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Abstract: Former analyses of the BOSS data using the E�ective Field Theory of Large-Scale
Structure (EFTofLSS) have measured that the largest counterterms are the redshift-space
distortion ones. This allows us to adjust the power-counting rules of the theory, and to
explicitly identify that the leading next-order terms have a specific dependence on the cosine
of the angle between the line-of-sight and the wavenumber of the observable, µ. Such a
specific µ-dependence allows us to construct a linear combination of the data multipoles, /P ,
where these contributions are e�ectively projected out, so that EFTofLSS predictions for /P

have a much smaller theoretical error and so a much higher k-reach. The remaining data are
organized in wedges in µ space, have a µ-dependent k-reach because they are not equally
a�ected by the leading next-order contributions, and therefore can have a higher k-reach
than the multipoles. Furthermore, by explicitly including the highest next-order terms, we
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define a ‘one-loop+’ procedure, where the wedges have even higher k-reach. We study the
e�ectiveness of these two procedures on several sets of simulations and on the BOSS data.
The resulting analysis has identical computational cost as the multipole-based one, but leads
to an improvement on the determination of some of the cosmological parameters that ranges
from 10% to 100%, depending on the survey properties.

Keywords: cosmological parameters from LSS, power spectrum, redshift surveys, galaxy
clustering
ArXiv ePrint: 2110.00016
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1 Introduction and summary

Introduction. The analysis of the Full Shape (FS) of the BOSS galaxy power spectrum with
the one-loop prediction from the E�ective Field Theory of Large-scale Structure (EFTofLSS)
has obtained a measurement of all parameters in �CDM with just a Big Bang Nucleosynthe-
sis (BBN) prior [1–3] (see also [4] for other prior choices and [1] for a joint analysis with the
BOSS bispectrum using the tree-level prediction). The FS analysis has been combined with
BOSS reconstructed measurements and baryon acoustic oscillations (BAO) from eBOSS, as
well as with supernovae redshift-distance or cosmic microwave background (CMB) measure-
ments, and this has further allowed us to put limits on the e�ective number of relativistic
species, to bound the total neutrino mass and curvature, to constraint clustering and smooth
dark energy [1, 3, 5–9]. In particular, the FS analysis can help constrain models designed
to ameliorate the Hubble tension as it provides measurements independent on the CMB or
local distance ladders [9–13]. Latest among these, [9] shows that the only known consistent
model that can predict w < ≠1, which is clustering quintessence [14], does not ameliorate the
Hubble tension and indeed w is strongly constrained to be close to -1 even in this model.1

We believe it is fair to say that these results were made possible by the development of
the EFTofLSS, which is revealing itself to be a powerful instrument to extract cosmological
information from Large-Scale Structure observations. A several-year long e�ort was necessary
to bring this theory to the level where it can be applied to the data, and these e�orts were
conducted notwithstanding widespread skepticism on the actual usefulness of the EFTofLSS.

1We emphasize that even if clustering quintessence is a consistent quantum field theory, its discovery would
represent a revolution of our understanding of quantum gravity, as in this context it is highly unexpected that
one can have a consistent cosmological solution with w < ≠1.

– 1 –
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We therefore find it justified to add the following footnote where we acknowledge some of
these developments, though not all intermediate results are used in the present analysis.2

Summary. In the analysis of [1–3], and confirmed by all the subsequent analysis, it was
found that the size of the counterterms originating from redshift space distortions was
particularly large, limiting the amount of data that could actually be used for a cosmological
analysis by lowering the so-called k-reach of the theory, which is the maximum wavenumber
up to which data can be reliably analyzed. In this paper, we first argue that the behavior of
the redshift space counterterms can be understood by introducing a new momentum scale
that controls the size of these terms, that we call kNL, R, and which is lower than the one
of the dark matter non-linearities, that is called kNL. This is the way the so-called Fingers
of God make their appearance in the EFTofLSS. This understanding allows us to recognize
that the most-enhanced terms have a specific µ-dependence, with µ being the cosine of
the angle between the observed wavenumber and the line of sight. Since in the EFTofLSS
the k-reach is limited by the largest terms that appear at the perturbative order beyond
the ones one uses, the specific µ-dependence of the largest next-order terms allows us to
define a linear combination of the data where these contributions are projected out, or at
least up to a negligible amount. We call this linear combination /P © P

(D, /µ
4
, /µ

6
), because it

projects out the terms whose µ-dependence is µ
4 and µ

6, and, up to a negligible amount,
those whose dependence is µ

8 and µ
10. These are the functional forms associated to the

largest next-order counterterms. The same combination accidentally almost projects out
the µ

2 components, further reducing the theoretical error of /P . Since we work with the
combination of three multipoles, we organize the two remaining ones in wedges in µ space,
that we call w1,2, and determine the k-reach of each of those by using the µ-dependence
of the leading next-order terms, so that the wedge integrated over lower values of µ has
an higher k-reach than the one integrated over higher values. We dub this procedure as
‘one-loop’, and apply it to both simulations and BOSS data.

We also identify another procedure, that we dub ‘one-loop+’. Since we argue that the
leading next-order terms from redshift space have a very simple functional form, we add

2The initial formulation of the EFTofLSS was performed in Eulerian space in [15, 16], and subsequently
extended to Lagrangian space in [17]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [16, 18–27]. Accompanying theoretical developments were a careful understanding
of renormalization [16, 28, 29] (including rather-subtle aspects such as lattice-running [16] and a better
understanding of the velocity field [18, 30]), several ways for extracting the value of the counterterms from
simulations [16, 31], and the non-locality in time [18, 20, 32]. These theoretical explorations also include
enlightening studies in 1+1 dimensions [31, 33]. In order to reproduce the Baryon Acoustic Oscillation (BAO)
peak, an IR-resummation of the long displacement fields had to be performed, originating the so-called
IR-Resummed EFTofLSS [34–38]. An account of baryonic e�ects was presented in [39, 40]. The dark-matter
bispectrum has been computed at one-loop in [41, 42], the one-loop trispectrum in [43], and the displacement
field in [44]. The lensing power spectrum has been computed at two loops in [45]. Biased tracers, such as
halos and galaxies, have been studied in the context of the EFTofLSS in [32, 46–50] (see also [51]), the halo
and matter power spectra and bispectra (including all cross correlations) in [32, 47]. Redshift space distortions
have been developed in [34, 49, 52]. Neutrinos have been included in the EFTofLSS in [53, 54], clustering dark
energy in [26, 55–57], and primordial non-Gaussianities in [47, 52, 58–61]. The exact-time dependence in the
loop has been clarified in [62, 63]. Faster evaluation schemes for the calculation of some of the loop integrals
have been developed in [64]. Comparison with high-fidelity N -body simulations to show that the EFTofLSS
can accurately recover the cosmological parameters have been performed in [1, 3, 65].

– 2 –
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them to the one-loop prediction of the EFTofLSS that is fitted to the data. In this way,
the theoretical error associated to the two µ-wedges (that are analyzed on top of /P ) is even
smaller, so that it is possible to reliably analyze even more data. Similarly to the ‘one-loop’
procedure, we apply ‘one-loop+’ to both simulations and BOSS data.

