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Vocalizations are highly specialized motor gestures that regulate social interactions.1

The reliable detection of vocalizations from raw streams of microphone data remains2

an open problem even in research on widely studied animals such as the zebra finch.3

A promising method for finding vocal samples from potentially few labelled examples4

(templates) is nearest neighbor retrieval, but this method has never been extensively5

tested on vocal segmentation tasks. We retrieve zebra finch vocalizations as neighbors6

of each other in the sound spectrogram space. Based on merely 50 templates, we7

find excellent retrieval performance in adults (F1 score of 0.93 ± 0.07) but not in8

juveniles (F1 score of 0.64 ± 0.18), presumably due to the larger vocal variability of9

the latter. The performance in juveniles improves when retrieval is based on fixed-10

size template slices (F1 score of 0.72 ± 0.10) instead of entire templates. Among11

the several distance metrics we tested such as the cosine and the Euclidean distance,12

we find that the Spearman distance largely outperforms all others. We release our13

expert-curated dataset of more than 50’000 zebra finch vocal segments, which will14

enable training of data-hungry machine-learning approaches.15

arich@ini.ethz.ch
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I. INTRODUCTION16

In many species including humans, vocalizations play important roles during social be-17

haviors such as aggressions, mating, breeding, and feeding. Inferring the functions of the18

vocalizations is a challenging task where machine learning could be promising1. The lon-19

gitudinal study of vocalizations involves the challenging task of segmenting vocalizations20

from background noise. In vocal learners such as the zebra finch, the vocal segmentation21

task is particularly difficult, because the zebra finch vocal repertoire dramatically changes22

over the course of development2,3. Songs in young zebra finches start out as unstructured23

subsongs that lack categorical structure and that gradually differentiate into distinct classes24

of stereotyped syllables4. Zebra finches also produce less stereotyped calls5 with acoustic25

features that vary depending on behavioral context5,6.26

To segment vocalizations in large vocal data sets, there is a growing literature on machine-27

learning based systems7–10. However, these systems have only recently been emerging and28

their potential is far from being fully explored. Foremost, for segmentation systems to29

perform well, they must be trained and tested on datasets of precisely segmented vocaliza-30

tions. But to our knowledge, only one such dataset is publicly available7,11 and it contains31

merely 473 song syllables produced by a single adult male zebra finch and fails to include32

all vocalization types, so represents a biased sample of vocal output. Entirely lacking are33

public datasets of precisely segmented subsongs; a recent massive-data study on this impor-34

tant developmental phase12 simply ignores the segmentation problem and takes as proxy of35

vocalizations all amplitude-thresholded sound segments, semi-automatically excluding false36

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.555475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/


positives in such a way to introduce false negatives (see Appendix). Unfortunately, ampli-37

tude thresholding can create severe problems if the recording quality is low13, which only38

emphasizes that this severe lack of training and test data forms a bottleneck for progress39

in large-scale research on vocal development, and it calls for the creation of gold-standard40

data sets.41

One method for bootstrapping large vocal data sets from few precisely labelled samples is42

nearest neighbor (NN) retrieval13. NN retrieval is a highly successful information retrieval43

method14: it is used in tasks such as tagging images15, web mining16, recommendation44

systems17,18, and for inference in language models19,20. Although the computational cost of45

NN retrieval grows linearly with the number of templates and the size of the test recordings,46

NN search scalability has improved massively since the popularization of graphics processing47

units (GPUs) for parallel computing21 and with the advent of powerful approximate nearest48

neighbor methods22–25. One of the advantages of NN retrieval over neural networks is that49

NN retrieval uses few parameters and is interpretable26–28.50

NN retrieval has been applied previously to the problem of birdsong analysis29,30. Brooker51

and colleagues used Pearson-correlation-based NN retrieval to benchmark commercially52

available song detection software such as MonitoR30,31. Anderson and colleagues even ap-53

plied a dynamic time-warping algorithm to find data frames in the search space based on54

their minimal path-traversing distance to template frames29. However, the sample sizes and55

scopes of these works are very restrictive: they are based on single birds and unique distance56

measures29 and they excluded certain vocalization types from the analysis30.57

We set out to scale up NN retrieval methods for annotating and proofreading vocal segments.58

4
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The segmentation task we consider is to determine for each time point in a sound spectro-59

gram (i.e., 16-ms sound interval) whether it contains a vocalization or not. We benchmark60

the performance of our approaches on two data subsets of adult (Subset 1) and juvenile61

