
ETH Library

A fast C++ Template Library for
Total Variation Minimization of
manifold-valued two and three-
dimensional Images

Master Thesis

Author(s):
Debus, Pascal

Publication date:
2015-10-01

Permanent link:
https://doi.org/10.3929/ethz-b-000657180

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000657180
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A fast C++ Template library for Total
Variation Minimization of manifold-valued two-

and three-dimensional images

M

M

T
V

L

Master Thesis

written by
Pascal Debus

supervised by
Markus Sprecher,

Prof. Dr. Philipp Grohs
Seminar for Applied Mathematics

ETH Zurich

October 1, 2015

Abstract

In this thesis, a versatile, multi-threaded C++ template library for total variation (TV) minimization
of manifold-valued image data is introduced. The library implements two minimizers: the iteratively
reweighted least squares (IRLS) algorithm using the Riemannian Newton method for the optimization
step and the proximal point algorithm. Pixels can take values in Euclidean space, on the Sphere,
the special orthogonal group, the set of positive definite matrices and the Grassmann manifold while
images can be either two- or three-dimensional. Some semi-analytic expressions for the derivatives
of the squared distance functions using Kronecker products and a short overview about the relevant
Grassmann manifold theory is provided along with a high level documentation of the library and
its design concepts. The last part demonstrates the library’s capabilities on different applications
in image and video processing, medical imaging and computer vision. Performance is measured and
compared for the IRLS and the proximal point implementations. Lastly the influence of the noisy
original data on the the minimizer is investigated.
Key words. total variation minimization, manifold-valued data, iteratively reweighted least
squares, proximal point algorithm, Riemannian Newton method

Contents

List of Figures 4

List of Tables 5

List of Algorithms 6

List of Abbreviations 7

1 Introduction 8
1.1 Grayscale images . 8

1.1.1 Edge preservation . 9
1.1.2 Discretization . 9

1.2 Color images . 10
1.3 Manifold-valued images . 10
1.4 Objective and outline of this thesis . 10

2 Theory 12
2.1 Generalization of the functional . 12

2.1.1 The Riemannian distance . 12
2.2 Algorithms . 13

2.2.1 Proximal point . 13
2.2.2 Iteratively reweighted least squares . 14

2.3 Riemannian Newton method . 15
2.3.1 Gradient . 15
2.3.2 Hessian . 16
2.3.3 Newton equation . 16
2.3.4 Newton equation for the TV functional . 17
2.3.5 Tangent space restriction . 18

2.4 Manifolds . 18
2.4.1 Euclidean space . 18
2.4.2 Sphere Sn . 19
2.4.3 Special orthogonal group SO(n) . 20
2.4.4 Symmetric positive definite matrices SPD(n) 21
2.4.5 Grassmannian Gr(n,p) . 22

2.5 Fréchet derivatives of matrix logarithm and square root 27
2.5.1 Derivative of the matrix square root . 27
2.5.2 Derivative of the matrix logarithm . 28

1

3 The Manifold Total Variation Minimization Template Library 29
3.1 Capabilities . 29
3.2 Design concepts . 30

3.2.1 Goals . 30
3.2.2 Levels of parallelization . 32
3.2.3 C++ techniques . 33

3.3 Components . 34
3.3.1 Manifold class . 35
3.3.2 Data class . 37
3.3.3 Functional class . 38
3.3.4 TV minimizer class . 39
3.3.5 Visualization class . 39
3.3.6 Utility functions . 41

3.4 Using MTVMTL . 42
3.4.1 Prerequisites . 42
3.4.2 Installation . 43
3.4.3 Compilation of own projects using CMake 43
3.4.4 Tutorial and typical use cases . 45

4 Applications and Numerical Experiments 49
4.1 Image denoising . 49

4.1.1 Grayscale . 49
4.1.2 Color . 50
4.1.3 Inpainting . 51
4.1.4 Recolorization . 51
4.1.5 Volume images . 52

4.2 SO(2) and SO(3) image data . 53
4.2.1 Synthetic data . 53
4.2.2 Fingerprint orientation data . 54
4.2.3 Reconstruction of a dense optical flow field 54

4.3 SPD(3) image data . 55
4.3.1 Synthetic data . 55
4.3.2 Diffusion Tensor Magnetic Resonance Imaging 56
4.3.3 3D DT MRI data . 57

4.4 Gr(3,1) image data . 58
4.4.1 Chromaticity denoising . 58

4.5 Performance analysis of the library . 58
4.5.1 Profiling . 59
4.5.2 Time complexity . 60

4.6 Comparison IRLS and Proximal Point minimizers 62
4.7 Sensitivity to variations of the original data . 65

5 Conclusion and Outlook 67
5.1 Summary . 67
5.2 Extensions and improvements . 68

5.2.1 Performance . 68
5.2.2 Manifolds and minimizers . 68
5.2.3 Functionals . 68

5.3 Recursive computation on subdomains . 69

Acknowledgements 71

A Listings 72

B Derivative Computations 77
B.1 Vectorization-Kronecker-product identities . 77
B.2 Squared distance function on the special orthogonal group SO(n) 77

2

C Performance metrics 79
C.1 Cache Misses . 79
C.2 Page Faults . 80

3

List of Figures

1.1 Comparison total variation . 9

2.1 Affine cross section map . 24
2.2 Vertical and horizontal spaces . 25

3.1 Calculation using pixel-wise kernels . 33
3.2 SIMD parallelization . 33
3.3 Overview of library components . 35
3.4 SO(3) cube visualization . 40
3.5 SPD(3) ellipsoid visualization . 41
3.6 3D SPD(3) Volume Visualization of a helix . 41
3.7 3D Volume image renderer . 41

4.1 Color image "Cameraman" grayscale denoising . 49
4.2 Color image "Lena" linear vectorial denoising . 50
4.3 Large image "mathematicians" linear-vectorial denoising 50
4.4 Large image "crayons" CBR-vectorial denoising . 51
4.5 Denoising linear vectorial . 51
4.6 Recolorization . 52
4.7 Denoising 3D Grayscale Volume Data PRPT . 52
4.8 Denoising 3D Grayscale Volume Data IRLS . 53
4.9 Inpainting of synthetic SO(3) picture . 53
4.10 Fingerprint orientation denoising . 54
4.11 Dense optical flow reconstruction . 55
4.12 Denoising of synthetic SPD(3) picture . 56
4.13 Denoising DT-MRI data . 57
4.14 Denoising 3D DTI-MRI data . 57
4.15 Color denoising . 58
4.16 Large image "crayons" CBR-vectorial denoising . 58
4.17 Time complexity IRLS R3 and SPD(3) . 61
4.18 Test images . 62
4.19 Comparison IRLS & PRPT for Euclidean R3 and S2 63
4.20 Comparison IRLS & PRPT for Euclidean SO(3) 64
4.21 Comparison IRLS & PRPT for SPD(3) . 64
4.22 Comparison IRLS & PRPT for Gr(3, 1) . 65
4.23 Sensitivity to variation . 66

5.1 Splitting the image domain . 69
5.2 Comparison full domain versus splitted domain denoising 69

4

List of Tables

2.1 Comparison vector space and manifold operations 13

4.1 Share of total CPU cycles M = R3 . 59
4.2 Share of total CPU cycles SPD(3) . 60
4.3 Share of total CPU cycles SPD(3) , 300× 300 pixel 61

5

List of Algorithms

2.1 Parallel proximal point algorithm . 15
2.2 IRLS algorithm . 16
2.3 Riemannian Newton method for real-valued functions 17

6

List of Abbreviations

AVX advanced vector extensions.

BLAS basic linear algebra subprograms.

CBR chromaticity-brightness.
CGAL computational geometry algorithms library.
CSV comma-separated values.
CT computer tomography.

DTI diffusion tensor imaging.
DT-MRI diffusion tensor magnetic resonance imaging.
DW-MRI diffusion weighted magnetic resonance imaging.

GLEW OpenGL extension wrangler library.
GLUT OpenGL utility toolkit.

IRLS iteratively reweighted least squares.

MRI magnetic resonance imaging.
MTVMTL Manifold total variation minimization library.

NIfTI neuroimaging informatics technology initiative.

OMP OpenMP.
OpenCV open computer vision.
OpenGL open graphics library.

PRPT proximal point.

SIMD single instruction multiple data.
SO special orthogonal.
SPD symmetric positive definite.
SSE streaming SIMD extensions.

TV total variation.

VPP Video++.

7

Chapter 1
Introduction

Various forms of noise occur in many forms of data acquisition, transmission and processing. This
noise needs to be removed in order to obtain a meaningful interpretation of the data, to enable
further processing or, as in many image processing applications, just for aesthetic reasons. A com-
mon everyday example for a noisy image is taking a picture with a digital camera (e.g. integrated
in a smart phone) in a weakly illuminated room: Especially the dark areas of the picture are not
uniform in color and brightness, but have small variations from pixel to pixel.

A noise removal algorithm needs to remove these small variations, but at the same time not alter
important features of the data. In the case of images, important features are for example the edges,
separating areas of different colors, which provide the necessary sharpness of the picture. These
edges are characterized by large variations. The distinction between small and large variations is
also helpful in the task of inpainting, which tries to restore the picture at unknown or damaged
regions.

The method of total variation (TV) noise removal, which has the above described capabilities, was
first introduced by Rudin, Osher and Fatemi [27] in 1992 for the case of real-valued, that means
grayscale images. Their method is briefly summarized in the following section.

1.1 Grayscale images
Let u0 : R ⊃ Ω→ R describe the original, noise-free image where the image domain Ω is usually a
rectangular or cuboid subset of R2 or R3, respectively. Assuming the original picture is corrupted by
Gaussian noise n : Ω→ R with zero mean and variance σ2, the noisy picture is given by u : Ω→ R
where u = u0 + n. The edge-preserving denoising of the picture is then equivalent to the solution
u∗ : Ω→ R of the following constrained optimization problem:

u∗ = argminf :Ω→R

∫
Ω

|∇u| dx s.t. (1.1)∫
Ω

(u− u0) dx = 0, and
∫

Ω

(u− u0)2 dx = σ2 (1.2)

The first term, TV (u) =
∫

Ω
|∇u| dx, is called the total variation of u. Rudin, Osher and Fatemi then

use a partial differential equation (PDE) approach to solve the corresponding Euler-Lagrange equa-
tion for (1.1). Later, Chambolle and Lions [11] showed that (1.1) is equivalent to the minimization
of the functional

J(u) =
1

2
‖u− u0‖22 + λ

∫
Ω

|∇u| dx . (1.3)

8

1.1.1 Edge preservation
A basic intuition why the L1 norm in (1.3) is better suited for conserving sharp discontinuities,
such as edges, can be seen from the following plot, taken from [32]. Discretize the unit interval by
setting xi = i/N for i = 0, . . . , N := 100 and define the finite differences (∆f)i = f(xi+1)− f(xi),
where f is continuous and monotone on [0, 1] and satisfies f(0) = 0 and f(1) = 1. Some possible f
are shown in 1.1. Finally, define discretized versions, l1 and l2, for the squared L1 and L2 norms of
the gradient by lp(∆f) :=

∑N−1
i=0 |(∆f)i|p where p = 1, 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f3 (x)

f2 (x)

f1 (x)

Figure 1.1: Plots of three functions with (N = 1, 10, 100) steps and a total variation equal to 1.0

Function l1(∆fi) l2(∆fi)
f1 1.0 1.0
f2 1.0 0.1
f3 1.0 0.01

One can see that the l2 variation term favours continuous transitions, such as f3, rather than the
sudden jump in f1 whereas the total variation is the same for all cases.

1.1.2 Discretization
For a grayscale image u : Ω ⊂ R2 → R a discrete grid of pixels Ω = {1, 2, . . . ,m}×{1, 2, . . . , n} ⊂ R2

is chosen. The picture u then takes the values ui,j := u((i, j)) ∈ [0, 1] at the points (i, j) ∈ Ω, and a
forward finite difference discretization of the gradient ∇u := (ux, uy)T can be used, where

(ux)i,j =

{
ui,j+1 − ui,j , 1 ≤ j < n

0, j = n
(1.4)

(uy)i,j =

{
ui+1,j − ui,j , 1 ≤ i < m

0, i = m
.

This leads to the isotropic TV functional

TViso(u) =
∑
i,j

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (1.5)

9

This TV term corresponds to the formulation originally proposed by Rudin et al[27], where
|∇u| =

√
u2
x + u2

y. Another possibility is the anisotropic version of the functional, which allows for
more flexibility in the reweighting process, described in 2.2.2, and is even necessary for the proximal
point algorithm, described in 2.2.1. It is given by

TVaniso(u) =
∑
i,j

|ui+1,j − ui,j |+ |ui,j1 − ui,j |. (1.6)

To obtain the final expression for the functional, the 2-norms of the pixel-wise differences to the
original picture u0 need to be added

J(u) =
∑
i,j

(ui,j − (u0)i,j)
2 + λTV (u). (1.7)

1.2 Color images
The next step in the development of image denoising algorithms was their generalization to color
images. From a mathematical perspective this just means considering pictures from Ω→ C ' R3

where the form and additional properties of C depend on the chosen color model.
In the most simple case of linear models, RGB for instance, one could choose C as [0, 1]3 and
consider denoising each component individually (channel-by-channel model) or consider R3 as a
normed vector space of tuples (xR, xG, xB) (linear-vectorial model).
Among the nonlinear models, the so-called chromaticity-brightness model, investigated by Chan et
al [12], shows the closest resemblance to human perception. In this case, take C = S2 × [0, 1] such
that the chromaticitiy takes values on the sphere S2 considered as a submanifold of the Euclidean
space R3, while the brightness is real-valued, as in the case of grayscale images.

1.3 Manifold-valued images
Just by changing the color model from a linear to a non-linear one, pixels become non-trivially
manifold-valued. Apart from non-linear color models, more complicated data arises in a variety of
applications such as Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), computer vision
and robotics to name just a few. In most cases this data can be represented by matrices such that
the pixels become matrix-valued as well.

In addition to that, the model underlying the data and the process of data acquisition result in a
set of constraints imposed on the matrices. The set of matrices defined by those constraints often
allows for a differentiable structure, thus enabling geometric optimization methods. For most types
of manifold-data also "edges" in the data, for example between two neighboring, homogeneous
areas of different orientations in the case of SO(3) data, are considered a feature that needs to be
preserved. Since also manifold-valued data is subject to noise, the generalization of the algorithm
to manifold-valued data is the next logical step.

1.4 Objective and outline of this thesis
In this thesis, the Manifold Total Variation Minimization Template Library (MTVMTL), an extend-
able multi-threaded C++ template library for the purpose of TV minimization of manifold-valued
images, is introduced. The implemented minimization algorithms are based on the iteratively
reweighted least squares (IRLS) adaption suggested by Sprecher and Grohs [16] as well as a proximal
point algorithm by Weinmann et al [33]. The implementation is extended to 3D image cubes, the
Grassmann manifold and also some quasi-analytic expressions for derivatives of the Riemannian
distance function are provided.

The following Chapter 2 provides a short summary of the necessary theory, a description of the
algorithms and relevant properties for each of the implemented manifolds. After that, Chapter 3

10

introduces the library itself and in particular its capabilities, design concepts, structure, installation
and usage in the form of some typical use cases. In Chapter 4 numerical experiments are conducted,
showing various application of the library as well as convergence behavior and comparisons between
IRLS and proximal point based algorithms. Finally, chapter 5 concludes with possible extensions
and adaptions of the library, in particular the possibility of recursive splitting of the image domain
into smaller subproblems and the transition to distributed architectures.

11

Chapter 2
Theory

2.1 Generalization of the functional
The functional defined in (1.7) needs a vector space structure for differences to make sense. Hence,
the functional must be transformed to be still valid in the more general setting of manifold-valued
pixels. Since |x− y| = d(x, y) for the Euclidean distance on R, the generalization to metric spaces
(X, d) is the appropriate way to proceed.

To also include the case of 3D pictures and shorten the notation, a graph G is used to specify over
which pairs of pixels the sums in (1.7) are taken. Let V be an index set of all pixels in our picture.
Denote by E ⊂ V × V the set of directed edges in G and by n(i) := {j ∈ V : (i, j) ∈ E} the set of
i’s neighbors. Then

TViso(u) =
∑
i∈V

√ ∑
j∈n(i)

d2(ui, uj) (2.1)

TVaniso(u) =
∑

(i,j∈E)

d(ui, uj). (2.2)

Since forward discretization is used, n(i) just contains the next grid neighbors in each dimension,
i.e. for ui = u((j, k, l)), the neighbors are n(i) = {u((j + 1, k, l)), u((j, k + 1, l)), u((i, k, l + 1))}. To
also cover inpainting problems, let Vk ⊂ V be the index set of pixels where the pixels of the (noisy)
original image u0 are known. The generalized functional is given by

J(u) =
1

2

∑
i∈Vk

d2(ui, (u0)i) + λTV (u). (2.3)

2.1.1 The Riemannian distance
The metric d of course depends on the manifold. Distances on Riemannian manifolds can be
measured using smooth curves γ : [a, b]→M on the manifold. The length of this curve is

L(γ) =

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t) dt, (2.4)

where 〈·, ·〉x denotes the inner product on TxM , and the distance can consequently be defined as

d : M ×M → R, dist(x, y) = infΓ L(γ), (2.5)

where Γ denotes the set of smooth curves connecting x, y ∈M .

12

This rather general definition is used by Absil et al [4] whereas in this thesis Pennec et al’s
[8] approach using Riemannian exponential and logarithm map is more convenient. Their def-
initions are based on geodesics because they are precisely the curves that realize the above minimum.

Let M be a connected, geodesically complete Riemannian manifold. The exponential mapping
expx : TxM → M is defined by expx(ν) := γ(1) where γ : R → M is the unique geodesic with
γ(0) = x and γ̇(0) = ν. Thus, the function maps the tangent vector ν to the point y on the manifold
reached after moving along γ for t = 1. The logarithm map is its inverse and hence yields the
tangent vector ν that belongs to the geodesic connecting x and y.

A nice overview of Pennec’s reinterpretation of vector space operations was given in [23].

Operation Vector space Riemannian manifold
Subtraction ν = y − x ν = logx(y)
Addition y = x+ v y = expx(ν)
Distance dist(x, y) = ‖y − x‖ dist(x, y) = ‖ logx(y)‖x

Table 2.1: reinterpretation of vector space operations on Riemannian mannifolds

2.2 Algorithms
The next topic that must be addressed is the minimization of the above defined functional. It
brings about another challenge in the form of its non-differentiability. In the implementation, this
problem is solved using two different methods. They are based on either working with a regularized
version of the functional or by so-called proximal mappings. The latter is used by the proximal
point algorithm which will be shortly summarized in the next section before proceeding to the
iteratively reweighted least squares (IRLS) algorithm.

2.2.1 Proximal point
The proximal point algorithm for manifold-valued data which is implemented in the MTVMT
library is based on the work of Weinmann et al[33] and belongs to the class of proximal splitting
methods. A survey on these methods for Euclidean space data is provided in [13]. The general
scope in the real case are convex optimization problems of the form

minimizex∈Rnf1(x) + · · ·+ fm(x) (2.6)

where the fi : Rn →]−∞,∞] are convex functions but not necessarily differentiable. This is also
true for the functional (2.3), even for the simple Euclidean case where the summands are given by
d(x, y) = |x− y|.
Splitting means considering every summand fi individually and minimizing it using its proximal
mapping

proxfi x = argminy∈Rn

(
fi(y) +

1

2
‖x− y‖22

)
. (2.7)

For the case of a differentiable function f , the minimization problem (2.7) can be written in an
explicit form such that proxf x = x−∇f , which can be interpreted as a gradient descent step.
In addition to that, one can show that the minimizers of f are exactly the fixed points of the
proximal mapping (See [25], §2.3).

Application to manifolds

Let M be a Riemannian manifold and Ω as defined in 1.1.2. Due to the square root involved in the
isotropic case, the method can only be applied to the anisotropic version of the functional (2.3) and

13

leads in the 2D case to the following splitting

J(u) =
∑
i,j

Fij(u) + λ
∑
i,j

Gij(u) + λ
∑
i,j

Hij(u) (2.8)

Fij(u) = d2(ui,j , (u0)i,j) (2.9)
Gij(u) = d(ui,j , ui,j+1) (2.10)
Hij(u) = d(ui,j , ui+1,j) (2.11)

and proximal mappings of the form

proxλGij
x = argminy∈Mm×n

(
λGij(y) +

1

2
d2(x, y)

)
. (2.12)

Only the expressions relevant for the implementation and the algorithm itself are presented in the
following. For details on derivations and convergence and existence proofs consider [33].

The proximal mappings itself can be computed using unit speed geodesics. Here [x, y]t denotes the
point reached by following the unit speed geodesic starting at x in direction y for a time t.

(proxλGij
u)ij = [ui,j , ui,j+1]tTV

(2.13)

(proxλHij
u)ij = [ui,j , ui+1,j]tTV

(2.14)

(proxλFij
u)ij = [ui,j , (u0)i,j]tl2 (2.15)

Lastly, the times in the case of Gij and Fij are computed by

tTV =

{
µ, if µ < d(ui,j , ui,j+1)

µ < d(ui,j , ui,j+1), else
(2.16)

tl2 =
µ

1 + µ
d(ui,j , (u0)i,j) (2.17)

and for Hij analogously.

In summary, the parallel version of the proximal algorithm now works by computing a proximal
mapping for every pixel ui,j . The relevant geodesics are in direction of its next neighbors on
the grid and in direction of the corresponding pixel of the original picture u0, i.e. [ui,j , v]t with
v ∈ {ui−1,j , ui+1,j , ui,j−1, ui,j+1, (u0)i,j}. Next, the intrinsic (Karcher) mean [18] of these five
mappings is computed and the pixel is updated to a new value u′i,j .

Finally, the algorithm is stated in Algorithm 2.1.

2.2.2 Iteratively reweighted least squares
The IRLS approach to dealing with non-differentiable terms in the functional is by adding additional
terms for regularization. In the continuous (and isotropic) case that means

TVε =

∫
Ω

ωε|∇u|2 =

∫
Ω

|∇u|2√
|∇u|2 + ε2

(2.18)

for a small ε > 0. In this form, the functional becomes differentiable but directly minimizing a
regularized functional Jε will not work either.