Main results. We perform our analyses on four sets of data: on a large-volume simulation
that we call ‘PT challenge’, on two quite-large-volume sets of simulations populated with
five HOD models, and that we call ‘Lettered Challenge’, on a rescaled version of the ‘PT
Challenge’ simulation that we call ‘DESI-like’, and finally on the BOSS data. The simulations
are used to either estimate the theoretical error with great precision, or to estimate the
k-reach of the EFTofLSS with the new methods in surveys such as DESI.

The increase in the k-reach with respect to the multipoles depends on the cosmic variance,
on the shot noise, and on the particular linear combination of the data we consider. Let us
quote the results for the ‘one-loop+’ procedure. For /P , we increase kmax on the PT challenge
by a factor of 2.5, by 2.3 for DESI-like and by 1.5 for BOSS. The k-reach of the wedge with
the smaller values of µ, w1, is increased by a factor of 1.8 for PT challenge, 1.7 for DESI-like,
and negligibly modified for BOSS. The k-reach of w2 is instead decreased with respect to
the multipoles, in order to keep the value of the theoretical error constant in all three data
combinations we use. The ‘one-loop’ procedure has the same k-reach for the bin /P as the
‘one-loop+’, and a slightly lower, but still significant, increase in the k-reach of w1.

Similarly, the increase in the precision in the determination of the cosmological parameters
depends on the cosmic variance and the shot noise of the data. Quoting results for ‘one-loop+’,
for PT challenge we increase the precision by 60% or 70% for parameters such as �m, As and
h, and 105% for ns. The improvements for ‘one-loop’ procedure are smaller by about 10% or
15%, depending on the cosmological parameters. Unfortunately, the improvements are not
as remarkable for a DESI-like survey, where we obtain an improvement that is about 25%
for �m and h, 10% for ns and 5% on As, with similar results for the ‘one-loop’ procedure.
Finally, on the BOSS data, we find that by using the ‘one-loop+’ procedure, we improve the
determination of �m by 10%, while we have marginal improvements for the other cosmological
parameters. Instead, ‘one-loop’ does not lead to any improvement on BOSS data.

To summarize, we designed an analysis to mitigate the size of the theory error associated
to redshift-space distortions in the EFTofLSS. Compared to the standard fit to multipoles,
this new analysis leads to a significantly more accurate and precise determination of the
cosmological parameters. This is made possible as we analyze a much larger number of
modes, made accessible thanks to two improvements. First, the multipoles are rotated into
new linear combinations, /P and w1,2. /P is designed such that the associated theory error is
strongly mitigated, allowing for a much higher k-reach, while the kmax’s in w1,2 are pushed as
far as possible with a controlled theory error depending on their specific µ-range (‘one-loop’
procedure). Second, the leading next-order EFT-counterterms have been identified and can
be included in order to further increase the k-reach in the µ direction (‘one-loop+’ procedure).
Given that performing this kind of analysis has practically identical computational cost as
the standard multipole-based analysis, we conclude that we believe there is no reason why
the ‘one-loop’ or the ‘one-loop+’ procedures should not be routinely used in future analyses.

– 3 –
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We end this summary of the main results with a note of warning. It should be emphasized
that in performing the analysis presented here for the BOSS data, as well as the preceding
ones using the EFTofLSS by our group [1, 3, 7, 9, 10], we have assumed that the observational
data are not a�ected by any unknown systematic error, such as, for example, line of sight
selection e�ects or undetected foregrounds. In other words, we have simply analyzed the
publicly available data for what they were declared to be: the power spectrum of the galaxy
density in redshift space. Given the additional cosmological information that the theoretical
modeling of the EFTofLSS allows us to exploit in BOSS data, it might be worthwhile to
investigate if potential undetected systematic errors might a�ect our results. We leave an
investigation of these issues to future work.

Public code. The redshift-space one-loop galaxy power spectra in the EFTofLSS are
evaluated using PyBird: Python code for Biased tracers in ReDshift space [7].3 The linear
power spectra are evaluated with the CLASS Boltzmann code [66].4 The posteriors are
sampled using the MontePython cosmological parameter inference code [67, 68].5 The
triangle plots are obtained using the GetDist package [69].

2 Theoretical considerations

2.1 Estimates of the scales governing the EFTofLSS expansion

In the EFTofLSS, the various EFT-parameters that are present in the theory account
for the e�ect of short-distance physics at long distances. In practice, in trying to solve
perturbatively the equations that define the various operators over which we take expectation
values, we encounter several terms whose evaluation is UV-sensitive, i.e. their evaluation
requires knowledge of short-distance physics. Luckily, we can parametrize our ignorance of
short-distance fluctuations by expanding in a series of counterterms that can be evaluated
perturbatively. This perturbative expansion can however have various expansion parameters,
and some UV contributions can be larger than others. This is what seems to happen in
the EFTofLSS, as we are now going to explain.

In the original data analysis that provided a measurement of cosmological parameters from
Large-Scale Structure data [1, 3], as well as in the comparison of the EFTofLSS predictions
with simulations, several of these parameters have been measured. At one-loop order,
schematically, the prediction of the power spectrum in redshift space contains terms such as

Pg,r(k, µ, t) ∏ cct(t)
k

2

kNL
2
P11(k, t) + cr(t)µ2

k
2

kNL
2
P11(k, t) , (2.1)

where P11(k) is the matter linear power spectrum, µ = k̂ · ẑ is the cosine of the angle
of the wavenumber k̨ with the line of sight, ẑ, and kNL(t) is the time-dependent scale of
dark-matter non-linearities.

In [1, 3], with kNL = 0.7h Mpc≠1, it was measured that cct ≥ 1, while cr ≥ 8 (see
table 3 of [1]). Now, the origin of the EFT-parameters that do not depend on µ, such as

3https://github.com/pierrexyz/pybird.
4http://class-code.net.
5https://github.com/brinckmann/montepython_public.
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cct, is quite di�erent than the one of those that depend on µ, cr. In fact, the terms that
depend on µ are counterterms of UV-sensitive operators that appear when we transform
our predictions from configuration space to redshift space [34]. The particular terms under
question are expectation values of product of velocities at the same location. For example,
the term in cr arises when we write [34]

Èvi(x̨, t)vj(x̨, t)Í =
3

aH

kNL

42 5
c1(t)”ij +

3
c2(t)”ij +c3(t)ˆiˆj

Ò2

4
”(x̨, t)+ c̃r(t) ˆiˆj

kNL
2
”(x̨, t)+ . . .

6
,

(2.2)
with cr = c1 + c2 + . . . , ” is the dark matter density and . . . here and everywhere else
in this paper represents a list of all possible terms allowed by the symmetries, written in
an expansion in the size of the fluctuations and the size of the derivatives, ˆ/kNL (for the
purpose of this discussion, we here neglect the fact that the counterterms are non-local in
time [32], a fact that is however taken into account in the formulas we use to compare with
data). On the other hand, the term in cct comes from either expanding the expectation
value of the matter e�ective stress tensor or from the derivative expansion of the galaxy
fields in terms of the dark matter fields:

1
fl0(t)È·ij(x̨, t)Í =

3
aH

kNL
2

4 A

c0”ij + c
2

s(t)”(x̨, t) + c4(t) ˆ
2

kNL
2
”(x̨, t) + . . .

