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ABSTRACT

Bio-signal sensing represents a pivotal domain in the medical applications of bioelectronics. Traditional methods have, so

far, focused on capturing these signals as accurately as possible, leading to high sampling rates in clocked synchronous

architectures. Given the sparse activity of bio-signals, this approach often results in large amounts of digitized data with no

relevant information and in a significant amount of energy consumed during transmission. Here, we introduce a self-clocked

microelectrode array (MEA) that senses and digitizes bio-signals at the pixel level by encoding their changes as asynchronous

digital address-events, significantly reducing the amount of data that needs to be transmitted off-chip. This novel MEA comprises

an array of 64×64 electrodes, an asynchronous 2D-arbiter, and an Address-Event Representation (AER) communication block.

Each pixel within the array operates autonomously, monitoring input signals for relative voltage fluctuations instigated by cellular

activity. Upon detecting a sufficiently large signal change, the pixel produces a digital pulse encoded with its corresponding

address. Positive signal changes are encoded as “up” events, while negative ones are encoded as “down” events and, upon

generation, are routed off-chip instantly via the asynchronous arbiter. Here, we present results from the chip characterization

and experimental measurements using electrogenic cells. Moreover, we interface the MEA to a mixed-signal neuromorphic

processor, demonstrating a prototype for end-to-end event-based bio-signal sensing and processing.

Introduction1

As we usher in an era of pervasive computing, we are witnessing an exponential proliferation of devices and systems designed2

to aid us in our daily lives. These systems are very diverse, ranging from localization devices to biomedical sensors. Still, they3

are all expected to operate continuously at minimal energy cost while facing the daunting task of ensuring the secure real-time4

interpretation of the generated data. This is especially true in the realm of biosensors that continuously monitor our bodily state5

through various signals. These include neural signals, manifested as action potentials and measured by electroencephalogram6

(EEG), cardiac signals manifested as extracellular field potential and recorded as electrocardiogram (ECG), as well as glucose7

and insulin signals. The current data inundation from these sensors necessitates the development of custom hardware that8

can process signals locally without the need for offline bulky backend computers or cloud servers. Biosensors, particularly9

those with many channels such as the ones employed in electrophysiological studies such as multielectrode arrays (MEAs),10

are experiencing a trend towards higher channel counts, for simultaneous recording from as many as 235k channels [1]. If11

encoded using a classical digital sampling approach, the bio-signal measured by a typical channel produces about 200kbps,12

making scalability and off-chip transmission critical in terms of both bandwidth and power consumption [1–7]. Although13

innovations in recording systems, such as time-multiplexing techniques and sophisticated sampling schemes, have allowed for14

simultaneous recording from an increasingly large number of electrodes, the practical scalability of these systems remains15

difficult. Furthermore, most electrophysiology studies are primarily interested in the timing and shape of action potentials.16

Consequently, a considerable portion of the acquired data ends up being discarded only after costly post-processing techniques.17

This highlights the need for more efficient data acquisition and processing techniques that can better focus on the features of18

interest on-line, ultimately enabling more efficient on-line and closed-loop bio-signal processing systems [8].19

In parallel, neuromorphic sensors [9–13] have emerged as a paradigm-shifting solution for low-latency and power-efficient20
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Figure 1. Schematic overview of GAIA’s operating principle and benefits. Graphical representation of the working

principle of the event-based 4096-channel GAIA sensor. The signal is sensed and compressed at the pixel level, enabling sparse

and compressed data transmission off-chip. The new data topology is particularly well suited for online processing with Spiking

Neural Networks (SNN).

signal processing. Unlike traditional sensing technologies that output a continuous, clocked stream of data, neuromorphic21

sensors are asynchronous and event-driven. Event-based sensors only respond to significant changes in the signal, thus22

drastically reducing data traffic and, subsequently, power consumption. Their clock-less, or self-clocked, operation bypasses23

the power-hungry high-frequency clock requirements, making them well suited for real-world edge, pervasive, and ubiquitous24

computing applications. Furthermore, when neuromorphic sensors are synergistically paired with neuromorphic processors [14–25