The IRLS algorithm, described in more detail in [26], works by alternating between reweighting and
minimization steps. First, the weights are computed then the minimization is performed using the
regularized functional with the weights considered constant. The steps for the isotropic functional

14

Algorithm 2.1 Parallel proximal point algorithm

Require: µ = (µ1, µ2, . . .) ∈ l2 \ l1
u← u0

for r ← 1, 2, . . . do
for i← 1, 2, . . . ,m; j ← 1, 2, . . . , n; do
t← tl2 = µr

1+µr
d(ui,j , (u0)i,j)

z(1) ← [ui,j , (u0)i,j]t
t← tTV (µrλ, ui,j , ui,j+1)
z(2) ← [ui,j , ui,j+1]t
t← tTV (µrλ, ui,j , ui,j−1)
z(3) ← [ui,j , ui,j−1]t
t← tTV (µrλ, ui,j , ui,j+1)
z(4) ← [ui,j , ui,j+1]t
t← tTV (µrλ, ui,j , ui−1,j)
z(5) ← [ui,j , ui−1,j]t
u′i,j ← karchermean(z(1), z(2), z(3), z(4), z(5))

end for
for i← 1, 2, . . . ,m; j ← 1, 2, . . . , n; do
ui,j ← u′i,j

end for
end for

are as follows

wnewi = W ε
iso(u)i :=

 ∑
j∈n(i)

d(ui, uj) + ε2

− 1
2

∀ i ∈ V (2.19)

unew = U(w) := argminu∈Ω

∑
i∈Vk

d2(ui, (u0)i) + λ
∑
i∈V

wi
∑
j∈n(i)

d2(ui, uj). (2.20)

The anisotropic steps are

wnewi,j = W ε
aniso(u)i,j :=

(
d(ui, uj) + ε2

)− 1
2 , ∀ (i, j) ∈ E (2.21)

unew = U(w) := argminu∈Ω

∑
i∈Vk

d2(ui, (u0)i) + λ
∑

(i,j)∈E

wi,jd
2(ui, uj). (2.22)

Further details on the derivation and proofs on convergence, existence and uniqueness of solutions
for different manifold classes, such as Hadamard spaces or the sphere, can be found in [16]. The
minimization can in principle be performed using various methods from smooth optimization theory.
Due to its quadratic convergence rate, here the Newton method was chosen. The algorithm is
stated in Algorithm 2.2.

2.3 Riemannian Newton method
In numerical analysis, the Newton method is one of the standard algorithms for finding approxi-
mations of roots of real-valued functions. Due to its locally at least quadratic convergence, the
algorithm or one of its numerous variants and generalizations is used in many applications. For its
application in optimization, the Newton method is applied to the gradient of the objective function
which also requires the evaluation of its Hessian. The following section provides a short summary
of the generalization of gradient and Hessian to a manifold setting.

2.3.1 Gradient
Let M be a Riemannian manifold and TxM the tangent space at x ∈ M . Furthermore, let
f : M → R be a smooth function defined on M . Define the Riemannian gradient grad f to be the

15

Algorithm 2.2 IRLS algorithm

Choose initial value u(0) by application of smoothing filter on u0

i← 0
repeat
W ←W ε(u(i))
u(i,0) ← u(i)

k ← 0
repeat
u(i,k+1) = newtonstepλ,u0,Vk,V,E(W,u(i,k))
k ← k + 1

until Stopping criteria (e.g. k = 1, J(u(i,k+1)) < J(u(i,0)), d(u(i,k+1), u(i,k))
u(i+1) ← u(i,k+1)

i← i+ 1
until d(u(i+1), u(i)) < tol
return u(i+1)

unique tangent vector ξ ∈ TxM satisfying

〈grad f(x), ξ〉x = Df(x)[ξ] (2.23)

where Df(x)[ξ] = ξ[f], when ξ : C∞(M) → R is interpreted as derivation acting on f . The
Riemannian gradient shares many properties of its Euclidean counterpart, in particular defining
the direction of steepest ascent, such that first order methods like gradient descent could already
be implemented at this point.

2.3.2 Hessian
For second order methods, such as the Newton algorithm, also a corresponding Riemannian Hessian
is needed. Following again the work of Absil et al [4], the Hessian is realized as linear endomorphism
of the tangent space TxM

Hess f(x)[ξ] = ∇ξ grad f(x), (2.24)

where ∇ denotes the Riemannian connection on M .

2.3.3 Newton equation
Now let x ∈ M and γ : [a, b] → M be the unique geodesic with γ(0) = x and γ̇(0) = ν ∈ TxM
passing through y ∈ M . Thus, one can set y = expx(ν) and ν = logx(y) as suggested in 2.1.1.
Using the definitions of gradient and Hessian above one can expand f to second order around x in
the following way

f(expx(ν)) = fx(ν) = f(x) + 〈grad f(x), ν〉x +
1

2
〈Hess f(x)[ν], ν〉x +O(‖ν‖3x) ⇔ (2.25)

f(y) = f(x) + 〈grad f(x), logx(y)〉x +
1

2
〈Hess f(x)[logx(y)], logx(y)〉x +O(‖ logx(y)‖3x).

The first line of (2.25) suggests that, for given fixed x, f can also be interpreted as a function of
ν ∈ TxM and the optimization of f can be performed on the tangent space, on which grad f and
Hess f have been defined. This finally leads to the following generalization of the Newton equation
for the correction term ηx ∈ TxM :

Hess f(x)[ηx] = − grad f(x) (2.26)

The solution of the Newton equation ηx is a tangent vector of TxM and, as (2.25) already implies,
can be mapped back to the manifold M using the exponential map such that y′ = expx(ηx). The
whole iterative procedure, based on [4], Algorithm 5, is summarized in the following listing.

16

Algorithm 2.3 Riemannian Newton method for real-valued functions

x0 ← x ∈M (initial value)
for k ← 0, 1, 2 . . . do
Solve newton equation Hess f(xk)ηk = − grad f(xk) for ηk ∈ Txk

M
xk+1 ← expxk

(ηk)
end for

2.3.4 Newton equation for the TV functional
Next, the general form of the linear system defined by (2.26) in the case of manifold-valued 3D
images u, u0 : Ω→MZ×Y×X where Ω = {1, . . . , Z} × {1, . . . , Y } × {1, . . . , X} for X,Y, Z ∈ N and
a corresponding functional J : MZ×Y×X → R is shown. Furthermore, the forward finite difference
scheme described in 1.1.2 is used. To simplify notation, assume the regularization weights obtained
from the last IRLS reweighting step to be all equal to 1 and thus consider only the bare d2(·, ·)
terms:

J(u111, u112, . . . , uijk, . . . , uZYX) =
∑
ijk

d2(uijk, (u0)ijk) (2.27)

+ λ

Z−1,Y,X∑
ijk

d2(uijk, ui+1,j,k) + λ

Z,Y−1,X∑
ijk

d2(uijk, ui,j+1,k) + λ

Z,Y,X−1∑
ijk

d2(uijk, ui,j+1,k).

The first derivatives are given by the following expressions

∂J

∂umnp
= d2

x(umnp, (u0)mnp) + λ
(
d2
x(umnp, um+1,n,p) + d2

y(um−1,n,p, umnp) (2.28)

+ d2
x(umnp, um,n+1,p) + d2

y(um,n−1,p, umnp)

+ d2
x(umnp, um,n,p+1) + d2

y(um,n,p−1, umnp)
)
,

where d2
x((u, v)) := ∂

∂x d
2(x, y)

∣∣
(x,y)=(u,v)

.

The second derivatives, considering only the terms in the first line of (2.28) containing the fidelity
term and discrete gradient components in z direction, are then

∂2J

∂uijk∂umnp
= δnjδkpδmid

2
xx(uijk, (u0)ijk) (2.29)

+ λδnjδkp

[
δmi

(
d2
xx(uijk, ui+1,j,k) + d2

yy(uijk, ui+1,j,k)

)
(2.30)

+ δm−1,id
2
xy(uijk, ui+1,j,k) + δm+1,id

2
yy(ui−1,j,k, uijk)

]
. (2.31)

Considering the pattern of the Kronecker deltas and reshaping the tensor of second partial deriva-
tives into a single matrix, one obtains a block-band matrix, where sums of non-mixed second
derivatives of the squared distance function are located on the main diagonal, while all mixed
derivatives belonging to the same gradient component (x, y or z) populate subdiagonals of equal
distance to the main diagonal. In particular, discretizations in x-direction are on the first, in
y-direction on the Xth and in z-direction on the X × Y th subdiagonals.

To illustrate this, consider the following schematic of the band structure

HJ =

D X Y Z
X D X Y Z

X D X Y
Y X D X Y

Y X D X
Z Y X D X

Z Y X D

, (2.32)

17

where D denotes a block, consisting of the sum of non-mixed second derivatives, according to the
rules defined by the generalization of (2.29) to all discretization directions.

HJ is exactly the matrix representation of the Hessian operator Hess J(u), while the representation
GJ of grad J(u) is just the vectorized version of the tensor of first derivatives (2.28). If the
embedding space of the manifold is given by Rn×p then the matrix HJ will be an element of RD̃×D̃
with D̃ = npXY Z. HJ is, however, also sparse with approximately 7D̃ non-zero entries. Finally,
solving the Newton equation (2.26) corresponds to solving the sparse linear system given by HJ
and GJ , which is also the most computationally demanding part of the algorithm.

2.3.5 Tangent space restriction
Lastly, a basis of the tangent space TxM for each x ∈M can be chosen such that the computed
gradient and Hessian are restricted to the tangent space by performing a basis transformation.
Since dimTxM = dimM , this means that tangent vectors, such as the gradients of the squared
distance function, or tangent space mappings, like the Hessian, can be expressed using only dimM
coefficients. Now D = dimM(XY Z) such that the prefactor is the intrinsic manifold dimension
and not the dimension of the embedding space any more.

2.4 Manifolds
In this section all relevant quantities to implement the IRLS and proximal point algorithm are
presented. These are the distance function and its derivatives, exponential and logarithm mapping
and the tangent space basis transformation mapping. For the Grassmann manifold, due to its
quotient manifold nature and because it was not covered in the original implementation based on
[16] a more general introduction will be given.

2.4.1 Euclidean space
The space in question is just Rn, hence trivially a manifold and naturally a vector space such that
all expressions can be calculated using basic multivariable calculus. The exponential and logarithm
mappings are not to be understood in the sense of ex but according to 2.1.1 such that they are just
addition and subtraction in the vector space.

Exponential map

expx(r) = x+ r (2.33)

Logarithm map

logx(y) = y − x (2.34)

Squared distance function

d(x, y) = ‖x− y‖2 =

n∑
i=1

(xi − yi)2 (2.35)

First derivative of the squared distance function

∂d2(x, y)

∂y
= 2x (2.36)

Second derivatives of the squared distance function

∂2d2(x, y)

∂x∂y
=
∂2d2(x, y)

∂x2
= 21n; (2.37)

where here and in all following expression 1n denotes the identity matrix.

18

Tangent space restriction map

Tx = 1n2 (2.38)

2.4.2 Sphere Sn

Consider the manifold Sn := {x ∈ Rn+1 : ‖x‖ = 1} ⊂ Rn+1 and express the maps in terms of
vectors x, y ∈ Rn+1 of the Euclidean embedding space.
The tangent space TxSn at x ∈ R is, as basic intuition suggests, given by the tangent hyperplane
to the sphere at x such that

TxS
n := {y ∈ Rn+1 : xT y = 0} (2.39)

The standard Euclidean inner product 〈r, s〉 = rT s, restricted to the tangent space, turns Sn into a
Riemannian manifold.

Exponential map

expx(r) = cos(‖r‖2)x+
sin(‖r‖2)

‖r‖2
r (2.40)

Logarithm map

logx(y) = arccos(xT y)
y − xT yx
‖y − xT yx‖2

(2.41)

Note that this is only well-defined for non-antipodal points x, y ∈ Sn.

Squared distance function

d(x, y) = arccos(xT y) (2.42)

First derivative of the squared distance function

∂d2(x, y)

∂x
=

−2 arccos(xT y)√

1−(xT y)2
y, xT y ∈ (−1, 1)

−2y, xT y = 1
(2.43)

Second derivatives of the squared distance function

∂2d2(x, y)

∂x2
=

[

2
1−(xT y)2

− 2 arccos(xT)

(1−(xT y)2)
3
2)
xT y

]
yyT + 2xT y 1n+1, xT y ∈ (−1, 1)

2
3yy

T + 2xT y1n+1, xT y = 1
(2.44)

And the mixed derivative:

∂2d2(x, y)

∂x∂y
=

[

2
1−(xT y)2

− 2 arccos(xT y)

(1−(xT y)2)
3
2
xT y

]
yxT − −2 arccos(xT y)√

1−(xT y)2
y 1n+1, xT y ∈ (−1, 1)

2
3yx

T − 2 1n+1, xT y = 1
(2.45)

Tangent space restriction map

As implied by (2.39), the tangent space TxSn at x ∈ Sn is just the orthogonal complement of x in
Rn+1. Thus, constructing a basis of the tangent space amounts to constructing an orthonormal
basis {b0, b1, · · · , bn} of Rn+1 with b0 = x. Then B = {bi}ni=1 is the basis of the tangent space.
This can be done using the QR algorithm or, in the case of S2 ⊂ R3, using the cross product. For
the basis transformation mapping this means that

Tx : Rn+1 → Rn (2.46)

Tx =
(
b1|b2| · · · |bn

)
. (2.47)

19

2.4.3 Special orthogonal group SO(n)
The special orthogonal group, considered as matrix group is defined as follows

SO(n) :=
{
XRn×n : XTX = 1n, det(X) = 1

}
, (2.48)

while its tangent space at X ∈ SO(n) is

TXSO(n) :=
{
XS : ST = −S

}
= X[Skew(n)]. (2.49)

Here, the notation X[Skew(n)] means the set of all matrices that can be written as a product of X
and a skew-symmetric matrix.
Equipping TXSO(n) with the standard inner product 〈R,S〉X = trRTS of its embedding space
turns (SO(n), 〈·, ·〉) into a Riemannian manifold.

Exponential map

expX R = X exp(XTR) (2.50)
Note that the exponential map on the right hand side denotes the matrix exponential. The same
holds for the logarithm on the right hand side of the following expression.

Logarithm map

logX(Y) = X log(XTY) (2.51)

First derivatives of the distance function

For the computation of the derivatives of the squared distance function, there exists a general
analytic result by Karcher[18] that simplifies further computations considerably:

Theorem 2.1 (Karcher). Let M be a complete Riemannian manifold and x, y ∈M such that the
geodesic connecting x and y is unique. Then the squared distance function to y is differentiable at x
and we have

∂d2(x, y)

∂x
[·] = −2 〈logx(y), ·〉x (2.52)

where 〈·, ·〉 is the Riemannian metric at x ∈M .

Since with (2.51), there is a closed form expression for logx(y), the first derivative can be expressed
as

∂d2(X,Y)

∂X
= −2X log(XTY). (2.53)

Second derivatives of the distance function

For the computation of the second derivatives one can take the expression obtained using the above
theorem as a starting point and follow the approach and notation of Magnus [22]. This makes it
possible to express the derivatives as combinations of simple Kronecker products of the arguments,
which is also very straightforward and compact to implement. The detailed derivations can be
found in the Appendix B while here only the final results are shown.
For the second derivative with respect to the first argument one readily arrives at

∂2d2(X,Y)

∂X2
= −2

[((
logXTY

)T ⊗ 1n)+ (1n ⊗X) D log(XTY)
(
Y T ⊗ 1n

)
Knn

]
, (2.54)

where Knn denotes the commutator matrix which transforms the column-wise vectorization of a
matrix A to the vectorization of its transpose AT .

The mixed derivative is given by

∂2d2(X,Y)

∂X∂Y
= −2 (1n ⊗X) D log(XTY)

(
1n ⊗XT

)
. (2.55)

These expressions are quasi-analytic: Matrix logarithm and the Fréchet derivative of the matrix
logarithm need to be evaluated numerically. Details concerning the implementation of the latter
are postponed to Section 2.5.

20

Tangent space restriction map

The dimension of the tangent space TXSO(n) at X ∈ SO(n) is d = n(n−1)
2 . Define a basis for the

space of skew-symmetric matrices Skew(n) in the following way. Let K = {(i, j) ∈ N2 : 1 ≤ i <
d, i < j ≤ d} and note that |K| = d. For all k = (k1, k2) ∈ K define the basis vector B(k) by

B
(k)
ij =

1√
2
, i = k1 and j = k2

− 1√
2
, i = k2 and j = k1

0, else

. (2.56)

The basis of the tangent space is then BTXSO(n) = {T (k) = XB(k)}k∈K and to obtain the basis
transformation map vectorize each basis matrix and define a matrix TX ∈ Rn2×d whose columns
are given by the vectorized basis matrices.

TX : Rn
2

→ Rd (2.57)

TX =
(
vecT (1)| vecT (2)| · · · | vecT (d)

)
(2.58)

2.4.4 Symmetric positive definite matrices SPD(n)
The cone of symmetric, positive definite matrices is defined as

SPD(n) :=
{
X ∈ Rn×n : XT = X, yTXy > 0 ∀y ∈ Rn \ {0}

}
. (2.59)

For X ∈ SPD(n) the tangent space at X is isomorphic to the set of symmetric matrices

TXSPD(n) := X[Sym(n)]. (2.60)

The Riemannian metric defined on TXSPD(n) is given by

〈R,S〉X := tr(X−1RX−1S). (2.61)

Exponential map

expX(R) = X
1
2 exp

(
X−

1
2RX−

1
2

)
X

1
2 (2.62)

Logarithm map

logX(Y) = X
1
2 log

(
X−

1
2Y X−

1
2

)
X

1
2 (2.63)

Squared distance function

As in the case of the special orthogonal group, the Riemannian metric (2.61) induces the distance
function on SPD(n) such that

d2(X,Y) = ‖ log
(
X−

1
2Y X−

1
2

)
‖2F (2.64)

where ‖ · ‖F denotes the Frobenius norm on Rn×n.

First derivatives of the squared distance function

For the first derivatives one can apply theorem 2.1 again but some care must be taken in the
computation this time since the Riemannian metric on SPD(n) depends also on the base point X

21

of its tangent space TXSPD(n).

∂d2(X,Y)

∂X
= −2 〈logX(Y), ·〉X (2.65)

= −2
〈
X

1
2 log

(
X−

1
2Y X−

1
2

)
X

1
2 , ·
〉
X

(2.66)

= −2
〈
X−1X

1
2 log

(
X−

1
2Y X−

1
2

)
X

1
2X−1, ·

〉
1n

(2.67)

= −2
〈
X−

1
2 log

(
X−

1
2Y X−

1
2

)
X−

1
2 , ·
〉
1n

(2.68)

Second derivatives of the distance function

For the SPD matrices one can proceed in the same way as for the orthogonal group and obtain

∂2d2(X,Y)

∂X2
= 2

[(
X−

1
2 log

(
X−

1
2Y X−

1
2

)T
⊗ 1n

)
+
(
1n ⊗X−

1
2 log

(
X−

1
2Y X−

1
2

))
(2.69)

+
(
X−

1
2 ⊗X− 1

2

)
D log(X−

1
2Y X−

1
2)
((
X−

1
2Y ⊗ 1n

)
+
(
1n ⊗X−

1
2Y
))]

× · · ·

· · · ×
(
X−

1
2 ⊗X− 1

2

)
D(X

1
2)

for the non-mixed derivatives and

∂2d2(X,Y)

∂X∂Y
= −2

(
X−

1
2 ⊗X− 1

2

)
D log

(
X−

1
2Y X−

1
2

)(
X−

1
2 ⊗X− 1

2

)
(2.70)

for the mixed ones.

Tangent space restriction map

For SPD(n) it holds that d := dim = n(n+1)
2 . In analogy to the previous manifold, define a basis

for the space of symmetric matrices Sym(n). In this case, K = K1 ∪K2 = {(i, i) ∈ N2 : 1 ≤ i ≤
} ∪ {(i, j) ∈ N2 : 1 ≤ i < d, i < j ≤ d} such that again |K| = d. For all k ∈ K define the basis
vector B(k) by

B
(k)
ij =

1, i = k1 and j = k2

1, i = k2 and j = k1

0, else
. (2.71)

For k ∈ K1, these are single-entry diagonal matrices. The basis of the tangent space is then
BTXSPD(n) = {T (k) = X

1
2B(k)X

1
2 }k∈K and the restriction map is defined completely analogous to

the SO(n) case.

2.4.5 Grassmannian Gr(n,p)
The Grassmann manifold is special among the manifolds so far considered due to the fact that it is
a quotient manifold. As such, there are different possibilities for choosing equivalence classes and
representatives thereof.

For positive integers n and p ≤ n the Grassmann manifold is defined as the set of p-dimensional
linear subspaces of Rn. Since a linear subspace Y ∈ Gr(n, p) can be specified using a basis, one can
arrange its basis vectors as columns of a matrix Y ∈ Rn×p such that its column space spans Y . The
rank of Y must necessarily be full and equal to p because of the linear independence of its columns.
Hence, elements of Gr(n, p) can be represented using elements of the non-compact Stiefel manifold

S̃t(n, p) :=
{
Y ∈ Rn×p : rankY = p

}
. (2.72)

22

Quotient representations

Observing now that post-multiplication by any invertible G ∈ Gl(p) does not change the span of Y ,
one can form the equivalence classes

Y GL(p) := {Y G : G ∈ Gl(p)} (2.73)

consisting of all matrices having the same span as Y . These equivalence classes can be thought
of as the distinct elements of the Grassmannian which leads to the following quotient manifold
representation.

G̃r(n, p) := S̃t(n, p)/Gl(p) (2.74)

This representation, used by Absil et al [3], is very general because only the rank is specified.

The next steps of presenting the relevant quantities for the algorithm will follow Absil’s derivation
and notation but uses the quotient representation used by Edelman et al [14], which is based on
the orthogonal group. This will simplify most expressions and is also desirable from an algorithmic
point of view as it removes more degrees of freedom in the choice of possibly unique representatives.

For the sake of completeness, there is also a completely different approach by Sato and Iwai [28]
who choose Rn×n as embedding space where elements of Gr(n, p) are given by rank p orthogonal
projection matrices. The presented applications are, however, mostly eigenvalue problems while in
the case of image denoising the increased memory requirements are disadvantageous.

Denote by
St(n, p) =

{
Y ∈ Rn×p : Y TY = 1p,

}
(2.75)

the compact Stiefel manifold.

The orthogonal group quotient representation of the Grassmann manifold, which is of course
isomorphic to the previous representation, is given by

Gr(n, p) = St(n, p)/O(p) (2.76)

The additional requirement is now that the basis spanning the subspace Y must be orthonormal.

Finally, the canonical projection map to the quotient is given by

π : St(n, p) 3 Y 7→ spanY = Y ∈ Gr(n, p). (2.77)

Locally unique representatives

From an algorithmic point of view it is desirable to work with representatives as unique as possible
for two reasons. Firstly, it provides the means to give well-defined expressions for the computation
of various quantities using arbitrary representatives and secondly, it makes it possible to find a
parametrization of Gr(n, p) in terms of R(n−p)×p matrices. This is necessary to construct a local
basis of the tangent base and make the dimension of the sparse linear system a function of the
intrinsic manifold dimension (n− p)p instead of the embedding dimension np.