B

, (2.3)

”g(x̨, t) = b1(t)”(1)(x̨, t) + cct,2(t) ˆ
2

kM
2
”(x̨, t) + . . . , (2.4)

where fl0 ≥ H
2
M

2

Pl
is the background energy density, kM is the typical wavenumber associated

to galaxy size and ”g is the galaxy overdensity. From here we get cct © c
2
s + cct,2.

In the analysis of [1, 3], it was taken that kNL = kM = 0.7h Mpc≠1. Now, the fact that on
observations we measure that cr ∫ cct ≥ 1 suggests that Èvi(x̨, t)vj(x̨, t)Í is large and defines
a new length scale which is longer than the non-linear scale. We can therefore improve (2.2)
by introducing a new scale kNL, R ≥ kNL/

Ô
8, and writing

Èvi(x̨, t)vj(x̨, t)Í =
A

aH

kNL,R

B2 5
c1(t)”ij +

3
c2(t)”ij +c3(t)ˆiˆj

Ò2

4
”(x̨, t)+c̃r(t) ˆiˆj

kNL
2
”(x̨, t)+. . .

6
.

(2.5)
In this way, the new cr is measured to be order one. The fact that Èvi(x̨, t)vj(x̨, t)Í is large
is the manifestation, in the EFTofLSS, of what the Large-Scale Structure community often
refers to as the large size of the Finger-of-God e�ects.

Now that we have introduced a new scale, kNL, R, we need to address where else it enters.
Where should we replace the factors of kNL with kNL, R in the above equations? Nicely,
we can answer this questions without relying on any astrophysical insight, but using the
measurements and the assumption that unitless numerical coe�cients should be of order one.

Let us start with the stress tensor: should we replace kNL in the first factor in (2.3)? The
answer is ‘no’. In fact, if this were the case, the dark matter velocity counterterm would take
the form c

2
sˆ

2
”/kNL, R

2. But c
2
s has been measured to be of order one in many dark matter

simulations after normalizing with kNL. For example, eq. (20) of [23] gives c
2
s ƒ 0.3, which is

order one, while replacing kNL with kNL, R would give c
2
s æ 0.03, which can hardly be thought

– 5 –
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of as an order one number. Let us make an additional observation for the stress tensor. If we
look at the expression of the stress tensor in terms of UV terms, it reads, schematically [15],
·ij(x̨) ≥ fl(x̨) (vi(x̨)vj(x̨) + ”ij�(x̨)), with � being the gravitational potential. The presence
of vivj might raise the suspicion that perhaps È·ijÍ should be similarly enhanced by 1/kNL, R

2.
However, this is a di�erent operator, and so can have a di�erent value; and in fact, ref. [15]
first pointed out that there is a very strong cancellation between the kinetic and the potential
energy in the stress tensor, so that the e�ective pressure is small. Measurements are so
far indicating that a cancellation occurs even at the level of the c

2
s term (which, physically,

represents the response of the stress tensor to a deformation induced by a ” fluctuation).
Let us move to the derivative expansion of the galaxies in (2.4). Since we measured

c
2
s ƒ 1 in matter simulations, we can say that the observational data of [1, 3] measured cct,2

to be of order one as well. If instead we replaced kM with kNL, R , cct,2 would be ≥ 0.1.
Therefore, though kM is a di�erent scale than kNL, we find no evidence that it cannot be
assumed to be similar to kNL. We conclude that the derivative expansion of galaxies (at
least of the kind observed by BOSS) is controlled by kNL, which is in agreement with what
we would expect on astrophysical grounds.

Next, we move to the derivative expansion of the stress tensor. Should the scale
suppressing the derivatives in (2.3) be replaced with kNL, R? Let us use measurements again.
The higher-derivative term for dark matter was measured in [23] (eq. (20) again), obtaining
the order one number c4 ƒ 2 (after adjusting kNL æ 0.6h Mpc≠1 as the measurements of [23]
were done at redshift zero). On the contrary, if we were to use kNL, R for the derivative
expansion of the stress tensor, we would obtain c4 æ 16, which is not an order one number.
We conclude that we should use kNL in the derivative expansion for the stress tensor. This is
again in agreement with what we would have expected on astrophysical grounds.

A final comment about the stochastic terms. The measurements in simulations and on
the data of [1, 3] do not show any particular enhancement of those terms.

In summary, in agreement with expectation from astrophysical considerations, we find
that measurements in simulations and observations seem to indicate that the derivative
expansion of any operator is governed by kNL. Similarly, the size of ·ij is of order H

2
/kNL

2.
On the other hand, expectation values of the velocity field are enhanced and governed by
v

n
≥ (H/kNL, R)n. This tells us that, in the EFTofLSS, the redshift space counterterms

are, in a sense, the largest ones.

2.2 Taming redshift distortion e�ects

We now proceed to study how we can use our acquired knowledge to mitigate the e�ects
of redshift space distortions. In the EFTofLSS, when making predictions at a given order,
we have an estimate of the next-order corrections, which are the ones that, growing at
shorter wavenumbers, limit the k-reach of the theory, i.e. the maximum wavenumber at which
predictions can be trusted. In this paper, we will compare the one-loop predictions of the
EFTofLSS for the power spectrum against data. The k-reach is dictated by two two-loop
contributions, which we are now going to explore.

At two-loop order, we can estimate the size of the various contributions by looking at
the tree-level counterterms of the same order, and assuming coe�cients of order one once

– 6 –
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the scaling rules described above are applied. At two-loop order, we expect counterterms
of the form k

4
P11. The largest ones are expected to be the ones suppressed by kNL, R

4.
Interestingly, these terms come with a definite µ-dependence. In fact, from the scaling
discussed in the previous subsection, in order to get four factors of 1/kNL, R, we need the
counterterms for four velocities, as anything else will just bring factors of 1/kNL. This means
that 1/kNL, R

4 can come from the counterterm to this particular ‘51’ contribution at two-loop
order (following the formalism of [32]):

P51(k, µ) ∏
kz

aH

kz

aH

kz

aH

kz

aH
È

5
v

z
v

z
v

z
v

z

3
”g ≠

4!
5! i

kz

aH
vz

46(5)

k̨

[”g,r](1)

k̨Õ Í
Õ (2.6)

æ

A
k

kNL, R

B4

µ
4

3
b1 + 1

5fµ
2

4 1
b1 + fµ

2
2

P11(k) ,

where [O](n)

k̨
means that we take the wavenumber k̨ of operator O, evaluated at order n in

perturbation theory, È. . .Í
Õ means that we drop the momentum-conserving Dirac ”-function,

and ”g,r is the galaxy overdensity in redshift space. By the symbol æ we mean that the
diagram has the counterterm on the right of the arrow. To obtain this result, we simply
substituted Èv

i
v

j
Í æ ”

ij

1
aH

kNL, R

22

. The factor of 4!/5! comes from the Taylor expansion
of the exponential for the redshift space distortions e�ect (notice that we are neglecting
the 1/4! in front of this term).

