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Abstract
The long-term dynamics of microbial communities across geographic,
hydrographic, and biogeochemical gradients in the Arctic Ocean are
largely unknown. To address this, we annually sampled polar, mixed, and
Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to
assess microbiome composition, substrate concentrations, and oceano-
graphic parameters. Longitude and water depth were the major determi-
nants (�30%) of microbial community variability. Bacterial alpha diversity
was highest in lower-photic polar waters. Community composition shifted
from west to east, with the prevalence of, for example, Dadabacteriales
and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively.
Concentrations of dissolved organic carbon peaked in the western, com-
pared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait.
Interannual differences due to the time of sampling, which varied between
early (June 2016/2018) and late (September 2019) phytoplankton bloom
stages, illustrated that phytoplankton composition and resulting availability
of labile substrates influence bacterial dynamics. We identified 10 species
clusters with stable environmental correlations, representing signature
populations of distinct ecosystem states. In context with published meta-
genomic evidence, our microbial-biogeochemical inventory of a key Arctic
region establishes a benchmark to assess ecosystem dynamics and the
imprint of climate change.
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INTRODUCTION

Recurrent observations provide a deeper understanding
of ecosystem functioning over geographic, biogeochemi-
cal, and hydrographic gradients; enabling to record
changes and predict future states (Buttigieg et al., 2018;
Lannuzel et al., 2020). Since the Arctic warms at a four-
fold faster rate than the global average (Rantanen
et al., 2022), multi-year observations are key for charac-
terizing associated shifts in biological and physicochemi-
cal regimes. Remote sensing technologies provide an
avenue for tracking large-scale patterns, such as sea-ice
reduction and primary productivity (Frey et al., 2023;
Horvat et al., 2017; Lewis et al., 2020). However, to
measure the biological responses of pelagic communi-
ties, in situ observations are necessary (Grebmeier
et al., 2019; Solan et al., 2020). For instance, continuous
in situ studies demonstrated that plankton diversity
scales with sea-ice extent and water temperature (Lin
et al., 2021). Decadal records of sinking particles in the
Arctic Ocean revealed long-lasting effects of a warm-
water anomaly; stimulating small phytoplankton while
larger diatoms decreased in abundance, coincident with
shifting bacterial composition (Cardozo-Mino
et al., 2023). These dynamics have major consequences
for carbon export and benthopelagic coupling
(Jacquemot et al., 2022; Kohlbach et al., 2023; Salter
et al., 2023). Future ocean scenarios predict substantial
ecosystem shifts in the Arctic, supported by a changing
microbiome structure at higher temperatures (Ahme
et al., 2023). One important aspect is the impact of
northward expanding Atlantic waters, termed Atlantifica-
tion, on microbial diversity and the biological carbon
pump (Carter-Gates et al., 2020; Oldenburg et al., 2023;
Oziel et al., 2020).

The HAUSGARTEN/FRAM long-term observatory
studies biological communities, benthopelagic coupling,
and physical oceanography in the Fram Strait, the major
gateway between the Atlantic and Arctic Oceans (Nöthig
et al., 2015; Soltwedel et al., 2016). Here, polar water
outflowing from the central Arctic Ocean via the East
Greenland Current (EGC; western Fram Strait) meets
Atlantic water flowing northward via the West Spitsber-
gen Current (WSC; eastern Fram Strait). These Arctic-
versus Atlantic-influenced ecosystems—determined by
sea-ice cover and hydrographic properties—coincide
with distinct patterns in microbial diversity (Metfies
et al., 2016, 2017; Priest, von Appen, et al., 2023; Wietz
et al., 2021), metazoan distribution (Cornils et al., 2022;
Käß et al., 2021; Ma�nko et al., 2020), and biogeochemis-
try (Engel et al., 2017, 2019; Grosse et al., 2021; Priest,
Vidal-Melgosa, et al., 2023; Randelhoff et al., 2018). The
polar waters of western Fram Strait harbour higher pro-
portions of SAR11 and SAR406 clades; compared to
Flavobacteriia, Gammaproteobacteria, and Verrucomi-
crobia in the Atlantic waters of eastern Fram Strait
(Fadeev et al., 2018). Bacterial cell numbers are an