It is indeed possible to obtain a set of locally unique representatives by picking some other element
U ∈ St(n, p) and choose as representatives those elements who lie in the intersection of their
equivalence classes and an affine cross section orthogonal to the equivalence class of U : Let
U ∈ St(n, p) and U := span(U) ∈ Gr(n, p) and define the local affine cross section through U and
orthogonal to the fiber U [O(p)] = π−1(U) ⊂ St(n, p) by

SU :=
{
V ∈ St(n, p) : UT (V − U) = 0

}
⊂ St(n, p). (2.78)

23

The equivalence class of V ∈ St(n, p) is equal to π−1(π(V)) = V [O(p)] and to calculate its
intersection with SU choose R ∈ O(p) such that V R ∈ V [O(p)] and obtain

V R ∈ SU ⇔ UT (V R− U) = 0 ⇔ R = (UTV)−1 (2.79)

which leads to the intersection

SU ∩ V [O(p)] =
{
V R = V (UTV)−1

}
. (2.80)

The intersection is empty if UTV is not invertible. Finally, define a cross-section mapping σU
restricted to the set

UU :=
{
V = spanV : UTV ∈ GL(p)

}
(2.81)

by
σU : Gr(n, p) ⊃ UU 3 V = spanV 7→ V (UTV)−1 ∈ SU ⊂ St(n, p) ⊂ Rn×p. (2.82)

σU is also a diffeomorphism providing the differentiable structure. The cross section map is illus-
trated in Figure 2.1.

U:=span U=[U]

St(n,p)

U VW

V=[V]W=[W]

SU

Y

σU(Y)

Y=[Y]

0

Figure 2.1: The cross section mapping is illustrated for the special case of St(2, 1) ⊂ R2. Equivalence
classes are all lines passing through the origin. Pick a U ∈ St(2, 1), then the cross section is given
by all V ∈ St(2, 1) for which U − V is orthogonal to U . This is true for the points V and W ,
representing V and W, respectively, but not for the representative Y of Y. The cross section
mapping can be used to obtain a representative σU (Y) of Y which lies again on the cross section.
Hence, the cross section is a tool for obtaining a set of locally unique representatives.

As an example for the application of the cross section map, consider the calculation of averages on
the Grassmann manifold.

Example 2.1 (Average). For the case of an average, take representatives Y1, . . . , Yn ∈ St(n, p) for
Y1, . . . ,Yn ∈ Gr(n, p) and find a U ∈ St(n, p) such that SU has non-zero intersection with all the
Yi’s equivalence classes, which is equivalent to UTYi ∈ Gl(p). The average A can then be written as

A := π

(
n∑
i=1

σU (Yi)

)
= π

(
n∑
i=1

Yi(U
TYi)

−1

)
. (2.83)

Tangent space

The quotient structure makes it necessary to work with representatives such that the usual method
for finding the tangent space by differentiating curves on the manifold cannot be applied. Instead
one has to start with the "numerator" of the quotient St(n, p). For the Grassmann manifold only
tangent vectors of a special subspace of TY St(n, p), the horizontal space, can modify the span of a

24

HYSt(n,p)=T[Y]Gr(n,p)

VYSt(n,p)

[Y] = span Y[Z] = span Z

expY(vh) expY(vv)

Y

Z = span Z

Y = span Y
Gr(n,p)

TYGr(n,p)

St(n,p)

vh

vh

vv

expY(vh)

π

Figure 2.2: The tangent space TY St(n, p) at Y can be decomposed into two parts: The vertical space
VY St(n, p), defined as the tangent space to the equivalence class (fiber) [y] = π−1(π(Y)), and the
horizontal space HY St(n, p) as its orthogonal complement. Only tangent vectors of the horizontal
space modify the span, in the sense that their retraction (in this case using the exponential map)
lies in a different equivalence class. Those are the tangent vectors of TYGr(n, p).

subspace and exactly those belong to the tangent space of Gr(n, p). The notion of modifying and
non-modifying tangent vectors can be best understood with the help of Figure 2.2.

Let Y ∈ St(n, p) ⊂ Rn×p. Then the tangent space at Y ([4] for details of the derivation) to the
compact Stiefel manifold is given by

TY St(n, p) =
{
Z ∈ Rn×p : Y TZ + ZTY = 0

}
(2.84)

=
{
Y Ω + Y⊥K : Ω ∈ Skew(p), K ∈ R(n−p)×p

}
where Y⊥ ∈ Rn×(n−p) is chosen such that [Y, Y⊥] ∈ O(n). The second representation of (2.84)
already implies the decomposition into vertical and horizontal spaces performed in the next steps.

The vertical space at Y is by definition the tangent space to the fiber π−1(π(Y))

VY = TY π
−1(π(Y)) = TY Y [O(p)] = Y [Skew(p)], (2.85)

while the horizontal space is defined as its orthogonal complement with respect to (2.84)

HY = V ⊥Y =
{
H ∈ TY St(n, p) : Y TH = 0

}
' Y⊥[R(n−p)×p]. (2.86)

Using this, the tangent space to Gr(n, p) at π(Y) = Y, along with its projector, is given by

TYGr(n, p) ' HY St(n, p) ' Y⊥[R(n−p)×p] (2.87)

πY⊥ := 1n − Y Y T . (2.88)

The problem that remains is to pick a unique representative for a tangent vector ξ ∈ TYGr(n, p).
This is resolved by demanding that the unique representative ξ♦Y should project to ξ via

dπ(Y)ξ♦Y = ξ (2.89)

where π : St(n, p)→ Gr(n, p) is the canonical quotient projection, such that dπ is a map between
their tangent spaces. Using the cross section mapping (2.82), ξ♦Y can be computed by

ξ♦Y = dσY (Y)ξ. (2.90)

25

ξ♦Y is called the horizontal lift of ξ ∈ TYGr(n, p) at Y ∈ St(n, p).

Finally, to obtain a basis for the tangent space, choose {Eij}n−p,pi=1,j=1, with the (i,j)th entry set to
one and the rest zero, as a basis of R(n−p)×p and compute Y⊥ using a QR decomposition of Y . The
orthogonal complement Y⊥ is then just given by Q2 ∈ Rn×(n−p) which is part of the decomposition
of the orthogonal matrix Q = [Q1, Q2] ∈ Rn×n.
For the basis of the tangent space one obtains

{Bij} = {Y⊥Eij} . (2.91)

The Riemannian metric for the Grassmann manifold, defined on the tangent space TXGr(n, p), is
given by

〈R,S〉X = TrRTS, (2.92)

which is just the inner product of its embedding space restricted to the manifold.

Exponential map

Let X,R span X ,R, respectively and let UΣV T denote the thin singular value decomposition of R
with U ∈ Rn×p, Σ ∈ Rp×p and V ∈ Rp×p. Then

expX (R) = span
(
XV cos ΣV T + U sin ΣV T

)
. (2.93)

Logarithm map

Let X,Y span X ,Y, respectively and let UΣV T denote the thin singular value decomposition of
Z = πX⊥σX(Y) = (1n −XXT)Y (XTY)−1. This can be interpreted as choosing a locally unique
representative of Y with respect to the affine cross section defined by X and subsequently projecting
it back to the tangent space TXGr(n, p) at X . The map is given by

logX(Y) = U arctan ΣV T . (2.94)

Distance function

Using the exponential map, one can easily define a geodesic distance function on the Grassmann
manifold which is induced by its Riemannian metric 2.92. The distance function is given by the
principal angles θi between the subspaces

d2
g(X,Y) = ‖θ‖22 =

p∑
i=1

θ2
i , (2.95)

where the the principal angles can be obtained by computing the singular value decomposition of
XTY .

XTY = UΣV T = U cos ΘV T (2.96)
Σ = diag(σ1, · · · , σp) (2.97)
Θ = diag(θ1, · · · , θp) = diag(arccosσ1, · · · , arccosσp). (2.98)

The distance function (2.95) has the disadvantage that due to the occurrence of the arccosine and
the singular value decomposition, analytic expression are much harder to obtain.

To avoid this problem, following Absil’s [3] approach, an equivalent norm can be chosen, the
so-called projection Frobenius norm, given by

d2
P (X,Y) =

1

2
‖XXT − Y Y T ‖2F =

p∑
i=1

sin2 θi. (2.99)

26

First derivatives of the distance function
∂d2(X,Y)

∂X
= 2

(
XXT − Y Y T

)
X. (2.100)

Second derivatives of the distance function
∂2d2(X,Y)

∂X∂X
= 2

[(
XTX ⊗ 1n

)
+
(
1p ⊗ (XXT − Y Y T)

)
+
(
XT ⊗X

)
Knp

]
. (2.101)

The mixed derivative is given by

∂2d2(X,Y)

∂X∂Y
= −2

[(
XTY ⊗ 1n

)
+
(
XT ⊗ Y

)
Knp

]
. (2.102)

2.5 Fréchet derivatives of matrix logarithm and square root
To use the derivative expressions computed above, one needs the so-called Kronecker form of the
Fréchet derivative. The Fréchet derivative of a matrix valued function f : Rn×n → Rn×n at a point
X ∈ Rn×n is a linear function mapping E ∈ Rn×n to Lf (X,E) ∈ Rn×n such that

f(X + E)− f(X)− Lf (X,E) = o(‖E‖). (2.103)

Chain rule and inverse function theorem also hold for the Fréchet derivative:

Lf◦g(X,E) = Lf (g(X)), Lg(X,E)) (2.104)
Lf (X,Lf−1(f(X), E)) = E. (2.105)

As the formulation of the derivatives of the distance function, the Fréchet derivative can also be
brought in the Kronecker form in which it is represented as map Kf : Rn2 → Rn2

, such that
Kf (X) ∈ Rn2×n2

is defined by

vec(Lf (X,E)) = Kf (X) vec(E). (2.106)

Here vec : Rn×n → Rn2

denotes the column-wise vectorization operator.

2.5.1 Derivative of the matrix square root
Start by considering the Fréchet derivative of f(X) = X2, which is given by

LX2(X,E) = XE + EX. (2.107)

Applying the inverse function theorem consequently leads to

LX2(X
1
2 , L

X
1
2

(X,E)) = X
1
2L

X
1
2

(X,E) + L
X

1
2

(X,E)X
1
2 = E, (2.108)

where the last equality shows that the Fréchet derivative of the matrix square root L
X

1
2
(X,E)

satisfies the Sylvester equation

X
1
2L+ LX

1
2 = E, L := L

X
1
2

(X,E). (2.109)

The Kronecker representation K
X

1
2
can now be obtained by using the vectorization operator on

both sides of the equation and rearrange the term to the form (2.106) which leads to

K
X

1
2

(X) =
[(
1⊗X 1

2

)
+
(
X

1
2T ⊗ 1

)]−1

. (2.110)

Since the main application of this computation will be for the case n = 3, (2.110) can be directly
implemented by explicitly calculating the inverse of the 9× 9 matrix

(
1⊗X 1

2

)
+
(
X

1
2T ⊗ 1

)
.

For general applications with much larger n, however, this approach has the disadvantage that
the inverse of a n2 × n2 matrix needs to be computed, which has computational complexity
O((n2)3) = O(n6). In that case, it might be favorable to choose a basis for Rn×n and solve the
Sylvester equation (2.109) for each of the n2 basis matrix elements individually. This is shown for
the Kronecker representation of the matrix logarithm in the next section.

27

2.5.2 Derivative of the matrix logarithm
For the logarithm, the implementation follows the approach described by Al-Mohy et al [5] which is
based on the differentiation of the Padé approximant to log(1 +X). Since the application is only
valid if the spectral radius of X is sufficiently small, the use of an inverse scaling and squaring
technique based on the relation

log(X) = 2 log(X
1
2) (2.111)

is necessary.

Application of the chain rule leads to

Llog(X,E0) = 2 log
(
X

1
2 , L

X
1
2

(X,E0)
)
. (2.112)

The second argument on the right hand side can again be written as solution E1 := L
X

1
2

(A,E0) of
an Sylvester-type equation

X
1
2E1 + E1X

1
2 = E0. (2.113)

Repeating the procedure s times results in

Llog(X,E0) = 2sLlog

(
X

1
2s , Es

)
(2.114)

X
1

2iEi + EiX
1

2i = Ei−1, i = 1, . . . , s (2.115)

where Es is obtained by successively solving the set of Sylvester equations defined in the second
line.

Finally, the Padé approximant of order m in its partial fraction form [17] is given by

rm(X) =

m∑
j=1

α
(m)
j (1 + β

(m)
j X)−1X (2.116)

where α(m)
j , β

(m)
j ∈ (0, 1) are the m-point Gauss-Legendre quadrature weights and nodes.

The derivative of (2.116) is then easily computed as

Lrm(X,E) =

m∑
j=1

α
(m)
j (1 + β

(m)
j X)−1E(1 + β

(m)
j X)−1 (2.117)

which leads to the final approximation of the matrix logarithm derivative,

Llog(X,E) ≈ 2sLrm

(
X

1
2s − 1, Es

)
. (2.118)

For the implementation of (2.118), algorithm 5.1 from [5] with fixed m = 7 is used.

Choose Eij , the single-entry matrices having 1 at (i, j) and zero everywhere else, as a basis for
Rn×n and compute the Fréchet derivative for every Eij . Then, by constructing its rows from
the vectorized, transposed Fréchet derivatives, the final Kronecker form of the derivative can be
obtained by

(KlogX)in+j,· = vec
(
Llog(X,Eij)T

)
. (2.119)

28

Chapter 3
The Manifold Total Variation
Minimization Template Library

The manifold total variation minimization template library (MTVMTL), which was developed in
the course of this thesis is an easy-to-use, fast C++14 template library for TV minimization of
manifold-valued two- or three-dimensional images.

The following chapter summarizes the capabilities of the library and introduces into its architecture
from a software engineering as well as high performance computing point of view. The last part,
describing the components in more detail, can also be understood as a high level documentation of
the library and includes some basic tutorial on its usage.

3.1 Capabilities
The following list provides a first overview of the implemented features. More detailed information
are found in the description of the components in Section 3.3 and the examples in Section 3.4.4.

Manifolds
• Real Euclidean space Rn

• Sphere Sn =
{
x ∈ Rn+1 : ‖x‖ = 1

}
• Special orthogonal group SO(n) =

{
Q ∈ Rn×n : QQT = 1,det(Q) = 1

}
• Symmetric positive definite matrices SPD(n) =

{
S ∈ Rn×n : S = ST , xTSx > 0 ∀x ∈ Rn \ {0}

}
• Grassmann manifold Gr(n, p) = St(n, p)/O(p)

Data
• 2D and 3D images

• Input/Output via OpenCV integration supporting all common 2D image formats

• CSV input for matrix valued data

• Input methods for raw volume image data as well as the NIfTI [24] format for DT-MRI images

• Various methods to identify damaged areas for inpainting

29

Functionals
• isotropic (only possible for IRLS) or anisotropic TV functionals

• first order TV term

• weighting and inpainting possible

Minimizer
• Iteratively reweighted least squares using Riemannian Newton method

• Proximal point

Visualizations
• OpenGL rotated cubes visualization for SO(3) images

• OpenGL ellipsoid visualization for SPD(3) images

• OpenGL volume renderer for 3D volume images

3.2 Design concepts
The next sections give more insights in the implementation details of the algorithms introduced in
the last chapter. The first part discusses the performance relevant changes in data representation
and computation with respect to the Matlab prototype, which is followed by a discussion of struc-
tural changes to make MTVMTL as modular and extendable as possible.

The next part is then dedicated especially to the question where and how parallelization is used
in the implementation. A related question is also the use of new language features of the C++11
and C++14 language standards which allow for a real compact formulation of the parallel code
segments. The section closes with a short description of those features.

3.2.1 Goals
Traditionally, there has always been a trade-off between performance and usability requirements
such as maintainability or extendability. A good example for that is the Basic Linear Algebra
Subprograms (BLAS) library, written in Fortran, and still considered one of the fastest libraries
in existence. For supercomputers, even versions with hand-optimized assembly code are used,
nevertheless calling the library directly from another high level language like C or C++ is quite
cumbersome. The code becomes larger and much harder to read.

Languages like C++, on the other hand, offer a lot of expressive power and make it possible,
through object oriented generic programming, to write compact, reusable and even fast, though
not as fast as Fortran, code. Nevertheless, with the development of template metaprogramming
techniques C++ is able to avoid the performance-usability trade-off to a certain degree, using
very elaborate compile time optimizations. Classical examples for these techniques are expression
templates [30], also used by the Eigen linear algebra library, and specifically variadic templates, as
used by MTVMTL. C++ was consequently the ideal choice for achieving high performance and the
usability requirements.

Performance

Since the core parts of the implementation are originally based on a Matlab prototype by Sprecher
[16], [10] and [23], one of the most important goals was a faster implementation with a smaller
memory footprint. On the test platform with two hyper-threaded 2.8GHz cores (Intel i5-2520) with

30

AVX vector extensions, the Matlab implementation froze for images larger than one Megapixel(MP).

Hence, the C++ implementation should enable the algorithm to be tested in a much broader scope
which is also closer to common picture sizes in image processing, especially since even smart phones
today easily produce pictures in the Megapixel range. In addition to that, also other factors affecting
the performance of the algorithm, such as cache locality and memory speed, can be investigated.

The main performance driver for this library is the multilevel-parallelization. Evidently, this does
not include the formulation of the IRLS minimization algorithm itself, due to the fact that it
is naturally an iterative method, but rather any possible subtask such as computation of the
functional values, gradient and Hessian, for example. On top of that, it was tried to maximize
cache locality on the loop level and free memory as soon as possible. On the other hand, data
that is used very often and requires costly recomputation, like the IRLS weights, are kept in memory.

In contrast to the original Matlab implementation, the computation of various quantities such as
weights, first and second derivatives is not realized with tensor products any more. For Matlab,
due to the low speed of its internal loop constructs, the approach is justified but in a pure C++
implementation other factors are more important. One reason for the change is improved readability
and maintainability of the code, since tensor products usually tend to become very convoluted,
especially for the manifolds with matrix representations. Also the modularization of the manifold
class is not straightforward any more, because the tensor products cannot be expressed as binary
operation depending on two manifold data points.

From a performance and parallelization perspective, contractions of tensor products are similar to
matrix products and usually require some sort of blocking scheme for parallelization. In addition to
that, because certain reshapes of the image container prior to the computation are necessary, the
dimensions to be summed over are not necessarily contiguous in memory. A high cache utilization
is consequently more difficult to achieve.
Finally, in order to formulate certain operations as tensor products, temporary tensors of the correct
dimensionality need to be created, which increases the memory consumption.

Another measure that significantly reduces the memory footprint for the IRLS minimizer, especially
for manifolds with matrix representations, is to only save gradient and Hessian in their local tangent
space basis representation, such that the degrees of freedom correspond the intrinsic manifold
dimension and not the dimension of the embedding space. This also reduces the time to solve the
sparse linear system.

Modularization and Extendability

In principle the programming paradigm in Matlab is still procedural resulting in a hierarchy of
functions for the various tasks. Handling different types of manifolds then usually requires switch
expressions in all functions that use manifold-specific functionality. Adding support for a new
manifold to the algorithm or modifying existing manifold functionality makes a modification of
all switch cases necessary. There is no single point of change but many source files need to be edited.

For the MTVMT Library an object oriented and generic programming approach was chosen, which
tries to model each variable component of the algorithm in a separate class, as independent of the
other components as possible. For general information on C++ design paradigm see, for example,
[2] or [6]. Differences in each class are represented by specializations of their primary class template.
The best example for that is the manifold class which has a specialization for every supported
manifold type and due to the fact that the functions implemented in those class specializations are
generally just functions of one or two elements of the manifold, they could also be used in other
projects which require the same functionality.

Interfaces between classes are provided by giving classes higher in the hierarchy template parameters

31

corresponding to lower classes: The class modelling the functional, for instance, has a manifold
type template parameter, as described in more detail in Section 3.3. Like all other component
classes, also the functional class can be extended by adding further specializations for other types
of functionals, that include for example higher order terms or have different fidelity terms [32].

Those specializations also have the advantage that the code is just in one file - a single point of
change - to increase readability and maintainability.

3.2.2 Levels of parallelization
Parallelization takes place on two levels. The first one is shared memory multi-threading imple-
mented with the OpenMP (OMP) language extensions. In most cases this is realized using the
so-called pixel-wise kernels of the Video++ (VPP) library, which makes it possible to map an
arbitrary function on all pixels of a set of image containers: The function is called for each tuple
of pixels having the same coordinates in their respective image. For the parallel execution each
processor is assigned a batch of image rows. If the pixel-wise kernels are not applicable, for example
if the needed subdomain of the image is too complicated, manual OpenMP loop parallelization is
used. Due to the fact that the 3D pixel-wise constructs are not implemented in the current version
of VPP, also an own 3D version of the pixel-wise kernels was implemented using OpenMP and
variadic templates to keep the code compact.

The alternative to the tensor product implementation is to use pixel-wise kernels to parallelize any
operation that requires iteration over an image container. For most computations, take for instance
the case of computing derivatives, only the pixel and its next neighbor in a given dimension are
needed. For calculating the forward derivatives one just has to call the pixel-wise kernel with two
subimages of the current working image: One with the last slice (of the given dimension) missing
and one with the first slice missing. At this point it must be noted that the concept of subimages
does not involve any copies but just works by using different addressing schemes for the same data
in the memory. The pixel-wise constructs are demonstrated in the following short Listing 3.1 and
further illustrated in Figure3.1:

Listing 3.1 Pixel-wise forward derivative computation

1 auto ca l c_f i r s t_arg_der iv = [&] (value_type& x , const weights_type& w, const ↘
· · · value_type& i , const value_type& n) { MANIFOLD: : deriv1x_dist_squared (i , n , x) ; x ∗= ↘
· · ·w; } ;

2
3 img_type YD1 = img_type (without_last_row) ;
4 vpp : : p ixe l_wise (YD1, weightsY_ | without_last_row , data_ . img_ | without_last_row , ↘
· · · data_ . img_ | without_first_row) | ca l c_f i r s t_arg_der iv ;

The advantage is that even though some function is evaluated for a pair of neighboring pixels which
are not adjacent in memory, the parallel processing is still always row-wise. Since rows in row-major
languages like C++ are contiguous in memory, one can avoid frequent memory access on distant
locations and consequently avoid cache thrashing to a certain degree.

The second level of parallelization is instruction level parallelism, also known as Single Instruction
Multiple Data (SIMD), which uses the processor’s vector extensions (e.g. SSE, AVX, NEON). The
CPU provides some additional, special SIMD registers with increased size of usually 128 bits to 512
bits such that multiple integer or floating point variables fit inside. Then an arithmetic operation
is simultaneously applied to all variables in the register (see Figure 3.2) such that theoretically
the amount of floating point operations is multiplied by the number of variables fitting in the register.

In order to achieve this speedup the data must be aligned in memory, which means the addresses of
pixels in memory must always be a multiple of the SIMD register size. Fortunately, that issue is
handled by the VPP and Eigen libraries enabling the compiler to perform the necessary vectorization
optimizations.