(Subset 2) male zebra finch vocalizations. In our WHOLE approach, we use entire tem-62

plates for NN retrieval, whereas, in the PART approach, we use fixed windows cut from the63

templates. The PART approach allows the detection of vocalizations from conserved parts64

and offers the practical benefit of yielding samples of fixed dimensionality. Among the many65

spectrogram-based distance metrics we apply during retrieval, we find that the Spearman66

distance outperforms all other metrics. We release our gold standard (GS) data set of more67

than 50’000 annotations, taking care of eliminating false negatives, i.e. vocalizations buried68

in noise that are easily missed by inattentive annotators.69

II. METHODS70

A. Sound recordings and spectrograms71

We used data sets from four adult and four juvenile male zebra finches (each of the latter72

was recorded at three different ages, see Table I for details). Recording was triggered by73

vocalizations (or other sounds); thus, recordings are unevenly spaced in time depending on74

the activity of the bird. Each recording/file contains vocalizations with some silence before75

and after the vocalizations.76

All adult birds (Subset 1) were raised in the animal facility of the University of Zurich.77

During recording, birds were housed in single cages in custom made soundproof recording78
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chambers equipped with a wall microphone (Audio-Technica Pro42), and a loudspeaker.79

The day/night cycle was 14/10 h. Vocalizations were saved using custom song-recording80

software (Labview, National Instruments Inc.). Sounds were recorded with a wall-attached81

microphone and were digitized at 32 kHz. We analyzed data from birds that had already82

spent at least three days in their cage.83

Data from juvenile birds (Subset 2) were randomly sampled from a publication32: We ran-84

domly selected 4 birds and from each bird we selected 3 days. Sounds in32 were recorded at85

a sampling rate of 44.1 kHz.86

We computed sound spectrograms by Fourier transforming sound segments Xt ∈ Rb of b=87

512 samples. Accordingly, a spectrogram column Yt ∈ Nbat time t is given by Eq. (1), where88

Ω is a hamming window of length b= 512, and β = 6.54 for Subset 1 and β = 4.93 for89

Subset 2 is a parameter that controls the dynamic range of the int8 down conversion.90

Yt = int8(ln (|FFT(XtΩ)|) · 128/β) (1)

The hop size ∆t between adjacent Fourier segments is 128 samples corresponding to 4 ms91

in adults. For distance computations, we removed low frequencies (0-688 Hz in adults and92

0-947 Hz in juveniles) due to the large background noise in these ranges.93

B. Generation of gold-standard annotations94

From each day-long recording, we annotated a subset of data by randomly selecting a95

set of files. We annotated vocal segments (not further classified into vocalization types)96

with high temporal accuracy. To generate these gold-standard (GS) annotations, we used97
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a semi-supervised segmentation method13, correcting poor segments and eliminating false98

positives by visual inspection of spectrograms. To eliminate false negatives, the present NN99

method was used with the cosine distance as metric. The GS dataset contains a label for100

each spectrogram column (“1” for vocal, and “0” for non-vocal). A detailed annotation101

protocol is provided in the “Supplementary information”.102

C. Nearest neighbor vocalization retrieval using gold-standard templates103

A simple approach to retrieving sounds segments corresponding to vocalizations is to104

take a single template vocalization of (whole) duration τ and to compute spectrogram-105

based distances to all candidate segments from the search space. Candidates are contained106

in spectrogram windows of the same duration τ . The best candidate segment is the one107

with minimal spectrogram-distance to the template and that does not temporally overlap108

with the template, Fig. 1. To reduce computational cost, we restricted the search space to109

non-silent periods (defined by thresholding the root-mean-squared audio signal) of duration110

≥ τ .111

When many templates are given, we generalize this single-template procedure to many tem-112

plates by iteratively retrieving the top segments one-by-one, as described in the following.113

114
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115

FIG. 1. Template-based nearest-neighbor (NN) retrieval of vocal segments (WHOLE116

approach). For an exemplary template (leftmost spectrogram) drawn from our gold-standard117

(GS) dataset, we plot the (here Spearman) distance (top, dots aligned to candidate onsets) to118

all candidate segments of the same duration within the search space (other spectrograms). The119

best candidate (delimited by red dashed lines) is the one with minimal spectrogram-based distance120

(red dot, top). With this procedure, segmentation errors can arise from mismatching segment121

durations. Here, the best candidate starts one spectrogram column too late relative to the GS122

segmentation, giving rise to a false negative (FN) spectrogram column (purple 0). Since this error123

is within a reasonable tolerance (≤ 5 columns), we regard this vocal segment (red horizontal bar)124

as containing a true positive (TP) vocalization.125
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D. Vocalization retrieval using WHOLE approach126

