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On the Co-Design of Components and Racing Strategies in Formula 1

Marc-Philippe Neumann1, Gioele Zardini2, Alberto Cerofolini3, Christopher H. Onder1

Abstract— We present a study focusing on the joint optimiza-
tion of the sizing of hardware components as well as strategic
decisions for a race car in a Formula 1 setting. Our research
leverages a monotone theory of co-design, which allows for
hardware and software considerations to achieve optimal, syner-
gistic performance improvements. We aim to identify the Pareto
optimal curves that illustrate the optimal balance between
conflicting objectives, such as lap time, energy allocation, and
component choice, within the tight constraints imposed by the
regulations. The results of the study demonstrate the versatility
of our framework by showing optimal component sizing on two
structurally different track layouts on a single lap. Moreover,
by increasing the amount of laps under consideration, we show
the ability of our tool to consider strategic energy allocation
decisions.

I. INTRODUCTION

In the past decades, Formula 1 (F1) has been the most
prestigious racing category in Europe, gaining more and
more importance all over the world. Adding to the euphoria
of the regular spectators, the increased design complexity
of the high-performance hybrid electric race cars in this
competition makes this sport extremely interesting also from
an engineering point of view. In particular, stringent con-
straints on weight, energy availability and deployment, as
well as strategically crucial aspects such as the mandatory
use of at least two different tire compounds during one race,
amplify the existing physical limitations [1], [2]. While the
primary focus for the drivers is achieving maximum speed
at every instant of the race, the strategists involved in the
competition require a more macroscopic view. Clearly, some
limitations and constraints are of concurrent nature and a lap
time optimal solution might result suboptimal to the problem
of minimizing the time for the entire race. For instance,
depleting the battery during one lap affects the subsequent
lap, leading to a potentially overall worse performance.
Purely strategic assessments during a race have already been
studied in literature [3]. However, the influence of physical
alterations has not been shown. Moreover, although the races
during a season appear to be independent of each other,
there are couplings which are often neglected. Considerations
such as component wear, which during one single race can
be neglected, gain crucial importance on a seasonal level.
In particular, each team has a maximum amount of units
per season (e.g., three internal combustion engines (ICEs))
they can equip their cars with. Failure to comply with such
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Fig. 1: Single lap co-design diagram for a F1 race car on a
given track, reaching a final battery target. The component
design is indicated by vehicle, and the energy allocations
represent the racing strategy. The resources to minimize are
allocated battery and fuel energies, and the lap time.

regulations results in grid penalties for subsequent races,
compromising the championship position.

This study leverages a recently developed monotone the-
ory of co-design to offer a tool able to assess the influence
of component sizing on the lap time optimal strategy. Such
a co-design diagram is shown in Figure 1. Additionally, we
increase the number of laps to broaden the system boundaries
and show the versatility of the framework to jointly solve
strategic and sizing optimization problems.

A. Related work

When examining the design of modern F1 cars, the
strategic methodologies that come into play align with those
explored in the field of hybrid electric vehicles. However, our
co-design purposes require a closer analysis of the literature
focusing on the joint optimization of hardware and strategic
choices. In particular, we focus on two research streams.

The first focuses on the lap time optimal energy man-
agement of hybrid electric race cars. In this context, key
contributions include high-level lap time energy management
via convex optimization [4], and the extended efforts to an
entire race [3]. The inclusion of a performance envelope [5],
relating aerodynamic specifications to cornering velocity, is
particularly important in our investigations. In [6] the authors
investigated nonlinear low-level optimization techniques, in-
corporating a detailed ICE model. The influence of the
vehicle mass on lap time has been investigated, providing
valuable insights [7]–[9]. Finally, [10] explores the transition
from optimization to control, offering practical perspectives
on implementing control strategies in future applications.
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In a parallel stream, we explore the benefits of joint
optimization. An intriguing application for lap time and
optimal sizing, specifically for the battery, has been ad-
dressed by Riva [11] and Radrizzani [12], presenting a
comprehensive perspective on energy management in hy-
brid electric race cars. The monotone theory of co-design
represents a paradigm shift in the optimization of hardware
and software design choices, where both components call
for joint optimization. This approach is particularly evident
in the context of entire Autonomous Mobility on Demand
(AMoD) systems, as highlighted in [13], [14]. Notably, the
theory extends its application to autonomous systems. In
[15]–[17], the authors delved into the co-design intricacies
necessary for optimizing the longitudinal and lateral control
performance of an autonomous robot. Lastly, in [18] a convex
approach was investigated to optimize concurrent quantities.