32

image | without_last_row image | without_first_row

0.6393,0.10901,0.063373,0.10901,0.282
22,0.21892,0.063373,0.21892,0.46295
0.83073,0.4944,-0.14061,0.4944,0.8103
5,0.068032,-0.14061,0.068032,0.43877
0.70315,0.46183,-0.18592,0.46183,0.77
49,-0.1918,-0.18592,-0.1918,0.31354
0.612,0.53833,-0.051118,0.53833,0.835
98,-0.12782,-0.051118,-0.12782,0.3396
1.0516,0.23578,-0.021786,0.23578,1.03
14,0.13044,-0.021786,0.13044,1.99470.
93888,0.40617,-0.016567,0.40617,1.036
5,0.21367,-0.016567,0.21367,0.995060.
54435,0.55342,-0.073952,0.55342,0.762
79,-0.062975,-0.073952,-0.062975,0.16

weightsY | without_last_row

1 2 3

0.6393,0.10901,0.063373,0.10901,0.282
22,0.21892,0.063373,0.21892,0.46295
0.83073,0.4944,-0.14061,0.4944,0.8103
5,0.068032,-0.14061,0.068032,0.43877
0.70315,0.46183,-0.18592,0.46183,0.77
49,-0.1918,-0.18592,-0.1918,0.31354
0.612,0.53833,-0.051118,0.53833,0.835
98,-0.12782,-0.051118,-0.12782,0.3396
1.0516,0.23578,-0.021786,0.23578,1.03
14,0.13044,-0.021786,0.13044,1.99470.
93888,0.40617,-0.016567,0.40617,1.036
5,0.21367,-0.016567,0.21367,0.995060.
54435,0.55342,-0.073952,0.55342,0.762
00.0 0.0 00.00 0. 0 00 0 0 00 0 0 0 0

YD1 | without_last_row

R

auto calc_first_arg_deriv = [&] (value_type& x, const weights_type& w, const value_type& i, const value_type& n)
{MANIFOLD::deriv1x_dist_squared(i, n, x); x *= w; };

12 3R

Pixel-wise Kernel

vpp::pixel_wise(
YD1,
weightsY_ | without_last_row,
data_.img_ | without_last_row,
data_.img_ | without_first_row)
| calc_first_arg_deriv;

R

1

2

3

CPUs

Figure 3.1: Parallel calculation of derivatives in y-direction and weighting using pixel-wise kernels.
For each pixel position (i, j) in the three input pictures, 1©, 2© and 3©, as well as in the output picture
R©, the pixel-wise kernel creates a tuple (Rij , 2ij , 1ij , 3ij) = (YD1i,j ,weightYi,j , Imagei,j , Imagei+1,j)
which is than used to call the specified lambda function. Depending on the row number of the pixel,
the calls are executed by different CPU cores.

+

+

+

+

=

=

=

=

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

+ =

(b) 1 SIMD Operation(a) 4 Scalar Operations

Figure 3.2: Instruction level parallelism using SIMD registers.

3.2.3 C++ techniques
The MTVMT Library tries to take advantage of new C++11 and C++14 language features in order
to speed up computations via compile-time optimizations and also make the code more compact
and readable. The most important tools in that regard are lambda functions and variadic templates
which are shortly described in the following section. For more details check, for example [20].

33

Lambda functions

A lambda function is basically a locally defined function object, which is able to capture variables
from the surrounding scope. The function can but needs not to be named. The corresponding
Matlab language construct is an anonymous function or function handle, usually defined using the
@ operator. The following listing shows the basic definitions and use cases of lambda functions:

Listing 3.2 Lambda functions

1 int i n i t = 5 ;
2 std : : vector<int> v {1 , 2 , 3 , 4} ;
3
4 // C++11 lambda func t i on f o r adding i n t e g e r s
5 // i n i t i s captured by r e f e r e n c e
6 auto f = [&] (int a , int b) {return a + b + i n i t ; } ;
7
8 // C++14 gene r i c argument lambda func t i on
9 // i n i t i s captured by value

10 auto g = [=] (auto a , auto b) {return a + b + i n i t ; } ;
11
12 // Cal l named lambda func t i on s
13 int d = f (8 , 3) ;
14 double e = g (1 . 0 f , 5) ;
15
16 // or d i r e c t l y pass anonymous lambda func t i on as argument
17 std : : t rans form (v . begin () , v . end () , v . begin () , [] (auto x) { ++x ; }) ;

In the MTVMT library, lambda functions provide the connection between the static manifold
methods and the pixel-wise kernels which apply them to the image containers. A typical case can
be seen in the already introduced listing 3.1. Since lambda functions are only locally defined, in
the scope where they are actually needed, one can avoid making the method list of the classes
unnecessary long.

Variadic templates

With variadic templates it is possible to define functions which take a variable number of arguments.
Obviously, this is also possible in other languages like Matlab or C with the most prominent
example being the function printf. However, this is usually implemented using some list type
(in C: va_list), which adds additional overhead, whereas in C++ it is realized via a special kind
of template metaprogramming technique, which is recursive in nature. The recursion, in turn,
is resolved at compile-time and leads to code that is actually equivalent to manually defining a
function with the desired number of arguments, and consequently there is no additional runtime
effort.

Listing 3.3 Variadic template example

1 // Recurs ion base case
2 template<typename T>
3 T sum(T v) {
4 return v ;
5 }
6
7 // Recurs ive template
8 template<typename T, typename . . . Args>
9 T sum(T f i r s t , Args . . . a rgs) {

10 return f i r s t + sum(args . . .) ;
11 }

The main application for this constructs in MTVMTL is the implementation of the Karcher mean,
needed for the proximal point implementation, and MTVMTL’s own version of the 3D pixel-wise
kernels.

3.3 Components
In the following section the different components of the library are discussed. For the manifold
class, this will be done in more detail to enable users to use new or customized manifold classes. A
general overview of all the components is provided in Figure 3.3.

34

Manifoldmatrix_utils

Value representation & Manifold functions

Data

Data representation & I/O

Functional

Functional representation & computation

TV_Minimizer

Minimizers

algo_traits

Visualization

Visualizers

Eigen
VPP

OpenCV

OpenGL

Eigen

SuiteSparse

Eigen

func_ptr_utils

CGAL

VPP

VPP Manifold
Total
Variation
Minimization
Template
Library

Figure 3.3: Overview of the class hierarchy and dependencies between the library components and
also third party libraries

3.3.1 Manifold class
The manifold template class encapsulates all information and methods related to the differential
geometric structure of the data. This enables the generic implementation of the functionality higher
in the class hierarchy such as functional evaluations or minimizers. The primary template has the
following parameters

1 // Primary Template
2 template <enum MANIFOLD_TYPE MF, int N, int P=0>
3 struct Manifold {
4 } ;

where MF is an enumeration constant to specify the type of the manifold, N denotes the dimension of
the representation space and P the dimension of subspaces, as in the case of Grassmann manifolds.
In order to add a new manifold one just has to implement a specialization of this primary template.

So far, the manifold class contains functionality necessary for TV minimization using either the
IRLS or proximal point algorithm and furthermore some additional operations that are needed for
supporting tasks like interpolation and smoothing. The class specializations are implemented using
only static constants and methods: At no time it is necessary or desired to actually instantiate
the class. The methods itself are usually unary or binary functions, with parameters and result all
passed by reference to avoid copies. Since these methods are called very often, basically for every
pair of neighboring pixels, they are all declared inline in order to support the compiler during the
code optimization.

It is also possible to use these class specializations in other projects requiring similar functionality,
like for instance when implementing a geodesic finite element solver.

In the following, excerpts of the SPD implementation are shown to illustrate which information
and functionality a new manifold class needs to provide and to give an overview of the available
functions.

Static constants

1 stat ic const MANIFOLD_TYPE MyType ; // SPD
2 stat ic const int manifold_dim ; // N∗(N+1)/2
3 stat ic const int value_dim ; // N∗N
4

35

5 stat ic const bool non_isometric_embedding ;

The first constant just stores the manifold template parameter introduced above, while manifold_dim
and value_dim are the intrinsic dimensions of the manifold and of its embedding space, respectively.
Finally, the Boolean constant is just a flag which tells the algorithm that special pre- and post-
processing for interpolation is necessary.

Type definitions

To allow the generic formulation of the algorithms, the manifold class provides a mapping between
the types of their values, derivatives, tangent bases and underlying scalar type and their actual
representation as matrix and vector data types of the Eigen linear algebra library. Examples can
be seen in the following listing:

1 // Sca la r and value typede f s
2 typedef double sca lar_type ;
3 typedef double dist_type ;
4 typedef Eigen : : Matrix<scalar_type , N, N> value_type ;
5 // . . .
6
7 // Tangent space typede f s
8 typedef Eigen : : Matrix <scalar_type , N∗N, N∗(N+1)/2> tm_base_type ;
9 // . . .

10
11 // Der iva t ive Typedefs
12 typedef value_type deriv1_type ;
13 typedef Eigen : : sMatrix<scalar_type , N∗N, N∗N> deriv2_type ;
14 typedef Eigen : : Matrix<scalar_type , N∗(N+1)/2 , N∗(N+1)/2> res t r i c t ed_der iv2_type ;
15 // . . .

Static methods

Finally, the following methods are implemented for the manifold classes.

Riemannian distance function and its derivatives

1 in l ine stat ic dist_type dist_squared (cref_type x , cre f_type y) ;
2 // F i r s t d e r i v a t i v e s
3 in l ine stat ic void deriv1x_dist_squared (cref_type x , cre f_type y , deriv1_ref_type↘
· · · r e s u l t) ;

4 in l ine stat ic void deriv1y_dist_squared (cref_type x , cre f_type y , deriv1_ref_type↘
· · · r e s u l t) ;

5 // Second d e r i v a t i v e s
6 in l ine stat ic void deriv2xx_dist_squared (cref_type x , cre f_type y , ↘
· · · deriv2_ref_type r e s u l t) ;

7 in l ine stat ic void deriv2xy_dist_squared (cref_type x , cre f_type y , ↘
· · · deriv2_ref_type r e s u l t) ;

8 in l ine stat ic void deriv2yy_dist_squared (cref_type x , cre f_type y , ↘
· · · deriv2_ref_type r e s u l t) ;

Exponential and Logarithm map

1 template <typename DerivedX , typename DerivedY>
2 in l ine stat ic void exp (const Eigen : : MatrixBase<DerivedX>& x , const Eigen : :↘
· · ·MatrixBase<DerivedY>& y , Eigen : : MatrixBase<DerivedX>& r e s u l t) ;

3 in l ine stat ic void l og (cre f_type x , cre f_type y , ref_type r e s u l t) ;
4
5 in l ine stat ic void convex_combination (cre f_type x , cre f_type y , double t , ↘
· · · ref_type r e s u l t) ;

The parameters of the exponential here are not the manifolds own typedefs but the base class
of all Eigen matrix data types. The reason for using this construction is that the function can
also be called with composite expressions (e.g. XY + Z) without a temporary copy. Most of
the other functions are usually called with atomic expressions only, hence there is no need to
use this more complicated construction on a general basis.
The convex_combinations method computes the point z on the manifold reached by following
a unit speed geodesic connecting the points x and y for a time t.

36

Karcher mean

1 in l ine stat ic void karcher_mean (ref_type x , const va lu e_ l i s t& v , double t o l=1e↘
· · · −10, int maxit=15) ;

2 in l ine stat ic void weighted_karcher_mean (ref_type x , const we ight_l i s t& w, const ↘
· · · va lu e_ l i s t& v , double t o l=1e−10, int maxit=15) ;

3
4 // Var iad ic templated ve r s i on
5 template <typename V, class . . . Args>
6 in l ine stat ic void karcher_mean (V& x , const Args & . . . a rgs) ;

Implementations for finding the Karcher mean of an arbitrary number of points. The first
version requires the points to be stored in a std::vector container while the second version is
based on variadic templates and expects the arguments just as a comma separated list after
the first argument, where the final result will be stored. Creating the list for the first version
eventually requires copying and is consequently slower but has an overloaded version which
allows to compute a weighted Karcher mean

Tangent plane basis, projector and interpolation

1 // Bas i s t rans fo rmat ion f o r r e s t r i c t i o n to tangent space
2 in l ine stat ic void tangent_plane_base (cre f_type x , tm_base_ref_type r e s u l t) ;
3 // Pro j e c t i on
4 in l ine stat ic void p r o j e c t o r (ref_type x) ;
5 // I n t e r p o l a t i o n pre− and po s tp ro c e s s i ng
6 in l ine stat ic void i n t e rpo l a t i on_prep ro c e s s i ng (ref_type x) ;
7 in l ine stat ic void i n t e rpo l a t i on_pos tp ro c e s s i ng (ref_type x) ;

The first function computes a basis of the tangent space at the point x and stores it in result,
as columns of a matrix.
The projector, if defined for the given manifold, will project a point of the ambient embedding
spacing onto the manifold. This might either be an actual projector in the mathematical
sense or, as in the Euclidean case, a cutoff function which maps the data back into the desired
value range ([0, 1]n in the Euclidean case).
Interpolation pre- and postprocessing is necessary for instance for the SPD manifold. Other
manifolds must just provide an empty implementation.

3.3.2 Data class
The data class handles anything related to storage, input and output of two- or three-dimensional
image data, as well as some support functions for detecting edges and damaged areas in a picture.
In contrast to the manifold class, the data class needs to be instantiated such that a reference to
the data object can be passed to any class which needs data access. In addition to the dimension of
the picture, the data class takes a fully specialized manifold class type as a template parameter:

1 // Primary Template
2 template <typename MANIFOLD, int DIM >
3 class Data {
4 } ;

There are basically four multi-dimensional arrays stored in the data class: The original noisy
image, the current working image and, if applicable, arrays storing the inpainting and edge weight
information. For storage, the n-dimensional VPP [15] image container is used.

This image container class works very well together with the Eigen vector and matrix data types,
provides a variety of expressive loop- and iterator constructs and also takes care of the alignment of
the image data in memory, which is a prerequisite for the Single Instruction Multiple Data (SIMD)
optimization and vectorization by the compiler. Since the memory management of the container is
based on std::shared_pointer, it is also very easy to efficiently access subimages or slices of an
image without any copies.

The most common input methods for 2D and 3D are summarized in the following code snippet:

37

1 // 2D Input func t i on s
2 void rgb_imread (std : : s t r i n g f i l ename) ; // f o r R^3
3 void rgb_readBrightness (std : : s t r i n g f i l ename) ; // f o r R
4 void rgb_readChromaticity (std : : s t r i n g f i l ename) ; // f o r S^2
5 void readMatrixDataFromCSV(std : : s t r i n g f i l ename , const int nx , const int ny) ;
6
7 // Synthet i c SO/SPD p i c tu r e
8 void create_nonsmooth_son (const int ny , const int nx) ;
9 void create_nonsmooth_spd (const int ny , const int nx) ;

10
11 //3D Input func t i on s
12 void rgb_sl i ce_reader (std : : s t r i n g f i l ename , int num_slides) ;
13 void readMatrixDataFromCSV(std : : s t r i n g f i l ename , const int nz , const int ny , const int↘

· · · nx) ;
14 void readRawVolumeData (std : : s t r i n g f i l ename , const int nz , const int ny , const int nx)↘

· · · ;
15
16 // OutputFunctions
17 void rgb_saveimage (std : : s t r i n g fname) ; // save image
18 void rgb_show () ; //open images viewer
19
20 void output_matval_img (std : : s t r i n g f i l ename) const ; // save in CSV format

The purpose and usage of most of these methods is self-explanatory. The CSV readers expect the
data to be a linear list of pixels, where the components of each pixel are comma-separated and
row-wise flattened, such that each line of the input file contains exactly one pixel. The order of the
list is row-wise for 2D or slice-wise, then row-wise for 3D images, respectively.
The slice reader reads a series of images, following the filename scheme filenameX.ext, where X is
the number of the slice to be read into an image cube at z-coordinate X.

3.3.3 Functional class
In addition to fully specialized Manifold and Data class types (third and fourth template parameters),
there are three further template parameters that must be specified by the library user. The first
one is the order of the functional which refers to the order of the highest differential operator in the
TV term of the functional. So far, only first order functionals are implemented which corresponds
to setting ord=FIRSTORDER in the primary template shown below.

1 //Primary Template
2 template <enum FUNCTIONAL_ORDER ord , enum FUNCTIONAL_DISC disc , class MANIFOLD, class ↘
· · ·DATA, int DIM=2>

3 class Funct ional {
4 } ;

The second template parameter disc determines whether the isotropic or the anisotropic version is
to be used. Please note that for the proximal point algorithm only anisotropic is available. Finally,
the last parameter specifies the dimensionality of the data.
The main purpose of the functional class is to provide methods for the computation of all functional-
related quantities, such as evaluation of the functional, its gradient, Hessian and construction of a
local basis of the tangent spaces. That also means that in the IRLS case the functional class stores
the sparse linear system that needs to be solved in each Newton step.

For users of the library, the most important methods are those for setting the λ and ε2 parameters.

1 in l ine param_type getlambda () const { return lambda_ ; }
2 in l ine void setlambda (param_type lam) { lambda_=lam ; }
3 in l ine param_type geteps2 () const { return eps2_ ; }
4 in l ine void s e t ep s2 (param_type eps) { eps2_=eps ; }

Should it be necessary, it is also possible to access some of the stored quantities directly using

1 // Evaluat ion func t i on s
2 resu l t_type eva luateJ () ;
3 void evaluateDJ () ;
4 void evaluateHJ () ;
5
6 void updateTMBase () ;
7
8 in l ine const gradient_type& getDJ () const { return DJ_; }
9 in l ine const sparse_hessian_type& getHJ () const { return HJ_; }

10 in l ine const tm_base_mat_type& getT () const { return T_; }

38

The functions in lines 3, 4 and 6 merely trigger a recomputation while the last three functions
return references to these quantities. evaluateJ() returns the functional value and triggers the
recomputation of the weights.

3.3.4 TV minimizer class
For the TV minimizer class it makes sense to consider the IRLS and proximal point implementation
separately. The primary template is shown in the following code snippet.

1 //Primary Template
2 template <enum ALGORITHM AL, class FUNCTIONAL, class MANIFOLD, class DATA, enum ↘
· · ·PARALLEL PAR=OMP, int DIM=2>

3 class TV_Minimizer{
4 } ;

As in the previous cases one has to provide fully specialized manifold, data and also functional types.
Again, the last parameter specifies the dimension of the data. Of the remaining two parameters, PAR
has the default value OMP, which specifies the method of parallelization, in this case the OpenMP
language extensions. Other methods, including just serial execution, could be added later. The
remaining template parameter, AL specifies the minimizer to be used and can take the values IRLS
or PRPT (Proximal point).

For IRLS, the public class interface looks like

1 void f i r s t_gue s s () ; // F i r s t guess f o r i npa in t i ng
2 void smoothening (int smooth_steps) ; // Simple averag ing box f i l t e r
3 newton_error_type newton_step () ; // perform one newton step
4 void minimize () ; // f u l l minimizat ion
5
6 // Getters and Se t t e r s f o r parameters
7 void setMax_runtime (int t) { max_runtime_ = t ; }
8 void setMax_ir ls_steps (int n) { max_irls_steps_ = n ; }
9 void setMax_newton_steps (int n) { max_newton_steps_ = n ; }

10 void s e tTo l e rance (double t) { to lerance_ =t ; }
11
12 int max_runtime (int t) const { return max_runtime_ ; }
13 int max_irls_steps (int n) const { return max_irls_steps_ ; }
14 int max_newton_steps (int n) const { return max_newton_steps_ ; }
15 int t o l e r an c e (double t) const { return to lerance_ ; }

and for proximal point it is

1 use_approximate_mean (bool u) { use_approximate_mean_ = u ; } // turn mean approximation↘
· · · on/ o f f

2 void f i r s t_gue s s () ; // F i r s t guess f o r ↘
· · · i npa in t i ng

3
4 void updateF ide l i ty (double muk) ; // Update F i d e l i t y part
5 void updateTV(double muk, int dim , const weights_mat& W) ; // Update TV part
6
7 void geod_mean () ; // Ca lcu la te geode s i c mean
8 void approx_mean () ; // approximate mean us ing convex combinations
9

10 void prpt_step (double muk) ; // perform one proximal po int s tep
11 void minimize () ; // f u l l minimizat ion
12
13 // Getters and Se t t e r s f o r parameters
14 void setMax_runtime (int t) { max_runtime_ = t ; }
15 void setMax_prpt_steps (int n) { max_prpt_steps_ = n ; }
16
17 int max_runtime (int t) const { return max_runtime_ ; }
18 int max_prpt_steps (int n) const { return max_prpt_steps_ ; }

3.3.5 Visualization class
This class provides visualizations of 3D volume data and so far SO(3) and SPD(3) visualizations by
cubes and ellipsoids. If these are to be used in user code it is necessary to link against OpenGL,
GLUT and GLEW libraries, which is explained in more detail in section 3.4.3. The visualization
class has the following primary template.

39

1 //Primary Template
2 template <enum MANIFOLD_TYPE MF, int N, class DATA, int dim=2>
3 class Vi sua l i z a t i o n {
4 } ;

The class methods that are relevant to users of the library are summarized here:

1 void saveImage (std : : s t r i n g f i l ename) ;
2 void GLInit (const char∗ windowname) ;
3
4 void paint_inpainted_pixe l (bool s e tF lag) ;

The important function here is GLInit which initializes the rendering of the data. If one intends to
also save the image, on has to specify a filename using saveImage before calling GLInit. Finally,
paint_inpainted_pixel just sets a flag which decides whether inpainted pixels are not painted at
all (setFlag = false, default value) or if they are visualized with the value they have at the time
of rendering. Usually one wants to set this to true after the minimization to show the results.
A complete example is presented in section 3.4.4

SO(3) visualization

For the visualization of SO(3) data a unit volume cube centered at the origin of R3 with its front
face normal vector parallel to the y-axis is created. Then the rotation matrix representing the
SO(3) element is applied to the cube.

Figure 3.4: SO(3) Visualization as oriented, colored cubes

SPD(3) visualization

For SPD(3) matrices, there are six degrees of freedom, which in the case of DT-MRI pictures
correspond to the diffusion coefficients in different directions. Those can be visualized by ellipsoids
using three degrees of freedom for their orientation in space and the remaining three for the lengths
of their semi-axis.
Starting with the unit sphere centered at the origin, eigenvectors and eigenvalues are computed for
every SPD matrix. Due to the SPD property a full basis of eigenvectors with positive eigenvalues
always exists. The diagonal matrix formed by the vector of eigenvalues is applied as a scaling
transformation of the coordinate axis. The matrix whose columns are the computed eigenvectors
can then be interpreted as a rotation (or principal axis transformation of the ellipsoid).
To avoid large size difference and overlaps between the ellipsoids one should also normalize the
eigenvalues using the mean diffusivity µ defined by

µ =
1

3

3∑
i=1

λi. (3.1)

Finally, the color is defined by normalizing the largest eigenvector, called the principal direction,
and mapping its coordinates to the RGB color space, such that clusters of similar orientations can
be more easily visually distinguished.
In the case of 3D SPD images the rendering window also provides some controls over the view. The
up and down arrow keys can be used to zoom in and out of the picture, left and right keys pivot
the camera and with the s key, the image is saved using the filename specified before.

40

Figure 3.5: SPD(3) Visualization as oriented, colored ellipsoids

(a) Side View (b) Top View (c) Closeup (d) Inside

Figure 3.6: Example of the 3D data Visualization of SPD(3) images from different viewpoints. The
’helix’ synthetic tensor data set, produced with the tend program in the Teem toolkit[29]

3D volume image rendering

The volume image renderer just transforms the data to a 3D texture which is then mapped
onto a cube rotating about the z-axis. Plasticity is created by setting the alpha channel of each
displayed voxel to the intensity value of the corresponding data voxel, such that dark areas are
more transparent. The following Figure 3.7 shows the rendered volume from different angles.

