top of each scatter plot.  

Notably, we find that a data fit with higher R2 can be obtained using the ANN and the 

computational time is lower. However, the ANN is a black box model rather difficult to 

interpret and use, especially for the type of analyses proposed in Chapter 2 Section 2.5. We 

also point out that those variables that are regressed with the lowest accuracy using the BMS 

show the same behavior when the analysis is carried out with ANN (Figure A0.6 a) ). 
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Figure A0.4: ANN results of natural gas process training dataset using the Bayesian regularization. The 

blue line represents the fit, the circles the data and the dashed line is the regression output = target. The 

four output variables in the training dataset are a) cooling and b) heating utilities, c) net power and d) 

amount of MEA. 
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Figure A0.5: ANN results of natural gas process testing set using the Bayesian regularization. The 

green line represents the fit, the circles the data and the dashed line is the regression output = target. 

The four output variables in the testing dataset are a) cooling and b) heating utilities, c) net power and 

d) amount of MEA. 
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Figure A0.6: ANN results of flue gas treatment process training set using the Bayesian regularization. 

The blue line represents the fit, the circles the data and the dashed line is the regression output = target. 

The four output variables in the training dataset are a) cooling and b) heating utilities, c) net power and 

d) amount of MEA. 
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Figure A0.7: ANN results of flue gas treatment process testing set using the Bayesian regularization. 

The green line represents the fit, the circles the data and the dashed line is the regression output = target. 

The four output variables in the testing dataset are a) cooling and b) heating utilities, c) net power and 

d) amount of MEA. 
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We repeat the analysis carried out in Section 2.5.2 using ANN instead of the BMS, whose 

results are reported in Table A0.5. We find that the error on the extrapolation of the cooling 

utility ratio is 12%, while the one on the power is 3.5% compared to the result obtained within 

the training bounds. ANN proves once again that the new technology using Stirling coolers 

performs better in terms of energy consumption. 

Table A0.5. Comparison of cooling and electricity requirements for the process by Song et al.79 (cry) 

and our BAU (BAU) using ANN. The values are calculated as the processes' energy requirement ratio: 

BAU/ cryogenic normalized by the absorber top product mass flow rate.  

  Case I: without heat integration 

  𝐌𝐢𝐧𝐂𝐔BAU/ 𝐌𝐢𝐧𝐂𝐔cry 𝐍𝐞𝐭 𝐩𝐨𝐰𝐞𝐫BAU / 𝐍𝐞𝐭 𝐩𝐨𝐰𝐞𝐫cry 

  Prod. low Prod. high Prod. low Prod. high 

CO2 mol. in 79 (0.5%) 2.58 2.25 1.08 0.94 
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B.1 Process simulation parameters 

The exhaust gas treated in the process illustrated in Chapter 3 (Figure 1, Exhaust gas at 

500.0 °C and 1.0 bar) is characterized by the composition reported in Table B0.1, which is 

typical of the combustion of standard heavy fuel oil (HFO). 

Table B0.1. Exhaust gas composition195,342. 

Component Mole [%] 

CO2 13.95 

O2 0.08 

N2 74.46 

H2O 10.72 

SO2 0.19 

NO 0.61 

After the exhaust gas is mixed with air, the resulting stream is cooled down to 400.0 °C to enter 

the de-nitrification reactor along with ammonia (NH3). At this temperature, nitrogen oxides 

(NOx) are assumed to be nitric oxide (NO)343. Before the reactor, the molar ratio of NH3 and 

NO is set to 1.05. NH3 undergoes a comproportionation reaction into molecular nitrogen (N2), 

where 96 % of the NO is reacted and, simultaneously, 98 % of the SO2 is oxidized into SO3 

according to reactions (B1) and (B2). 

2 NH3+3 NO→2.5 N2+3 H2O (B1) 

SO2+1/2 O2→SO3 (B2) 

In the scrubber, the mixture at 150.0 °C is put into contact with water and sulfuric acid (H2SO4) 

is formed as in Eq. (B3). 

SO3+H2O→H2SO4 (B3) 

The process described in Figure 1 has been designed according to the following assumptions: 

• 0.2 bar pressure drop in the heat exchangers.  

• Centrifugal compressors are assumed for the process, except for K-102, K-103, K-104 

before the CO2 absorption section, which are blowers.  

• The scrubber to neutralize H2SO4 is designed with 15 stages, at 1 bar and a pressure 

drop of 0.2 bar.  



APPENDIX B 

 

182 

• Absorber and stripper are packed columns with Sulzer Mellapak plastic packing 250Y. 

The absorber has 18 stages, and operates at ambient pressure (1.0 bar) with a total 

pressure drop in the column of 1.0 bar, while the stripper has 35 stages, operates at 3 bar 

with an overall pressure drop of 1.4 bar. The total height of the columns is calculated 

based on the number of stages considering 0.61 m between theoretical plates.  

• The CO2 capture process is performed using a 30% wt. aqueous solution of 

monoethanolamine. However, other CO2 capture technologies are commercially 

available. According to the latest DNV Maritime forecast to 2050 report10, carbon 

capture and storage (CCS) will play a decisive role in the transition to alternative fuels 

because of the technical barriers that carbon-neutral fuels are facing, including high 

costs and large energy requirements. Notably, the report suggests that this mature 

technology and its infrastructure can mitigate the impact of the use of conventional 

fuels until the transition to cleaner options is completed. According to the DNV, the 

CCS technology will be operated with liquid absorbents, and in particular post-

combustion using amines was already identified as TRL 9 by Bui and co-authors6. A 

detailed analysis of all possible alternatives for carbon capture is out of the scope of 

this work and can be found in several reviews recently summarized by Hasan et al.302 

from a process engineering perspective. 

• The mass flow of natural gas (NG) required in the furnace is calculated based on the 

reboiler duty and adjusted accordingly in Aspen HYSYS to generate a sufficient 

amount of steam in the steam cycle.  

We note that we use NG to provide the heat required by the reboiler instead of the ship 

fuel, i.e., HFO, because we focus on assessing a short-term interim solution that would 

require minimal modifications in the current vessels. Using HFO would imply that 

additional fuel should be stored in the fuel tank to feed both the engine and the furnace. 

Instead, the solution proposed can be easily adapted to different types of vessels, and it 

can operate with other fuels that might be used in the future, such as biofuels. 

Additionally, once they are empty, the NG tanks are used to store the CO2 captured 

until it is unloaded at the port.  

• Heat integration is performed in Aspen HYSYS using Aspen Energy Analyzer, which 

provides the heat exchangers' size reported in Table B0.4. 
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• The CO2 captured is stored in liquid form on-board, firstly into new tanks that are 

transported for this purpose, and secondly by refilling the tanks of liquefied NG 

consumed in the furnace during the trip. 

• For simplicity, all units are considered in stainless steel, while the storage tanks are in 

carbon steel, assuming that the replacement of the tanks due to corrosion is easier than 

the equipment on-board.  

• The dimensions of the storage tanks are taken from the commercial brochure available 

at the following links 

o CO2 tanks 

o LNG cryogenic tanks 

• We carry out the design of the plant on-board following the correlations in Towler and 

Sinnot206, which account for process controllers, equipment erection and related civil 

engineering works. However, our work is a feasibility study and does not consider 

specific safety regulations that have to be taken into consideration based on the 

particular type of ship. We assume that the equipment on-board have sufficient space, 

building on the work by Feenstra et al.11 who provided a technical drawing of a 

retrofitted plant on-board LNG and diesel vessels, considerably smaller than our 

reference ship. 

• The design of each piece of equipment is based on data available in the literature as 

reported above and in the main text and further adjusted manually to meet the desired 

output conditions for the process, in particular, the columns' number of stages and 

pressure drop in the CO2 capture section. 

We report in Table B0.2 and Table B0.3 the details of the main process streams and duties in 

the flowsheet. 

  

https://www.ascoco2.com/fileadmin/PDF_Download/PDF_Produkte/PDF_CO2_und_Trockeneis_Zubehoer/CO2_Lagerung/en/ASCO_Polyurethane_Insulated_CO2_Storage_Tanks.pdf
https://www.jianshentank.com/products/cryogenic-tank-series/lng-cryogenic-tank.html?gclid=EAIaIQobChMI--y4tfnG8wIVQuvtCh0gkABuEAMYAiAAEgLwbvD_BwE
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Table B0.2. Process simulation molar flow rate, temperature and pressure data of the main process 

streams (± 0.5 kmol/h). The name of the streams refers to Figure 3.1 in Chapter 3. 

Stream Flow rate 

[kmol/h] 

Temperature 

[°C] 

Pressure 

[bar] 

NH3 38.0 25.0 1.0 

Air 100.0 25.0 1.0 

Exhaust gas 5962.0 500.0 1.0 

NG 256.6 25.0 1.0 

Vent gas 7669.0 57.3 1.0 

CO2 to 

storage 

1032.0 −18.0 22.0 

Solvent 

makeup 

108.0 38.0 1.2 

Water 

makeup 

1098.0 38.0 1.2 

 

Table B0.3. Equipment duty, with reference to Figure 3.1 in Chapter 3. 

Stream Duty 

[MW] 

Reboiler 73.5 

Condenser 8.7 

Furnace 52.3 

A schematic of the heat exchanger network is presented in Figure B0.1, while we report in 

Table B0.4 the areas and the heat loads of the corresponding heat exchangers. The network 

does not include the steam cycle for the reboiler heat integration, NG and NH3 heat exchangers 

because they are integrated manually in the process simulation. 
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Figure B0.1: Heat exchanger network of the process in Figure 1. The streams in dotted lines are split. 

The network shown does not include the liquefaction section, i.e., the NG (E-111) and NH3 (E-112) 

heat exchangers and the steam cycle because they are integrated manually. 
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Table B0.4. Heat exchanger network: areas and duties based on the nomenclature provided in Figure 

B0.1. 

Heat 

exchanger 

ID 

Area [m2] Load [kJ/h] Section / connections 

HX1  373.1 223901879.1 Cooling water to CO2 stream (E-109) 

HX2  194.3 18565326.3 Cooling water to NH3 cooling section (E-113) 

HX3 573.7 239364438.3 Cooling water to stripper bottom product (E-107) 

HX4 159.1 31288186.3 Cooling water to stripper condenser 

HX5 348.0 10833138.7 Cooling water to stripper top product E-108 

HX6 5665.5 114877314.5 Cooling water to inlet to CO2 absorption section 

(E-104) 

HX7 2788.6 14067378.1 Cooling water to exhaust treated stream (E-103) 

HX8 810.1 204240136.7 Cooling water to CO2 stream (E-109) 

HX9 50.4 416676.4 NH3 cooling section (E-113) with NG heating to 

furnace inlet temperature (E-110) 

HX10 347.0 58697927.1 Inlet to the stripper (E-106) with CO2 stream (E-

109) 

HX11 234.4 700427.7 Inlet to the absorber (E-105) with NG heating to 

furnace inlet temperature (E-110) 

HX12 7.5 43291.6 NH3 cooling section (E-113) with NG heating to 

furnace inlet temperature (E-110) 

B.2 Assumptions in the cost calculation 

The costing of the process has been performed according to the correlations in Towler and 

Sinnot206, since the plant on-board is equivalent to a standard chemical plant in dimension. The 

reference cost functions are based on each unit's sizing factor according to Eq. (B4). 

Ce= a + b·S
n
 (B4) 

where 𝐶𝑒 represents the purchasing cost of the unit (in $ USGC 2010), 𝑎 represents the constant 

cost factor, 𝑏 represents the proportional size-cost factor, 𝑛 represents the cost exponent, and 𝑆 

represents the size factor, which is characteristic of each unit. 

In the preliminary cost estimation, correction factors are used to include additional costs such 

as piping, instrumentation and control, and civil engineering. In our study, the latter has been 

included, assuming it is equivalent to naval engineering. The conversion to $2019 using has been 

performed using the CEPCI factor in Table B0.5: 
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Table B0.5. CEPCI value for different years. 

CEPCI year Value 

2019 607.5 

2015 556.8 

2010 532.9 

2002 395.6 

 

We consider the following assumptions in the cost calculation:  

• 30 years lifetime of the equipment, 7446 hours per year (annual utilization factor 0.85, 

considering the turnaround times at the port213 and a margin for maintenance and 

delays) and 0.1 interest rate.  

• The units that are already present on-board for desalination and exhaust gas cleaning 

are not considered in the cost calculation. 

• A correction factor of 1.3 is considered to account for the installation of the equipment 

in stainless steel. 

• The costing correlations of the columns packing and the furnace (non-reactive fired 

heater) are taken from Turton et al.344 

• The costing of the blowers and storage tanks are based on the reference used in Danaci 

et al.345, except for the monoethanolamine (MEA) tanks, which are taken from Towler 

and Sinnot206. 

• Mixers and valves are not included in the cost calculation. 

• Electricity, cooling water and heating are supplied on-board with the equipment 

installed at no additional cost. Cooling water is available at an average temperature 

14.5-25 °C, which has been used in the heat integration. 

• In Chapter 3, we report the total cost of the capture on-board plant (85 $2019/tCO2) 

omitting the cost of CO2 transportation and injection underground, as it is common 

practice in the literature for conventional power plants with carbon capture. For 

completeness of the analysis, we report that the total cost of the plant including the 

transportation and injection would be 104 $2019/tCO2 (+18%), assuming 200km of 

pipeline based on Budinis et al.181 for onshore pipes of 3 MtCO2/year and onshore saline 

aquifers sites. We also add that both solutions analyzed in this work, namely DAC and 

capture on-board, require transportation and storage infrastructure. Despite DAC 
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facilities could be placed closer to the storage sites, their installation also depends on 

the availability of the electricity and heating at the location. Therefore, we argue that 

there would be a negligible difference between the CO2 network for capture on-board 

and DAC. Based on the considerations above, a detailed design and optimization of the 

regional CO2 pipeline network is out of the scope of this work. Additionally, since our 

results are based on the global tkm and the data from the busiest ports in the world346, 

which are not geographically close to each other, the economic and environmental 

assessments are based only on the total mass of CO2. However, in the solution proposed 

we do not exclude that the CO2 captured and unloaded at close harbors could be 

transported to the nearest storage site through a common network. Lastly, not only 

pipelines are available to transport the CO2 to the storage site but also we argue that a 

pipeline network performs notably better than road transportation environmentally, and 

it allows building a network of connected harbors. 

• The cost of MEA is taken from Nuchitprasittichai and Cremaschi347, while NG is based 

on Medrano-García et al.348. 

• The final cost does not consider labor, maintenance, waste disposal and 

decommissioning charges. 

• The cost of HX6 and HX7 is calculated extrapolating the correlation from Turton and 

Sinnot206 outside of the suggested size interval.  

The total capital expenditure cost of the plant is 28 million $2019. The breakdown of costs is 

given in Figure B0.2. 

 

Figure B0.2: Breakdown of the total equipment capital cost. Compressors and blowers represent the 

highest investment, followed by heat exchangers and the NG furnace. 
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B.3 Technical feasibility 

The installation of the units on-board comes with the displacement of the cargo to be 

transported, leading to an increased number of vessels to cover the annual freight demand for 

cargo ships (Figure B0.3). The calculations performed for the feasibility assessment are based 

on the volume and mass of the process equipment in Figure 1 and reported in Table B0.6. The 

weights and volumes listed are cumulative for the number of equipment shown. Clearly, the 

space on-board taken up by the NG tanks is considerable (38 % on a mass basis). However, the 

advantages of this additional fuel on-board are threefold, which are summarized next. It 

provides the heat required by the desorber reboiler, thus allowing the vessel to be energetically 

self-sufficient. The evaporation from the LNG to NG is used to cool down the CO2–pure stream 

to storage conditions in the refrigeration cycle. Lastly, the empty tanks where the LNG is 

transported are used to store the liquefied CO2 until the ship reaches the port. 

We consider the weight of the ship of 8500 TEU, whose deadweight (DWT) is 115700 tonnes. 

The cargo accounts for 95 % of the DWT, while the rest 5 % is the fuel for the propulsion for 

a week trip. Therefore, the mass of the cargo displaced is compared to the DWT by subtracting 

the weight of the fuel. In our calculations, we assume that 1 TEU corresponds to 33.2 m3 and 

26.2 tonnes on average. We also assume that the CO2 captured will fill the NG tanks when they 

are empty to reduce the total weight of the extra equipment on-board.  

Table B0.6. Weight and volume of the retrofitted equipment. 

Retrofitted 

equipment 

No. of 

units 

Weight 

(tn) 

Size 

(m3) 

Absorber 1 33.6 281.4 

Desorber 1 36.4 344.2 

CO2 tank 43 1419 7257.7 

MEA tank 2 5.8 19.9 

NG tank 16 945.3 1716.8 

NH3 refrigeration 

cycle 
1 22.60 not available 

Heat exchangers 2 21 19.4 

Furnace 1 22.6 77.7 

Compressors 2 8.8 28.5 

Coolers 5 3.0 11.8  
 2518.2 9757.2 

The total mass of the cargo displaced accounts for the weight of the retrofitted plant and the 

additional fluids of NG, MEA, CO2, NH3 and the propulsion fuel. The total weight added in a 

week from the fluids corresponds to 4871.5 tonnes. Therefore, the total weight that needs to be 

displaced to keep the DWT the same (retrofitted plant + fluids) is 7389.7 tonnes, corresponding 
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to 7 % of the DWT. The new ships needed based on the added weight have a capacity of 8219 

TEU, since the plant takes up 281 TEU.  

To estimate the subsequent increase of ships caused by retrofitting the capture on-board 

scenario in the global fleet, we use container port traffic data from 80 of the busiest ports in 

2019 (set 𝑝), extracted from The World Bank346. The calculations of the increase of ships are 

presented in Eqs. (B5) – (B8).  

We sum up the TEU from all the ports (TEUp) and then we calculate how many '8500 TEU' 

ships are needed to transport all the TEU (CS). Then, we repeat the same approach with the 

new retrofitted ships of '8219 TEU' (FS). Lastly, we calculate the number of new ships that are 

needed to fulfill the capture on-board scenario in the same year using Eq. (B7), and the increase 

of ships as in Eq. (B8). 

 

Figure B0.3: Displacement of the cargo based on the sizing of each equipment on-board with 

consequent increase of the total number of ships to cover the annual demand of 36 trillion tkm. 

Here we assume a perfect market, where the demand for the cargo displaced by the plant 

on-board is completely satisfied by new ships, whose manufacturing cost has not been 

accounted for. However, on the contrary, it might happen that the cargo capacity is reduced 

with no additional ships introduced into the market. Consequently, less cargo is transported, 

and therefore fewer goods are available elsewhere, which would increase the prices of goods. 

CS= 
∑ TEUpp

8500
 

(B5) 

FS= 
∑ TEUpp

8219
 

(B6) 

New ships= FS-CS (B7) 

Increase of ships= 
New ships

CS
·100% 

(B8) 
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In the United Nations Conference on Trade and Development report published in 2010349 the 

cost of gearless container vessels was $ 74 and $ 105 million for 6500 TEU and 12000TEU, 

respectively. Since the price does not scale linearly with the increased cargo capacity on the 

ship, we conservatively assume the price of a 12000 TEU ship. We calculated the additional 

cost the shipping industry would incur to provide carbon capture on-board. This was 

determined to be 299 billion $2010. When compared to the ocean economy GVA in 2010, this 

cost corresponds to 20 %, which is non-negligible. Nonetheless, considering that DAC is still 

characterized by a more limited removal potential, higher cost350 and larger environmental 

impacts (Figures 3.3 and 3.4) than capture on-board, it is clear that the latter is a more appealing 

solution in the short-term.  

B.4 Life cycle assessment inventory 

For the environmental assessment, we define the life cycle inventories of the three scenarios 

investigated using SimaPro software v9.2.0.2 with the Ecoinvent v3.5 database. The 8500 TEU 

reference ship is modeled by combining data from two existing activities that match this ship 

size. The first activity 'Bulk carrier ocean' is from the ELCD database with a functional until 

(FU) of 1 tkm. This activity was necessary to calculate the fuel consumption and emissions 

depending on the ship size, the distance traveled and the DWT. However, the construction and 

maintenance of the ship, and the port facilities were not included. In our study, these are based 

on the activity 'Transport, freight, sea, transoceanic ship, processing', characterized by 

comparable fuel consumption. We report in Table B0.7 the life cycle inventory of the business 

as usual scenario (BAU).  
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Table B0.7. Life cycle inventory of the BAU scenario, FU = 1 tkm. 

Activity Functional Unit Inputs 

Bulk carrier ocean, 

(adjusted for 8500 

TEU) 

1 tkm • HFO consumption 

• Combustion emissions (CO2, CO, CH4, NO2, 

N2O, PM, SO2, NMVOC, NH3, Arsenic, 

Benzene, Cadmium, Lead, Mercury, PAH, 

and other components) 

Transport, freight sea, 

transoceanic ship 

1 tkm • Freight ship construction and maintenance, 

• Port facilities 

For the BAU + DAC scenario, we keep the inventory of the BAU, and we add the inputs of the 

DAC process. The DAC process is scaled according to the FU of the ship activity (1 tkm). The 

DAC process captures 7.87 10-3 kg CO2 per 1 tkm. For the definition of the DAC process, data 

from Keith et al.350 were used. Table B0.8 shows the inventory of the DAC process that 

captures 1 kg of CO2 from the air. Since we perform a global analysis, the electricity 

requirement is covered by the global electricity mix of 2019 as presented in the World Energy 

Outlook of 2019351.  

Table B0.8. Life cycle inventory of the DAC activity without the BAU scenario, FU = 1 kg CO2 

captured. 

Product  Unit 

CO2 1 kg 

Materials/fuels   

Natural gas liquids {GLO} | market for | APOS, U 0.1 kg 

Tap water {GLO} | market group for | APOS, U 3.1 kg 

Calcium carbonate, precipitated {RoW} | market for calcium 

carbonate | APOS, U 
2.2·10-2 kg 

Global electricity mix from 2019 0.2 kWh 

CO2 stored in aquifer at 200 km distance from emission 

source 
7.9 10 -3 kg 

Emissions to air   

Carbon dioxide, fossil −0.7 kg 
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The inventory of the capture on-board scenario is based on the mass and energy flows taken 

from the process simulation. Then, all the values are scaled according to the functional unit. 

The inventory of the capture on-board is reported in Table B0.9. These inputs are added to the 

inventory of the BAU, which includes HFO consumption, freight ship construction and 

maintenance, port facilities, and combustion emissions. Regarding the combustion emissions, 

the ones not included in Table B0.9 are taken from the BAU inventory. In the case of the freight 

ship and port facilities, an increase of 3.4 % is estimated compared to the BAU, as stated in 

Chapter 3. The CO2 transport and storage inventory is taken from the work of Wildbolz283. 

Table B0.9. Life cycle inventory of the capture on-board without the BAU scenario, FU = 1 tkm  

Product  Unit 

Bulk ocean carrier, 8500 TEU, week trip 1 tkm 

Materials/fuels   

Monoethanolamine  1.9 10-5 kg 

Natural gas liquids {GLO} | market for | APOS, U 7.2 10-4 kg 

Ammonia, liquid {RoW} | market for | APOS, U 2.0 10-5 kg 

CO2 stored in aquifer at 200 km distance from emission 

source 
7.9 10 -3 kg 

Emissions to air   

Carbon dioxide, fossil 4.9 10-4 kg 

Methane, fossil  1.1·10-5 kg 

SO2 1.3 10-6 kg 

Monoethanolamine 1.9 10-5 kg 
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C.1 Biomass transformation processes  

Due to its physical and chemical characteristic, the direct use of biomass as fuel is unappealing 

from a technical and logistic perspective. Biomass feedstocks have low energy densities due to 

high moisture content, making transportation and storage more expensive than traditional 

feedstocks in addition to a low thermal efficiency of energy conversion352. Therefore, biomass 

is rather converted into useful forms of energy, known as bioenergy, such as heat, electricity, 

liquid and gaseous fuels.  

The conversion of biomass into gaseous fuels, referred to as biofuels, can be carried out via 

two main pathways, i.e., biochemical and thermochemical353.  

Biochemical conversion processes involve the use of microbes and/or enzymes that can be 

utilized with specific types of biomass, namely wet feedstocks. Consequently, the productivity 

depends on the biological conversion, generally slow, which requires high investment costs for 

large reactors. Additionally, the biochemical conversion routes produce secondary waste such 

as biomass sludge. 

On the other hand, the thermochemical conversion can be effectively applied to any type of 

biomass. In this process, the reactions taking place are significantly less complex and 

completely chemical. Furthermore, in the thermochemical conversion route, complete 

utilization of the biomass is possible. Despite gasification being an efficient and high mature 

technology, its applications are mainly focused on hydrogen production, such as in the work 

by Susmoza et al.354 and as reviewed by Tezer and co-workers 355 

In particular, here we are interested in the production of substitute natural gas from biomass 

for which both routes described above can be utilized. Additional process can be considered 

for this purpose, e.g., hydrothermal gasification or renewable methane.  

C.2 Process description and modeling in Aspen Plus 

The process modeled produces synthetic natural gas (biomethane), which has the same 

properties as conventional natural gas for grid injection (Table C0.16), from selected biomass 

feedstocks whose characteristics are reported in Table C0.1-Table C0.3.   
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C.2.1 Biomass characterization in Aspen Plus 

The feedstock is characterized as non-conventional component in Aspen Plus using the 

HCOALGEN and DCOALIGT property models that require the ultimate and proximate 

analyses in order to estimate the biomass enthalpy of formation, heat capacity and density. 

Additionally, the moisture content is given as input.  

The ultimate and proximate analysis input to the process simulator are shown in Table C0.1, 

Table C0.2 and Table C0.3 based on Vassilev et al.356. 

Table C0.1. Biomass feedstocks proximate analysis. Acronyms: MS = moisture, FC = fixed carbon, 

VM = volatile matter. 

 Proxanalysis 

 MS FC VM Ash 

Wheat straw residues 30 18.1 74.8 7.1 

Forest residues 30 16.9 79.9 3.2 

Miscanthus 30 15.8 81.2 3 

Willow 30 15.9 82.5 1.6 

Poplar 30 12.3 85.6 2.1 

Table C0.2. Biomass feedstocks ultimate analysis. 

 Ultanalysis* 

 Ash Carbon Hydrogen Nitrogen Chlorine Sulfur Oxygen 

Wheat straw 

residues 

5.98 46.18 5.70 0.65 0.57 0.16 40.76 

Forest residues 1.38 51.96 5.32 0.69 0.03 0.10 40.52 

Miscanthus 2.63 47.87 5.84 0.39 0.13 0.15 43.00 

Willow 1.38 49.13 6.02 0.59 0.01 0.06 42.81 

Poplar 1.96 50.56 5.98 0.59 0.03 0.02 40.86 

* redistributed to 100% 

Table C0.3. Biomass feedstocks sulfate analysis. 