In the WHOLE approach (Fig. 2),we computed the spectrogram-based distances Dij of127

all template-candidate pairs. The distance Dij represents the distance between the i − th128

template (i = 1, . . . ,M) and the j − th candidate in the search space. For a given template129

i, the search space is given by the set of candidates of the same duration τi as the template.130

After we computed all distance pairs, we identified the best candidate segment to any tem-131

plate as the one with minimal distance, argmin
i,j

Dij. After choosing the best segment, we132

removed it from the search space, thereby also removing candidates that overlapped with133

the best segment. Then we selected the next-best segment in an iterative procedure. By134

iteratively selecting the segment with minimal distance to any template, we chose a very135

greedy strategy of retrieving segments from the set of templates. In practice, we first com-136

puted all pairwise distances and maintained an index of valid candidate-template pairs to137

avoid re-computing any distances during the iterative procedure.138

Because templates are of different durations τi, they might bias this retrieval process to short139

templates. To address this possibility, we tested four different normalizations of distances:140

no normalization, dividing distances Dij by τi, by
√
τi, or min-max normalizing them for141

each template separately as in Eq.(2).142

Dnorm
ij =

Dij −min
k

Dik

max
k

Dik −min
k

Dik

. (2)

9
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E. Vocalization retrieval using PART approach143

In the PART approach, we circumvent any duration-induced distance bias by slicing144

each template into overlapping slices of w spectrogram columns (Fig. 2), where the integer145

parameter w is shorter than a typical template. To any template i with duration τi < w,146

we appended a trailing zero-pad so that all templates had a duration of at least w. From147

M templates, we obtained in total nw =
∑M

i floor( τi
w
) template slices. We then computed148

all distance pairs Dij between template slices and candidate slices. We then chose the best149

candidate slice as the one with minimal distance to any of the nw template slices. Based on150

the best candidate slice, we selected the associated best segment as the sound interval with151

the same relative timing as the template the slice was taken from (the onset and offset of the152

best segment formed the same time lags to the slice as did the onset and offset of the sliced153

template), Fig. 2. Thus, the best candidate segment was selected to be of equal duration154

as the sliced template. There was one exception to this procedure: when the selected best155

segment extended into a silent period, it was cropped.156

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.555475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/


157

FIG. 2. Template-based NN retrieval of vocal segments (PART approach). Shown is an158

example template (delimited by green dashed lines, left) that we chopped into overlapping slices159

(gray bars, below) of width w. For each of these slices, we computed the Spearman distances160

(dots, top) to candidate slices. The winning template slice (thin blue bar, bottom) and the best161

candidate slice (red dot, top; thick blue bar, bottom) are the ones with minimal distance to each162

other. From this best candidate slice, we retrieved the best segment (delimited by dashed red163

lines) as the sound interval that protrudes in the same way as the template relative to its winning164

slice. Here, this candidate is a true positive, because its relative onset (+5 columns) and offset (+1165

column) are both within the accepted tolerance (≤5 columns) of a GS segment.166

11
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F. Spectrogram-based distance measures167

As metrics for distancesDij, we tested the Euclidean, cosine, Jaccard, and Spearman met-168

rics using the built-in MATLAB function pdist2. Additionally, for the WHOLE approach,169

we evaluated earth mover’s distance (EMD) that measures the transport of sound-intensity170

along a single spectrogram axis: either summing EMD distances row-wise (EMDr, transport171

along the temporal axis) or summing column-wise (EMDc, transport along spectral axis).172

G. Performance evaluation173

We evaluated the retrieval performance of our NN approaches using scores based on time174

bins and on sound segments:175

• The time-bin based (or column-wise) score corresponds to the F1 score (the harmonic176

mean of precision and recall) of the inferred labels of all spectrogram column relative177

to the GS labels. Fig. 1 shows examples of true-positive and false-negative labels.178

• The segment-wise or vocalization score (VocScore) is the F1 score of detected vo-179

cal segments. A segment is considered a true-positive (TP) vocalization if both its180

predicted onset and offset are within a temporal tolerance ϵ of the gold-standard val-181

ues. This tolerance reflects the fact that even experts disagree on precise segment182

boundaries. Here, we have chosen a generous tolerance of ϵ = 5 spectrogram columns,183

corresponding to a generous tolerance of 20 ms on Subset 1.184
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III. RESULTS185

A. A gold-standard (GS) dataset of juvenile and adult vocal segments186

From a small set of template vocalizations, we performed NN retrieval of vocal segments187

(see Section II). We manually corrected the obtained segments to assemble a GS dataset of188

