DISS. ETH NO. 29876

On the Reconstruction, Understanding and Editing

of 3D Scenes for Augmented Reality

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES from ETH Ziirich

(Dr. sc. ETH Ziirich)

presented by

Silvan Adrian Weder

MSc in Robotics, Systems, and Control
ETH Ziirich, Schweiz

born on 19th of October, 1993

accepted on the recommendation of

Prof. Dr. Marc Pollefeys
Prof. Dr. Martin R. Oswald
Prof. Dr. Bastian Leibe

2023

Abstract

We stand on the cusp of a new technological era, where technology seam-
lessly integrates into our daily lives. Entering this brave new world requires the
convergence of always-on artificial intelligence and augmented reality. However,
we still must overcome numerous challenges to realize this vision. This thesis
addresses three pivotal challenges that still remain: 3D reconstruction, 3D scene
understanding, and 3D scene editing. Augmented reality applications demand a
reconstruction of the world that is continuously updated with new information.
Therefore, we start with tackling the challenge of incrementally fusing noisy and
outlier contaminated data in an online system. We approach the challenge from
a data-driven perspective, utilizing a learned scene representation, to enhance
existing methods’ efficiency with the power of machine learning. However, spatial
awareness alone is not sufficient. Hence, we move on to 3D scene understand-
ing, where we confront the high costs of annotating datasets for 3D semantic
segmentation models. We introduce an automated semantic annotation pipeline
that matches human annotation quality, unifying the predictions of state-of-the-art
models into a shared label space that are further improved through 3D lifting.
Additionally, we extend the online reconstruction pipeline to semantic mapping,
overcoming limited receptive fields with a spatio-temporal attention mechanism
that efficiently combines information from 2D and 3D with past information. In
the final part, we explore the use of neural radiance fields for 3D scene editing.
Thus, we propose a method that leverages priors encoded in powerful 2D in-
painting method for removing objects from scenes. This requires the design of a
confidence-based view-selection mechanism during the optimization stage that

enforces multi-view consistency in the final reconstruction.

ii

Zusammenfassung

In dieser Arbeit wurden drei wesentliche Sdulen der erweiterten Realitét
beleuchtet: die Rekonstruktion, die Perzeption und die Bearbeitung von 3D
Szenen. Die Rekonstruktion bildet das Fundament vieler AR-Anwendungen und
liefert die notwendige rdaumliche Wahrnehmung, die fiir immersive Nutzererleb-
nisse erforderlich ist. In Bezug auf die 3D Rekonstruktion konzentrierten wir
uns auf die Herausforderung, Szenen in Echtzeit mithilfe eines kontinuierlichen
Stroms von Sensordaten zu aktualisieren. Wir haben gezeigt, wie maschinelles
Lernen zur Verbesserung der Genauigkeit der rekonstruierten Geometrie eingesetzt
werden kann. Dabei haben wir insbesondere die Bewiltigung von Ausreissern,
welche die rekonstruierte Geometrie beeintrichtigen, behandelt. Dazu wurde der
Fusionsprozess in eine gelernte Darstellung verlagert und dieser latenten Raum an-
schlieBend in die finale Geometrie iibersetzt, wodurch Ausreisser effizient entfernt
wurden. Im Bereich der 3D Perzeption sind wir zwei zentrale Herausforderungen
angegangen. Erstens haben wir ein automatisiertes Verfahren fiir die Annotation
von Daten entwickelt, um den Aufwand fiir die Erstellung von 3D Segmentierungs-
Datensitzen zu reduzieren. Zweitens haben wir die inkrementelle semantische
Modellierung mit ausschliesslich lokalen Informationen verbessert, indem wir ein
neuronales Expertennetzwerk présentierten, das Informationen aus dem 2D- und
3D-Raum kombiniert. SchlieBlich haben wir im Bereich der 3D Bearbeitung eine
Methode zur Entfernung von Objekten aus neuralen Strahlenfeldern vorgestellt.
Diese Methode verwendet Signale aus vortrainierten 2D Modellen, um Objekte
nahtlos aus den Szenen zu entfernen. Um Inkonsistenzen zwischen den komplet-
tierten Bildern aufzulosen, haben wir ein Optimierungsverfahren entwickelt und

so die Qualitit der Entfernung von Objekten verbessert.

ii

v

Acknowledgements

First, I wish to express my gratitude to Marc for affording me the invaluable
opportunity to embark on my PhD journey within the Computer Vision and
Geometry group at ETH Ziirich. His unwavering support and trust provided me
with the essential resources and the freedom to follow my curiosity, enabling me
to explore diverse avenues within the dynamic field of computer vision.

I extend my sincere thanks to Martin, who played an instrumental role in
shaping my academic journey. It was during my master’s studies that Martin
introduced me to the captivating field of 3D computer vision, igniting a passion
that has guided my path for the last four years. His guidance and steadfast presence
have been a source of inspiration and motivation throughout this significant chapter
of my life.

I extend my special thanks to Akihito, a remarkable mentor, despite the vast
distances that separated us. Over the course of my studies, his guidance proved
to be an invaluable compass on my academic journey. Our journey reached its
pinnacle with an unforgettable visit to Japan, a memory I will forever cherish.

Thank you Johannes, a long-term collaborator since the inception of our depth
fusion project to the culmination of my PhD thesis. His expertise in paper writing
has consistently elevated our work, ensuring clarity and impact in our research
publications.

Thank you Francis, thank you Hermann. Working alongside Francis and
Hermann, the final project of my PhD was a truly enriching experience.

I had the distinct pleasure of embarking on two exciting internships during
my PhD journey, first at Meta and then at Niantic. My time at Meta introduced
me to a remarkable group of individuals, spanning locations in Redmond, Zurich,

and Sausalito. Although the internship was necessitated to be remote, I was
fortunate to have Shuochen as an exceptional manager. I also had the privilege of
collaborating with a stellar team that included Audrey, Alex, Christoph, Fabian,
and Katrin. Their expertise and camaraderie enriched my internship experience at
Meta.

My internship at Niantic stands as one of the defining highlights of my PhD
journey. Gabe, in particular, emerged as an exemplary role model in the realms
of leadership and dedication. His unwavering commitment to my growth and
development was manifest in our remarkable weekly meetings, where he con-
sistently pushed the boundaries of my thinking and approaches. Furthermore, I
had the privilege of collaborating with extraordinary individuals like Michael,
Aron, Guillermo, and Sara, who redefined the essence of international collab-
oration. Their support and collective efforts were instrumental in shaping my
Niantic experience. Along this remarkable journey, I crossed paths with several
remarkable individuals, including Jamie Wynn, Jamie Watson, Mohammed, and
Zadar, all of whom generously offered their guidance and help, enriching my
experience and expanding my horizons. I am deeply grateful to each of them for

their contributions to my academic and professional growth.

A PhD journey is not solely defined by research; it is equally about the people
who surround and support you along the way. Over the years, I have had the
privilege of meeting remarkable colleagues, some of whom have become cherished
friends. I extend my heartfelt thanks to Mihai, with whom I have spent discussing
everything from technology and research to politics and societal matters. His
insights and camaraderie have been invaluable. To Paul-Edouard and Rémi, who
began their journeys alongside me, I owe countless adventures and spirited debates.
From remote work in a house in Costa Rica to shared AirBnBs in Vancouver
during CVPR, we have shared remarkable experiences. To Songyou, with whom I
had many thought-provoking discussions about career paths and aspirations. To
Iago, a dear Spanish friend who exemplifies openness and kindness, he visited our
lab as an academic guest but he also persuaded me to explore the breathtaking
beauty of Galicia during vacation, and invited me to partake in the celebration

of his extraordinary wedding in Santiago. To Victor and Rebecka, who truly

Vi

Acknowledgements

remarkable individuals redefining the social aspects of a PhD, and I always relish
the opportunities to rendezvous with them, whether it is for a lively party or a
delightful dinner accompanied by drinks, somewhere around the world. To Philipp,
who added an extra spark to the Swiss-Austrian rivalry in skiing, making it all
the more memorable. To Shaohui, a person with a great sense of humor, and our
conversations are consistently intriguing and enjoyable. With Petr, I discovered a
fellow cycling fan, and our discussions about recent races were always enjoyable.
Taein’s candid discussions about relationships and anything else during train rides
to ski retreats added depth and camaraderie to our journeys. To Julia, a fellow "All
in" podcast enthusiast, with whom I had enlightening discussions during our time
in Sicily, I appreciate our shared interests and insightful conversations. Thanks
to Linfei, Luca, and Sandro (and of course Rémi), who shared the same office
with me during my PhD. While our office was very focused most of the time, even
more special were the humorous and entertaining interruptions that added laughter
and camaraderie to our daily routine. Their presence brought both productivity
and joy to our shared workspace, and I am thankful for the memorable moments

we created together.

And of course all other current members of our group. To Boyang, Fangjinhua,
Zuria, Lubor, Katarina, Marcel, Daniel T., Daniel B., Iro, Ian, Jonas, Zador, Marko
with whom I had the pleasure to share some of my time. And of course all the
fantastic people that I met in the field at conferences and summer schools. These
friendships have illuminated my PhD years and added a layer of richness to the

journey that I will forever cherish. It was a truly amazing ride.

Last but certainly not least, my heartfelt thanks go to my parents Gerda and
Adrian. Their unwavering support and encouragement have been the bedrock upon
which my journey has been built. It is their guidance and the values instilled in me,
including curiosity, a relentless pursuit of knowledge, and a steadfast ambition,
that have propelled me to where I am today. Their love and belief in me have been

instrumental, and I am profoundly grateful for their role in shaping my path.

In closing, my heart goes to my partner, Carmen. Throughout the arduous
journey of pursuing this PhD, I can confidently say that I could not have asked
for a more supportive and inspiring partner to stand by my side. As anyone who

vii

has embarked on a doctoral journey knows, it is a path paved with exhilarating
highs and daunting lows. Carmen has been the unwavering pillar of strength and
motivation that has propelled me forward, consistently pushing me beyond my
comfort zone and wholeheartedly championing my academic pursuits. Whether
it was the immersive weeks spent in Costa Rica or the relentless demands of
impending deadlines, Carmen’s steadfast support and unwavering understanding
have been the cornerstone of my resilience. Even during our cherished vacation
days, when paper submissions tugged at my attention, she never once uttered a
word of complaint. Her enduring encouragement and unwavering belief in my
journey have been invaluable beyond measure. I am profoundly grateful for her
constant presence, which has illuminated every page of this remarkable chapter in
my life.

Silvan Adrian Weder
Ziirich, October 2023

viii

Contents

Abstract i
Zusammenfassung iii
Acknowledgements v
List of Figures XV
List of Tables xix
I Preamble 1
1 Introduction 3
1.1 Scopeofthiswork 9
1.1.1 Contributions, 11

1.2 Outline e 12

II 3D Reconstruction 13
2 Introduction 15
3 Background 19
3.1 From Measurements to 3D Model 19
3.1.1 Obtaining the Measurements 20

ix

3.1.2 Aggregating the Measurements 22

3.2 Scene Representations for 3D Reconstruction 23
3.2.1 Non-learned Representations 23
3.2.2 Learned Representations 25
3.3 Global Depth Fusion 28
34 OnlineDepthFusion 29
3.4.1 Surfel-based Fusion Methods. 30
3.4.2 Probabilistic Depth Map Fusion. 30
34.3 Learned Depth Map Fusion 31
344 LearnedRGB fusion 31
3.5 Appearance Reconstruction L 32
3.5.1 Classical Texture Mapping. 32
3.5.2 Online Appearance Aggregation. 33
Learning-based Depth Map Fusion 35
4.1 Method 39
4.1.1 Review of Standard TSDF Fusion 39
4.1.2 Pipeline Overview 40
413 DepthRouting 40
4.1.4 TSDFExtraction 42
415 DepthFusion 43
4.1.6 TSDF Update Integration 44
4.1.7 Outlier Filtering 44
4.1.8 Loss Function and Training Procedure 44
42 EXPeriments v vt i i e e e e e e e e e 45
4.2.1 Implementation Details 45
422 Results 46
423 SyntheticData 47
424 Real-WorldData 50
425 Ablation Studies oL, 55
43 Discussion. oo 55
43.1 Limitations 55
432 Summary e e e 57

Contents

5 Moving the fusion to a latent space

6

5.1

5.2

53

Method
5.1.1 Overview
5.1.2 Feature Extraction
5.1.3 Feature Fusion
5.1.4 Feature Integration
5.1.5 PFeature Translation
5.1.6 Training Procedure and Loss Function.