 Sulfanalysis 

 Sulfate 

Wheat straw residues 0.02 

Forest residues 0.02 

Miscanthus 0.02 

Willow 0.02 

Poplar 0.02 
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Figure C0.1: Process flow diagram of biomass conversion to biomethane. Flowsheet refers to poplar 

scenario, but all the scenarios are equivalent with minor modifications. The dotted box represent a 

sequence of repeated equipment and the dotted natural gas stream indicates that not all the feedstocks 

need this additional fuel input (only poplar and willow). 

C.2.2 Process sections 

The main structure of the process represented in Figure C0.1 is based on the GoBiGas plant357 

and available literature studies238–246, particularly focusing on the modeling of biomass thermal 

gasification in Aspen Plus, and further adjusted regarding the operating conditions for the 

different feedstocks considered. The process comprises seven sections, which are sketched in 

Figure C0.1 and described in detail in Section 4.2.2. Hereafter the schematic and description 

refers to the poplar scenario. However, all the other scenarios feature the same design with 

minor modifications to the flowsheet. 

The process simulation uses the Peng-Robinson equation of state with Boston-Mathias 

modifications for the main section, while the ELEC-NRTL and Elec-wizard packages are used 

for the carbon capture and storage (CCS) section.  
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C.2.2.1 Drying stage  

The generic feedstock is assumed to arrive at the biomethane plant with a moisture content of 

30%, and it needs to be dried before entering the gasifier. A calculator block was setup in the 

process simulator to decreases the moisture content of the non-conventional biomass stream. 

The moisture is converted into a conventional water stream that is later separated from the non-

conventional biomass stream. In our process model, an adiabatic stoichiometric reactor, an 

adiabatic flash unit and a heater to preheat the drying agent are used to simulate the drier unit 

(Figure C0.2).  

 

Figure C0.2: Schematic of the process modeling of the dryer in Aspen Plus358. 

Eq. (C1) was implemented in the stoichiometric reactor to represent the drying process238,243. 

 Biomass(wet) → 0.0555084H2O + Biomass(dry) (C1) 

In addition to Eq. (C1), a reaction conversion was defined, which depends on the initial and 

target moisture content. The conversion is calculated in a calculator block as in Eq. (C2)238. 

 Xdrying = 
min −mout
100 − min

  (C2) 

Where Xdrying is the conversion, min and mout are the moisture content of the biomass entering 

and leaving the stoichiometric reactor, respectively. 

The energy demand of the drying section is determined by the duty of the heater, where air 

enters at 23 °C and leaves at 200 °C. 
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C.2.2.2 Gasification 

A fast internal circulating fluidized bed gasifier (FICFB) was chosen to carry out the biomass 

gasification. In this technology, a nitrogen-free syngas can be produced due to the gasification 

and combustion reactions taking place in two separate chambers.  

In an FCIFB, the dry biomass feedstock is gasified in the gasification chamber with steam 

entering the unit from the bottom. The amount of steam (steam to biomass ratio θSB) introduced 

into the gasifier is a relevant parameter discussed intensively in the literature and here defined 

as in Eq. (C3)238,240. 

 θSB =
MbiowH2O,bio +Msteam
Mbio(1 − wH2O,bio)

 (C3) 

Where Mbio is the mass flow of the biomass, wH2O,bio is the water weight fraction of the biomass 

and MSteam is the steam entering the gasification section. The water content and the end 

composition of the gasifier’s product depend on the steam to biomass ratio, which typically 

ranges between 0.5 and 1.0. Here, it was adjusted by sensitivity analysis varying θSB while 

observing the final product composition.  

Air is supplied to the combustion chamber to carry out the combustion of the char and heat up 

the inert bed material, typically sand, in the gasification chamber. The bed material provides 

the heat to carry out the endothermic gasification reactions to produce syngas. 

 

Figure C0.3: Schematic of the process modeling of the gasification in Aspen Plus358. 
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The first step to model a gasification process is to convert the non-conventional elements into 

conventional ones using a calculator block in a yield reactor such that all the elements satisfy 

the atom balance, while tar and char are still modeled as non-conventional components.  

The ratio of tar formation, which is not calculated by default in the process simulator, is based 

on the empirical correlation reported in Eq. (C4)238. 

 

Mtar = 0.35Mbio,dryexp[−3.04 10
−3(T

− 500)] exp [−4.34 exp [
−2.34 104

R(T + 273.15)
τ]] 

(C4) 

where Mtaris the mass [kg] of the tar generated from the biomass, Mbio,dry the mass [kg] of dry 

biomass, T the temperature [°C] , R the gas constant and τ the residence time . 

The tar is later converted into organic conventional components with molecular weight above 

78 359, whose composition depend on the feedstock and process conditions, using a 

stoichiometric reactor. Here we consider a composition of tar that includes only benzene, 

toluene and naphthalene 359. 

The part of biomass that does not convert into syngas is called char, and it is based on the fixed 

carbon value specified in the proximate analysis. The char is used to power the gasification 

unit by combustion with air, after it is converted into pure carbon in a stoichiometric reactor. 

We use air as it is a cheaper option compared to pure oxygen from an air separation unit. 

Next, the conventional elements enter a Gibbs reactor together with medium pressure steam at 

162 °C, decreased to 1 bar before the reaction takes place, where the free Gibb’s energy is 

minimized until equilibrium is reached at 900 °C and 1 bar. Char and ash are separated from 

the tar and syngas in a separation unit and are sent to the combustion reactor where the carbon 

is combusted with preheated air at 950 °C and 1 bar. The fluegas that results from the 

combustion is used within the process for heat integration. 

In practice, the combustion reactor provides the heat for the gasifier by exchanging the heated 

bed material and unreacted char with the gasifier. Therefore, a heat balance is set up to calculate 

the heat exchange among the combustion, bed material and biomass gasification units in a 

calculator block. In the case of willow and poplar feedstock, a small amount of natural gas at 
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30 °C and 16 bar is added to the combustion to satisfy the energy balance because of the lower 

fixed carbon embedded in these biomass types. 

The sequence of units employed in the process simulator is shown in Figure C0.3. We note that 

a kinetic model of the gasifier could be implemented; however, it is usually not done in the 

literature due to the challenges related to its correct implementation, and the approach 

described above instead is widely used.  

A formation of inorganic contaminants such as hydrogen sulfide and hydrogen chloride also 

occurs inside the gasifier, which are removed in the subsequent process section. 

C.2.2.3 Syngas cleaning and water gas shift  

Syngas cleaning is carried out to prevent catalyst poisoning and reach the desired conditions 

of the final product 360. Hydrogen sulfide and hydrogen chloride are the only inorganic 

impurities removed based on literature data 361, while ammonia is present in a significantly 

lower concentration, which is considered not critical. Among the compounds mentioned, 

hydrogen sulfide is the most harmful component for copper catalysts, which are often utilized 

in water gas shift reactors, but all contribute to corrosion and environmental issues 361. 

The reforming of tar compounds can be performed in catalytic filter candles, which are here 

modeled in stoichiometric reactors with defined conversions based on the literature 361. The 

reactions that take place convert the tars into syngas by reforming, which is then cooled down. 

The modeling of hydrogen sulfide (H2S) and hydrogen chlorine (HCl) removal was then carried 

out in separation units in order to avoid interference among the adsorption of different 

components. The cleaning of H2S can be accomplished using a sorbent that involves a solid-

gas reaction between a metal oxide and hydrogen sulfide on a zinc oxide catalyst within an 

operating temperature range of 450-650 °C. In our process model, the separation of H2S and 

COS is performed in an ideal separator at 550 °C, which removes 99% of each component. 

A promising method of removing hydrogen chloride from syngas utilizes alkali-based sorbents, 

e.g., sodium bicarbonate that can decrease the concentration of hydrogen chloride in syngas to 

concentrations below 1 ppm at approximately 550 °C. In this work, the removal of HCl is 

carried out in an ideal separator where 99% of HCl is removed at 550 °C. 
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The gas leaving the organic components cleaning section is then cooled down and compressed 

to 2 bar before entering the next unit at 265 °C. Indeed, in order to perform the methanation 

reaction, i.e., the reaction between CO and H2 to produce methane, the molar ratio between the 

reactant must be 1:3 (syngas ratio). This can be achieved in a water gas shift (WGS) reactor 

where Eq. (C5) takes place. 

 CO + H2O ⇿ CO2 + H2  (C5) 

A kinetic model was implemented in an adiabatic plug flow reactor based on literature 362. 

Usually, WGS reactors include a series of reactors intercooled. In our study, the desired ratio 

is obtained with only one reactor, whose length was adjusted using heuristics to reach an 

optimal syngas ratio of 3. Excess water is then flashed before recompression to compensate for 

pressure losses. 

Table C0.4. Information on reactor design. The range of values of the reactors length is the overview 

of the different reactors in each scenario and across scenarios. The number of reactors refers to the 

number of reactors to carry out each reaction in each scenario. Acronyms: WGS = water gas shift 

reaction, METH = methanation reaction.  

Reaction Diameter [m] Length range [m] Number reactors 

WGS 1.50 2.5-5.0 1 

METH 2.25 3.5-9.5 6 

C.2.2.4 CO2 capture 

To reduce the costs of compression, carbon dioxide is removed at atmospheric pressures before 

the syngas is compressed to the condition of the methanation reaction. 

The CO2 capture plant is based on the state-of-the-art post-combustion process125, which is 

intensively covered in the literature and implemented at commercial scale (TRL 96). The 

syngas enters at the bottom of the absorption column and is put in countercurrent contact with 

a 30%wt. MEA (C2H7NO) aqueous solution from the top. After the carbon dioxide is absorbed 

by the solvent inside the column, the CO2-free syngas is vented while the CO2-rich solvent 

leaves at the bottom. Then, the CO2-rich stream enters a second column, the stripper, where 

the CO2 is separated from the solvent. The latter is sent back to the first column to be recycled. 

A fresh MEA make-up, calculated using a calculator block, is added to compensate for the 

solvent losses in the purge (1% of the total recycled stream to avoid impurities accumulation) 

and the rest of the streams. The CO2 stream on the other hand, is cooled down to 35°C and 

separated from condensed water in an adiabatic flash unit before being compressed.  
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We note that CO2 is also present in the fluegas due to char combustion. This stream, although 

it could be mixed with the CO2-rich gas coming from the stripper, is not captured because it 

contains nitrogen, whose presence in the syngas should be avoided. 

C.2.2.5 CO2 transportation to storage site 

The CO2-rich gas leaving at the top of the stripper column is collected and pressurized in a 

series of compressors with a pressure ratio of 3.5. In order to reduce the temperature between 

two consecutive stages, the gas is cooled down after each compression to 135 °C. After each 

cooler water is flashed to purify the carbon dioxide stream further. This cooling, separation and 

pressurization sequence is repeated multiple times in order to reach a vapor pressure of 110 

bar, which is a standard condition for the transportation of CO2 in pipeline363. 

C.2.2.6 Methanation reaction  

The CO2- lean syngas leaves the capture plant at atmospheric pressure, and it enters a two-

stage compression section, that raises the syngas pressure just above 16 bar. Then, the syngas 

is cooled down to 250 °C in a heat exchanger, the temperature at which the methanation is 

carried out.  

 CO + 3H2  ⇿ CH4 +H2O  (C6) 

Methanation, i.e., the conversion of H2 and CO into CH4 according to the stoichiometry in 

Eq. (C6), is a highly exothermic reaction (ΔH298K = -206.28 kJ mol−1), which is carried out 

in a series of isothermal plug flow reactors. The heat of reaction is utilized towards medium 

pressure steam generation, computed using Aspen Energy Analyzer. The kinetic model 

developed by Kopyscinksi364 was implemented in Aspen Plus to model the methanation 

reaction over a commercial nickel based catalyst. The optimal reactor length at which the 

maximum conversion of carbon monoxide is reached was found using heuristics.  

C.2.2.7 Biomethane compression  

According to Eq. (C6), the products of the methanation reaction are methane and water, which 

has to be removed before grid feed in. After the water is partially condensed and removed using 

in an adiabatic flash unit, the final product is compressed to 16 bar and it is ready to be injected 

in the existing natural gas grid, unless further compression is needed to meet the requirement 

of a specific grid. 
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C.2.2.8 Heat integration 

Heat integration is performed in Aspen Energy Analyzer, which calculates the amount of hot 

and cold utilities needed and the heat exchanger network. This is carried out in three steps: 

first, the gasification section is isolated from the rest of the flowsheet to ensure that the different 

units implemented as described in C.2.2.2 satisfy the heat balance. Then, the heat integration 

of methanation reaction is performed to calculate the amount of steam generated. Finally, the 

rest of the process streams is matched among themselves and the utilities to determine the 

number of heat exchangers needed. The heating requirement of the process is completely 

satisfied by exchanging heat among the streams with the additional production of low and 

medium pressure steam. Cooling water is used as the only cooling utility in the process. 

C.2.3 Modeling assumptions 

Drying 

• The feedstock enters the drier at 23 °C, assuming that has been left on the land before 

transportation to the processing site. 

• The moisture content of the feedstock is 30 wt. % before the drying section and10wt % after 

the drying section365. 

• Dry air preheated to 200 °C is used as a drying agent366. 

Gasification 

• The biomass feedstock and bed materials are fed at uniform temperature238. 

• The temperature inside the gasifier is uniform at 900 °C and the residence time is assumed to 

be 14 s367. 

• The temperature inside the combustion chamber is uniform at 950 °C (based on observations 

in Nikoo and Mahinpey368). 

• The steam to biomass ratio θSB in the gasifier is set to 0.5. 

• The gasification is carried out at atmospheric pressure242. 

• Ash and bed materials are considered inert238. 

• The char is assumed to be pure carbon. The amount of char produced is equal to the fixed 

carbon in the biomass243,359,361. 

• The pressure drop in the gasification and combustion sections is 0.1 bar369  

• Complete char combustion occurs inside the combustion chamber. 
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• The tar compounds formed in the gasifier are benzene (C6H6), naphthalene (C10H8) and 

toluene (C7H8)
359,361.  

• No heat losses are considered within the system243. 

Syngas cleaning and cooling 

• Pressure drop of 0.2 bar in heater and coolers. 

• The absorption units utilized for the removal of organic impurities remove 99% of hydrogen 

sulfide and hydrogen chloride from the syngas, but the NaCl and ZnS formed are not considered 

in the environmental assessment361. 

CO2 capture 

• The solvent used for the carbon dioxide absorption is composed of 30% MEA and 70% water 

on a mass basis. 

• Pressure drop of 0.04 bar per stage in columns. 

• Isentropic efficiency of η = 0.75 in compressors. 

• No pressure drop in mixers and splitters. 

• RADFRAC model was used to model absorption and stripping columns. 

Reactors 

• Pressure drop in the water gas shift reactor was modeled using Ergun’s equation embedded 

in Aspen Plus. 

• The pressure drop in the intercooled adiabatic methanation reactor was assumed to be 1 bar. 

C.3 Economic assessment 

The economic assessment is based on Towler and Sinnot except for column packing material 

and furnace from 344. The size of the heat exchanger determined with the Aspen Energy 

analyzer. 

Ce= a + b·S
n
 (C7) 

where 𝐶𝑒 represents the purchasing cost of the unit (in $ USGC 2010), 𝑎 represents the constant 

cost factor, 𝑏 represents the proportional size-cost factor, 𝑛 represents the cost exponent, and 𝑆 

represents the size factor, which is characteristic of each unit. 
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The cost calculations are carried out in the reference year 2022, without considering the effect 

of future technology learning that can reduce the total capital investment352. 

Table C0.5. Operating expenses unitary costs and references used in the process economics. 

Operating expenses Unit Price/unit Reference 

Electricity Eur/kWh 0.2525 370 

Feedstocks $2009/t  254,371 

Solvent $2011/kg 1.3 347 

Process water use $2018/kg 0.000177 344 

Cooling water use $2019/m3 0.033 372 

Copper catalyst $2019/kg 1.36 373 

Nickel catalyst $2019/kg 2.37 373 

Zink sorbent $2020/kg 2.6 361 

Sodium bicarbonate $2022/t 300 374 

Waste water $2019/m3 1.5 372 

Ash treatment $/kg 0.04 375 

Natural gas $2017/kg 0.2441 348 

Other economic factors considered in the economic assessment are reported in Table C0.6. 

Table C0.6. Additional parameters used in the cost calculations. 

Parameter Value 

CEPCI 2022 830 

CEPCI 2020 596 

CEPCI 2019 608 

CEPCI 2018 603 

CEPCI 2017 568 

CEPCI 2016 542 

CEPCI 2011 586 

CEPCI 2010 551 

CEPCI 2009 522 

CEPCI 2005 468 

CEPCI 2000 394 

  

USD to EUR2022 0.952 

  

Plant operating hours 8000 

C.4 Biomass potential  

We compute the total availability of biomass feedstocks in the EU. For the energy crops, we 

assume that a portion of marginal land can be employed for cultivation253,254. The biomass 

available is then calculated based on the yield of each crop. For the residues, instead, we use 

data on regional availability253,254 and calculate the amount that is accessible based on 

sustainable removal rates for each country252. The biomethane potential is then calculated based 

on the biomass availability and the process efficiency for each feedstock. 
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Table C0.7. Calculated biomass potential.  

 Energy crop [tdry/yr] Residues [tdry/yr] 

 Miscanthus Willow Poplar Wheat straw Forest  

Austria 748162 386020 537244 312568 2724349 

Belgium 336311 173522 241500 254775 655149 

Bulgaria 3139477 1619837 2254412 840686 809366 

Cyprus 17906 9239 12858 0 0 

Czechia 1250136 645017 897704 1075468 3147364 

Germany 3968806 2047735 2849940 8737419 17167318 

Denmark 488078 251828 350482 1304790 579274 

Spain 40003048 20639870 28725593 2031278 3864628 

Estonia 6629120 3420344 4760272 183072 1404421 

Finland 33550 17311 24092 369998 8752247 

France 5619303 2899321 4035138 8832427 10995770 

United 

Kingdom 

9033579 4660942 6486878 2079354 2496362 

Greece 2826473 1458340 2029648 326057 569855 

Hungary 1012664 522491 727179 2427231 1400161 

Ireland 8897948 4590963 6389484 29809 353409 

Italy 2941242 1517556 2112062 2830793 3684116 

Lithuania 9277443 4786766 6661994 543435 1523926 

Luxembourg 6979 3601 5011 0 118159 

Latvia 8211547 4236809 5896589 60723 598204 

Malta 0 0 0 0 0 

Netherlands 539410 278312 387342 133089 161906 

Poland 13858020 7150149 9951238 6164633 9644118 

Portugal 7175732 3702372 5152786 114420 1021470 

Romania 3791058 1956025 2722303 2326943 3870704 

Croatia 982462 506908 705491 319841 1020459 

Slovakia 918530 473922 659583 730442 1632622 

Slovenia 197592 101949 141888 84129 951533 

Sweden 2668053 1376602 1915889 502485 14630124 

C.5 Life cycle assessment (LCA) methods and inventory 

We carry out an attributional LCA following the four phases defined in the ISO 14040/44 

standards. In the first phase, the goal and scope of the study are defined. The goal of this LCA 

is twofold: i) to quantify the carbon footprint of biomethane production via biomass 

gasification with CCS in the EU and ii) to estimate the climate mitigation potential and 

environmental implications of a large-scale deployment of biomethane production in the EU. 

For both goals, the functional unit is defined as the production of one cubic meter of 

biomethane at normal conditions (Ncum) via biomass gasification. The system boundaries are 

defined as cradle-to-gate, including biomass transportation, utilities required for the capture, 

and CO2 transportation via pipeline and storage underground. The influence of considering a 

cradle-to-grave scope, i.e., including also emissions from biomethane combustion for heat and 
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power production, whose results are presented in the Supplementary information. A complete 

list of the activities used in the modeling of the environmental assessment is provided in Table 

C0.9 to Table C0.13. 

The second phase in the LCA is inventory analysis, in which all the relevant inputs and outputs 

associated with biomethane production are compiled and quantified (i.e., emissions, energy, 

raw materials, etc.). A distinction can be made between foreground and background processes.  

We carry out the analysis following an attributional approach and address multi-functionality 

by adopting a system expansion approach, i.e., we do not account for the environmental credits 

of steam production.  

The life cycle inventory (LCI) phase is implemented in Brightway2 using the Activity Browser 

interface and the Ecoinvent v. 3.8 database, combining data of the foreground and background 

systems. The former includes the mass and energy flows from the process simulation, while 

the latter is modeled using average market data from the environmental database for each 

scenario (Supplementary Table C0.9 to Table C0.13). The selection of activities, e.g., ash 

treatment, wastewater treatment, synthetic gas factory, is based on a sample activity for 

biomethane production available in Ecoinvent (biomethane production, high pressure from 

synthetic gas, wood, fluidised technology). 

In the life cycle impact assessment (LCIA) phase, the elementary flows quantified in the 

inventory analysis phase (i.e., natural resources and emissions to air, soil, and water) are 

translated into potential impacts by using a set of impact assessment methods. We quantify the 

climate impacts by applying the IPCC 2021 method with a 100-year time horizon as well as 

the other 15 impact categories available in the Environmental Footprint 3.0 and updated 

LANCA v. 2.5 method recommended by the European Commission376. This method also 

defines links between the environmental indicators that are connected to the planetary 

boundaries and five Sustainable development goals. 

We use a modified IPCC method that includes characterization factors (CFs) for biogenic 

CO2
377. This is needed to properly account for negative emissions technologies, particularly 

the CO2 uptaken during the biomass growth and the subsequent permanent sequestration 

underground. 
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Later, we regionalize the activities of biomethane production in the EU based on the energy 

mix and natural gas supply, while the remaining activities are average market data for the EU. 

We consider average impact values for the CO2 transportation and unlimited storage capacity 

at the national level. 

Life cycle impact methodologies assessed: 

Table C0.8. Methods and impact categories selected in this study. 

Method Impact category Unit 

IPCC 2013 climate change GWP 100a (kgCO2-eq) 

EF v. 3.0 acidification accumulated exceedance (ae) 

 ecotoxicity: freshwater comparative toxic unit for ecosystems 

(CTUe) 

 energy resources: non-

renewable 

abiotic depletion potential (ADP): fossil 

fuels 

 eutrophication: freshwater fraction of nutrients reaching freshwater 

end compartment (P) 

 eutrophication: marine fraction of nutrients reaching marine end 

compartment (N) 

 eutrophication: terrestrial accumulated exceedance (AE) 

 human toxicity: 

carcinogenic 

comparative toxic unit for human (CTUh) 

 human toxicity: non-

carcinogenic 

comparative toxic unit for human (CTUh) 

 ionising radiation: human 

health 

human exposure efficiency relative to u235 

 material resources: 

metals/minerals 

abiotic depletion potential (ADP): elements 

(ultimate reserves) 

 ozone depletion ozone depletion potential (ODP) 

 particulate matter 

formation 

impact on human health 

 photochemical ozone 

formation: human health 

tropospheric ozone concentration increase 

 water use user deprivation potential (deprivation-

weighted water consumption) 

LANCA v. 2.5 land use – erosion potential kg soil loss 

C.5.1 Cradle-to-gate analysis 

The comparison with the current scenario, i.e., the business as usual (BAU), is performed using 

the Ecoinvent activity market group for natural gas, high pressure EU wo CH. 

Assumptions in the environmental assessment: 

• Transportation from land to processing site is assumed to be 50 km.  

• Impact of catalyst negligible in the environmental assessment  
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The inventories of the five scenarios analyzed are reported in Table C0.9 to Table C0.13. The 

first market group for tap water refers to the water required in the CCS plant, while the second 

entry refers to the process water used for steam generation. 