53’326 vocalizations extracted from a total of 370 mins of data from zebra finches recorded189

at different developmental stages (Table I). We share our guidelines for manual correction190

that specify two decision boundaries we used to correct the segments: the decision whether191

there is a short silent period (gap) between two vocalizations (Fig. 5), and the distinction192

between vocal and non-vocal sounds (Fig. 6-7). In short, we advocate the definition of vocal193

segments as tight intervals of contiguous vocal activity (no gaps) (see Appendix).194
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TABLE I: Dataset of zebra finch vocal segments across 4 developmental stages. The birds’ ages are

specified in days-post-hatch (dph). The last four columns specify the duration of the annotated

recording (including silence and noise), the number of annotated vocalizations, the fraction of time

with vocal activity (“label imbalance”, vocal/total columns; perfect balance corresponds to 0.5),

and the duration range of vocalizations, respectively. The Group column refers to the recording

date, i.e., the number of days (20, 10, or 0) before birds learned their baseline (BL) song (Fig. 3c).
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Adult

(subset 1)

g17y2 male 14.4.2015 197 84.34 10050 0.4714 20-656

g4p5 male 28.12.2012 115 104.18 26045 0.5155 16-300

g19o3 male 13.11.2015 154 7.72 2045 0.4238 20-240

g19o10 male 08.11.2015 198 7.68 1998 0.548 28-400

Juvenile

(subset 2)

R3406 male 29.11.2011

35 -20BL 1.27 139 0.22 20-357

45 -10BL 8.28 243 0.0486 9-377

55 BL 39.42 2281 0.1077 12-372

R3428 male 16.12.2011

39 -20BL 7.30 1316 0.2931 15-514

49 -10BL 6.86 780 0.2496 12-418

Continued on next page

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.555475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE I – Continued from previous page
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Juvenile

(subset 2)

R3428 male 16.12.2011 59 BL 52.19 4026 0.1862 23-435

R3549 male 17.02.2012

43 -20BL 7.33 781 0.2411 15-581

53 -10BL 9.02 929 0.2209 15-438

63 BL 10.52 1068 0.2372 12-343

R3625 male 13.04.2012

45 -20BL 11.67 728 0.1216 26-372

55 -10BL 7.23 534 0.1363 12-418

65 BL 4.71 362 0.1575 15-293

All 370 53326 9-656

To assess the annotation consistency, we asked a second expert to perform the same man-195

ual correction of NN-retrieved segments on a subset of data (two adults and two juveniles).196

We quantified expert disagreement by assessing the performance of Expert 2 relative to the197

GS data (Expert 1) as a reference: While the F1 score was generally high across both subsets198

(0.981 ± 0.014), the VocScore fluctuated more substantially (0.923 ± 0.046). A closer in-199

spection revealed that the adult bird g19o3 produced pairs of rapidly following vocalizations200

that Expert 2 interpreted as a single vocalization, resulting in a low VocScore (F1-Score:201
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0.975, VocScore: 0.883), while bird g19o10 displayed no such confounding vocalization pair202

(F1 score: 0.992, VocScore: 0.998).203

B. Performance of nearest neighbor retrieval204

We tested the two template-based vocal retrieval approaches (WHOLE and PART) on205

our GS dataset. The NN distance of retrieved vocalizations increased monotonically with206

increasing number of retrieved segments, as per definition (Fig. 3a, shown for three replicates207

of 50 randomly selected templates). Less trivially, the precision of retrieved vocalizations208

decreased with the number of retrieved vocalizations (Fig. 3a-9-10). We varied the used dis-209

tance metric and the normalization strategy. We found that the Spearman distance metric210

performed best, particularly in juveniles, while the Euclidean metric performed worst. In211

juveniles also, the Jaccard metric performed better than the Cosine metric. In both adults212

and juveniles, both EMDs performed poorly (Fig. 3b-e). In the following, we report the per-213

formance of the Spearman metric in more detail. Using WHOLE, the Spearman distance214

achieved an average F1 score of 0.93 ± 0.07 (range 0.86 to 0.98) for adults (Fig. 3b and215

Fig. 3d, no normalization) and an F1 score of 0.63 ± 0.18 (range 0.23 to 0.86) for juveniles216

