mzuriCh ETH Library

A 12-core processor
implementation on FPGA

Report

Author(s):
Liu, Ling

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-006819824

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 646

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006819824
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A 12-Core Processor implementation
on FPGA

Computer systems institute, ETH Ziirich, Switzerland
ling.liu@inf.ethz.ch

18 September, 2009, rev. 5 October, 2009

Introduction

The design of this 12-core processor stems from Chuck Thacker, redesigned by Prof. Niklaus
Wirth and partly implemented by Ling Liu on Xilinx ML505 evaluation platform. In this
processor design, 12 simple RISC processor cores are organized as 4 groups. Each group includes
three cores and communicates with the other cores via 4 buses. Figure 1 shows the schematic of
the 12-core processor.

Column 0 Column 2

outbound arbiter - - outbound arbiter - "
inbound arbiter inbound arbiter
| I | I HO

H1
| I H2
[[H3
inbound arbiter inbound arbiter
outbound arbiter I—Q outbound arbiter I_J
()— ©
—C) ()
(e)e— D,
Column 3
RS232TR
Column 1 [Re2a2TR |
: processor core @: network controller [Rs2s2TR |: RS232 transmitter receiver

Figure 1: The schematic of 12-core processor

! Xilinx ML505 evaluation platform uses Virtex-5 LX50T-1 FPGA chip.

At the center of the columns, there are four horizontal busses, each of which is 8-bit wide and
driven from a single point. This point is the outbound wiring from each column. The output of
each core is connected to the outbound arbiter via a network controller, and in the end to the
horizontal bus owned by its column. The message packet is driven onto the bus and captured by
the inbound arbiter, and stored into the message buffer of a network controller. Each processor
core can access the message buffer in the connected network controller (called netNode). Each
netNode has one 32 * 4 byte input message buffer and one 32*4 byte output message buffer.
The details of the message network design are illustrated in [1]. This document records the
implementation of the processor core, the connection between the processor core and the
network controller , DDR2 controller and I/O device controllers (RS232 Transmitter/Receiver,
Timer, 2-line LCD, and 8 LEDs).

The Tiny Register Machine (TRM)

Each processor core is a simple register processor, which is called "Tiny Register Machine (TRM)
[2]. Each TRM contains an arithmetic-logic unit (ALU) and a shifter. The 32-bit operands and
results are stored in a bank of 16 registers. The local data memory consists of 2048 words of 32
bits. The local program memory consists of 4096 instructions with 18 bits. Each TRM also has a
register called H for storing the high 32 bits of the product, and 4 conditional registers C, N, V, Z.

Instruction Summary
Registers: RO .. R15, PC, H, Cond (Z, N, C, V).

Instruction fields op, d, b, a. Literals with zero extension.
R.i denotes register i. x stands for “don’t care”

AND 0000 dddd bbbb Onnnnn R.d:=R.b&n
AND 0000 dddd bbbb 1xaaaa R.d:=R.b&R.a
BIC 0001 dddd bbbb Onnnnn R.d:=R.b&~n
BIC 0001 dddd bbbb 1xaaaa R.d:=R.b & ~R.a
OR 0010 dddd bbbb Onnnnn R.d:=R.bORn
OR 0010 dddd bbbb 1xaaaa R.d:=R.bORR.a
XOR 0011 dddd bbbb Onnnnn R.d:=R.b XORn
XOR 0011 dddd bbbb 1xaaaa R.d :=R.b XORR.a

ADD 0100 dddd bbbb Onnnnn R.d:=R.b+n
ADD 0100 dddd bbbb 1xaaaa R.d:=R.b+R.a
SUB 0101 dddd bbbb Onnnnn R.d:=R.b-n
SUB 0101 dddd bbbb 1xaaaa R.d:=R.b-R.a
MUL 0110 dddd bbbb Onnnnn R.d:=R.b*n
MUL 0110 dddd bbbb 1xaaaa R.d:=R.b*R.a