Figure 3.7: 3D Volume image using texture based rendering.

3.3.6 Utility functions
Algorithm traits

The algorithm traits class contains standard values for the IRLS algorithm, like the number of
IRLS iterations, number of Newton iterations and maximal runtime. It also contains the standard
solver for the linear system. If the solver needs to be switched it must be changed in this file. All
other parameters can be changed using the methods provided by the TV minimizer class.

Matrix functions

In the file matrix_utils.hpp additional matrix functions not included in the Eigen library are
implemented. So far, these are only the methods for the computation of the Fréchet derivatives of
matrix square root and logarithm, as well as their Kronecker representations.

41

Function pointers utilities

Located in the file func_ptr_utils.hpp, there are some auxiliary functions needed to transform
pointers to class member functions to plain C function pointers. The latter are required by the
OpenGL and GLUT library API.

3D pixel-wise kernels

The 3D version of the pixel-wise kernels along with useful tools based on them, for copying or filling
3D images.

3.4 Using MTVMTL
The following section serves as tutorial and illustrates the steps that must be taken from the
installation to the first compiled code using the library. In the first part mandatory and optional
requirements are listed, then installation of the library and the compilation process are explained.
Finally, three use cases are illustrated with code examples.

3.4.1 Prerequisites
The main dependencies of MTVMTL are the Eigen C++ template library for linear algebra and
the Video++ video and image processing library. Those libraries, as well as MTVMTL’s core
functionality are provided as header-only libraries. There are, however, some additional static
libraries that are recommended to speed up the computation, enable easy I/O or which are needed
for visualization of the results. To administer all these different parts, and because the header-only
libraries require additional compiler flags for the code optimization, MTVMTL also relies on the
CMake installation tool for installation and compilation of user code using MTVMTL.

The following list shows the needed packages for the usage of MTVMTL:

• CMake (≥ 2.8.0)

• gcc (≥ 4.9.1), any C++14 compatible compiler should also be possible but is untested.

• Eigen (≥ 3.2.5)

• Video++ (a version will be provided with the MTVMTL, otherwise consider [15])

• Boost (≥ 1.56) (also needed for CGAL)

Recommended are also the following packages. They are needed if any of the described extended
functionality needs to be used.

• OpenCV (≥ 2.4.9), for image input and output, edge detection for inpainting

• CGAL (≥ 4.3), for first guess interpolation during inpainting

• OpenGL (≥ 3.0), GLEW(≥ 1.10) and freeGLUT(≥ 2.8.1), for visualizations of SPD, SO and
any 3D data

• SuiteSparse (≥ 4.2.1), faster parallel sparse solver for the linear system in the IRLS algorithm

• SuperLU (≥ 4.3), faster parallel sparse solver for the linear system in the IRLS algorithm

Some care must be taken with the version recommendations. Usually there are no compatibility
issues if only the minor software version changes but for major version updates it must be checked
whether the new version’s API is still backwards compatible.

42

3.4.2 Installation
Using CMake, the installation of the library is very easy. The procedure is described for a Linux
system here. Since CMake is a platform-independent tool, the installation consists of two steps:
First, creating the installation files for a platform-dependent make-system, in this case the Unix
tool make, using CMake and second, the actual installation using make.

Once the library is downloaded, change into the directory of the library containing the mtvmtl

folder and the CMakeLists.txt file. Next, create the installation files in the current directory or in
a newly created one. The latter is done by

1 mkdir bu i ld
2 cd bu i ld
3 cmake . .

The last command will prepare the installation at the standard location of libraries on the system,
which is usually /usr/include or /usr/local/include. If this location is not desired or possible,
due to access restrictions on the system, an alternative installation path has to be provided as
additional parameter:

1 cmake . . −DCMAKE_INSTALL_PREFIX=/path/ to / de s i r ed / l o c a t i o n /

Finally, start the installation by typing

1 make i n s t a l l

which will perform not only the installation of MTVMT library but also of the VPP library and its
dependencies. Note that all other libraries utilized by MTVMTL need to be installed manually.
This is, however, not a problem since they are usually included in the package manager of every
major Linux distribution.

3.4.3 Compilation of own projects using CMake
For the compilation of user code using CMake a file with the name CMakeLists.txt must be provided
in the same directory as the user code. Note that this file is used to compile code using the library
and is different from the CMakeLists.txt file provided for the library installation. This file contains
all the information about the locations of header files and external library code as well as compiler
optimization flags.

In Listing 3.4 an example is provided for the compilation of a user application my_executable

with a single source file mysource.cpp. The example is minimal in the sense that it is only for the
compilation of a single executable and maximal in the sense that it links the executable against any
possible external library used by MTVMTL.

The most important lines for the user are the last two. In the first of these lines, an executable
is added by providing its name (my_executable) and the source file(s) (mysource.cpp) it depends
on. Next, one must specify the external libraries the executable is linked against using the
target_link_libraries() command. It expects the executable as the first parameter and then a
space-separated list of all target libraries.

Listing 3.4 Example CMakeLists.txt

1 cmake_minimum_required (VERSION 2 . 8)
2
3 l i s t (APPEND CMAKE_MODULE_PATH "/FULL/PATH/TO/MTVMTL/INSTALLATION/LOCATION/ inc lude /↘
· · ·mtvmtl/ SparseSuiteSupport ")

4
5 f ind_package (OpenGL REQUIRED)
6 f ind_package (GLUT REQUIRED)
7 f ind_package (GLEW REQUIRED)
8 i n c l ud e_d i r e c t o r i e s (${OPENGL_INCLUDE_DIRS} ${GLUT_INCLUDE_DIRS})
9

10 f ind_package (OpenCV REQUIRED)
11 f ind_package (CGAL REQUIRED)

43

12 i n c lude (${CGAL_USE_FILE})
13
14 f ind_package (Cholmod REQUIRED)
15 f ind_package (SuperLU REQUIRED)
16
17 i n c l ud e_d i r e c t o r i e s (${CMAKE_CURRENT_SOURCE_DIR} / . . / usr / inc lude / super lu / usr / inc lude /↘

· · · e igen3
18 /FULL/PATH/TO/MTVMTL/INSTALLATION/LOCATION/)
19 add_de f in i t i ons (− std=c++14 −g −fopenmp)
20 add_de f in i t i ons (−Ofast −march=nat ive)
21 add_de f in i t i ons (−DNDEBUG)
22
23 add_executable (my_executable mysource . cpp)
24 t a r g e t_ l i nk_ l i b r a r i e s (my_executable gomp ${OpenCV_LIBS} ${CGAL_LIBRARIES} ${↘

· · ·CHOLMOD_LIBRARIES} ${SUPERLU_LIBRARIES} ${OPENGL_LIBRARIES} ${GLUT_LIBRARY} ${↘
· · ·GLEW_LIBRARIES})

In the following steps it will be assumed that the library was installed to /usr/include. Furthermore,
the current working directory is /home/username/myMTVMproject, which contains some code the user
has written using MTVMTL, namely mysource.cpp. Thus, the CMakeLists.txt should be created
in the same directory and the placeholders in lines 3 and 18 of Listing 3.4 should be modified to
/usr/include/mtvmtl/SparseSuiteSupport and /usr/include, respectively.

For the actual compilation, create a separate directory called project_build and change to this
directory.

1 mkdir pro j ec t_bui ld
2 cd pro jec t_bui ld

Next, call cmake providing the source directory which contains your CMakeLists.txt file as argument.

1 cmake . . / s r c /

If everything was configured correctly, the output should look similar to the following.

1 −− The C compi ler i d e n t i f i c a t i o n i s GNU 4 . 9 . 2
2 −− The CXX compi ler i d e n t i f i c a t i o n i s GNU 4 . 9 . 2
3 −− Check for working C compi ler : / usr / bin / cc
4 −− Check for working C compi ler : / usr / bin / cc −− works
5 −− Detect ing C compi ler ABI i n f o
6 −− Detect ing C compi ler ABI i n f o − done
7 −− Detect ing C compile f e a t u r e s
8 −− Detect ing C compile f e a t u r e s − done
9 −− Check for working CXX compi ler : / usr / bin /c++

10 −− Check for working CXX compi ler : / usr / bin /c++ −− works
11 −− Detect ing CXX compi ler ABI i n f o
12 −− Detect ing CXX compi ler ABI i n f o − done
13 −− Detect ing CXX compile f e a t u r e s
14 −− Detect ing CXX compile f e a t u r e s − done
15 −− Found OpenGL : / usr / l i b 6 4 / libGL . so
16 −− Found GLUT: / usr / l i b 6 4 / l i b g l u t . so
17 −− Found GLEW: / usr / inc lude
18 −− Build type : Re lease
19 −− USING CXXFLAGS = ’−march=co r e i 7 −mtune=nat ive −O2 −pipe −msse3 −msse4 −mcx16 −msahf↘

· · · −mpopcnt −f rounding−math −O3 −DNDEBUG’
20 −− USING EXEFLAGS = ’ −Wl,−O1 −Wl,−−as−needed ’
21 −− Targett ing Unix Make f i l e s
22 −− Using / usr /bin /c++ compi ler .
23 −− Requested component : MPFR
24 −− Requested component : GMPXX
25 −− Requested component : GMP
26 −− Found CHOLMOD: / usr / inc lude
27 −− Found SUPERLU: / usr / inc lude / super lu
28 −− Conf igur ing done
29 −− Generating done
30 −− Build f i l e s have been wr i t t en to : [path−to−bui ld−f o l d e r] / pro j ec t_bui ld

Finally, type

1 make my_executable

to build the program resulting in the creation of the final executable program my_executable in the
folder /home/username/myMTVMproject/project_build/.

44

3.4.4 Tutorial and typical use cases
The basic process of using the library is to explicitly specify the necessary template parameters
for all needed components. For the sake of compactness and readability this should be done using
typedefs. In the next step one can then instantiate the classes and start implementing.

Image denoising, vectorial color model

As a first example, denoising of a simple color picture using the IRLS minimizer is demonstrated.
In a first step the necessary classes need to be included. For the sake of shortening the code the
namespace tvmtl of the library is used.

Listing 3.5 Inclusion of library headers

1 #include <mtvmtl/ core / a l go_t ra i t s . hpp>
2 #include <mtvmtl/ core /tvmin . hpp>
3
4 using namespace tvmtl ;

Next, specify the manifold type and data type, in this case Euclidean R3 and a corresponding 2D
image container

Listing 3.6 Specification of manifold and data type

1 typedef Manifold< EUCLIDIAN, 3 > mf_t ;
2 typedef Data< mf_t , 2> data_t ;

Note that the data type must be specified using the fully specialized manifold class type defined in
the line before.
The data type is now ready for work such that the input data can be read in the next few lines.

Listing 3.7 Initialization and input of image data

1 data_t myData=data_t () ; // Creat ing the data ob j e c t
2 myData . rgb_imread (f i l ename) ; // Reading an image f i l e , f i l ename i s a const char∗

After the data object is ready one must specify the functional, in this example first order TV,
isotropic and 2D. Again, also the fully specialized manifold and data class types need to be given
as template parameters. The last template parameter, the dimension of the data, has default value
2 and can also be omitted in this case.

Listing 3.8 Defining the functional and setting parameters

1 typedef Functional<FIRSTORDER, ISO , mf_t , data_t , 2> func_t ;
2
3 func_t myFunc(lambda , myData) ; // Creat ion o f the f un c t i ona l ob j e c t
4 myFunc . s e t ep s2 (1 e−10) ; // Spec i f y the ep s i l o n parameter

For the instantiation of the functional you need to pass the λ for your functional as well as your
newly created data object. The seteps2 method sets the value of ε2 for the reweighting computation.
In case of the proximal point algorithm it should be set to zero.

Listing 3.9 Choosing the minimizer, smoothing and minimization

1 typedef TV_Minimizer< IRLS , func_t , mf_t , data_t , OMP, 2> tvmin_t ;
2
3 tvmin_t myTVMin(myFunc , myData) ; // Creat ion o f minimizer ob j e c t
4
5 myTVMin. smoothening (5) ; // smoothing to obta in be t t e r s t a r t i n g value
6 myTVMin. minimize () ; // S ta r t s the minimizat ion

45

Finally, choose the minimizer, in this case IRLS, and pass functional, manifold and data types as
template parameters. The OMP parameter is not fully implemented yet and is supposed to provide
choice between different parallelization schemes or also completely serial computation. The last
parameter again has default value 2 and describes the dimension of the data.
The complete listing of this example can be found in Appendix A.

Colorization using color inpainting

In the following a more complicated example is shown: Recolorization of an image where most(≈99%)
color information has been removed. This means that this problem is defined on the product
manifold S2 × R. Optimization, however, will only take place on S2 while the R data part is only
needed to obtain edge information. Also three auxiliary functions (removeColor, DisplayImage,
recombineAndShow) are used here that are not shown in the code snippets but will be included in
the full listing in Appendix A. This time, also some of the minimization parameters are obtained
from the command line:

Listing 3.10 Include library files and read parameters from standard input

1 #include <iostream>
2 #include <st r ing >
3 #include <cmath>
4
5 #include <opencv2/ highgui / h ighgui . hpp>
6 #include <mtvmtl/ core / a l go_t ra i t s . hpp>
7 #include <mtvmtl/ core /data . hpp>
8 #include <mtvmtl/ core / f un c t i ona l . hpp>
9 #include <mtvmtl/ core /tvmin . hpp>

10
11 #include <vpp/vpp . hh>
12 #include <vpp/ u t i l s / opencv_bridge . hh>
13
14 using namespace tvmtl ;
15
16 int main (int argc , const char ∗argv [])
17 {
18 i f (argc < 3) {
19 std : : c e r r << "Usage : " << argv [0] << " image [lambda] [th r e sho ld] " << std : :↘

· · · endl ;
20 return 1 ;
21 }
22
23 double lam=0.01;
24 double th r e sho ld =0.01;
25
26 i f (argc == 4) {
27 lam=ato f (argv [2]) ;
28 th r e sho ld=ato f (argv [3]) ;
29 }
30
31 std : : s t r i n g fname (argv [1]) ;
32
33 // . . .
34
35 }

Here threshold defines the percentage of color information that remains in the picture.
In the next step, make the necessary type definitions for manifold and data classes and create the
data objects.

Listing 3.11 Manifold and Data class type definitions and instantiation

1 // typede f s
2 typedef Manifold< SPHERE, 3 > spheremf_t ; // S^2
3 typedef Manifold< EUCLIDIAN, 1 > eucmf_t ; // R
4
5 typedef Data< spheremf_t , 2> chroma_t ; // Chromatic ity part
6 typedef Data< eucmf_t , 2> bright_t ; // Br ightnes s part
7
8 // I n s t a n t i a t i o n
9 chroma_t myChroma=chroma_t () ;

10 bright_t myBright=bright_t () ;

46

When the data containers are ready, one needs to read the input picture, extract color and brightness
information and store it in the respective objects. This problem is basically a color inpainting
problem but the reconstructed color should not blur across edges in the picture. This can be solved
by making use of the edge weights array that is stored together with the image. Edges can be
detected in the brightness part of the picture and used in the chromaticity denoising procedure.
Finally, the color is removed in the following way: Create a random inpainting matrix where the
probability a certain pixel is set to false is given by the threshold variable and then replace every
RGB pixel by the mean of its three color components (those pixels are basically grayscale then).
The necessary steps are shown in the next listing

Listing 3.12 Color and brightness input, edge detection and color removal

1 myBright . rgb_readBrightness (argv [1]) ; // Extract b r i gh tne s s from f i l ename argv [1]
2 myBright . f indEdgeWeights () ; // Detect edges and s t o r e in matrix
3
4 myChroma . rgb_readChromaticity (argv [1]) ; // Extract chromat i c i ty from f i l ename argv [1]
5 myChroma . inpaint_=true ; // Turn inpa in t i ng on
6 myChroma . setEdgeWeights (myBright . edge_weights_) ; // I n i t i l i a z e chromat i c i ty part edges↘
· · · with b r i gh tne s s part edges

7 myChroma . createRandInpWeights (th r e sho ld) ; // Create random inpa in t i ng matrix
8 removeColor (myChroma , myBright) ; // Remove c o l o r
9

10 // Recombine chromat i c i ty and br i gh tne s s and show the c o l o r l e s s image
11 recombineAndShow (myChroma , myBright , " c o l o r l e s s_ "+fname , "Colors removed Pic ture ") ;

The next part works almost exactly as in the last example. Define functional, set its parameters, then
define the minimizer. The only difference is that one has to run first_guess before the minimization.

Listing 3.13 Functional and minimizer definition, first guess and minimization

1 typedef Functional<FIRSTORDER, ISO , spheremf_t , chroma_t> cfunc_t ;
2 typedef TV_Minimizer< IRLS , cfunc_t , spheremf_t , chroma_t , OMP > ctvmin_t ;
3
4 cfunc_t cFunc (lam , myChroma) ; // c r ea t e f un c t i ona l ob j e c t
5 cFunc . s e t ep s2 (1 e−10) ; // s e t eps^2 parameter
6
7 ctvmin_t cTVMin(cFunc , myChroma) ; // c r ea t e minimizer ob j e c t
8 cTVMin . f i r s t_gue s s () ; // f i r s t guess
9

10 std : : cout << " Star t TV minimizat ion . . . " << std : : endl ;
11 cTVMin . minimize () ;
12
13 // Recombine Br ightnes s and Chromatic ity par t s o f r e c o l o r ed Pic ture
14 recombineAndShow (myChroma , myBright , " reco lored_"+fname , "Recolored Pic ture ") ;

Some visual results of the above code are also shown in Section 4.1.4.

3D DT-MRI data denoising and visualization

As a final example, a more complicated manifold, SPD(3) in this case, is chosen, as well as 3D data
to demonstrate the use of the visualization classes. Moreover, the proximal point algorithm will
be used in this example. The CSV reader just reads a list of pixels where the numerical values
comprising the pixel are stored comma-separated, one pixel per line. The CSV file has no header
such that the dimensions must be provided as command line parameters.

Listing 3.14 Initialization

1 #include <iostream>
2 #include <cs td l i b >
3 #include <st r ing >
4 #include <sstream>
5
6 #include <mtvmtl/ core / a l go_t ra i t s . hpp>
7 #include <mtvmtl/ core /data . hpp>
8 #include <mtvmtl/ core / f un c t i ona l . hpp>
9 #include <mtvmtl/ core /tvmin . hpp>

10 #include <mtvmtl/ core / v i s u a l i z a t i o n . hpp>
11
12 int main (int argc , const char ∗argv [])
13 {
14 int nz , ny , nx ;
15 nz = std : : a t o i (argv [2]) ;
16 ny = std : : a t o i (argv [3]) ;

47

17 nx = std : : a t o i (argv [4]) ;
18
19 std : : s t r ing s t r eam fname ;
20 std : : s t r i n g nfname ;
21 fname << " dt i3d " << nz << "x" << ny << "x" << ny << " . png" ;
22 nfname = "noisy_" + fname . s t r () ;
23
24 // . . .
25
26 return 0 ;
27 }

Since the meaning of the individual components should be clear by now, all the necessary type
definitions are made at once in the next listing

Listing 3.15 Type definitions, Visualization type

1 using namespace tvmtl ;
2
3 typedef Manifold< SPD, 3 > mf_t ;
4 typedef Data< mf_t , 3> data_t ;
5 typedef Functional<FIRSTORDER, ANISO, mf_t , data_t , 3> func_t ;
6 typedef TV_Minimizer< PRPT, func_t , mf_t , data_t , OMP, 3 > tvmin_t ;
7 typedef Vi sua l i z a t i on <SPD, 3 , data_t , 3> visua l_t ;

The only innovation is the aforementioned Visualization class. The first 3 in its template parameter
list is the embedding dimension of the manifold and the last 3 denotes the dimension of the data.
Note this time it was necessary to specify it for the functional and minimizer classes, as well, because
the default value is 2. The remaining parameters specify the manifold type via an enumeration
constant (in the same way one specifies it for the Manifold class) and the data type via a fully
specialized data class type.

Prior to the minimization, one usually wants to display the original noisy data and eventually save
it to a file. The necessary steps are as follows:

Listing 3.16 Data input and displaying the noisy data

1 data_t myData = data_t () ; // Create data ob j e c t
2 myData . readMatrixDataFromCSV(argv [1] , nz , ny , nx) ; // Read from CSV f i l e
3
4 vi sua l_t myVisual (myData) ; // Create v i s u a l i z a t i o n ob j e c t
5 myVisual . saveImage (nfname) ; // Spec i f y f i l e name to save a s c r e en sho t
6
7 std : : cout << " Sta r t i ng OpenGL−Renderer . . . " << std : : endl ;
8 myVisual . GLInit ("SPD(3) E l l i p s o i d V i s u a l i z a t i o n ") ; // Star t the Rendering

In the last step, create functional and minimizer class, perform the minimization and display the
denoised data again.

Listing 3.17 Minimization and final rendering

1 double lam=0.7;
2 func_t myFunc(lam , myData) ; // Funct ional ob j e c t
3 myFunc . s e t ep s2 (0) ; // eps^2 should be 0 f o r PRPT
4
5 tvmin_t myTVMin(myFunc , myData) ; // Minimizer ob j e c t
6
7 std : : cout << " Star t TV minimizat ion . . " << std : : endl ;
8 myTVMin. minimize () ;
9

10 std : : s t r i n g dfname = "denoised (prpt)_" + fname . s t r () ;
11 myVisual . saveImage (dfname) ; // Spec i f y name f o r deno ised image
12
13 std : : cout << " Sta r t i ng OpenGL−Renderer . . . " << std : : endl ;
14 myVisual . GLInit ("SPD(3) E l l i p s o i d V i s u a l i z a t i o n ") ; // Render

The resulting picture for this example is shown in 4.3.3.

48

Chapter 4
Applications and Numerical Experiments

In the first part of the chapter the algorithms are applied to a variety of problems in image processing,
computer vision, medical imaging and related fields. The second part will be dedicated to a perfor-
mance analysis of the IRLS algorithm, a comparison to the proximal point minimizer and will close
with a numerical experiment investigating the dependence of the solution on changes in the noisy pic-
ture. This is a first step in extending the IRLS algorithm towards recursive splitting into subdomain.

The test platform is a Linux machine with two hyper-threaded 2.8GHz cores Intel i5-2520 (thus a
total of four hardware threads) with AVX vector extensions and 8 GB RAM.

4.1 Image denoising
The most basic application of the algorithm is denoising of a common 2D grayscale or color pictures.
For grayscale pictures the TV minimization is performed over the Euclidean manifold M = R,
while for color pictures there is either M = R3 for the linear-vectorial model or M = S2 ×R for the
non-linear chromaticity-brightness model.

4.1.1 Grayscale
As introductory example and for the sake of completeness, Figure 4.1 shows results from denoising
a grayscale image.