(Fig. 3b and Fig. 3e, no normalization). Using PART, the performance increased for ju-217

veniles (F1 score of 0.72 ± 0.10, range 0.51 to 0.82) but decreasedfor adults (0.92 ± 0.04,218

range 0.88 to 0.96), see Fig. 3c for each bird individually. This significant performance gap219

between adults and juveniles that we observed for the Spearman metric was also true for220

other metrics. The Cosine distance performed well on adults (F1-score range 0.97 to 0.81),221

while on juveniles it yielded low scores. Distances such as the Euclidean distance and the two222
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Earth Mover distances performed significantly worse than the correlation-based distances223

even in adults, while their respective F1 scores were close to zero in juveniles. In general,224

distance metrices performed significantly better in adults than in juveniles. We normalized225

distances in the WHOLE approach with four different strategies based on either duration226

or sound amplitude (see Section II). For adults, not normalizing was among the best strate-227

gies for the Spearman distance (though neither in adults nor juveniles, normalization had228

a large impact) and it was the worst for Earth mover’s, Jaccard, and Euclidean distances229

(Fig. 3d). As expected, these latter distances benefit from division by the template dura-230

tion to counteract the unequal dimensions of the competing candidates. The template-wise231

min-max normalization worked well across distance metrics and GS data subsets (Fig. 3d,e).232

Taken together, NN search performed best using the PART approach on juveniles and the233

unnormalized WHOLE approach on adults. Across development, zebra finches can change234

their songs to join or to separate adjacent vocalizations (Fig. 6). To quantify errors result-235

ing from falsely joining or separating adjacent vocalizations, we used the VocScore. The236

VocScore is very sensitive to segmentation errors occurring in between two vocalizations,237

e.g., when a syllable gap is missed, the VocScore reports a long false-positive (FP) and238

two short false negative (FN) vocalizations. Across both adults and juveniles, the VocScore239

correlated with the F1 score (Fig. 3f) and the VocScore performance was quite variable240

across datasets, which was due to some birds persistently producing hard-to-segment vocal-241

ization pairs. The simpler F1 score of misclassified spectrogram columns was sensitive to242

the number n of templates used, but surprisingly the F1 score barely improved from using243

more than 50 templates (Fig. 3g). The F1 score also improved with increasing slice width244
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w (Fig. 3g), especially from the minimal width w=1 to w = 8. However, in juveniles, there245

was no additional improvement from increasing the slice width to w = 16 (Fig. 3g).246

247

FIG. 3. Performance of vocal segment retrieval for various distance metrics and normal-248

ization strategies. (a) The column-wise precision (green) of vocal segments gradually declined249

(after initial fluctuation) with increasing number of retrieved segments. We retrieved a total of250

N-n segments (n = 50 templates, N = 26045 GS segments, bird g4p5), corresponding to theo-251

retical optimum of 100% of retrieved columns (x-axis). Three overlapping curves are shown for 3252

replicates of 50 randomly selected templates. (b,c) Mean F1 scores (from 3 replicates of 50 random253
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templates) across the dataset for different distance metrics, using the unnormalized WHOLE (b)254

or PART (c) approach (slice w=8 columns). The tables are sorted along the rows and columns to255

display the best performance on the top left. Abbreviations: SPR=”Spearman”, JAC=”Jaccard”,256

COS=”Cosine”, EMDc=”column-wise Earth mover’s distance”, EMDr=”row-wise Earth mover’s257

distance”, EUC=”Euclidean”. (d,e) Sorted tables of mean F1 scores (from b) of adults (d) and258

of juveniles (e) for the WHOLE approach, shown for different normalization strategies. (f) The259

relationship between F1 score and VocScore in adults (blue crosses) and juveniles (black circles),260

computed for the Spearman distance and using the WHOLE approach (3 replicates per sample).261

(g) Sensitivity analysis for the number of templates n and the slice width w, using the Spearman262

distance.263

To investigate whether the retrieval process is hampered by some detrimental templates264

that excessively often retrieve false positives, we examined one retrieval replicate each in265

three exemplary birds, an adult and two juveniles (Fig. 4). In both birds, we found that266

the retrieval fractions were very non-uniform across the 50 templates (Fig. 4a-c, Figure267

S6, S7). In the juveniles, there were a few templates that yielded excessively low retrieval268

precision (large fraction of FPs). These detrimental templates had either background noises269

(e.g., Fig. 4b, templates “1” and “2”) or very faint harmonic extensions (e.g., Fig. 4b,270

template “3”). To illustrate their shortcoming, we plotted the segments retrieved by the271

three templates with the lowest retrieval precision in each bird (Fig. 4a-b, bottom row of272

spectrograms). Removing the worst three templates (searching with 47 templates only) did273

not increase performance in the adult (Fig. 4c), but slightly increased the performance in274
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the juvenile (Fig. 4d). This indicates that NN search can only marginally be improved by275

selecting representative and clean (noise-free) templates.276

277

FIG. 4. Retrieval performance is non-uniform across templates. (a,b) For an example278

adult (a) and two juveniles (b,c), we sorted the 50 templates (from one replicate) by the fraction of279