17], they unlock unprecedented potential, enabling sophisticated real-time signal processing [18] that can handle high temporal26

resolution requirements [19, 20], rapid pattern recognition [21, 22], and adaptive learning, challenges [23] that traditional27

systems often struggle with.28

Within this context, in this paper, we present a fully event-based microelectrode array biosensor called GAIA (Global29

Asynchronous Intelligent Array). The GAIA system uses neuromorphic circuits to encode signals generated from bioelectric30

cells directly at the pixel level, generating and transmitting data only when relevant events, such as an action potential, occur.31

Here, we first introduce the GAIA chip architecture, characterize the circuitry within each pixel, and characterize the32

signal encoding block (level-crossing ADC). We then demonstrate the ability of the sensor to detect bioelectric signals, and,33

finally, we validate GAIA with a beating cardiomyocyte culture. Going a step further, we interface GAIA to a mixed-signal34

event-based neuromorphic processor, demonstrating a proof-of-principle end-to-end neuromorphic sensing and processing35

pipeline. Figure 1 outlines the full event-based pipeline: time-continuous sensing, sparse asynchronous event generation, and36

finally, spike-based processing. This novel combination represents an important step toward achieving an efficient, scalable,37

and adaptable sensing system that elegantly captures the spatio-temporal dynamics of biological systems while at the same time38

significantly reducing the amount of data transmitted off-chip.39

Results40

GAIA’s distinct advantage lies in its adaptive data transmission approach: by outputting an asynchronous digital event only41

when detecting a local relative voltage change that surpasses a preset threshold, it favors the encoding of meaningful biological42

signals with large transients and discards noise and small fluctuations. Intuitively, our approach is based on the assumption that43

relevant biological signals exhibit voltage transients significantly higher than the noise floor. This unique data handling strategy44

makes the output data solely dependent on the detected activity of the signal, and since the activity of bioelectric cells is sparse45

in both space and time, it significantly reduces the overall output data [24].46

The event-based microelectrode array47

Figure 2a shows an overview of the 4096-channel GAIA MEA system. It consists of a central 64× 64 pixel core, flanked48

by two X and Y address encoders, and an Address Event Representation (AER) [25] communication block. Each electrode49
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Figure 2. Detailed breakdown of the CMOS GAIA event-based microelectrode array. a, High-level system architecture

depiction. b, Close-up view of the circuit elements within each pixel. c, A schematic diagram illustrating the arbiter and address

event representation hierarchy. d, Core asynchronous communication components showing pull-up and pull-down transistors,

responsible for generating and transmitting Request (REQ) and Acknowledgment (ACK) signals. e, Temporal sequence of the

4-Phase handshake protocol fundamental to asynchronous communication on top. On the bottom the sequence of reset signals.
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measures 15×15 µm2, and the pitch between electrodes is 48 µm. Figure 2b shows a block diagram of the signal path within50

each pixel: it includes two adjustable gain stages (A1-A2), an event generation stage, and a reset stage. A large reference51

electrode, 10 µm in width, is positioned on the perimeter of the sensing array.52

The A1-A2 amplifiers were designed to amplify signals in the 1Hz-10kHz range while rejecting the large DC component at53

the electrode-tissue interface. The amplitude of signals of interest can vary considerably and typically have amplitudes that54

range from 50 µV to 1mV depending on the distance to the electrode and the cell type. The initial amplification stage (A1 - in55

red in figure 2b) is a single-ended common-source amplifier in which the gain is regulated by an adjustable current source. A56

tunable gate in the pseudo-resistor modifies the low cutoff frequency corner [26]. The pseudo-resistor in A1, working with the57

Cin capacitor, establishes a very low-frequency pole, stabilizing the original zero. The signal is subsequently AC-coupled to58

a variable gain amplifier (A2 - in green in figure 2b), where the Cc/C f ratio determines the gain, offering eight configurable59

settings. Further details of the circuitry within each pixel are available in the supplementary material 1.60

The event generation block (in yellow in figure 2b) emits two digital types of events (UP and DN), depending on the61

direction of the signal variations [27]. These are linked to a four-phase asynchronous handshaking block, managing data62

transmission through asynchronous signals. Generated UP or DN pulses correspond to AER interface requests (REQ). The63

REQ signal will elicit an acknowledgment (ACK) signal from the downstream processing, resetting the comparator output.64