Experiments
5.2.1 Implementation Details.
5.2.2 Evaluation Metrics.
5.2.3 Results on Synthetic Data
524 AblationStudy
5.2.5 LossAblation.
52.6 Real-WorldData
Discussion.,
5.3.1 Limitations
532 Summary,

Learning-based Appearance Fusion

6.1

6.2

6.3

DeepSurfels 3D Scene Representation
6.1.1 DataStructure
6.1.2 Surface Fitting
Online Appearance Fusion Pipeline
6.2.1 Differentiable Projection I
6.2.2 FusionNetwork
6.2.3 Inverse Projection IT=%
6.2.4 Appearance Rendering Module
6.2.5 Loss and Optimization
Evaluation
6.3.1 Datasets L.
6.3.2 Metrics
6.3.3 Novel View Synthesis
6.3.4 Generalization
6.3.5 Ablation Studies
6.3.6 Real-worlddata

X1

637 Runtime.
6.4 Discussion e e
6.4.1 Limitations
6.4.2 Summary

III 3D Scene Understanding

7

8

9

Introduction

Background

8.1 Overview about Scene Understanding
8.1.1 Recognition.
8.1.2 Image Segmentation
8.1.3 Semantic Segmentation
8.1.4 3D Semantic Segmentation

8.2 Datasets for Scene Understanding
82.1 2DDatasets
822 3DDatasets
8.2.3 Annotating Datasets for Scene Understanding

8.3 3D Semantic Segmentation
8.3.1 Offline vs. Online Processing.
8.3.2 Offline 3D Semantic Segmentation.
8.3.3 Online 3D Semantic Segmentation.

Automatic Annotation for 3D Semantic Segmentation

9.1 Method
9.1.1 BaseModels
9.1.2 Translation between Label Spaces
9.1.3 ModelConsensus
9.14 3DLifting
9.1.5 Relabeling ScanNet Scenes

9.2 Experiments
9.2.1 Implementation Details
922 Datasetso e e e
9.23 Baselines
9.24 Comparison to State-of-the-Art

Xii

105
107

111
111
111
112
113
114
115
115
116
117
117
118
119
120

132

Contents

9.2.5 Ablation Studies L. 140

9.2.6 Experiments on ARKitScenes 141

9.3 DiSCUSSION . .« . v v v i e e 141
9.3.1 Limitations o 141

932 Summary 142

10 Online Semantic 3D Reconstruction 143
10.1 Method 146
10.1.1 Overview 146

10.1.2 Scene Representation 146

10.1.3 2D Encoder Lo 147

10.1.4 3DEncodero 149

10.1.5 Spatio-Temporal Expert 149

10.1.6 Loss Function and Training Details 151

10.2 Experiments oo e 154
10.2.1 Implementation Details 154

10.2.2 Online Methods in Comparison 154

10.2.3 Datasets and Metrics 156

10.2.4 3D Semantic Segmentation 157

10.2.5 Ablation Studies L. 161

10.3 Discussion oo v vt e e e e 164
10.3.1 Discussion of Baseline Comparison 164

10.3.2 Why is there no qualitative comparison to baselines? . . 164

10.3.3 Limitationso 165

1034 Summary e 166

IV 3D Scene Editing 167
11 Introduction 169
12 Background 173
12.1 OVerview oo v v vt i 173
12.1.1 Image Inpainting 173

12.1.2 Video Inpainting 174

12.1.3 3D Editing 176

12.2 Novel View Synthesis 177

12.2.1 Neural Radiance Fields
12.2.2 Generative Models for Novel View Synthesis
12.2.3 Inpainting in Novel View Synthesis

13 Removing Objects from Scenes
13.1 Method
13.1.1 RGB and Depth Inpainting Network

13.1.2 Background on NeRFs

13.1.3 Confidence-based View Selection

13.1.4 Implementation Details

13.2 EXperiments v v it e e
13.2.1 Datasets oo i
1322 Metrics o oo e e
13.2.3 Ablations and Comparison with Baselines

133 Discussion o v v vt e e e
13.3.1 Limitations
1332 Summary

V Conclusion
14 Summary

15 Future Work
15.1 3D Scene Reconstruction
15.2 3D Scene Understanding

153 3D Scene Editing o

Appendices

A Additional Results

A.l1 Learning-based Depth Map Fusion

A.2 Moving the Fusion to a Learned Space

A.3 Learning-based Appearance Fusion

B Dataset for Object Removal

Bibliography

Xiv

181
184
186
186
188
191
193
193
195
196
198
198
199

203
205

209
209
210
211

213

215
215
224
227

231

239

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1
52
53
54
5.5

5.6

List of Figures

Standard TSDF fusion vs. our learned depth map fusion approach
(on Kinect data [Shotton et al., 2013].
System overview for integrating depth maps into a global TSDF
volume.
Proposed network architecture.
Qualitative Results on ShapeNet [Chang et al., 2015].
Evaluation of different noise levelso.
Qualitative results of our method on the Roadsign dataset [Um-
menhofer and Brox, 2013].
Qualitative comparison on the heads scene of RGB-D Dataset
7-Scenes [Shottonetal., 2013].
Qualitative comparison on the Burghers of Calais scene [Zhou
and Koltun, 2013].
Intersection over Union on Modelnet [Zhirong Wu et al., 2015]

test data for different numbers of samples S.

Results of our end-to-end depth fusion on real-world MVS data.
NeuralFusion pipeline overview.
Feature fusionnetwork.
Translator network. oL
Quantitative and qualitative results on ShapeNet [Chang et al.,
2015]. . . e
Mesh Accuracy (M.A.) visualization on ShapeNet meshes. . . .

XV

36

38
41
48
50

51

53

54

56

60
62
74
74

75
77

5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

6.1

6.2
6.3
6.4

6.5
6.6

6.7

6.8

9.1
9.2

9.3
9.4
9.5
9.6

10.1
10.2
10.3
10.4

Reconstruction from noisy depth maps. 77

Reconstruction from outlier-contaminated data. 78
Performance of iterative fusion over time. 79
Random frame order permutations. 79
Visualization of our learned latent space encoding. 79
Ablationof lossterms. o oL 80
Depth map fusion results on Scene3D [Zhou and Koltun, 2013]. 81
Results on Tanks and Temples [Knapitsch et al., 2017]. 82

Overview of our online appearance fusion pipeline and the Deep-

Surfel scene representation.o 84
DeepSurfel surface fitting. 88
Overview of our learned appearance fusion pipeline. 90

Qualitative and quantitative comparison on novel view synthesis

with DeepSurfels. 94
Novel view synthesis for Replica [Straub et al., 2019] indoor scenes. 100
Qualitative results of our model on unseen scenes from ShapeNet [Chang

etal,2015]. 101
Comparison of SRNs [Sitzmann et al., 2019b] and DeepVox-
els [Sitzmannetal.,2019a].. 102
Novel-view synthesis on unseen real-world data [Maier et al.,
2017b]. .. 104
Label space translation. 127

Resolving the translation from low-resolution to high-resolution

label space. 128
LabelMaker pipeline overview. 130
Qualitative results on ScanNetv2 [Dai et al., 2017a] in2D. . . . 136
Dense 3D labels for ScanNetv2 [Dai et al., 2017a]. 137
Automatic dense labeling of ARKitScenes. 139
Online semantic 3D reconstruction pipeline. 144
ALSTER pipeline overview. 148
Temporal expert network. 151
Temporal expert attentionmaps 152

XVvi

List of Figures

10.5 Qualitative results of our proposed method and comparison be-

tween the different stages. 0. 156
10.6 Additional qualitative results on the ScanNetv2 validation set —

Part 1of2.. 160
10.7 Additional qualitative results on the ScanNetv2 validation set —

Part2of2.. 161
10.8 Our model on limiteddata. 163
10.9 Runtime analysis for different 2D backbones. 164
10.10Confusion matrix of ScanNet validation set results. 166
13.1 Removal of unsightly objects. 182
13.2 Per-frame inpainting. 184
13.3 Anoverview ofourmethod., 185
13.4 Full network architecture. 190
13.5 Maskrefinement. 192
13.6 Results on ARKitScenes [Baruch et al., 2021a]. 195
13.7 Qualitative comparisons with baseline. 201
13.8 Failure cases and limitations. 202

A.1 More qualitative results of standard TSDF and RoutedFusion on

scene 3D data—Part 1of2. 216
A.2 More qualitative results of standard TSDF and RoutedFusion on

scene 3D data—Part20f2.. L. 217
A.3 More qualitative results on ShapeNet test data— Part 1 of 6. . . . 218
A.4 More qualitative results on ShapeNet test data — Part 2 of 6. . . . 219
A.5 More qualitative results on ShapeNet test data — Part 3 of 6. . . . 220
A.6 More qualitative results on ShapeNet test data — Part 4 of 6. . . . 221
A.7 More qualitative results on ShapeNet test data — Part 5 of 6. . . . 222
A.8 More qualitative results on ShapeNet test data — Part 5of 6. . . . 223
A.9 More qualitative results for different outlier fractions on Model-

Net [Wu et al., 2015] examples. 225
A.10 Additional results on Scene3D [Zhou and Koltun, 2013]. 226

A.11 Qualitative results of our model on unseen ShapeNet [Chang et al.,

2015] car scenes for different DeepSurfel parameters — Part 1 of 2. 228

Xvii

A.12 Qualitative results of our model on unseen ShapeNet [Chang et al.,

B.1
B.2
B.3
B4
B.5
B.6

2015] car scenes for different DeepSurfel parameters — Part 2 of 2. 229

Our real objects dataset—Part 1 of 3. 232
Our real objects dataset —Part2of 3. 233
Our real objects dataset—Part 3of 3. 234
Our synthetic objects dataset —Part 1 of 3. 235
Our synthetic objects dataset —Part2of 3. 236
Our synthetic objects dataset —Part3of 3. 237

XViii

4.1
4.2

5.1
52
53

6.1
6.2

9.1
9.2

10.1
10.2

10.3

13.1
13.2

List of Tables

Quantitative results on ShapeNet [Chang et al., 2015]. 49
Quantitative evaluation of our method on 3D Scene Data [Zhou

and Koltun, 2013]. 52
Ablation study on feature dimensions. 69
Our model trained on limited training data. 70
Quantitative evaluation on Scene3D [Zhou and Koltun, 2013]. . 71
Ablation study on ShapeNet [Chang et al., 2015] cars. 103
Varying number of feature channels. 103
Comparison of the label quality of the ScanNet labels. 134

Ablation of all base models in LabelMaker on our 5 labelled
ScanNet [Dai et al., 2017a] scenes and Replica [Straub et al., 2019].138

3D Semantic Segmentation on ScanNet [Dai et al., 2017a] test set 155
Ablating different aspects of our pipeline on ScanNet [Dai et al.,

2017a] validationset. 158
3D Semantic Segmentation on ScanNet and SceneNN. 159
Comparison with baselines and state of the art methods. 194
Ablation on view selection methods. 198

XiX

XX

Part 1

Preamble

Chapter 1

Introduction

In our daily lives, the act of interacting with the world is so ingrained that
we often take it for granted. We seamlessly move through our morning routines
like brewing a cup of coffee, navigate crowded train stations during our daily
commute, complete household chores such as dish washing after dinner, and cap
off the day by assembling our newly ordered closet in the evening. All these
actions are underpinned by our subconscious mental models and an intuitive grasp
of our environment.

However, as we enter an era dominated by technology, the way we interact
with the world is poised for a significant transformation, and augmented reality
(AR) stands at the forefront of this revolution. Augmented reality seamlessly
integrates digital information with the physical world, offering the potential to
enhance and augment our everyday experiences.

Consider the prospect of wearing AR glasses that transform your kitchen into
a dynamic cooking assistant, guiding you through recipes with interactive step-
by-step instructions. Envision navigating a bustling train station with real-time
digital path planning cues overlaid on your view, simplifying your commute and
reducing stress. Imagine using AR to provide step-by-step visual instructions
for assembling furniture, making the process more intuitive and reducing the
potential for errors and thereby frustration. To make this future a reality, we have
to overcome many technological challenges.

For an augmented reality application to function seamlessly, it requires a 3D

reconstruction of the world it is deployed to. This reconstruction serves several

Preamble

purposes. Firstly, to naturally position virtual content within the real world,
ensuring that virtual content does not intersect with physical objects. Additionally,
it empowers the augmented reality system to adeptly manage occlusions, allowing
them to discern whether the physical world is in front of or behind virtual content,
even in dynamic settings bustling with moving people and objects. Furthermore,
3D reconstruction plays a pivotal role in assessing the compatibility of virtual
content with its physical surroundings. For instance, envision the scenario where
one seeks to virtually place furniture within an apartment and determine if it
harmonizes with the space. Here, the accuracy of the reconstruction is paramount,
as it holds the key to creating an immersive and authentic augmented reality

experience.