Table C0.9. Life cycle inventory of biomethane production from wheat straw residues. 

biomethane production, 16 bar from wheat straw residues, fluidized 

technology 

1 Ncum 

Technosphere flows    

 Amount  Unit  

carbon dioxide transport and storage, 200 

km pipeline, storage 1000m 

1.61084156 kilogram  

market for copper oxide 0.00001 kilogram  

market for monoethanolamine 0.082648 kilogram  

market for nickel, class 1 0.00022 kilogram  

market for sodium bicarbonate 0.00077 kilogram  

market for transport, freight, lorry 16-32 

metric ton, EURO6 

0.170733 ton kilometer  

market for wastewater, average -0.00018974 cubic meter  

market for wood ash mixture, pure -0.204197 kilogram  

market for zinc 0.00023 kilogram  

market group for electricity, medium voltage 1.51533 kilowatt hour  

market group for tap water 1.69346 kilogram  

market group for tap water 6.05302 kilogram  

synthetic gas factory construction 2.90E-09 unit  

waste biomass, wheat straw, dry 3.41466 kilogram  

    

Biosphere flows    

 Compartment Amount Unit 

crbon soil 1.94E-34 kilogram 

carbon dioxide, non-fossil air 2.264628 kilogram 

carbon monoxide, non-fossil air 3.57E-05 kilogram 

nitrogen air 19.31509 kilogram 

nitrogen oxides air 5.87E-06 kilogram 

oxygen air 4.218236 kilogram 

water air 0.001084 cubic meter 

water water 0.00351415 cubic meter 

water, cooling, unspecified natural origin natural 

resource - in 

water 

0.08695899 cubic meter 
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Table C0.10. Life cycle inventory of biomethane production from forest residues. 

biomethane production, 16 bar from forest residues, fluidized technology 1 Ncum 

Technosphere flows    

 Amount  Unit  

carbon dioxide transport and storage, 200 

km pipeline, storage 1000m 

1.775857 kilogram  

market for copper oxide 0.00003 kilogram  

market for monoethanolamine 0.09460595 kilogram  

market for nickel, class 1 0.00066 kilogram  

market for sodium bicarbonate 0.00003 kilogram  

market for transport, freight, lorry 16-32 

metric ton, EURO6 

0.14326 ton kilometer  

market for wastewater, average -0.000196144 cubic meter  

market for wood ash mixture, pure -0.039546 kilogram  

market for zinc 0.00012 kilogram  

market group for electricity, medium 

voltage 

1.51033098 kilowatt hour  

market group for tap water 2.07809 kilogram  

market group for tap water 4.09255 kilogram  

synthetic gas factory construction 2.90E-09 unit  

waste biomass, forest residues, dry 2.86513 kilogram  

    

Biosphere flows    

 Compartment Amount Unit 

carbon dioxide, non-fossil air 1.7742 kilogram 

carbon monoxide, non-fossil air 3.39E-07 kilogram 

nitrogen air 16.22214 kilogram 

nitrogen oxides air 0.00040825 kilogram 

oxygen air 3.63551 kilogram 

water air 0.000909564 cubic meter 

water water 0.003247864 cubic meter 

water, cooling, unspecified natural origin natural 

resource - in 

water 

0.08354768 cubic meter 
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Table C0.11. Life cycle inventory of biomethane production from Miscanthus. 

biomethane production, 16 bar from miscanthus, fluidized technology 1 Ncum 

Technosphere flows    

 Amount  Unit  

carbon dioxide transport and storage, 200 

km pipeline, storage 1000m 

1.71297 kilogram  

market for copper oxide 0.000023 kilogram  

market for monoethanolamine 0.093385 kilogram  

market for nickel, class 1 0.00067 kilogram  

market for sodium bicarbonate 0.000091 kilogram  

market for transport, freight, lorry 16-32 

metric ton, EURO6 

0.15361 ton kilometer  

market for wastewater, average -0.00020199 cubic meter  

market for wood ash mixture, pure -0.080705 kilogram  

market for zinc 0.00019 kilogram  

market group for electricity, medium 

voltage 

1.529948 kilowatt hour  

market group for tap water 1.73289 kilogram  

market group for tap water 3.42066 kilogram  

miscanthus production 3.072184 kilogram  

synthetic gas factory construction 2.90E-09 unit  

    

Biosphere flows    

 Compartment Amount Unit 

carbon dioxide, non-fossil air 1.778629 kilogram 

carbon monoxide, non-fossil air 2.45E-07 kilogram 

nitrogen air 17.39844 kilogram 

nitrogen oxides air 0.000607 kilogram 

oxygen air 3.989411 kilogram 

water air 0.000975296 cubic meter 

water water 0.00323462 cubic meter 

water, cooling, unspecified natural origin natural resource - in 

water 

0.09339 cubic meter 
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Table C0.12. Life cycle inventory of biomethane production from willow. 

biomethane production, 16 bar from willow, fluidized technology 1 Ncum 

Technosphere flows    

 Amount  Unit  

carbon dioxide transport and storage, 200 

km pipeline, storage 1000m 

1.65665 kilogram  

market for copper oxide 2.37E-05 kilogram  

market for monoethanolamine 0.09044 kilogram  

market for natural gas, high pressure 0.00117 cubic meter  

market for nickel, class 1 0.000726 kilogram  

market for sodium bicarbonate 6.7523E-06 kilogram  

market for transport, freight, lorry 16-32 

metric ton, EURO6 

0.146145 ton kilometer  

market for wastewater, average -0.00019636 cubic meter  

market for wood ash mixture, pure -0.04037 kilogram  

willow production, short rotation coppice 2.92291 kilogram  

market for zinc 7.36E-05 kilogram  

market group for electricity, medium 

voltage 

1.513397552 kilowatt hour  

market group for tap water 1.65117 kilogram  

market group for tap water 3.97716 kilogram  

synthetic gas factory construction 2.90E-09 unit  

    

Biosphere flows    

 Compartment Amount Unit 

ammonia air 5.71E-16 kilogram 

carbon soil 0 kilogram 

carbon dioxide, non-fossil air 1.706115022 kilogram 

carbon monoxide, non-fossil air 2.78E-05 kilogram 

hydrogen air 5.27E-09 kilogram 

methane, non-fossil air 7.27E-30 kilogram 

nitrogen air 16.008476 kilogram 

nitrogen oxides air 4.30E-06 kilogram 

oxygen air 3.6179486 kilogram 

water air 0.00093 cubic meter 

water water 0.00305 cubic meter 

water, cooling, unspecified natural origin natural resource - in 

water 

0.0842982 cubic meter 
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Table C0.13. Life cycle inventory of biomethane production from poplar. 

biomethane production, 16 bar from poplar, fluidized technology 1 Ncum 

Technosphere flows    

 Amount  Unit  

carbon dioxide transport and storage, 200 

km pipeline, storage 1000m 

1.61114 kilogram  

market for copper oxide 0.000034 kilogram  

market for monoethanolamine 0.08626405 kilogram  

market for natural gas, high pressure 0.099 cubic meter  

market for nickel, class 1 0.00065 kilogram  

market for sodium bicarbonate 0.0000172 kilogram  

market for transport, freight, lorry 16-32 

metric ton, EURO6 

0.12488 ton kilometer  

market for wastewater, average -0.00018145 cubic meter  

market for wood ash mixture, pure -0.04895 kilogram  

market for zinc 0.000021 kilogram  

market group for electricity, medium 

voltage 

1.456843 kilowatt hour  

market group for tap water 1.75412424 kilogram  

market group for tap water 4.19827126 kilogram  

synthetic gas factory construction 2.90E-09 unit  

wood chips, poplar, dry, at plantation 2.49753 kg  

    

Biosphere flows    

 Compartment Amount Unit 

ammonia air 4.70E-13 kilogram 

carbon soil 1.40E-34 kilogram 

carbon dioxide, non-fossil air 1.39724 kilogram 

carbon monoxide, non-fossil air 2.40E-05 kilogram 

hydrogen air 4.70E-07 kilogram 

methane, non-fossil air 5.30E-26 kilogram 

nitrogen air 14.1852 kilogram 

nitrogen oxides air 4.30E-06 kilogram 

oxygen air 3.09374 kilogram 

water air 0.00102 cubic meter 

water water 0.0027224 cubic meter 

water, cooling, unspecified natural origin natural resource - in 

water 

0.073183226 cubic meter 
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The following activities reported in Table C0.9 to Table C0.13 are based on the literature:  

• carbon dioxide transport and storage, 200 km pipeline from 283  

• wood chips, poplar, dry, at plantation is taken from 378  

• impact of residues, e.g., emissions due to land footprint, are taken from Smith et al.379. 

The footprint of biomass residues is usually considered negligible, since they are a by-

product and do not occupy land. Therefore, here we only account for the land footprint 

as reported above in addition to the removal. 

• we do not consider the impact of the disposal of components formed from the removal 

of H2S and HCl. 

Table C0.14. Life cycle inventory of carbon removal by wheat straw residues. 

waste biomass, wheat straw, dry 1 kg 

Biosphere flows    

 Compartment Amount Unit 

carbon dioxide, in air natural resource - in air 1.693282 kilogram 

Table C0.15. Life cycle inventory of carbon removal by forest residues. 

waste biomass, forest residues, dry 1 kg 

Biosphere flows    

 Compartment Amount Unit 

carbon dioxide, in air natural resource - in air 1.905108 kilogram 

C.5.2 Cradle to-grave analysis 

The reference activity of the BAU is: 

BAU: heat production, natural gas, at boiler condensing modulating <100kW EU wo CH 

The biomethane is modeled using the Ecoinvent activity heat production, biomethane, at boiler 

condensing modulating <100kW, replacing the biomethane introducing the biomethane 

produced using the process developed. 

C.6 Optimization model 

We develop the mathematical model presented in Eq. (C8) to identify the optimal portfolio of 

biomass resources to produce biomethane constraining the burden-shifting relative to the BAU 

on a set of critical non-climate change indicators. This set is determined by considering some 

limits proposed in the literature55 within the EU context applying downscaling according to an 

egalitarian principle218. 
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We do not include climate change, which we already know is not transgressed because our 

process is carbon negative. Instead, we compute the global warming impact of the optimal 

solution a posteriori based on the optimal solution. 

max𝑚𝑏𝑖𝑜,𝑡𝑜𝑡 

s. t.∑𝑚𝑏𝑖𝑜 𝑏,𝑗
𝑏,𝑗

+𝑚𝐵𝐴𝑈 = DEMAND 

∑𝑚𝑏𝑖𝑜 𝑏,𝑗 IMPACT𝑏,𝑗,𝑘 

𝑏,𝑗

≤ TF 𝑚𝐵𝐴𝑈IMPACTBAU,k ∀ k ∈ K′ 

𝑚𝑏𝑖𝑜 𝑏,𝑗 ≤   RESAVAILb,j ∀ b ∈ RD, j ∈ J 

𝑚𝑏𝑖𝑜 𝑏,𝑗 ≤   CROPAVAILb,j ∀ b ∈ EC, j ∈ J 

𝑚𝐵𝐴𝑈 ≤ MAXBAU 

𝑚𝑏𝑖𝑜,𝑡𝑜𝑡 =∑𝑚𝑏𝑖𝑜 𝑏,𝑗
𝑏,𝑗

 

(C8) 

We constrain the amount of biomass to the availability in the European Union calculated as 

above, and the amount of natural gas to an arbitrary value able to satisfy the whole demand, 

assuming that it can be imported, e.g., from Qatar or the United States227. The model is 

implemented in GAMS and solved with CPLEX. Set b ∈ B refers to the types of biomass, 

including residues (RD) and energy crops (EC), while j ∈ J are the countries in the EU, and k ∈ 

K are the EF metrics other than climate change. Variable 𝑚𝑏𝑖𝑜,𝑡𝑜𝑡 is the amount of biomethane 

while 𝑚𝐵𝐴𝑈 is the conventional fossil natural gas. The parameters included in the model are 

the natural demand for the industrial heat and power sector (DEMAND), the availability of the 

energy crops and residues (CROPAVAIL and RESAVAIL, respectively), the maximum amount 

of fossil natural gas imported (MAXBAU) and the impacts on the k category of the EF metrics 

of the BAU (IMPACTBAU,k) and biomethane (IMPACT𝑏,𝑗,𝑘). We allow the biomethane 

transgression by a factor TF. K’ is the subset of critical metrics that we want to constrain 

according to the planetary boundaries transgression.  
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C.7 Supplementary results 

C.7.1 Techno-economic results 

We study the economic performance of the biomethane routes. We first compare the product 

specification obtained in the five scenarios as reported in Table C0.16. Notably, the biomethane 

meets the grid specifications in terms of energy content and methane purity, which are results 

from our process simulation. The water and CO2 concentrations are also properly monitored 

before the compression to the final condition, due to strict requirements for grid feed-in. While 

the methane content and heating value is consistent in the different scenarios, and with 

literature values252, the amount of natural gas obtained in Ncum/hr is the greatest for poplar, 

being 37% higher than wheat straw residues, which has the lowest production rate.  

Table C0.16. Biomethane product specification in the five scenarios modeled. 

  Wheat 

straw 

residues 

Forest 

residues 

Miscanthus Willow Poplar 

Density kg/Ncum 0.735 0.723 0.710 0.716 0.714 

Mass flow kg/hr 3769 4415 4045 4285 5005 

Volume flow Ncum/hr 5125 6108 5696 5987 7007 

LHV [mass] MJ/kg 46.05 47.28 48.18 47.90 47.65 

LHV 

[volume] 

MJ/Ncum 33.87 34.17 34.21 34.28 34.03 

CH4 vol.% 0.95 0.96 0.96 0.96 0.95 

*CH4  wt.% 0.92 0.94 0.95 0.95 0.94 

The process key performance indicators displayed in Table C0.17 depend on the feedstock 

proximate and ultimate analysis. Wheat straw is the most inefficient crop for biomethane 

production as it requires 3.41 kg of dry biomass to produce one cubic meter of gas at normal 

conditions. Additionally, it also provides the lowest CO2 sequestration and storage efficiency. 

On the other hand, poplar is the energy crops that performs the best, with only 2.50 kg of dry 

biomass per normal cubic meter and it provides the highest CO2 storage efficiency of 

approximately 70%. Indeed, poplar carbon content is the highest among the crops selected in 

this study, with the downside of having a low fixed carbon content, which leads to low char 

formation and therefore makes it necessary to add a natural gas input to provide sufficient heat 

for the gasification. Forest residues are a very competitive alternative to poplar, which show 

comparable process performance. Furthermore, forest residues have the advantage of very little 

impacts resulting from the cultivation stage, such as land and water usage, fertilizers and 

machineries, as shown later.  
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Table C0.17. Process performance metrics. 

 Biomass to 

biomethane 

conversion 

efficiency 

Biogenic CO2 

sequestration 

efficiency 

Process CO2 capture 

efficiency 

 kgdry/Ncum kgCO2
abs/

Ncum 

kgCO2
emit/

Ncum 

CO2 storage efficiency 

[%] 

Wheat straw residues 3.41 5.8 2.3 60.8 

Forest residues 2.87 5.5 1.8 67.5 

Miscanthus 3.07 5.4 1.8 67.1 

Willow 2.92 5.1 1.7 66.8 

Poplar 2.50 4.6 1.4 69.7 

Given the energy crisis in 2022, biomethane also appears to be an economically attractive 

alternative to natural gas. As a consequence of the production rate and process performance, 

we find that biomethane is more expensive than fossil NG (24-44% above the BAU in the 

reference year 2022), with forest residues being the cheapest biomass source and wheat straw 

the most costly (Figure C0.4). However, all the biomethane routes became economically 

competitive if compared to the period July-September 2022 when the NG prices peaked in the 

EU due to the Ukraine invasion. Therefore, biomethane would not be as volatile the business 

as usual market380. 

 

Figure C0.4: Biomethane production cost and BAU price381 in 2022. 
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C.7.2 Environmental assessment results  

C.7.2.1 Breakdown of cradle-to-gate impacts 

 

Figure C0.5: Breakdown of average EU climate change impact on a cradle-to-gate basis. Electricity 

is the total process electricity needed for pumps and compressors; CCS includes MEA solvent and 

process water make up, CO2 transportation and storage; feedstock includes the crop cultivation and 

transportation (assumed 50 km) to the processing site; others includes the chemicals for the syngas 

cleaning, natural gas input – in the willow and poplar scenarios -, process water for steam generation, 

wastewater and ash treatment and reactions catalysts. 

We analyze the cradle-to-gate impacts looking at the breakdown of the activities in the 

biomethane production. We note that the main process is similar in all the scenarios, therefore, 

the contribution of some inputs such as electricity production are almost constant in all the 

cases. The results show that in all the scenarios direct emissions are the greatest contribution 

to the impact on climate change, mainly due to the flue gas emissions not captured. Poplar is 

the only scenario where others shows a significant contribution due to the natural gas input to 

the gasification to compensate for the low fixed carbon of the crop. 
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C.7.2.2 Breakdown of cradle-to-gate Environmental Footprint impacts 

Next, we analyze the breakdown of the Environmental Footprint impacts on a cradle-to-gate 

basis. 

 

Figure C0.6: Breakdown of average EU Environmental Footprint indicators for the five scenarios on 

a cradle-to-gate basis. Acronyms: WS = wheat straw residues, FR = forest residues, MS = 

Miscanthus, WL = willow, PL = poplar. Electricity is the total process electricity needed for pumps 

and compressors; CCS includes MEA solvent and process water make up, CO2 transportation and 

storage; feedstock includes the crop cultivation and transportation (assumed 50 km) to the processing 

site; others includes the chemicals for the syngas cleaning, natural gas input – in the willow and 

poplar scenarios -, process water for steam generation, wastewater and ash treatment and reactions 

catalysts. 

We find that the ash contained in the biomass, which is sent to treatment after being collected 

from the gasifier (included in the macro category ‘other’), is the most harmful activity on 

ecotoxicity freshwater and human toxicity non-carcinogenic. The impact of electricity on water 

use and eutrophication freshwater mainly comes from the contribution of the electricity mix of 
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Italy and especially France (nuclear pressure water reactor). The latter also contributes to most 

of the impacts on ionizing radiation due to the use of uranium. Among the land use impacts, 

willow shows the highest impact among the energy crops, which also affects eutrophication 

marine indicator. 

Further analysis of the feedstock group is carried out in the next section (Figure C0.7).  

7.2.3 Cradle-to-gate impact of energy crop cultivation 

 

Figure C0.7: Impact of the cultivation stage on climate change and Environmental Footprint metrics. 

Fertilizers and pesticides include e.g., nitrogen and plant protections; land activities are hoeing, sowing, 

irrigation; others include e.g., tractors and other transportation on the land; and chemicals are e.g., 

ammonium nitrate, potassium, glyphosate. Acronyms: MS = Miscanthus, WL = willow, PL = poplar.  
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C.7.2.4 Cradle-to-grave impacts 

 
Figure C0.8: Cradle-to-grave impacts with respect to BAU. The results are reported as: impact of 

biomethane over BAU for each category. The transgression reaches at most one order of magnitude 

more than BAU. The most critical indicators are ecotoxicity freshwater and land use, already identified 

in the cradle-to-gate analysis. 
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C.7.2.5 Prospective life cycle assessment 

 

Figure C0.9: Prospective cradle-to-gate global warming potential of scenarios.  

The BAU stays constant, while we can notice substantial improvement in the biomethane future 

scenarios despite being already carbon negative. 
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C.7.3 Optimization model results 

Table C0.18. Environmental impact results in the optimization model. 

 Blend wheat straw residues forest residues 

 TF10 TF100 TF10 TF100 TF10 TF100 

climate change -7.02E+09 -1.03E+11 2.86E+10 1.97E+09 -7.02E+09 -6.26E+10 

acidification 2.27E+08 3.66E+08 1.69E+08 1.99E+08 2.27E+08 3.11E+08 

ecotoxicity: 

freshwater 

2.15E+12 1.16E+13 2.42E+12 7.93E+12 2.15E+12 4.47E+12 

energy 

resources: non-

renewable 

4.07E+12 3.39E+12 4.32E+12 4.11E+12 4.07E+12 3.68E+12 

eutrophication: 

freshwater 

1.14E+07 3.32E+07 3.88E+06 1.02E+07 1.14E+07 2.34E+07 

eutrophication: 

marine 

5.56E+07 1.05E+08 3.71E+07 4.82E+07 5.56E+07 8.32E+07 

eutrophication: 

terrestrial 

4.52E+08 6.53E+08 3.71E+08 4.10E+08 4.52E+08 5.69E+08 

human toxicity: 

carcinogenic 

30.3608 84.5485 18.5069 39.7072 30.3608 54.7757 

human toxicity: 

non-

carcinogenic 

587.501 2446.78 553.807 1622.66 587.501 1139.74 

ionising 

radiation: 

human health 

6.98E+09 1.81E+10 2.99E+09 6.11E+09 6.98E+09 1.33E+10 

material 

resources: 

metals/minerals 

9.13E+08 4.24E+10 8.46E+08 8.92E+08 1.15E+05 2.22E+05 

ozone depletion 115310 297715 43361.2 85075.9 34078.8 28365.3 

particulate 

matter 

formation 

34078.8 24258.7 37689.6 34832 749.733 1139.79 

photochemical 

ozone 

formation: 

human health 

749.733 1444.98 493.554 664.327 1.71E+08 1.94E+08 

water use 1.71E+08 2.09E+08 1.54E+08 1.60E+08 1.05E+10 2.05E+10 

land use - 

erosion 

potential 

1.05E+10 2.77E+10 4.06E+09 8.66E+09 9.13E+08 1.02E+09 
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Table C0.19. Environmental impact results in the optimization model (cont.). 

 miscanthus willow poplar 

 TF10 TF100 TF10 TF100 TF10 TF100 

climate change 3.78E+10 2.72E+10 3.82E+10 3.08E+10 3.76E+10 2.60E+10 

acidification 1.60E+08 1.84E+08 1.59E+08 1.75E+08 1.61E+08 1.89E+08 

ecotoxicity: 

freshwater 3.78E+11 1.53E+12 2.82E+11 7.02E+11 3.17E+11 1.00E+12 

energy resources: 

non-renewable 4.39E+12 4.32E+12 4.39E+12 4.34E+12 4.39E+12 4.33E+12 

eutrophication: 

freshwater 1.76E+06 4.88E+06 1.65E+06 3.95E+06 1.76E+06 4.92E+06 

eutrophication: 

marine 3.39E+07 4.34E+07 3.44E+07 4.73E+07 3.43E+07 4.61E+07 

eutrophication: 

terrestrial 3.61E+08 4.05E+08 3.59E+08 3.87E+08 3.62E+08 4.16E+08 

human toxicity: 

carcinogenic 10.9306 17.5193 10.7693 16.1758 10.8503 16.7905 

human toxicity: 

non-carcinogenic 147.915 296.222 138.545 215.651 129.106 132.83 

ionising 

radiation: human 

health 1.92E+09 3.26E+09 1.87E+09 2.85E+09 1.94E+09 3.42E+09 

material 

resources: 

metals/minerals 3.28E+04 7.94E+04 2.97E+04 5.27E+04 3.17E+04 6.97E+04 

ozone depletion 38683 37581.4 38721.5 37907 38703 37759.8 

particulate matter 

formation 442.68 573.8 437.485 529.651 444.914 592.418 

photochemical 

ozone formation: 

human health 1.52E+08 1.62E+08 1.52E+08 1.57E+08 1.52E+08 1.62E+08 

water use 2.54E+09 4.94E+09 2.44E+09 4.10E+09 2.55E+09 4.99E+09 

land use - erosion 

potential 9.07E+09 7.24E+10 9.08E+09 7.32E+10 9.06E+09 7.20E+10 

Table C0.20. Amount of natural gas in the optimization model. 

 Max.potential TF10 TF100 TF10 TF100 

BAU 0 91 60 0 0 

wheat straw residues 12 0 11 4 12 

forest residues 33 15 33 15 33 

miscanthus 44 0 0 0.5 4.2 

willow 24 0 0 0.3 3.1 

poplar 39 0 3 0.5 4.7 

total 151 106 106 20 5 
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Extended nomenclature 

Table D0.1: List of abbreviations of the stages considered in the supply chain by alphabetical order. 

Activity  

bal baling 

balloss  losses during baling 

ccs CO2 capture and compression unit 

chip chipping  

chiploss losses during chipping 

cul includes cultivation, luc, chipping, baling stages 

culloss includes all the losses of cul 

grw biomass growth, CO2 uptake from the atmosphere 

land cultivation stage (includes contribution of fertilizers, pesticides, etc.) 

landloss losses occurring during the cultivation stage 

lor lorry (transportation via) 

lp transportation land to pelleting process 

luc land-use change 

p2s CO2 transport via pipeline from combustion plant to storage 

pc transportation pelleting process to combustion 

pell pelleting 

pow combustion and electricity production 

pro pelleting process 

proloss losses during pelleting process 

sh ship (transportation via) 

site CO2 storage site (coal, hydrocarbon and saline aquifer) 

sto CO2 storage  

tlp transportation from land to pellet processing  

tpc transportation from processing to combustion 

tr train (transportation via) 

trn transportation LP and PC 

Table D0.2: Sets used in NETCOM. 

Set   

i  28 EU countries 

b  six biomass types 

v  three means of transportation 

g  three types of geological sites 

EC set of dedicated energy crops 

RD set of residues 

TR set of transportation connections allowed 

e mid- and endpoints indicators of Recipe2016 (H) 
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Table D0.3: Continuous variables used in NETCOM. 