(a) Original (b) Noisy (c) Denoised

Figure 4.1: Denoising of a grayscale image taking values in the manifold R (a) Original image
"Cameraman.bmp", 256× 256 px, 8 bit depth (b) Component-wise Gaussian noise µ = 0, σ = 0.01
added (c) Denoised, IRLS with λ = 0.09, 5 IRLS steps, 1 Newton step per IRLS step

49

4.1.2 Color
In this example TV minimization of color images using the two different color models is performed.
In Figure 4.2 results are shown for the among the image processing community well-known Lena
picture, which is rather small in size. Minimization in the linear-vectorial color model using 5 IRLS
iterations with one Newton step per reweighting is completed within 9.2 seconds.

(a) Original (b) Noisy (c) Denoised

Figure 4.2: Denoising of a color image using the linear vectorial color model which corresponds to
the manifold R3 (a) Original image "Lena.jpg", 361× 361 px, 8 bit color depth (b) Component-wise
Gaussian noise µ = 0, σ = 0.1 added (c) Denoised, IRLS with λ = 0.1, 5 IRLS steps, 1 Newton
step per IRLS step

Next, using the same model and parameters a different image with a size already in the megapixel
range is denoised. The needed time, however, is with 272.6 seconds quite high. The result can be
seen in Figure 4.3.

(a) Original (b) Noisy (c) Denoised

Figure 4.3: Denoising of color images using the linear vectorial color model which corresponds to
the manifold R3 (a) Original image "mathematicians.jpg", 1280× 1024 px, 8 bit color depth (b)
Component-wise Gaussian noise µ = 0, σ = 0.1 added (c) Denoised, IRLS with λ = 0.1, 5 IRLS
steps, 1 Newton step per IRLS step

Finally, in Figure 4.4 a third picture is denoised using the chromaticity-brightness model. Here
minimization over the product manifold S2 × R is performed by denoising the chromaticity(S2)
and the brightness(R) separately, which has the added advantage of more fine-grained control over
the process because two λ parameters can be chosen separately for each part, too.

50

(a) Original (b) Noisy (c) Denoised

Figure 4.4: Denoising of a color image using the CBR color model over the manifold S2 × R (a)
Original image "crayons.jpg", 284× 177 px, 8 bit color depth (b) Component-wise Gaussian noise
µ = 0, σ = 0.1 added (c) Denoised, IRLS with λS2 = λR = 0.1, 5 IRLS steps, 1 Newton step per
IRLS step

4.1.3 Inpainting
The next example is a damaged picture where a considerable part has been overpainted with blue
color. In the first step the damaged region is detected which in this case is done via a simple
color selector (e.g. all pixels with a blue value larger than 0.95). In principle many other selection
methods known from common raster graphic editors could be implemented here as well.
Next, a first guess is calculated using scattered linear interpolation and lastly the TV minimization
itself is performed. The process is summarized in Figure 4.5.

(a) Original (b) Damaged (c) First guess (d) Restored

Figure 4.5: Inpainting of a color image using the linear vectorial color model which corresponds to
the manifold R3 (a) Original image "Pepper.png", 359× 361 px, 8 bit color depth (b) Damaged by
overpainting with blue color (c) First guess via component-wise scattered interpolation (d) Restored,
IRLS with λ = 0.12, 5 IRLS steps, 1 Newton step per IRLS step

4.1.4 Recolorization
Colorization, also known as color inpainting, because it is basically just a special case of inpainting,
is performed in the next example. Here the picture is not necessarily noisy but it is assumed that
only the brightness of each pixel is known, while the chromaticity is known only for a low ratio
r = 0.01 of all pixels. Note that this splitting implies that inpainting and TV minimization takes
place only on S2.

As in the previous example, one first has to detect all damaged, i.e. non-colored, pixels to inpaint.
Again scattered interpolation is used to obtain a first guess which is depicted in Figure 4.6c. One
can observe that red color runs into green regions. To avoid this, the edges need to be detected in
the brightness part using the Canny edge detector [9], for example. This can be used then to set
the edge weights for the chromaticity part accordingly. As a result, one indeed obtains sharp and
clear edges in the final result 4.6d.

51

(a) Original (b) Colors removed (c) First guess (d) Recolored

Figure 4.6: Recolorization using color inpainting in the Chromaticity-Brightness color model,
corresponding to S2×R (a) Original image "Pepper.jpg", 359× 361 px, 8 bit color depth (b) Image
with a ratio of approximately 0.01 remaining colored pixels (c) First guess via component-wise
scattered interpolation (d) Recolored, IRLS with λ = 0.01, 5 IRLS steps, 1 Newton step per IRLS
step

4.1.5 Volume images
The picture section concludes with an example of a 3D volume image as they might occur in
medical imaging from magnetic resonance imaging (MRI) or computed tomography. In this demon-
stration, however, the so-called Boston teapot is chosen, taken from a volume image library [31]
and component-wise Gaussian noise is added. The image represents only intensity values, hence
minimization is performed over R. The results are shown in Figure 4.7.

For this picture the proximal point algorithm is used, because the memory and computational
requirements of the IRLS for a picture of this size are very high: In section 2.3.4 it was shown
that the dimension of the sparse linear system is dim(M)XY Z which in this case amounts to
1.1×107, which is the length of the gradient while the Hessian will contain 7.7×107 non-zero-entries.
The solution of a sparse linear system of that size is computationally very demanding while in
comparison the geodesic averaging and Karcher mean calculations simplify to mostly vectorized
addition and subtraction operations on a simple manifold like R.

As a result, the IRLS minimization of the 64 × 64 × 64 volume image in 4.8, which shows the
simulation of fuel injection into a combustion chamber, already takes 1100 seconds on the test
platform, compared to only 109 seconds for the proximal point minimization of the much larger
teapot image.

(a) Original (b) Noisy (c) Denoised

Figure 4.7: Denoising a 3D grayscale volume image (a) Original image "BostonTeapot.raw",
256× 256× 178 px, 8 bit color depth (b) Component-wise Gaussian noise µ = 0, σ = 0.1 added (c)
Denoised, proximal point with λ = 0.1, 50 PRPT steps

52

(a) Original (b) Noisy (c) Denoised

Figure 4.8: Denoising a 3D grayscale volume image (a) Original image "FuelInjection.raw", 64×
64×64 px, 8 bit color depth (b) Component-wise Gaussian noise µ = 0, σ = 0.1 added (c) Denoised,
IRLS with λ = 0.2, 5 IRLS steps with 1 Newton step per reweighting

4.2 SO(2) and SO(3) image data
For the SO(n) test, firstly, non-smooth synthetic data is created. It consists of four regions in each
of which orientations vary rather smoothly. Sudden jumps in orientation occur when moving across
the region boundaries. This is what can be considered an edge in SPD-valued data. Secondly, the
algorithm is applied to two real data examples based on fingerprint matching and video motion
analysis.

4.2.1 Synthetic data
The following synthetic SO(3) image is constructed in the following way. Let Ω = {1, . . . , 30}2 and
define for every (i, j) ∈ Ω a rotation axis

v =

{
(2x, y, 0)T , x > 0.5

(0, 2x, 0.5)T , else
, (4.1)

where x = j
30 , y = i

30 and a rotation angle

α =

{
x+ y, x > y
π
2 + x− y, else

. (4.2)

Then assign the corresponding SO(3) element representing a rotation by α and about v. Noise is
added componentwise and the noisy matrix is then projected back to SO(3) using the projector
PSO(n)(A) = UV T where A = UΣV T is the singular value decomposition of A.

(a) Original (b) Damaged (c) Reconstructed

Figure 4.9: Inpainting of synthetic SO(3) picture (a) Original image: Synthetic, non-smooth SO(3),
30× 30 px (b) Threshold p = 0.4 (c) Denoised, IRLS with λ = 0.1, 5 IRLS steps, 1 Newton step
per IRLS

53

4.2.2 Fingerprint orientation data
Fingerprint matching is based on extracting a set of particular features, called minutiae, which
uniquely define the fingerprint. These features are usually ridge endpoints or ridge bifurcation
points that are saved along with their position and orientation. This means that prior to minutiae
detection and extraction, the calculation of an orientation field is necessary.

For pictures of fingerprints this is just a special form of edge detection which can be done by
calculating discrete derivatives for every pixel using a Sobel or Scharr operator. The ridges in the
original fingerprint, however, are usually too thick, resulting in gradient values close to zero within
the ridge and consequently ill-defined orientations. For that reason, firstly Zhang-Suen thinning
algorithm [34] is used to obtain only the ridge skeleton for which the derivatives are then computed.

Depending on the quality and noise level of the picture, the computed orientation field can be
very noisy itself, which is another application for the TV minimization. An example is provided in
Figure 4.10.

(a) Original (b) Ridge Skeleton (c) Computed Orientation field(d) Denoised Orientation field

Figure 4.10: Denoising a orientation field from a fingerprint, orientations represented by SO(2)
elements (a) Original fingerprint (a) Ridge skeleton computed using a thinning algorithm (c)
Orientation field computed using Scharr derivatives (d) Denoised, IRLS with λ = 2.1, 5 IRLS steps,
1 Newton steps per IRLS step

4.2.3 Reconstruction of a dense optical flow field
An optical flow is the pattern of apparent motion between two consecutive frames of a video
sequence. This may be the result of either an actual movement of the depicted object or the result
of a moving camera. Important applications are for example (abnormal) motion detection, crowd
behavior analysis, surveillance, video compression or image segmentation.
A dense optical flow field can be interpreted as a vector field where each vector describes the
displacement of a point from one frame to the next. If the set of points is restricted to only a few
points of interest, a sparse feature set, it is called a sparse optical flow.

In the following example, a sparse feature set is used for tracking and flow computation in a short
video sequence. The traffic scene was taken from a crowds/high density moving object data set
provided by [7]. At first, the sparse optical flow is computed using the Lucas-Kanade algorithm
[21] implemented in the OpenCV library.

For the set of tracked features F1 := {F (1)
i }

400

i=1 ⊂ Ω ⊂ R2 in the first frame, the algorithm tries to

identify each feature in the second frame resulting in a set of identified features F2 := {F (2)
i }

N<400

i=1 ⊂
Ω ⊂ R2 and corresponding displacement vectors V12 := {Vi |Vi = F

(2)
i − F (1)

i }
N

i=1.

To each pixel in the data an SO(2) element (of course the optimization could have also been

54

performed on S1) is assigned in the following way

αi = arctan

(
V yi
V xi

)
(4.3)

I(i, j) =

(

cosαi − sinαi

sinαi cosαi

)
(i, j) ∈ F2

0 otherwise
. (4.4)

Since reconstruction of the dense optical flow is the goal, this is an inpainting problem and scattered
interpolation must be performed before running the algorithm. The result can be seen in Figure
4.11.

(a) Original (b) Computed Sparse Flow field (c) Reconstructed orientation field

Figure 4.11: Reconstructing a dense flow from sparse feature tracking, orientations represented by
SO(2) elements (a) Frame of original video scene (b) Sparse features tracked using Lucas-Kanade
(c) Reconstructed, IRLS with λ = 0.05, 5 IRLS steps, 1 Newton step per IRLS step

There is also a more direct, variational approach for the calculation of the flow field which is also
based on TV minimization but has a different fidelity term. This is one possibility for further
extension of the library and is discussed in more detail in Section 5.2

4.3 SPD(3) image data
As in the case of SO(3), the algorithms are first applied to synthetic data. It consists of approximately
five homogeneous regions with large changes in the principal direction when moving from one region
to another. These changes are the edges in the SPD(3) case. Second, and more challenging due to
the large differences in mean diffusivity, the algorithms are applied to real 2D and 3D DT-MRI
pictures.

4.3.1 Synthetic data
For the construction of the synthetic SPD(3) image in Figure 4.12, let Ω = {1, . . . , n}2 and define
for every (i, j) ∈ Ω a rotation axis

v =

{
(x, y, 2)T , x+ y < 1

(y,−x, 1)T , else
, (4.5)

where x = j
n , y = i

n and a rotation angle

α =

{
x+ 2y, x+ y < 1

y + 2x, else
. (4.6)

Let R be the corresponding SO(3) element representing a rotation by α and about v. Then define
a diagonal matrix D = diag(x+ 0.2, y + 0.2, 0.5) and assign the matrix A = RTDR to the pixel.
Noise is then added by taking the matrix logarithm of every pixel, adding Gaussian componentwise
noise and applying the matrix exponential again.

55

(a) Original (b) Damaged (c) Denoised

Figure 4.12: Denoising of synthetic SPD(3) picture (a) Original image: Synthetic, non-smooth
SPD(3), 100× 100 px (b) Componentwise Gaussian noise with µ = 0 and σ = 0.2 (c) Denoised,
IRLS with λ = 0.7, 5 IRLS steps, 1 Newton step per IRLS

4.3.2 Diffusion Tensor Magnetic Resonance Imaging
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a medical imaging method which is
able to non-invasively measure diffusion coefficients of water molecules in living biological tissues.
DT-MRI goes beyond CT or normal MR imaging methods which are only able to provide a single
intensity value per voxel. Since water molecules can move easier along, for example axons, con-
necting the neurons in the brain, than they can move across it, the resulting anisotropic diffusion
pattern can provide a lot of information about the structure of the brain.

DTI data sets are usually calculated from a set of diffusion weighted magnetic resonance imaging
(DW-MRI) pictures. The basic magnetic resonance imaging works by applying an external magnetic
field along the z-axis such that the proton spins in the tissue align either parallel or anti-parallel to
it while still preceding around the z-axis with the so-called Lamor frequency. An electromagnetic
wave packet (HF-pulse) with that exact frequency leads to a collective state transition such that
spin moments will be phase-synchronous before relaxing back to their original orientation with
respect to the external field. The magnetic field created by having synchronized moments can be
measured by a coil where an electric potential will be created. From the different relaxation times
of different materials conclusions can be made about the structure of the tissue.

By applying an additional magnetic gradient field, the Lamor frequency of different layers of the
probe can be modified such that only one layer of the material will resonate to the pulse. This
provides an additional positional resolution of the imaging process.

The DTI image is finally computed using the Stejskal-Tanner-equation given by

A(g) = A(0) exp(−bgTDg) (4.7)

where g denotes the magnetic gradient field, A(g) the signal strength, and b some measurement
related parameters. Solving this equation forD finally leads to the desired SPD(3) matrix describing
the diffusion coefficients and directions.

In Figure 4.13 the IRLS minimizer is applied to DTI data set provided by Barmpoutis [1]. In
the picture, regions of high anisotropy, where the molecules are forced to diffuse in one preferred
direction, can be clearly identified. The areas dominated mainly by green spheres correspond to
approximately isotropic diffusion which means that there are no obstacles, like axons in the brain,
in the immediate proximity of the water molecules.

56

(a) Noisy (b) Denoised

Figure 4.13: Denoising a DT-MRI image with pixel in SPD(3) (a) Original DTI data, 32x32 pixel
(b) Denoised, IRLS with λ = 0.7, 5 IRLS steps, 1 newton steps per IRLS step

4.3.3 3D DT MRI data
Finally, in Figure 4.14 a 3D DTI image is depicted. Shown is a 16× 16× 16 cube from a human
brain scan. The proximal point algorithm was used for denoising. The brain data set is a courtesy
of Gordon Kindlmann at the Scientific Computing and Imaging Institute, University of Utah, and
Andrew Alexander, W. M. Keck Laboratory for Functional Brain Imaging and Behavior, University
of Wisconsin-Madison.

(a) Original (b) Denoised

Figure 4.14: Denoising a 3D DT-MRI image with pixel in SPD(3) (a) Original, 16× 16× 16 pixel
(b) Denoised, Proximal point with λ = 0.7, 50 PRPT steps

57

4.4 Gr(3,1) image data
Grassmann manifold-valued data has a large number of applications, especially in the field of
machine learning for tasks like face and shape recognition. This data can also be subject to noise
which makes an application of TV minimization useful. Since example code comparing recognition
rates for noisy and denoised data is beyond the scope of this thesis, a much simpler and more
illustrative example was chosen.

Due to the fact that Gr(3, 1) ' S2, TV minimization over the Grassmann manifold can also be used
to remove chromatic noise from pictures, completely analogous to the denoising over S2 considered
earlier.

4.4.1 Chromaticity denoising
In the first example, shown in Figure 4.15, only the color part of the image will be denoised. Then,
Figure 4.16 shows the minimization over the product manifold Gr(3, 1)×R, using the same picture
as in example 4.4.

(a) Original (b) Color part (c) Noisy (d) Denoised

Figure 4.15: Denoising the color part of an image over the Grassmannian Gr(3, 1) (a) Original
image "Parrot.jpg", 541× 361 px, 8 bit color depth (b) Color part of image (c) Component-wise
Gaussian noise µ = 0, σ = 0.1 added (d) Denoised, IRLS with λ = 0.4, 5 IRLS steps, 1 newton
steps per IRLS step

(a) Original (b) Noisy (c) Denoised

Figure 4.16: Denoising of a color images using the CBR color model over the manifold Gr(3, 1)×R
(a) Original image "Crayons.jpg", 284× 177 px, 8 bit color depth (b) Component-wise Gaussian
noise µ = 0, σ = 0.1 added (c) Denoised, IRLS with λGr(3,1) = λR = 0.1, 5 IRLS steps, 1 newton
steps per IRLS step

4.5 Performance analysis of the library
In this section the performance hotspots of the library are analysed for the case of the IRLS
minimizer. This is done using the Linux tool perf which monitors a variety of different performance
metrics during the execution of a program, like CPU cycles, cache or branch misses. To identify
the hotspots, where most of the computation is spent, the number of CPU cycles is usually the

58

most suitable metric. In the last part also the time complexity of the algorithm is measured.

Concerning the computational complexity of operations performed on single pixels, the Euclidean
manifold is certainly the least demanding, because exponential and logarithm map are addition
and subtraction and the second derivative of the distance function is just two times the identity
matrix. At the other end of the spectrum is the SPD manifold where computations usually involve
multiple matrix multiplications, exponentials, logarithms and derivatives thereof. For the analysis,
metrics and running times for these two representatives are compared for different image sizes.

4.5.1 Profiling
For the Euclidean manifold the "Lena" and "Mathematicians" pictures, already considered in the
example above, are used. Minimization in the first case takes approximately 9 seconds and 270
seconds in the second case. The data is shown in Table 4.1 where the first column denotes the
percentage of CPU cycles spent in the routine specified in the second column while the last column
denotes the (external) library to which it belongs. Only the top six routines are shown since the
individual share of the others was in most cases less than 1 %.

In both cases computation is dominated by the Basic Linear Algebra Subprograms (BLAS) Library.
Those in turn are called by the CHOLMOD library which solves the sparse linear system using
Cholesky factorization. The only contribution that does not belong to the linear system is the
multi-threading overhead from the OpenMP (OMP) library in the smaller picture. For the increased
system size, however, the overhead becomes negligibly small such that for both problem sizes more
than two thirds of the total computation time is used for solving the linear system. For the larger
picture this share even grows to more than 75% and can be expected to do so for yet larger images.

 DGEMM

25.7%

 DSYRK

20.7%

 DTRSM
11.6%

 DGEMV

3.2%

 cholmod_super_numeric

3.2%

 Multihreading overhead

13.9%

(a)

DGEMM

30.4%
DSYRK

27.7%

DTRSM

14.7%

cholmod_super_numeric

1.7%

set_from_triplets

2.8%
CreateCoarserGraph

2.2%

(b)

Share Routine Library
25.73 DGEMM(matrix matrix multiply) BLAS
20.71 DSYRK(symmetric rank-k update) BLAS
13.86 Multihreading overhead OMP
11.57 DTRSM(solve triangular system) BLAS
3.23 DGEMV(matrix vector multiply) BLAS
3.22 cholmod_super_numeric CHOLMOD

(a) 361× 361

Share Routine Library
30.37 DGEMM(matrix matrix multiply) BLAS
27.70 DSYRK(symmetric rank-k update) BLAS
14.65 DTRSM(solve triangular sytem) BLAS
2.79 set_rom_triplets(sparse initialization) Eigen
2.18 CreateCoarserGraph METIS
1.68 cholmod_super_numeric CHOLMOD

(b) 1280× 1024

Table 4.1: Share of total CPU cycles for IRLS minimization over M = R3 (a)"Lena.jpg", 361× 361
pixel (b)"Mathematicians.jpg", 1280× 1024 pixel

For the SPD(n) manifold the situation, shown in Table 4.2 and Table 4.3, looks a bit different at

59

first. For the smallest problem size of 30× 30 pixels, there are no dominating parts. The largest
contribution is from multi-threading, which is to be expected for such a small picture and which
consequently vanishes for larger images. The next important routine is MTVMTL’s implementation
of the matrix logarithm Fréchet derivative, while the remaining Eigen routines in the list are
auxiliary functions for solving triangular matrix functions. These are needed for the computation
of matrix square roots, logarithms and of course also their Fréchet derivatives. With increasing
problem size, the BLAS routines seem to move to the top of the list, even though their share only
amounts to a fifth of all CPU cycles for the 300× 300 pixel image.

ComplexSchur::reduceToTriangularForm

6.8%

gebp_kernel

6.5%

triangular_solve_matrix

6.2%

triangular_solve_matrix

4.5%

Multihreading overhead

11.6%

MatrixLogarithmFrechetDerivative
7.7%

(a)

DGEMM
4.5%

ComplexSchur::reduceToTriangularForm
7.7%

gebp_kernel

6.8%

triangular_solve_matrix

6.5%

triangular_solve_matrix

6.2%

MatrixLogarithmFrechetDerivative
11.6%

(b)

Share Routine Library
23.62 Multithreading overhead OMP
9.34 MatrixLogarithmFrechetDerivative MTVMTL
6.51 reduceToTriangularForm Eigen
5.62 gebp_kernel(matrix blocking) Eigen
5.36 triangular_solve_matrix Eigen
5.07 triangular_solve_matrix Eigen

(a) 30× 30

Share Routine Library
11.60 MatrixLogarithmFrechetDerivative MTVMTL
7.72 reduceToTriangularForm Eigen
6.77 gebp_ kernel(matrix blocking) Eigen
6.55 triangular_solve_matrix Eigen
6.18 triangular_solve_matrix Eigen
4.55 DGEMM(matrix matrix multiply) BLAS

(b) 100× 100

Table 4.2: Share of total CPU cycles for IRLS minimization over M = SPD(3) (a) Synthetic
SPD(3) , 30× 30 (b) Synthetic SPD(3) , 100× 100

It can be concluded that solving the linear system is the most performance relevant aspect of
the IRLS minimizer. The share is even higher for SO(n) and Sn, where the SuperLU library
is used, since the corresponding sparse Hessian is not positive definite, resulting in a further
increased operations count. If a good preconditioner is found, iterative solvers might speed up the
computation, the standard diagonal and incomplete LU preconditioner provided by the Eigen library,
however, performed worse than the direct solvers from the SparseSuite library collection. Finally,
for the matrix-valued manifolds, the implementation of the Fréchet derivative could potentially be
improved.