In addition to robust 3D reconstruction, the understanding is paramount for
the effectiveness of augmented reality. Beyond the spatial placement of virtual
content, true value emerges when augmented reality systems possess an intri-
cate understanding of the user’s context. This contextual awareness is vital for
seamlessly situating content within the user’s environment, aligning the content
precisely with their needs and activities. After all, it makes little sense to display
cooking instructions upon entering the bedroom. To be genuinely helpful, AR
devices must possess the capability to discern our location, identify surrounding
objects, and interpret our actions accurately. Only this holistic understanding
allows for a meaningful and personalized augmented reality experience, where
digital elements seamlessly blend with the real world to enhance our daily lives.

Moreover, there are instances where the ability to peer behind physical objects
proves immensely valuable. Consider the scenario where one wishes to envision a
room devoid of its existing furniture, a necessity when contemplating a living room
renovation with high-end designer pieces. While a select few possess the innate
ability to conjure such imaginative feats, most individuals rely on professionals
who craft renderings of their living spaces with new furniture. However, the
rise of augmented reality and machine learning can democratize this capability.
This fusion of technology empowers individuals to make informed decisions with

unprecedented ease and accuracy.

The technology enabling these use cases require three primary technologies.

4

Introduction

These technologies are more specifically - 3D scene reconstruction, 3D scene

understanding, and 3D scene editing, which we will discuss in this thesis.

3D Reconstruction. 3D scene reconstruction is the process of creating a
digital representation of the three-dimensional world from sensory input data.
The ultimate goal of this endeavor is to achieve a highly accurate and faithful
reconstruction of the physical environment. However, this task is not without
its challenges, which span various aspects of the process. First, we need to
address how to capture the necessary 3D measurements. These measurements
can be derived from input images through techniques like photogrammetry or
obtained directly from specialized 3D sensing technologies such as LiDAR or
depth sensors. Once the measurements are acquired, the next consideration is
what kind of information to store in the digital representation. Some applications
may require solely geometric information, while others necessitate preserving
the visual appearance of the scene. The inclusion of appearance data becomes
crucial when the reconstructed scene is intended for visualization or rendering.
Another pivotal aspect is the choice of an appropriate data structure to digitally
represent the 3D scene. This choice depends on several factors, including the
intended downstream application, the scale and complexity of the scene, the type
of information being stored, and the specific reconstruction algorithm employed.
Therefore, a comprehensive understanding of the entire reconstruction pipeline is
essential. Furthermore, the fusion algorithms play a crucial role in aggregating
the captured measurements into a globally consistent 3D model. The design of
these algorithms is significantly influenced by whether the data processing occurs
offline, where all data is collected before aggregation, or online, where data is
acquired concurrently with the reconstruction process. This decision also ties back
to the previous considerations regarding data structure, as certain structures may
be better suited for offline processing, while others excel in an online processing

scenario.

Devices, to which augmented reality applications are deployed to, usually
reconstruct the world in an incremental process from sensorial input data. This
incremental reconstruction is the main focus of the first part of this thesis. Par-

ticularly, we address the challenges of handling noise and outliers in the input

Preamble

data, using machine learning for the reconstruction process of both geometry and
appearance, and propose a novel scene representation for the incremental mapping

of appearance mapping.

The methods to obtain the 3D information are far from perfect. The data has
noise that becomes more severe the further away the 3D structure is. Further,
especially when computing 3D geometry from images, contains many outliers.
These outliers contaminate the 3D model if not handled adequately and negatively
impact the downstream applications such as occlusion detection and rendering.
Thus, this needs to be properly handled during the aggregation phase. Lastly,
the sensor measurements are oftentimes incomplete, i.e. some parts are missing
due to limitations of the acquisition method. E.g., stereo methods usually have
difficulties to reconstruct texture less areas while direct 3D sensing technologies
have problems to sense structure that absorb all the emitted light and do not send
any signal back to the sensor. Hence, the algorithms used to fuse the measurements
need to be able to handle sensor noise, outliers, and ideally also be able to perform

some form of completion of local structure.

Further, the problem of efficient aggregation of the measurements into a glob-
ally consistent 3D model is still unsolved. We address this issue from a machine
learning perspective and propose a fusion pipeline that combines the advantages
of existing methods with the benefits of data-driven machine learning. This is
particularly challenging when it comes to online fusion of sensor measurements.
The main challenge is that the machine learning algorithm effectively updates
the scene representation in light of new information. This requires to adjust the
reconstruction according to the new measurements but also keep valuable infor-
mation from the past. We explore this avenue for pure geometric fusion but also
appearance fusion. In regard to appearance fusion, we additionally explore a more
efficient data structure that effectively combines the advantages of explicit surfel

clouds with learned features.

3D Scene Understanding. A 3D model of the world alone is not sufficient for
many applications; we also require an understanding of it. Therefore, it is essential
to combine reconstruction with understanding. The ultimate objective is to gain

insights into the world on various levels: at the scene level, object level, and even

6

Introduction

at the primitive level, which encompasses points, voxels, or vertices. Typically,
the fundamental form of understanding starts at the primitive level. This process
is commonly referred to as segmentation, wherein each pixel (in) or primitive (in
3D) is classified into a specific semantic category. Attaining an understanding of a
scene at this level provides a foundation for addressing higher-level understanding
tasks like object recognition, room delineation, or even building classification.
After settling on the level of understanding, we need to choose an appropriate
algorithm for processing the data and generating predictions for semantic and
possibly instance labels. Similar to the reconstruction process, we also need to
decide whether the scene is processed in an offline or online manner. In other
words, we must determine whether we analyze all the data simultaneously or
if the data arrives as a continuous stream. In the context of augmented reality,
it is usually required that the process is online and incremental as the device is

capturing more and more data about the user’s environment.

When it comes to the challenges of 3D scene understanding, there are two

primary aspects that we address in this thesis.

Firstly, a newer challenge has arisen in that, until now, understanding has
been often reduced to classifying primitives into a fixed set of semantic classes,
e.g., the NYU40 [Nathan Silberman and Fergus, 2012] classes. However, the
world is vast and diverse, and the number of different object classes is virtually
unlimited. Therefore, constraining the task to a fixed number of predefined classes
is inherently limiting. To address this limitation, we need to approach the problem
from a fresh perspective and expand the number of available classes to better
capture the richness and diversity of the real world. As the number of labels
grows, the need for data to train the understanding models on increases in parallel.
Since most understanding models still follow the supervised learning paradigm,
large-scale datasets have to be annotated. However, densely annotating large-
scale datasets with hundreds of semantic classes is costly and does not scale well.
Additionally, when crowd-sourcing this labelling effort, the overall annotation
quality deteriorates and this deterioration in label quality leads to problems in
model training and deployment. Thus, we propose a labelling pipeline that

automatically annotates RGB-D trajectories.

Preamble

Secondly, we must tackle how to effectively do incremental mapping and
segmentation of a scene. The goal is to obtain and continuously update a semantic
prediction for every point in the scene. It is crucial that these predictions incor-
porate both existing knowledge and new information as it emerge in the input
data. This necessitates the incorporation of an appropriate receptive field into
the algorithm. Many classification tasks require a degree of higher-level under-
standing. For example, distinguishing between a curtain in a bathroom (likely a
shower curtain) and a curtain in a living room (usually a regular curtain) depends
on the context of the room where the object is located. This context needs to be
sufficiently large in the decision-making process. However, this expanded context
comes at the cost of increased memory usage and runtime. Hence, there is a need
to minimize the re-computation of large receptive fields in predictions by reusing
existing context information. To this end, we propose a incremental semantic
segmentation pipeline that incorporates the required receptive fields through by

combining 2D and 3D information using a spatio-temporal expert network.

3D Scene Editing. The final essential component in the augmented reality
pipeline is 3D scene editing, a critical task encompassing actions like adding,
removing, and altering content within the scene and manipulating its appearance.
While 2D image editing tools like Photoshop [Adobe Systems, Inc., 1990] have
long facilitated these operations in two dimensions, the realm of immersive
augmented reality demands the automation of these tasks in three dimensions.
In this context, we may need to artificially eliminate real-world objects from the

scene, modify them, or introduce entirely new virtual objects seamlessly.

Achieving these objectives involves a series of intricate steps. Firstly, we
must identify the object in question and delineate its boundaries, often relying
on prior semantic or instance segmentation. In the case of object removal, this
identification is followed by precise removal and the subsequent filling of the
resulting hole with appropriate structure. For adding new objects, considerations
extend to estimating scene lighting, ensuring that the rendering of virtual content
aligns realistically with the scene. This involves determining the source, color, and
interaction of lighting with the added object. Moreover, operations such as moving,

transforming, and altering existing objects can be distilled to the fundamental

8

Introduction

processes of removal and addition, albeit with alterations in their position or form.

In this thesis, we focus on the removal of objects from 3D scenes. This
involves the complete removal of the object, consistent inpainting of the created
hole in the scene, and rendering novel views from the reconstruction, which is

especially important for AR applications.

1.1 Scope of this work

In this work, we approach all three parts mentioned that are required for
immersive augmented reality applications. We address 3D reconstruction, 3D
scene understanding, and 3D scene editing.

In the case of 3D scene reconstruction, the main challenge is how to do online
depth fusion from RGB-D imagery using learned components. I.e., we explore
how we can train and use neural networks for the task of online depth fusion in
combination with learned scene representations. The fusion process needs to be
reasonably fast and generate an accurate reconstruction of the scene given the
incoming data. Thus, they need to be handle the various issues, e.g. noise, outliers,
and missing data, caused by the different 3D acquisition methods such as 3D from
stereo or direct 3D sensing.

Secondly, we address challenges in 3D scene understanding. In this part, we
address the issue of having enough data that can be used to train and evaluate
3D scene understanding. Existing methods all rely on human annotated data.
However, they are limited in scale and annotation quality. Therefore, we propose
a method that allows to automatically annotate 3D scenes by combining multiple
state-of-the-art models and aggregate their predictions into a single consensus.
We show that the generated labels are on par with human annotations while being
fully automatic. This allows scaling to an unseen scale in dataset size for dense
annotation. In addition to the data problem, we also address the challenge of
online semantic mapping. Existing methods either operate in 2D only and lift
these predictions into 3D, or operate in 3D yet require a large-receptive field. We
propose to combine 2D and 3D information in a local neighbourhood using an

attention fusion mechanism. We show state-of-the-art results compared to other

9

Preamble

local methods.

Thirdly, we explore 3D scene editing. More specifically, we address the
challenge of removing objects from neural radiance fields. We show that exploiting
inpainting capabilities of state-of-the art 2D inpainting methods is a powerful
prior for removing objects in 3D. We remove the object in all 2D images, inpaint
the created whole using a 2D model, and then lift these inpaintings into 3D during
NeRF training. The main problem to solve are the inconsistent 2D inpaintings
between different views. If we do not handle them, we get blurry results and the
3D reconstruction and the renderings are contaminated with artifacts. Therefore,
we introduce a uncertainty attenuation during NeRF optimization that captures
disagreement between different inpaintings and votes for the most consistent

inpaintings.

10

Introduction

1.1.1 Contributions

This thesis is a combination of the following peer-reviewed publications and

preprints.

[Weder et al., 2020]

[Weder et al., 2021]

[Mihajlovic et al., 2021]

[Weder et al., 2023a]

[Weder et al., 2023b]

[Weder et al., 2023c]

RoutedFusion: Learning real-time depth map fusion

S. Weder, J.L. Schonberger, M. Pollefeys, M.R. Oswald

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition

2020

NeuralFusion: Online Depth Fusion in Latent Space

S. Weder, J.L. Schonberger, M. Pollefeys, M.R. Oswald

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition

2021

DeepSurfels: Learning online appearance fusion

M. Mihajlovic, S. Weder, M. Pollefeys, M.R. Oswald

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition

2021

LabelMaker: Automatic Semantic Label Generation from RGB-D
Trajectories

S. Weder, H. Blum, F. Engelmann, M. Pollefeys

Preprint

2023

ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction

S. Weder, F. Engelmann, J.L Schonberger, A. Seki, M. Pollefeys, M.R.
Oswald

Preprint

2023

Removing Objects from Neural Radiance Fields

S. Weder, G. Garcia-Hernando, A. Monszpart, M. Pollefeys, G. Browstow,
M. Firman, S. Vicente

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition

2023

11

Preamble

Further, I have contributed to the following publication

[Sandstrom et al., 2022] Learning online multi-sensor depth fusion
E. Sandstrom, M. R. Oswald, S. Kumar, S. Weder, F. Yu, C. Sminichisescu, L.

van Gool
European Conference on Computer Vision
2022

1.2 Outline

This thesis is structured into three parts. In part II, we will present the
contributions towards 3D reconstruction with a focus on online processing. We
will motivate the methods in detail, review the relevant related work and present
our contributions and their results. In part III, we will dive into the topic of 3D
scene understanding, where we again will give an overview over the field and
discuss relevant related work. Then, we will discuss our automatic annotation
pipeline and present the online semantic mapping approach. In part IV, we will
present our work on 3D scene editing with a focus on neural radiance fields.
Finally, we will draw the conclusions from all presented research and give an

outlook into the future of this field and all the challenges that are waiting for us.