Variables   

𝑒𝑚𝑖 𝑏
𝑔𝑟𝑤

 CO2 stored in biomass b during growth in country i (NEs) [𝑡𝐶𝑂2/yr] 

𝑝𝑟𝑜𝑑𝑖 𝑏
𝑔𝑟𝑤

 amount of biomass b produced in country i [twb/yr] 

𝑙𝑎𝑛𝑑𝑖 𝑏 land (marginal) surface in country i cultivated with biomass b [ha] 

𝑒𝑚𝑖 𝑏
𝑐𝑢𝑙 CO2 emissions associated with different stages of biomass b cultivation 

in country i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑙𝑎𝑛𝑑 CO2 emissions associated with use of the land (fertilizers, pesticides, 

fuel, and more) [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑙𝑢𝑐 CO2 emissions associated with LUC for biomass b in country i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑏𝑎𝑙 CO2 emissions associated with bales processing of biomass b in country 

i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑐ℎ𝑖𝑝

 CO2 emissions associated with chips processing of biomass b in country 

i [𝑡𝐶𝑂2/yr] 

𝑝𝑟𝑜𝑑𝑖 𝑏
𝑙𝑎𝑛𝑑 amount of biomass b harvested in country i to be processed [twb /yr] 

𝑒𝑚𝑖 𝑏
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 CO2 emissions associated with loss of biomass b in country i during land 

cultivation [𝑡𝐶𝑂2/yr] 

𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 total amount of bales from biomass b in country i [twb /yr]  

𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝

 total amount of chips from biomass b in country i [twb /yr] 

𝑝𝑟𝑜𝑑𝑖 𝑏
𝑏𝑎𝑙 amount of biomass b in country i used for bales [twb /yr] 

𝑝𝑟𝑜𝑑𝑖 𝑏
𝑐ℎ𝑖𝑝

 amount of biomass b in country i used for chips [twb /yr] 

𝑐𝑜𝑖 𝑏
𝑐𝑢𝑙 cost associated with biomass b cultivation in country i [Eur/yr] 

𝑐𝑜𝑖 𝑏
𝑙𝑎𝑛𝑑 cost associated with land cultivation and farming (fertilizers, pesticides, 

fuel, and more) [𝑡𝐶𝑂2/yr] 

𝑐𝑜𝑖 𝑏
𝑏𝑎𝑙 cost associated with baling of biomass b in country i [Eur/yr] 

𝑐𝑜𝑖 𝑏
𝑐ℎ𝑖𝑝

 cost associated with chipping of biomass b in country i [Eur/yr] 

𝑒𝑚𝑖 𝑏
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠

 CO2 emissions associated with loss of biomass b in country i during 

chipping [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 CO2 emissions associated with loss of biomass b in country i during 

baling [𝑡𝐶𝑂2/yr] 

𝑒𝑚
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝
 CO2 emissions associated with transport of biomass b from land in 

country i to processing plant in country i' [𝑡𝐶𝑂2/yr] 

𝑡𝑙𝑝𝑖 𝑖′ 𝑏 𝑣
𝑏𝑎𝑙

 amount of biomass b transported in bales from land in country i to 

processing plant in country i' [twb /yr] 

𝑡𝑙𝑝
𝑖 𝑖′ 𝑏 𝑣

𝑐ℎ𝑖𝑝
 amount of biomass b transported in chips from land in country i to 

processing plant in country i' [twb /yr] 

𝑒𝑚
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
 CO2 emissions associated with loss of biomass b during transport from 

land in country i to processing plant in country i' [𝑡𝐶𝑂2/yr] 

𝑝𝑟𝑜𝑐𝑖 𝑏
𝑏𝑎𝑙 amount of biomass b available as bales in processing plant in country i 

[twb /yr] 
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𝑝𝑟𝑜𝑐𝑖 𝑏
𝑐ℎ𝑖𝑝

 amount of biomass b available as chips in processing plant in country i 

[twb /yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝𝑙𝑜𝑟
 cost associated with transport of biomass b from land in country i to 

processing plant in country i' via lorry [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝𝑡𝑟
 cost associated with transport of biomass b from land in country i to 

processing plant in country i' via train [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝𝑠ℎ
 cost associated transport of biomass b from land in country i to 

processing plant in country i' via ship [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑙𝑝
 total cost associated with transport of biomass b from land in country i 

to processing plant in country i' [Eur/yr] 

𝑝𝑒𝑙𝑙𝑒𝑡𝑖 𝑏
𝑝𝑟𝑜

 amount of pellets of biomass b produced in processing plant in country 

i [twb /yr] 

𝑒𝑚𝑖 𝑏
𝑝𝑟𝑜

 CO2 emissions associated with pellet processing of biomass b in country 

i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

 CO2 emissions associated with loss of biomass b in country i during 

pellet processing [𝑡𝐶𝑂2/yr] 

𝑐𝑜𝑖 𝑏
𝑝𝑟𝑜

 cost associated with biomass b processing in country i [Eur/yr] 

𝑒𝑚
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐
 CO2 emissions associated with transport of biomass b from processing 

plant in country i to combustion power plant in country i' [𝑡𝐶𝑂2/yr] 

𝑒𝑚
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
 CO2 emissions associated with loss of biomass b during transport from 

processing plant in country i to combustion power plant in country i' 

[𝑡𝐶𝑂2/yr] 

𝑡𝑝𝑐
𝑖 𝑖′ 𝑏 𝑣

𝑝𝑒𝑙𝑙
 amount of biomass b transported in pellets from processing plant in 

country i to combustion plant in country i' [twb /yr] 

𝑐𝑜𝑚𝑏𝑖 𝑏
𝑝𝑒𝑙𝑙

 amount of pellets of biomass b available for combustion in country i 

[twb/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐𝑙𝑜𝑟
 cost associated with transport of biomass b from processing plant in 

country i to combustion power plant in country i' via lorry [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐𝑡𝑟
 cost associated with transport of biomass b from processing plant in 

country i to combustion power plant in country i' via train [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐𝑠ℎ
 cost associated with transport of biomass b from processing plant in 

country i to combustion power plant in country i' via ship [Eur/yr] 

𝑐𝑜
𝑖 𝑖′ 𝑏

𝑡𝑝𝑐
 total cost associated with transport of biomass b from processing plant 

in country i to combustion plant in country i' [Eur/yr] 

𝑒𝑚𝑖 𝑏
𝑝𝑜𝑤

 CO2 direct emissions associated with combustion of biomass b in power 

plant in country i [𝑡𝐶𝑂2/yr] 

𝐶𝑂2𝑖
𝑝𝑜𝑤

 amount of CO2 captured at power plant in country i [𝑡𝐶𝑂2/yr] 

𝑒𝑙𝑔𝑒𝑛𝑖 𝑏
𝑝𝑜𝑤

 amount of electricity generated in country i with biomass b [MWh/yr] 

𝑐𝑜𝑖 𝑏
𝑝𝑜𝑤

 cost associated with combustion of biomass b in power plant in country 

i [Eur/yr] 

𝑒𝑙𝑐𝑐𝑠𝑖
𝑝𝑜𝑤

 Energy penalty of the ccs unit in combustion plant of country i 

[MWh/yr] 
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𝑒𝑙𝑐𝑜𝑚𝑖
𝑝𝑜𝑤

 amount of electricity required to compress the CO2 in country i 

[MWh/yr] 

𝑛𝑒𝑡𝑒𝑙𝑔𝑒𝑛𝑖
𝑝𝑜𝑤

 net electricity production at the combustion plant in country i [MWh/yr] 

𝑡𝐶𝑂2
𝑖 𝑖′
𝑝2𝑠

 amount of CO2 transported from power plant in country i to storage site 

in country i' [𝑡𝐶𝑂2/yr] 

𝑒𝑚
𝑖 𝑖′
𝑝2𝑠

 CO2 emissions associated with transport of CO2 from power plant in 

country i to storage site in country i' [𝑡𝐶𝑂2/yr] 

𝑐𝑜
𝑖 𝑖′
𝑝2𝑠

 cost associated with transport of CO2 from power plant in country i to 

storage site in country i' [Eur/yr] 

𝐶𝑂2𝑖
𝑠𝑡𝑜 amount of CO2 stored in country i [𝑡𝐶𝑂2/yr] 

𝐶𝑂2𝑖 𝑔
𝑠𝑖𝑡𝑒 amount of CO2 stored in geological site of type g in country i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖
𝑠𝑡𝑜 total CO2 emissions associated with injection of the CO2 in country i 

[𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 𝑔
𝑠𝑖𝑡𝑒 CO2 emissions associated with storing the CO2 in geological sites of 

type g in country i [𝑡𝐶𝑂2/yr] 

𝑐𝑜𝑖
𝑠𝑡𝑜 cost associated with injection of the CO2 in country i [Eur/yr] 

𝑐𝑜𝑖 𝑔
𝑠𝑖𝑡𝑒 cost associated with storing the CO2 in geological sites of type g in 

country i [𝑡𝐶𝑂2/yr] 

𝑒𝑚𝑖 total CO2 emissions of country i [ 𝑡𝐶𝑂2/yr] 

𝑐𝑜𝑖 total cost of the supply chain in country i [Eur/yr] 

𝑔𝑙𝑜𝑒𝑚 global CO2 emissions [ 𝑡𝐶𝑂2/yr] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏  𝑒
𝑔𝑟𝑤

 impacts at mid- and endpoint level of biomass growth [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏  𝑒
𝑙𝑎𝑛𝑑 impacts at mid- and endpoint level of land usage [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏  𝑒
𝑙𝑢𝑐  impacts at mid- and endpoint level of luc [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏  𝑒
𝑐ℎ𝑖𝑝

 impacts at mid- and endpoint level of chipping [unit]  

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏 𝑒
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 impacts at mid- and endpoint level of baling [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏 𝑒
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠

 impacts at mid- and endpoint level of chipping losses [unit]  

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏 𝑒
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 impacts at mid- and endpoint level of baling losses [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡
𝑖 𝑖′ 𝑏  𝑒

𝑡𝑙𝑝
 impacts at mid- and endpoint level of transportation from land to 

processing [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡
𝑖 𝑖′ 𝑏  𝑒

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
 impacts at mid- and endpoint level of transportation from land to 

processing losses [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏  𝑒
𝑝𝑟𝑜

 impacts at mid- and endpoint level of pellet processing [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏 𝑒
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

 impacts at mid- and endpoint level of pellet processing losses [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡
𝑖 𝑖′ 𝑏  𝑒

𝑡𝑝𝑐
 impacts at mid- and endpoint level of transportation from processing to 

combustion [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡
𝑖 𝑖′ 𝑏  𝑒

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
 impacts at mid- and endpoint level of transportation from processing to 

combustion losses [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑏 𝑒
𝑝𝑜𝑤

 impacts at mid- and endpoint level of combustion [unit] 

𝑖𝑚𝑝𝑎𝑐𝑡
𝑖 𝑖′ 𝑒

𝑝2𝑠
 impacts at mid- and endpoint level of CO2 transportation via pipeline 

[unit] 



APPENDIX D 

 

235 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 𝑔  𝑒
𝑠𝑖𝑡𝑒  impacts at mid- and endpoint level of CO2 storage [unit] 

𝑔𝑙𝑜𝑐𝑜 global cost [Eur2018/yr] 

ℎℎ global environmental impact on Human Health [DALY] 

𝑒𝑑 global environmental impact on Ecosystem Quality [species/yr] 

𝑟𝑎 global environmental impact in Resource Availability [USD2013] 

Table D0.4: Parameters used in NETCOM.  

Parameters  

MCO2 molecular weight of CO2  

MC molecular weight of C  

UCF conversion factor from GJ to MWh  

CCib carbon content of biomass b in region i [wt% (wb)] 

YIELDib  yield of biomass b in region i [twb/(ha yr)] 

AVLANDi land (marginal) available for cultivation in region i [ha] 

AVRDib amount of residue b available in country i [twb /yr] 

CIib
land carbon intensity of use of land for biomass b in region i during cultivation 

phase [𝑡𝐶𝑂2/(ha yr)] 

CIib
luc carbon intensity of land-use change for biomass b in country i [𝑡𝐶𝑂2/(ha 

yr)] 

LOSSb
land biomass losses of biomass b incurred during harvesting 

UCib
land unitary cost of cultivating land in country i for biomass b [Eur/ha] 

LOSSb
bal biomass losses of biomass b incurred during balling 

LOSSb
chip

 biomass losses of biomass b incurred during chipping 

CIib
bal carbon intensity of producing bales of biomass b in country i [𝑡𝐶𝑂2/twb)] 

UCib
bal unitary cost of baling biomass b in country i [Eur/twb] 

CIib
chip

 carbon intensity of producing chips of biomass b in country i [𝑡𝐶𝑂2/ twb)] 

CIib
drychip

 carbon intensity of producing chips of biomass b in country i [𝑡𝐶𝑂2/ tdb)] 

UCib
chip

 unitary cost of chipping biomass b in country i [Eur/twb] 

DRYib
chip

 conversion factor (based on moisture content) to relate chips mass in wet 

and dry basis [wt%] 

DISTv i i′ distance between regions i and i' covered via transportation mean v [km] 

CIv
trn carbon intensity of transporting biomass via transportation mean v 

[𝑡𝐶𝑂2/(twb km)] 

CORFv
bal correction factor to account for capacity (carry load/max capacity) for 

bales in transportation mean v 

CORFv
chip

 correction factor to account for capacity (carry load/max capacity) for 

chips in transportation mean v 

LOSStlp biomass losses of biomass b incurred during transportation between land 

and processing plant 

CFIXib
lorbal fix cost of transporting biomass b in bales from country i via lorry 

[Eur/twb] 
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CVARib
lorbal variable cost of transporting biomass b in bales from country i via lorry 

[Eur/(twb km)] 

CFIXib
lorchip

 fix cost of transporting biomass b in chips from country i via lorry 

[Eur/twb] 

CVARib
lorchip

 variable cost of transporting biomass b in chips from country i via lorry 

[Eur/(twb km)] 

CFIXib
tr  fixed cost of transporting biomass b from country i via train (either bales 

or chips) [Eur/twb] 

CVARib
tr  variable cost of transporting biomass b from country i via train (either 

bales or chips) [Eur/(twb km)] 

CFIXib
sh fixed cost of transporting biomass b from country i via ship (either bales 

or chips) [Eur/twb] 

CVarib
sh variable cost of transporting biomass b from country i via ship (either 

bales or chips) [Eur/(twb km)] 

LOSSb
ovpell

 biomass losses incurred during pelletizing  

LOSSb
pell

 biomass losses incurred during each stage of the pelleting process  

DRYib
pell

 conversion factor (based on moisture content) to relate pellets mass in wet 

and dry basis [wt%] 

CIib
pell

 carbon intensity of producing pellets of biomass b at the processing plant 

in region i [𝑡𝐶𝑂2/ tdb)] 

CCb
pro

 carbon content of biomass b at the pelleting stage on a wet mass basis 

[wtwb%] 

CCb
pow

 carbon content of biomass b at power plant on a wet mass basis [wtwb%] 

CCb
drypow

 carbon content of biomass b at power plant on a dry mass basis [wtdb%] 

UCib
pell

 unitary cost of pelleting biomass b in country i [Eur/twb] 

CORFv
pell

 correction factor to account for capacity (carry load/max capacity) for 

pellets in transportation mean v 

LOSStpc biomass losses incurred during transportation between processing plant 

and power plant 

CFIXib
tpclor

 fix cost of transporting biomass b in pellets from country i via lorry [Eur/ 

twb] 

CVARib
tpclor

 variable cost of transporting biomass b in pellets from country i via lorry 

[Eur/(twb*km)] 

CFIXib
tpctr

 fix cost of transporting biomass b in pellets from country i via train 

[Eur/twb] 

CVARib
tpctr

 variable cost of transporting biomass b in pellets from country i via train 

[Eur/(twb *km)] 

CFIXib
tpcsh

 fix cost of transporting biomass b  in pellets from country i via ship 

[Eur/twb] 

CVARib
tpcsh

 variable cost of transporting biomass b in pellets from country i via ship 

[Eur/(twb *km)] 

Rccs capture rate of CCS system [%] 
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HHV𝑏
𝑝𝑒𝑙𝑙

 HHV of pellets of biomass b [MJ/twb] 

HHV𝑏
𝑑𝑟𝑦𝑝𝑒𝑙𝑙

 HHV of pellets of biomass b [MJ/tdb] 

η𝑝𝑜𝑤 efficiency of power plant to transform energy from biomass combustion 

into electricity [%] 

UCib
pow

 unitary cost of combusting biomass b at power plant in country i 

[Eur/MWh] 

ELRccs electricity penalty (pump) per unit of CO2 captured [MWh/𝑡𝐶𝑂2] 

HERccs electricity penalty (steam generation) per unit of CO2 captured 

[MWh/𝑡𝐶𝑂2] 

CORccs electricity penalty for compressing the CO2 captured to 110 bar 

[MWh/𝑡𝐶𝑂2] 

CIp2s carbon intensity of transporting CO2 via pipeline [𝑡𝐶𝑂2/(𝑡𝐶𝑂2*km)] 

DISTi i′
pipe

 distance between regions i and i' when covered via pipeline [km] 

DISTi i′
totpipe

 distance between regions i and i' when covered via pipeline including 

distance to storage site [km] 

DISTi i′
totpipen

 distance between regions i and i' when covered via pipeline including 

distance to storage site / 250 km [km] 

CVARi
P2S unitary cost of transporting CO2 via pipeline [Eur/(𝑡𝐶𝑂2 250km)] 

LOSS
p2s

 CO2 losses incurred during transportation of CO2 between power plant 

and storage site 

CAPi g
site storage capacity in geological sites of type g in region i [𝑡𝐶𝑂2] 

CIg
site carbon intensity of storing CO2 in geological sites of type g [𝑡𝐶𝑂2/𝑡𝐶𝑂2] 

CVARi g
site unitary cost of storing CO2 in geological sites of type g [Eur/𝑡𝐶𝑂2] 

W  weight between regions i and i' to allocate emissions responsibilities 

Wco weight between regions i and i' to allocate cost responsibilities 

TG  CDR target [𝑡𝐶𝑂2] 

ECOVECibe
grw

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

biomass growth [unit] 

ECOVECibe
land ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

cultivation [unit] 

ECOVECibe
luc ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

luc [unit] 

ECOVECibe
chip

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

chipping [unit] 

ECOVECibe
bal ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

baling [unit] 

ECOVECibe
landloss ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

cultivation losses [unit] 

ECOVECibe
chiploss

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

chipping losses [unit] 
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ECOVECi b e
balloss ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

baling losses [unit] 

ECOVECi b v e
tlp

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

for different transportation modes from land to pellet processing site [unit] 

ECOVECi b v e
tlploss

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016  

for different transportation modes losses from land to pellet processing 

site[unit] 

ECOVECi b e
pro

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

pelleting [unit] 

ECOVECi b e
proloss

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

pelleting losses [unit] 

ECOVECi b v e
tpc

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

for different transportation modes from pelleting to combustion site [unit] 

ECOVECi b v e
tpcloss

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

for different transportation modes losses from pelleting to combustion site 

[unit]  

ECOVECi b e
pow

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

combustion [unit] 

ECOVECi b e
p2s

 ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

CO2 transportation via pipeline to storage site [unit] 

ECOVECi b g e
site  ecovector of impacts per functional unit at mid- and endpoint Recipe2016 

for different CO2 storage sites [unit] 

NETELGENmincost net electricity production calculated in the minimum cost solution 

[MWh/yr] 
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D.1 Techno-economic data  

Most input data to the model are sourced from published studies, referenced in the detailed 

model description. Other data are given in Table D0.5 to Table D0.29.  

D.1.1 Cultivation stage  

Table D0.5: Carbon content of wet biomass per country and type of biomass. The calculations are based 

on the carbon content of dry mass and the moisture content at harvest reported by Fajardy et al.33 and 

the Phyllis2 database382(*). 

CC  

[wt% (wb)] 

Miscanthus Switchgrass Willow Straw 

cereals 

Woody Forest  

AUT 0.29* 0.41 0.23 0.44 0.39 0.46 

BEL 0.37 0.41 0.23 0.44 0.39 0.46 

BGR 0.37 0.41 0.23 0.44 0.39 0.46 

CYP 0.37 0.41 0.23 0.44 0.39 0.46 

CZE 0.37 0.41 0.23 0.44 0.39 0.46 

DEU 0.44* 0.41 0.23 0.44 0.39 0.46 

DNK 0.37 0.41 0.23 0.44 0.39 0.46 

ESP 0.37 0.41 0.23 0.44 0.39 0.46 

EST 0.37 0.41 0.23 0.44 0.39 0.46 

FIN 0.37 0.41 0.25* 0.44 0.39 0.48* 

FRA 0.37 0.41 0.23 0.44 0.39 0.46 

GBR 0.37 0.41 0.23 0.44 0.39 0.46 

GRC 0.37 0.41 0.23 0.44 0.39 0.46 

HUN 0.37 0.41 0.23 0.44 0.39 0.46 

IRL 0.37 0.41 0.23 0.44 0.39 0.46 

ITA 0.44* 0.41 0.23 0.44 0.39 0.46 

LTU 0.37 0.41 0.23 0.44 0.39 0.46 

LUX 0.37 0.41 0.23 0.44 0.39 0.46 

LVA 0.37 0.41 0.23 0.44 0.39 0.46 

MLT 0.37 0.41 0.23 0.44 0.39 0.46 

NLD 0.44* 0.41 0.23 0.44 0.39 0.46 

POL 0.37 0.41 0.23 0.44 0.39 0.46 

PRT 0.37 0.41 0.23 0.44 0.39 0.46 

ROU 0.37 0.41 0.23 0.44 0.39 0.46 

HRV 0.37 0.41 0.23 0.44 0.39 0.46 

SVK 0.37 0.41 0.23 0.44 0.39 0.46 

SVN 0.37 0.41 0.23 0.44 0.39 0.46 

SWE 0.37 0.41 0.23 0.44 0.39 0.48* 
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Table D0.6: Yield of different types of energy crops in each country, based on the data from IIASA 

(EPIC II) for Miscanthus and Fajardy et al.383 for switchgrass and willow. 

Yield  

[twb/(ha yr)] 

Miscanthus Switchgrass Willow 

AUT 50.89 9.09 9.17 

BEL 37.27 13.64 16.04 

BGR 31.00 9.09 7.08 

CYP 26.23 2.27 4.79 

CZE 34.71 9.09 9.38 

DEU 36.03 9.09 13.75 

DNK 33.33 8.07 13.13 

ESP 21.97 4.55 5.63 

EST 29.72 4.55 6.25 

FIN 24.98 2.27 7.08 

FRA 38.36 10.80 12.71 

GBR 27.28 9.09 13.33 

GRC 22.71 2.27 5.21 

HUN 39.32 13.64 7.50 

IRL 33.00 4.55 15.63 

ITA 36.72 15.45 7.29 

LTU 35.93 9.09 7.71 

LUX 37.36 13.64 11.04 

LVA 34.27 4.55 7.08 

MLT 26.23 9.09 8.96 

NLD 36.34 9.43 15.83 

POL 35.70 9.09 7.71 

PRT 31.05 9.09 2.50 

ROU 39.87 9.09 5.63 

HRV 23.38 9.09 9.17 

SVK 38.65 9.09 7.08 

SVN 48.20 9.09 9.38 

SWE 29.77 1.14 10.83 
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Table D0.7: Available marginal land for cultivation of energy crops in each country, calculated by GIS 

data aggregation from Cai et al.384 and downscaled according to Fritz et al.385. 

i Available land 

[ha] 

AUT 128374 

BEL 57706 

BGR 538689 

CYP 3072 

CZE 214505 

DEU 680989 

DNK 83747 

ESP 6863941 

EST 1137461 

FIN 5757 

FRA 964191 

GBR 1550031 

GRC 484982 

HUN 173758 

IRL 1526758 

ITA 504674 

LTU 1591874 

LUX 1197 

LVA 1408982 

MLT 0 

NLD 92555 

POL 2377835 

PRT 1231251 

ROU 650490 

HRV 168576 

SVK 157606 

SVN 33904 

SWE 457799 
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Table D0.8: Amount of residues available in each country, from published data in the Atlas of EU 

biomass potentials386 for straw cereal and woody residues, while forestry residues are sourced from 

IINAS387. 

AVRD 

[twb/yr] 

Straw cereals Woody Forest  

AUT 1941413 152247 16921420 

BEL 957802 57093 2462967 

BGR 4003269 767580 3854125 

CYP 0 98326 0 

CZE 4152388 31718 12151984 

DEU 25473524 415508 50050490 

DNK 3727973 19031 1655068 

ESP 6174096 13207451 11746591 

EST 817286 6344 6269738 

FIN 1651779 25375 39072530 

FRA 31544384 3159131 39270607 

GBR 6062257 47577 7278024 

GRC 1258908 2540626 2200212 

HUN 9124930 0 5263762 

IRL 157722 0 1869891 

ITA 9190886 6556148 11961415 

LTU 1651779 44405 4631995 

LUX 0 0 456212 

LVA 788610 22203 7768885 

MLT 0 0 0 

NLD 559196 41234 680275 

POL 17613237 1024497 27554623 

PRT 544858 1858685 4864143 

ROU 9497727 995951 15798792 

HRV 1142288 318939 3644498 

SVK 2371564 28546 5300721 

SVN 364194 63436 4119189 

SWE 1709132 69780 49762326 
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D.1.2 Chipping and baling 

Table D0.9: Dry factor to convert dry chips into wet mass, calculated from data in Fajardy et al.33 and 

the Phillys2 database382(*). 

Drychip 

[wt%] 

Miscanthus Switchgrass Willow Straw cereals Woody Forest  

AUT 0.40* 0.12 0.52 0.04 0.08 0.07 

BEL 0.23 0.12 0.52 0.04 0.08 0.07 

BGR 0.23 0.12 0.52 0.04 0.08 0.07 

CYP 0.23 0.12 0.52 0.04 0.08 0.07 

CZE 0.23 0.12 0.52 0.04 0.08 0.07 

DEU 0.09* 0.12 0.52 0.04 0.08 0.07 

DNK 0.23 0.12 0.52 0.04 0.08 0.07 

ESP 0.23 0.12 0.52 0.04 0.08 0.07 

EST 0.23 0.12 0.52 0.04 0.08 0.07 

FIN 0.23 0.12 0.50* 0.04 0.08 0.06* 

FRA 0.23 0.12 0.52 0.04 0.08 0.07 

GBR 0.23 0.12 0.52 0.04 0.08 0.07 

GRC 0.23 0.12 0.52 0.04 0.08 0.07 

HUN 0.23 0.12 0.52 0.04 0.08 0.07 

IRL 0.23 0.12 0.52 0.04 0.08 0.07 

ITA 0.06* 0.12 0.52 0.04 0.08 0.07 

LTU 0.23 0.12 0.52 0.04 0.08 0.07 

LUX 0.23 0.12 0.52 0.04 0.08 0.07 

LVA 0.23 0.12 0.52 0.04 0.08 0.07 

MLT 0.23 0.12 0.52 0.04 0.08 0.07 

NLD 0.09* 0.12 0.52 0.04 0.08 0.07 

POL 0.23 0.12 0.52 0.04 0.08 0.07 

PRT 0.23 0.12 0.52 0.04 0.08 0.07 

ROU 0.23 0.12 0.52 0.04 0.08 0.07 

HRV 0.23 0.12 0.52 0.04 0.08 0.07 

SVK 0.23 0.12 0.52 0.04 0.08 0.07 

SVN 0.23 0.12 0.52 0.04 0.08 0.07 

SWE 0.23 0.12 0.52 0.04 0.08 0.06* 
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D.1.3 Transportation via lorry, train or ship 

Table D0.10: Distances by lorry between countries i and i' [km]388,389. Intra-country distances are 

assumed to be equal to 50 km390.   
AUT BEL BGR CYP CZE DEU DNK ESP EST FIN 

AUT 50                   

BEL 916 50 
        

BGR 1003 2116 50 
       

CYP 2589 3702 1578 50 
      

CZE 333 907 1285 2872 50 
     

DEU 681 765 1634 3220 349 50 
    

DNK 1115 920 2068 3654 783 439 50 
   

ESP 2399 1578 2976 4563 2242 2321 2488 50 
  

EST 1677 2272 2625 4212 1654 1544 1078 3822 50 
 

FIN 1764 2043 2712 4298 1740 1631 1136 3605 87 50 

FRA 1236 312 2246 3832 1030 1055 1222 1270 2554 2341 

GBR 1477 373 2486 4073 1271 1100 1255 1722 2600 2375 

GRC 1716 2829 793 2123 1998 872 2779 3241 3331 3421 

HUN 243 1356 768 2355 525 872 1833 2520 1858 1948 

IRL 2054 950 3064 4650 1849 1678 1833 2299 3177 2952 

ITA 1095 1483 1668 2748 1299 1501 1901 1953 2757 2846 

LTU 1168 1763 2116 3703 1144 1035 1473 3313 604 694 

LUX 946 198 1955 3542 740 769 915 1686 2259 2034 

LVA 1366 1960 2313 3900 1342 1233 1671 3510 311 401 

MLT 2115 2503 1668 2998 2318 2521 2920 2972 3776 3865 

NLD 1148 213 2157 3743 876 654 791 1770 2154 1910 

POL 683 1301 1631 3217 683 574 1012 2851 974 1063 

PRT 2868 2038 3530 5116 2702 2781 2948 629 4280 4067 

ROU 1054 2167 357 1665 1336 1684 2117 3327 2319 2408 

HRV 376 1288 782 2369 699 1047 1475 2194 2037 2126 

SVK 80 1193 962 2548 328 676 1110 2483 1662 1751 

SVN 384 1193 920 2507 707 993 1393 2059 2045 2135 

SWE 1759 1564 2712 4298 1427 1082 656 3126 426 479 
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Table D0.11: Distances by lorry between countries i and i' [km] (cont.). 