order of magnitude higher in the eastern Fram Strait,
which has been attributed to higher water temperatures
(Cardozo-Mino et al., 2021). Overall, Atlantic-influenced
waters are more productive and characterized by stron-
ger seasonal dynamics (Wietz et al., 2021), with major
implications for the biological carbon pump (Fadeev,
Rogge, et al., 2021; Flores et al., 2019; Priest, von
Appen, et al., 2023; Ramondenc et al., 2022; Rapp
et al., 2018; von Appen et al., 2021). In addition to
regional differences, bacterial communities in the Fram
Strait distinctly vary with depth. Fluorescence in situ
hybridization revealed a prevalence of SAR324,
SAR202, and Nitrososphaeria below the photic zone
(Cardozo-Mino et al., 2021). Ribosomal metabarcoding
demonstrated similar patterns over an annual cycle, with
chemolithotrophic archaea dominating at mesopelagic
depths (Wilson et al., 2017).

A multiannual inventory of microbiological and bio-
geochemical patterns—comparing Arctic- versus
Atlantic-influenced ecosystem states across the eupho-
tic zone—is yet missing, and can help to predict how cli-
mate change will impact the regional microbial loop.
Here, we portray microbial, biogeochemical, and ocean-
ographic dynamics over five summers, covering �10
stations from western to eastern Fram Strait in the
euphotic zone (5–100 m depth). Through amplicon-
sequencing and the quantification of biogeochemically
important substrates, we illuminate fundamental dynam-
ics and drivers of Fram Strait bacteria and archaea. We
hypothesized that surface waters carry a signature
reflecting phytoplankton productivity at different bloom
stages, especially under Atlantic influence, compared to
more uniform patterns in the lower photic zone. This
microbial-biogeochemical inventory establishes a bench-
mark to assess future ecosystem shifts.

EXPERIMENTAL PROCEDURES

Sample collection

Samples were collected on RV Polarstern expeditions
PS93.2 (July–August 2015), PS99.2 (June–July 2016),
PS107 (July–August 2017), PS114 (July 2018), and
PS121 (August–September 2019) across the Fram
Strait (Figure 1 and Table S1). Sampling was carried
out with 12 L Niskin bottles mounted on an SBE 911+
rosette (Sea-Bird, Bellevue, WA) equipped with CTD
(conductivity-temperature-depth) and chlorophyll a (chl-
a) sensors. The chlorophyll maximum depth (chl-max)
was determined from chl-a fluorescence profiles during
each downcast. Seawater samples were collected dur-
ing each upcast from the surface (4–22 m depth), the
chl-max (13–43 m), below the chl-max (30–75 m), and
the lower photic zone (100 m) receiving small amounts
of light (Cherkasheva et al., 2013). Individual depths
varied per station and year, according to the depth of
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the chl-max. Not all stations or water layers were sam-
pled every year (Table S1).

DNA extraction and sequencing

Per sampling event, 2–4 L of seawater were filtered
onto 0.22 μm Sterivex cartridges (Millipore, Burlington,
MA). Filters were stored at �20�C until DNA extraction
using the PowerWater kit (QIAGEN, Germany)
according to the manufacturer’s instructions. The V4–
V5 region of 16S rRNA genes was amplified using
primers 515F (GTGYCAGCMGCCGCGGTAA) and
926R (CCGYCAATTYMTTTRAGTTT), providing high
coverage of both bacteria and archaea (Parada
et al., 2016). Amplicon libraries were prepared follow-
ing the 16S Metagenomic Sequencing Library Prepa-
ration protocol (Illumina, San Diego, CA) and
sequenced using MiSeq technology in 2 � 300 bp
paired-end runs.

Amplicon analysis

16S rRNA reads were processed into amplicon
sequence variants (ASVs) using DADA2 v1.16
(Callahan et al., 2016). Filtering settings were
truncLen = c(230,195), maxN = 0, minQ = 2,
maxEE = c(3,3) and truncQ = 0, followed by merging
using minOverlap = 10 and chimera removal. After sin-
gleton removal, we obtained an average of 128,000