Arbiter and address–event representation (AER) interface65

Each channel is integrated within an array. This array communicates asynchronously with peripheral circuits through a66

handshaking mechanism [25, 28, 29]. Upon event generation, the pixel raises a request signal (REQ) indicating its readiness for67

data transmission [30, 31]. A 2D-arbiter system encodes this event’s location using a unique (X,Y) address and event polarity68

(ON or OFF). This results in a 13-bit digital address: 6-bit each for X and Y addresses, complemented by an ON/OFF polarity69

bit. The structure of this 2D arbitrator can be seen in Figure 2c.70

To ensure a smooth handshaking process, the target receiver verifies all digital REQ events created on the chip. These signals71

employ a Bundled Data (BD) representation, where the 13-bit digital address is portrayed as a parallel word. This word is then72

accompanied by two supplementary REQ and ACK signals for handshaking control. The timing scheme of the asynchronous73

four-phase handshake, as well as the timing of the reset signals, is shown in Figure 2e. In scenarios where multiple pixels74

simultaneously produce Address Events (AEs), the arbitration block comes into play to prevent signal interference. This block75

sequentially queues and transmits events over a shared bus, ensuring a collision-free environment. The peak throughput of the76

GAIA system is measured to be 20 mega events per second (Meps).77

Figure 2d elucidates the method through which each pixel accesses this shared bus. To relay data, a pixel pulls the shared78

REQ line to ground, using a local pull-down transistor, signaling the need for event transmission. Recognizing this action, the79

downstream arbiter returns an ACK signal to a global pull-up transistor within the common line, thereby resetting the REQ80

signal. This allows for subsequent event transmissions.81

To enhance system fairness and efficiency, we adopted a 2D non-greedy arbiter [32, 33]. Such arbiters strive to allocate82

equal access to the shared bus among competing nodes. The principle is simple: an arbiter will not acknowledge the same83

client consecutively, only proceeding after all other waiting clients have been attended to. This approach increases fairness,84

minimizes potential system congestion, and improves the overall performance of the system.85

Characterization of amplifier gain, noise, power consumption, and latency.86

The electrical properties of GAIA were characterized by applying a 1 mVpp sinusoidal input and sweeping its frequency from87

0.1 Hz to 10 kHz. Figure 4a illustrates the transfer functions that characterize the A1-A2 amplifier chain for various gain88

settings. The lowest and middle gain settings yield in-band amplifications of 37.4 dB and 48.1 dB, respectively. The gain can be89

programmed up to 57 dB. Additionally, by altering the bias of the A1 pseudo-resistor, the high-pass corner can be changed. We90

characterized the noise levels of the chip by sweeping the input frequency and amplitude using a spectrum analyzer. Figure 4b91

displays the signal-to-noise-distortion ratio (SNDR) as a function of the input amplitude. The dynamic range for the lowest92

gain setting is 37.9 dB, with a peak SNDR of 37.2 dB. Moreover, figure 4c demonstrates the power spectral density (PSD) of93

the input-referred noise across GAIA’s operational bandwidth. The integrated input-referred noise in the 500 Hz - 3 kHz band94

is 19.04 µV , while in the full 5 Hz - 10 kHz bandwidth is 71.05 µV .95

The power consumption of a single pixel is 842.4 nW. Figure 4d illustrates the contributions from various pixel structures.96

The analog and digital components within the pixel are supplied separately; the amplifiers are supplied with analog power97

(in blue), while the digital structures within the pixel receive digital power (in red). The total power consumption of the chip,98

including the pixel core and the 2D arbiter, amounts to 3.58 mW. Figure 4e displays the breakdown for each power supply.99

Power calculations were performed using nominal biases, with a 2 kHz event rate response from each pixel.100

The pixel response latency was assessed by measuring a single pixel’s response to a low-frequency square wave. The sensor101

generates a positive event on every rising edge and a negative event on every falling edge. Figure 4f displays the latency for102

both positive and negative events. The average latency is 0.9995 µs, and the 1-sigma response jitter is 0.2798 µs. As expected,103
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Figure 3. a, Micrograph showcasing the GAIA chip with dimensions of a 5×5mm2 die and an active area of 3×3mm2.b,