NOT 0111
NOT 0111
LDH 0111
LDC 0111
LIT 1000
ROR 1001
ROR 1001
BLR 1010
BR 1011
BR 1011
BR 1011
handler

LD 1100
LD 1100
ST 1101
ST 1101
Bc 1110
BL 1111

dddd xxxx
dddd xxxx
dddd xxxx
dddd xxxx

dddd nnnn
dddd bbbb
dddd bbbb
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX

dddd bbbb
dddd bbbb
dddd bbbb
dddd bbbb
cccc nnnn
nnnn nnnn

Condition Codes

Onnnnn
10aaaa

110000
110001

nnnnnn
Onnnnn
1xaaaa
1xaaaa
10aaaa
OXXXXX
1laaaa

Onnnnn
1xaaaa
Onnnnn
1xaaaa
nnnnnn
nnnnnn

R.d:=-n
R.d :=-R.a
R.d:=H
R.d:=C

R.d :=n (10-bit zero extended literal)

R.d:=R.b RORn

R.d :=R.b RORR.a

R.15:=PC+1; PC:=R.a

PC := R.a (R.a in register bank 0)

RegBank = IR[1]; GlobIntEnb = IR[0]

PC :=R.a (R.ain register bank 1); Return from interrupt

R.d := M[R.b + n]

R.d := M[R.b + R.a]
MI[R.b + n] :=R.d
MI[R.b + R.a] :=R.d
PC:=PC+ 1+ n, on condition c
R.15:=PC+1; PC:=PC+1+n

Apart from multiplication instructions, N and Z are set by all register instructions that write

some result to a register. The ROR instruction sets C equal to bit 0 of the shifted result.

N = bit 31 of result

Z = all 32 bits are zero
C = carry

V = overflow

Bc instructions contain 4 condition field. Its value determines which condition is tested. S stands
for N xor V

0000
0001

0010

0011

0100

0101

EQ 7
NEQ ~Z

~C

~N

1000 HI ~(~C | 2)
1001 LS ~C |z

1010 GEQ ~S

1011 LSS S

1100 GTR ~(S | 2)

1101 LEQ S|z

0110 V 1110 true (jump always)

0111 -~V 1111 false (no jump)

Instruction execution

Figure 2 is a block diagram of the TRM. TRM is currently implemented as 2-stage pipelined
machine, which is running at 116 MHz (frequency of clk clock). At the rising edge of the clk clock,
two instructions (36 bit pmout) are fetched from the instruction memory. Then the instruction
(IR) under execution is selected from pmout based on bit 0 of PC.

processing unit control unit
l =,
) A[10:0]
| ioadr I5 adder B[10:0]
M | 11
R/W Addr
b WD
< outbus I32 Data Memory
(2K x 32)
Bl N
inbus |32 IR[9:0], _
T sign ext. D___ |
=
g
¢ ¢ i adder adder | 2
IR[9:0] 2
zero ext. T 12 12
I :
w
¥ waddr WD T
ra : pemux[11:
—2) Aaddr Aout[11:0] [11:1]
1
;bb Baddr —_1 -
Registers RAddr
_CK N \yelk 64 %32 | .
clk nstruction Memory
pAclk (2K x 36)
S N
Aout i>
] T T
i% 132 [IR[4:0] pmout[35:18] pmout[17:0]
_32 zero ext.
h
i ALU IR[17:0]
v

rw: {0, intMd, IR[13:10]}
ra: {0, intMd, IR[3:0] / IR[13:10]}
rb: {0, intMd, IR[9:6]}

Figure 2: TRM Block Diagram

IR is decoded to get ra, rb and rw that are used to read the register file and get two 32 bit data
items Aout and B. According to the op field in IR, Aout or 5-bit zero extended literal in IR is used
as one input A to ALU. The ALU computes a result by combing A and B according to the op field
of IR. The result of ALU is then written back into register rw, and H if the instruction is
multiplication. The multiplication is implemented by a MUL unit that contains 4 DSPs. The

multiplication will cause the processor to stall for 4 clk clocks. The LD instruction will cause the
processor to stall one clk cycle.