Overall, the studied literature has three fundamental falla-
cies. First, it does not consider the effect of physical changes
of the vehicle on lap and race performance metrics. Second,
research in this area typically resorts to complex problem
formulations and solution algorithms, which do not scale
well both computationally, and intellectually. Finally, the
multi-objective nature of the problem is often neglected.

B. Statement of Contribution

This work is motivated by a gap in the ability to jointly
optimize hardware elements as well as strategic choices in
the context of circuit racing in F1. We present a framework
which leverages a monotone theory of co-design to formulate
and solve optimization problems in the world of hybrid elec-
tric F1 race car design. First, we show how to model race-
critic aspects of the vehicle from a co-design point of view.
For instance, the aerodynamic implementation is described
by drag and downforce coefficients [19], while we exploit the
g-g-diagram to link them to track performance [20]. Second,
we showcase the strategic component of the architecture.
Starting from a nonlinear optimal control problem (OCP),
we are able to link energy allocations to achieved lap times,
which represent the main performance metric in this sport.
Finally, to showcase the properties of the framework, we
present two case studies. In the first, we analyze the choice of
aerodynamic setups for two different racetracks. The second
case study shows the ability of our framework to include
strategic aspects as soon as multiple laps are considered.

C. Paper Structure

In Section II we introduce a monotone theory of co-design,
which we applied to the case of the race car. In Section III,
we introduce each design problem and its modeling assump-
tions. Section IV showcases the performance of our frame-
work by means of two case studies where we first analyze
the varying optimal sizing of the aerodynamic configuration
depending on track choice and further introduce multiple
consecutive laps to highlight the strategy optimization of our
framework. Finally, in Section V we draw the conclusions,
comment on the relevant insights gained by means of our
framework, and give an outlook on future research.

II. MONOTONE CO-DESIGN THEORY

We present the main concepts related to a monotone theory
of co-design, presented in [21], and more extensively in [22],
[23].

We assume the reader to be familiar with basic concepts
from order theory. A possible reference is [24]. This design
theory is based on the atomic notion of monotone design
problem with implementations (MDPI).

Definition 1: (MDPI). Given the partially ordered sets
(posets) F , R, representing functionalities and resources,
respectively, we define a MDPI d as a tuple ⟨Id, prov, req⟩,
where Id is the set of implementations, and prov, req are
functions mapping Id to F and R, respectively:

F prov←− Id
req−→ R

To each MDPI we associate a monotone map d̄ given by

d̄ : Fop ×R → P(Id)
⟨f∗, r⟩ 7→ {i ∈ Id : (prov(i) ⪰F f) ∧ (reqs(i) ⪯R r)},

where (·)op reverses the order of a poset. A MDPI is repre-
sented in diagrammatic form as in Figure 2. The expression
d̄(f∗, r) returns the set of implementations S ⊆ Id for which
functionalities f are feasible with resources r.

Remark 1 (Monotonicity): Consider a MDPI for which
we know d̄(f∗, r) = S. If we have f ′ ⪯F f , then d̄(f ′∗, r) =
S′ ⊇ S (i.e., lowering the desired functionalities will not in-
crease the required resources). Conversely, if we have r′ ⪰R
r, then d̄(f∗, r′) = S′′ ⊇ S (i.e., increasing the available
resources cannot decrease the provided functionalities).

Remark 2 (Populating the MDPIs): In practical cases,
one can populate the feasibility relations of MDPIs with an-
alytic relations, numerical analysis of closed-form relations,
and simulations.