Microscope image of the post-processed electrode array. The electrodes have a size of 15×15 µm2 and are spaced squarely

with a pitch of 48 µm. A small area of 4×6 electrodes is highlighted: the exposed top electrode is visible. c, Image of the

finalized, fully-packaged chip. Following post-processing, the chip was affixed to a daughterboard PCB, encapsulated using a

biocompatible epoxy resin, and subsequently coated with Pt-black to minimize electrode impedance.

a) b) c)

d) e) f )
Pixel Power Breakdown Chip Power Breakdown

850 nW 3.58  mW

Figure 4. Electrical Characterization of the GAIA Microelectrode Array. a, Transfer functions of the A1-A2 amplifier

chain across different gain settings. The amplifier offers eight programmable gain levels: the lowest (illustrated in black) is at

37.4 dB, the middle (shown in green) at 48.1 dB, and the high-pass filter corner can be adjusted (highlighted in red) via the A1

pseudo-resistor bias settings. b, Signal-to-noise-distortion ratio (SNDR) plotted against input amplitude. At the lowest gain

setting (depicted in black), the dynamic range is 37.9 dB with an SNDR of 37.2 dB. c, Power spectral density representing

the input-referred noise over the operational bandwidth of GAIA. Notably, the integrated input-referred noise within the 500

Hz-3 kHz range amounts to 19.04 µV . d, Detailed breakdown of power consumption for individual structures within a single

pixel. Power sources for analog and digital components are depicted in blue and red, respectively. The total power consumption

is 842.4 nW per pixel. e, Comprehensive power consumption analysis for each power supply, resulting in an overall chip

consumption made up of 3.58 mW. f, Assessment of response latency for both positive and negative events, with an average

latency measured at 0.9995 us.
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Figure 5. Event Characterization of the GAIA Microelectrode Array. a, Encoding of a 1 kHz sine wave. The original

waveform (in blue) is amplified (in black) by the A1-A2 amplifier chain. When the amplified signal crosses the upper threshold

(in green) or falls below the lower threshold (in red), positive or negative events are triggered, respectively. After crossing a

threshold, the amplified signal is reset to a reference voltage, allowing the AC dynamics to persist. b, The density of events can

be influenced by the width of the thresholds, resulting in either denser (bottom) or sparser (top) event patterns. c, Experimental

setup employed to assess GAIA with bioelectric signals. A function generator is connected to an Ag/AgCl electrode submerged

in PBS (Phosphate Buffer Saline) solution. d, Previously recorded cardiomyocyte extracellular field potential (top) and its

corresponding sensed and amplified signal through the GAIA amplifier chain. e, DN events (bottom in red) produced in

response to a pre-recorded neural signal (top in black). f, UP (in green), and DN events (in red) produced in response to a single

pre-recorded cardiomyocyte extracellular field potential.

positive events exhibit lower latency than negative events due to design choices within the pixel. For layout symmetry purposes,104

the comparators are designed using transistors of the same size. Positive events are generated from an n-FET-based comparator105

(with electrons as majority carriers), while negative events are produced from a p-FET-based comparator (with holes as majority106

carriers). The lower mobility of holes compared to electrons causes the pFET comparator to switch more slowly, resulting in107

higher latency for events with negative polarity. Characterizing latency using a single pixel is also valid for the larger array, as108

the pixel’s response time is assumed to be orders of magnitude larger than the propagation time of digital events through the109

gates of the arbiter tree.110

Event characterization111

Following the initial electrical and functional characterization of GAIA, we characterized the event generation encoding at the112

core of the innovation of GAIA.113

Figure 5a presents the Asynchronous Delta Modulator (ADM) encoding of a 1 kHz sine wave. The original sine wave,114

single-channel events, amplified signal, and event-generating thresholds are all superimposed. A digital UP (DN) event is115

produced when the amplified signal exceeds (falls below) a configurable threshold, resetting the amplified signal to A2’s116

positive output terminal. The placement of thresholds can be freely adjusted. Intuitively, the closer the thresholds, the more117

events will be generated, resulting in a denser or sparser encoding of the original signal. Figure 5b shows a 1 kHz sine wave118