reads per sample (Table S2). ASVs were taxonomically
classified using the Silva v138 database (Quast
et al., 2013). Subsequently, we only considered ASVs
with ≥3 counts in ≥3 samples, resulting in a set of 2835
ASVs. Data were analysed and visualised using R
packages tidyverse, mixOmics, ampvis2, psych, and
fishualize (Andersen et al., 2018; Revelle, 2023; Rohart
et al., 2017; Schiettekatte et al., 2019; Wickham
et al., 2019), with aesthetic modifications of figures
using Inkscape (https://inkscape.org). The graphical
abstract has been created with Biorender.com. The bio-
informatics workflow is available at https://github.com/
matthiaswietz/fiveArcticSummers. Raw fastq files have
been deposited at ENA under BioProject PRJEB66267.
For functional predictions, ASVs were mapped to 16S
rRNA gene sequences of metagenome-assembled
genomes (MAGs) from Fram Strait (Priest et al., 2021;
Priest, von Appen, et al., 2023) through competitive
read recruitment using BBMap in BBtools v35.14, with
an identity threshold of 100% (Table S2).

Cell numbers

Seawater samples were fixed with glutardialdehyde
(2% v/v final concentration) and frozen at �80�C until
further analysis. Cells were stained using SYBR Green
I (Thermo Fisher Scientific, Waltham, MA) and counted
on a FACSCalibur flow cytometer (BD, Franklin Lakes,
NJ) using Cell Quest v3.3 (detection limit 2000 events
s�1) after calibration with TruCount beads (BD).

F I GURE 1 Study area. Stations in the western (0–6� W; blue) and eastern (0–12� E; red) Fram Strait, sampled annually between 2015 and
2019. Sea-ice cover (cumulative average over all sampling periods) is depicted as a grey-white gradient.
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Substrate concentrations

Duplicate samples for dissolved organic carbon
(DOC) and total dissolved nitrogen (TDN) were fil-
tered through 0.45 μm GMF GD/X filters (Whatman,
United Kingdom), collected in combusted glass
ampoules (8 h, 450�C), acidified, and stored at 4�C
until simultaneous analysis with a detection limit of
1 μmol L�1 (Engel & Galgani, 2016). Duplicate sam-
ples for dissolved combined carbohydrates (>1 kDa)
were filtered through 0.45 μm Acrodisc filters (Pall,
Port Washington, NY), collected in combusted glass
vials (8 h, 450�C), and frozen at �20�C until analysis
(Engel & Händel, 2011) with a detection limit of
10 nmol L�1. We herein report the sum of (i) the neu-
tral sugars arabinose, fucose, galactose, glucose,
rhamnose, and co-eluted mannose/xylose; (ii) the
sugar acids galacturonate and glucuronate; and
(iii) the amines galactosamine and glucosamine.
Duplicate samples for dissolved hydrolyzable amino
acids were filtered through 0.45 μm Acrodisc filters,
collected in combusted glass vials (8 h, 450�C), and
frozen at �20�C until measurement with ortho-
phthaldialdehyde derivatization by high-performance
liquid chromatography (Agilent, Santa Clara, CA)
using a C18 column (Phenomenex, Torrance, CA),
with precision <5% and detection limit 2 nmol L�1

(Dittmar et al., 2009; Peter & Kenneth, 1979). We
herein report the sum of alanine, arginine, aspartate,
isoleucine, glutamate, glycine, leucine, phenylala-
nine, serine, threonine, tyrosine, valine, and γ-
aminobutyric acid (GABA).

Chlorophyll

Total chlorophyll concentrations were determined
after filtering 2 L seawater onto GF/F filters
(Whatman; 25 mm diameter) at 200 mbar. In addi-
tion, 2 L were sequentially filtered through 10, 3, and
0.4 μm Isopore membrane filters (Merck; 45 mm
diameter) at 200 mbar. Filters were stored at �80�C
until chl-a extraction in 90% acetone overnight. Chl-a
was quantified using a fluorometer (Turner Designs,
San Jose, CA) slightly modified from (Dybern
et al., 1976; Evans & O’Reilly, 1983), including cali-
bration with standard chl-a solutions (Sigma,
Germany).

Satellite data

Sea-ice and chl-a concentrations, derived from the
AMSR-2 and Sentinel 3A OLCI satellites, were down-
loaded from seaice.uni-bremen.de and data.marine.
copernicus.eu, respectively, considering grid points
within 15 km around stations.