Definition 2: Given a MDPI d, we define monotone maps
hd : F → AR, mapping a functionality to the minimum
antichain of resources providing it, and h′

d : R → AF , map-
ping a resource to the maximum antichain of functionalities
provided by it.
Solving MDPI requires finding such maps. For this, one can
rely on Kleene’s fixed point theorem, as detailed in [21].

Individual MDPIs can be composed in many ways to
form a co-design problem (i.e., a multigraph of co-design
problems), allowing one to decompose large problems into
smaller subproblems, and to interconnect them. Series com-
position describes the case in which the functionality of
a MDPI becomes the resource of another MDPI. For in-
stance, the maximum power provided by an electric motor
is required by the lap time computation. The relation “⪯”
appearing in Figure 3a represents a co-design constraint: The
resource one component requires has to be at most the one
provided by another component. Parallel composition corre-
sponds to processes happening together. Finally, loop compo-
sition describes feedback. Composition operations preserve
monotonicity and thus all related algorithmic properties [21].
Populating these models gives rise to a family of multi-
objective optimization problems, which is computationally
efficient (complexity is only linear in the number of options
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Fig. 2: A MDPI is a monotone relation between partially
ordered sets of functionalities (in green) and resources (in
red).

≼f g

(a) Series.

f

g

(b) Parallel.

≼

f

(c) Loop.

Fig. 3: MDPIs can be composed in various ways. Compo-
sition operations include series, parallel, and loop. Notably,
the composition of MDPIs results in a MDPI (closure).

for each design problem), intellectually tractable, and easily
manipulable [23].

III. DESIGN PROBLEMS

We present co-design models for various components of
the system. For each MDPI, we describe functionalities,
resources, and the relationship between them. We will then
show how to interconnect the components into the complex
system under investigation. Given the interconnected rela-
tions, in Section IV we will show how to practically populate
them, and how to solve the arising optimization problems.

A. Strategy

The strategy MDPI entails a performance component,
where strategic decisions are linked to a lap time, and a
battery sensitivity component, taking care of suboptimal
energy deployment strategies due to physical constraints.

1) Performance Metric: The MDPI describing the
performance of the system lies at the core of the strategy,
as it relates the assigned energy budgets to a nominal lap
time. In particular, its functionalities are the total mass m,
and the track choice, which directly defines the curvature
profile γ related to the investigated lap. This quantity is
an indicator of the deflection of the track. The higher it
is, the tighter are the curves, and the more advantageous
it is to have high cornering velocities. The resource
space consists of assigned battery and fuel budgets dEb

and dEf , respectively, the aerodynamic configuration, the
maximum engine power Pe,max, the maximum motor
generator unit - kinetic (MGU-K) power Pk,max, and
the nominal lap time tnom. Note that the aerodynamic
configuration consists of a set of incomparable parame-
ters {c0, c1, c2, c3, d1,top, d2,top, d3,top, d1,bot, d2,bot, d3,bot}.
The first parameter is related to the aerodynamic longitudinal
drag, while the others define the maximal acceleration forces
in longitudinal and lateral directions due to the tire-road

contact [3]. To relate functionalities and resources for this
MDPI, we propose the OCP defined in Problem 1.

Problem 1: We define the state vector

x⃗ =

 v
Eb

Ef

 , (1)

where v is the vehicle speed, Eb is the battery energy, and
Ef is the fuel energy, and the input vector

u⃗ =

 Pe

Pk

Pbrk

 , (2)

where Pe is the engine power, Pk is the MGU-K power, and
Pbrk is the brake power. The nominal lap time is the lowest
cost to the following OCP:

min
u⃗

tnom =

∫ S

0

ds
v(s)

, (3)

subject to the dynamic state equations:

d
ds

v =
1

m
· Pe + Pk − Pbrk

v2
− c0 · v,

d
ds

Eb = −Pk

v
,

d
ds

Ef =
Pe

v · ηe
,

(4)

where ηe is a constant efficiency relating engine to fuel
power. We consider the following input constraints:

0 ≤ Pe ≤ Pe,max,

−Pk,max ≤ Pk ≤ Pk,max,

0 ≤ Pbrk ≤ ∞,

(5)

and the energy related terminal contraints:

Eb(S) = Eb(0) + dEb,

Ef(S) = dEf .
(6)

Finally, we include also the maximum acceleration con-
straints in longitudinal and lateral directions given by the
track-dependent characteristics:(

Pe+Pk−Pbrk

v

Flong,max,bot

)2

+

(
m · v2 · γ
Flat,max

)2

≤ 1,(
Pe+Pk−Pbrk

v

Flong,max,top

)2

+

(
m · v2 · γ
Flat,max

)2

≤ 1,

(7)

where

Flat,max = (c1 · v2 + c2 · v + c3) ·m,

Flong,max,top = (d1,top · v2 + d2,top · v + d3,top) ·m,

Flong,max,bot = (d1,bot · v2 + d2,bot · v + d3,bot) ·m,

(8)

are the maximum lateral and longitudinal forces allowed on
a track.
The monotonicity of the relation given by the OCP can be
checked analytically and empirically.



2) Battery Sensitivity: During an optimal lap, the state of
charge (SoC) fluctuates between charging and discharging
intervals. Therefore, the lap time does not only depend on
the allocated energy budgets, but also on the initial battery
SoC [3]. We describe the phenomenon of increased lap
time as a MDPI, providing the final battery SoC and the
chosen track as functionalities, as the suboptimality differs
depending on the length and characteristics of the circuit.
In turn, the resources include the initial battery SoC, the
allocated battery energy, and the lost lap time. To capture
the relationship between these quantities, we propose the
following affine relations:

Eb,end = Eb,0 + dEb,

∆t = max (0, r · dEb + s · Eb,0 + q) ,
(9)

where r, s, q are track-dependent parameters.

B. Vehicle
The vehicle MDPI includes all elements that are subject

to sizing, i.e., the aerodynamic and the propulsive configu-
rations.

1) Aerodynamic Configuration: The aerodynamic config-
uration (AC) is a crucial component of a racing car. While
the teams invest millions of USD to decrease longitudinal
drag, its correlation to downforce, and therefore to increased
cornering velocities, results in a concurrent behavior of these
two quantities [25], [26]. Moreover, additional aerodynamic
components might negatively affect the overall mass of the
shell. The complexity is further increased due to the influence
of the aerodynamic setup on the propulsive configuration
(PC) choice in Section III-B.2. In particular, a more slen-
der configuration, which could appear more advantageous
aerodynamically, provides a smaller available volume for
the propulsive packaging, potentially compromising available
power. As introduced in Section III-A.1, the functionality of
this MDPI consists of a catalog containing a set of incompa-
rable parameters that are provided to the performance MDPI.
Specifically, such parameters quantify the drag coefficient
and translate the downforce generated by the airflow to
the parameters needed in the performance envelope model
introduced in Equation (7). The only resource of this MDPI
is the mass of the setup.

2) Propulsive Configuration: The PC MDPI provides
engine and MGU-K powers as functionalities. Generally,
a higher maximal power appears to be the trivial choice
when designing the race car. However, the available volume
provided by the AC needs to be considered, as it might
exclude some implementations. Furthermore, the resulting
mass needs to be considered, as a heavier car will perform
worse in the strategic component of the framework. In
this study, we decouple the aerodynamic influence on the
propulsive component (i.e., the available volume) and only
consider the effect of the mass on lap time.

IV. RESULTS

This section showcases the application of our framework
on real-world scenarios in the domain of F1. After an
introductory section on the design of experiments, two case
studies are analyzed.

Conf. # Engine Power [kW] Motor Power [kW] Mass [kg]
1 540.0 120.0 300.0
2 550.0 120.0 310.0

TABLE I: Catalog populating the PC MDPI.
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Fig. 4: Velocity and normalized curvature trajectories for
BAH and ITA. In both velocity plots we include the mean
velocity in red, to show the slightly higher value for the
Italian circuit. Moreover, the curvature clearly shows that
the circuit of Bahrain offers more cornering situations.