It is important to stress the following point. The largest contributions come from terms
enhanced by 1/kNL, R

4. These terms are larger than the loops of the theory, which are just
suppressed by the dark-matter non-linear scale, kNL, that enters in the power spectrum. In
particular, this applies to the UV limit of the loops, which is not enhanced by 1/kNL, R

4. It
is just the UV counterterm that is enhanced. This in particular implies that we know the k

and µ dependence of the higher-order counterterms that are enhanced.
Before going on, let us identify the remaining maximally-enhanced counterterm. It turns

out there is only one. We consider the P51(k, µ) term which generates from this:

P51(k, µ) ∏
kz

aH

kz

aH

kz

aH

kz

aH
È[vz

v
z
v

z
v

z](5)

k̨
[”g,r]

k̨ÕÍ
Õ
æ (2.7)

æ
kz

aH

kz

aH

kz

aH

kz

aH

A
aH

kNL, R

B4

È[ˆzˆz�]
k̨

[”g]
k̨ÕÍ

Õ
æ

A
k

kNL, R

B4

µ
6

1
b1 + fµ

2
2

P11(k)

where in the second step we substituted Èv
i
v

j
Í æ ”

ij

1
aH

kNL, R

22

and Èv
i
v

j
Í æ

1
aH

kNL, R

22
ˆiˆj�

(aH)2 .
It is easy to realize that the scaling assignments of the former subsection do not allow

any other term enhanced by 1/kNL, R
4. We therefore obtain two maximally-enhanced terms:

≥ µ
4(k/kNL, R)4

P11 and ≥ µ
6(k/kNL, R)4

P11. There are other enhanced (but not maximally
enhanced) counterterms that include a lower-order µ-dependence.6 For example, by evaluating

6To obtain a given power of (k/kNL, R)2n, with n large, one needs a factor of at least order µn, suggesting
that the e�ective expansion parameter of the maximally enhanced terms is kNL, R/|µ|. The Finger of God is
clearly pointing at us or away from us.
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at one-loop order the one-loop counterterm:

P31,counter, one≠loop(k, µ) ∏
kz

aH

kz

aH
È[vz

v
z](3)

k̨
[”g]

k̨ÕÍ
Õ
æ (2.8)

æ
kz

aH

kz

aH
È

C

”
zz

ˆ
2

kNL
2
”

D

k̨

[”g]
k̨ÕÍ

Õ
æ b1µ

2

A
k

(kNLkNL, R)1/2

B4

P11(k) .

So, we see that at the level of µ
2 terms, we obtain terms enhanced by 1/(kNL, R

2
kNL

2).
However, in this case the functional dependence in k is not known, as the counterterm is
not parametrically separated in size from the term that we obtain by evaluating the loop in
È[vz

v
z](3)

k̨
[”g]

k̨ÕÍ
Õ, which would give rise to a more complex k-dependence. Finally, at order

µ
0, we do not obtain any kNL, R-enhanced terms.

Procedure ‘one-loop’. This discussion suggests the following two procedures for enhancing
the k-reach of the theory. The first procedure, that we call ‘procedure ‘one-loop”, is the
following. Assuming, without loss of generality, that the measurements of the data are
provided in multipoles of the angle µ, we can construct a linear combination of the multipoles
that removes the largest two-loop contributions. As we said, these are the ones enhanced by
1/kNL, R

4. The resulting linear combination will have a smaller theoretical error and therefore
a higher k-reach. Since these terms have a specific µ-dependence, the linear combination
can be constructed independently of the actual size of the terms that we wish to eliminate.
Given enough multipoles, one could also remove the µ

2 contribution, reaching an even higher
k-reach, as in this case all the subleading contributions enhanced by 1/kNL, R

2 would also
be eliminated. Since the data we have at our disposal provide only three multipoles, we
decide to remove only the µ

6 and µ
4. This means that we are not removing exactly a

contribution with the µ-dependence of (2.6), which has also a µ
8 dependence, upon which

we will comment shortly. Writing the data as

P
(D)(k, µ) =

ÿ

¸=0,2,4

P
(D)

¸
(k)L¸(µ) , (2.9)

with L¸(µ) being the Legendre polynomial of order ¸, the resulting linear combination that
projects out the µ

4 and µ
6 dependence, and that we call P

(D,/4,/6), or for brevity, /P , is given
by the following linear combination:

/P (k) = P
(D)

¸=0
(k) ≠

3
7P

(D)

¸=2
(k) + 11

56P
(D)

¸=4
(k) . (2.10)

While this linear combination does not remove a term proportional to µ
8, which is

expected to be present proportional to 1/kNL, R
4, notice that a term of the form 1 · µ

8 gets
projected in /P as a small number equal to 5/1287 ƒ 0.004, which makes this contribution
quite negligible. Evidently, /P approximately projects away also a µ

8 component. Similar
considerations apply to the prefactor of an eventual µ

10 term: upon projection, it gets
suppressed by a factor of 1/143 ƒ 0.007.

The two-loop contribution given by the /P combination of data scales therefore in size
approximately as (k/kNL)4

P11 and as µ
2(k/(kNLkNL, R)1/2)4

P11. Notice, again, that, unlike
the contributions in 1/kNL, R

4, the k-dependence of these contributions is not known, as
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there are comparable contributions from the loops. While naively the contribution to the
theoretical error from the term in 1/kNL, R

2 is the dominant one, the combination in /P

highly suppresses also the combination that goes as µ
2. A term of the form 1 · µ

2 gets
projected in /P as s small number equal to 1/21. This is such a large suppression to make
the leading theoretical error the one in 1/kNL

4. Therefore, if /‡
(D)(k) is the observational

error of the combination /P , one can impose the theoretical error to be a fraction equal to
‘ of the observation error (say, ‘ = 1/3):

‘ =

1
k

kNL

24

P11(k)

/‡
(D)(k)

, (2.11)

and determine in this way the k-reach of /P , k
/P
max, by solving the above equation. Notice

that we have set the O(1) numerical coe�cient in front of the theoretical error to be equal to
one, which is inaccurate, but we cannot do better than this. In practice, we will determine
the k-reach directly with simulations, though this formula enlightens how the k-reach is
increased by decreasing the theoretical error.

What to do of the remaining two linear independent combinations of the data? It
does not appear worthwhile to eliminate either the µ

4 or the µ
6, as the theoretical error

would not be parametrically improved (unless we eliminate both, but that would give /P ).
Given a configuration of data in the µ direction, P

(D)(k, µ), the associated theoretical
error is, roughly, k

4

kNL
4

3
1 +

!
µ

4 + µ
8
" 1

kNL

kNL, R

24
4

P11, where for simplicity we dropped the

µ
2
k

4
/(kNL

2
kNL, R

2)P11 contribution, as it does not matter much. Again, lacking a better
procedure, we have put the prefactors to the expressions of the theoretical errors to one. This
allows us to write a nice formula for the k-reach as a function of µ, kreach(µ), in terms of k

/P
max:

kreach(µ) = k
/P

max ·

Q

cca
13

1 + (µ4 + µ8)
1

kNL

kNL, R

24
4

R

ddb

1/4

·

A
‡(k, µ)
/‡

(D)(k)

B1/4

. (2.12)

Therefore, we divide the resulting two combinations of data in wedges in µ space, one in
µ œ [0, 1/2], that we call w1, and the other µ œ (1/2, 1], that we call w2, and denote the
associated k-reach with k

w1

max and k
w2

max, determined in terms of k/P
using the formula (2.12).