RESULTS AND DISCUSSION

We characterized microbial, biogeochemical, and
hydrographic patterns in the summers of 2015–2019
across the western (0–6� W) and eastern (0–12� E)
Fram Strait (Figure 1 and Table S1). By analysing
�200 seawater samples from the surface (average
depth 10 m), chl-max (average 24 m), below the chl-
max (average 46 m) and the lower photic zone
(100 m), we determined regional and vertical patterns
in microbial diversity, cell numbers and substrate con-
centrations across Arctic- and Atlantic-influenced eco-
system states.

Environmental parameters, cell numbers,
and substrate regimes

Seawater temperatures showed marked regional differ-
ences, varying from �1.6�C to 8�C between western
and eastern Fram Strait (Figure 2A). Per site, tempera-
tures across the photic zone were similar, with a maxi-
mal difference of �2�C between surface and 100 m
depth. Lower salinities in the upper western Fram Strait
(Figure 2A) illustrate the influence of polar surface
water, sea ice-derived meltwater or a combination
of both.

The western Fram Strait harboured 1 � 105 cells
ml�1 throughout the upper 100 m. In eastern Fram
Strait, the lower photic zone harboured similar num-
bers, compared to an order of magnitude more cells in
the upper 25 m (Wilcoxon rank-sum test, p < 0.001;
(Figure 2A). These numbers agree with cell abun-
dances reported near Svalbard (Cardozo-Mino
et al., 2021).

The concentrations of neutral carbohydrates (CHO),
amino acids (AA), sugar acids, and amines peaked in
the chl-max of the eastern Fram Strait (Wilcoxon rank-
sum test, p < 0.05), corresponding to elevated primary
production (Nöthig et al., 2015) and availability of labile
substrates (Piontek et al., 2014). Bulk DOC concentra-
tions were 12% higher in the western Fram Strait
(Wilcoxon rank-sum test, p < 0.05; Figure 2B). Presum-
ably, this relates to higher concentrations of terrestrial-
and ice-derived DOC, which can constitute up to 30%
of organic matter in Arctic waters (Nguyen et al., 2022;
Opsahl et al., 1999). These patterns underscore that
specific organic compounds prevail under Arctic versus
Atlantic influence (Engel et al., 2019; Priest, Vidal-
Melgosa, et al., 2023; von Jackowski et al., 2020). Con-
sequently, bacterial communities in polar waters are
enriched in genes targeting terrestrial compounds,
compared to genes targeting phytoplankton-derived
compounds under Atlantic influence (Priest, von
Appen, et al., 2023). Over vertical scales, concentra-
tions of CHO, AA, sugar acids, amines, chl-a, and DOC
peaked in surface and chl-max depths, independent of
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the sampling site (Wilcoxon rank-sum test, p < 0.001;
Figures 2B and S1). TDN concentrations were consis-
tently higher in the lower photic zone (Wilcoxon rank-
sum test, p < 0.001), similar to Svalbard fjords
(Osterholz et al., 2014).

Broad community patterns in the
environmental context

Microbial community composition varied most by longi-
tude and depth, explaining 15% and 16% of variability,
respectively (Figure 3; PERMANOVA, p < 0.001). To a
lesser extent, composition varied with Julian day, which
explained 6% of the variability (PERMANOVA;
p < 0.001). Separate PERMANOVA for bacterial and
archaeal ASVs showed that depth was the strongest
determinant for archaeal composition (R2 = 0.17), in
line with their common preference for aphotic waters.
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In contrast, archaea were less influenced by latitude
(R2 = 0.07) and Julian day (R2 = 0.01) than bacteria
(R2 = 0.16 and 0.06), but all factors tested were signifi-
cant (PERMANOVA; p < 0.01).

In the western Fram Strait, alpha diversity signifi-
cantly increased with depth (Figure S2; Kruskal–
Wallis test, p < 0.001). This subsurface peak sug-
gests marked separation of water layers through
lower salinities at the surface (Figure 2A). Alphapro-
teobacteria, Gammaproteobacteria, Bacteroidetes,
and Verrucomicrobia represented �90% of the com-
munity at the surface and chl-max, whereas the