4.5.2 Time complexity
Next, the measurements of the time complexity obtained for the Euclidean R3 and SPD(3) need
to be discussed. For both cases subquadratic time complexities can be observed over the considered
input size range, which was limited only due to the available RAM on the test platform. This
deviation from the theoretical expected (quasi-)linearity can eventually be explained by memory
access costs.
Handling large amounts of data, which in the above tests are in the GB range, naturally leads
to additional cost for memory access. Memory is hierarchically structured with the CPU caches
having the lowest access time but also the smallest size, whereas the RAM is comparably huge but

60

Share Routine Library
11.31 DGEMM(matrix matrix multiply) BLAS
9.73 MatrixLogarithmFrechetDerivative MTVMTL
9.19 DSYRK(symmetric rank-k update) BLAS
6.60 reduceToTriangularForm Eigen
5.73 gebp_kernel(matrix blocking) Eigen
5.55 triangular_solve_matrix Eigen

(a)

DGEMM

11.3%

DSYRK

9.2%

ComplexSchur::reduceToTriangularForm

6.6%

gebp_kernel

5.7%

angular_solve_matrix

5.6%

MatrixLogarithmFrechetDerivative
9.7%

(b)

Table 4.3: Share of total CPU cycles for IRLS minimization of synthetic SPD(3) , 300× 300 pixel,
M = SPD(3)

104 105 106 107

N [Number of pixels}

10-1

100

101

102

103

t
[s

e
c]

1

1.68

100 1000 10000
n (side length of synthetic n×n image)

(a) R3 Minimization time versus input size

104 105 106

N [Number of pixels}

101

102

103

104

t
[s

e
c]

1

1.3

100 1000
n (side length of synthetic n×n image)

(b) SPD(3) Minimization time versus input size

Figure 4.17: Time complexity for the IRLS R3 and SPD(3). In both cases, minimization was
performed using 5 IRLS steps and 1 Newton step per reweighting (a) Denoising of a synthetic RGB
picture of size n× n with n = 100, 200, . . . , 1500 (b) Denoising of a synthetic SPD(3) picture of
size n× n with n = 100, 200, . . . , 500

has a much larger access time. At the bottom of the hierarchy is swap space on the hard drive. The
cost of a so-called page-fault, which happens when a program tries to access a memory location
that is not loaded into the main memory, can amount to more than 1000 CPU cycles. Since with
increasing memory utilization the probability for page faults may also increase, performance will
consequently decrease.

It is remarkable, however, that the complexity for the SPD manifold is lower than for Euclidean
space. Taking into account the analysis of the previous section, where it was illustrated that most
time is spent solving the linear system, a possible explanation might be that for the SPD manifold
the share of computational effort of solving the linear system is smaller relative to the remaining
operations, like calculation of the derivatives for example. Assuming that the latter perform indeed
quasi-linear, this would suggest that, on the other hand, solving the system must have a complexity
larger than O(NNZ(HJ)) = O(N).

Considering above remarks on the effects of memory access speed, this claim can be further

61

supported by looking at other performance metrics like cache-misses and page-faults, where the
BLAS routines are again at the top of the listings. The measurement results for this metrics can be
found in Appendix C.

4.6 Comparison IRLS and Proximal Point minimizers
To make a comparison with the tests performed in [16], using the original Matlab implementation,
to a certain degree possible, the same set of test images (Figure 4.18) was chosen but additionally
also some larger versions of the pictures for the more interesting case of the matrix manifolds
SO(3) and SPD(3). For the Grassmannian Gr(3, 1) the same picture as for S2 is used. Both, the
IRLS and the proximal point minimizers are implemented using the same manifold classes and
both utilize the same pixel-wise parallelization techniques such that there is no obvious bias in this
comparison.

The synthetic images are created using the formulas already described in the examples above. To
each picture component-wise Gaussian noise with zero mean and standard deviation of σ = 0.2 is
added. With that noise level no smoothing is needed for the IRLS algorithm to converge. For each
picture the value of the functional after each iteration and the error relative to an approximate
minimizer u∗ is computed. The minimizer is obtained using the IRLS algorithm with λ = 0.2, 20
IRLS steps and one newton step per reweighting. This error is defined as

e(k) =
∑
i,j

d2(u
(k)
ij , u

∗
ij) (4.8)

where d2(·, ·) denotes the squared Riemannian distance function of the appropriate manifold. For
the iterations itself 15 iterations for IRLS and 500(250 for Gr(3, 1)) for proximal point with the
sequence µk = 3k−0.95 (see [33] for details on this sequence) are used for all experiments.

(a) R3 (b) S2 or Gr(3, 1) (c) SO(3) (d) SPD(3)

Figure 4.18: Test images for the IRLS & PRPT comparison (a) "Lena.jpg", 361× 361 px, R3-valued
(b) Chromaticity part of "Lena.jpg", S2/Gr(3, 1)-valued (c) Synthetic 30× 30 and 100× 100 image,
SO(3)-valued (d) Synthetic 30× 30 and 100× 100 image, SPD(3)-valued

Figure 4.19 shows the results for Euclidean space R3 and the sphere S2. IRLS needs only five
iterations where proximal point needs more than 200 but nevertheless proximal wins in terms of
speed. This result can be interpreted with respect to the performance analysis conducted in the
previous section. Most manifold quantities can be computed using only addition and subtraction.
This includes the geodesic interpolation that proximal point has to perform in every direction as
well as the computation of derivatives for IRLS. The effort of doing these two task seems intuitively
to be similar. At the end of that process, however, proximal point only has to compute simple
arithmetic means while IRLS has to solve the sparse system which was shown to be the dominant
part of the computation and is thus probably more time consuming than the averaging procedure.
For S2, in comparison, one can already see IRLS catching up.

62

0 2 4 6 8 10 12

t [sec]

6000

8000

10000

12000

14000

16000

18000

20000

22000

J

0 100 200 300 400 500
no. of proximal point iterations

(a) Euclidean R3 - Functional

0 2 4 6 8 10 12

t [sec]

100

101

102

103

104

105

E
rr

o
r

0 100 200 300 400 500
no. of proximal point iterations

(b) Euclidean R3 - Error

0 50 100 150

t [sec]

4000

6000

8000

10000

12000

14000

16000

18000

20000

J

0 100 200 300 400 500
no. of proximal point iterations

(c) Sphere S2 - Functional

0 50 100 150

t [sec]

100

101

102

103

104

105

E
rr

o
r

0 100 200 300 400 500
no. of proximal point iterations

(d) Sphere S2 - Error

Figure 4.19: Comparison of functional values and errors for IRLS and PRPT minimizers. The red
circles correspond to IRLS iterations while the line without any markers belongs to the proximal
point iterations. (a) Functional values for "Lena" minimized over R3 (b) Errors relative to minimizer
for "Lena" (c) Functional values for color part of "Lena" minimized over S2 (d) Errors relative to
minimizer for color part "Lena"

For SO(3), shown in 4.20, the difference again becomes much smaller, with both plots being very
close and coinciding already after the second iteration. In terms of the error IRLS even surpasses
proximal point after 4 iterations.

Next, in the case of SPD(3), shown in 4.21, except for the error, IRLS falls back to the niveau of
S2. One reason for that might be the particularly complicated form of the second derivative of the
squared distance function. This could be eventually optimized by improving the implementation of
the Fréchet derivative. At this time it is based on the computation of a complex Schur decomposi-
tion which then, in turn, needs complex arithmetic. Switching to a block-based, but real Schur
decomposition might provide an additional speed-up.

Finally, Figure 4.22 shows the results for the Grassmannian manifold Gr(3, 1). Here IRLS performs
considerably faster than the proximal point algorithm. While for all the previous manifolds
computation of the exponential and logarithm map was very easy, in the case of the Grassmannian,
a singular value decomposition must be performed for every evaluation and the logarithm even
requires the solution of a small linear system before the decomposition. Computation of the
derivatives for IRLS, on the other hand is comparably easy, with only matrix-matrix multiplications
and Kronecker products involved. Since the proximal point algorithm is mainly based on exponential
and logarithm map evaluations, solving the sparse linear system is faster here.

63

0 1 2 3 4

t [sec]

80

100

120

140

160

180

J
0 10 20 30 40 50 60

no. of proximal point iterations

(a) SO(3) (30×30) - Functional

0 1 2 3 4

t [sec]

10-2

10-1

100

101

102

E
rr

o
r

0 10 20 30 40 50 60
no. of proximal point iterations

(b) SO(3) (30×30) - Error

0 10 20 30 40 50

t [sec]

600

800

1000

1200

1400

1600

1800

2000

J

0 10 20 30 40 50 60 70 80
no. of proximal point iterations

(c) SO(3) (100×100) - Functional

0 10 20 30 40 50

t [sec]

10-2

10-1

100

101

102

103

104

E
rr

o
r

0 10 20 30 40 50 60 70 80
no. of proximal point iterations

(d) SO(3) (100×100 - Error

Figure 4.20: SO(3): Comparison of functional value and errors for IRLS and PRPT minimizers.
The red circles correspond to IRLS iterations while the line without any markers belongs to the
proximal point iterations. (a) Functional values for synthetic 30×30 SO(3) (b) Errors relative to
minimizer for synthetic 30×30 SO(3) (c) Functional values for synthetic 100×100 SO(3) (d) Errors
relative to minimizer synthetic 100×100 SO(3)

0 1 2 3 4 5

t [sec]

100

120

140

160

180

200

220

240

J

0 10 20 30 40
no. of proximal point iterations

(a) SPD(3) (30×30) - Functional

0 1 2 3 4 5

t [sec]

10-1

100

101

102

103

E
rr

o
r

0 10 20 30 40
no. of proximal point iterations

(b) SPD(3) (30×30) - Error

Figure 4.21: SPD(3): Comparison of functional value and errors for IRLS and PRPT minimizers.
The red circles correspond to IRLS iterations while the line without any markers belongs to the
proximal point iterations. (a) Functional values for synthetic 30×30 SPD(3) image (b) Error
relative to minimizer for synthetic 30×30 SPD(3) image

64

0 50 100 150 200

t [sec]

4000

6000

8000

10000

12000

14000

16000

18000

J

0 5 10 15 20 25 30 35
no. of proximal point iterations

(a) Gr(3, 1) - Functional

0 50 100 150 200

t [sec]

101

102

103

104

E
rr

o
r

0 5 10 15 20 25 30 35
no. of proximal point iterations

(b) Gr(3, 1) - Error

Figure 4.22: Gr(3, 1): Comparison of functional value and errors for IRLS and PRPT minimizers.
The red circles correspond to IRLS iterations while the line without any markers belongs to the
proximal point iterations. (a) Functional values for color part of "Lena" minimized over Gr(3, 1)
(b) Errors relative to minimizer for color part "Lena"

4.7 Sensitivity to variations of the original data
In this section a numerical experiment is performed to see how changes of the noisy original picture
influence the global solution of TV minimization. For that purpose only the brightness part of the
Lena picture is considered. In this grayscale image a single non-zero pixel is chosen, far enough
in the inside of the picture. This pixel is set to zero, i.e. black color. This leads to two different
original pictures

u0, û0 : Ω→ R (4.9)

(û0)ij =

{
0, if i = i0 := 100, j = j0 := 100

(u0)ij , else
. (4.10)

Then, for the original u0 and the modified image û0 an IRLS minimization with λ = 0.1, 5 iterations
and one Newton step per reweighting is performed to compare the two the solutions u and û.
Taking the absolute differences eij = |uij − ûij | between the solutions leads to the error cone shown
in Figure 4.23a. This already suggests that the error caused by changing the original data decays
exponentially with distance r =

√
(i− i0)2 + (j − j0)2.

After fitting a cone to the data, which is shown in 4.23b one finds that the aperture half-angle
corresponds to a slope of c = 1.075 such that the error will decay as

eij ∝ e−cr. (4.11)

The most important conclusion is that a pixel in the global minimizer depends practically only
on a local neighborhood of that pixel in the original picture, not on pixels far away from that
neighborhood. Possible applications of this are discussed in Section 5.3.

Of course these findings should be verified analytically by providing sufficiently precise error bounds,
which is, however, unfortunately out of the scope of this thesis.

65

50

100

150

50
60

70
80

90
100

110
120

130
140

150
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

(a) Error cone

50

100

150

50
60

70
80

90
100

110
120

130
140

150

10−30

10−25

10−20

10−15

10−10

10−5

100

(b) Fitted cone

Figure 4.23: Sensitivity to change in original data (a) Logarithmic plot of absolute differences
eij = |uij − ûij | (b) Cone fitted to the data, resulting in aperture half-angle of α = 0.8213

Chapter 5
Conclusion and Outlook

5.1 Summary
In this thesis a very versatile, multi-threaded C++ template library for TV minimization of
manifold-valued data is introduced, which extends the original Matlab prototype in a variety of
directions. This includes shared memory and SIMD parallelization for IRLS and proximal point
algorithms, 3D images, the Grassmann manifold as well as supporting methods for numerical matrix
function derivative computations and OpenGL visualization methods.

The theoretical background provides some semi-analytic expressions for the derivatives of the
squared distance functions using Kronecker products, which allows a compact and readable im-
plementation. Furthermore, a short overview about the relevant Grassmann manifold theory is given.

The third chapter is a high level documentation of the library and its structure and underlying
concepts. It gives more insights on the software engineering and high performance computing point
of view on this thesis and also contains some basic tutorials on how to use or even extend the
library.

Finally, the library’s capabilities are demonstrated on many different applications like standard
grayscale and color images, medical DT-MRI data, synthetic SPD(3) and SO(3) data but also
examples based on real applications like image orientation maps and optical flow computation.
Aside from these more colorful demonstrations also a performance analysis of the library is done
to investigate performance bottlenecks of the IRLS minimizer. As main result from this analysis
the solution of the sparse linear system is identified as the most performance relevant component
in the process. This suggests that the sparse solver do not scale (quasi-)linearly. But also the
implementation of the Matrix logarithm Fréchet derivative has some influence and has potential for
further optimization.

It is consequently found that IRLS performs slower for Euclidean space and the sphere and
comparable for SO(3) and SPD(3), compared to an also parallelized proximal point algorithm.
IRLS is faster for the case of the Grassmannian, due the proximal point algorithms intensive use of
computationally expensive exponential and logarithm maps. Lastly, in the course of identifying
optimization opportunities, the sensitivity of the computed solution with respect to variations of
the original data is investigated. It can be concluded that the resulting error in the solution is
locally confined to a neighborhood around the varied pixel in the original and decays exponentially
with the distance from the varied pixel. A possibility for an extension of the library exploiting this
locality of the error is discussed in the last Section 5.3.

67

5.2 Extensions and improvements
At last, some suggestions for the extension and optimization of the library are presented. The first
part is concerned with performance-relevant changes while the second and third parts focus on new
features.

5.2.1 Performance
Since the solution of the sparse linear system is the most performance critical component of the
algorithm, new solution methods should be tested. In particular, iterative methods could perform
better if a good preconditioner can be found.

By making use of the special block-band structure of the Hessian, the MTVMTL implementation
avoids the temporary block diagonal matrix, containing the tangent space basis transformation,
that was used in the Matlab prototype. The tangent space transformations can instead be applied
directly to the pixels of the derivative containers. In a similar manner, it might also be possible to
make the algorithm completely matrix-free by implementing a matrix-vector multiplication function
for the Hessian matrix, that can be used by an iterative solver. This might save a lot of memory as
well as computation time and bring the algorithm closer to the linear complexity regime.

5.2.2 Manifolds and minimizers
The first thing that can easily be extended is the support for additional manifolds. Possibilities
are, for instance, the Stiefel manifold that was briefly introduced in section 2.4.5 or an alternative
implementation of the SPD(n) manifold using the Log-Euclidean metric based on [8].

Also new minimizers could be added. It would be straightforward to utilize the gradient evaluation
function already implemented in the functional to add some gradient descent based algorithm
and compare again with IRLS-Newton and proximal point. For new functionals a more detailed
suggestion is provided in the next Section.

5.2.3 Functionals
So far isotropic and anisotropic first order TV functionals are implemented in the library. Extensions
can be made with respect to the TV part or the fidelity part of the functional. For the TV part
this means to also include a second order TV term µ

∫
ω
|∇2u| dx in the functional. This prevents

the formation of numerical artifacts like the so-called staircasing effects, that might occur in first
order TV. Of course also higher orders than second can be added to the functional. As long as
also methods for the evaluation of the functionals gradient and Hessian are provided, the IRLS
minimizer class will work without any changes.

The second possibility is the addition of new or different fidelity terms. The purpose of the fidelity
term during the minimization is to penalize a TV regularization that moves too far away from the
original picture. However, one can also utilize it for a direct calculation of a dense optical flow field,
for example. This was also done in the application shown in 4.2.3 but it must be noted that the
procedure in the example to computation of the dense flow was rather complicated and indirect.

For the direct TV approach, as presented in [32], consider a 2D video sequence I : Ω× [0, T]→ R.
Let now u : Ω → R2 denote the displacement vector of the pixel x ∈ Ω. The functional is then
given by

J(u) =

∫
Ω

∣∣∣∣∂I∂t +∇I · u
∣∣∣∣ dx+λTV (u), (5.1)

where the first term is the new data term, which implements the so-called optical flow constraint
that could be interpreted as a continuity equation for pixels. Finally, as Lefevre and Baillet show in
[19], the functional can be generalized also to flows on some classes of manifolds.

68

5.3 Recursive computation on subdomains
From the numerical experiment in Section 4.7 it can be concluded that a local neighborhood of
the original picture only affects the form of the minimizer in its immediate neighborhood. The
magnitude of the variation in the minimizer due to the variation of a single pixel in the original
data seems to decay exponentially with the distance from that pixel.

This could in principle be exploited by dividing the image into subdomains with a specific small
overlap, determined by the error boundaries, and solve each of the smaller subproblems individually.
Depending on the size of the necessary overlap this could also be employed recursively until a
minimal subimage size is reached. Then, after all subproblems are solved the subpictures are
recombined just by cropping all overlapping regions to arrive at the global solution. As a final
example, an extended version of the Lena picture is split in the middle with 50px overlap, as shown
in Figure 5.1.

(a) Noisy full picture (b) Noisy left half (c) Noisy right half

Figure 5.1: Splitting of the Lena picture into two domains (a) Original image "Lena.jpg", 1000×550
px, 8 bit color depth (b) Left half, 550× 550 (c) Right half 550× 550

Next, the algorithm is applied to the the full picture, which takes 72 seconds, as well as to the
two halves, which takes 33 seconds for each run. Then the two halves are recombined after
cropping away the overlap. The results, shown in Figure 5.2, look promising. Of course, at this
point some more detailed numerical error analysis should be performed but just from visual in-
spection there are no serious problems, like a visible brightness or color gradient for example, evident.

(a) (b)

Figure 5.2: Comparison between the denoising over the full domain and denoising over two
subdomains (a) Denoised full picture (b) Recombined, denoised picture halves

The advantages of this procedure are firstly, that even though there is some overhead from this
procedure, a collection of smaller subproblems can be usually solved faster than one big problem
and has a lower memory consumption. The speed up in the above example is not very large (66
versus 72 seconds), which is also to be expected from the subquadratic time complexity measured

69

in Section 4.5.2. Nevertheless, the main point is not about the speed up of serial-solving the
subproblems but the lower memory demand allowing yet larger images to be processed.

Secondly, this splitting scheme can also be used to introduce an additional layer of parallelism
in the form of distributed memory, many core parallelization. Each subproblem can be assigned
to a different node that in turn locally applies multi-threading. By building such a distributed
computing architecture on top of the solver, a significant speed up can be reached, because except
from splitting and recombination there is no need for communication between the nodes during the
TV minimization.

70

Acknowledgements

I would like to express my sincere gratitude to Professor Dr. Philipp Grohs and to Markus Sprecher
for the very interesting topic in the intersection of differential geometry, numerical analysis and
software engineering I was permitted to work on in my thesis and for their support and guidance
during the writing of this thesis.

I am especially indebted to Markus Sprecher for his extraordinary good supervision, commitment
and uncountably many helpful comments and explanations. It was a pleasure working with and
next to him and I would like to thank him also for many interesting discussions.

Furthermore, I would like to thank Günter and Angelika Höhlein for proofreading and valuable
comments on style and structure.

Lastly, I would like to thank my girlfriend Luzia and my family for their continuous support and
encouragement throughout my whole studies.