It is now possible to give a more mathematical interpretation of the combination /P . This is
obtained by noticing that, given the two wedges, the linear combination /P is the one that
maximizes the signal to noise in the limit in which kNL/kNL, R is very large.7

In the literature (see [70]) there is also another choice for a data combination which
suppresses redshift-space distortion terms, namely Q(k) = P¸=0(k) ≠

1

2
P¸=2(k) + 3

8
P¸=4(k).

This is the real-space power spectrum for the case in which only multipoles up to P¸=4 are
7We also notice that, if we were to divide the data in three wedges instead of two, and neglected the

contribution of /P , the theoretical error of each wedge would receive contributions also from the terms in
µ4(k/kNL, R)4P11, and µ6(k/kNL, R)4P11. However, for the wedge with µ œ [0, 1/3], the smallness of µ is such
that the error is actually dominated by the real space one, (k/kNL)4 P11, as it is for /P . In fact, we noticed
that the correlation of /P with the wedge with µ œ [0, 1/2] is already very high. We therefore expect that one
would obtain similar results using a suitable choice of three wedges.
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present. With respect to our /P , Q(k) has no projection of the µ
2 component, but it keeps

the projection of the µ
6 component which projects onto it with a coe�cient 5

231
ƒ 0.02. The

/P combination instead keeps the projection of the µ
2 component, suppressed by 1/21 ƒ 0.05.

However, as explained above, we expect that, when looking at the NNLO terms Ã k
4, the

µ
2 terms will be suppressed with respect to the µ

4, µ
6 ones by a factor k

2

NL
/k

2

NL,R
ƒ 8,

thus also this term is almost cancelled out in /P . We have checked that the correlation
between /P and Q(k) is very high, larger than 0.95. We expect that one would obtain similar
results using Q(k) in place of /P .8

So far, we have worked assuming that the available prediction for the EFTofLSS was at
one-loop order: this is what determined the theoretical error. Generalizations to the case for
which the EFTofLSS prediction is available at higher orders or for higher n-point functions
are straightforward. This completely defines what we call ‘procedure ‘one-loop”.

Procedure ‘one-loop+’. All of these considerations suggest that there is a rather straight-
forward way to improve the predictions of the EFTofLSS at one-loop order. We argued that
the maximally-enhanced theoretical error has the simple form of ≥ µ

4(k/kNL, R)4
P11 and

≥ µ
6(k/kNL, R)4

P11 (given precisely in (2.6) and (2.7)), as it comes from the counterterms
and not from the loops. Since the functional form is completely known, one can add them
to the prediction at one-loop order, to obtain a sort of 1-loop+ order:

PEFTofLSS, 1≠loop+(k,µ) = PEFTofLSS, 1≠loop(k,µ) (2.13)

+cr,4 µ
4

3
b1 + 1

5fµ
2

4 1
b1 +fµ

2
2 A

k

kNL,R

B4

P11(k)+cr,6 µ
6

1
b1 +fµ

2
2 A

k

kNL,R

B4

P11(k) .

Notice that since we have two wedges, this procedure amounts to add two independent terms
of the form k

4
P11, with the proper prior, to each wedge. Now, the theoretical error in the µ

direction is dominated by the terms in µ
2n

3
k

(kNLkNL, R)1/2

44

P11. Therefore, while the k-reach

of /P is unaltered, the one of the µ-wedges is raised according to the following formula:

kreach+(µ) = k
/P

max ·

Q

cca
13

1 + 3 (µ4 + µ6 + µ12)1/2
1

kNL

kNL, R

22
4

R

ddb

1/4

·

A
‡(k, µ)
/‡

(D)(k)

B1/4

, (2.14)

where we added the various µ-dependent contributions in quadrature and the numerical
factor ‘3’ has been chosen by optimizing against simulations. This concludes the explanation
of procedure ‘one-loop+’, whose generalization to higher orders is straightforward. We now
proceed to investigate how both procedures perform on the data.

8Note added in print. [71], submitted on the arXiv in coordination with our paper, uses the Q(k) variable.
They find similar gains in error bars as we do, although a precise comparison cannot be made because of
di�erent analysis choices.

– 10 –



J
C
A
P
0
1
(
2
0
2
4
)
0
3
7

3 Results

3.1 Likelihood and priors

Having discussed the combination of multipoles which mitigate the e�ects of redshift-space
distortions, we now turn to the data analysis. We construct our new data combinations, that
we will denote /P + w1,2 in what follows, and refer to it simply as ‘wedges’, starting from the
measurements of three multipoles (monopole, quadrupole, hexadecapole), that we will denote,
as earlier, as P¸={0,2,4}. The likelihood is a Gaussian, with the new combinations of data
and theory model being a linear transformation of the multipoles (and the data covariance
given by a bilinear transformation). Explicitly, the transformation is:9

Q

ca
/P

w1

w2

R

db =

Q

ca
1 ≠

3

7

11

56

1 ≠
3

8

15

128

1 3

8
≠

15

128

R

db

Q

ca
P¸=0

P¸=2

P¸=4

R

db . (3.1)

The theory prediction is given by the galaxy power spectrum in redshift space at one-
loop order in the EFTofLSS as described in [1, 49, 65]. The evaluation is performed using
PyBird [7]. Explicitly, the one-loop redshift-space galaxy power spectrum reads:

Pg(k, µ) = Z1(µ)2
P11(k) (3.2)

+ 2
⁄

d
3
q Z2(q, k ≠ q, µ)2

P11(|k ≠ q|)P11(q) + 6Z1(µ)P11(k)
⁄

d
3
q Z3(q, ≠q, k, µ)P11(q)

+ 2Z1(µ)P11(k)
A

cct

k
2

k2
m

+ cr,1µ
2

k
2

k2
m

+ cr,2µ
4

k
2

k2
m

B

+ 1
n̄g

A

c‘,0 + c‘,1

k
2

k2
m

+ c‘,2fµ
2

k
2

k2
m

B

,

with kernels Zi defined in [1, 49, 65], and depending on four EFT-parameters b1, b2, b3,
b4. Here kM © kNL = 0.7h Mpc≠1 as defined in the previous section. In our analysis we
vary the cosmological parameters �m, h, ln(1010

As), ns and Êb with only a Gaussian prior
on the baryon abundance Êb motivated from Big Bang Nucleosynthesis (BBN), of width
‡Êb,BBN = 0.00036 [72]. For the simulations, we will center the prior on the truth, while
on BOSS data, we will use Êb,BBN = 0.02233 [72]. We fix the neutrinos to minimal mass,
0.06 eV, as done in the Planck analysis [73]. As for the EFT parameters, we define the linear
combinations c2 = (b2 + b4)/

Ô
2, c4 = (b2 ≠ b4)/

Ô
2, and we set c4 = 0 since b2, b4 are almost

completely anticorrelated. Then we define the two combinations c‘,mono = c‘,1 + fc‘,2/3,
c‘,quad = 2fc‘,2/3. We put a Gaussian prior of mean 0 and standard deviation 2, N (0, 2),
on b3, cct, c‘,0, c‘,mono, c‘,quad, and a Gaussian prior of mean 0 and standard deviation 4,
N (0, 4), on the redshift-space counterterms cr,1, cr,2. As explained in [1, 7], we analytically
marginalize over these seven EFT parameters, as they appear linearly in the power spectrum
and therefore quadratically in the likelihood. Finally, the linear bias b1 has a flat prior
[0, 4], and c2 has a flat prior [≠4, 4].