12

Part 11

3D Reconstruction

13

Chapter 2

Introduction

As we have discussed in the introductory part of this thesis, seamless applica-
tions of augmented reality require some form of spatial awareness. This spatial
awareness serves several purposes such as occlusion detection, virtual object
positioning, and visualization. To enable this capability, we can draw inspiration
how humans solve the problem of spatial awareness.

The world around us is 3D. Yet, we perceive its 2D projection and mentally
build a spatial model of it. This mental model is required to perform any daily
task such as grasping plates while doing the dishes, avoiding to hit your toes
when walking around your table, or catching the ball that is thrown towards
you. However, not only casual tasks as above require spatial perception, but
also professional tasks such as carpentry. Humans build the spatial 3D model by
relying on our multi-modal sensory input like vision, audio, and touch. Vision and
audio is used to perceive large-scale scenes while we rely on touch to perceive
fine details such as engraved names of loved ones in your jewelry. Further, we can
rely on measuring techniques that allow us to build a model of a room to perform
tasks such as constructing a house, fitting furniture, or calculating how much paint
you need for repainting. As with everything in the world, all these models are only
temporary, they get created, they get changed, and sometimes they get destroyed
again.

So, how can computers accomplish the same task in our quest for smooth
augmented reality experiences and its every day applications to make it valuable

for humanity? This is the task of 3D modeling in computer vision. We aim to

15

3D Reconstruction

develop 3D models of the world using a set of measurements M, which can
be 2D or 3D. Once these measurements are acquired, we assemble them into a
consistent 3D model akin to assembling a Lego structure, where each piece must
fit precisely. Which measurement fits where? How do we connect them? And
maybe some parts are missing as Lego pieces might go missing. The created
model can afterwards be used for downstream applications including visualizing
your living room with new furniture or registering a digital model to the real

machine a technician is repairing.

The first question we have to address is how to acquire the 3D measurements
of the scene that we subsequently assemble into the globally consistent model.
This is of utmost importance as depending on the type of measurement and the
type of acquisition procedure the later parts of the 3D reconstruction pipeline are
affected. Once we have acquired these measurements, we can ask ourselves how
we represent the 3d scene internally. There are different options and all of them
have their advantages and disadvantages for the next questions we aim to answer.
Once we know the answer to these three questions, we can finally think about how
to build the scene from the measurements. This requires to think about the quality
of the data. Is there a lot of noise corrupting it? Do we expect to have outliers?
Or might there even be some missing data? We need to know how to handle
these challenges in order to get an as accurate as possible 3D reconstruction of the
world. We know that the world is not static and ever changing. Thus, we have to
finally ask the question on how we can adjust our 3D reconstruction to changes in
the world. This is not only necessary when the world is changing but also if the
measurements become available in a sequence and we cannot not look at them all

at once.

This is also the specific problem that we focus on in this part of the thesis.
How do we aggregate measurements into a 3D model of the world such that we
can adapt and update the model to new data available? While previous methods
proposed hand-crafted algorithms [Curless and Levoy, 1996a] or probabilisti-
cally [Dong et al., 2018] modelled the aforementioned noise and outlier distribu-
tions, we approach the challenge from a data-driven perspective. Hand-crafted

methods suffer from several shortcomings such as surface thickening in presence

16

Introduction

of sensor noise. We explore how neural networks can be leveraged for the task
of depth map and RGB-D fusion and mitigate these issues. Further, we explore
two different scene representation for online fusion to overcome limitations of
explicitly storing the geometry of the scene during fusion. A feature-based scene
representation in order to better model outlier handling during the fusion process
as well as a surfel-based scene representation that combines the advantages of sur-
fels [Pfister et al., 2000] with learned features to improve rendering quality. With
these contributions, we aim to close the loop to gap between hand-crafted online
reconstruction method and accurate RGB-D reconstructions that are required for
seamless experiences in augmented reality.

The rest of this part is organized as following. We will give all necessary
background information regarding 3D reconstruction to help you understand
the big picture and introduce all necessary concepts. We will also review the
related work in this field with a focus on the key topic of this part - online 3D
reconstruction. Then, we will advance to answer the three key questions of this
part: How do we effectively use machine learning for online 3D reconstruction?
How do we exploit learned scene representation for online 3D reconstruction?
And finally, how do we online appearance reconstruction?

17

3D Reconstruction

18

Chapter 3

Background

We have learned about the importance generating a digital 3D model of the
world. Thus, this field has been central in computer vision for decades. In this
chapter, we give an overview about the necessary background as well as review

all relevant related work for this chapter.

3.1 From Measurements to 3D Model

When we build a spatial model of the 3D world, we start with some set of
measurements M = {mq,ma, ..., m, } that are assembled into a 3D model of
the world S. This set of measurements can be anything from images to 3D point
clouds. For the remainder of this thesis, we will use M if the measurement type
is kept general. Otherwise, we will define the type of measurement, e.g. images,
RGB-D data, or (partial) point clouds. This reconstruction of the scene S might
only represent the geometry of the scene or also represent the appearance of the
scene. This depends on the application the reconstruction is used for. E.g., if
we are only interested in occlusion detection for augmented reality, geometry is
sufficient. But, if we want to stream our environment in a virtual reality call to

our friends, we also need to represent the appearance of the world.

19

3D Reconstruction

3.1.1 Obtaining the Measurements

Before we assemble the 3D model of the world, we need to collect information

about the 3D world through sensor measurements. So, how do we obtain these
measurements and the corresponding 3D information? There are different ways to
obtain them. The key distinction is whether we directly measure the 3D structure
of the world, or whether we obtain the 3D structure from images through geometric
computations or neural network estimation.
From Images to 3D Measurements. We can obtain 3D measurements from
images. This can be either by using geometric computations or a learned neural
network that predicts dense depth maps. For geometric computations, the resulting
form of 3D measurements can be sparse point clouds or dense depth maps obtained
from two- or multi-view stereo. These different outputs are mostly computed using
the same underlying geometric principles. In general, the underlying principle is
to find the projection of one 3D point in two or more images and then triangulate
the 3D point given the known camera positions. The main challenge is two find
these corresponding 2D projections in the different images. Therefore, the general
pipeline detects and describes features in all images. These features can either
be sparse or dense depending on the method. Then, these features are matched
between images to find the corresponding 2D projections of a 3D point. Finally,
the corresponding 2D points are triangulated in order to obtain the final 3D point.
Obviously, there are many relevant details along the way such as uncertainty
estimation, handling outlier matches, and jointly estimating the camera pose.
However, in the scope of this thesis we only explain how the general principle
works. For more details, the following papers give an good introduction in this
specific field [Schonberger and Frahm, 2016, Agarwal et al., 2011].

For dense two-, or multi-view stereo, the high-level idea is similar, however
it is usually approached by computing a matching cost volume or the matching
cost for local patches and minimize it to find good disparity values. Historically
popular approaches are the plane-sweep algorithm [Gallup et al., 2007] and
PatchMatch [Bleyer et al., 2011]. A good review over this field can be found
in [Stathopoulou and Remondino, 2023]. More recently, these methods have been

combined with neural networks, e.g. [Duzceker et al., 2021, Sayed et al., 2022],

20

Background

where the feature extraction, the matching, or the cost volume computation is

replaced by a learned variant.

Nowadays, two-view stereo algorithms are available through off-the-shelf
sensors such as Stereolabs ZED 2 [Stereolabs, 2019] and Intel RealSense [Intel,
2014]. These sensors provide convenient access to stereo depth maps as an
end-to-end solution combining camera and stereo algorithm in one device. The
performance can be easily improved by coupling the stereo with an infrared pattern
and therefore enabling active stereo vision.

Alternatively to the the geometric approach, there is an entire line of work,
that directly estimates dense depth maps from images or videos using a neural
network [Fu et al., 2018a, Eigen and Fergus, 2015, Li and Snavely, 2018, Ranftl
etal., 2022, Ranftl et al., 2021]. These methods are usually called monocular depth
estimation. However, they usually predict relative depth and require additional

information and processing to be exploited in metric 3D reconstruction.

Directly Sensing the 3D Structure. In contrast to humans, machines can also
directly sense the 3D structure of the world. This can be done using different
types of 3D sensors. One common type of 3D sensor are LIDARs that measure
the time of flight of a laser ray. For that, they actively emit a laser beam and
measure the time-of-flight until the signal returns to the sensor. From this time-of-
flight, they compute the distance between the sensor and the reflecting structure.
LiDAR are usually accurate yet also expensive. Examples for these products
are [Geosystems, 2016, NavVis, 2021, Velodyne, 2019] With the introduction of
LiDAR in Apple iPhones, LiDARs have been commoditized into consumer devices
and made conveniently available to dense reconstruction applications through
the ARKit [Apple, 2017] framework. The main limitation of LiDARs are their
high cost and oftentimes sparse measurements requiring additional densification
through post-processing.

A cheaper alternative are structured light or time-of-flight sensors such as the
different versions of Microsoft Kinect or Asus Xtion. Structure light sensor work
by projecting a pattern onto the 3D world. This pattern is deformed by the 3D
geometry of the scene. The deformed pattern is then used to measure disparity

and compute the associated depth. Ie., structured light sensors are active stereo

21

3D Reconstruction

methods that also work on areas that have no texture. However, they suffer in
direct sunlight as the sun’s light is interfering with the infrared pattern. Examples
for structured light sensors are PrimeSense Carmine [PrimeSense,] and Microsoft
Kinect v1. Much like LiDARs, time-of-flight sensors emit a signal and calculate
the time it takes for the signal to travel to an object and return to the sensor. This
yields accurate measurements of the 3D structure of the world. However, they
suffer under various conditions such as when scanning outdoors or when capturing
reflective surfaces. Microsoft Azure Kinect [Microsoft, 2020] and ASUS Xtion 2

are prominent examples of time-of-flight sensors.

3.1.2 Aggregating the Measurements

Once the measurements about the 3D world have been obtained, they have to
be aggregated into a consistent three-dimensional model. This is the key focus of
this part of the thesis. All of the sensing methods mentioned above have different
challenges. Stereo methods usually suffer from outlier contamination while direct
3D sensors have a depth-dependent noise pattern. And almost all of them, fail
to sense the complete structure and produce incomplete measurements. E.g.,
stereo methods have problems to reconstruct texture less areas and time-of-flight
sensors fail to capture computer screens or reflective surfaces. Therefore, an
optimal aggregation or fusion algorithm handles all these challenges. Further, the
aggregation can take place in two different forms. Offline aggregation looks at all
data at once after the data has been collected. Online aggregation handles a stream
of incoming data in scenarios, where we can not wait until the entire scene has been
scanned. We focus on online aggregation as most scenario in augmented reality
require an incremental mapping of the world around us. However, before we
aggregate the measurements, we have to select an adequate scene representation
for the aggregation. We discuss this next.

The remainder of this chapter is organized as following. We first review
the different scene representations for 3D reconstruction. Then, we discuss the
differences between offline and online methods and review relevant related work.
Afterwards, we review existing work on online reconstruction and its different

flavours. Finally, we review the literature about joint reconstruction of geometry

22

Background

and appearance.

3.2 Scene Representations for 3D Reconstruction

The choice of scene representation is of utmost importance. It defines the
amount of memory the reconstruction needs. It also defines how easily we can
change the reconstruction when new information becomes available. Thus, this
choice has to reflect the downstream applications and use-cases that the pipeline
is designed for. In the following, we discuss the advantages and disadvantages of
different scene representations. In general, we distinguish between non-learned

and learned scene representations.

3.2.1 Non-learned Representations

The major advantage of explicit, non-learned geometric representations is their
direct interpretability. This allows to have full control over what is stored in the
scene representation. The most common types of explicit scene representations
are point clouds, meshes, voxel-grids, and surface elements (surfels).