abundance of other bacterial classes increased to
�50% in the lower photic zone (Figure 4A). However,
class-level proportions varied between western and
eastern Fram Strait, with shifting dominance from
Gamma- to Alphaproteobacteria, respectively
(Figure 4A). At the order level, this shift corresponded
to decreasing abundances of Dadabacteriales and
Cytophagales and increasing abundances of OM182
and Puniceispirillales from the western to the eastern
Strait. Some lower-photic taxa, for example, Nitrospi-
nales, had similar abundances across all subsurface
samples (Figure 4B).
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ASV-level dynamics indicated the presence of
both “cosmopolitan” and locally confined genotypes.
For example, ASVs affiliated with Pseudohongiella
were restricted to the chl-max (Figure S3). Pseudo-
hongiella has been reported from the Barents Sea
and Svalbard fjords, and linked to hydrocarbon degra-
dation (Kampouris et al., 2023; Peng et al., 2020).
Overall, western subsurface waters comprised the
largest number of unique ASVs (Figure S4), illustrat-
ing that earlier observations (Fadeev et al., 2018) are
interannually consistent. The greatest regional over-
lap among subsurface ASVs indicates that lower-
photic waters are more uniform, in line with lower
regional variability in water temperatures and cell
numbers at 100 m depth (Figure 2A). Nonetheless,
�280 ASVs were detected with a minimum 0.001%
relative abundance in all samples (Figure S4). Hence,
regional and vertical differences in microbiome struc-
ture not only relate to presence-absence of specific
taxa but also variability in the relative abundances of
shared ASVs.

Correlation analyses underlined how environmental
variability influences ASV distribution. ASVs predomi-
nantly correlated with DOC, amines, and sugar acids in
the western Fram Strait compared to temperature and
CHO in the eastern Fram Strait, with ASVs being asso-
ciated with different bacterial families (Figure 5). Such
trends are probably connected with phytoplankton dis-
tribution, which varies between eastern and western
Fram Strait (Nöthig et al., 2015). Accordingly, analysis
of chl-a concentrations in different size fractions indi-
cated the prevalence of smaller phytoplankton (0.4–
3 μm fraction) in eastern Fram Strait (Figure S5), in
agreement with previous findings (Kilias et al., 2014;
Metfies et al., 2016).

Effect of sampling time and seasonality

Although depth and longitude were the strongest drivers
of microbial composition (Figure 3), the influence of Julian
day (i.e., the time of sampling) was pronounced for sam-
ples from surface and chl-max depths (Figure 6A). These
patterns likely corresponded to varying mixed layer depth
and productivity between June and September
(Oldenburg et al., 2023; Wietz et al., 2021). In parallel,
substrate regimes shift to more refractory compounds
once phytoplankton blooms collapse (von Jackowski
et al., 2022). Accordingly, Julian day explained 9% of the
variability in substrate concentrations, being comparable
to depth (12%) (PERMANOVA; p < 0.001).

The 2016 and 2018 samplings occurred in June/July,
when diatom abundances are typically highest (von
Jackowski et al., 2022, Wietz et al., 2021). Hence, these
samplings likely occurred during the peak phytoplankton
bloom, supported by maximal CHO concentrations and
Flavobacteriales abundances (Figure 6B). These pat-
terns mirror the ecological relationships between flavo-
bacteria, phytoplankton, and algal substrates in
temperate seas (Teeling et al., 2012). In contrast, the
2019 sampling occurred in August/September, with high
SAR11 abundances and low CHO concentrations signi-
fying the transition to oligotrophic conditions in autumn
(von Jackowski et al., 2022). Nonetheless, flavobacteria
remain translationally active during such periods, even
at lower abundances (Priest, Vidal-Melgosa,
et al., 2023). Interannual differences were possibly mag-
nified by contrasting sea-ice conditions, with the ice
edge varying by several degrees of latitude and longi-
tude between years (Figure S6). Such variability can
markedly influence microbial composition and function,
especially in the marginal ice zone (Priest, von Appen,
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et al., 2023; von Appen et al., 2021). Furthermore, local
variability in biological and physical parameters can
have a direct effect on microbial patterns. For instance,
Arctic submesoscale filaments can harbour distinct
microbial communities and substrate regimes, with two-
fold higher organic matter export than in the surrounding
waters (Fadeev, Wietz, et al., 2021).