encoded with different degrees of sparsity. Given known thresholds, the precise timing of the UP/DN events produced by the119

event-generating ADM circuitry contains all the information about the original input signal [27, 34] (Signal reconstruction is120
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available in the Supplementary Material section 4). To ensure our approach is effective, we aim to position the thresholds above121

the noise level to only capture large extracellular signals.122

To fully characterize the on-chip amplification and event generation of GAIA, we tested the system using previously123

recorded signals. A function generator was connected to a silver-silver chloride electrode, which was submerged in phosphate-124

buffered saline (PBS) solution and positioned inside GAIA’s recording chamber. Figure 5c illustrates the setup. The conductive125

PBS solution allows the signal from the function generator to be detected by all electrodes on the array. Using a previously126

recorded signal allowed us to test GAIA’s response to a real extracellular potential through the electrode signal pathway and the127

entire encoding pipeline.128

Figure 5d displays a previously recorded cardiomyocyte extracellular field potential (top) and the same signal amplified129

by GAIA’s A1-A2 amplifiers (bottom). The top trace was previously recorded using another MEA [7] platform and used130

to evaluate the GAIA system. Figure 5f demonstrates the event encoding response for the same cardiac extracellular field131

potential signal. The extracellular field potential’s stereotypical waveform is effectively encoded into an asynchronous stream132

of UP-DN-UP events on the chip. Figure 5e shows the response of GAIA to previously recorded neural signal. The neuronal133

signal (on top) and the corresponding response of the DN channel (on bottom) are displayed. The pixel accurately detects the134

input spike trains, demonstrating the capability of the system to encode and transmit biologically relevant signals.135

Experimental results136

To rigorously validate the GAIA platform, we recorded from a cardiomyocyte culture. Cardiomyocytes generate periodic137

signals [35–37] (at 1Hz), making them exemplary candidates for characterizing novel MEA systems.138

Human-induced pluripotent stem cells (hiPSC) differentiated into cardiomyocytes were used for this validation process.139

Cardiomyocytes were seeded onto the GAIA sensor and kept in a humidity-controlled incubator. Recordings began on day140

seven after plating, providing sufficient time for the cells to aggregate and synchronize their beating patterns spontaneously.141

Throughout multiple days of observation, the cell culture remained stable, displaying a beating frequency that ranged from 50142

to 90 beats per minute (bpm). The main outcomes of the cell culture experiment are described in Figure 6. The histogram143

in Figure 6a outlines the total number of events over a 20-second span. Each histogram peak corresponds to an extracellular144

field potential wave. The cells exhibit a beating frequency of 67 bpm. A deeper dive into two histogram peaks is presented in145

Figure 6b. Specifically, it shows UP and DN events for each electrode generated by two distinct field potential waves. Each146

wave signal has a consistent origin and propagation pattern, resulting in similar footprints in the event space.147

Figure 6c extracts the wave propagation velocity based on the spatial location of the electrode and the timing of the events148

generated. The extracted propagation velocity is 0.11 mm/ms. Finally, a confocal microscope was used to validate the viability149

of the tissue and ensure that the extracted beating frequency was correct. A snapshot from the microscope is shown in figure 6d,150

where the cell nuclei (in blue) and the cytoskeleton (in red) are highlighted.151

Expanding upon these results, Figure 7 provides a wealth of information that delves deeper into the propagation of electrical152

activity. It graphically presents a time series of the events sensed in response to an extracellular field potential wave as it153

travels across the entire array. Each detected wave follows a consistent trajectory, originating from the array’s lower right and154

culminating at its upper left (also shown in Figure 6b). Crucially, a wave of DN events is succeeded by a wave of UP events.155

This sequence mirrors the biphasic dynamics characteristic of EFPs. An additional graphical representation of the data and156

further analysis are available in the supplementary material section 5 and 6.157

In terms of data efficiency, the average unfiltered event rate output from the 4096 GAIA channels amounts to 10 kevs,158

signifying a dramatic reduction when compared to conventional sampling methods that can require up to 200 kbps per channel.159

This stands as a testament to GAIA’s capability of compressing large amounts of data into manageable streams.160