Point Clouds. Point clouds are often the raw output of many 3D scanners such as
LiDARs as well as sparse reconstruction pipelines such as COLMAP [Schonberger
and Frahm, 2016]. Point clouds are a discrete set of points represented by their
3D coordinates z, y, and z. In addition to their 3D coordinates, each point is can
be associated with specific point-wise features such as color, normals, or even
learned features. Point clouds offer a distinct advantage due to their lightweight
representation, which simplifies processing and manipulation. However, this
lightweight structure comes at the cost of limited scalability and increased run-time
of simple post-processing steps. One major limitation is the lack of topology and
connectivity information. Le., if you want to figure out the local neighbourhood
of a specific 3D point, you need to run expensive nearest neighbour search as
the neighbourhood, unlike other representations, is not implicitly defined. This
limitation makes it hard to extract watertight surfaces from raw point clouds
without expensive post-processing [Hoppe et al., 1992, Kazhdan et al., 2006,
Berger et al., 2014]. Therefore, point clouds are not a standard representation in

23

3D Reconstruction

modern dense 3D reconstruction pipelines.

Triangle Meshes. Triangle meshes are a common representation in computer
graphics. Triangle meshes store both vertex points and triangles. Each triangle
stores the three vertex indices it is constructed from. I.e., the three indices of
the triangle can be used to obtain the world positions of its corners from the
set of vertices. Moreover, additional geometry or appearance features can be
associated with each vertex or face. Triangle meshes are suitable for rendering
applications as basic rendering is simply intersecting camera rays with the mesh
and render back the appearance information at these locations. Extensive research
has been invested into this direction and improvements have been realized through
rasterization and hardware acceleration. Further, triangle meshes scale well to
large scenes and texture mapping is convenient that is necessary for subsequent
rendering. While triangle meshes dominate use cases, where the focus is on
rendering, they are rarely used in reconstruction. Usually, meshes are extracted
from point clouds, voxel-grids, or surface elements in a post-processing step,
e.g. using marching-cubes [Lorensen and Cline, 1987]. However, they are less
suitable as a representation for online reconstruction due to their fixed topology.
This is because the topology of a scene might change during online reconstruc-
tion as new data becomes available and these changes need to be incorporated
into the representation. Therefore, triangle meshes are less suitable for online

reconstruction.

Voxel-Grids. Voxel-grids naturally extend the notion of a 2D pixel to the 3D
world. They simply represent the world by square cubes that store information
about the scene - similar to building a 3D model from LEGO. Voxels can store
information about both geometry and appearance. The geometry is usually rep-
resented explicitly using occupancy o, where o = 1 indicates that the voxel is
occupied and o = 0 indicates that it is free. It can also be represented implicitly
using a signed distance value s, which represents the distance to the closest surface.
A value s < 0 means it is inside the geometry and a value s > 0 means a specific
voxel is outside the geometry. If the value s = 0, then the voxel is exactly on
the surface. Further, they can additionally store information about normals if it

is necessary for downstream applications. Furthermore, they can store surface

24

Background

normals when required for downstream applications. Appearance is typically
represented by storing the color in the voxels. Like point clouds, voxel-grids
are easy to handle using standard tooling. However, their scalability is limited,
leading to significant research efforts aimed at enhancing the scalability of voxel
representations. A notable work in this direction is voxel hashing [Niefiner et al.,
2013], which proposes to store only voxels close to a reconstructed surface in a
hash table.

Surface Elements (Surfels). Surface elements (surfels) are an extension of point
clouds that is adapted to rendering. Surfels are non-connected point primitives
yet store all essentials that are needed for efficient rendring. They were initially
proposed in [Pfister et al., 2000]. They have been adapted to online reconstruction
in SLAM systems by [Whelan et al., 2016], [Wang et al., 2019b], and [Schops
et al., 2019]. Due to their properties they are both very efficient for reconstruction
and rendering and thus ideal for online appearance reconstruction as there the
goal is to capture and reconstruct both appearance and geometry and be able to

subsequently render images from the scene.

3.2.2 Learned Representations

In addition to explicit scene representation, learned scene representations have
been proposed in recent years. The general idea is to represent the geometry and
appearance of the scene implicitly as a learned function approximator or as a
combination of an explicit scene representation (e.g. voxel-grids or point clouds)
with learned features. In the case of a learned function approximator, the input is a
point coordinate and the output is the occupancy, density, or signed distance at the
given location. In the case of explicit learned features, a learned function usually
decodes them into a interpretable geometry such as signed distance, occupancy,
or density.

In recent years, a plethora of work emerged proposing different learned scene
representations. [Ladicky et al., 2017] directly estimate an iso-surface from a point
cloud and learned local point features using a random forest. Alternatively, there
exist multiple proposals for methods that learn 3D reconstruction in an implicit

space using a neural network [Mescheder et al., 2019, Park et al., 2019, Chen

25

3D Reconstruction

and Zhang, 2019, Michalkiewicz et al., 2019, Xu et al., 2019a]. In contrast to
[Ladicky et al., 2017], these works encode the geometry into the weights of a
neural network and the geometry can be queried by passing the 3D coordinates
through the network retrieving the local geometry represented by either occupancy
or a signed distance field at that location. These methods show promising results,
but they operate only on a unit cube and are thus limited to single objects or
small scenes and they are not suited for online reconstruction. Several methods
have explored different conditioning and supervision strategies strategies for
the learned implicit representation. [Kar et al., 2017, Huang et al., 2018, Saito
et al., 2019, Saito et al., 2020, Choy et al., 2016, Xu et al., 2019a] propose to
condition the network on a single or multiple input images for shape reconstruction.
Recently, several works proposed a more local scene representation [Genova et al.,
2019a, Genova et al., 2019b, Badki et al., 2020] that allows larger scale scenes
and multiple objects. The issue of only operating on a unit cube has been also
addressed by [Chabra et al., 2020, Chibane et al., 2020, Jiang et al., 2020, Peng
et al., 2020] which use multiple features to encode parts of the scene and scale the
implicit representation to large-scale scenes like rooms and apartments or even
entire buildings. These approaches struggle to scale to larger scenes and to capture
high-frequency details as they tend to learn low-frequency functions, which often

results in over-smoothed geometry [Rahaman et al., 2019].

Early works on learned scene representations like [Mescheder et al., 2019,
Park et al., 2019, Chen and Zhang, 2019, Michalkiewicz et al., 2019, Xu et al.,
2019a, Chabra et al., 2020, Chibane et al., 2020, Peng et al., 2020] all require
3D supervision. The next step was to supervise the scene representation using
2D information such as depth maps and RGB images. Therefore, [Liu et al.,
2020a, Niemeyer et al., 2020, Liu et al., 2019a] learn implicit representations with
2D supervision via differentiable rendering. This is also important if one not only

wants to represent the geometry but also the appearance of the scene.

Learned Representations for Geometry and Appearance. Similar to repre-
senting geometry, learned representations have achieved state-of-the-art results for
representing appearance. They encode visual information into learned features and
store them in voxel-grids [Flynn et al., 2019, Mildenhall et al., 2019, Penner and

26

Background

Zhang, 2017, Srinivasan et al., 2019, Lombardi et al., 2019, Rematas and Ferrari,
2020], point clouds [Aliev et al., 2020], or meshes [Thies et al., 2019, Riegler and
Koltun, 2020, Zhang et al., 2021] which are rendered using neural networks.

[Oechsle et al., 2019, Oechsle et al., 2020] use a neural network conditioned
on geometry to generate a learned texture representation. [Niemeyer et al., 2020]
combines geometry and appearance to generate a joint implicit representations of
the scene. Worrall et al. [Worrall et al., 2017] learn a disentangled representation
of object pose, appearance, illumination, and other properties to interpret and
manipulate learned feature-based scene representations. Other works [Saito et al.,
2019, Saito et al., 2020] take advantage of local features for higher representation
power, while [Huang et al., 2020, Thies et al., 2020] uses appropriate loss terms
to correct for geometric misalignment. Recent trends and applications of neural

renderers are summarized in [Tewari et al., 2020].

The global volumetric appearance reconstruction approach [Bi et al., 2020]
additionally separates albedo, roughness, and lighting. [Liu et al., 2019] present a
learned approach for shape and texture reconstruction that linearly fuses shape
and color information in a voxel grid as in [Curless and Levoy, 1996a] and
post-process the grid with a multi-resolution neural network. However, pure
post-processing methods may not be able to revert errors of an incorrect earlier
linear fusion. [Sitzmann et al., 2019a] represent the scene as learned-features
stored in a voxel grid and renders images for 2D supervision. This has been
extended by Scene Representation Networks [Sitzmann et al., 2019b] that replaces
the voxel-grid by a neural network that is conditioned on a hyper-network. Then,
a major revolution happened in the field. [Mildenhall et al., 2020a] pushed the
idea of scene representations one step further by using volume rendering and
adding positional encoding to the coordinate processing. The simplicity of the
method in combination with the impressive results kicked of an entire new field of
research in the direction of neural radiance fields. While all these methods propose
an interesting direction for representing geometry and appearance, they are not

suitable for online processing that is required for many tasks in the real-world.

In this thesis, we focus on online processing as it is a key requirement for many

applications in the real-world such as enabling augmented reality on consumer

27

3D Reconstruction

devices. Thus, we explore how we can use learned scene representations for
online fusion of depth and RGB-D data. To this end, we explore how to use a
feature-based scene representation for depth fusion in chapter 5 and propose a
novel surfel-based scene representation that stores learned features for appearance

mapping in chapter 6.

3.3 Global Depth Fusion

Once we have obtained individual 3D measurements of the scenes and have
decided on a scene representation that we discussed before, we fuse the measure-
ments into a globally consistent 3D model. The main challenges during this task
are to deal with imperfect data (noise, outliers) and missing data. Methods that
do global depth fusion assume to have all measurements available and no new
measurements are obtained afterwards.

While online approaches only process one depth map at a time, global ap-
proaches use all information at once and typically apply additional smoothness
priors like total variation [Zach et al., 2007, Kolev et al., 2009], its variants includ-
ing semantic information [Hine et al., 2013, Cherabier et al., 2016, Héne et al.,
2017, Savinov et al., 2015, Savinov et al., 2016], or refine surface details using
color information [Zollhofer et al., 2015a]. Consequently, their high compute and
memory requirements prevent their application in online scenarios unlike ours.

Several learning-based methods have been proposed to fuse, estimate, or
improve geometry. Octnet [Riegler et al., 2017b] and its follow-up OctnetFu-
sion [Riegler et al., 2017a] fuse depth maps using TSDF fusion into an octree and
then post-processes the fused geometry using machine learning. RayNet [Paschali-
dou et al., 2018] uses a learned Markov random field and a view-invariant feature
representation to model view dependencies. SurfaceNet [Ji et al., 2017] jointly
estimates multi-view stereo depth maps and the fused geometry, but requires to
store a volumetric grid for each input depth map, which is unnecessarily memory
demanding. 3DMYV [Dai and Nielner, 2018] combines 2D view information
with a pre-fused TSDF scene to jointly optimize for shape and semantics. In

[Leroy et al., 2018], multi-view consistency is learned upon classical TSDF fusion.

28

Background

Moreover, hierarchical volumetric deep learning-based approaches [Cao et al.,
2018, Cherabier et al., 2018, Dai et al., 2018] tackle the effects of noisy measure-
ments, outliers, and missing data. All these approaches operate on a voxel-grid
with high memory demands and are not real-time capable. Further, there are
several works that learn to predict 3D meshes based on input images [Groueix
et al., 2018, Gkioxari et al., 2019, Wen et al., 2019]. In contrast to global depth
fusion methods, we focus on online depth fusion.

3.4 Online Depth Fusion

Online depth fusion addresses the shortcomings of global depth fusion methods
that prevents them from being applied for online processing. Thus, we now dive
into the field of online 3D reconstruction. This section is organized along the
type of fusion and scene representation. We start with volumetric depth map
fusion, move to surfel-based and probabilistic depth map fusion, and finish with
learning-based depth map fusion methods.

With their seminal work, Curless and Levoy [Curless and Levoy, 1996a]
proposed an elegant way for fusing noisy depth maps, which later got adopted
by numerous works like KinectFusion [Izadi et al., 2011], more scalable gen-
eralizations like voxel hashing [NieBner et al., 2013, Marniok and Goldluecke,
2018], or hierarchical scene representations, such as voxel octrees [Fuhrmann and
Goesele, 2011, Steinbriicker et al., 2013, Marniok et al., 2017] and hierarchical
hashing [Kihler et al., 2016]. Especially for SLAM pipelines like InfiniTAM [Kih-
ler et al., 2015], volumetric fusion became a standard approach due to its real-time
capability. In this context, it was also extended to become more accurate and
robust [Choi et al., 2015] as well as improve SLAM with additional surface reg-
istration of scene parts to account for pose drift as proposed in [Whelan et al.,
2016, Maier et al., 2017b, Dai et al., 2017b]. Approaches with additional median
filtering [Rothermel et al., 2016, Marniok et al., 2017, Marniok and Goldluecke,
2018] improve the robustness and are still real-time capable but with limited
effectiveness. All these methods handle noisy measurements by updating a wider

band of voxels around the measured depth leading to thickening artifacts on thin

29

3D Reconstruction

geometry. Moreover, the output of these methods usually contains typical noise
artifacts, such as surface thickening and outlier blobs, which can be tracked back

to the original formulation of [Curless and Levoy, 1996a].