Appendix A
Listings

In this appendix full listings for the examples in the tutorial chapter are provided

Listing A.1: ./listings/tvmin_test.cpp
1 #include <iostream>
2 #include <st r ing>
3 #include <opencv2/ h ighgu i / h ighgu i . hpp>
4

5 #include <mtvmtl/ core / a l g o_t ra i t s . hpp>
6 #include <mtvmtl/ core /data . hpp>
7 #include <mtvmtl/ core / f un c t i o na l . hpp>
8 #include <mtvmtl/ core /tvmin . hpp>
9

10 #include <vpp/vpp . hh>
11 #include <vpp/ u t i l s / opencv_bridge . hh>
12

13 using namespace tvmtl ;
14

15 typedef Manifold< EUCLIDIAN, 3 > mf_t ;
16 typedef Data< mf_t , 2> data_t ;
17 typedef Functional<FIRSTORDER, ISO , mf_t , data_t> func_t ;
18 typedef TV_Minimizer< IRLS , func_t , mf_t , data_t , OMP > tvmin_t ;
19

20

21 void DisplayImage (const char∗ wname , const data_t : : storage_type& img , vpp : :↘
· · · image2d<vpp : : vuchar3>& out) {

22 cv : : namedWindow(wname , cv : :WINDOW_NORMAL) ;
23

24 // Convert P ic ture o f double to uchar
25 vpp : : image2d<vpp : : vuchar3> vucharimg (img . domain ()) ;
26 vpp : : p ixe l_wise (vucharimg , img) | [] (auto& i , auto& n) {
27 mf_t : : value_type v = n ∗ (double) std : : numeric_limits<unsigned char↘

· · · >::max() ;
28 vpp : : vuchar3 vu = vpp : : vuchar3 : : Zero () ;
29 vu [0]=(unsigned char) v [2] ;
30 vu [1]=(unsigned char) v [1] ;
31 vu [2]=(unsigned char) v [0] ;
32 i = vu ;
33 } ;
34

35 cv : : imshow(wname , vpp : : to_opencv (vucharimg)) ;
36

37 out = vucharimg ;
38 cv : : waitKey (0) ;
39 }
40

41

42

43 int main (int argc , const char ∗argv [])
44 {
45

72

46 i f (argc < 2) {
47 std : : c e r r << "Usage : " << argv [0] << " image [lambda] " << std : : endl ;
48 return 1 ;
49 }
50

51 double lam=0.1;
52

53 i f (argc==3)
54 lam=ato f (argv [2]) ;
55

56 data_t myData=data_t () ;
57 myData . rgb_imread (argv [1]) ;
58

59 func_t myFunc(lam , myData) ;
60 myFunc . s e t ep s2 (1 e−10) ;
61

62 tvmin_t myTVMin(myFunc , myData) ;
63

64 vpp : : image2d<vpp : : vuchar3> img ;
65

66 std : : s t r i n g fname (argv [1]) ;
67

68 std : : cout << "Smoothen p i c tu r e to obta in i n i t i a l s t a t e f o r Newton ↘

· · · i t e r a t i o n . . . " << std : : endl ;
69 myTVMin. smoothening (5) ;
70 DisplayImage ("Smoothened" , myData . img_ , img) ;
71 cv : : imwrite ("smoothened_" + fname , to_opencv (img)) ;
72

73 std : : cout << " Star t TV minimizat ion . . . " << std : : endl ;
74 myTVMin. minimize () ;
75

76

77 DisplayImage ("Denoised" , myData . img_ , img) ;
78 cv : : imwrite ("denoised_" + fname , to_opencv (img)) ;
79

80 return 0 ;
81 }

Linear vectorial TV minimization

Listing A.2: ./listings/colorization_test.cpp
1 #include <iostream>
2 #include <st r ing>
3 #include <cmath>
4

5 #include <opencv2/ h ighgu i / h ighgu i . hpp>
6

7 #include <mtvmtl/ core / a l g o_t ra i t s . hpp>
8 #include <mtvmtl/ core /data . hpp>
9 #include <mtvmtl/ core / f un c t i o na l . hpp>

10 #include <mtvmtl/ core /tvmin . hpp>
11

12 #include <vpp/vpp . hh>
13 #include <vpp/ u t i l s / opencv_bridge . hh>
14

15

16

17 using namespace tvmtl ;
18 typedef Manifold< SPHERE, 3 > spheremf_t ;
19 typedef Manifold< EUCLIDIAN, 1 > eucmf_t ;
20

21 typedef Data< spheremf_t , 2> chroma_t ;
22 typedef Data< eucmf_t , 2> bright_t ;
23

24 typedef Functional<FIRSTORDER, ISO , spheremf_t , chroma_t> cfunc_t ;
25 typedef Functional<FIRSTORDER, ISO , eucmf_t , bright_t> bfunc_t ;
26

27 typedef TV_Minimizer< IRLS , cfunc_t , spheremf_t , chroma_t , OMP > ctvmin_t ;
28 typedef TV_Minimizer< IRLS , bfunc_t , eucmf_t , bright_t , OMP > btvmin_t ;
29

73

30

31 void removeColor (chroma_t& C, const bright_t& B) {
32 vpp : : p ixe l_wise (C. img_ , B. img_ , C. inp_) | [&] (auto& c , const auto& b , const ↘

· · · bool& i) {
33 i f (i) {
34 c . setConstant (b [0]) ;
35

36 i f (b [0] !=0) c . normal ize () ;
37 else c . setConstant (1 . 0 / 2 56 . 0) ;
38 }
39 i f (! s td : : i s f i n i t e (c (0))) {
40 std : : cout << "NaN in RemoveColor" << std : : endl ;
41 std : : cout << b << std : : endl ;
42 }
43 } ;
44 }
45

46 void DisplayImage (const char∗ wname , const chroma_t& C){
47 cv : : namedWindow(wname , cv : :WINDOW_NORMAL) ;
48

49 // Convert P ic ture o f double to uchar
50 vpp : : image2d<vpp : : vuchar3> vucharimg (C. img_ . domain ()) ;
51 vpp : : p ixe l_wise (vucharimg , C. img_) | [] (auto& i , auto& n) {
52 spheremf_t : : value_type v = n ∗ (double) std : : numeric_limits<unsigned ↘

· · · char>::max() ;
53 vpp : : vuchar3 vu = vpp : : vuchar3 : : Zero () ;
54 vu [0]=(unsigned char) v [2] ;
55 vu [1]=(unsigned char) v [1] ;
56 vu [2]=(unsigned char) v [0] ;
57 i = vu ;
58 } ;
59

60 cv : : imshow(wname , vpp : : to_opencv (vucharimg)) ;
61 cv : : waitKey (0) ;
62 }
63

64 void recombineAndShow (const chroma_t& C, const bright_t B, std : : s t r i n g fname , std↘
· · · : : s t r i n g wname) {

65

66 vpp : : image2d<vpp : : vuchar3> img (C. img_ . domain ()) ;
67 vpp : : p ixe l_wise (img , C. img_ , B. img_) | [] (auto& i , const auto& c , const↘

· · · auto& b) {
68 vpp : : vdouble3 v = c ∗ b [0] ∗ std : : s q r t (3) ;
69

70 double max = v . maxCoeff () ;
71 i f (max > 1 . 0) v /= max ;
72

73 v ∗= (double) std : : numeric_limits<unsigned char>::max() ;
74

75

76 vpp : : vuchar3 vu = vpp : : vuchar3 : : Zero () ;
77 vu [0]=(unsigned char) v [2] ;
78 vu [1]=(unsigned char) v [1] ;
79 vu [2]=(unsigned char) v [0] ;
80 i = vu ;
81 } ;
82 cv : : namedWindow(wname , cv : :WINDOW_NORMAL) ;
83 cv : : imshow(wname , vpp : : to_opencv (img)) ;
84 cv : : waitKey (0) ;
85

86 cv : : imwrite (fname , to_opencv (img)) ;
87

88 }
89

90 int main (int argc , const char ∗argv [])
91 {
92 Eigen : : i n i t P a r a l l e l () ;
93

94 i f (argc < 3) {

74

95 std : : c e r r << "Usage : " << argv [0] << " image [lambda] [th r e sho ld] " ↘

· · ·<< std : : endl ;
96 return 1 ;
97 }
98

99 double lam=0.01;
100 double th r e sho ld =0.01;
101

102 i f (argc==4){
103 lam=ato f (argv [2]) ;
104 th r e sho ld=ato f (argv [3]) ;
105 }
106

107 std : : s t r i n g fname (argv [1]) ;
108

109 chroma_t myChroma=chroma_t () ;
110 bright_t myBright=bright_t () ;
111

112 myBright . rgb_readBrightness (argv [1]) ;
113 myBright . f indEdgeWeights () ;
114

115 myChroma . rgb_readChromaticity (argv [1]) ;
116 myChroma . inpaint_=true ;
117 myChroma . setEdgeWeights (myBright . edge_weights_) ;
118 myChroma . createRandInpWeights (th r e sho ld) ;
119 removeColor (myChroma , myBright) ;
120

121 // Recombine Br ightnes s and Chromatic ity par t s to view Pic ture with ↘

· · · c o l o r s removed
122 recombineAndShow (myChroma , myBright , " c o l o r l e s s_ "+fname , "Colors removed ↘

· · · Picture ") ;
123

124 cfunc_t cFunc (lam , myChroma) ;
125 cFunc . s e t ep s2 (1 e−10) ;
126

127 ctvmin_t cTVMin(cFunc , myChroma) ;
128 cTVMin . f i r s t_gue s s () ;
129 recombineAndShow (myChroma , myBright , " recolored_fg_"+fname , "Recolor ↘

· · · F i r s t Guess") ;
130 DisplayImage ("Chromatic ity F i r s t Guess" , myChroma) ;
131

132 std : : cout << "\n\n−−==CHROMATICITY PART==−−" << std : : endl ;
133

134 // std : : cout << "Smooth p i c tu r e to obta in i n i t i a l s t a t e f o r Newton ↘

· · · i t e r a t i o n . . . " << std : : endl ;
135 //cTVMin . smoothening (10) ;
136

137 std : : cout << " Star t TV minimizat ion . . . " << std : : endl ;
138 cTVMin . minimize () ;
139

140

141 // Recombine Br ightnes s and Chromatic ity par t s o f r e c o l o r ed Pic ture
142 recombineAndShow (myChroma , myBright , " reco lored_"+fname , "Recolored ↘

· · · Picture ") ;
143

144

145

146 return 0 ;
147 }

Colorization

Listing A.3: ./listings/dti_tvmin_prpt_test3d.cpp
1 #include <iostream>
2 #include <cs td l i b >
3 #include <st r ing>
4 #include <sstream>
5

6 //#de f i n e TV_SPD_EXP_DEBUG
7 //#de f i n e TV_SPD_LOG_DEBUG

75

8

9 #define TV_DATA_DEBUG
10 //#de f i n e TV_FUNC_DEBUG
11 //#de f i n e TV_FUNC_DEBUG_VERBOSE
12 //#de f i n e TVMTL_TVMIN_DEBUG
13 //#de f i n e TVMTL_TVMIN_DEBUG_VERBOSE
14 //#de f i n e TV_VISUAL_DEBUG
15

16 #include <mtvmtl/ core / a l g o_t ra i t s . hpp>
17 #include <mtvmtl/ core /data . hpp>
18 #include <mtvmtl/ core / f un c t i o na l . hpp>
19 #include <mtvmtl/ core /tvmin . hpp>
20 #include <mtvmtl/ core / v i s u a l i z a t i o n . hpp>
21

22 int main (int argc , const char ∗argv [])
23 {
24 using namespace tvmtl ;
25

26 typedef Manifold< SPD, 3 > mf_t ;
27 typedef Data< mf_t , 3> data_t ;
28 typedef Functional<FIRSTORDER, ANISO, mf_t , data_t , 3> func_t ;
29 typedef TV_Minimizer< PRPT, func_t , mf_t , data_t , OMP, 3 > tvmin_t ;
30 typedef Vi sua l i z a t i on <SPD, 3 , data_t , 3> visua l_t ;
31

32 data_t myData = data_t () ;
33 int nz , ny , nx ;
34 nz = std : : a t o i (argv [2]) ;
35 ny = std : : a t o i (argv [3]) ;
36 nx = std : : a t o i (argv [4]) ;
37 myData . readMatrixDataFromCSV(argv [1] , nz , ny , nx) ;
38

39

40 v i sua l_t myVisual (myData) ;
41 std : : s t r i ng s t r eam fname ;
42 std : : s t r i n g nfname ;
43 fname << "dt i3d " << nz << "x" << ny << "x" << ny << " . png" ;
44 nfname = "noisy_" + fname . s t r () ;
45 myVisual . saveImage (nfname) ;
46

47 std : : cout << " Sta r t i ng OpenGL−Renderer . . . " << std : : endl ;
48 myVisual . GLInit ("SPD(3) E l l i p s o i d V i s u a l i z a t i o n ") ;
49 std : : cout << "Rendering f i n i s h e d . " << std : : endl ;
50

51 double lam=0.7;
52 func_t myFunc(lam , myData) ;
53 myFunc . s e t ep s2 (0) ;
54

55 tvmin_t myTVMin(myFunc , myData) ;
56

57 std : : cout << " Star t TV minimizat ion . . . " << std : : endl ;
58 myTVMin. minimize () ;
59

60 std : : s t r i n g dfname = "deno ised (prpt)_" + fname . s t r () ;
61 myVisual . saveImage (dfname) ;
62

63 std : : cout << " Sta r t i ng OpenGL−Renderer . . . " << std : : endl ;
64 myVisual . GLInit ("SPD(3) E l l i p s o i d V i s u a l i z a t i o n ") ;
65 std : : cout << "Rendering f i n i s h e d . " << std : : endl ;
66

67 return 0 ;
68 }

3D DTI TV minimization

76

Appendix B
Derivative Computations

The following computations are based on the notation used in [22]. At the core of the computation
is the following relation for the differential dF of a function f , considered as map between two
matrix spaces

d vecF (X) = vec dF (X), (B.1)

where vec denotes the vectorization operator vec : Rn×p → Rnp, which forms a vector from a matrix
by column-wise stacking. In the next sections, the computation will be demonstrated for the case
of the special orthogonal group. The computations for the other manifolds work analogously.

B.1 Vectorization-Kronecker-product identities
Another important tool for the computation of derivatives are the following identities for the
vectorization operator and the Kronecker product ⊗.

vec(ABC) = (CT ⊗A) vecB (B.2)

If one of the matrices in the above product is replaced by the identity matrix 1, an additional set
of three identities can be obtained.

vec(AB) = (BT ⊗A) vecA (B.3)

= (BT ⊗A) vec1 (B.4)
= (1⊗A) vecB (B.5)

(B.6)

B.2 Squared distance function on the special orthogonal group
SO(n)

The first derivative ∂d2(X,Y)
∂X = −2X log(XTY) =: T4 can be decomposed as follows

T1 = XTY (B.7)
T2 = −2X (B.8)
T3 = log T1 (B.9)
T4 = T2T3. (B.10)

77

The derivative of the first line with respect to X is given by

d T1(X) = dX
TY (B.11)

d vecT1(X) = vec dX
TY (B.12)

= (Y T ⊗ 1n) vec dX
T (B.13)

= (Y T ⊗ 1n)Knn︸ ︷︷ ︸
dT 1(X)

vec dX . (B.14)

Hence,
∂T1

∂X
= (Y T ⊗ 1n)Knn (B.15)

where Knn denotes the so-called commutator matrix transforming the vectorization of a matrix to
the vectorization of the transpose of the matrix. More details on the properties of this permutation
matrix can be found in [22].

Now for the second part one has

d T2(X) = −2 dX (B.16)

d vecT2(X) = vec−2 dX = −21n2︸ ︷︷ ︸
dT 2(X)

(B.17)

leading to the Kronecker representation

∂T2

∂X
= −21n2 . (B.18)

The third part yields
∂T3

∂X
=
∂T3

∂T1

∂T1

∂TX
= d log(Y T ⊗ 1n)Knn. (B.19)

Finally, only the last part is needed to put everything together. From

d T3(X) = d T2(X)T3(X) + T2(X) d T3(X) (B.20)

d vecT2(X) = vec d T2T3 vecT2 d T3 (B.21)

= (TT3 ⊗ 1n) vec d T2 + (1n ⊗ T2) vec d T3 (B.22)

and the previous parts, one arrives at

∂T4

∂X
= (TT3 ⊗ 1n)

∂T2

∂X
+ (1n ⊗ T2)

∂T3

∂X
. (B.23)

Substitution of the Ti leads to the final expression presented in 2.54.

78

Appendix C
Performance metrics

In this appendix some additional performance metrics of the library are shown.

C.1 Cache Misses

Share Routine Library
22.40 cholmod_transpose_sym CHOLMOD
17.76 set_from_triplets Eigen
9.35 DGEMV(matrix vector multiply) BLAS
8.96 DSYRK(symmetric rank-k update) BLAS
6.22 cholmod_super_numeric CHOLMOD
6.09 DTRSV(solve linear sytem) BLAS

(a) 361× 361

Share Routine Library
17.68 DGEMM(matrix matrix multiply) BLAS
17.14 DSYRK(symmetric rank-k update) BLAS
12.73 DTRSM(solve triangular sytem) BLAS
11.66 set_rom_triplets(sparse initialization) Eigen
9.33 CreateCoarserGraph METIS
5.68 cholmod_super_numeric CHOLMOD

(b) 1280× 1024

Table C.1: Share of total cache misses for IRLS minimization over M = R3 (a)"Lena.jpg", 361×361
pixel (b)"Mathematicians.jpg", 1280× 1024 pixel

Share Routine Library
9.97 set_rom_triplets(sparse initialization) Eigen
8.75 clear_page Kernel
5.04 memcpy_sse2_unaligned LIBC
4.55 unknown unknown
2.75 DGEMV(matrix vector multiply) BLAS
2.41 cholmod_super_numeric CHOLMOD

(a) 30× 30

Share Routine Library
13.77 set_rom_triplets(sparse initialization) Eigen
12.72 DSYRK(symmetric rank-k update) BLAS
9.59 cholmod_super_numeric CHOLMOD
7.34 DGEMV(matrix vector multiply) BLAS
7.23 DGEMM(matrix matrix multiply) BLAS
4.12 cholmod_transpose_sym CHOLMOD

(b) 100× 100

Table C.2: Share of cache misses for IRLS minimization over M = SPD(3) (a) Synthetic SPD(3) ,
30× 30 (b) Synthetic SPD(3) , 100× 100

79

C.2 Page Faults

Share Routine Library
30.43 cholmod_super_numeric CHOLMOD
13.07 SparseMatrix::operator= Eigen
12.33 set_from_triplets Eigen
12.25 triplet operation Eigen
12.13 memcpy_sse2_unaligned LIBC
3.54 SparseMatrix::assign Eigen

(a) 361× 361

Share Routine Library
11.30 triplet operation Eigen
10.24 cholmod_super_numeric CHOLMOD
9.05 memcpy_sse2_unaligned LIBC
8.33 set_from_triplets Eigen
8.04 SparseMatrix::operator= Eigen
6.12 SparseMatrix::assign Eigen

(b) 1280× 1024

Table C.3: Share of total page faults for IRLS minimization over M = R3 (a)"Lena.jpg", 361× 361
pixel (b)"Mathematicians.jpg", 1280× 1024 pixel

Share Routine Library
23.88 unknown unknown
11.20 dl_relocate_object unknown
10.89 evaluateHJ MTVMTL
8.21 triplet operation Eigen
8.13 SparseMatrix::operator= Eigen
7.17 memset_sse2 LIBC

(a) 30× 30

Share Routine Library
20.75 SparseMatrix::operator= Eigen
17.41 cholmod_super_numeric CHOLMOD
15.02 evaluateHJ MTVMTL
13.65 triplet operation Eigen
9.37 set_from_triplets Eigen
7.27 memcpy_sse2_unaligned LIBC

(b) 100× 100

Table C.4: Share of total page faults for IRLS minimization over M = SPD(3) (a) Synthetic
SPD(3) , 30× 30 (b) Synthetic SPD(3) , 100× 100

80

Bibliography

[1] A. Barmpoutis A., B. C. Vemuri, T. M. Shepherd, and J. R. Forder. Tensor splines for
interpolation and approximation of dt-mri with applications to segmentation of isolated rat
hippocampi. IEEE Trans Med Imaging, 26(11):1537–1546, 2007. (Cited on page 56.)

[2] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional, 2004.
(Cited on page 31.)

[3] P. A. Absil, R. Mahony, and R. Sepulchre. Riemannian Geometry of Grassmann Manifolds
with a View on Algorithmic Computation, volume 80. Springer Netherlands, 2004. (Cited on
pages 23 and 26.)

[4] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2009. (Cited on pages 13, 16 and 25.)

[5] A. H. Al-Mohy, N. J. Higham, and S. D. Relton. Computing the fréchet derivative of the
matrix logarithm and estimating the condition number. SIAM Journal on Scientific Computing,
35(4):C394–C410, 2013. (Cited on page 28.)

[6] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. (Cited on page 31.)

[7] S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd flow segmentation
and stability analysis. In CVPR. IEEE Computer Society, 2007. (Cited on page 54.)

[8] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space
structure on symmetric positive definite matrices. SIAM Journal on Matrix Analysis and
Applications, 29(1):328–347, 2007. (Cited on pages 13 and 68.)

[9] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(6):679–698, 1986. (Cited on page 51.)

[10] M. Cavegn. Total variation regularization for geometric data. Master thesis, ETH Zürich,
2013. (Cited on page 30.)

[11] A. Chambolle and P.-L. Lions. Image recovery via total variation minimization and related
problems. Numerische Mathematik, 76(2):167–188, 1997. (Cited on page 8.)

[12] T. F. Chan, S. H. Kang, and J. Shen. Total variation denoising and enhancement of color
images based on the CB and HSV color models. Journal of Visual Communication and Image
Representation, 12(4):422–435, 2001. (Cited on page 10.)

[13] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Heinz H.
Bauschke, Regina S. Burachik, Patrick L. Combettes, Veit Elser, D. Russell Luke, and Henry
Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
volume 49 of Springer Optimization and Its Applications, pages 185–212. Springer New York,
2011. (Cited on page 13.)

81

[14] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1999. (Cited on page 23.)

[15] M. Garrigues and A. Manzanera. Video++, a modern image and video processing C++
framework. Technical report, ENSTA-ParisTech, France, 2014. (Cited on pages 37 and 42.)

[16] P. Grohs and M. Sprecher. Total variation regularization by iteratively reweighted least
squares on hadamard spaces and the sphere. Technical Report 2014-39, Seminar for Applied
Mathematics, ETH Zürich, Switzerland, 2014. (Cited on pages 10, 15, 18, 30 and 62.)

[17] N. J. Higham. Evaluating padé approximants of the matrix logarithm. SIAM Journal on
Matrix Analysis and Applications, 22(4):1126–1135, 2001. (Cited on page 28.)

[18] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure
and Applied Mathematics, 30(5):509–541, 1977. (Cited on pages 14 and 20.)

[19] J. Lefevre and S. Baillet. Optical flow and advection on 2-riemannian manifolds: A common
framework. IEEE Trans. Pattern Anal. Mach. Intell., 30(6):1081–1092, 2008. (Cited on
page 68.)

[20] R. Lischner. Exploring C++11. Expert’s voice in C++. Apress, New York, 2013. (Cited on
page 33.)

[21] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’81, pages 674–679, San Francisco, CA, USA, 1981. Morgan Kaufmann
Publishers Inc. (Cited on page 54.)

[22] J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and
econometrics. J. Wiley & Sons, Chichester, New York, Weinheim, 1999. (Cited on pages 20, 77
and 78.)

[23] M. Nägelin. Total variation regularization for tensor valued images. Bachelor thesis, ETH
Zürich, 2014. (Cited on pages 13 and 30.)

[24] Neuroimaging informatics technology initiative - NIfTI-1 data format. http://nifti.nimh.nih.
gov/nifti-1. Accessed: 2015-09-25. (Cited on page 29.)

[25] Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239,
2014. (Cited on page 13.)

[26] P. Rodriguez and B. Wohlberg. An iteratively reweighted norm algorithm for minimization of
total variation functionals. IEEE Signal Processing Letters, 14(12):948 – 951, 2007. (Cited on
page 14.)

[27] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D, 60:259–168, 1992. (Cited on pages 8 and 10.)

[28] H. Sato and T. Iwai. Optimization algorithms on the grassmann manifold with application to
matrix eigenvalue problems. Japan Journal of Industrial and Applied Mathematics, 31(2):355–
400, 2014. (Cited on page 23.)

[29] Teem toolkit. http://teem.sourceforge.net/. Accessed: 2015-09-20. (Cited on page 41.)

[30] T. Veldhuizen. Arrays in blitz++. In Denis Caromel, RodneyR. Oldehoeft, and Marydell
Tholburn, editors, Computing in Object-Oriented Parallel Environments, volume 1505 of
Lecture Notes in Computer Science, pages 223–230. Springer Berlin Heidelberg, 1998. (Cited
on page 30.)

[31] Volume image database. http://www.volvis.org/. Accessed: 2015-09-25. (Cited on page 52.)

[32] A. Wedel and D. Cremers. Stereo Scene Flow for 3D Motion Analysis. Springer, 2011. (Cited
on pages 9, 32 and 68.)

82

http://nifti.nimh.nih.gov/nifti-1
http://nifti.nimh.nih.gov/nifti-1
http://teem.sourceforge.net/
http://www.volvis.org/

[33] A. Weinmann, L. Demaret, and M. Storath. Total variation regularization for manifold-valued
data. SIAM Journal on Imaging Sciences, 7(4):2226–2257, 2014. (Cited on pages 10, 13, 14
and 62.)

[34] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital patterns. Commun.
ACM, 27(3):236–239, 1984. (Cited on page 54.)

83