Interface to network and I/0 device controllers

Each TRM processor is connected to a network controller called netNode. TRM processor core
11 is also connected to a RS232 controller (RS232 transmitter receiver), a 2-line LCD controller, a
Timer, 8 LEDs. TRM processor core 6 is also connected to 512MB DDR2 controller. Each netNode
or the RS$232 controller is treated as an |I/O port to the TRM processor, and communicates with
the corresponding TRM core through a 32-bit on-chip 1/0 bus.

Two I/0 memory addresses are allocated for each port, one each for the Data Register and
Command Register. Table 1 gives the I/O memory address for each port.

Table 1: The I/O memory addresses

I/0 memory address Port
FO2 netNode data register
FO3 netNode command register
FO4 RS232 data register
FO5 RS232 command register
FO6 Timer data register
FO7 Timer command register
FO8 LCD data register
FO9 LCD command register
FOA DDR2 data register
FOB DDR2 command register
FOC LED data register
FOD reserved
FOE Switch input (8-bit input,
Switch 1 is MSB)

The bit locations in the command registers are explained in the following paragraphs.
netNode command register
Bit 0: Input message buf of the netNode is taken or a message is received.

Bit 1: output message buf of the netNode is taken or a message is ready for sending.

Bit 2: Clear output / input message buf address register.
Bit 3: reserved.
Bit 4: Enable input message buf taken / message received interrupt.
Bit 5: Enable output message buf empty interrupt.
Bit 6 ~ 7: Reserved.
Bit 8 ~ Bit 15: Id of the netNode.
RS232 command register
Bit 0: One byte data is received from RS232 port and ready to be read.
Bit 1: RS232 transmitter is ready.
Bit 2: Clear the data buf of RS232 controller.
Bit 3: Enable RS232 receiving interrupt.
Timer command register
Bit 0: Clear the clock counter
LCD command register
Bit 0: LCD_RW, selects read or write.
Bit 1: LCD_RS, selects registers.
Bit 2: LCD_E, starts data read / write
DDR2 command register
Bit 0 ~ Bit 22: Block (8 words) address in DDR2 memory.
Bit 23: Read (1) / Write (0).
Bit 24: reservered.
Bit 25 ~ Bit 27: reserved.
Bit 28: Command buffer is ready, that is, command buffer is not full.
Bit 29: Write data buffer is ready, that is write data buffer is not full.

Bit 30: A block of data (8 words) has be read out of DDR2 memory and ready in the read data
buffer.

Bit 31: Calibration fail.

Examples regarding the interface usage

1. Message passing example

In this example, TRM core 11 sends two byte message 0809H to TRM core 0.

Oberon code on core 11:

MODULE Sender;

CONST MSGadr = OF02H,;
VAR
s: SET; header: INTEGER;

BEGIN

REPEAT UNTIL ~BIT(MSGadr+1, 1); (* repeat until output msg buf is empty*)

GET(MSGadr+1, s); (* read netNode command register*)

s:=s+{2}

PUT(MSGadr +1, s); (*clear input/output msg buf address register in netNode*)

header := ROR(ROR(ROR(ROR(0, 8) + 11, 8) + 2, 8) + 0, 8); (*construct 4 byte msg header: type(0),
len(2), source(11), dst(0)*)

PUT(MSGadr, header); (*copy header to the msg output buf, buf address register increases by 1%*)

PUT(MSGadr, 0809H); (*write two byte message 0809H to msg output buf*)

GET(MSGadr+1, s);

s:=s+{1};
PUT(MSGadr+1, s) (*set bit 1 of netNode command register to inform netNode a message is
ready?*)
END Sender.