3.4.1 Surfel-based Fusion Methods.

Surfel-based methods approximate the surface with local point samples, which
can further encode additional local properties such as normal or texture informa-
tion. Multiple methods have been proposed, e.g. MRSMap [Stiickler and Behnke,
2014] uses an octree to store multi-resolution surfel data. Point-based fusion
methods [Keller et al., 2013, Lefloch et al., 2015] combine a surfel representation
with probabilistic fusion discussed in the next paragraph. ElasticFusion [Whelan
et al., 2016] handles real-time loop closures and corrects all surface estimates on-
line. [Schops et al., 2019] proposed a depth fusion approach with real-time mesh
construction. A disadvantage of surfel-based methods is the missing connectivity
information among surfels. The unstructured neighborhood relationships can only
be established with a nearest neighbor search or simplified with space partitioning
data structures. Therefore, we decided to rely on volumetric representation in
chapters 4 and 5. However, extending our approach to unstructured settings is an

interesting avenue of future work.

3.4.2 Probabilistic Depth Map Fusion.

To account for varying noise levels in the input depth maps and along different
line-of-sight directions, the fusion problem can also be cast as probability density
estimation [Duan et al., 2012] while typically assuming a Gaussian noise model.
Keller et al. [Keller et al., 2013] propose a point-based fusion approach which
directly updates a point cloud rather than a voxel grid. Lefloch ez al. [Lefloch et al.,
2015] extended this idea to anisotropic point-based fusion in order to account
for different noise levels when a surface is observed from different incident
angles. The mesh-based fusion approach by [Zienkiewicz et al., 2016] allows
for depth fusion across various mesh resolutions for known fixed topology. The
probabilistic fusion method by [Woodford and Vogiatzis, 2012] incorporates long
range visibility constraints. Similar ray-based visibility constraints were also used

30

Background

in [Ulusoy et al., 2015, Ulusoy et al., 2016], but these methods are not real-time
capable due to the complex optimization of ray potentials. Anisotropic depth
map fusion methods additionally keep track of fusion covariances [Yliméki et al.,
2018]. Similarly, PSDF Fusion [Dong et al., 2018] explicitly models directional
dependent sensor noise. However, all these approaches assume particular noise
distributions, primarily Gaussians, which often do not model the real sensor
observations correctly. We aim to address this shortcoming in this thesis by

approaching depth fusion from a data-driven perspective.

3.4.3 Learned Depth Map Fusion

In the context of simultaneous localization and mapping, CodeSLAM [Bloesch
et al., 2018], SceneCode [Zhi et al., 2019] and DeepFactors [Czarnowski et al.,
2020] learn a 2.5D depth representation and its probabilistic fusion rather than
fusing into a full 3D model. The DeepTAM [Zhou et al., 2020] mapping algorithm
builds upon traditional cost volume computation with hand-crafted photoconsis-
tency measures, which are fed into a neural network to estimate depth, but full
3D model fusion is not considered. DeFuSR [Donné and Geiger, 2019] refines
depth maps by improving cross-view consistency via reprojection, but it is not
real-time capable. More recently, [Huang et al., 2021a] proposed to combine

implicit models with online depth fusion using test-time optimization.

3.4.4 Learned RGB fusion

The recent ATLAS [Murez et al., 2020] method fuses features from RGB input
into a voxel grid and then regresses a TSDF volume. While our method learns
the fusion of features, they use simple weighted averaging. Their large ResNet50
backbone limits real-time capabilities. This challenge of directly mapping 3D
structure from a stream of RGB data either through feedforward predictions or
test-time optimization has been approached in an end-to-end framework by several
methods. Works like [Sun et al., 2021, Sayed et al., 2022, Stier et al., 2021, Bozic
et al., 2021] directly reconstruct a 3D mesh from a stream of RGB input data given

known poses using different neural network architectures. [Sucar et al., 2021] and

31

3D Reconstruction

[Zhu et al., 2022] combine advances test-time optimization for 3D reconstruction

from RGB data with pose optimization into a full SLAM pipeline.

3.5 Appearance Reconstruction

So far, we have only considered geometric 3D reconstruction of the world
around us. However, it is oftentimes required to also obtain a reconstruction of
the appearance - i.e., we reconstruct how the world looks like in colours. There is
a long line of research that aims to address this challenge. Similar to geometric
reconstruction, most work has focused on global appearance mapping. However,
online appearance mapping is essential for many tasks, where online geometric
mapping is required. Thus, we will first review the relevant literature on classical
(global) texture mapping and then look at approaches that tackle online appearance

reconstruction.

3.5.1 Classical Texture Mapping.

The classical way of coloring a surface from a set of input images with
known camera pose is to un-project the image information onto the surface and
perform a selection or blending operation to fuse the color information [Debevec
et al., 1996, Wood et al., 2000, Allene et al., 2008]. Due to errors in the camera
alignment or in the surface geometry, blurry textures or patch seams affect results
and additional texture alignment procedures have been proposed [Lensch et al.,
2001, Bernardini et al., 2001, Theobalt et al., 2007, Eisemann et al., 2008, Gal
et al., 2010, Waechter et al., 2014, Lempitsky and Ivanov, 2007, Takai et al.,
2010, Fu et al., 2020] to tackle these problems. Better texture mapping results have
been achieved with an optical flow-like correction in texture space [Eisemann et al.,
2008, Waechter et al., 2014, Fu et al., 2018b], patch-based optimization [Bi et al.,
2017], or via 2D perspective warp techniques [Lee et al., 2020]. With significantly
more computation effort, it is also possible to better leverage the redundancy of
multiple surface observations from different views and to compute super-resolved
texture maps via energy minimization [Goldliicke et al., 2014, Tsiminaki et al.,
2014, Fu et al., 2018b, Tsiminaki et al., 2019] or with deep learning techniques [Li

32

Background

et al., 2019, Richard et al., 2019]. All previously mentioned methods share
the strategy of aggregating appearance information in patches or texture atlases
with corresponding coordinates onto a mesh-based surface, while other works
use voxel grids [Newcombe et al., 2011a, Zollhofer et al., 2015b, Maier et al.,
2017b, Kutulakos and Seitz, 1999, Seitz and Dyer, 1999, Szeliski and Golland,
1998], or mesh colors [Yuksel et al., 2010, Armando et al., 2019]. An overview of
texture mapping methods with different representations is given in [Tarini et al.,
2017, Yuksel et al., 2019].

3.5.2 Online Appearance Aggregation.

The previously discussed texture mapping methods process all input images
in a batch-based way after the geometry estimation step and are implemented as a
separate post-processing step, whereas only a minority addresses the problem of
online appearance reconstruction. A popular work is KinectFusion [Newcombe
et al., 2011a] and related works [Zollhofer et al., 2015a, Maier et al., 2017b, Maier
etal., 2017a, Lee et al., 2020], which estimate surface and appearance information
from a stream of RGB-D images. Other works fuse both geometry and appearance
information directly into an oriented surfel cloud [Schops et al., 2019, Whelan
etal., 2016, Wang et al., 2019b]. The vast majority of these approaches directly
fuse RGB-D images for which Zollhofer et al. [Zollhofer et al., 2018] provide a
recent survey.

The major drawback of these methods is limited capacity to store high-
frequency appearance along the surface. This limited capacity to store high-
frequency appearance leads to blurry results when rendering images from the
scene representation decreasing the overall quality of the rendered images. There-
fore, we propose an efficient online appearance estimation pipeline in chapter 6

mitigating these limitations.

33

3D Reconstruction

34

Chapter 4
Learning-based Depth Map

Fusion

As we have learned, reconstructing the 3D world around us is essential for
overlaying the real with the virtual world. Devices that enable augmented reality
experiences typically require a constantly updated model of the 3D world around
us. This is why the reconstruction has to happen on the fly and needs to be
adjustable to new information that is captured using different types of sensors.
While we have reviewed different methods to obtain 3D measurements, we focus
on leveraging 3D sensors that directly measure the structure of the world in this
and the next chapter. In other words, we address the problem of online depth
fusion. The problem of fusing depth maps from multiple camera viewpoints
has been addressed in recent 3D reconstruction pipelines [Zach et al., 2007,
Zach, 2008, Kolev et al., 2009, Blaha et al., 2016, Savinov et al., 2015, Savinov
et al., 2016, Dai et al., 2018, Dai and Nielner, 2018], especially for real-time
applications [Izadi et al., 2011, NieBner et al., 2013, Whelan et al., 2016, Dai
etal., 2017b].

In this chapter, we revisit the problem of 3D reconstruction via depth map
fusion from a machine learning perspective. The major difficulty of this task is
to deal with various amounts of noise, outliers, and missing data. The classical
approach [Curless and Levoy, 1996a, Izadi et al., 2011] to fusing noisy depth
maps is to average truncated signed distance functions (TSDF). This approach

35

3D Reconstruction

Standard TSDF Fusion
[Curless and Levoy, 1996a]

Ours

Figure 4.1: Standard TSDF fusion vs. our learned depth map fusion approach (on
Kinect data [Shotton et al., 2013]). Due to a more informed decision process, our approach
better handles noise and fine geometric details.

has many advantages: First, the updates are local (truncated) and can be done
in constant time for a fixed number of depth values. The high memory usage of
voxel grids can be easily reduced with voxel hashing [Nieiner et al., 2013] or
octrees [Steinbriicker et al., 2013]. Second, online updates are simple to implement
and noisy measurements are fused into a single surface with few operations. Third,
the approach is computationally cheap and highly parallelizable due to locally
independent updates.

However, the approach also has a number of shortcomings: First, the average
is only the optimal estimate for zero-mean Gaussian noise, but the real error
distribution is typically non-Gaussian, non-centered and depth-dependent. Second,
the updates are linear and a minimal thickness assumption of surfaces has to be

made according to the expected noise level. Therefore, thickening artifacts become

36

Learning-based Depth Map Fusion

apparent along surface edges and for thin object structures. Third, this issue is even
more severe when depth measurements of a thin object are made from opposite
directions. In this case, the surface vanishes since the linear TSDF updates cancel
each other out. Moreover, the linear fusion weights do not properly account
for view-directional dependencies during TSDF aggregation. The noise level
along the viewing direction is typically very different from the one in orthogonal
directions. Further, the fusion approach is unable to handle gross outliers. The
depth map has to be pre-filtered or incorrect measurements will clutter the scene.
Finally, the fusion parameters must be tuned for specific scenes and sensors and it
is often difficult to find a good trade-off between runtime and different aspects of
reconstruction quality.

We aim to tackle the disadvantages mentioned above while maintaining all
the advantages of traditional approaches with a reasonable amount of additional
computation time to still meet real-time requirements. To this end, we propose
a learned approach, which we term RoutedFusion, that fuses noisy and outlier
contaminated measurements into a single surface, performs non-linear updates
to better deal with object boundaries and thin structures, and is fast enough for
real-time applications. Figure 4.1 shows example outputs of our approach.

In summary, the contributions of this chapter are as follows:

* We present a learning-based method for real-time depth map fusion. Due to
its compact architecture it requires only little training data, and is not prone to

over-fitting.

* We propose a scalable and real-time capable neural architecture that is indepen-
dent of the scene size. Therefore, it is applicable to a large set of real-world

scenarios.

* We show a significant improvement of standard TSDF fusion’s shortcomings: 1)
It better handles the fusion of anisotropic noise distributions that naturally arise
from the multi-view setting, and 2) It mitigates the surface thickening effect on

thin objects and surface boundaries by avoiding inconsistent updates.

37

3D Reconstruction

Extract TSDF Values Compute Depth Fusion

Compute Depth Routing
from Input Depth from Global Voxel Grid on Local Voxel Grid
mx:mnnmn

Voxe| Daty

Figure 4.2: System overview for integrating depth maps into a global TSDF volume. A 2D Depth Routing Network takes depth
input and decides on the update location for every ray within the TSDF volume. The network corrects for noise, outliers and missing
values and further estimates per-ray confidence values. Then, for each ray, we extract a depth and view-dependent local voxel grid (light
blue) which also includes neighboring rays. We sample S values along each ray, centered around the surface. A Depth Fusion Network
then takes the local grid of existing TSDF values, the depth and confidences to predict adequate updates. The predicted TSDF values
(red) are then written back into the global volume. Our method learns a robust weighting of input depths and performs non-linear updates

to better handle noise, outliers, and thin objects.