A. Design of Experiments

We populated the AC MDPI with two different setups.
First, we consider the low drag configuration (LDC), which
should emulate a quite flat rear wing, which is beneficial to
longitudinal drag but comes at the expense of downforce, and
therefore of cornering velocity. Second, we study the high
drag configuration (HDC), which emulates a higher angle of
attack at the rear wing, leading to higher longitudinal drag
and downforce. To populate the PC MDPI we leveraged a
heuristic catalog, where an increase in engine power comes
with an increase in mass, as can be seen in Table I. The
performance MDPI introduced in Section III-A is populated
with optimization results allowing for fuel energy budgets
reaching from 94% to 102% every 2%, while the battery
energy budgets reach from −0.2MJ (discharging) to 0.1MJ
(charging) with a discretization of 0.1MJ.

B. Hardware Implementations on Different Race Tracks

In the first case study, we show how the co-design
framework answers track-driven optimization queries and
adapts to track characteristics. In particular, we optimize for
the lap time, energy allocation, and the vehicle’s optimal
component sizing for one lap, given two different circuits and
the same final battery status 4.0MJ. In Figure 4 we show
the main characteristics of the two chosen track layouts: On
the left the Bahrain International Circuit (BAH) and on the
right the Autodromo Nazionale Monza (ITA). The structural
difference between the two is shown by the 8% higher mean
velocity in ITA, which suggests that this track is generally
faster. On the contrary, BAH exhibits higher fluctuations in
the curvature γ, suggesting that high cornering velocities
are more beneficial for optimal lap times. Figure 5 shows
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Fig. 5: Fuel energy allocated during one lap versus the lap
time for BAH (top plot) and for ITA (bottom plot). The
battery energy is equal for all scenarios. The shaded areas
represent the feasible solution space, as it is always possible
to drive slower for a given energy budget. The different
shading is due to two different engine configurations. Implic-
itly, this figure contains information about the aerodynamic
configuration, which for BAH is the HDC and for ITA is the
LDC.

the Pareto fronts of optimal solutions in terms of the fuel
energy allocated in that lap against the obtained lap time for
BAH and ITA. As expected, a higher available fuel energy
leads to improved lap times, despite a slightly higher mass
to carry around the circuit. Given the requested full final
battery, all the points on the front assign a charge-sustaining
strategy, meaning that we start with a full battery and assign
dEb = 0MJ. The other feasible solutions featuring a slightly
discharged battery at the beginning and assigning a charging
strategy clearly result in higher lap times. Furthermore, from
each point on the front we can extract related implementation
details. Finally, in agreement with the curvature trajectory, on
BAH, the optimal AC is the HDC. This differs from ITA,
where the LDC is preferred.

C. Energy Allocation vs. Lap Time
In the second case study we increase the number of

strategy MDPIs of our framework. Figure 6 shows the
general structure for n concatenated laps. In this scenario,
we look at the case n = 3. In the following, we show
the ability of our tool to allocate energy budgets once the
number of laps increases. The physical implementation that
is included in the vehicle MDPI remains available only
once, as the design choices cannot be altered during one
race. The functionalities we requested in this case study
are a final battery of 4.0MJ (meaning that over the three
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racing strategy of a racing vehicle on n concatenated laps
on a given track while reaching a final battery target. The
resources to minimize are allocated battery and fuel energies,
and the total time.

Policy # dEb,1 [MJ] dEb,2[MJ] dEb,3[MJ]
Policy 1 −0.1 0.1 0
Policy 2 0.1 −0.2 0.1
Policy 3 0 −0.1 0.1
Policy 4 −0.1 0 0.1
Policy 5 −0.2 0.1 0.1

TABLE II: Set of feasible battery allocation policies.