TRM instructions on core 11:

(*instruction memory starts here*)

S

1 (* address of global variable s*)

header 2 (*address of global variable header*)

0 0003COOF (*BL 15%)

16 00027BD5 ROR R14 R15 21
1700030340 LD RO R13 0
18 00010001 ADD RO RO 1
1900030400 LD R1 RO O
2000024441 ROR R1R1 1
21 00038BFB BCS -5
2200030340 LD RO R13 O
2300010001 ADD RO RO 1
2400030000 LD RORO O
2500034341 ST RO R13 1
2600030341 LD RO R13 1
2700020404 LIT R1 4
2800008021 OR RO RO R1
2900034341 ST RO R13 1
3000030340 LD RO R13 O
3100010001 ADD RO RO 1

32 00030741
33 00034400
34 00020000
3500024008
36 0001000B
37 00024008
38 00010001
39 00024008
40 00010000
41 00024008
42 00034342
43 00030340
44 00030742
45 00034400
46 00030340
47 00030743
48 00034400
49 00030340
5000010001
51 00030000

LD
ST R1
LIT
ROR
ADD
ROR
ADD
ROR
ADD
ROR
ST RO
LD
LD
ST R1
LD
LD
ST R1
LD

R1R13 1
RO O

RO O

RO RO 8
RO RO 11
RO RO 8
RO RO 1
RO RO 8
RO RO O
RO RO 8
R13 2
RO R13
R1 R13
RO O
RO R13
R1 R13
RO O
RO R13
ADD RORO 1
LD RO RO O

N O

w o

52 00034341
53 00030341
54 00020402
55 00008021
56 00034341
57 00030340
58 00010001
59 00030741
60 00034400

ST ROR13 1
LD RO R13 1
LIT R1 2
OR RO RO R1
ST ROR13 1
LD RO R13 O
ADD RORO 1
LD R1R13 1
ST R1RO O

(*data memory starts here*)
data
0 00000F02
300000809

3842
2057

2. RS232 input /output example

In this example, core 11 reads a character from PC through RS232 port and transmits it back
to PC through RS232 port.

Oberon code on core 11:

MODULE RS232;
CONST RSadr= 0F04H;
VAR
s: SET; ch: CHAR;
BEGIN
REPEAT UNTIL BIT(RSadr+1, 0); (*repeat until one byte data is ready on RS232 port*)
GET(RSadr, ch); (*copy received data to ch*)
GET(RSadr+1, s);
s:=s+{2}

PUT(RSadr+1, s); (*set bit 2 of RS232 command register to clear data buf*)
REPEAT UNTIL BIT(RSadr+1, 1); (*wait until RS232 transmitter is ready*)
PUT(RSadr, ch) (*Write data to RS232 port*)

END RS232.

TRM instructions on core 11:

(*instruction memory starts here*)
s 1 (*address of global variable s*)
ch 2 (*address of global variable ch*)
0 0003COOF (*BL 15*)
16 00027BD5 ROR R14 R15 21
17 00030340 LD RO R13 0
1800010001 ADD RO RO 1
19 00030400 LD R1 RO O

2000024440
21 00038FFB
22 00030340
23 00030000
24 00034342
2500030340
26 00010001
27 00030000
28 00034341
2900030341
30 00020404
31 00008021
32 00034341
33 00030340
34 00010001
3500030741
36 00034400
37 00030340
38 00010001
3900030400
40 00024441
41 00038FFB
42 00030340
43 00030742
44 00034400

ROR R1R1 O
BCC -5

LD RO R13 O
LD RO RO O
ST RO R13 2
LD RO R13 O
ADD RORO 1
LD RO RO O
ST ROR13 1
LD RO R13 1
LIT R1 4

OR RO RO R1
ST ROR13 1
LD RO R13 O
ADD RORO 1
LD R1R13 1
ST R1RO O

LD RO R13 O
ADD RORO 1
LD R1 RO O
ROR R1R1 1
BCC -5

LD RO R13 O
LD R1 R13 2
ST R1RO O

(*data memory starts here*)

data
0 00000F04

Implementation of the interface between TRM and netNode and 1/O

Controllers

Bit 11 to Bit 8 in memory address signal are used to enable/disable /0 port access. When these
four bits are equal to 1111, then current instruction is accessing I/O port, which is either