38

Learning-based Depth Map Fusion

4.1 Method

Before we look at the problem of depth map fusion from a machine learning
perspective, we review the essentials of standard TSDF fusion to provide context

and introduce the necessary notation.

4.1.1 Review of Standard TSDF Fusion

Standard TSDF fusion integrates given depth maps Dy—; . 7 € RW*H from
known viewpoints P; € SE(3) with camera intrinsics K into a discretized
signed distance function V; € RX*Y*Z and weight function W, € RX*Y*#
defined over the entire scene. The fusion process is incremental, i.e. each depth
map is integrated after one another for location « using the update equations

introduced by Curless and Levoy [Curless and Levoy, 1996a] as

_ Wt_l(l’) . Vt_l(ar:) + U)t(ili) . vt(w)
Wi_1(x) + wi(x)

Wi(x) = Wi i(x) +wi(z) , (4.2)

Vi(z) 4.1

starting from zero-initialized volumes Vy and W . The signed distance update
v; and its corresponding weight w; integrate the depth measurements of the next
depth map D, at time step ¢ into the TSDF volume. These update functions are
traditionally truncated before and after the surface in order to ensure efficient
runtimes and robust reconstruction of fine-structured surfaces given noisy depth
measurements.

The choice of the truncation distance parameter typically requires cumbersome
hand-tuning to adapt to a specific scene and depth sensor as well as accounting for
runtime. If the truncation distance is chosen too large, the reconstruction of thin
structures becomes more difficult due to larger thickening artifacts and the fusion
process gets slower since more voxels have to be updated for each ray. Contrary,
a small truncation distance results in time efficient updates but cannot deal with
larger noise in the depth measurements.

In this paper, we overcome this limitation by learning the function v; auto-

matically from data. Our system is based on the same update equations described

39

3D Reconstruction

above and our learned functions have only little computational overhead compared
to traditional TSDF fusion. As such, our method facilitates real-time depth map
fusion and can be readily integrated into existing reconstruction systems. In the

following, we describe our proposed method in more detail.

4.1.2 Pipeline Overview

Our method contains two network components: a depth routing network and
a depth fusion network. The pipeline consists of the following four essential

processing steps which are also illustrated in Figure 4.2:

1. Depth Routing: The depth routing network takes a raw depth map D; and
estimates a denoised and outlier-corrected depth map D, and further estimates
a corresponding confidence map C';. This network routes the depth location
for reading and writing TSDF values along each viewing ray. Moreover, the
denoised depth estimate allows to extract a smaller window in the next step for

improved efficiency.

2. TSDF Extraction: Given the routed depth values f)t, we extract a local
camera-aligned voxel grid with TSDF data V';_, and weight W7;_; via trilin-

ear interpolation from the corresponding global voxel grids V;_1, W_;.

3. Depth Fusion: The depth fusion network takes the results of the previous
processing steps (D, Cy, W |, V_,) and computes the local TSDF update

*
vy

4. TSDF Update Integration: The predicted TSDF update v} is transferred back
into the global coordinate frame to get v; which is then integrated into the
global TSDF volumes V', W; using the TSDF updates in Egs. (4.1), (4.2).

These processing steps are detailed in the next subsections.

4.1.3 Depth Routing

Using the depth routing network, we pre-process the depth maps before passing

them to the depth fusion network with the main motivation of denoising and outlier

40

Learning-based Depth Map Fusion

‘Ae1 9y Suore sarepdn QST Y3 301pa1d 03 pasn Uy} AJe SAINIB9) AsAY [, ABI 0B SUO[R SaImed) ()0
$00[q SUIPOJUD JO SOLIIS B UI S}0BI)Xd YJomlau uoisny ypdap oy, "dew aouopyuod Surpuodsariod e pue dew yydop pejoariod e Sunorpard
S19p0ooop ojeredas om) yim (duo yidop) JON-N © JO SISISU0D JIomIou Sunnor yidop InQ INJINIYDIE YI0M)du pasodold :¢ p anSig

19posaq
J- '
a
—
a

la uodipaig BWN|OA 3Jn3edj M X H X 00T K
21epdn 4asL
Foig »oig poig o/ oig poig o8 poig e
— - { {=l={={=] .

poig Jepodag
pL=lle)
@) depy

, ‘ -y -y mu_:mvc:ou _

I HOMIAN uoisn3 y3daa uoRoe:X3 4aSL *10m3N Sunnoy yidaq

41

3D Reconstruction

correction. Towards this end, the network predicts denoised depth maps and also
per-pixel confidence maps C—1,... 7 € RWxH, Figure 4.3 illustrates our network
architecture, which is using a fully-convolutional U-Net [Ronneberger et al., 2015]
with a joint encoder and separate decoders for confidence and depth prediction.
Further, we do not use normalization layers since it negatively influences the depth
prediction performance by adding a depth-dependent bias to the result. The depth
map and the confidence map are processed by two separate decoders to which the

output of the bottleneck layers serves as an input.

4.1.4 TSDF Extraction

Instead of processing each ray of a view ¢ independently as in standard TSDF
fusion, we deliberately choose to compute the TSDF updates based on the infor-
mation stored in a larger neighborhood in order to make a more informed decision
about the surface location. Further, the 2D input data also holds valuable informa-
tion about surface locations as often indicated by depth discontinuities. We argue
that the fusion network can best benefit from both 2D and 3D data sources when
they are already in correspondence and therefore propose a view-aligned local
neighborhood extraction. Then, the 3D TSDF data and the 2D input data can be
easily concatenated and fed into the network. Hence, for efficient real-time up-
dates of the global data V';_1, W;_1, we extract a local, view-dependent TSDF
volume and corresponding weights V;_;, W;_; € R"W>*H>5_ The first two
volume dimensions W, H correspond to the width and height of the depth map
whereas the third dimension .S represents the local depth-sampling dimension of
the window sampled along the ray. This number .S closely relates to the truncation
distance in standard TSDF fusion. For each ray independently, the local windows
are centered at their respective depth values D, and discretely sampled into a
fixed number of S values from the volume V';_;. We choose the step size of the
sampling according to the resolution of the scene and use trilinear interpolation to
mitigate sampling artifacts.

The input I to the subsequent depth fusion is then a combination of all
available local information. More specifically, this the corrected depth map D,,
the confidence map C; as well as the extracted TSDF values V';_; and TSDF

42

Learning-based Depth Map Fusion

weights W75 _;
I,=|D, C, Wi, Vi |eRWxHx@5+2) (4.3)

Before the subsequent update prediction step, we explicitly filter gross outliers

where C; < Cy,, and set their corresponding feature values in I; to zero.

4.1.5 Depth Fusion

Our depth fusion network takes the local 3D feature volume I; as input
and predicts the local TSDF update v;; € RW*#*5_ The architecture is fully
convolutional in two dimensions and the channel dimension is along the camera
viewing direction. Our network is compact and thereby facilitates real-time
computation.

Our depth fusion network operates in a two-stage approach, as shown in
Figure 4.3. The first stage encodes local and global information in the viewing
frustum. We sequentially pass the input 3D feature volume through encoding
blocks of two consecutive convolutional layers with interleaved batch normaliza-
tion, non-linear activation using leaky ReLUs, and a dropout layer. The output of
every block is concatenated with its input and passed through the next block. With
every block, the receptive field of the neural network increases. This sequential
feature extraction results in a 100-dimensional feature vector for each ray in the
viewing frustum.

The second network part takes the feature volume and predicts the TSDF
updates along each ray. The number of features is sequentially reduced by passing
them through convolutional blocks with two 1 x 1 convolutional layers interleaved
with leaky ReLUs, batch normalization, and dropout layers. In the last block, we
directly reduce from 40 features to 20 in the first layer and then to S TSDF values
in the last convolutional layer, where we apply a tanh-activation on the output
mapping it to the range [—1, 1].

Note that predicted TSDF update values v} can take any value. The network
can decide to not update the TSDF at all, e.g., in case of an outlier. Conversely, it

can reduce the influence of existing TSDF values if they contained outliers.

43

3D Reconstruction

4.1.6 TSDF Update Integration

In order to compute the updated global TSDF volume V'; we transform the
predicted local TSDF updates v; back into the global coordinate frame v;. To this
end, we apply the inverse operation of the previous extraction step, that is, we
redistribute the values using the same trilinear interpolation weights. In fact, we
actually repurpose the update weights w, for this task, where W accumulates
the splatting weights for each voxel in the scene. Moreover, we also use W, for

post-filtering extreme outliers, which we discuss next.

4.1.7 Outlier Filtering

In order to reduce the amount of outliers in the scene, we have chosen to
introduce outlier post-filtering according to the accumulated update weights during
TSDF integration. Therefore, after every 100 frames integrated, we re-initialize
all voxels, where the accumulated weights are smaller than 3. This is motivated by
the fact that non-outlier geometry is frequently observed and only outliers rarely
updated as they are almost randomly distributed in space.

4.1.8 Loss Function and Training Procedure

The two networks in our pipeline are trained in two steps. First, we train the

depth routing network and then use the pre-trained routing output to train the
fusion network.
Depth Routing Network. We train the depth prediction head in a supervised
manner by computing the L1 loss on absolute depth values as well as on the
depth map gradient, as proposed in [Donné and Geiger, 2019]. For training the
confidence head, we chose a self-supervised approach [Kendall and Gal, 2017].
Therefore, the final loss function has the form

Lop =Y cily(yi, §i) + cila(Vyi, Vi) — Aloge; (4.4)

where y;, §j; are the predicted and ground-truth depth values at pixel ¢ respec-

tively and ¢; € C is the confidence value. The hyperparameter) is empirically

44

Learning-based Depth Map Fusion

set to 0.015.

Depth Fusion Network. Despite the pre-processing of the routing network,
the filtered depth map might still contain noise and outliers which should be
further handled by the depth fusion network. Each global TSDF update step
should a) integrate new information about the true geometry and b) not destroy
valuable, previously fused surface information. We train the fusion network in a

supervised manner by randomly choosing an update step ¢ during the fusion and
Wi Vi twivg c
Wi_ twi

RW*HxS and the local ground-truth Ve RW*HXS Therefore, we define the

loss function over all rays 7 as

penalize differences between the updated local volume V; =

*
7

Lip =D MLV V) + AeDe(Vi, V) 4.5)

Here, £; denotes the L1 loss over raw TSDF values and D denotes the cosine
distance between the signs of the TSDF values computed along each ray i. The
goal of the first term is to preserve fine surface details (through means of L),
while, the term D¢ ensures that the surface is located at the zero-crossing of the
signed distance field. The weights A; = 1 and A¢ = 0.1 have been empirically
found.

4.2 Experiments

In this section, we first present additional implementation details and our
experimental setup. Next, we evaluate and discuss the efficacy of our approach on
both synthetic and real-world data. We demonstrate that our approach outperforms
traditional TSDF fusion and state-of-the-art learning-based approaches in terms

of reconstruction accuracy with only little computational overhead.

4.2.1 Implementation Details

All networks were implemented in PyTorch and trained on an NVIDIA TITAN
Xp GPU. We trained both networks using the RMSProp optimization algorithm

with momentum 0.9 and initial learning rate 1le—5 for the depth routing network

45

3D Reconstruction

and le—3 for the depth fusion network. The dropout layers were set to a proba-
bility of 0.2. For all experiments, we trained our neural networks in a sequential
process, where we first pre-trained the depth routing and then the depth fusion net-
work. A joint end-to-end refinement did not lead to an improvement of the overall
performance of the system. To train the depth routing network, we use 10K frames
sampled from 100 ModelNet [Zhirong Wu et al., 2015] or ShapeNet [Chang et al.,
2015] objects and perturb them with artificial speckle noise. The data is packed
into batches of size 4 and the gradient is accumulated across 8 batches before
updating the routing network weights. Because of the incremental nature of the
TSDF update equation, we must train our depth fusion network using a batch
size of 1. However, each batch updates a very large number of voxels in the
volume over which the loss is defined and, together with batch normalization, we
obtain robust convergence during training. Since our network has only very few
parameters, it is hard to overfit and only little training data is required. In fact, we
can train our entire network (given a pre-trained depth routing network) on only
ten models from ModelNet [Zhirong Wu et al., 2015] or ShapeNet [Chang et al.,
2015] with a total of 1000 depth maps and it already generalizes robustly to other
scenes. Furthermore, we can train the network from scratch in only 20 epochs
(each epoch passes once over all 1000 frames). Unless otherwise specified, we
used S = 9 and Cyp,,- = 0.9 across all experiments For all experiments, we used a
voxel size 0.008m, corresponding to a grid resolution of 1283 for ShapeNet and
ModelNet.