Signature populations

Sparse partial least square regression (sPLS) estab-
lished a refined picture of community composition and
its environmental drivers. sPLS revealed that approxi-
mately half of ASVs were associated with distinct envi-
ronmental parameters, corresponding to 10 clusters
representing defined ecosystem states (Figure 7A and
Table S2). On average, ASVs from signature popula-
tions constituted a relative abundance of 66%, with a
maximum of 78% in the lower-photic western Strait
(Table S2). The maximum in subsurface Arctic waters

supports the notion of a stable community in “true”
polar conditions, which might be affected by progres-
sing Atlantification (Priest, von Appen, et al., 2023).
Each cluster displayed a specific taxonomic composi-
tion (Figure 7B). The higher fraction of unclassified gen-
era among subsurface/polar signature taxa
(Table S2)—together with higher alpha-diversity and
more unique ASVs (Figures S2 and S4)—underlines
the presence of uncharted microbial diversity in polar
waters (Fadeev et al., 2018). In the following, we dis-
cuss the potential ecology of selected signature taxa.

Cluster C1—Julian day (eastern Fram Strait)

C1 signature taxa (191 ASVs; Table S2) predominated
during the summer/autumn transition in the eastern
Fram Strait. Accordingly, these ASVs constituted
�19% of the community in 2019, compared to �4%
across all other samples. In line with fewer labile sub-
strates (von Jackowski et al., 2022), C1 signifies a
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detritus-fueled ecosystem state including aggregate for-
mation, as typical during bloom collapse (Alldredge &
Gotschalk, 1989). Cand. Puniceispirillum and Pseudo-
fulvibacter (Figure 7B) were probably sustained by
decaying phytoplankton (Choi et al., 2015; Gros
et al., 2023), whereas Chitinophagales and Oligoflex-
ales might utilize chitinous aggregates (Fontanez
et al., 2015; Li et al., 2021; Martínez-García
et al., 2022). Aureispira can be attached to gel

particles, and feed on bacterial cells or cell debris
(Furusawa et al., 2015; Bunse et al., 2021).

Cluster C2—Surface (eastern Fram Strait)

C2 signature taxa (75 ASVs; Table S2) predominated in
Atlantic-influenced surface waters, illustrated by strong
positive correlations with temperature and longitude.
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Prior studies suggest associations with phytoplankton or
their metabolites. For instance, SAR116 commonly
encodes genes to degrade DMSP (Choi et al., 2015), an
algal compound mediating interactions with bacteria
(Kuhlisch et al., 2023). The predominance of Thiotricha-
ceae has been linked to the genetic capacity to oxidize
methanethiol (Priest, von Appen, et al., 2023), a com-
pound resulting from DMSP demethylation. The C2
taxon OCS116 occurs in areas of high primary produc-
tivity (Morris et al., 2012). The surface signature was
underlined by higher proportions of SAR11 clade Ia and
SAR86. Detection of Roseibacillus and Saprospiraceae
indicates connectivity with nearby Svalbard fjords
(Delpech et al., 2021; Park et al., 2022).

Cluster C3—Lower photic zone (eastern Fram
Strait)

C3 signature taxa (212 ASVs; Table S2) predominate in
deeper, saltier waters of the eastern Fram Strait, and
have a potential for chemolithoautotrophy (Mussmann
et al., 2017; Hoffmann et al., 2020). Nitrosomonas
(ammonia oxidizers) and LS-NOB (nitrite oxidizers) might
perform shared denitrification (Lehtovirta-Morley, 2018),
although probably less effective than ammonia oxidation
by archaea (Rasmussen & Francis, 2022). AEGEAN-169
(recently designated as SAR11 clade V) can potentially
utilize a broader range of CHOs than other SAR11
clades, and might participate in trace metal cycling and
thiamin synthesis (Getz et al., 2023).

Cluster C4—Lower photic zone (central Fram
Strait towards WSC)

This cluster of 189 ASVs (Table S2) is associated with
subsurface Atlantic conditions. Accordingly, the
Arctic97B-4 clade has been reported in subsurface waters
(Pajares, 2021), with a particle-associated, chemomixo-
trophic lifestyle (Milici et al., 2017; Priest, von Appen,
et al., 2023). Little is known about Arenicella; reported in
sea-ice-associated microbiomes (Garneau et al., 2016)
and putatively involved in nitrate reduction (Weigel
et al., 2022). Detection of Cand. Nitrosopelagicus indi-
cates the presence of urease and ammonia monooxygen-
ase (Royo-Llonch et al., 2021). Rubinisphaeraceae are
potentially host-associated, considering their detection of
marine fauna including deep-sea crustaceans (Kivistik
et al., 2020; Leinberger et al., 2022; Angthong
et al., 2023).