3844

netNode, DDR2 or I/O devices (RS232 port, LCD, Timer or LEDs). If the instruction is LD then it
will read the data from inbus; if the instruction is ST then it will write the data onto outbus (see
Figure 2 for the connection of inbus, outbus and ioadr). Signal ioadr comes from the least five
bits of the memory address signal. Figure 3 gives the interface between core 6 and netNode and
DDR2 controller. Core 11 has similar interface with more 1/0 devices. Other cores only connect
to netNodes.

32
— =
h 4
inbus . 5 . outdata
ioadr ioadr
Core 6 iowr 1 iowr netNode
outbus 32 indata

joadr Outdata

iowr DDR2
Controller

indata

Figure 3: The interface between TRM core 6 and netNode and DDR2 controller

Interrupt handling

Currently, TRM provides two interrupt sources. One is message received interrupt. Once the
input message buf of the connected netNode is taken, that is, a message is received, this
interrupt will be raised. The other is output message buf ready interrupt. Once a message
output buf of the connected netNode is empty, this interrupt will be raised. All interrupts are
assigned individual enable bits in the netNode command register. To enable interrupts, these
bits and the Global Interrupt Enable register must be written logic one.

The lowest 16 addresses in the program memory space are by default defined as the interrupt
vectors. The list of the interrupt vectors is shown in Table 2. The list also determines the priority
levels of the different interrupts. The lower the address the higher is the priority level.

When an interrupt occurs while the corresponding interrupt enable bit is set, the Global
Interrupt Enable register is cleared and all interrupts are disabled. Nested interrupts are not
allowed. The Global Interrupt Enable register is automatically set when TRM processor returns
from the interrupt handling routine. When the TRM returns from an interrupt handler, it always
returns to the instruction that is pended when the interrupt is served.

Table 2: Interrupt vectors

Vector Programm Address Source Interrupt Definition

10

No.
0 O000H undefined
1 0001H undefined
2 0002H Msg Input buf a message is received
3 0003H Msg output buf input message buf is
empty
4 0004H RS232 receiver one character is
received via RS232
port
undefined
15 OOOFH undefined

Implementation details of interrupt handling

The register file in TRM is implemented by 64 deep LUT RAM, which is divided into 4 banks. Each
bank has 16 registers. The main process uses the registers in bank 0, the interrupt handling
routine uses the registers in bank 1. The bank number (0 or 1) is stored into 1 bit intMd register
that is used with ra, rb, and rw to address a register. When an interrupt is raised, TRM processor
takes one clk cycle to set the intMd register. Thus the minimal interrupt response time (from
the time an interrupt is raised to the time that the interrupt handler is executed) is one clk
cycle. A return from the interrupt handling routine takes one clk cycle.

Because the interrupt handling routine uses different bank of registers from the main routine,
thus program does not need to store the working registers. In addition, when an interrupt
handling routine is entered, the conditional registers (N, Z, C, V) are also automatically stored
into the most significant 4 bits of register 15 in bank 1. But register H is not saved. Therefore,
the programmer or the compiler has to save the content of register H before entering interrupt
routine if necessary.