Spiking neural network interfacing161

GAIA’s production of a wholly novel type of data enables an array of exciting possibilities. Building on the results presented, we162

successfully interfaced GAIA’s event-based outputs to an event-based mixed-signal neuromorphic processor. This integration163

aims to harness the benefits of both hardware components, laying the groundwork for their potential unification into a singular164

monolithic system. Here, pixel and neuron computations occur in the analog domain, while spike routing is managed digitally.165

The union of GAIA’s advantages with the real-time analysis capabilities of neuromorphic processors promises significant166

advancements in the realm of hardware-based neural computation. While several existing neuromorphic processors could167

serve as a proof-of-concept [15, 16, 38, 39], we elected to employ the mixed-signal DYNAP-SE [14] processor (described in168

Supplementary material section 7) to demonstrate a fully mixed-signal processing pipeline. The analog properties of silicon169

neurons and synapses have been extensively described [40–42]. So here we focus on two system-level network motifs. The170

first network is a spike detection motif that uses a single analog silicon neuron to detect spikes from a single GAIA channel.171

It relies on the integration of UP and DN events through different excitatory input synapses to create coincidence detection172

filters [43]. Digital UP events are integrated via NMDA-like silicon synapses, while digital DN events are integrated via173

AMPA-like silicon synapses [44]. Both synapses are emulated via dedicated circuits on the DYNAP-SE processor. As in their174
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Figure 6. Analysis and Visualization of Cardiomyocyte Activity on GAIA Sensor. a, Histogram showcasing the event

distribution from GAIA over a 20s duration. Periodic peaks, resulting from the spontaneous beating of the CMs, reveal a

frequency of 67 bpm. Each peak represents the extracellular field potential in response to a beat event. b, Illustration of two

distinct beating events. The x-axis represents time and the y-axis indicates the Channel ID, emphasizing the clear signal

propagation. Uniformity in the recorded beating shapes indicates the signal’s consistent origin and propagation pattern. c,

Estimation of the propagation speed of the extracellular field potentials, with an estimated velocity of 0.11 mm/ms. d, Confocal

imaging of cardiomyocyte cell culture on the GAIA sensor. Cytoskeletons in red are stained with SIR-Actin, while cell nuclei

in blue are stained with NucBlue, Hoechst 33342. Imaging proves cell viability and optically validates the measured beating

frequency.
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Figure 7. Propagation of extracellular field potential (EFP) wave. Time surface showing the propagation of electrical

activity from a single EFP wave across the entirety of the GAIA chip. The activity is calculated over a 2 ms time window with

an exponential decay parameterized by τ = 2ms. Negative and positive events (in red and green) are encoded from the biphasic

shape. Notably, within the time frames presented, the total counts for UP and DN events are 1130 and 1111, respectively.

Although it might seem that there are more UP events, this is because they represent the trailing edge of the wave, thus occurring

closer to the snapshot time, making them appear more prevalent.
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Figure 8. GAIA - DYNAP-SE interface. a, Spike detection motif. UP and DN channels are connected to different synapses,

filtering the incoming digital spikes with different time constants. b, The network is tuned to respond only when a sequence

with the correct polarity and the correct timing is presented (middle). If the timing (top) or the polarity is inverted (bottom), the

silicon neuron is silenced. c, Raw GAIA events (bottom) are processed by the DYNAP-SE processor (top). The silicon neurons

on the DYNAP-SE spike only in response to a close succession of DN-UP GAIA events. d, Neuron-IDs of a full DYNAP-SE

core responding to raw, noisy input recorded by GAIA.

biological counterpart [45], silicon NMDA synapses are voltage-gated circuit blocks wherein the output synaptic current is175

enhanced by the effect of a recent AMPA synaptic event boosting the neuron membrane potential. The resulting non-linear176

synaptic summation mechanism is leveraged in the spike detection network to trigger an output spike only when subsequent177

DN-UP events occur within a short time window. Figures 8a and b show the described spike detection motif and the selectivity178

to spike time and polarity, respectively. Figures 8c shows, on the bottom, the raw, unfiltered data from a subset of GAIA179

channels and, on the top, the DYNAP-SE events generated in response to the data. The coincidence detection between different180

polarity events is a strong de-noising filter on the single output spikes. The on-chip spike detection network successfully181

responds only to close successions of DN-UP events while correctly silencing events due to noise. The second network uses the182

same principle to process the entire GAIA array within a single DYNAP-SE core. To map the full GAIA array into a single183