  FRA GBR GRC HUN IRL ITA LTU LUX LVA MLT 

AUT                     

BEL 
          

BGR 
          

CYP 
          

CZE 
          

DEU 
          

DNK 
          

ESP 
          

EST 
          

FIN 
          

FRA 50 
         

GBR 470 50 
        

GRC 2957 3210 50 
       

HUN 1484 1737 1476 50 
      

IRL 1047 583 3772 2303 50 
     

ITA 1420 1881 1274 1214 2462 50 
    

LTU 2052 2107 2824 1356 2688 2280 50 
   

LUX 407 573 2664 1195 1154 1300 1748 50 
  

LVA 2250 2304 3022 1553 2885 2477 288 1959 50 
 

MLT 2440 2900 1525 2233 3481 1046 3265 2323 3466 50 

NLD 510 550 2865 1396 977 1650 1643 362 1844 2670 

POL 1591 1645 2339 870 2226 1794 463 1300 663 2814 

PRT 1735 2196 3799 3075 2777 2510 3769 2154 3970 3530 

ROU 2296 2549 1153 820 3130 2024 1808 2007 2009 2030 

HRV 1384 1670 1491 343 2251 890 1526 1109 1727 1910 

SVK 1322 1575 1670 201 2156 1188 1151 1033 1352 2208 

SVN 1242 1555 1629 463 2136 755 1534 967 1735 1775 

SWE 1865 1908 3420 1951 2489 2545 791 1559 521 3564 
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Table D0.12: Distances by lorry between countries i and i' [km] (cont.). 

  NLD POL PRT ROU HRV SVK SVN SWE 

AUT                 

BEL 
       

  

BGR 
       

  

CYP 
       

  

CZE 
       

  

DEU 
       

  

DNK 
       

  

ESP 
       

  

EST 
       

  

FIN 
       

  

FRA 
       

  

GBR 
       

  

GRC 
       

  

HUN 
       

  

IRL 
       

  

ITA 
       

  

LTU 
       

  

LUX 
       

  

LVA 
       

  

MLT 
       

  

NLD 50 
      

  

POL 1192 50 
     

  

PRT 2239 3317 50 
    

  

ROU 2206 1349 3884 50 
   

  

HRV 1328 1074 2750 983 50 
  

  

SVK 1202 699 2956 1013 388 50 
 

  

SVN 1233 1082 2615 1271 140 450 50   

SWE 1435 1645 3592 2763 2114 1755 2035 50 
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Table D0.13: Distances by train between countries i and i' [km]. Distances between different countries 

are assumed to be equal to 80% of the corresponding lorry route. 

  AUT BEL BGR CYP CZE DEU DNK ESP EST FIN 

AUT 40          

BEL 733 40 
 

       

BGR 803 1693 40        

CYP 2071 2962 1263 40       

CZE 266 726 1028 2297 40      

DEU 545 612 1307 2576 279 40     

DNK 892 736 1654 2923 627 351 40    

ESP 1919 1262 2381 3650 1793 1856 1990 40   

EST 1342 1817 2100 3369 1323 1235 863 3057 40  

FIN 1411 1635 2170 3439 1392 1305 909 2884 70 40 

FRA 989 250 1796 3066 824 844 977 1016 2044 1873 

GBR 1182 298 1989 3258 1017 880 1004 1377 2080 1900 

GRC 1373 2263 634 1698 1598 698 2223 2593 2665 2737 

HUN 194 1085 615 1884 420 698 1466 2016 1487 1558 

IRL 1643 760 2451 3720 1479 1342 1466 1839 2542 2362 

ITA 876 1187 1335 2198 1039 1201 1521 1562 2205 2277 

LTU 935 1410 1693 2962 916 828 1179 2650 483 555 

LUX 757 158 1564 2834 592 615 732 1349 1807 1628 

LVA 1093 1568 1851 3120 1073 986 1336 2808 249 321 

MLT 1692 2002 1335 2399 1855 2017 2336 2378 3021 3092 

NLD 918 170 1726 2995 701 524 633 1416 1723 1528 

POL 546 1041 1304 2574 546 459 809 2281 779 851 

PRT 2294 1631 2824 4093 2162 2225 2358 503 3424 3254 

ROU 843 1734 286 1332 1069 1347 1694 2662 1855 1927 

HRV 301 1031 626 1895 559 837 1180 1755 1630 1701 

SVK 64 954 769 2038 263 541 888 1986 1330 1401 

SVN 307 955 736 2005 566 795 1114 1647 1636 1708 

SWE 1407 1251 2169 3439 1142 866 525 2500 341 383 
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Table D0.14: Distances by train between countries i and i' [km] (cont.). 

  FRA GBR GRC HUN IRL ITA LTU LUX LVA MLT 

AUT           

BEL           

BGR           

CYP           

CZE           

DEU           

DNK           

ESP           

EST           

FIN           

FRA 40          

GBR 376 40 
 

       

GRC 2366 2568 40        

HUN 1188 1390 1181 40       

IRL 838 467 3017 1842 40      

ITA 1136 1505 1019 971 1970 40     

LTU 1642 1685 2260 1085 2150 1824 40    

LUX 326 458 2131 956 923 1040 1398 40   

LVA 1800 1843 2417 1242 2308 1982 231 1567 40 0 

MLT 1952 2320 1220 1787 2785 837 2612 1858 2772 40 

NLD 408 440 2292 1117 782 1320 1315 289 1475 2136 

POL 1273 1316 1871 696 1781 1435 370 1040 531 2251 

PRT 1388 1757 3039 2460 2222 2008 3016 1723 3176 2824 

ROU 1837 2039 923 656 2504 1619 1446 1606 1607 1624 

HRV 1107 1336 1192 275 1801 712 1221 887 1381 1528 

SVK 1057 1260 1336 161 1725 950 921 827 1081 1766 

SVN 994 1244 1303 370 1709 604 1227 774 1388 1420 

SWE 1492 1526 2736 1561 1991 2036 632 1247 417 2852 
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Table D0.15: Distances by train between countries i and i' [km] (cont.). 

  NLD POL PRT ROU HRV SVK SVN SWE 

AUT         

BEL         

BGR         

CYP         

CZE         

DEU         

DNK         

ESP         

EST         

FIN         

FRA         

GBR         

GRC         

HUN         

IRL         

ITA         

LTU         

LUX         

LVA         

MLT         

NLD 40        

POL 953 40       

PRT 1792 2654 40      

ROU 1765 1079 3107 40     

HRV 1062 859 2200 787 40    

SVK 962 559 2365 810 310 40   

SVN 986 865 2092 1017 112 360 40 
 

SWE 1148 1316 2874 2210 1691 1404 1628 40 
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Table D0.16: Distances by ship between countries i and i' [km]. 

  AUT BEL BGR CYP CZE DEU DNK ESP EST FIN 

AUT                     

BEL       
 

  
     

BGR                     

CYP   6019       
     

CZE                     

DEU   665   6393     
    

DNK   1420   7147   1009   
   

ESP   1437   5084   1811 2565   
  

EST   2284   8010   1872 1196 3428   
 

FIN   2221   7947   1809 1139 3365 296   

FRA   3934   7947   4308 5062 2998 5925 5862 

GBR   861   6534   809 1172 1952 2035 1972 

GRC   5556   494   5930 6684 4621 7547 7484 

HUN                     

IRL   1348   5662   1722 2178 1285 3041 2978 

ITA   5395   2121   5769 6523 4460 7386 7323 

LTU   1891   7617   1480 789 3035 585 552 

LUX                     

LVA   2172   7899   1761 1089 3317 539 498 

MLT   4371   1695   4745 5499 3435 6362 6299 

NLD   332   6062   420 1176 1480 2039 1976 

POL   1796   7523   1385 698 2941 752 715 

PRT   1739   4326   2113 2867 804 3730 3667 

ROU                     

HRV   5515   2241   5889 6643 4580 7506 7443 

SVK                     

SVN   5575   2300   5949 6702 4639 7565 7502 

SWE   1541   7267   1130 459 2685 811 763 
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Table D0.17: Distances by ship between countries i and i' [km] (cont.). 

  FRA GBR GRC HUN IRL ITA LTU LUX LVA MLT 

AUT                     

BEL 
   

  
   

  
  

BGR                     

CYP 
   

  
   

  
  

CZE                     

DEU 
   

  
   

  
  

DNK 
   

  
   

  
  

ESP 
   

  
   

  
  

EST 
   

  
   

  
  

FIN 
   

  
   

  
  

FRA   
  

  
   

  
  

GBR 4449   
 

  
   

  
  

GRC 1946 6071     
   

  
  

HUN                     

IRL 3576 1172 5199     
  

  
  

ITA 1733 5910 1650   5037   
 

  
  

LTU 5532 1643 7154   2648 6993     
  

LUX                     

LVA 5813 1924 7436   2930 7275 437     
 

MLT 885 4886 1243   4013 1178 5969   6251   

NLD 3976 696 5599   1391 5437 1646   1928 4413 

POL 5437 1548 7060   2554 6899 217   615 5875 

PRT 2241 2254 3863   1382 3702 3337   3619 2678 

ROU                     

HRV 1854 6030 1771   5158 211 3337   7395 1296 

SVK                     

SVN 1913 6089 1830   5217 230 7173   7454 1358 

SWE 5182 1293 6804   2298 6643 422   719 5619 
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Table D0.18: Distances by ship between countries i and i' [km] (cont.). 

  NLD POL PRT ROU HRV SVK SVN SWE 

AUT                 

BEL 
   

  
 

  
 

  

BGR                 

CYP 
   

  
 

  
 

  

CZE                 

DEU 
   

  
 

  
 

  

DNK 
   

  
 

  
 

  

ESP 
   

  
 

  
 

  

EST 
   

  
 

  
 

  

FIN 
   

  
 

  
 

  

FRA 
   

  
 

  
 

  

GBR 
   

  
 

  
 

  

GRC 
   

  
 

  
 

  

HUN                 

IRL 
   

  
 

  
 

  

ITA 
   

  
 

  
 

  

LTU 
   

  
 

  
 

  

LUX                 

LVA 
   

  
 

  
 

  

MLT 
   

  
 

  
 

  

NLD   
  

  
 

  
 

  

POL 1552   
 

  
 

  
 

  

PRT 1782 3243     
 

  
 

  

ROU                 

HRV 5558 7019 3823       
 

  

SVK                 

SVN 5617 7078 3882   204       

SWE 1296 333 2987   6764   6823   

Table D0.19: Correction factors used to calculate the amount of lorries, trains or ships based on the 

biomass transported as chips, bales or pellets.It relates the density of the biomass to the volume and 

carry load of the transportation mean.  
Lorry Train Ship 

CORFv
chip

 1.25 1 1 

CORFv
bal 2.16 1 1 

CORFv
pell

 1.70 1 1 
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D.1.4 Combustion and carbon capture  

Table D0.20: Parameters for the modeling of the combustion plant and capture unit retrieved from 

Volkart et al.363, the efficiency is sourced from Fajardy33, while the HHV from Fajardy33 and Pozo14. 

CC and HHV depend on the type of biomass, while the remaining parameters are valid for any 

feedstock. 

Parameter Value  
Miscanthus Switchgrass Willow Straw 

cereals 

Woody Forest 

CCb
pow

 [wt% (db)] 0.48 0.47 0.48 0.41 0.40 0.48 

HHV𝑏
𝑝𝑒𝑙𝑙

 [MJ/ kgdb] 18.40 18.40 19.10 17.75 18.24 20.59 

Rccs 0.90 

HERccs [MWh/ 𝑡𝐶𝑂2] 0.97 

ELRccs [MWh/ 𝑡𝐶𝑂2] 0.02 

CORccs [MWh/ 𝑡𝐶𝑂2] 0.15 

η𝑝𝑜𝑤 0.39 

Table D0.21: Losses considered at each activity during the modeling. * are sourced from Fajardy et 

al.33, while the other values are based on assumptions. 

Activity Losses EC Losses RD 

Harvesting 0.03 0 

Chipping/Baling 0.05 0.05 

Transportation* 0.05 0.05 

Pelleting* [per stage] 0.02 0.02 

CO2 transportation 0 0 
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D.2 LCA background and inventories  

LCA is a methodology used to assess a product or a process throughout its life. In accordance 

with the requirements and guidelines of the ISO standards 14040391 and 14044392, LCA is 

performed in four steps.  

Goal and scope definition. This step involves the determination of the study: intended 

application and target audience, selection of the functional unit, system boundaries, impact 

categories, objective of the analysis and assumptions.  

Life cycle inventory (LCI). This step includes the data collection for the foreground and 

background system and the quantification of the relevant input and outputs of the product 

system. 

Life cycle impact assessment (LCIA). The results of the LCI are transformed into potential 

environmental impacts on the impact categories selected, using the so-called characterization 

factors retrieved from SimaPro. 

Interpretation. This step is carried out based on the assumptions and limitations of the study, 

according to the goal and scope outlined in the first step. 

The endpoint characterization, which is the focus of this environmental analysis, corresponds 

to three areas of protection: human health, natural environment and resource scarcity 51. The 

endpoint of the first category is expressed in DALY (disability adjusted life years) as it shows 

the number of years lost or that a person is disabled by a disease or an accident. Natural 

environment is expressed by the endpoint ecosystem quality, which represents the species loss 

over time and, therefore, it has a unit of [species year]. Lastly resource availability, in dollars 

[USD], quantifies the extra cost that will be needed for the extraction of mineral and fossil 

resources in the future, after depleting the most accessible sources51. 

All the activities modeled in SimaPro are based on the APOS, U methodology because it allows 

to track back the flows of every activity. 
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Table D0.22: Activities modeled at each stage of the supply chain. The majority of them is sourced 

from Ecoinvent; for those the name and the allocation type are reported. Land usage, CO2 transportation 

and storage have been modeled based on literature data. 

Activity Source  Notes 

Land miscanthus, 

switchgrass and 

willow 

FEAT database393 
 

LUC Ecoinvent - Land use change, perennial crop 

{RoW} | APOS 

 

Chipping Ecoinvent - Wood chipping, industrial residual 

wood, stationary electric chipper {RER} | APOS 

 

Baling Ecoinvent - Baling {CH} | APOS 
 

Pelleting Ecoinvent - Wood pellet production {RER} | APOS Biomass 

input set to 

zero 

Transportation lorry Ecoinvent - Market for transport, freight, lorry 16-

32 metric ton, EURO6 {RER} | APOS 

 

Transportation train Ecoinvent - Market for transport, freight train 

{Europe without Switzerland} | APOS 

 

Transportation ship Ecoinvent - Market for transport, freight, sea, 

transoceanic ship {GLO} | APOS 

 

CO2 transportation Modeled from Wildbolz283 
 

CO2 storage Modeled from Wildbolz283 
 

The impact of dedicated crop at the cultivation stage has been modeled based on the available 

data reported in the agricultural database FEAT393. 
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Table D0.23: Farm inputs from FEAT database393 to model the impact of the cultivation of dedicated 

crops. The corresponding entries in Ecoinvent are reported. At this stage only the CO2 emissions are 

modeled, while the amount of water necessary for the cultivation is not considered. The yield and crop 

moisture reported in the table is an average among all the countries. 

Farm inputs FEAT Ecoinvent activity and 

allocation 

Crop field area 

(ha) 

1 1 1 
 

Crops Miscanthus Switchgrass Willow 
 

Yield [twb/(ha yr)] 

average EU-28 

33.58 8.18 11.81 
 

Crop moisture at 

harvest (%) 

0.23 0.12 0.52 
 

N rate [kg/(ha yr)] 92.80 80.72 80.17 Nitrogen fertilizer, as N 

{GLO}| market for | APOS 

P2O5 rate  

[kg/(ha yr)] 

53.20 64.58 15.25 Phosphate fertilizer, as P2O5 

{GLO}| market for | APOS 

K2O rate  

[kg/(ha yr)] 

121.80 64.58 40.25 Potassium fertilizer, as K2O 

{GLO}| market for | APOS 

Lime [kg/(ha yr)] 643 643 643 Soil pH raising agent, as 

CaCO3 {GLO}| lime to 

generic market for soil pH 

raising agent | APOS 

Seed/cuttings rate 

[kg/(ha yr)] 

50 0.77 608 Grass seed, organic, for 

sowing {GLO}| market for | 

APOS 

Herbicide rate 

[kg/(ha yr)] 

0.72 0.42 0.43 Glyphosate {GLO}| market for 

| APOS 

Diesel fuel  

[L/(ha yr)] 

99.92 72.54 43.97 Diesel, burned in agricultural 

machinery {GLO}| diesel, 

burned in agricultural 

machinery | APOS 

Transportation of 

inputs [MJ/(ha yr)] 

0.64 0.64 0.64 Transport, freight train 

{RoW}| diesel | APOS 

The inventory for CO2 transportation and storage is reported in Table D0.24 to Table D0.29, 

adapted from Wildbolz283, to match the available entries of Ecoinvent. 
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Table D0.24: Pipeline, supercritical CO2 inventory used from Ecoinvent activities. 

Pipeline, supercritical CO2 1 km  

Resources   

Occupation, construction site 3330 m2a 

Transformation, from forest, unspecified 2000 m2 

Transformation, to heterogeneous, agricultural 2000 m2 

Water, unspecified natural origin/m3 187 m3 

   

Materials/fuels   

Diesel, burned in building machine {GLO}| processing | APOS, U 3310000 MJ 

Steel, low-alloyed {GLO}| market for | APOS, U 270000 kg 

Sand {GLO}| market for | APOS, U 4400000 kg 

Drawing of pipe, steel {RER}| processing | APOS, U 270000 kg 

Stone wool, packed {CH}| stone wool production, packed | APOS, U 5119 kg 

Transport, helicopter {GLO}| market for | APOS, U 26 hr 

Transport, helicopter, LTO cycle {GLO}| market for | APOS, U 10.4 p 

Transport, freight, lorry 16-32 metric ton, euro6 {RER}| market for 

transport, freight, lorry 16-32 metric ton, EURO6 | APOS, U 

315000 tkm 

Transport, freight train {RER}| market group for transport, freight train | 

APOS, U 

55100 tkm 

   

Waste to treatment   

Inert waste, for final disposal {CH}| treatment of inert waste, inert 

material landfill | APOS, U 

4400000 kg 

Scrap steel {CH}| treatment of, inert material landfill | APOS, U 135000 kg 

Waste mineral wool, for final disposal {CH}| treatment of waste mineral 

wool, inert material landfill | APOS, U 

5120 kg 

Table D0.25: Transport, pipeline, supercritical CO2, with recompression inventory used from 

Ecoinvent activities. 

Transport, pipeline, supercritical CO2, w/o recompression 1 tkm  

Materials/fuels   

Pipeline, supercritical CO2 6.34E-09 km 

   

Emissions to air   

Carbon dioxide, fossil 0.00026 kg 
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Table D0.26: Well double, aquifer inventory used from Ecoinvent activities. 

Well double, aquifer 1 p  

Resources   

Occupation, industrial area 900 m2a 

Occupation, industrial area, vegetation 8100 m2a 

Transformation, from grassland/pasture/meadow 600 m2 

Transformation, to industrial area 60 m2 

Transformation, to industrial area, vegetation 540 m2 

   

Materials/fuels   

Deep well, drilled, for geothermal power {CH}| deep well drilling, for 

deep geothermal power | APOS, U 

3600 m 

Cement, unspecified {CH}| market for cement, unspecified | APOS, U 126000 kg 

Gravel, crushed {CH}| production | APOS, U 1320000 kg 

Transport, freight, lorry 16-32 metric ton, euro6 {RER}| market for 

transport, freight, lorry 16-32 metric ton, EURO6 | APOS, U 

28900 tkm 

Transport, freight train {RER}| market group for transport, freight train | 

APOS, U 

12600 tkm 

Table D0.27: Well double, depleted gas field inventory used from Ecoinvent activities. 

Well double, depleted gas field 1 p  

Resources   

Occupation, industrial area 900 m2a 

Occupation, industrial area, vegetation 8100 m2a 

Transformation, from unknown 600 m2 

Transformation, to industrial area 60 m2 

Transformation, to industrial area, vegetation 540 m2 

   

Materials/fuels   

Deep well, drilled, for geothermal power {CH}| deep well drilling, for 

deep geothermal power | APOS, U 

11300 m 

Cement, unspecified {CH}| market for cement, unspecified | APOS, U 126000 kg 

Gravel, crushed {CH}| production | APOS, U 1320000 kg 

Transport, freight, lorry 16-32 metric ton, euro6 {RER}| market for 

transport, freight, lorry 16-32 metric ton, EURO6 | APOS, U 

28900 tkm 

Transport, freight train {RER}| market group for transport, freight train | 

APOS, U 

12600 tkm 
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Table D0.28: Storage, CO2, aquifer, 200 km pipeline inventory used from Ecoinvent activities. 

Storage, CO2, aquifer, 200 km pipeline 1 kg  

Materials/fuels   

Well double, aquifer 2.54E-11 p 

Transport, pipeline, supercritical CO2, w/o recompression 0.2 tkm 

Table D0.29: Storage, CO2, depleted gas field, 200 km pipeline inventory used from Ecoinvent 

activities. 

Storage, CO2, depleted gas field, 200 km pipeline 1 kg  

Materials/fuels   

Well double, depleted gas field 2.54E-11 p 

Transport, pipeline, supercritical CO2, w/o recompression 0.2 tkm 

D.3 Additional results 

D.3.1 Regional implications 

While the general solution to the four scenarios is reported in the main text, a detailed 

description of the supply chains is given in this section. 

In the minimum cost scenario, the biomass feedstock is grown and harvested in Bulgaria, 

Germany, Italy - where not all the available land is used - and Romania, while all the other 

countries rely solely on the reserve of residues. In Spain, France and Portugal, however, woody 

residues are not fully used up. The model chooses Bulgaria and Romania because of the lowest 

cost for cultivation, while Miscanthus can be found in Germany and Italy, where the carbon 

content of Miscanthus is the highest. Biomass is processed into chips before it is transported 

by train to the pelleting sites in Bulgaria and Poland, while Romania processes the biomass 

within the country. Ship transportation is also used to transport the chips to Poland from all 

countries with access to the sea. The pellets are then transported via train solely to the 

combustion plants within Bulgaria and Poland. Simultaneously, Romania has its own supply 

chain within the regional borders. These three countries offer competitive prices on the market 

for pelleting and combustion stages. The CO2 captured at the plant in Bulgaria and Poland is 

transported via pipeline to 18 countries of the EU, filling all the coal and hydrocarbon storage 

sites; while Romania relies on regional storage. Note that nine countries do not offer any type 

of geological site. 

The topology of the minimum human health scenario's optimal configuration shows that 

Miscanthus is grown in Germany, Italy, the Netherlands, Romania - where not all the available 

land is used - and in Slovenia. In the rest of the EU Members, residues are collected. Then, the 
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biomass is transformed into chips on the land where it is harvested. In Slovenia, Miscanthus 

has the second-highest yield among all the countries, while in the Netherlands, Germany and 

Italy, one of the highest carbon content of Miscanthus is found. Cyprus, Finland, Sweden and 

Lithuania send all the biomass harvested abroad to Greece and Poland. Transportation of chips 

via ship from the land to the pelleting site is employed. The pellets are then transported by train 

to the combustion plants within the same countries to minimize transportation emissions. The 

carbon dioxide captured at each plant is sent via pipeline to the storage, prioritizing saline sites 

in both scenarios, i.e., minimum human health and minimum ecosystem quality.  

The solution to the minimum ecosystem quality is largely similar to the one of human health. 

Biomass is harvested in the same countries (Germany, Italy, the Netherlands, Romania and 

Slovenia) and processed into chips. As opposed to the previous solution, a pelleting site is 

installed in Finland; Germany and Slovakia store a greater amount of CO2, while Denmark 

reduces its contribution. As already mentioned in Chapter 5, the reason for these differences 

relies on different breakeven distances for a given amount of biomass, leading to choices for 

which train transportation is more or less advantageous than ship. 

Lastly, resource availability has been minimized. Austria, France, where only part of the 

available land is used, Romania and Slovenia are the countries where Miscanthus is harvested. 

Once again, Austria and France are chosen because of the high yield of Miscanthus. In the 

same countries where the biomass is cultivated, the chipping, pelleting and combustion 

processes are carried out and transportation by train connects the different plants within and 

across the countries. Sweden and Lithuania constitute an exception because chips are sent via 

ship to Poland. The carbon dioxide captured at the combustion plant is mainly injected into 

saline aquifers. 

In all the scenarios described above, Malta does not contribute to the global target because it 

can offer neither land for cultivation nor residues. As opposed to the base case (minimization 

of the total cost), in the environmental solutions, a small supply chain is found in every country 

where all the stages are carried out within the national borders. This configuration allows 

reducing the emissions and, ultimately, the impact of transportation on the environment. In 

particular, the most striking difference between the cost and the environmental scenarios is the 

reduced number of links from the cultivation to the pelleting. On the other hand, a network of 

pipelines will be required to store the CO2, especially in the case of minimum environmental 

indicators, where CO2 is exchanged among all the countries.  
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D.3.2 Midpoints of optimal solutions 

In the LCA practice, the impacts are first aggregated into several different categories of 

midpoints that add up to obtain human health, ecosystem quality and resource availability. For 

each endpoint, numerous stressors are included in the Recipe 2016 method and they are shown 

in Figure D0.1 for human health a), ecosystem quality b) and resource availability c) for the 

four different scenarios.  

In the case of human health, the main contributors are global warming, which is negative for 

the carbon dioxide absorbed from the atmosphere, and fine particulate matter formation on the 

positive side. Human carcinogenic and non-carcinogenic toxicity are highly impacting 

activities too. The activity contributing the most to these two midpoints is the pelleting stage 

because of the high heat consumption and particulates' formation during the process.  

Global warming is once again the principal negative stressor of ecosystem quality, while land 

use constitutes the biggest positive impact. Ozone formation and terrestrial acidification are 

relevant positive contributions as well. In the case of ecosystem quality, carbon dioxide and 

land are the main components.  

Lastly, in resource availability, only two sub-categories are present: mineral and fossil resource 

scarcity. In all the analyses performed, fossil resources' impact exceeds the one of mineral by 

two orders of magnitude, with land use, pelleting and CO2 transportation being the most 

significant contributors. 

In all the problems analyzed, the biomass feedstock is residues and, therefore, land does not 

play a major role given the model's assumptions. Hence, a negative endpoint of ecosystem 

quality is assured by the negative carbon dioxide.  