As explained in the previous section, we will analyze the data using two procedures:
‘1-loop’, and ‘1-loop+’. For the ‘1-loop+’ procedure, we will add to the theory model,

9We take this matrix to define our w1, w2 combinations. They correspond to the wedges of P (k, µ) if we
approximate P (k, µ) = P¸=0(k)L0(µ) + P¸=2(k)L2(µ) + P¸=4(k)L4(µ), where L¸ are Legendre polynomials.
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eq. (3.2), the two counterterms:

cr,4 µ
4

b
2

1

k
4

k
4

NL,R

P11, cr,6 µ
6

b1

k
4

k
4

NL,R

P11, (3.3)

where k
2

NL,R
= k

2

NL
/8, and we marginalize over cr,4 and cr,6 with a Gaussian prior centered

on 0 and width 1.

3.2 N-body simulations

Before analyzing the BOSS data, we first assess the k-reach of the new data combination
with varying kmax’s (we remind we are denoting this combination as /P + w1,2 and we refer
to it simply as ‘wedges’) using N -body simulations. We will stop fitting the data up to the
scale where the theory-systematic error ‡sys stays under control. As done in [1], for each
cosmological parameter, ‡sys is measured as the shift of the 1‡-region to the truth; this can
be read from the posteriors obtained fitting simulations. We will declare the kmax of each
wedge as the maximum wavenumber of the analysis such that ‡sys < ‡

data
stat /3, where ‡

data
stat

is the error bars of the data we want to analyze, such as BOSS.

3.2.1 PT challenge

We first analyze the PT challenge simulations described in [65].10 The PT challenge data
are the three first even multipoles of the galaxy power spectra in redshift space constructed
from 10 N -body realizations, each of side length 3.84h

≠1Gpc, sampled with 30723 equal-mass
particles, and populated with a BOSS-like halo occupation distribution (HOD) model. The
measurements from each realization can be averaged into one single power spectrum and
a single covariance, corresponding to a measurement in a total volume of about 100 times
the volume of the BOSS DR12 sample, making the statistical error of the simulation much
smaller than the one associated to any realistic galaxy survey at redshift z ≥ 0.6.

In figure 1, we show the best results obtained fitting either the multipoles or the wedges
of the PT challenge simulation, with a BBN prior. Let us first discuss the results relevant
for the simulation volume. We will later use the PT challenge simulation to assess the
k-reach for BOSS.11

PT challenge results. We find that we can fit the multipoles P¸={0,2,4} up to kmax =
0.14h Mpc≠1 with marginal theory-systematic error: �m and h are well recovered within 1‡

and we measure relative theory-systematic errors of 43% on ln(1010
As) and of 16% on ns.12

10More information of the PT-challenge can be found at https://www2.yukawa.kyoto-u.ac.jp/~takahiro.ni
shimichi/data/PTchallenge/.

11We stress that, in figure 1, all chains are run assuming the PT-challenge covariance. Therefore, the results
“best for BOSS” are not centered on the truth given such small errors. We show them as our best estimate of
the theory-systematic error and kmax appropriate for a BOSS-like survey.

12We warn that, however, ‡sys is not well measured for the PT challenge simulation: we are comparing it
to the statistical error measured from the same simulation, and 1‡ shifts are typically expected, especially
when considering that we are measuring 4 parameters (and actually varying more than that). However, for
this particular realization we find that the cosmological parameters are all well recovered within . 1.4‡ at
kmax Æ 0.14h Mpc≠1, which has a good p-value. We thus do not comment further on this. When compared to
the statistical error obtained on other smaller-volume data, the precision of the measurements of ‡sys given by
the ‡stat obtained on the PT challenge simulation is then very accurate.
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�X/X P¸={0,2,4} 0.14 /P + w1,2 0.26 1L /P + w1,2 0.30 1L+
�m ≠0.009 ± 0.011 ≠0.0014 ± 0.0075 ≠0.0034 ± 0.0070
h ≠0.0046 ± 0.0074 0.0019 ± 0.0053 0.0007 ± 0.0053
ln(1010As) 0.019 ± 0.013 0.0054+0.0078

≠0.0088
0.0065+0.0074

≠0.0082

ns 0.022 ± 0.018 0.0032 ± 0.0097 0.0050 ± 0.0090

�X/X P¸={0,2,4} 0.20 /P + w1,2 0.30 1L /P + w1,2 0.34 1L+
�m ≠0.0097 ± 0.0078 ≠0.0079 ± 0.0067 ≠0.0085 ± 0.0066
h ≠0.0040 ± 0.0071 0.0004 ± 0.0051 ≠0.0012 ± 0.0052
ln(1010As) 0.0257 ± 0.0087 0.0235 ± 0.0066 0.0238 ± 0.0068
ns 0.015 ± 0.011 0.0158 ± 0.0089 0.0187 ± 0.0082

Figure 1. Triangle plots and 68%-confidence intervals of the cosmological parameters obtained fitting
the PT challenge simulation data with a BBN prior. Left: Results of the fit to the multipoles P¸={0,2,4},
up to kmax = 0.14 and to the wedges /P + w1,2 up to k

/P
max

= 0.26 using the ‘1-loop’ procedure (1L), at
which the cosmological parameters are recovered at best precision with a negligible theory-systematic
error for the simulation volume. For BOSS volume, the theory-systematic error is under control up
to kmax = 0.20 and k

/P
max

= 0.30, respectively. Right: Same as on the left but using the ‘1-loop+’
procedure (1L+) up to k

/P
max

= 0.30 for the PT challenge, and up to k
/P
max

= 0.34 for BOSS. All k’s
are given in h Mpc≠1. The gray lines represent the truth of the simulation. Bottom: Corresponding
mean and 68%-confidence intervals.

For the wedges, we remind the reader that we change the kmax of /P and scale the
ones of w1,2 according to (2.12) or (2.14). In this case, we find that we can fit the data
up to much higher wavenumbers, substantially improving the error bars while keeping the
theory-systematic error under control. This can be seen in figure 2, where we represent
the relative size of the theory-systematic error as a function of kmax for each cosmological
parameter. For the ‘1-loop’ procedure, we are able to recover the cosmological parameters
up to k

/P
max = 0.26h Mpc≠1 (kw1,2

max = 0.22, 0.11h Mpc≠1), with no theory-systematic error. As
it is clear from the table in figure 1, the error bars are greatly improved when going from
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Figure 2. In continuous line, we plot the theory-systematic error ‡sys relative to the statistical error
‡stat as a function of kmax © k

/P
max

measured on the PT challenge simulation fitting wedges /P + w1,2

using the ‘1-loop’ procedure (1L) or the ‘1-loop+’ procedure (1L+), with a BBN prior, for each
cosmological parameter. The final kmax is declared at which ‡sys/‡stat ƒ 1/3, which is represented by
the grey horizontal line. The gain in error bars with respect to best results from the fit to multipoles
‡stat/‡

P¸={0,2,4},kmax=0.14

stat
is given in dashed lines, and the best one can be read o� at that kmax. As

we see, the final kmax is constrained by the ‡sys in ln(1010
As). We also show the determination of

the kmax for BOSS using the same criterion ‡sys ƒ ‡
BOSS
stat

/3, where ‡
BOSS
stat

is the error bar obtained
on BOSS.

the multipole analysis to the wedge analysis: comparing the best, theory-error-controlled,
results, we find that the error bars are reduced by 33% on �m, 29% on h, 37% on ln(1010

As),
and 47% on ns. For the ‘1-loop+’ procedure, we can fit the data up to the even higher
k

/P
max = 0.30h Mpc≠1 (kw1,2

max = 0.21, 0.14h Mpc≠1) with no theory-systematic error. Compared
to the multipoles, we find that the error bars are reduced by 38% on �m, 29% on h, 41%
on ln(1010

As), and 51% on ns. This represents an improvement over the ‘1-loop’ procedure
of about 10% or 15% on the error bars of �m, ln(1010

As), and ns.
To summarize, for the PT challenge simulation the error bars on the cosmological

parameters are improved by about a factor of two thanks to our new combination of data
which allows for varying kmax’s. Furthermore, the ‘1-loop+’ procedure allows us to analyze
more data than the ‘1-loop’ procedure and leads to better results of about 10% or 15% in
error bars. We now turn to assess the k-reach for BOSS.