Following oberon code and TRM instructions are used in interrupt handling.
1. Enable / disable global interrupt
(*Oberon code*)
SETPSR(0); (*set current register bank number as 0 and disable global interrupt*)
SETPSR(1); (*enable global interrupt*)
(*TRM instructions*)
0002C000 BR RO RO O
0002C001 BR RO RO 1 (*op =BR & ~IR[5], bit 0: enable global interrupt, bitl: register bank

number *)

2. Return from interrupt handling routine

11

(*TRM instructions*)
0002CO3F BR RO RO R15 (*op = BR & IR[5] & IR[4]*)

3. Eanble / disable single interrupt source

(*Oberon code*)
GET(MSGadr+1, msgState);
msgState := msgState + {4, 5};
PUT(MSGadr+1, msgState); (*enable output msg buf empty /message received interrupts*)
msgState := msgState * {0, 1, 2};
PUT(MSGadr+1, msgState); (*disable output msg buf empty / message received interrupts*)

(*TRM instructions*)
00030340 LD ROR13 0
00010001 ADD RORO 1
00030000 LD RO RO O
00034341 ST RO R13 1
00030341 LD RO R13 1
00020430 LIT Rl 48
00008021 OR RO RO R1
00034341 ST RO R13 1
00030340 LD RO R13 0
00010001 ADD RORO 1
00030741 LD R1 R13 1
00034400 ST R1 RO O
00030341 LD ROR13 1
00020407 LIT R1 7
00000021 AND RO RO R1
00034341 ST ROR13 1
00030340 LD ROR13 0
00010001 ADD RORO 1
00030741 LD R1R13 1
00034400 ST R1 RO O

(*data memory starts here*)
data
0 00000F02 3842

Implementation of the interface between DDR2 controller and TRM
core

The DDR2 controller is adapted from Chuck's BEE3 DDR2 controller [3, 4] to initialize, calibrate, refresh the
256MB SODIMM on the ML505 board and carry out the read, write requests for the SODIMM. The original
DDR2 controller contains three even triggers used to generate timed events such as the transmission of
an RS232 character one bit at a time, or refreshing the DDR2 memory, and simple event such as the
receipt of an R$232 character. Now the receiving and transmitting a character is done in polling loops in
TRM via the on-chip I/O bus between Corell and RS232 controller. Therefore, only one event trigger,
periodic refreshing the DDR2 memory, is kept in the DDR2 controller.

12

The DDR2 memory is block wise access. Given an address of a block and a read/write command, the data
in the block will be retrieved. One block contains 8 *32-bit words. The DDR2 controller provides three
FIFOs - AF, WB and RB, as the interface to user logic. AF is used to store the block address (8 32-bit
words) and the command (read/write) to the DDR2 memory. WB is used to store the input data to the
memory, RB is used to store the data read out from the memory. Like the interface between TRM core
and other 1/0O device controllers, the interface between the DDR2 controller and the TRM core also
consists of one bit signal iowr, 5-bit ioadr, 32-bit input data from the TRM core and 32-bit output data to
the TRM core. In the interface, there are two 256 bit buffers used to store the block of data (32 bits) read
from or being written to the DDR2 memory. A 3-bit register is used to identify the index of the word in
current block.

The TRM core 6 can issue a command to read/write a block of data and reset the word index register and
read or write word by word from the block continuously.

Reference

[1] Lisa (Ling) Liu, A Bus-Based On-Chip Message Passing Network, ETH technical report 645,
https://www.inf.ethz.ch/research/disstechreps/techreports/show?serial=645&lang=en,
October, 2009

[2] Niklaus Wirth, The Tiny Register Machine (TRM), ETH technical report 643,
https://www.inf.ethz.ch/research/disstechreps/techreports/show?serial=643&lang=en,
October, 2009.

[3] Chuck Thacker, DDR2 DRAM Controller for BEE3,
http://research.microsoft.com/research/downloads/Details/12e67e9a-f130-4fd3-9bbd-
f9e448cd6775/Details.aspx.

[4] Lisa (Ling) Liu, A DDR2 SDRAM Interface for Xilinx ML505 Evaluation Platform, ETH technical
report 644,
https://www.inf.ethz.ch/research/disstechreps/techreports/show?serial=644&lang=en

Other oberon code examples working on this 12-core processor:

Svend Erik Knudsen wrote a N-Queen solution.

Alessandro Licata Caruso wrote a solution for computing the shortest distance between any pair
of nodes in a 11 node graph.

13