segments they retrieved (summed TP and FP retrievals). (d,e,f) For each bird, example templates280

are shown including the worst three (numbered 1-3). (g,h,i) Example segments retrieved by the281

worst three templates in each bird. (j,k,l) Performance scores (6 replicates per bird) for the initial282

set of random 50 templates (purple box) and for the reduced set (green box) constructed by283

removing the worst 3 templates. A small but significant increase in both F1 score and VocScore284

is observed for the juveniles (p < 0.05, one-sided paired-sample Wilcoxon signed rank test). The285
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performance changes for the replicates in (a-i) are highlighted by black dotted lines (grey lines286

indicate changes for the remaining 5 replicates).287

IV. DISCUSSION288

We have presented a simple and viable method for creating and proofreading of GS289

datasets of animal vocalizations. Nearest neighbor retrieval is straightforward in its applica-290

tion and is suitable both for extending manual annotations based on a few examples and for291

proofreading existing datasets. We have used NN retrieval in a 2-step process of 1) detect-292

ing vocalizations in raw sound recordings based on few labelled examples, and 2) systematic293

screening the remaining data for false negative samples. We evaluated NN retrieval on vo-294

calizations from individual birds including the notoriously challenging subsongs produced295

during an early developmental phase. We benchmarked two NN variants and found that296

adult vocalizations were better retrieved using whole templates (WHOLE approach, Fig. 1)297

whereas juvenile vocalizations were better retrieved using template slices (PART approach,298

Fig. 2). We found that as few as 50 templates were sufficient for reaching plateau perfor-299

mance, which imposes a minimal requirement on the human effort for adopting this method.300

In theory, NN retrieval can be performed with as little as one single positive example. In301

practice, we recommend selecting clean templates and disregarding templates that contain302

background noises or outlier features (Fig. 4), because otherwise the noise itself becomes a303

target of NN retrieval. A good strategy might be to perform a two-stage search: first with304

stereotyped templates, then with apparent outliers. The Spearman distance outperformed305
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the other tested metrics (Fig. 3) – especially on juvenile data. Surprisingly, the Euclidean306

metric, often the first choice when comparing songbird vocalizations3,29,33,34, exhibited the307

overall worst performance. That the Spearman distance outperformed the Euclidean dis-308

tance on both juveniles and adults suggests that commonly used analysis methods based on309

the Euclidean distance3,33 could be improved simply by the use of Spearman distance. The310

finding that correlation-based metrics (including Spearman and cosine distances) outper-311

form the Euclidean and EMD distances emphasizes the importance of discounting for vocal312

variability: Under the Euclidean and EMD metrics, a loud candidate vocalization will have313

a large distance to its softer template. Variability of sound intensity can arise from varying314

distances and directions of a bird to the microphone and so they should not affect retrieval.315

In contrast, correlation-based metrics are invariant to global changes in signal intensity (or316

loudness). Furthermore, correlation-based metrics work well with templates of different du-317

rations since the correlation between two vectors does not scale with the vector dimension.318

These results are in line with a general trend away from the Euclidean distance towards319

correlation-based metrics: The advantage of Spearman distance over the cosine distance320

is that the former captures non-linear monotonic relations35,36. This property is generally321

believed to contribute to the good performance of the Spearman distance in applications322

as diverse as spam email detection37 and indoor localization based on received Wi-Fi signal323

strength38. We see the strength of NN retrieval in proofreading the predictions generated by324

other systems, in particular when labelled data are scarce. By contrast, when labelled data325

are abundant, NN retrieval is unlikely going to be competitive with state-of-art approaches326

for birdsong segmentation such as deep neural networks7,8. The main disadvantage of NN327
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retrieval (e.g. compared to neural networks), is that the computational cost scales with the328

number of labelled examples, although workarounds could be to sub-sample or summarize329

the templates using for example k-means clustering. Very large datasets are amenable to330

NN retrieval by virtue of powerful methods for approximative NN retrieval22–25. Therefore,331

there is no fundamental barrier for scaling up this method. We benchmarked NN retrieval332

on vocal segmentation, which is a task that is feasible in both adults and juveniles and allows333

for comparison of performance across age. In adults with their stereotyped repertoire, it is334

possible to target retrieval to renditions of specific syllable types rather than any vocalization335

from the repertoire. Coincidentally, we used such type-specific retrieval to generate the GS336

annotations for adults. In practice, we found that best performance is achieved when first337

searching for renditions of long vocalization types and then successively for shorter types.338