BOSS scale cut from PT challenge. If we instead compare our measurements of the
theory-systematic error with the statistical error obtained on BOSS data, we find that the
theory-systematic error on the cosmological parameters stays marginally small (. ‡

BOSS
stat /3)

up to kmax ≥ 0.2h Mpc≠1 for the multipoles, as found already in [1]. To be precise, we find
negligible ‡sys on �m, h and ns, while we detect a small ‡sys = 0.30‡

BOSS
stat on ln(1010

As) at
kmax = 0.2h Mpc≠1. For the wedges, as it can be seen from figure 2, we find that we can fit
the data up to k

/P
max = 0.30h Mpc≠1 (kw1,2

max = 0.25, 0.12h Mpc≠1) for the ‘1-loop’ procedure,
and up to k

/P
max = 0.34h Mpc≠1 (kw1,2

max = 0.24, 0.16h Mpc≠1) for the ‘1-loop+’ procedure. The
theory-systematic error again essentially accumulates in ln(1010

As), where it remains safely
small (< ‡

BOSS
stat /3), at the kmax’s we quote. Here the theory-systematic error is measured with
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a precision which is given by the errors bars obtained on the PT challenge simulation, that
can be read o� from the table in figure 1: in terms of BOSS error bars, the theory-systematic
error is detected with a precision of ≥ 15% on �m, ln(1010

As), and ns, and ≥ 25% on
h. These represent small corrections to our BOSS results, as these uncertainties becomes
negligible once added in quadrature to the error budget.

In order to obtain a robust estimate of the k-reach, it is important to marginalize over
the ‘micro-physics’ of the simulations, such as e.g. the choice of the HOD model, by analyzing
many of them. We thus now move to another set of simulations.

3.2.2 Lettered challenge

The ‘lettered’ challenge boxes are a set of high-fidelity simulations described in [1] that
we already used to assess the scale cut of the EFTofLSS when analyzing multipoles. The
lettered simulations consist in two independent realizations of side length 2.5 Gpc/h. One is
populated by 4 di�erent HOD models, labelled A, B, F, G, and the other one, labelled D,
is populated by a di�erent HOD model. Details on the HOD models and other specifics of
those simulations can be found in [74]. For BOSS, we found that we can fit the multipoles
up to kmax = 0.23h Mpc≠1 when analyzing the data with a BBN prior. We now do the same
study for the new data combination, the wedges, with varying kmax’s. We proceed in the
following way. We fit all boxes separately and average the posteriors of the cosmological
parameters obtained on boxes A, B, F, and G, as they are from the same seed. We call this
combination ABFG. As D is an independent realization, we can combine its results with the
ones of ABFG, allowing us to measure the theory-systematic error with a better precision of
about

Ô
2. To do so, we combine the individual 1D posteriors of the shifts from the truth

of ABFG with the ones of D, as the product of two Gaussians. By comparing the resulting
shifts of the 1‡ region from the truth, to the error bars obtained on BOSS, we get another
precise measurement of the theory-systematic error.

BOSS scale cut from lettered challenge. In figure 3, we show the best results fitting
the lettered challenge simulation data with a BBN prior. Results fitting two multipoles can be
found in [3] (see also [7, 9] for the multipole analysis of these simulations in other cosmologies).
We find that the theory-systematic error is marginally small up to k

/P
max = 0.26h Mpc≠1

(kw1,2
max = 0.22, 0.10h Mpc≠1) for the ‘1-loop’ procedure, and up to k

/P
max = 0.32h Mpc≠1

(kw1,2
max = 0.23, 0.15h Mpc≠1) for the ‘1-loop+’ procedure: relatively to BOSS error bars, we

measure small theory-systematic errors from the combination ABFG+D of about, respectively,
5% and 20% in h, 15% and 19% in ln(1010

As), and none in �m or ns. In terms of BOSS
error bars, here the theory-systematic error is detected with an uncertainty of ≥ 40% for all
cosmological parameters. Again, this represents a negligible correction to our BOSS results,
as these uncertainties count only for ≥ 10% once added in quadrature to the error budget.
At higher kmax’s, the theory-systematic error in ln(1010

As) becomes statistically significant.
The kmax’s that we get from the lettered challenge simulations are slightly smaller by a few k

bins (�k ≥ 0.01) than the answer that we get from the PT challenge simulation. To stay on
the safe side, we will choose the most conservative choice to analyze the BOSS data.

To summarize, from simulations we learn that we can confidently fit the BOSS data
in wedges up to k

/P
max = 0.26h Mpc≠1 (kw1,2

max = 0.22, 0.10h Mpc≠1) for the ‘1-loop’ procedure,
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�X/X P¸={0,2,4} 0.23 /P + w1,2 0.26 1L /P + w1,2 0.32 1L+
�m 0.003 ± 0.022 0.011 ± 0.024 ≠0.003 ± 0.023
h ≠0.008 ± 0.007 ≠0.009 ± 0.008 ≠0.011 ± 0.007
ln(1010As) 0.047 ± 0.024 0.036 ± 0.027 0.036 ± 0.025
ns 0.029 ± 0.029 0.010 ± 0.031 0.022 ± 0.030

Figure 3. Triangle plots and 68%-confidence intervals of the cosmological parameters obtained
fitting the lettered challenge simulation data with a BBN prior. Left: Results of the fit to the wedges
/P + w1,2 up to k

/P
max

= 0.26 using the ‘1-loop’ procedure (1L), at which the cosmological parameters
are recovered at best precision with a negligible theory-systematic error compared to BOSS error bars.
Right: Same as on the left but using the ‘1-loop+’ procedure (1L+) up to k

/P
max

= 0.32. All k’s are
given in h Mpc≠1. The gray lines represent the truth of the simulation. Bottom: Corresponding mean
and 68%-confidence intervals. Here we quote the most precise combination, ABFG+D, as described
in the main text.

and up to k
/P
max = 0.32h Mpc≠1 (kw1,2

max = 0.23, 0.15h Mpc≠1) for the ‘1-loop+’ procedure, with
a controlled theory-systematic error.