It has been mentioned in the description of the Ecoinvent entries that the data collected from 

the FEAT database does not include the water necessary for the crops' growth. This translates 

into underestimating the impact of water consumption, which has implications on human health 

and ecosystem quality. However, since the biomass feedstock is almost entirely relying on 

residues, with the assumption of zero environmental impact, the neglected entry of water usage 

should not be significant. The opposite would be valid for energy crop-based BECCS and, 

therefore, trade-offs between the two indicators would be significant. 
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Figure D0.1: Midpoints of human health a), ecosystem quality b) and resource availability c) for the 

scenarios analyzed. The error bars represent the uncertainty of the data calculated as the standard 

deviation of 1000 scenarios generated in SimaPro using Monte Carlo sampling. The limits of the error 

bars denote the worst and best-case scenario of the total impact. 
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D.3.3 Residues usage 

The negative emission target is satisfied almost entirely by using residues (straw cereals, 

woody and forest), as a consequence of one of the model prevailing assumptions that only 

energy crops affect the costs and the environmental performances of the supply chain. The 

amount of residues that each country can utilize is given as input to NETCOM. Figure D0.2 

shows the percentage of usage of each different residue with respect to the total residues 

feedstock in the minimum cost solution a), human health b), ecosystem quality c) and resource 

availability c). Only in the minimum cost solution, part of the available woody residues is not 

used in Spain, France, Great Britain and Portugal. In all the other optimizations, the 100% of 

residues employed corresponds to the total residues availability. Malta does not have any 

residues available, as reported in Table D0.8.  
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Figure D0.2: Use of residues in each country for the minimum cost case a), human health b), ecosystem 

quality c) and resource availability d). The figure shows the percentage of each category of residues 

that is used as biomass feedstock with respect to the total of residues utilized. In b), c) and d), it 

corresponds to the total available. 
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D.4 Assumptions and limitations of NETCOM 

Two different sets of biomass feedstock are available, i.e., dedicated bioenergy crops 

(Miscanthus, switchgrass and willow) that grow on marginal land and agricultural residues 

(straw cereals and woody and forest residues). Given the high uncertainty in the definition of 

marginal land, here we consider marginal lands as those unsuitable for agriculture because of 

the low productivity33.  

The selection of the biomass types is primarily driven by the goal to avoid competition with 

agricultural land and water, which would increase the food prices, to prove BECCS 

sustainability. Therefore, we considered non-edible biomass, commonly defined as second 

generation, e.g., Miscanthus, switchgrass, willow and poplar grown on marginal land or 

residues (agricultural and forestry). These biomass types are different from first-generation 

biomass (i.e., those competing for land and water, such as starch and sugar) and third-

generation (e.g., algae), not yet competitive, and frequently deployed for bioenergy 

applications33,394–396. The variety of NETCOM feedstock is then based on the availability in the 

geographical area considered (EU-28) and the ease of data collection. Since the energy crop 

cultivation is modeled based on regional inputs, e.g., land availability, moisture content and 

yield383,386,387,397, it is of paramount importance to choose a feedstock which is common to all 

the countries considered and a viable option for bioenergy production via combustion at the 

same time.  

Two different biomass processing methods are available, i.e., chipping or baling, carried out in 

the same biomass harvest location. We assume that processing and pelleting, as well as 

pelleting and combustion facilities, are connected via three possible transport means, namely 

lorry, train or ship. 

The distance between the countries has been calculated based on the travel routes between the 

national capitals to rely on realistic figures, although farms are unlikely located close to high 

population density sites. Four types of operations have been modeled in the pelleting activity: 

pre-treatment, drying, comminution and mixing. We consider a direct combustion-steam 

turbine system at the combustion stage. Biomass is the feedstock for the boiler, which produces 

steam to operate a steam turbine and a generator for the electricity. A post-combustion carbon 

capture technology with an aqueous solution 30 wt.% of monoethanolamine (MEA) retrofitting 

plant is included in this study, with a capture rate of 90%398.  
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Combustion is the most common option for bioenergy production19, which implies negligible 

or no modification of the current furnace or burner technologies399,400. The ability to retrofit 

current power plants for electricity production using biomass makes the combustion 

technology highly advantageous and very promising for a transition toward cleaner electricity 

production. Additionally, the combustion technology has a high technology readiness level 

(TRL) and it is implemented at Mt scale. As a consequence, the CO2 which is produced in the 

flue gas is captured using a MEA liquid solution401 in a post-combustion capture unit. The latter 

can also be retrofitted, contributing to reducing the emissions. 

We consider a set of onshore storage sites (i.e., depleted hydrocarbon fields, coal seams, and 

saline formations) available in each country, where the CO2 transported via pipeline from the 

combustion plant can be injected. Based on the literature source for the EU-28 countries402, 

specific storage sites have been considered and quantified. As previous works show, the type 

of geological site is highly dependent on the specific country and even within the EU some 

members lack storage capacity for the types considered403. 

We use regionalized (for each country of EU-28) input data for crops and for the cost 

calculation, while the biomass carbon intensity factors and the environmental impacts 

indicators used in the modeling of the emissions are assumed to be equal for each country. 

However, we express each of them with the country i and the biomass type b subscripts to 

indicate that regional factors can and should be investigated, as climate and regional energy-

mixes could greatly influence the impacts. The ecovectors used in the mathematical model 

include the impacts at mid- and endpoints per unit of flow of each stage of the SC. 

The modeling of the cultivation stage is based on the FEAT database393 and it accounts for 

emissions mainly related to fertilizers and transportation, as reported in Table D0.23. However, 

specifically for the assessment of BECCS, the water consumption of the crop should be 

considered because it can lead to substantial trade-offs in the environmental indicators. In this 

case, the impact of water consumption is estimated to be negligible, because the model relies 

almost entirely on residues feedstock, which are collected on the land.  

Following common practice in the literature404, the contribution of the infrastructure of the 

combustion plant is here omitted, as it is negligible particularly for biomass-based plants. The 

accounting of these indirect emissions can be relevant when the supply chain is not centralized, 

e.g., in the human health scenario, and the number of plants installed increases substantially.  
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On the other hand, losses occurring throughout the supply chain are meticulously considered. 

The impact of land-use change have been overestimated for the crop and the transformation 

selected (from marginal land), because of the specific entry chosen from the Ecoinvent 

database280. 

Since NETCOM costs are calculated for the reference year 2018, the United Kingdom is 

included as part of the European Union in our analysis. 

D.5 Numerical implementation in GAMS 

Each optimization problem has been solved in GAMS using CPLEX for linear programming. 

Options for scalability, such as scaind, and tolerance parameters have been implemented to 

improve the numerical solution of the environmental endpoints.  

In the case of ecosystem quality, the midpoints contribute to the total with a substantial 

difference. Indeed, they are several orders of magnitude lower than the other variables, and the 

solver faces numerical difficulties due to the wide range of the parameters. The minimum of 

this environmental objective function has been achieved by setting an additional constraint to 

solve starting from the value obtained in the minimum human health case as the upper bound. 

The two solutions are comparable in terms of total cost and emission, despite the above-

mentioned differences in the supply chains.  

Table D0.30 reports the CPU time for each optimization problem. In the case of minimum 

ecosystem quality the CPU is almost two times the one obtained for the calculation of the other 

objective functions. The CPU of the environmental impacts solutions refers to the minimization 

of the endpoint and not to the overall processing time: it excludes the computational time to 

find the minimum cost solution for a fixed minimum impact. 

Table D0.30: CPU time calculated in the optimization problems. 

Objective 

function 

CPU 

𝑔𝑙𝑜𝑐𝑜 2.83 

ℎℎ 2.45 

𝑒𝑑 4.47 

𝑟𝑎 2.47 
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D.5.1. Mass and energy balances  

D.5.1.1 Biomass growth and cultivation stage  

The model accounts for the amount of feedstock obtained from each country i for each of the 

six biomass types b considered (𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

). In the case of energy crops (biomass types in set 

EC), this is determined from the marginal land used (𝑙𝑎𝑛𝑑𝑖𝑏) and a yield parameter (YIELDib) 

providing the metric tons of biomass that can be grown per hectare and year (Eq. (D1)). The 

yield is based on the data from IIASA (EPIC II) for Miscanthus and Fajardy et al.383 for 

switchgrass and willow and corresponds to the annual average among the growing period. As 

an example, willow is a three-year rotation coppice; consequently, its annual yield is obtained 

by dividing the total yield by three years. On the other hand, the supply of biomass residues 

(biomass types contained in set RD) is constrained by the maximum amount available in a 

given country (AVRDib) (Eq. (D2)), which refers to data provided in the Atlas of EU biomass 

potentials386 for straw cereal and woody residues, while forestry residues are sourced from 

IINAS387. 

𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

= 𝑙𝑎𝑛𝑑𝑖𝑏YIELDib     ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D1) 

𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

≤ AVRDib     ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D2) 

The land surface (𝑙𝑎𝑛𝑑𝑖𝑏) utilized for energy crops cultivation in each country is restricted to 

the maximum marginal land available in that country, as dictated by parameter AVLANDi 

(Eq. (D3)). The available marginal land is calculated by aggregating GIS data from Cai et al.397 

at the country level and downscaling the final number according to Fritz et al.385, which 

provides a conservative data source for land availability consistent for each country in the EU.  

 ∑ 𝑙𝑎𝑛𝑑𝑖𝑏
𝑏∈𝐸𝐶

≤ AVLANDi ∀𝑖 (D3) 

The amount of biomass lost is considered in the mass balances throughout the entire model as 

a loss factor (as a percentage), which multiplies the flow of biomass at every stage where losses 

occur. Accounting of losses is relevant because the biomass is assumed to decay and release 

the carbon back into the atmosphere. 

The amount of biomass feedstock available for processing (𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑) takes into consideration 

that part of the biomass grown, which is lost during harvesting due to inadequate farming 
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practices, late harvesting or poor storage conditions. This is reflected in the parameter LOSSb
land 

(expressed as a percentage), affecting the energy crops input as described in Eq. (D4). We 

assume that at this stage the loss factor for biomass of type EC is 3%. In contrast, no losses are 

assumed for residues, for which the amount of biomass to be processed (𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑) equals the 

amount of residues gathered (𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

) in Eq. (D5).  

 𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑔𝑟𝑤
(1 − LOSSb

land)   ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D4) 

 𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑔𝑟𝑤
   ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D5) 

D.5.1.2 Processing into bales or chips 

After the biomass is harvested (both of type EC and RD), the feedstock has to be prepared for 

transportation in one of the two available forms: bales (𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙) or chips (𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
). This 

process takes place in the same country where the biomass is harvested and is of fundamental 

importance to increase the bulk density of the biomass, thus minimizing transportation costs 

405. The total amount of biomass available after harvesting and the production of bales 

(𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙) and chips (𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
) are linked in Eq. (D6). See Eq. (D71) for the formulation 

of Eqs. (D6) to (D8) as they are implemented in GAMS.  

 𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑 = 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑏𝑎𝑙 + 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝  ∀𝑖, 𝑏 (D6) 

The total production of bales 𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 and chips 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
 is calculated using Eqs. (D7) and 

(D8), respectively, discounting from the amount of biomass available in the form of bales  

(𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙) or chips (𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
) the losses of the baling and chipping processes by 

considering suitable loss factors related to each processing mode (LOSSb
bal and LOSSb

chip
). The 

latter are related to machine operation, e.g., to the baler or mower, and biomass management 

during baling and chipping and are assumed to be both equal to 5%. 

 
𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑏𝑎𝑙 =
𝑝𝑟𝑜𝑑𝑖𝑏

𝑏𝑎𝑙

(1 − LOSSb
bal)

  ∀𝑖, 𝑏 (D7) 

 
𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝 =
𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝

(1 − LOSSb
chip
)
 ∀𝑖, 𝑏 (D8) 
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D.5.1.3 Transport from farmland to the processing site 

All the biomass b prepared in each country i as bales or chips (𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 or 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
) is 

transported to country i’ via transportation mean v (𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑏𝑎𝑙  or 𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
, respectively), as shown 

in Eqs. (D9) and (D10). The transportation modes v considered are lorry, train and ship. 

 

 

𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 =∑∑𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙

𝑖′𝑣

  ∀𝑖, 𝑏 (D9) 

 

𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝 =∑∑𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝

𝑖′𝑣

  ∀𝑖, 𝑏 (D10) 

Eqs. (D11) and (D12) remove infeasible transport flows of bales (𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑏𝑎𝑙 ) and chips (𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
): 

e.g., transportation via ship between two countries with no access to the sea. 𝑇𝑅𝑖,𝑖′,𝑣 is the set 

of connections allowed between country i and i’ for each means of transportation v.  

 𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑏𝑎𝑙 = 0     ∀𝑖, 𝑖′, 𝑏, 𝑣 ∉ 𝑇𝑅𝑖,𝑖′  (D11) 

 𝑡𝑙𝑝
𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
= 0     ∀𝑖, 𝑖′, 𝑏, 𝑣 ∉ 𝑇𝑅𝑖,𝑖′  (D12) 

D.5.1.4 Pelleting stage 

Biomass in the form of bales or chips is usually converted into pellets, due to the resulting 

higher energy density, which leads to lower transportation costs and related emissions406.  

The amount of biomass bales or chips available for processing at the pelleting stage in country 

i (𝑝𝑟𝑜𝑐𝑖𝑏
𝑏𝑎𝑙 and 𝑝𝑟𝑜𝑐𝑖𝑏

𝑐ℎ𝑖𝑝
) includes for domestic as well as imported bales or chips (𝑡𝑙𝑝𝑖′𝑖𝑏𝑣

𝑏𝑎𝑙  and 

𝑡𝑙𝑝
𝑖′𝑖𝑏𝑣

𝑐ℎ𝑖𝑝
, respectively), after discounting the biomass losses incurred during the transportation 

to the pelleting plant (LOSStlp) (Eqs. (D13) and (D14)). These losses stand at 5%, according to 

Fajardy et al.33.  

 

𝑝𝑟𝑜𝑐𝑖𝑏
𝑏𝑎𝑙 =∑∑𝑡𝑙𝑝𝑖′𝑖𝑏𝑣

𝑏𝑎𝑙 (1 − LOSStlp)

𝑖′𝑣

   ∀𝑖, 𝑏 (D13) 
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𝑝𝑟𝑜𝑐𝑖𝑏
𝑐ℎ𝑖𝑝 =∑∑𝑡𝑙𝑝

𝑖′𝑖𝑏𝑣

𝑐ℎ𝑖𝑝
(1 − LOSStlp)

𝑖′𝑣

   ∀𝑖, 𝑏 (D14) 

The pelleting process takes place in four steps: pre-treatment, drying, comminution and mixing, 

ensuring a uniform feedstock regarding size, heating value and moisture content. Hence, the 

total amount of biomass pellets produced (𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜

) is calculated as reported in Eq. (D15), 

i.e., by considering the biomass input of bales and chips and the potential losses occurring 

during the pelleting. Fajardy et al.33 provided biomass losses for each pelleting stage equal to 

2%; these are lumped here into a single parameter LOSSb
ovpell

 covering the overall process, 

equal to 7.8%. The equations modeled in GAMS to account for the losses occurring during the 

four pelleting stages are reported in Eqs. (D72) and (D73). 

 
𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏

𝑝𝑟𝑜 = (𝑝𝑟𝑜𝑐𝑖𝑏
𝑏𝑎𝑙 + 𝑝𝑟𝑜𝑐𝑖𝑏

𝑐ℎ𝑖𝑝)(1 − LOSSb
ovpell

) ∀𝑖, 𝑏 (D15) 

D.5.1.5 Transport from pelleting to the combustion plant  

The total amount of pellets produced (𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜

) is transported from the pelleting stage to the 

power plant using the same transportation options described above, namely lorry, train and 

ship. Eq. (D16) ensures that all the pellets of biomass b produced in a certain country i will be 

transported to a power plant in a country i’ (where i equal to i’ is also possible) using one of 

the possible transportation means v (𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
). Note that all the pellets must be transported using 

one of the allowable transportation routes: Eq. (D17) prevents the transportation of pellets 

using unsuitable means v for the connection between countries i and i’, as included in set 𝑇𝑅𝑖,𝑖′ .  

 

𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜 =∑∑𝑡𝑝𝑐

𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙

𝑖′𝑣

     ∀𝑖, 𝑏 (D16) 

𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
= 0     ∀𝑖, 𝑖′, 𝑏, 𝑣 ∉ 𝑇𝑅𝑖,𝑖′ (D17) 

Therefore, the amount of pellets of biomass type b available for combustion at the power plant 

in country i (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

) is given by the amount of biomass pellets arriving from any country i’ 

(𝑡𝑝𝑐
𝑖′𝑖𝑏𝑣

𝑝𝑒𝑙𝑙
), after discounting the biomass losses occurring during transportation (LOSStpc) 

(Eq. (D18)). The latter are assumed to be 5%, as reported in Fajardy et al.33.  
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𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙 =∑∑𝑡𝑝𝑐

𝑖′𝑖𝑏𝑣

𝑝𝑒𝑙𝑙

𝑖′

 (1 − LOSStpc)

𝑣

   ∀𝑖, 𝑏 (D18) 

D.5.1.6 Power generation 

All the pellets that are transported to the power plant are combusted in a direct combustion-

steam turbine system to produce electricity. A retrofitting post-combustion MEA plant is 

implemented for the capture of the CO2. It is well known that the amount of carbon captured 

and stored plays an important role.  A wide range of capture percentages can be explored: 

values between 90% and 98% are commonly employed in similar studies in the literature. Here, 

a conservative capture rate of 90% is employed398 (R𝑐𝑐𝑠), leading to a net 10% of direct CO2 

emissions.  

The amount of CO2 captured by the amine post-combustion plant in country i (𝐶𝑂2𝑖
𝑝𝑜𝑤

) is 

calculated in Eq. (D19) from the amount of pellets combusted (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

), the specific capture 

rate employed (Rccs) and the carbon content of the biomass (CCb
pow

), which is expressed as the 

percentage of carbon in wet biomass, according to literature values. A factor (DRYib
pell

) is used 

to convert the carbon content based on dry mass (CCb
drypow

) to a wet basis and thereby maintain 

the consistency with the amount of biomass, always expressed in a wet basis in the model. The 

drying of the biomass is indeed performed in the previous step during the pelleting. The 

conversion of the carbon content from dry mass to wet mass is reported in Eq. (D75). Finally, 

the amount of CO2 resulting from the oxidation of the carbon contained in the biomass can be 

obtained through the ratio of molecular weights (MCO2/MC). 

 
𝐶𝑂2𝑖

𝑝𝑜𝑤 =∑𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙CCb

powM
CO2

MC
𝑏

Rccs      ∀𝑖 (D19) 

Note that a BECCS technology is not only employed for CO2 capture but also delivers 

electricity. The electricity produced at the power plant (𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤

) is calculated from the 

amount of biomass combusted (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

) and the heating value of the biomass HHV𝑏
𝑝𝑒𝑙𝑙

 as 

reported in Eq. (D20). HHV values for Miscanthus, switchgrass and willow pellets are provided 

by Fajardy et al. as the average of previously published data33, while we use Pozo et al.14 for 

residues [GJ/t]. The base efficiency (η𝑝𝑜𝑤) is based on a supercritical coal-fired power plant 

studied in Fajardy et al.33. 
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 𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤

= 𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙
HHV𝑏

𝑝𝑒𝑙𝑙
η𝑝𝑜𝑤      ∀𝑖, 𝑏 (D20) 

The CCS system requires heat to regenerate the MEA solvent (HERccs) and electricity for the 

CO2 capture (ELRccs), both expressed as MWh/tCO2, as shown in Eq. (D21). This equation 

provides the extra electricity needed by the post combustion plant, given the CO2 captured and 

the energy penalties. The parameters HERccs and ELRccs are sourced from Volkart et al.407 and 

reported in Table D0.20. The summation of the two energy penalties of the CCS system is 

embodied in the variable 𝑒𝑙𝑐𝑐𝑠𝑖
𝑝𝑜𝑤

, which needs to be discounted from the electricity output of 

the plant. 

 𝑒𝑙𝑐𝑐𝑠𝑖
𝑝𝑜𝑤 = 𝐶𝑂2𝑖

𝑝𝑜𝑤 (HERccsη𝑝𝑜𝑤 + ELRccs)     ∀𝑖 (D21) 

The CO2 captured must be compressed before being sent for injection, which imposes an 

additional energy penalty (𝑒𝑙𝑐𝑜𝑚𝑖
𝑝𝑜𝑤

) on the power station proportional to CORccs (electricity 

requirement for CO2 compression), expressed as MWh/tCO2. Eq. (D22) relates the electricity 

needed for the compression to the CO2 captured by the amine plant and the factor CORccs. 

 𝑒𝑙𝑐𝑜𝑚𝑖
𝑝𝑜𝑤 = 𝐶𝑂2𝑖

𝑝𝑜𝑤CORccs     ∀𝑖 (D22) 

Therefore, the balance for the net electricity production 𝑛𝑒𝑡𝑒𝑙𝑔𝑒𝑛𝑖
𝑝𝑜𝑤

 at the combustion plant 

is calculated in Eq. (D23), which states that the total amount of electricity is given by the 

difference between the electricity generated by direct biomass combustion (𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤

) and the 

energy penalties (𝑒𝑙𝑐𝑐𝑠𝑖
𝑝𝑜𝑤

 and 𝑒𝑙𝑐𝑜𝑚𝑖
𝑝𝑜𝑤

 for the regeneration of the solvent and the CO2 

capture and the CO2 compression, respectively).  

 𝑛𝑒𝑡𝑒𝑙𝑔𝑒𝑛𝑖
𝑝𝑜𝑤 = ∑ (𝑒𝑙𝑔𝑒𝑛𝑖𝑏

𝑝𝑜𝑤) − 𝑒𝑙𝑐𝑐𝑠𝑖
𝑝𝑜𝑤 − 𝑒𝑙𝑐𝑜𝑚𝑖

𝑝𝑜𝑤
𝑏  ∀𝑖 (D23) 

D.5.1.7 CO2 transportation and storage 

All the CO2 captured at the power plant in each country i (𝐶𝑂2𝑖
𝑝𝑜𝑤

) must be sent to storage 

sites in the same or any other country i’ (𝑡𝐶𝑂2
𝑖𝑖′
𝑝2𝑠

) (Eq. (D24)).   

 𝐶𝑂2𝑖
𝑝𝑜𝑤 =∑𝑡𝐶𝑂2

𝑖𝑖′
𝑝2𝑠

𝑖′

     ∀𝑖 (D24) 
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The final amount of CO2 available for storage in each country i (𝐶𝑂2𝑖
𝑠𝑡𝑜) is given by the amount 

sent to that country (𝑡𝐶𝑂2
𝑖𝑖′
𝑝2𝑠

) via pipeline (Eq. (D25)). In this case, losses are considered 

negligible as it is reported in Table D0.21. 

 𝐶𝑂2𝑖
𝑠𝑡𝑜 =∑𝑡𝐶𝑂2

𝑖′𝑖

𝑝2𝑠

𝑖′

   ∀𝑖 (D25) 

Finally, all the CO2 actually available is sequestered in the different storage sites g of the 

country (𝐶𝑂2𝑖𝑔
𝑠𝑖𝑡𝑒) (Eq. (D26)). Three different types of storage sites g are considered: coal and 

hydrocarbon depleted fields and saline aquifers, each with given national capacity (𝐶𝐴𝑃𝑖𝑔
𝑠𝑖𝑡𝑒) 

as imposed via Eq. (D27). Capacities of the different types of storage sites are retrieved from 

Vangkilde-Pedersen et al.402; here we only consider the equivalent capacity of one year. 

 𝐶𝑂2𝑖
𝑠𝑡𝑜 =∑𝐶𝑂2𝑖𝑔

𝑠𝑖𝑡𝑒    ∀𝑖

𝑔

 (D26) 

 

 𝐶𝑂2𝑖𝑔
𝑠𝑖𝑡𝑒 ≤ CAPig

site    ∀𝑖, 𝑔 (D27) 

D.5.2 Life cycle CO2 emissions 

D.5.2.1 Biomass growth and cultivation stage 

The net emissions during biomass farming result from balancing the negative and positive 

contributions. The former is related to the CO2 uptake from the atmosphere occurring during 

the plant growth via the photosynthesis process. Eq. (D28) represents the CO2 absorbed by 

each biomass type b in each country i (𝑒𝑚𝑖𝑏
𝑔𝑟𝑤

), which is calculated from the carbon content of 

the biomass (expressed as percentage of carbon in wet biomass CCib) and the amount of 

biomass cultivated (𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

). The carbon content of each crop CCib is an input data retrieved 

from Fajardy et al.33 and Phyllis2382, the online database for biomass and waste (see Table 

D0.5). The ratio of molecular weights of CO2 and carbon (M𝐶𝑂2/M𝐶) allows us to translate the 

amount of carbon in the plant to the equivalent amount of CO2 absorbed from the atmosphere. 

𝑒𝑚𝑖𝑏
𝑔𝑟𝑤

= −𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤
CCib

MCO2

M𝐶
   ∀𝑖, 𝑏 (D28) 
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In turn, the positive emissions associated with the cultivation stage (𝑒𝑚𝑖𝑏
𝑐𝑢𝑙) result from several 

contributions, as illustrated in Eq. (D29). These contributions are: emissions from the use of 

the land (𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑), direct land-use change (LUC) emissions (𝑒𝑚𝑖𝑏

𝑙𝑢𝑐) and the emissions 

occurring due to biomass losses (𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠).  Note that we consider that indirect land-use 

change (ILUC) is zero for marginal land; thus, only LUC is considered.  

 𝑒𝑚𝑖𝑏
𝑐𝑢𝑙 = 𝑒𝑚𝑖𝑏

𝑙𝑎𝑛𝑑 + 𝑒𝑚𝑖𝑏
𝑙𝑢𝑐  + 𝑒𝑚𝑖𝑏

𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠  ∀𝑖, 𝑏 (D29) 

Variable 𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑 provides the CO2 emitted during the cultivation stage. It is computed from 

the specific energy and selected farm inputs (e.g., herbicides, pesticides, farm inputs, and 

others) for each crop of type EC. The farm inputs are sourced from the FEAT database393 and 

reported in Table D0.23 for each specific crop and country. All these contributions are finally 

aggregated into the carbon intensity factor CIib
land, expressing the amount of CO2 emissions 

released per hectare of land used. This factor, modelled in SimaPro279 using Ecoinvent 

activities based on the FEAT inputs, is used in Eq. (D30) to relate CO2 emissions to the amount 

of land used for the cultivation of energy crops (biomass types in set EC). The inventories used 

in Ecoinvent to model this stage based on FEAT database are reported in Table D0.23. 

 𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑 = 𝑙𝑎𝑛𝑑𝑖𝑏CIib

land    ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D30) 

In the case of residues (i.e., biomass of type b contained in set RD), we assume that no 

environmental impact is assigned to them, as all the emissions incurred during cultivation are 

allocated to the main crop (Eq. (D31)).  

 𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑 = 0     ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D31) 

Biomass losses which occur at the different stages of the SC are also considered and they are 

calculated as a percentage (LOSSb ) of each input flow. Emissions from losses derive from the 

decay of the biomass and the oxidation of the carbon back to CO2 in the atmosphere. The 

calculation of the CO2 emissions defines the performance of the SC with respect to the global 

CDR target imposed. Only energy crops (biomass of the set EC) contribute to emissions due 

to biomass losses during harvesting (𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠). These are calculated in Eq. (D32), where the 

amount of biomass produced (𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤

) and the loss factor (LOSSb
land) provide the amount of 

biomass lost. Then, the carbon content of the biomass (CCib) and the ratio of the molecular 
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weights of CO2 and carbon (MCO2/MC) relate this quantity to the amount of CO2 that is released 

into the atmosphere during the biomass decay. Losses deriving from the harvesting of residues 

are allocated no direct emissions (Eq. (D33)). 

 
𝑒𝑚𝑖𝑏

𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 = 𝑝𝑟𝑜𝑑𝑖𝑏
𝑔𝑟𝑤
LOSSb

landCCib
MCO2

MC
   ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D32) 

 𝑒𝑚𝑖𝑏
𝑙𝑎𝑛𝑑𝑙𝑜𝑠𝑠 = 0   ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D33) 

In addition to the emissions produced by the land use, we also consider LUC ones. In general, 

LUC refers to the conversion of a land type (e.g., grassland, forest) to a crop land33. A detailed 

definition is given by Fargione et al.408. For marginal land transformations, LUC emissions are 

calculated as in Eqs. (D34) and (D35) for energy crops and residues, respectively. For the case 

of energy crops, the emissions due to LUC (𝑒𝑚𝑖𝑏
𝑙𝑢𝑐) are calculated from the amount of land used 

for the cultivation (𝑙𝑎𝑛𝑑𝑖𝑏) and the carbon intensity of the LUC activity (CIib
luc), expressed in 

tCO2 per hectare of land used. At this stage, LUC emissions associated with residues (𝑒𝑚𝑖𝑏
𝑙𝑢𝑐) 

are considered to be zero owing to the allocation previously mentioned. 

 𝑒𝑚𝑖𝑏
𝑙𝑢𝑐 = 𝑙𝑎𝑛𝑑𝑖𝑏CIib

luc    ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D34) 

 𝑒𝑚𝑖𝑏
𝑙𝑢𝑐 = 0    ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D35) 

We use the carbon intensity factor for LUC (CIib
luc) based on a land-use change activity in 

Ecoinvent in SimaPro279, which accounts for different land use transformations and considers 

and average of the impacts (not only marginal land, but also cropland, forest and grassland); 

hence, this choice leads to an overestimation of the impact of crop growth on marginal land. 

D.5.2.2 Processing into bales or chips 

The emissions associated with the baling (𝑒𝑚𝑖𝑏
𝑏𝑎𝑙) and chipping (𝑒𝑚𝑖𝑏

𝑐ℎ𝑖𝑝
) processes and the 

respective losses (𝑒𝑚𝑖𝑏
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 and 𝑒𝑚𝑖𝑏

𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠
) are reported in Eqs. (D36) and (D37). The 

associated carbon intensities for both processes (CIib
bal and CIib

chip
), sourced from SimaPro279, 

express the amount of CO2 emitted per metric ton of bales and chips. Then, Eqs. (D36) and 

(D37) are used to calculate the emissions deriving from baling and chipping (𝑒𝑚𝑖𝑏
𝑏𝑎𝑙 and 

𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝

) based on the amount of bales and chips produced (𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 and 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
) and the 

respective carbon intensity of the activities. Note that the product of the chipping process is 
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expressed in SimaPro as dry amount of chips. Here we report the carbon intensity already 

expressed per wet amount of biomass. 

 𝑒𝑚𝑖𝑏
𝑏𝑎𝑙 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑏𝑎𝑙CIib
bal + 𝑒𝑚𝑖𝑏

𝑏𝑎𝑙𝑙𝑜𝑠𝑠   ∀𝑖, 𝑏 (D36) 

 𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝CIib
chip

+ 𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠  ∀𝑖, 𝑏 (D37) 

The direct emissions due to the decay of biomass losses occurring during baling (𝑒𝑚𝑖𝑏
𝑏𝑎𝑙𝑙𝑜𝑠𝑠) 

and chipping (𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠

) are calculated according to Eqs. (D38) and (D39), respectively. In 

essence, biomass losses are first obtained from the amount of bales or chips produced (𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 

and 𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝

, respectively), and the corresponding loss factors (LOSSb
bal and LOSSb

chip
); then, 

this is converted into the corresponding amount of CO2 that would be released according to the 

carbon content of the particular biomass type b (CCib) and the ratio of molecular weights of 

CO2 and carbon (MCO2/MC). 

 
𝑒𝑚𝑖𝑏

𝑏𝑎𝑙𝑙𝑜𝑠𝑠 = 𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙LOSSb

balCCib
MCO2

MC
   ∀𝑖, 𝑏 

(D38) 

 
𝑒𝑚𝑖𝑏

𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠 = 𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝LOSSb

chip
CCib

MCO2

MC
   ∀𝑖, 𝑏 

 

(D39) 

D.5.2.3 Transport from farmland to the processing site 

In Eq. (D40), the emissions associated with the transportation of biomass of type b from the 

farmland of country i to the pelleting plant in country i’ (𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝
) are based on the distance 

between the countries i and i’ (DISTvii′) and the carbon intensity factor (CIv
trn), indicating the 

amount of CO2 emitted during the transportation of one metric ton of biomass in one km using 

the transportation mean v. The latter was sourced from Ecoinvent in SimaPro for lorry, train 

and ship, as reported in Table D0.22. Correction factors have been added in Eq. (D40) where 

required to account for the transportation capacity of lorries for bales and chips (CORFv
bal and 

CORFv
chip

, respectively). The correction factors relate the capacity of the transportation mean 

(maximum carry load/volume of the transport) to the density of the biomass. For lorry-based 

transport we assume a volume of 70m3 and a maximum carry load of 22.7 t371, from which the 

capacity can be calculated (324kg/m3). Depending on the density of the biomass (bales or 
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chips), the correction factor is applied to account for emissions deriving from not fully loaded 

lorries. It is set to 1 for the other transportation means other than lorries, as reported In Table 

D0.19. The emissions due to the transportation losses are included in Eq. (D40). 

Distances between different countries (DISTvii′ , 𝑖 ≠ 𝑖′) have been obtained using online 

tools388,389,409 for lorry and ship. We add intra-country distances in the case of lorries, assumed 

to be 50 km390. The distance covered by train is assumed to be 80% of the distance calculated 

for lorries, assuming a lower tortuosity for railroads compared to roads. The values used as 

input data to the model can be found in Table D0.10 - Table D0.19.  

 𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝
=∑DISTvii′CIv

trn(CORFv
bal𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙 + CORFv
chip
𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
)

𝑣

+ 𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
     ∀𝑖, 𝑖′, 𝑏 

(D40) 

In order to calculate the emissions associated with the decay of biomass losses during 

transportation (𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
), biomass losses, as given by the product between the amount of bales 

and chips produced and the loss factor (LOSStlp), are multiplied by the carbon content of the 

biomass and the ratio of the molecular weights (MCO2/MC) (Eq. (D41)). Note that we keep track 

of differences in indigenous biomass since the same carbon content as in the harvesting location 

i (CCib) is assumed, regardless of the transportation form (bales or chips) or mean (lorry, train 

or ship). 

 
𝑒𝑚

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑠𝑠
=∑(𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙 + 𝑡𝑙𝑝
𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
)LOSStlpCCib

MCO2

MC
𝑣

   ∀𝑖, 𝑖′, 𝑏 (D41) 

D.5.2.4 Pelleting stage 

The process of converting the biomass feedstock into pellets generates positive emissions 

(𝑒𝑚𝑖𝑏
𝑝𝑟𝑜

) that are calculated according to Eq. (D42). These emissions are related to the amount 

of pellets produced (𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜

, expressed in metric ton of wet biomass) and the carbon intensity 

of the pelleting activity (in tCO2 per metric ton of dry pellets). Here we report the carbon 

intensity (CIib
pell

) already converted to a wet basis of biomass with a moisture factor (DRYib
pell

) 

to convert the amount of biomass from a wet-basis to a dry basis. The carbon intensity is 

retrieved from Ecoinvent in SimaPro and accounts for all the energy and material inputs needed 

at this stage.  
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 𝑒𝑚𝑖𝑏
𝑝𝑟𝑜

= 𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜
CIib
pell

+ 𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

    ∀𝑖, 𝑏 (D42) 

Eq. (D42) also includes the emissions associated with the decay of biomass losses produced at 

the pelleting stage (𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠

), which are calculated in Eq. (D43). These emissions depend on 

the amount of biomass produced as pellets from the bales and chips that were transported to 

the plant (𝑝𝑟𝑜𝑐𝑖𝑏
𝑏𝑎𝑙 and 𝑝𝑟𝑜𝑐𝑖𝑏

𝑐ℎ𝑖𝑝
). We assume that the pelleting stage can be divided in four 

different processes and, therefore, we calculate the losses accordingly to the loss parameter 

(LOSSb
ovpell

). At this stage we assume that pellets were homogenized during the process: the 

carbon content of each type of biomass b (CCb
pro

) no longer depends on the country of origin 

and is here expressed on wet biomass basis. The ratio of molecular weights of CO2 and carbon 

(MCO2/MC) relates the amount of carbon with the associated CO2 emissions released during the 

decay. 

𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠 = (𝑝𝑟𝑜𝑐𝑖𝑏

𝑏𝑎𝑙 + 𝑝𝑟𝑜𝑐𝑖𝑏
𝑐ℎ𝑖𝑝)LOSSb

ovpell
CCb

proM
CO2

MC
   ∀𝑖, 𝑏 (D43) 

D.5.2.5 Transport from pelleting to the combustion plant  

Next, the pellets produced are transported from the pelleting site to the power plant via the 

possible transportation options, namely lorry, train and ship. Eq. (D44) shows that the 

emissions associated with the transport depend on the amount of pellets transported (𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
), 

the distance between the origin and destination countries i and i’ (DISTvii′), the carbon intensity 

factor of the transport mean v (CIv
trn) and the correction factor for pellets (CORFv

pell
). The 

carbon intensity factor is retrieved from SimaPro for the different transport options and it 

provides the amount of CO2 emitted per metric ton of biomass transported during one km. The 

correction factor relates the capacity of the transportation mode (maximum carry load/volume) 

to the density of the pellets. It is assumed to be equal to 1 for trains and ships, while it is 

calculated based on a 70m3 volume and maximum carry load of 22.7 t for lorries.  

The emission associated to the decay of biomass losses occurring during transportation 

(𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
) are calculated in Eq. (D45) from the amount of biomass losses. These are obtained 

from the product between the amount of pellets transported (𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
) and the loss factor 

(LOSStpc). Then, the carbon content of the type of biomass b (already converted to wet basis 

CCb
pro

), independent from the country of origin of the feedstock, provides the amount of 
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biogenic carbon in the biomass. Finally, the ratio of CO2 and C molecular weights (MCO2/MC) 

transforms this quantity into the CO2 emissions associated with the oxidation taking place 

during the natural decay of the biomass. 

 𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑝𝑐
=∑DISTvii′CIv

trnCORFv
pell
𝑡𝑝𝑐

𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙

𝑣

+ 𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
  ∀𝑖, 𝑖′, 𝑏 (D44) 

𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑠𝑠
=∑𝑡𝑝𝑐

𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
LOSStpcCCb

proM
CO2

MC
𝑣

   ∀𝑖, 𝑖′, 𝑏 (D45) 

D.5.2.6 Power generation 

In the next step we consider direct emissions from combustion of the biomass (𝑒𝑚𝑖𝑏
𝑝𝑜𝑤

), which 

are only part of the total emissions resulting from the combustion since a portion of it is avoided 

thanks to the post-combustion MEA plant. Eq. (D46) is used to calculate the direct emissions 

to air at the power plant. The emissions depend on the amount of biomass pellets combusted at 

the power plant of country i (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

), the capture rate of the post-combustion MEA plant 

(Rccs, here assumed to be 90%), and the carbon content (CCb
pow

, expressed as the percentage 

of carbon in wet biomass b). Finally, the amount of CO2 released is directly obtained from the 

amount of carbon by using the molecular weights (MCO2/MC). At this stage the carbon intensity 

of the plant infrastructure (construction, maintenance, dismantling and waste management), is 

not taken into consideration.  

 
𝑒𝑚𝑖𝑏

𝑝𝑜𝑤 = (1 − Rccs)𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙CCb

powM
CO2

MC
      ∀𝑖, 𝑏 (D46) 

D.5.2.7 CO2 transportation and storage 

Once the CO2 is captured and compressed to the desired pressure of 110 bar, it is transported 

via pipeline for injection (𝑡𝐶𝑂2
𝑖′𝑖

𝑝2𝑠
). Eq. (D47) relates the amount of CO2 transported to the 

distance transported via pipeline between country i and i ’ (DISTii′
pipe

) and the carbon intensity 

of the pipeline transport (CIp2s), which considers indirect emissions from materials and energy 

inputs sourced from Wildbolz283. We assume that the pipeline distance is equal to the railroad 

distance between the same countries plus 150 km to account for the transportation from the 

capitals to the storage site (many times located offshore), already included in DISTii′
totpipe

. In 

contrast, intra-country distances are considered zero. The carbon intensity of the CO2 
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transportation is modeled in SimaPro, from the inventory of Wildbolz283, given in tCO2 per 

km. 

 𝑒𝑚
𝑖𝑖′
𝑝2𝑠

= DISTii′
totpipe

𝑡𝐶𝑂2
𝑖′𝑖

𝑝2𝑠
CIp2s    ∀𝑖, 𝑖′ (D47) 

The total emissions associated with the injection of CO2 (𝑒𝑚𝑖
𝑠𝑖𝑡𝑒) are calculated as the 

summation of the site-specific emission in Eq. (D48). Emissions related to the CO2 injection 

are calculated for each specific site type g in each country i (𝑒𝑚𝑖𝑔
𝑠𝑖𝑡𝑒), and are given by the 

product between the amount of CO2 stored in the site (𝐶𝑂2𝑖𝑔
𝑠𝑖𝑡𝑒) and the carbon intensity of the 

injection process (CIg
site, expressed as tCO2 released per tCO2 injected) (Eq. (D49)). To obtain 

such carbon intensity, the CO2 injection process is modeled in SimaPro with activities from 

Ecoinvent according to the inventories of Wildbolz283, which consider the energy and material 

inputs for this activity for the different storage site types considered. Injection of CO2 in one 

of the storage sites g considered can be a source of emissions due to the land usage at the 

injection site and the drilling activity, in addition to material inputs such as cement and gravel 

and transportation283. 

 𝑒𝑚𝑖
𝑠𝑡𝑜 =∑𝑒𝑚𝑖𝑔

𝑠𝑖𝑡𝑒    ∀𝑖

𝑔

 (D48) 

 𝑒𝑚𝑖𝑔
𝑠𝑖𝑡𝑒 = 𝐶𝑂2𝑖𝑔

𝑠𝑖𝑡𝑒CIg
site    ∀𝑖, 𝑔 (D49) 

D.5.2.8 Global emissions 

Finally, total emissions for each country i (𝑒𝑚𝑖) are calculated as the summation of the country 

contributions to the different stages in the SC, as reported in Eq. (D50). Note that, in the 

transportation term we include the parameter W  to allocate the CO2 emissions. The solutions 

reported in section 5.5 have been obtained for a value of W  equal to 0.5, meaning that the 

burden is equally shared. 
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 𝑒𝑚𝑖 =∑(𝑒𝑚𝑖𝑏
𝑔𝑟𝑤

+ 𝑒𝑚𝑖𝑏
𝑐𝑢𝑙 + 𝑒𝑚𝑖𝑏

𝑏𝑎𝑙 + 𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝

)

𝑏

+∑∑(𝑒𝑚
𝑖𝑖′𝑏

𝑡𝑙𝑝
W + 𝑒𝑚

𝑖′𝑖𝑏

𝑡𝑙𝑝
(1 −W ))

𝑖′𝑏

+∑𝑒𝑚𝑖𝑏
𝑝𝑟𝑜

𝑏

+∑∑(𝑒𝑚𝑖𝑖′𝑏
𝑡𝑝𝑐W + 𝑒𝑚

𝑖′𝑖𝑏

𝑡𝑝𝑐
(1 −W ))

𝑖′𝑏

+∑𝑒𝑚𝑖𝑏
𝑝𝑜𝑤

𝑏

+∑(𝑒𝑚𝑖𝑖′
𝑝2𝑠W + 𝑒𝑚

𝑖′𝑖

𝑝2𝑠
(1 −W ))

𝑖′

+ 𝑒𝑚𝑖𝑔
𝑠𝑡𝑜  ∀𝑖 

(D50) 

Once the emissions deriving from the activities of the SC in each country have been computed, 

they can be summed to obtain the net global emissions of the whole EU-28. 

Global emissions (𝑔𝑙𝑜𝑒𝑚) equal the sum of the direct and indirect emissions of each country i 

(𝑒𝑚𝑖) (Eq. (D51)), while Eq. (D52) enforces that net global emissions must be less or equal to 

the CDR target TG. The global emission target is based on the target removal in Peters and 

Geden13. The target proposed has been annualized linearly dividing the net CDR to 2100 by 80 

years (from 2018 to 2100) to compute the amount of CO2 to be removed in one year. 

 𝑔𝑙𝑜𝑒𝑚 =∑𝑒𝑚𝑖
𝑖

 (D51) 

 𝑔𝑙𝑜𝑒𝑚 ≤ TG (D52) 

D.5.3. Life cycle costs 

The cost of each activity is calculated using unitary cost data for each activity (e.g., cultivation 

of 1 ha of land), mainly sourced from literature studies. The costs are then regionalized using 

the Purchasing Power Parity (PPP)410. 

D.5.3.1 Cultivation stage  

The cost of the cultivation stage is the cost of harvesting (𝑐𝑜𝑖𝑏
𝑙𝑎𝑛𝑑), given by the amount of land 

used in each country i for the production of energy crops b (i.e., biomass types included in set 

EC) (𝑙𝑎𝑛𝑑𝑖𝑏) and the unitary cost of cultivation (UCib
land). The latter, based on de Wit and 

Faaij411, considers fertilizers, labor costs and capital costs (including establishment and 

planting, harvesting, field transportation and storage and more). Note that the unitary cost of 

harvesting is region- and biomass type-specific. 
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 𝑐𝑜𝑖𝑏
𝑙𝑎𝑛𝑑 = 𝑙𝑎𝑛𝑑𝑖𝑏UCib

land    ∀𝑖, 𝑏 ∈ 𝐸𝐶 (D53) 

Residues do not contribute to the total cost of the harvesting, as in the case of emissions, owing 

to the assumption that the cost is allocated to the original product. Thus, Eq. (D54) sets those 

costs to zero for each country i and biomass types in RD. 

 𝑐𝑜𝑖𝑏
𝑙𝑎𝑛𝑑 = 0     ∀𝑖, 𝑏 ∈ 𝑅𝐷 (D54) 

D.5.3.2 Processing into bales or chips 

The cost of producing bales (𝑐𝑜𝑖𝑏
𝑏𝑎𝑙) or chips (𝑐𝑜𝑖𝑏

𝑐ℎ𝑖𝑝
) is calculated from the amount of biomass 

produced as bales (𝑝𝑟𝑜𝑑𝑖,𝑏
𝑏𝑎𝑙) or chips (𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
) and the unitary cost per metric ton of chips 

(UCib
bal) or bales (UCib

chip
) (see Eqs. (D55) and (D56), respectively). These unitary costs were 

investigated by Sultana et al.371 and include collection and wrapping for bales from Miscanthus, 

switchgrass and straw cereals, while bundling for willow, woody and forestry residues. For 

chips made out of Miscanthus, switchgrass and straw cereals we consider the costs of tube-

grinding, while we select the chipping activity for willow, woody and forestry residues. 

 𝑐𝑜𝑖𝑏
𝑏𝑎𝑙 = 𝑝𝑟𝑜𝑑𝑖,𝑏

𝑏𝑎𝑙UCib
bal  ∀𝑖, 𝑏 (D55) 

 𝑐𝑜𝑖𝑏
𝑐ℎ𝑖𝑝 = 𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝UCib
chip
  ∀𝑖, 𝑏 (D56) 

D.5.3.3 Transport from farmland to the processing site 

Once transformed into bales or chips, the biomass is transported to the pelleting site. The costs 

of this transportation stage (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝
), as shown in Eq. (D57), includes the costs incurred by the 

three different means of transportation v, namely lorry (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑟
), train (𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑡𝑟
) and ship 

(𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑠ℎ
). The reason for explicitly maintaining separate terms for the different means is that 

each of them is characterized by transportation-specific variable and fix contributions, as 

described in the following equations.   

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝
= 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑟
+ 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑡𝑟
+ 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑠ℎ
   ∀𝑖, 𝑖′, 𝑏 (D57) 

In the case of lorries, Eq. (D58) describes the relation between the cost of the transportation, 

the amount transported in the form of bales (𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑏𝑎𝑙 ) or chips (𝑡𝑙𝑝

𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
) and the distance 
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between the origin and destination countries (DISTvii′). The total cost is based on fix (CFIXib) 

and variable (CVARib) contributions, both depending on the use of bales or chips, as published 

in Sultana et al.371 and Searcy et al.412. In addition, the variable contributions depend on the 

distance travelled. 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑟
=∑[(CFIXib

lorbal + CVARib
lorbalDISTvii′)𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙

𝑣

+ (CFIXib
lorchip

+ CVARib
lorchip

DISTvii′)𝑡𝑙𝑝𝑖𝑖′𝑏𝑣
𝑐ℎ𝑖𝑝

]  ∀𝑖, 𝑖′, 𝑏, 𝑣

= 𝑙𝑜𝑟𝑟𝑦 

(D58) 

Eq. (D59) shows the calculation for the cost of transportation via train (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑡𝑟
), where no 

difference in fixed and variables costs is assumed for chips and bales. The cost calculation for 

ships, 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑠ℎ
 is reported in Eq. (D60). 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑡𝑟
=∑[(CFIXib

tr + CVARib
trDISTvii′)(𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙 + 𝑡𝑙𝑝
𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
)]

𝑣

  ∀𝑖, 𝑖′, 𝑏, 𝑣

= 𝑡𝑟𝑎𝑖𝑛 

(D59) 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑠ℎ
=∑[(CFIXib

sh + CVarib
shDISTvii′)(𝑡𝑙𝑝𝑖𝑖′𝑏𝑣

𝑏𝑎𝑙 + 𝑡𝑙𝑝
𝑖𝑖′𝑏𝑣

𝑐ℎ𝑖𝑝
)]

𝑣

   ∀𝑖, 𝑖′, 𝑏, 𝑣

= 𝑠ℎ𝑖𝑝 

(D60) 

D.5.3.4 Pelleting stage 

At the next stage, the biomass is processed into pellets. The cost of the pelleting process in 

Eq. (D61) depends on the amount of pellets produced (𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜

) and the unitary cost per 

metric ton of pellets (UCib
pell

), sourced from Samson and Duxbury413. The costs include raw 

materials, energy, labor and bagging costs, as they represent the main contributions to the total 

cost. 

 𝑐𝑜𝑖𝑏
𝑝𝑟𝑜 = 𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏

𝑝𝑟𝑜UCib
pell
   ∀𝑖, 𝑏 (D61) 

D.5.3.5 Transport from pelleting to the combustion plant 

From the pelleting site the biomass reaches the power plant via one of the transportation modes 

introduced, along an allowed route. The cost of pellets transportation (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐
) is calculated 
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according to Eq. (D62) as the summation of the costs related to the three different means of 

transportation v, namely lorry (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝𝑙𝑜𝑟
), train (𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑡𝑟
) and ship (𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑙𝑝𝑠ℎ
), in order to keep the 

contributions of fixed and variable costs separate for each category of transport. 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐
= 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑟
+ 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑝𝑐𝑡𝑟
+ 𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑝𝑐𝑠ℎ
   ∀𝑖, 𝑖′, 𝑏 (D62) 

Sultana et al.371 and Searcy et al.412 studied the cost of the transportation via lorry (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑟
), 

finding that it could be estimated from fixed (CFIXib
tpclor

) and variable (CVARib
tpclor

) costs, the 

latter depending on the distance between the two countries (DISTvii′), and both costs 

proportional to the amount of pellets produced (𝑡𝑝𝑐
𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
) (see Eq. (D63)). 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑙𝑜𝑟
= ∑ [(CFIXib

tpclor
+ CVARib

tpclor
DISTvii′)𝑡𝑝𝑐𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
]𝑣    ∀𝑖, 𝑖′, 𝑏, 𝑣 

= 𝑙𝑜𝑟𝑟𝑦 

(D63) 

The costs for the transportation of pellets via train (𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑡𝑟
) or ship (𝑐𝑜

𝑖𝑖′𝑏

𝑡𝑝𝑐𝑠ℎ
),  𝑡𝑝𝑐

𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
 are 

calculated in Eqs. (D64) and (D65). These equations are analogue to Eqs. (D59) and (D60). 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑡𝑟
=∑[(CFIXib

tpctr
+ CVARib

tpctr
DISTvii′)𝑡𝑝𝑐𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
]

𝑣

   ∀𝑖, 𝑖′, 𝑏, 𝑣 = 𝑡𝑟𝑎𝑖𝑛 (D64) 

 𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑝𝑐𝑠ℎ
=∑[(CFIXib

tpcsh
+ CVARib

tpcsh
DISTvii′)𝑡𝑝𝑐𝑖𝑖′𝑏𝑣

𝑝𝑒𝑙𝑙
]

𝑣

   ∀𝑖, 𝑖′, 𝑏, ∈ 𝑣

= 𝑠ℎ𝑖𝑝 

(D65) 

D.5.3.6 Power generation 

The pellets transported to the power plant are used in a direct-combustion system. Here, we 

consider only the costs of electricity production, while the costs of the power plant and CCS 

system infrastructure is neglected. The cost of electricity production (𝑐𝑜𝑖𝑏
𝑝𝑜𝑤

) is given in 

Eq. (D66) by the amount of electricity obtained from the generator (𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤

) and the unitary 

cost per MWh (UCib
pow

), all depending on the biomass type used as feedstock owing to their 

characteristic HHV. The cost per MWh is derived from own calculations based on a bioenergy 

plant that includes fixed and variable costs. 
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 𝑐𝑜𝑖𝑏
𝑝𝑜𝑤

= 𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤
UCib

pow
     ∀𝑖, 𝑏 (D66) 

D.5.3.7 CO2 transportation and storage 

After the biomass is burned, the CO2 released during the process is captured and compressed 

to 110 bar before being sent via pipeline to the storage sites for injection. 