Such a hierarchical retrieval strategy avoids confounds from repeated notes among syllables339

in adult zebra finch song39, which may also be the reason for the lower performance of PART340

in adults compared to WHOLE. By contrast, the reason why for juveniles, PART seems to341

work better than WHOLE could be that on a larger time scale juveniles have no repeating342

vocal units — thus, if we model their vocalizations as random vectors then these are all far343

from each other since in large spaces, random pairs of vectors tend to be orthogonal to each344

other. Our retrieval approach (in particular the WHOLE approach) suffers from inflexibility345

of segment durations, namely that the retrieved segments must exhibit the same durations346

as the templates. Therefore, WHOLE will struggle to find the overall shortest vocalization347

performed by an animal. One possible approach to overcome this limitation is to use dy-348

namic time warping29 as a means to create artificially short templates, thereby increasing349
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the number and diversity of templates. NN retrieval is attractive because it controls for350

out-of-distribution detection with a well-defined and interpretable distance measure. NN351

retrieval shifts the challenge of modeling vocalizations to the challenges of identifying a352

good metric. We tested only a set of well-known metrics here, but in follow-up work it353

may be worthwhile train custom metrics on the same retrieval task to learn to optimally354

account for natural variability. Metrics can be learned from embeddings and the approach of355

computing embeddings in a self-supervised manner40 is getting more popular also in sound356

processing41, in particular speech42,43. The role of NN search we foresee in future work is to357

assist in creation of vocal annotations and in proofreading automated annotations produced358

by trained systems. One promising idea is to develop human-in-the loop iterative proce-359

dures of labelling, training, searching, and fine-tuning of machine-learning systems. Our360

expert-curated dataset of annotated individual vocal repertoires counts more than 50’000361

vocalizations from 8 zebra finches. We release this dataset so that data-hungry deep learn-362

ing systems for large scale vocal analysis can be trained and evaluated. To make our work363

reproducible, we also share our segmentation guidelines as illustrations of the manual an-364

notation challenges and of our chosen decision boundaries (see Appendix). We hope that365

our annotation guidelines will help to standardize vocal annotation tasks and so promote366

comparative work across species.367
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APPENDIX582

1. Vocal segmentation conventions for microphone recordings of single birds583

Vocal signals tend to arise from discrete acoustic units, which is a characteristic shared584

across the polymorphic landscape of vocalizing species44,45. Animal studies in monkeys, dogs,585

chicken, and songbirds have shown that animal calls can be used to communicate semantic586

meaningful information such as detection of predators, discovery of food, or attraction of587

mates46–55. Nevertheless, the functions of animal vocalizations are generally unknown for588

most calls and species44,56. To advance our understanding of vocal communication in ani-589

mals, we need to study large and well-annotated data sets. Here we address the problem of590

how to segment audio recordings of a given species. The segmentation problem is to distin-591
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guish the times at which an animal vocalizes from the times at which it does not. One of592

the simplest methods of segmenting vocalizations from continuous recordings is to consider593

sound amplitude and to define as vocalizations all sounds that are above a given threshold.594

However, this procedure will misclassify certain noises as vocalizations, which is why more595

refined approaches are needed that potentially make use of the statistics of the individual33.596

In the extreme case, we need to inspect every single potential vocalization and decide based597

on expert knowledge where to cut the dividing line between vocalization and noise.598

To standardize the segmentation task, we have created this set of guidelines based on two599

decisions boundaries for a vocalization:600

• The decision whether there is a silent period between two sounds, which we take by601

inspecting spectrograms (Fig. 5, left).602

• The decision whether a sound is vocal or non-vocal (Fig. 5, right; Fig. 6-7).603

Birds, especially when young, tend to vary the gaps between vocalizations. An example is604

shown in Fig. 5 (yellow dotted box): This sequence of three vocal elements looks like a pre-605

cursor of syllable C that the juvenile tries to imitate, but they appear with sufficiently large606

gaps, which is why we sometimes classify them as 3 distinct syllables. Thus for (a) we infer607

a gap where we can visually detect one, irrespective of other singing attempts in the animal.608

The second decision boundary (b) is harder to define universally from single-microphone609

recordings, ideally we would like to have simultaneous recordings from the trachea to mea-610

sure sounds and air flow there. In practice, it is a human expert, who judges whether611

a sound is vocal or non-vocal by listening to examples and inspecting the corresponding612

spectrograms. Again, this task is relatively simple for highly stereotyped vocalizations, but613
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more difficult for faint, short and variable vocalizations in juveniles (Fig. 5, right; Fig. 6,614

left, Fig. 7). A special case consists of faint sounds (usually at around 6kHz) that frequently615

occur after (or, less frequently, before) vocalizations (Fig. 2, left). We consider them to be616

inhalation sounds33,57 and exclude them from the vocal dataset (default setting).617