laps, the vehicle needs to race in charge-sustaining mode)
on the circuit of BAH. Table II shows the set of feasible
battery energy allocation policies that we obtain from the
first requested functionality. Note that all policies that include
charging the battery prior to at least one discharging lap
(i.e., Policy 2) are suboptimal a priori, as they imply an
initially not fully charged battery status. In Figure 7 we
show the optimal relationship between total fuel allocation
versus time to complete three laps. The different shadings
arise from different battery energy allocation policies. We
see that it is beneficial to first maximally discharge the
battery while the vehicle is heaviest, and charge it in the
two subsequent laps (Policy 5). Each point on the Pareto
front is also characterized by a fuel allocation policy. Apart
from the highest and lowest possible fuel allocations (i.e.,
three laps with 102% or 94% fuel budget), the policies
in between contain various permutations that also affect
lap time. For example, the optimal allocation policy for a
total fuel consumption of 95.3% highlighted on the right,
is {96%, 96%, 94%}. We explain this trend by looking at
the vehicle’s mass. With a fuel allocation policy of {96%,
94%, 96%}, the mass that needs to be carried around the
circuit is decreased slower than in the optimal policy. In the
sense of this case study, this physically sensible sensitivity
validates our framework.

V. CONCLUSIONS

Our work has marked a significant step forward in the
exploration of joint optimization of component sizing and
strategic decisions within the context of energy allocation
in the domain of F1. Through our preliminary study, we
have successfully applied a monotone theory of co-design
to competitive racing and were able to replicate well-known
energy sensitivities, validating our approach. Furthermore,
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Fig. 7: Total fuel energy allocated during three laps versus the
lap time for BAH. The fuel energy allocation policy of each
edge on the Pareto front is not necessarily equal. The shaded
areas represent the feasible solution space, as there always
exists a suboptimal fuel energy policy or implementation
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different shading is due to different battery energy allocation
policies according to Table II. Implicitly, this figure contains
information about the aerodynamic configuration, which for
BAH is the HDC.

we demonstrated the framework’s versatility in adapting to
its environment and making optimal components’ design
choices considering various track layouts. In particular, we
considered the two real-world case studies of the Bahrain
International Circuit and the Autodromo Nazionale Monza.
Finally, by augmenting the design analysis with additional
laps, we were able to compare different energy allocation
policies, laying the foundations for future analyses on the
interplay between strategy decisions and component sizing
in a race. The presented framework poses computational
advantages with respect to state of the art methodologies,
and is more intellectually tractable and manipulable.

From a sizing perspective, the next phase of our work will
focus on a more detailed interconnection between the physi-
cal components, and the inclusion of additional components
which need to be designed. As for the strategic aspect of
our work, expanding our analysis to encompass more laps,
potentially extending to an entire race duration, will provide
a more comprehensive understanding of the long-term impli-
cations of our proposed framework. Finally, the incorporation
of other resources (i.e., optimization objectives), such as wear
considerations or monetary aspects, will add depth to our
model, offering a broader view that could become relevant
when optimizing an entire season.

ACKNOWLEDGMENTS

We would like to thank Ferrari S.p.A. for the support.

REFERENCES

[1] FIA, “2024 Formula one sporting regulations,” Geneva, Switzerland,
Tech. Rep., 2023.

[2] ——, “2024 Formula one technical regulations,” Geneva, Switzerland,
Tech. Rep., 2023.

[3] P. Duhr, D. Buccheri, C. Balerna, A. Cerofolini, and C. H. On-
der, “Minimum-race-time energy allocation strategies for the hybrid-
electric formula 1 power unit,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 6, pp. 7035–7050, 2023.

[4] S. Ebbesen, M. Salazar, P. Elbert, C. Bussi, and C. H. Onder, “Time-
optimal control strategies for a hybrid electric race car,” IEEE Trans.
Control Syst. Technol., vol. 26, no. 1, pp. 233–247, 2018.

[5] P. Duhr, A. Sandeep, A. Cerofolini, and C. H. Onder, “Convex
performance envelope for minimum lap time energy management of
race cars,” IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8280–8295,
2022.

[6] C. Balerna, M.-P. Neumann, N. Robuschi, P. Duhr, A. Cerofolini,
V. Ravaglioli, and C. Onder, “Time-optimal low-level control and
gearshift strategies for the formula 1 hybrid electric powertrain,”
Energies, vol. 14, p. 171, 2021.

[7] J. Bekker and W. Lotz, “Planning formula one race strategies using
discrete-event simulation,” Journal of the Operational Research Soci-
ety, vol. 60, no. 7, pp. 952–961, 2009.