The costs of CO2 transported via pipeline (𝑐𝑜
𝑖𝑖′
𝑝2𝑠

) are based on a low estimate of a capacity of 

10 M𝑡𝐶𝑂2/year (CVARi
P2S), considering the reference prices reported in Budinis et al.181 (see 

Eq. (D67)). The distance between the countries i and i’ is assumed to be equal to the same 

distance covered by train, except for additional intra-country routes, equal to 150 km, already 

included in the parameter DISTii′
totpipe

 altogether with the distance factor of 250 km reported 

by Budinis et al.181.  

 𝑐𝑜
𝑖𝑖′
𝑝2𝑠

= CVARi
P2SDISTii′

totpipe
𝑡𝐶𝑂2

𝑖𝑖′
𝑝2𝑠
  ∀𝑖, 𝑖′ (D67) 

The CO2 reaches one of the possible storage sites g via pipeline and it is injected there for 

permanent storage. Eq. (D68) shows that the total costs of storage in each country i 𝑐𝑜𝑖
𝑠𝑡𝑜 are 

calculated from the summation of the costs of the different storage sites 𝑐𝑜𝑖𝑔
𝑠𝑖𝑡𝑒. The cost of 

each storage site depends on the amount of CO2 stored 𝐶𝑂2𝑖𝑔
𝑠𝑖𝑡𝑒 and a variable cost factor 

CVARig
site reported in Budinis et al.181, according to Eq. (D69).  

𝑐𝑜𝑖
𝑠𝑡𝑜 =∑𝑐𝑜𝑖𝑔

𝑠𝑖𝑡𝑒    ∀𝑖

𝑔

 (D68) 

𝑐𝑜𝑖𝑔
𝑠𝑖𝑡𝑒 = CVARig

site𝐶𝑂2𝑖𝑔
𝑠𝑖𝑡𝑒    ∀𝑖, 𝑔 

 

(D69) 

D.5.3.8 Global costs  

Finally, the total cost for each country (𝑐𝑜𝑖) includes the cost incurred in all the stages of the 

SC, reported in Eq. (D70). 
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 𝑐𝑜𝑖 =∑(𝑐𝑜𝑖𝑏
𝑙𝑎𝑛𝑑 + 𝑐𝑜𝑖𝑏

𝑏𝑎𝑙 + 𝑐𝑜𝑖𝑏
𝑐ℎ𝑖𝑝

)

𝑏

+∑∑(𝑐𝑜
𝑖𝑖′𝑏

𝑡𝑙𝑝
Wco + 𝑐𝑜

𝑖′𝑖𝑏

𝑡𝑙𝑝
(1 −Wco))

𝑖′𝑏

+∑𝑐𝑜𝑖𝑏
𝑝𝑟𝑜

𝑏

+∑∑(𝑐𝑜𝑖𝑖′𝑏
𝑡𝑝𝑐Wco + 𝑐𝑜

𝑖′𝑖𝑏

𝑡𝑝𝑐
(1 −Wco))

𝑖′𝑏

+∑𝑐𝑜𝑖𝑏
𝑝𝑜𝑤

𝑏

+∑(𝑐𝑜𝑖𝑖′
𝑝2𝑠Wco + 𝑐𝑜

𝑖′𝑖

𝑝2𝑠
(1 −Wco))

𝑖′

+ 𝑐𝑜𝑖𝑔
𝑠𝑡𝑜   ∀𝑖 

(D70) 

The omega parameter Wco is used to share the cost burden between the countries involved in 

the transportation route, in the same way as for the emissions. The same value of 0.5 has been 

used for the calculations. 

D.6 Reformulation of the mathematical model 

D.6.1 Mass and energy balances 

Processing into bales or chips 

After the biomass has been harvested (Eqs. (D1) – (D5)), it is transformed into bales and chips 

on the same land where it is cultivated. The variables 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 and 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
 define the 

amount of bales and chips, respectively, that can be obtained. In Eq. (D71), which refers to the 

system of equations precisely as in the GAMS code, the two variables defined in Eq. (D7) and 

D8 are not been included. 

𝑝𝑟𝑜𝑑𝑖𝑏
𝑙𝑎𝑛𝑑 =

𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙

(1 − LOSSb
bal)

+
𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝

(1 − LOSSb
chip
)
   ∀𝑖, 𝑏 (D71) 

Pelleting stage 

Once the biomass has been converted into bales or chips and transported to the pelleting stage, 

it is transformed into pellets. This process is assumed to take place in four individual steps, 

each of them being a potential source of emissions due to biomass losses. In order to simplify 

the losses parameter (see Eq. (D15)) the transformations reported in Eqs. (D72) and (D73) have 

been applied. The equations reported here related the single step loss factor LOSSb
pell

 to the 

overall loss factor of the pelleting stage (LOSSb
ovpell

). 



APPENDIX D 

 

288 

𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏
𝑝𝑟𝑜 = (𝑝𝑟𝑜𝑐𝑖𝑏

𝑏𝑎𝑙 + 𝑝𝑟𝑜𝑐𝑖𝑏
𝑐ℎ𝑖𝑝)(1 − LOSSb

pell
)
4

∀𝑖, 𝑏 (D72) 

1 − LOSSb
ovpell

= (1 − LOSSb
pell
)
4

∀𝑖, 𝑏 
(D73) 

The amount of biomass, either cultivated or processed, is always defined on a wet basis. 

However, the pelleting activity selected from the ones available in Ecoinvent (implemented in 

SimaPro) refers to a product of 1 t of pellets on a dry basis. In Eq. (D74), we transform the 

carbon content of the pellets (CCb
drypow

) on a dry basis to the one used in Eq. (D43) on a wet 

basis (CCb
pro

), through the dry factor (DRYib
pell

) which expresses the moisture content in the 

pellets. 

CCb
pro

= DRYib
pell
CCb

drypow
  ∀𝑖, 𝑏 (D74) 

Power generation 

The biomass combusted at the power plant, which is used for electricity production, generates 

emissions of CO2 during the process. The amount of CO2 is calculated from the amount of 

biomass combusted (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

) and the carbon content (CCb
drypow

). The latter is expressed on 

a dry basis while the biomass is always accounted for on a wet basis. In Eq. (D75) we use a 

dry factor (DRYib
pell

) based on moisture content of the biomass to related the quantities in a 

consistent way. The value assumed for DRYib
pell

 is based on the target moisture content for ideal 

combustion conditions described by Fajardy et al.33. 

𝐶𝑂2𝑖
𝑝𝑜𝑤 =∑RCCS𝑐𝑜𝑚𝑏𝑖𝑏

𝑝𝑒𝑙𝑙DRYib
pell
CCb

drypowMCO2
MC

𝑏

      ∀𝑖 (D75) 

The electricity generated from the combustion (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

) is calculated using the high heating 

value of the biomass (HHV𝑏
𝑑𝑟𝑦𝑝𝑒𝑙𝑙

), expressed on a dry basis (Eq. (D20)). The amount 

combusted (𝑐𝑜𝑚𝑏𝑖𝑏
𝑝𝑒𝑙𝑙

, on a wet basis) and the HHV on a dry basis, are linked by the dry factor 

(DRYib
pell

), based on moisture content, in Eq. (D76).  

𝑒𝑙𝑔𝑒𝑛𝑖𝑏
𝑝𝑜𝑤 = 𝑐𝑜𝑚𝑏𝑖𝑏

𝑝𝑒𝑙𝑙DRYib
pell
HHV𝑏

𝑑𝑟𝑦𝑝𝑒𝑙𝑙
η𝑝𝑜𝑤UCF      ∀𝑖, 𝑏 (D76) 
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CO2 transportation and storage 

The final amount of CO2 available for storage in each country i (𝐶𝑂2𝑖
𝑠𝑡𝑜) will be slightly lower 

than the amount sent to that country (𝑡𝐶𝑂2
𝑖𝑖′
𝑝2𝑠

) owing to the losses produced in the pipeline 

transportation (LOSSp2s) (Eq. (D77)). Here the losses are considered negligible, as it is reported 

in Table D0.21. Therefore, in Eq. (D25) we neglect the loss factor, while it is reported in 

Eq. (D77) as in GAMS. We define the loss factor to be able to consider the losses in other 

scenarios. 

𝐶𝑂2𝑖
𝑠𝑡𝑜 =∑𝑡𝐶𝑂2

𝑖′𝑖

𝑝2𝑠(1 − LOSSp2s)

𝑖′

   ∀𝑖 (D77) 

D.6.2 Life cycle CO2 emissions  

Processing into bales or chips 

The emissions associated with the chipping process are calculated from the carbon intensity 

CIib
drychip

 sourced from SimaPro279 expresses the amount of CO2 emitted per metric ton of dry 

chips. The activity used from Ecoinvent of expresses the product of the chipping process on a 

dry basis. In Eq. (D78) we report the calculations used to convert CIib
drychip

 to a wet basis, as it 

is expressed in Eq. (D37), using a dry factor based on the moisture content of the biomass 

(DR𝑌ib
chip

). The value of this parameter, retrieved from Fajardy et al.33 and the Phyllis 

database382 for the different biomass types b and countries i, can be found in Table D0.9. 

CIib
chip

= DR𝑌ib
chip

CIib
drychip

  ∀𝑖, 𝑏 (D78) 

The emissions related to biomass losses during the chipping and baling processes are calculated 

based on the amount of biomass produced as bales and chips, respectively, and a loss parameter 

that stands for the percentage of biomass lost. The original formulation of Eqs. (D38) and (D39) 

using the new variables 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙 and 𝑎𝑣𝑝𝑟𝑜𝑑𝑖𝑏

𝑐ℎ𝑖𝑝
 is reported in Eqs. (D79) and (D80). 

𝑒𝑚𝑖𝑏
𝑏𝑎𝑙𝑙𝑜𝑠𝑠 =

𝑝𝑟𝑜𝑑𝑖𝑏
𝑏𝑎𝑙

(1 − LOSSb
bal)

LOSSb
balCCib

MCO2
MC

   ∀𝑖, 𝑏 

 

(D79) 
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𝑒𝑚𝑖𝑏
𝑐ℎ𝑖𝑝𝑙𝑜𝑠𝑠 =

𝑝𝑟𝑜𝑑𝑖𝑏
𝑐ℎ𝑖𝑝

(1 − LOSSb
chip
)
LOSSb

chip
CCib

MCO2
MC

   ∀𝑖, 𝑏 
(D80) 

Pelleting stage 

Similarly to the chipping process, the pelleting activity chosen from those available in SimaPro 

calculates the carbon intensity per metric ton of dry pellet. To be consistent with the mass 

balance of biomass on a wet basis, a dry factor (DRYib
pell

) has been employed to relate web and 

dry quantities, based on the moisture content. Eq. (D81) reports the extensive formulation of 

Eq. (D42). 

𝑒𝑚𝑖𝑏
𝑝𝑟𝑜 = 𝑝𝑒𝑙𝑙𝑒𝑡𝑖𝑏

𝑝𝑟𝑜DRYib
pell
CIib
drypell

+ 𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠    ∀𝑖, 𝑏 (D81) 

The pelleting occurs in four different steps, each of them being a potential source of biomass 

loss. This is expressed by the parameter LOSSb
pell

 that indicates the percentage of losses. In 

Eq. (D82) the losses are explicitly calculated for the four steps, while we report in Eq. (D43) 

the compact form. 

𝑒𝑚𝑖𝑏
𝑝𝑟𝑜𝑙𝑜𝑠𝑠 = (𝑝𝑟𝑜𝑐𝑖𝑏

𝑏𝑎𝑙 + 𝑝𝑟𝑜𝑐𝑖𝑏
𝑐ℎ𝑖𝑝) [1

− (1 − LOSSb
pell
)
4

] DRYib
pell
CCb

powMCO2
MC

   ∀𝑖, 𝑏 

(D82) 

CO2 transportation and storage 

During the combustion of the biomass, 10% of the CO2 produced is released to the atmosphere. 

However, the 90% which is captured is compressed and transported to be permanently stored 

underground. We assume an additional distance of 150km to the distance from the capture 

plant in country i and i' (DISTii′
pipe

) to transport the CO2 by pipeline (see Eq. (D83)). In 

Eq. (D84) we group all the terms related to the distance in the parameter DISTii′
totpipe

 used in 

Eq. (D47). 

𝑒𝑚
𝑖𝑖′
𝑝2𝑠

= CIp2s(DISTii′
pipe

+ 150)𝑡𝐶𝑂2
𝑖′𝑖

𝑝2𝑠
    ∀𝑖, 𝑖′ 

 

(D83) 
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DISTii′
totpipe

= DISTii′
pipe

+ 150   ∀𝑖, 𝑖′ (D84) 

D.6.3 Life cycle costs 

CO2 transportation 

The costs of CO2 transportation are based on a low estimate from Budinis et al.181, given for 

250km. The distance covered by the pipeline and the additional distance from the storage site, 

already included in DISTii′
totpipe

, are here normalized on 250km. The parameter DISTii′
totpipen

 

used in Eq. (D67) includes all the contribution that are reported in Eq.(D85). 

𝑐𝑜
𝑖𝑖′
𝑝2𝑠

= CVARi
P2S DISTii′

pipeii
+ 150

250
𝑡𝐶𝑂2

𝑖𝑖′
𝑝2𝑠
  ∀𝑖, 𝑖′ 

(D85) 
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We report in this appendix additional results and analyses related to the studies presented in 

Chapter 6. In Section E.1 the insights obtained from the decomposition algorithm are given, 

while in Section E.2 we discuss the risk-averse model. In Section E.3 we report the results to 

the uncertainty variability sensitivity analysis. 

E.1 Additional results 

The following tables include detailed information referring to time period t1 on the solution 

obtained from the multistage stochastic model in its full-space form (Table E0.1) and the 

decomposed one for different CDR targets (Table E0.2). Table E0.3 includes the technologies 

not selected at any time period and Table E0.4 the technologies selected for capacity expansion 

at t1 for the case study with inhomogeneous time periods. 

Table E0.1. Technology expansion and respective location at t1 in the solution of MSS-1. 

Technology Country 

Forest residues Estonia, Finland 

Forest residues with CCS Bulgaria, Croatia, Germany, Hungary, Luxembourg, Poland, Sweden 

Geothermal Germany, Portugal 

Natural gas Denmark, Germany, Luxembourg, Poland 

Natural gas with CCS Denmark 

Solar PV open Hungary, Luxembourg, Malta, Poland, Slovakia 

Table E0.2. Technology information obtained from the decomposition algorithm step 1, and 

computational time of step 1. 

CDR 

target 

[GtCO2] 

Computational 

time [min] 

Technologies not selected in 

any scenario for capacity 

expansion at any time period 

Technologies selected in all the 

scenarios in (country) for 

capacity expansion at t1  

─9 21 •Coal  •Forest residues with CCS 

(Poland) 

•Hydropower •Solar PV open (Luxembourg) 

•Nuclear  

•Solar PV roof  

•Switchgrass  

•Switchgrass with CCS  

─6 16 •Wind offshore •Solar PV open(Luxembourg, 

Malta) 

•Hydropower •Natural gas (Luxembourg) 

•Hydropower reservoir •Forest residues with CCS 

(Poland) 

•Solar PV roof  

•Coal  

•Nuclear  

•Switchgrass  

─3 15 •Wind offshore •Geothermal (Germany) 

•Hydropower •Natural gas (Denmark, 

Luxembourg) 
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•Hydropower reservoir •Solar PV open(Luxembourg, 

Malta) 

•Solar PV roof •Forest residues with CCS 

(Poland) 

•Concentrated solar power  

•Coal  

•Nuclear  

•Coal with CCS  

•Switchgrass  

+3 14 •Wind offshore •Geothermal (Germany) 

•Hydropower •Natural gas (Denmark) 

•Hydropower reservoir •Woody residues with CCS 

(Greece) 

•Solar PV roof •Solar PV open(Luxembourg) 

•Concentrated solar power •Forest residues with CCS 

(Poland) 

•Coal  

•Nuclear  

•Coal with CCS  

•Natural gas with CCS  

•Miscanthus  

•Switchgrass  

•Miscanthus with CCS  

•Switchgrass with CCS  

+6 14 •Wind offshore •Geothermal (Germany) 

•Hydropower •Woody residues with CCS 

(Greece) 

•Hydropower reservoir •Solar PV open(Luxembourg) 

•Solar PV roof •Forest residues with CCS 

(Poland) 

•Concentrated solar power  

•Coal  

•Nuclear  

•Coal with CCS  

•Natural gas with CCS  

•Miscanthus  

•Switchgrass  

•Miscanthus with CCS  

•Switchgrass with CCS  
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Table E0.3. Technologies not selected for capacity expansion in any county, any scenario and any time 

period for the minimization of the total cost with inhomogeneous time periods under a net-zero target. 

Technologies not selected  

Wind offshore 

Hydropower 

Hydropower reservoir 

Solar PV roof 

Concentrated solar power 

Coal 

Nuclear 

Coal with CCS 

Natural gas with CCS 

Miscanthus 

Switchgrass 

Willow 

Straw residues 

Woody residues 

Forest residues 

Miscanthus with CCS 

Switchgrass with CCS 

Table E0.4. Technology selection at time period t1 in step 1 using a time horizon with 

inhomogeneous time periods. No expansion occurs at t6. 

Time 

period 

Technology expanded Country 

t1 Wind onshore Germany 

 Solar Luxembourg 

 Forest residues with CCS Poland 

t2   

t3 Solar PV open Belgium 

t4 Solar PV open Austria, Bulgaria, Spain, Estonia, Finland, Hungary, 

Italy, Lithuania, Luxembourg, Poland, Portugal, 

Slovakia 

 Forest residues with CCS Denmark, Sweden 

t5 Solar PV open Belgium 

t6   

Lastly, we report in Table E0.5 the precise resource usage time in seconds with reference to 

Table.6.1, Table 6.3 and Table 6.5. 

Table E0.5 Resource usage of model generation and solution time in seconds for the case studies 

investigated, i.e., with homogeneous and inhomogeneous time periods. The resource usage reported 

does not include model presolve time and .gdx unloading. 

Case study/ resource usage time [s] Full-space Decomposed 

Homogeneous time horizon discretization 46597 4444 

Inhomogeneous time horizon discretization 11490 7815 
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E.2 Risk management 

Among the possible frameworks to include uncertainty in optimization problems, stochastic 

programming is a risk-neutral approach, because it optimizes the expectation of the objective 

function by neglecting that some of the scenarios might incur high costs 414. 

Risk management is most widely explored in two-stage stochastic problems 414–416, although 

applications to multistage have also been explored 326. The reason for richer literature in two-

stage stochastic models with risk metrics is that including a term that represents the risk in the 

model leads to a considerable increase in the model complexity. Different metrics to manage 

risk have been defined in the literature: downside risk, value at risk, and conditional value at 

risk. 

Following Oliveira et al. 414, we calculate the expected shortage risk (ES). The latter has the 

advantage of adding only one constraint and one continuous variable in the model. Nonetheless, 

given the complexity of our problem, we decide to explore the risk-averse case by replacing 

our model with a two-stage stochastic model where we include the formulation of ES. The 

mathematical formulation is given in Eq. (E1) and (E2), which adopts the same nomenclature 

as Oliveira et al. 414. 

min
𝑥,𝑦,𝛿

(𝑐𝑥 +∑𝑃𝑢𝑞𝑦𝑢

𝑢

+ PEN∑𝑃𝑢𝛿𝑢

𝑢

) (E1) 

𝑠. 𝑡. 𝐴𝑥 + 𝑏 ≤ 0 

𝑇𝑥 +𝑊𝑦𝑢 ≤ ℎ𝑢   ∀ 𝑢 ∈ 𝑈 

𝑦𝑢 ∈ 𝑌 

𝑐𝑥 + 𝑞𝑦𝑢 − 𝜔 ≤ 𝛿𝑢 

𝛿𝑢 ≥ 0   ∀ 𝑢 ∈ 𝑈 

(E2) 

ES is calculated as in Eq. (E3). 

𝐸𝑆(𝜔,  𝑥) =
1

∑ 𝑃𝑢𝑢|𝛿𝑢≥0
 ∑𝑃𝑢𝛿𝑢

𝑢

 (E3) 
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We observe that a small trade-off of cost vs. risk can be observed because the model is highly 

constrained. Indeed, the demand for electricity has to be met as an equality constraint. In the 

case of adding a slack variable, increasing the demand uncertainty, e.g., ±50% instead of 20%, 

and a longer time horizon would allow us to observe more significant trade-offs. However, this 

would lead to a computationally intractable model with the evaluated solution method. 

E.3 Variability of electricity demand uncertainty: a sensitivity analysis 

Given the high uncertainty in the electricity demand, we perform a sensitivity analysis on the 

variability of the parameter. Our base scenario considers that the electricity demand varies 

±20% from the nominal value for each country in each time period. We remind that the nominal 

value at each time period is calculated assuming a constant growth until the end of the time 

horizon, resulting in an annual increment of 0.7% 253.  

In Table E0.6, we report the results of the total expected cost and decision variable selection 

for ±3%, 7.5%, 10% and 15% obtained with MSS1. We also include the total electricity 

generated by country compared to the deterministic solution, similar to the analysis presented 

in Figure 6.5 A. 

Table E0.6 Total expected cost and technology information for different uncertainty variability values 

and fixed net-zero target at the end of the time horizon with homogeneous time periods. 

Uncertainty 

variability 

[%] 

CDR 

target 

[GtCO2] 

Total 

expected 

cost 

[trillion 

Eur] 

Technologies not 

selected in any scenario 

for capacity expansion 

at any time period 

Technologies selected in all 

the scenarios in (country) 

for capacity expansion at t1  

3 0 10.1 •Coal 

•Coal with CCS 

•Concentrated solar 

power 

•Hydropower 

•Hydropower reservoir 

•Miscanthus 

•Miscanthus with CCS 

•Natural gas with CCS 

•Nuclear 

•Solar PV roof 

•Switchgrass 

•Switchgrass with CCS 

•Wind offshore 

 

•Forest (Estonia, Finland, 

Luxembourg) 

•Forest residues with CCS 

(Bulgaria, Croatia, Czechia, 

Greece, Hungary, Poland, 

Slovakia, Sweden) 

•Geothermal (Germany, 

Portugal) 

•Natural gas (Denmark, 

Luxembourg, Poland) 

•Woody residues with CCS 

(Bulgaria, Greece, United 

Kingdom)  

•Solar PV open (Estonia, 

Hungary, Luxembourg, Malta, 

Poland) 

7.5 0 10.2 •Coal •Forest (Estonia, Finland) 
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•Coal with CCS 

•Concentrated solar 

power 

•Hydropower 

•Hydropower reservoir 

•Miscanthus 

•Natural gas with CCS 

•Nuclear 

•Solar PV roof 

•Switchgrass 

•Wind offshore 

 

•Forest residues with CCS 

(Bulgaria, Croatia, Czechia, 

Greece, Hungary, 

Luxembourg, Poland, 

Sweden) 

•Geothermal (Germany, 

Portugal) 

•Natural gas (Denmark, 

Luxembourg, Poland) 

•Woody residues with CCS 

(Greece, United Kingdom)  

•Solar PV open (Estonia, 

Hungary, Luxembourg, Malta, 

Poland) 

   

10 0 10.3 •Coal 

•Coal with CCS 

•Concentrated solar 

power 

•Hydropower 

•Hydropower reservoir 

•Miscanthus 

•Natural gas with CCS 

•Nuclear 

•Solar PV roof 

•Switchgrass 

•Wind offshore 

 

•Forest (Estonia, Finland) 

•Forest residues with CCS 

(Bulgaria, Croatia, Czechia, 

Greece, Hungary, 

Luxembourg, Poland, 

Sweden) 

•Geothermal (Germany, 

Portugal) 

•Natural gas (Denmark, 

Luxembourg, Poland) 

•Woody residues with CCS 

(Greece, United Kingdom) 

•Solar PV open (Estonia, 

Hungary, Luxembourg, Malta, 

Poland, Slovakia)  

   

15 0 10.5 •Coal with CCS 

•Concentrated solar 

power 

•Hydropower 

•Hydropower reservoir 

•Miscanthus 

•Natural gas with CCS 

•Nuclear 

•Solar PV roof 

•Switchgrass 

•Wind offshore 

 

•Forest (Estonia, Finland) 

•Forest residues with CCS 

(Bulgaria, Croatia, Czechia, 

Germany, Greece, Hungary, 

Luxembourg, Poland, 

Sweden) 

•Geothermal (Germany, 

Portugal) 

•Natural gas (Denmark, 

Luxembourg, Poland) 

•Woody residues with CCS 

(Greece, United Kingdom) 

•Solar PV open (Estonia, 

Hungary, Luxembourg, Malta, 

Poland, Slovakia) 

   

The results of the sensitivity analysis in Table E0.6 show that the technology selection varies 

slightly among the different scenarios. We can observe this behavior because, as we already 
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mentioned, the time horizon is relatively short, and the model is highly constrained, primarily 

related to the equality constraint on the electricity demand, in addition to the not-too-ambitious 

carbon removal target. Overall, these factors do not allow for larger differences in the 

technology selection.  

Mainly, the increased variability of electricity demand uncertainty from 3% to 20% is reflected 

in the capacity installed. As was predictable, the total expected cost is rising as the variability 

of the energy demand uncertainty increases because the decision variables, i.e., installed 

capacity at t1, need to be able to satisfy the electricity generation of all the scenarios. 

Furthermore, we analyze the results of total electricity generated by country compared to the 

deterministic solution. This example demonstrates that regardless of the value of the 

uncertainty, the stochastic model provides more information than the deterministic one and 

might prevent practical suboptimal or unrealistic solutions. We show in Figure E0.1 the results 

with uncertainty ±3% and ±7.5% and in Figure E0.2  ±10% and ±15%. We note that, despite 

differences in the decision variables given by the range of variability of the uncertain parameter 

(Table E0.6), the stochastic model provides a broad range of values represented by the box and 

whiskers plots within which the deterministic solution is not always included. The higher the 

variability of the uncertain parameter, the more spread the box and whiskers plots are and the 

further from the median value of stochastic solutions the deterministic is. 
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Figure E0.1: Total electricity generated aggregated by country for demand uncertainty ±3% (subplot 

A) and ±7.5% (subplot B). Stochastic range vs. deterministic value. The box and whiskers plots are 

generated using the solution of all 64 scenarios of the stochastic model and they show ±25 the median 

value. 
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Figure E0.2: Total electricity generated aggregated by country for demand uncertainty ±10% (subplot 

C) and ±15% (subplot D). Stochastic range vs. deterministic value. The box and whiskers plots are 

generated using the solution of all 64 scenarios of the stochastic model and they show ±25 the median 

value. 
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