DYNAP-SE core, we coarse-grained the 4096 pixels into a 16x16 grid. Each grid element was connected to a single analog184

on-chip neuron. The coarse-graining approach allows processing of the entire GAIA MEA within a single core. The synaptic185

biases and the time constants of the synapses and of the neuron have been tuned to ignore the background noise and limit false186

positives. Figure 8d shows the response over time of the DYNAP-SE core. The main panel shows periodic beating, while the187

bottom zoomed-in image focuses on detecting a single EFP wave event. Silicon neurons show a clear progression at the time of188

detection, consistent with the movement of the EFP wave.189

Advantages and drawbacks of GAIA190

As delineated in Table 1, the performance metrics of the GAIA system are compared to existing state-of-the-art MEA devices,191

providing a comparative perspective. GAIA stands out prominently due to its unique event-based asynchronous nature:192

the output data rate is solely determined by the sensed extracellular activity. The analog pixel electronics combined with193

asynchronous encoding collectively enable superior energy efficiency and reduced latency. However, the intrinsic nature of194
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This work [3] [5] [6] [7] [1]

Technology [nm] 180 180 180 130 180 90/65

Die size [mm] 5×5 6×8.9 - 19.2×10 12×8.9 32.5×25.1
Pixel pitch [µm] 48 18 25 15 13.5 11.72

No electrodes 4096 19586 65536 16384 59760 236880

No readout-channels 4096 19586 65536 1024 2048 236880/33840

Sampling rate <1 µs latency 11.6kHz 20kHz 20kHz 20kHz 10/70kHz

Input-referred noise 19.04 10.4 26 7.5 2.5 5.5

[µVRMS] (500-3kHz) (300-5kHz) (100-10kHz) (100-3 kHz) (300-10kHz) (300–10kHz)

Power/channel [µW] 0.8 5.9 - 19.8 42 130

Table 1. Comparison to state-of-the-art MEA systems

asynchronous event-based systems renders time-multiplexing unfeasible, and requires dedicated circuitry at each pixel. This195

poses a challenge in achieving an optimal balance between electronics size, which influences overall noise levels, and the196

physical spacing between electrodes, which dictates spatial resolution.197

Building upon the architecture of GAIA, its event-based design offers expansive opportunities for scalability. The inherent198

strength of signal compressing at the pixel level, of the arbiter design, combined with its efficient bandwidth, suggests that the199

present 64x64 configuration could seamlessly evolve into larger pixel arrays, echoing advances seen in vision sensors [46].200

However, it is vital to acknowledge inherent challenges: with the pixel’s active design, transmitting digital data over extended201

wire lengths within an analog computational environment introduces vulnerabilities to noise disturbances and potential coupling202

issues.203

Discussion204

As traditional multichannel biosensors follow a synchronous clocked data sampling scheme, they are limited in the number of205

channels they can record from simultaneously due to fundamental bandwidth and power constraints. The work we presented206

here bridges the gap between direct extracellular sensing and event-based technology, offering a new approach for real-time207

bioelectric sensing and monitoring. The GAIA sensor proposed evolves classical MEA designs by harnessing event-based208

encoding, offering benefits such as enhanced energy efficiency and improved scalability. Each pixel asynchronously converts209

the detected extracellular potential into a stream of digital events. GAIA significantly reduces redundant data at the pixel level,210

by initiating data generation and transmission only upon significant signal changes, such as single action potentials or large211

extracellular field potentials. This, in turn, eases the strain on data management and processing frameworks.212

Another notable achievement of this paper is the demonstration of an integrated event-based MEA device with a mixed-213

signal neuromorphic processor. This combination demonstrates the practicality of combining event-based biosensing with214

neuromorphic processing, suggesting a roadmap for future edge biosensing applications.215

The findings and developments presented in this paper set the stage for further exploration in the MEA and biosensor sector.216

Event-based technology in this context opens new avenues for research and optimization. Moreover, as showcased by direct217

sensing and processing integration, the potential for edge devices paves the way for more decentralized, efficient, and real-time218

solutions.219

In summary, this work presents a novel technological approach and offers a practical blueprint for the next generation of220

bioelectronic interfaces, emphasizing real-world applicability and efficiency.221