618

FIG. 5. Definition of vocal segments as continuous intervals of vocal activity. (left)619

Zebra finch song examples at 59 day-post-hatch, aligned to notes that resemble the beginning of620

syllable C. At this stage, syllable C is surrounded by clear gaps most of the time (top 6 examples).621

However, in a minority of cases, no silent gap is visible between the preceding syllable B and622

the first note of syllable C (bottom 6 examples, boundary case indicated with magenta arrow).623

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.555475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gold-standard segmentation labels of syllable-C-notes (yellow) and of other vocalizations (orange,624

purple) are indicated by bars below the spectrograms. (right) Vocalizations recorded at 49 day-625

post-hatch (red bars), aligned to examples that resemble syllable C. Short noisy sounds within626

syllable precursors (green arrow) have not been classified as vocal activity based on isolated visual627

inspection, but likely would be, if the context would be taken into account. The yellow dotted box628

marks three vocal elements that could potentially be interpreted as a unitary precursor of syllable629

C, if the developmental endpoint were to be taken into account. Bars as on the left.630

631
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FIG. 6. Decision-boundary between vocal and non-vocal sounds. (left) Spectrogram ex-632

amples of putative inhalation sounds (indicated with purple bars) observed in a zebra finch at 59633

day-post-hatch (excluded in the gold standard by default). (right) Examples of non-vocal noises634

which may include prominent tones (green arrows), wide-band noise (blue arrows), or very faint635

signals (magenta arrows).636

637

FIG. 7. Detailed decision-boundary between vocal sounds and wing flaps. Spectrogram638

examples short noises. Wing flaps are easy to detect on spectrograms when occurring in serial639

repetition (i.e., when the bird is flying; magenta arrows). For short sounds, indicators of vocal640

activity can be harmonics (green arrow) or a strong skew in the spectral density towards certain641

frequencies (low frequency sounds indicated with blue arrows).642
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2. Analysis of an open dataset643

A recent publication12 includes a large dataset of vocal segments from 5 zebra finches.644

According to the data documentation, the segmentation was performed using a sound-645

amplitude based method that included some hand tuning. Although we found the published646

segmentation results to be valuable, they were insufficient to qualify as gold standard, due647

to the existence of false negatives and inaccurate segment boundaries Fig. 8.648

649

FIG. 8. Example segmentation inaccuracies of the12 dataset. The published segments (red650

horizontal bars) deviate from the (gold-standard) manual annotations (gold horizontal bars) in651

terms of a false negative sample (Syllables A and C) and in terms of inaccurate segment boundaries652

(white arrows).653
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3. Discussion654

The examples we provided illustrate our decision boundaries and the difficulties with655

segmentation approaches. In summary, we advocate the definition of vocal segments as656

tightly restricted intervals of continuous vocal activity. These segments should be defined657

independently from functional considerations. How to extract functional units from vocal658

segments is an open question, the answer may depend on whether the vocal units are assessed659

in the domain of perception (receiver) or production (sender). Still, it is regarded as ideal660

to validate chosen segmentations based on the functional roles of the vocal signals44,56,58.661

However, recent work in songbirds suggests that “syllables may not be perceptual units for662

songbirds as opposed to common assumption”59.663

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.555475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.555475
http://creativecommons.org/licenses/by-nc-nd/4.0/


664

FIG. 9. Extended set of precision and distance curves as a function of retrieval pro-665

gression, using the WHOLE approach (replicated for all birds). The top row shows adult666

birds, while the subsequent rows show juveniles at different ages relative to baseline. See Figure667

3a for a detailed description.668
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669

FIG. 10. Extended set of precision and distance curves as a function of retrieval pro-670

gression, using the PART approach (replicated for all birds). The top row shows adult671

birds, while the subsequent rows show juveniles at different ages relative to baseline. See Figure672

3a for a detailed description.673
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674

FIG. 11. Extended set of histograms of retrieval rates across templates, using the675

WHOLE approach (3 retrieval replicates for each bird). The top row (consisting of 3676

panels for each retrieval replicate) shows adult birds, while the subsequent rows show juveniles at677

different ages relative to baseline. See Fig. 4a-c for a detailed description.678
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679

FIG. 12. Extended set of histograms of retrieval rates across templates, using the PART680

approach (3 retrieval replicates for each bird). The top row (consisting of 3 panels for each681

retrieval replicate) shows adult birds, while the subsequent rows show juveniles at different ages682

relative to baseline. See Fig. 4a-c for a detailed description683
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