Cluster C5—Lower photic zone (central Fram
Strait towards EGC)

This cluster comprises 211 ASVs (Table S2) associ-
ated with subsurface Arctic conditions. The SAR324

clade, common in deep waters of the Arctic (Cardozo-
Mino et al., 2021) and worldwide, encodes a versatile
metabolism including alkane oxidation (Sheik
et al., 2014). Lentibacter has been observed in both
coastal and deep Arctic waters, especially during low-
nutrient conditions (Angelova et al., 2021). This combi-
nation possibly favoured establishment in polar waters,
which presumably harbour a more refractory substrate
pool (Priest, von Appen, et al., 2023).

Cluster C6—Julian day (western Fram Strait)

This narrow cluster (15 ASVs; Table S2) predominated
during the summer/autumn transition in the western
Fram Strait, constituting a fourfold higher abundance in
2019 samples. This period probably features maximal
seeding of ice-derived substrates into the underlying
seawater (Underwood et al., 2019). Alteromonas might
rely on proteolytic activities (Park et al., 2014), poten-
tially related to ice-derived substrates as observed in
related Alteromonadaceae (Underwood et al., 2019).
Halomonas has been linked to utilizing carbohydrates
and D-amino acids (Celussi et al., 2008; Yu
et al., 2020), and Magnetospiraceae to nitrogen fixation
and thiosulfate oxidation (Williams et al., 2012; von
Friesen & Riemann, 2020). Clade Ga0077536 has
been suggested as methylotrophs; plus encoding oxy-
genases targeting aldehydes, terpenes, aliphatics, and
aromatics (Francis et al., 2021).

Cluster C7—Lower photic zone (western
Fram Strait)

This cluster (315 ASVs; Table S2) prevails in subsur-
face waters of western Fram Strait, featuring marked
positive correlations with depth and sea-ice cover. C7
harbours unclassified Nitrosopumilaceae and Nitros-
pina, indicating shared ammonia and nitrite oxidation
(Lehtovirta-Morley, 2018). Sva0996 from phylum Acti-
nobacteria might utilize proteins (Orsi et al., 2016) or
detrital phytoplankton biomass (Brunet et al., 2021).
SAR406 and SAR202 are typical in the deep Fram
Strait (Cardozo-Mino et al., 2021) and elsewhere,
linked to sulfur cycling (Hawley et al., 2017; Mehrshad
et al., 2018). Marine Group III archaea (phylum Ther-
moplasmatota) presumably participate in protein
metabolism, and might encode chitinases (Li
et al., 2015; Dutta et al., 2023).

Cluster C8—Surface “freshwater bloom”
(western Fram Strait)

This cluster of 30 ASVs (Table S2) is associated with
productive fresher waters of the eastern Fram Strait
(positive correlation with sea-ice cover and chl-a;
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negative correlation with salinity). Hence, lower salin-
ities probably stimulate primary production and the
microbial web (Lester et al., 2021). SAR11 clade III has
a wide salinity tolerance (Lanclos et al., 2023) and pre-
dominates in fresher Arctic waters (Kraemer
et al., 2019). Polaribacter, Colwelliaceae, and Paragla-
ciecola are often associated with sea ice
(Bowman, 2014; Deming & Eric Collins, 2017). The
presence of Nitrincolaceae and Methylophagaceae
suggests methylotrophic metabolism and possible
methane oxidation (Gründger et al., 2021).

Cluster C9—Surface (western Fram Strait)

Cluster C9 (110 ASVs; Table S2) signifies “true” polar
surface waters (strong positive and negative correla-
tions with sea ice and longitude, respectively). Like C8,
this cluster comprises potential methylotrophs (OM43
clade). Rhodopirellula can degrade complex sulfated
polysaccharides (Wegner et al., 2013); possibly coun-
teracting the lower concentrations of labile substrates
in western Fram Strait (Figure 2B). Detection of SUP05
(Thioglobus) mirrors its wide distribution in “true” Arctic
habitats, based on comparison with TARA and
MOSAiC datasets (Priest, von Appen, et al., 2023).
Defluviicoccales might persist on stored glycogen or
unsaturated aliphatics (Burow et al., 2007; Lucas
et al., 2016). Rubritalea have been found in both first-
and multiyear ice (Bowman et al., 2011).