3.3 BOSS

As we did for the simulations, we use multipole measurements that we eventually rotate to
our new data combination as described in subsection 3.1. The power spectrum multipole
measurements are the ones obtained and described in [75].13 We fit 4 skycuts, CMASS NGC,
CMASS SGC, LOWZ NGC, and LOWZ SGC, assigning to each an independent set of EFT
parameters. These skycuts are constructed from the BOSS DR12 catalogs [76] given the
redshift range 0.2 < z < 0.43 for LOWZ and 0.43 < z < 0.7 for CMASS. The covariances

13Contrary to the analysis of [75] that follows [1, 3], we remind that in this work we analyze three multipoles
instead of two (or wedges constructed from three multipoles), fix the neutrinos to minimal mass, and do not
set the stochastic term ≥ k2 in the monopole to zero.
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Params P¸={0,2,4} 0.23 /P + w1,2 0.26 1L /P + w1,2 0.32 1L+

�m 0.323+0.015

≠0.021
0.317+0.015

≠0.021
0.314+0.015

≠0.019

h 0.683+0.012

≠0.015
0.686+0.013

≠0.015
0.684+0.012

≠0.014

ln(1010As) 2.87 ± 0.16 2.89 ± 0.17 2.89 ± 0.17
ns 0.888+0.066

≠0.054
0.884+0.067

≠0.058
0.878+0.063

≠0.057

Figure 4. Triangle plots and 68%-confidence intervals of the cosmological parameters obtained fitting
the multipoles or the wedges of BOSS data with a BBN prior. All k’s are given in h Mpc≠1.

are obtained from 2048 “Patchy mocks” described in [77]. All observational e�ects such as
window functions, etc. are accounted as described in [1] and using PyBird [7].

In figure 4, we show the results obtained fitting the wedges of BOSS data with a BBN
prior. The improvement in the error bars is marginal: while we do not gain from the ‘1-loop’
procedure, from the ‘1-loop+’ procedure we gain about 10% in �m, while the error bars
on h, ln(1010

As), and ns are similar at . 3%.
Let us add a comment on the values of the cr,4, cr,6 parameters in the ‘1-loop+’ procedure.

We checked analyzing the single CMASS NGC sky that their values is consistent with zero
at 1-‡, and in particular cr,6 is completely prior-dominated. This shows that we are safely
in the perturbative regime. As we increase k

/P
max, they start to deviate from zero as soon as

the k
w1

max (obtained by eq. (2.14)) becomes comparable to kNL,R. In fact, at this point we
expect that perturbation theory starts to converge very slowly.

Thus, the gain in BOSS is much less than the gain in the PT challenge as we go from
multipoles to wedges. We have checked on the PT challenge simulation by rescaling the
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�X/X P¸={0,2,4} 0.14 /P + w1,2 0.26 1L /P + w1,2 0.32 1L+

�m ≠0.003+0.027

≠0.030
≠0.003 ± 0.024 ≠0.006 ± 0.024

h ≠0.0023+0.0093

≠0.011
≠0.0002 ± 0.0076 ≠0.0008 ± 0.0080

ln(1010As) 0.023 ± 0.026 0.0096 ± 0.024 0.013+0.023

≠0.027

ns 0.012 ± 0.034 0.000 ± 0.032 0.003 ± 0.030

Figure 5. Triangle plots and 68%-confidence intervals of the cosmological parameters obtained fitting
the PT challenge simulation data with a BBN prior and DESI covariance. Left: Results of the fit
to the multipoles P¸={0,2,4}, up to kmax = 0.14, and to the wedges /P + w1,2 up to k

/P
max

= 0.26 using
the ‘1-loop’ procedure (1L). At these scale cuts, the cosmological parameters are recovered at best
precision with a marginally-small theory-systematic error ‡sys/‡

DESI
stat

< 1/3. ‡sys is measured using
the covariance corresponding to the PT challenge volume VPT, while the error bars ‡

DESI
stat

obtained
using the covariance rescaled to DESI volume VDESI. Right: Same as on the left but using the ‘1-loop+’
procedure (1L+) up to k

/P
max

= 0.32. All k’s are given in h Mpc≠1. The gray lines represent the
truth of the simulation. Bottom: Corresponding mean and 68%-confidence intervals with the DESI
covariance rescaled to DESI volume.

covariance to the volume of BOSS data or to an intermediate volume, or by using Fisher matrix,
that indeed, the gain in error bars depends on the data volume, i.e. on the cosmic variance.
We now turn to see what improvements we can expect for the next-stage surveys such as DESI.

3.4 DESI-like survey

Here we will argue that there is a substantial gain to analyze the data with our wedges
combination instead of multipoles for a survey like DESI. To show this, we use the PT
challenge simulation as follows. First, we re-compute the covariance assuming Gaussianity as
described in [65] but with galaxy number density n̄

DESI
g = 2 ◊ 10≠3

h
3
/Gpc3, which is the

expected one for DESI. We then analyze the PT challenge multipoles and wedges with this
new, ‘DESI’ covariance. We also rescale the prior of the constant stochastic bias in eq. (3.2)
with n̄

DESI
g , but not the ones of the stochastic terms going as ≥ k

2, as only the constant shot

– 18 –



J
C
A
P
0
1
(
2
0
2
4
)
0
3
7

Figure 6. In continuous line, we plot the theory-systematic error ‡sys relative to the statistical error
‡stat as a function of kmax © k

/P
max

measured on the PT challenge simulation with the DESI covariance,
fitting wedges /P + w1,2 using the ‘1-loop’ procedure (1L) or the ‘1-loop+’ procedure (1L+), with a
BBN prior, for each cosmological parameter. ‡sys is measured using the covariance corresponding to
the full PT challenge volume, while ‡stat is measured using the covariance rescaled at DESI volume.
The final kmax is declared at which ‡sys/‡stat ƒ 1/3, which is represented by the grey horizontal line.
The gain in error bars with respect to best results from the fit to multipoles ‡stat/‡

P¸={0,2,4},kmax=0.14

stat

is given in dashed lines, and the best one can be read o� at that kmax.

noise is subtracted from the simulation data. Using the total simulation volume, we can get
a good measurement of the theory-systematic error, while if we rescale the DESI covariance
to the volume 25.5 (Gpc/h)3, we can get a good estimate of the error bars we can expect to
obtain with DESI. Notice that the PT challenge were calibrated for BOSS selection functions
and specifics. We thus warn that our present study for DESI is approximate. However, we
find that the conclusions we reach here are confirmed by Fisher matrix study, in which we can
put the right priors on all stochastic terms. In particular, the gain in error bars stays close
to the numbers we quote if we vary the redshift from zBOSS = 0.61 to zDESI ≥ 1. Therefore,
we are confident in the error bars we quote, and, we have checked that our conclusions are
mostly una�ected as we vary reasonably the scale cut around the one we estimate here.

In figure 5, we show the best results obtained fitting the multipoles and wedges with a
BBN prior of the PT challenge simulation with the DESI covariance. For a theory-systematic
error no larger than < ‡

DESI
stat /3, the multipoles can be fit up to kmax = 0.14h Mpc≠1, while

the wedges can be fit up to k
/P
max = 0.26h Mpc≠1 (kw1,2

max = 0.22, 0.11h Mpc≠1) for the ‘1-loop’
procedure, and up to k

/P
max = 0.32h Mpc≠1 (kw1,2

max = 0.23, 0.15h Mpc≠1) for the ‘1-loop+’
procedure. This can be seen from figure 6. The error bars obtained by fitting the wedges
with both procedures are similar (. 5% di�erence), and shrink by about 20% on �m and h,
5% on ln(1010

As), and 10% on ns, compared to the multipole results.
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