Methods222

IC Fabrication223

The chip was fabricated using a standard 180 nm CMOS 6M1P process. Information on transistor sizing is available in the224

supplementary materials section 2. The dies were wire-bonded onto custom-made printed circuit boards (PCBs) for effective225

integration. PCBs were designed using the open-source Kicad software.226

Post-processing, packaging, and Pt-Black deposition227

For biocompatibility and usability, a three-phase post-fabrication protocol was employed. First, the chips were post-processed228

in a cleanroom to fabricate stable platinum electrodes and to isolate the electronics from the culturing media. The GAIA CMOS229

chip was post-processed at the die level. Platinum electrodes were manufactured on the electrode array using a shifted-electrode230
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layout [47]. Three masks were used to deposit a SiO2/Si3N4 passivation stack over the entire chip. Reactive-ion etching was231

used to create openings in the passivation to create the final 15×15 µm2 electrodes and for the wire bonding contacts.232

Secondly, the chips were packaged with epoxy and a glass ring to ensure adequate insulation and to avoid leakage of233

the culturing media. Finally, Pt-black was deposited on the bright Pt electrode surface following a previously published234

protocol [48]. All electrodes were connected, and a static current of 500uA was applied for 40 s.235

Data Pipeline236

An XEM7310 FPGA (Opal Kelley, USA) board was used to interface the GAIA chip. Custom drivers were developed in System237

Verilog to digitize, timestamp, and pipeline incoming events. Custom C++ software was built to visualize and process incoming238

digital events. The same software controls the analog biases and digital latches on the GAIA chip. Additional information is239

available in the supplementary material section 3.240

Data Filtering241

The recorded raw data was filtered to extract salient features by leveraging the analysis performed in figure 5f. The data was242

filtered using the event-based algorithms described in algorithm 1.243

Algorithm 1 Event Validation

• E: The list of events to be processed.

• e.ts: Timestamp of event e.

• e.p: Polarity of event e. Negative and positive polarity are denoted as -1 and 1, respectively.

1: for each e in E do

2: if ∃e′ ∈ E such that |e’.ts−e.ts| ≤ 1 ms and p.e’=−p.e then

3: Evalid = Evalid ∪ e,e′ .

4: else

5: Discard e from E.

6: end if

7: end for

8: return Evalid

Characterization setup244

The chip characterization was conducted using an array of specialized instruments. The transfer function of the A1-A2245

amplification chain was assessed using an Agilent Analog Discovery 2. An SRS SR780 network signal analyzer was used246

to evaluate the noise and capture the power spectral density measurements. The necessary waveforms for testing were247

produced using the Agilent 33120A waveform generator, and their characteristics were monitored using the Agilent DSO6054A248

oscilloscope. The chip’s analog and digital power needs were met using two separate Hewlett Packard E3610A power supplies.249

As for estimating the chip’s total power consumption, initial computations were made using the post-layout extraction feature.250

These preliminary estimates were validated using real-time readings from the aforementioned power supplies.251

Cell Culture252

Frozen vials of human-derived cardiomyocytes (iCell Cardiomyocytes Kit (Cat. R1057)) were purchased from Fujifilm Cellular253

Dynamics International (Wisconsin, USA). The cells were thawed and cultured following the manufacturer’s guidelines. Before254

cell plating, the GAIA sensors were sterilized in 70% ethanol for 10 minutes and rinsed thrice with sterile deionized water.255

The electrode arrays were coated with human fibronectin (Cat. FC010, Signma-Aldrich) at a concentration of 50 mg/mL and256

incubated at 37 °C for 1 hour. The cells underwent a thawing procedure and had seeding density adjusted [37, 49]. 30000257

cells were seeded onto the fibronectin-coated GAIA sensors, and 1.3 mL of iCell Plating Medium was added to each chamber.258

After 48 hours, iCell Plating Medium was fully replaced with 1.3 mL iCell Maintenance Medium. Half of the medium was259

exchanged using iCell Maintenance Medium every 2-3 days until the termination of the experiments.260
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