Cluster C10—“Bloom” (western and eastern
Fram Strait)

This narrow cluster (13 ASVs; Table S2) shows weak
latitudinal, but strong chlorophyll correlations. C10
includes the known phytoplankton associates Formosa,
Aurantivirga, and Ulvibacter (Flavobacteriaceae),
Planktomarina, and Sulfitobacter (Rhodobacteraceae)
as well as Lentimonas (Puniceicoccaceae), illustrating
adaptation to algal CHO degradation (Krüger
et al., 2019). The strong correlation (coefficient � 0.6)
of Ulvibacter with the >3 μm chl-a fraction supported
the link to large phytoplankton (Krüger et al., 2019) that
typically produce copious amounts of organic sub-
strates, fueling bacterial growth (Thornton, 2014). With
stronger phytoplankton blooms in the future ice-free
Arctic Ocean during summer, C10 taxa will likely
become more abundant.

Functional potential of signature
populations

We mapped ASVs to previously recovered MAGs
from the Fram Strait (Priest et al., 2021; Priest, von

Appen, et al., 2023). Fifty-two signature ASVs (asso-
ciated with sPLS clusters) matched available MAGs
at 100% 16S rRNA gene identity (Table S2), allowing
to assess their metabolic potential. As the core-EGC
is poorly covered by the available MAGs, we only
analysed depth-related signatures by comparing
sPLS clusters C1, C2, C6, C8, C9, C10 (surface/
bloom) with C3, C4, C5, C7 (lower-photic zone). Con-
sidering the substantial decrease in CHO concentra-
tions with depth (Figure 2B), we focused on
carbohydrate-active enzymes (CAZymes). MAGs
linked to surface populations encoded a greater num-
ber and diversity of CAZymes (Figure 8A), including
PL6 and PL7 alginate lyases. Furthermore, the exclu-
sive detection of GH10/GH30 (xylanase), GH36/
GH42 (alpha-/beta-galactosidase), GH26/GH113
(mannanase), and GH18 (chitinase) indicates that
surface populations can utilize a diverse pool of olig-
omeric carbohydrates. Also, the composition of
CAZyme-encoding taxa differed, with surface popula-
tions mainly represented by Flavobacteriales and
Verrucomicrobiales (Figure 8B) in agreement with
reported hydrolytic activities (Cardman et al., 2014;
Krüger et al., 2019). Other surface-CAZymes were
linked to known phytoplankton associates from the
Rhodobacterales (Sulfitobacter, Ascidiaceihabitans,
Planktomarina) and Opitutales (Lentimonas). Subsur-
face MAGs shared several CAZymes not found in
surface MAGs (Figure 8A), including GH88 (chitosan
or gellan hydrolase) and PL1 (pectate lyase). Most
subsurface CAZymes were found in the verrucomi-
crobial Arctic97B-4 clade, harbouring 81 CAZyme
and 54 sulfatase genes potentially targeting semi-
refractory polysaccharides (Priest, von Appen,
et al., 2023).

CONCLUSIONS

Microbial communities and substrate regimes in the
Arctic Fram Strait showed marked regional and verti-
cal gradients across five summers. Revisiting the
same stations over consecutive years established a
robust inventory of microbial and biogeochemical
dynamics, expanding upon regional and vertical gra-
dients reported from single expeditions (Fadeev
et al., 2018; Cardozo-Mino et al., 2021). The majority
of populations were coupled to sea-ice cover, temper-
ature, depth, sampling time, and substrate regimes.
The predominance of phytoplankton-associated taxa,
CHOs, and AAs in Atlantic-influenced surface waters
contrasted with a predominance of nitrogenous sub-
strates in the more uniform subsurface waters. Fur-
ther climate warming will presumably alter polar
signatures, affecting vertical diversity gradients and
the resident polar microbiome. Patterns attributed to
the timing of the annual expedition highlight that time-
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series studies need to consider the prevailing ecosys-
tem state. Overall, our evidence establishes a bench-
mark to quantify persistence versus change in the
Fram Strait and identifies potential consequences for
ecosystem functioning.
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