[8] A. Heilmeier, M. Graf, and M. Lienkamp, “A race simulation for
strategy decisions in circuit motorsports,” in Proc. 2018 IEEE ITSC,
2018, pp. 2986–2993.

[9] McLaren-Racing-Limited, “Formula one race strategy,” Royal
Academy of Engineering, Tech. Rep., 15/02/2022. [Online]. Available:
https://www.raeng.org.uk/publications/other/14-car-racing

[10] M.-P. Neumann, G. Fieni, C. Balerna, P. Duhr, A. Cerofolini, and C. H.
Onder, “Low-level online control of the formula 1 power unit with
feedforward cylinder deactivation,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 7, pp. 8382–8397, 2023.

[11] G. Riva, S. Radrizzani, and G. Panzani, “Battery model impact on
time-optimal co-design for electric racing cars: review and applica-
tion,” 2023.

[12] S. Radrizzani, G. Riva, G. Panzani, M. Corno, and S. M. Savaresi,
“Optimal sizing and analysis of hybrid battery packs for electric racing
cars,” IEEE Transactions on Transportation Electrification, vol. 9,
no. 4, pp. 5182–5193, 2023.

[13] G. Zardini, N. Lanzetti, M. Salazar, A. Censi, E. Frazzoli, and
M. Pavone, “On the co-design of av-enabled mobility systems,” in
2020 IEEE 23rd International Conference on Intelligent Transporta-
tion Systems (ITSC), 2020, pp. 1–8.

[14] G. Zardini, N. Lanzetti, A. Censi, E. Frazzoli, and M. Pavone,
“Co-design to enable user-friendly tools to assess the impact of
future mobility solutions,” IEEE Transactions on Network Science and
Engineering, vol. 10, no. 2, pp. 827–844, 2023.

[15] G. Zardini, D. Milojevic, A. Censi, and E. Frazzoli, “Co-design of
embodied intelligence: A structured approach,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 7536–7543.

[16] G. Zardini, A. Censi, and E. Frazzoli, “Co-design of autonomous
systems: From hardware selection to control synthesis,” in 2021
European Control Conference (ECC), 2021, pp. 682–689.

[17] G. Zardini, Z. Suter, A. Censi, and E. Frazzoli, “Task-driven modular
co-design of vehicle control systems,” in 2022 IEEE 61st Conference
on Decision and Control (CDC), 2022, pp. 2196–2203.

[18] M. Clemente, M. Salazar, and T. Hofman, “Concurrent powertrain
design for a family of electric vehicles,” IFAC-PapersOnLine,
vol. 55, no. 24, pp. 366–372, 2022, 10th IFAC Symposium on
Advances in Automotive Control AAC 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896322023436

[19] J. Katz, “Aerodynamics in motorsports,” Proceedings of the Institution
of Mechanical Engineers, Part P: Journal of Sports Engineering and
Technology, vol. 235, no. 4, pp. 324–338, 2021. [Online]. Available:
https://doi.org/10.1177/1754337119893226

[20] R. S. Rice, “Measuring car-driver interaction with the g-g diagram,”
SAE Technical Paper 730018, 1973.

[21] A. Censi, “A mathematical theory of co-design,” arXiv preprint
arXiv:1512.08055, 2015.

[22] A. Censi, J. Lorand, and G. Zardini, Applied Compositional Thinking
for Engineering, 2024, work-in-progress book. [Online]. Available:
https://bit.ly/3H6pwMo

[23] G. Zardini, “Co-design of complex systems: From autonomy to future
mobility systems,” Doctoral Thesis, ETH Zurich, Zurich, 2023.

[24] B. A. Davey and H. A. Priestley, “Introduction to lattices and order,”
Cambridge university press, 2002.

[25] S. C. Kim and S. Y. Han, “Effect of steady airflow field on drag and
downforce,” vol. 17, pp. 205–211, 2016.

[26] D. S. Nath, P. C. Pujari, A. Jain, and V. Rastogi, “Drag reduction by
application of aerodynamic devices in a race car,” vol. 3, 2021.