Runtime. A forward pass through the depth routing network and the depth
fusion network for one depth map (W = 320, H = 240) takes 0.9 ms and 1.8 ms,
respectively while the full pipeline runs at 15 fps. These numbers can be improved

with a more efficient implementation, but already meet real-time requirements.

4.2.2 Results

We evaluate our method on synthetic and real-world data comparing to tra-
ditional TSDF fusion [Curless and Levoy, 1996a] as a baseline as well as to
the state-of-the-art PSDF fusion method presented by Dong ef al. [Dong et al.,
2018]. Moreover, we compare to state-of-the-art learning-based 3D reconstruction

46

Learning-based Depth Map Fusion

methods OccupancyNetworks [Mescheder et al., 2019] and DeepSDF [Park et al.,
2019].

Evaluation Metrics. For quantifying the performance of our method, we
compute the following four metrics by comparing the estimated TSDF against the

ground-truth.

* MAD: The mean absolute distance is computed over all TSDF voxels and

measures the reconstruction performance on fine surface details.

* MSE: The mean squared error loss is computed over all TSDF voxels and

measures the reconstruction performance on large surface deviations.

* Accuracy: We compare the actual reconstruction accuracy on the occupancy
grid. We extract the occupancy grid in the ground-truth and the estimated TSDF

by extracting all voxels with negative TSDF values.

* Intersection over Union (IoU): We compute the intersection-over-union on the

occupancy grid, which is an alternative performance measure to the accuracy.

These metrics not only quantify how well our pipeline fuses depth maps into a
TSDEF, but also how well it performs in classifying the occupancy and reconstruct-

ing the geometry.

4.2.3 Synthetic Data

To evaluate our method’s performance in fusing noisy synthetic data, we train
and test it on the ModelNet [Zhirong Wu et al., 2015] and ShapeNet [Chang et al.,
2015] datasets using rendered ground-truth depth maps that are perturbed with an
artificial depth-dependent multiplicative noise distribution. For both, ModelNet
and ShapeNet, we randomly sample our training and test data from the official
train-test split.

ShapeNet. The model trained on ShapeNet is then used to evaluate the perfor-
mance of our method in comparison with other approaches. Therefore, we fuse
noisy depth maps of 60 objects (10 per test class - plane, sofa, lamp, table, car,
chair) from the test set, which have not been seen during training. For comparison,

we use the provided pre-trained model for point cloud completion in the case of

47

3D Reconstruction

D™D
o F T

Wl Al

DeepSDF Occ.Net. TSDF Ours GT
[Park et al., 2019] [Mescheder et al., 2019] [Curless and Levoy, 1996a]

Figure 4.4: Qualitative Results on ShapeNet [Chang et al., 2015]. Our method is superior to all other methods in reconstructing fine
details (see car wheels and spoiler) and produces smoother surfaces (input noise level ¢ = 0.005).

48

Learning-based Depth Map Fusion

Method eos 0 o)
DeepSDF [Park et al., 2019] 464.0 0.0499 66.48 0.538
OccupancyNetworks [Mescheder et al., 2019] 56.8 0.0166 85.66 0.484
TSDF Fusion [Curless and Levoy, 1996a] 11.0 0.0078 88.06 0.659
TSDF Fusion + Routing 27.0 0.0084 87.48 0.650
Ours w/o Routing 5.9 0.0051 93.91 0.765
Ours 5.9 0.0050 94.77 0.785

Table 4.1: Quantitative Results on ShapeNet [Chang et al., 2015]. Our method out-
performs TSDF fusion and other learning-based approaches in fusing noisy (o = 0.005)
depth-maps rendered from ShapeNet objects. The benefit of the routing network increases
with higher noise levels (see Fig. 4.5).

OccupancyNetworks. In the case of DeepSDF, we trained the model from scratch
using the code provided by the authors and using ShapeNet as training data. The
quantitative results of this evaluation are shown in Table 4.1. Our method con-
sistently outperforms standard TSDF fusion as well as the pure learning-based
approaches OccupancyNetworks [Mescheder et al., 2019] and DeepSDF [Park
et al., 2019] on all metrics. Our method significantly improves the accuracy of
the fused implicit mesh as well as their [oU, MAD and MSE scores. The results
also indicate the potential of our routing network. However, the full benefit of
our routing network only becomes obvious when looking at the real-world data

experiments and Figure 4.5.

Figure 4.4 illustrates the strengths of our method in dealing with noise and in
reconstructing thin structures. Flat surfaces in the ground-truth appear smoother
in our results as compared to standard TSDF fusion. Furthermore, thin structures
are better reconstructed and contain less thickening artifacts. The thickening
artifacts are also visible on the rim of the car, where our method yields accurate
results and DeepSDF and OccupancyNetworks both fail. Both DeepSDF and
OccupancyNetworks tend to over-smooth surface details less common in the

training data, e.g., the spoiler of the car or the details on the legs of the chair.

ModelNet. In order to test the robustness of our method against noise we trained
and evaluated it on various noise levels o € {0.01,0.03,0.05} and compared it to
standard TSDF fusion. We also analyze the effect of the depth routing network
on the fusion result by omitting it in our pipeline and by testing it in combination

with standard TSDF fusion. Figure 4.5 illustrates that our pipeline outperforms

49

3D Reconstruction

MAD on Reconstructing ModelNet

0.035 —— Ours -t
=== Ours w/o Routing e
—-=- Standard TSDF -7

-
0030 Siandard TSDF w Routing -7

o
a
. @
&
]
-
-1
=
=
7]

0.025

0.020

MAD [mm]

0.015

0.010

0.005

0.01 0.03 0.05

Figure 4.5: Evaluation of different noise levels . The left plot shows MAD for different
noise levels o € {0.01,0.03,0.05}. Our routing network stabilizes both, our method as
well as standard TSDF fusion, for high noise levels. On the right, we show corresponding
qualitative results on ModelNet test data for Standard TSDF and our method. The figures
show the denoising capability of our method, where standard TSDF fusion completely
fails.

standard TSDF fusion for all tested noise levels. It also shows that our depth
routing network stabilizes the fusion of data corrupted with extreme noise levels.
When used for data pre-processing, our depth routing network also improves the
results of standard TSDF fusion.

4.2.4 Real-World Data

We also evaluate on real-world datasets and compare to other state-of-the-art
fusion methods. Due to lack of ground-truth data, we use the model trained
on synthetic ModelNet data using an artificial and empirically chosen depth-
dependent noise distribution with ¢ = 0.01. As such, we also show that our
method must not necessarily be trained on real-world data but generalizes robustly
to the real domain from being trained on noisy synthetic data only.
3D Scene Data [Zhou and Koltun, 2013]. To quantify the improvement of
the reconstruction result, we evaluate our method compared to standard TSDF
fusion on scenes provided by Zhou et al. [Zhou and Koltun, 2013]. Since there
is no volumetric ground-truth available for these scenes, we fuse all frames of
each scene using standard TSDF fusion and denoised the meshes. Then, we only

fuse every 10th frame using standard TSDF fusion as well as our method for

50

Learning-based Depth Map Fusion

(G0="1D)

ndino 91o[dwod $s9f B SeY 2I0JIIAY) PuB JUDS SIY} Jo sonsnels adeys ayy Jou sdew yidop 0919)s JO SONSHRIS ISI[INO PuE ISIOU Y}

MES JOAU PUB JONIPOJA UO PauUTeI) Sem 1 JUIS [[dM A[qRUOSEAI SAZI[RIdUA3 poylow InQ [91(07 “'Te 12 AoulaeS] srenuajod Aex yiim
Qouew1oj1ad ojqeredwod Surmoys 9[Iym sadeLIns UuIy) SUNONISU0dAI Ul [§0)()Z ‘YorZ] Xn[-AL Se [[oM Se uorsnj JS.I pIepuels 03 K[qeloAr)
saredwoo poylowr QO *[€T(7 Xo1g pue JI9joyuaurif)] jasejep uSiISpeoy] 3Y) U0 PoyJIu ano Jo s}NsdI Anejens) :9'p Iniy

[29661 *K0AT puw ssafIn))] [910¢ “T# 10 AoutAeg] [800¢ ‘uoeZ]
Sunnoy o/m smQ AdSL prepue)s s[enuojod Aey X0[J-AL

sImQ

51

3D Reconstruction

Method Lounge Copyroom Stonewall Cactusgarden Burghers
TSDF 0.0095 0.0110 0.0117 0.0104 0.0126
RoutedFusion w/o routing 0.0055 0.0057 0.0047 0.0055 0.0071
RoutedFusion 0.0051 0.0051 0.0043 0.0052 0.0067

Table 4.2: Quantitative evaluation (MAD [mm]) of our method on 3D Scene
Data [Zhou and Koltun, 2013]. Our method is consistently better than standard TSDF
fusion on 3D Scene Data. These experiment also shows the benefit of our routing network
when applied to real-world data.

evaluation.

Table 4.2 shows the quantitative reconstruction results from fusing 5 scenes
of the 3D scene dataset [Zhou and Koltun, 2013]. Our method significantly
outperforms standard TSDF fusion on all scenes without being trained on real-
world data.

We further show a qualitative comparison to standard TSDF as well as PSDF
fusion [Dong et al., 2018] on the Burghers of Calais scene in Figure 4.8. The
results illustrate that our method better reconstructs fine geometric details (hands,
fingers and face) and produces smoother surfaces than standard TSDF fusion and
PSDF fusion [Dong et al., 2018].

Street Sign Dataset [Ummenhofer and Brox, 2013]. To evaluate the perfor-
mance of our method on thin structures, we also evaluate on the street sign dataset,
again without fine-tuning the network. This dataset consists of 50 RGB frames and
we use the COLMAP SfM pipeline [Schonberger and Frahm, 2016, Schonberger
et al., 2016] to compute camera poses and depth maps. Qualitative results on
this scene for different state-of-the-art methods are shown in Figure 4.6. Our
method clearly outperforms TV-Flux [Zach, 2008] and standard TSDF, while
producing comparable results with ray potentials [Savinov et al., 2016]. The
results also make the benefit of our routing network apparent. With routing, our
method reconstructs with better completeness and less noise artifacts than without.
Note that both TV-Flux and ray potentials involve an offline optimization with
a smoothness prior to reduce noise and complete missing data. This prevents
real-time application for these approaches, since ray potentials on this small scene
runs for many hours on a cluster.

RGB-D Dataset 7-Scenes [Shotton et al., 2013]. For qualitatively evaluating
our method on Kinect data, we fuse the 7-Scenes [Shotton et al., 2013] RGB-D

52

Learning-based Depth Map Fusion

Standard TSDF
[Curless and Levoy, 1996a]

Ours w/o Routing

Ours

Figure 4.7: Qualitative comparison on the heads scene of RGB-D Dataset 7-
Scenes [Shotton et al., 2013]. Our method significantly reduces noise artifacts and
thickening effects - especially on the thin geometry of the chair’s leg.

53

3D Reconstruction

TSDF
[Curless and Levoy, 1996a] [Dong et al., 2018]

Figure 4.8: Qualitative comparison on the Burghers of Calais scene [Zhou and Koltun,

2013]. Our method reconstructs hands and face geometry with much higher degree of
detail than standard TSDF fusion and PSDF fusion.

54

Learning-based Depth Map Fusion

dataset. For each scene, we have chosen the first trajectory and fused it using our
pipeline as well as standard TSDF fusion. In Figure 4.7, we show that our method
significantly reduces noise and mitigates the surface thickening effect compared
to standard TSDF fusion. Notably, the chair leg and table edges are reconstructed
with higher fidelity than it is done by standard TSDF fusion. Moreover, our
method shows strong performance in denoising and removing outliers from the

scene.

4.2.5 Ablation Studies

Number of Samples S. First, we discuss our choice for the number of samples
S. With figure 4.9, we show that sampling 9 values inside the local window
centered around the surface leads to the best reconstruction performance. The
number of samples S is closely related to the truncation distance in standard TSDF
fusion [Curless and Levoy, 1996a]. Since the spacing between samples in the
window is fixed to the scene’s resolution, the size of the local window is dependent
on S. Therefore, an increase in S leads to an increase of the local window size.
By increasing S and the window size, we feed more information along the ray to
the depth fusion network and we can account for larger noise levels. However, if
we increase the number of samples beyond 9, the performance decreases again,
which is experimentally shown in figure 4.9. Having empirically evaluated the
influence of .S on our depth map fusion pipeline, we decided to keep the number

of samples S = 9 constant across all experiments.

4.3 Discussion

4.3.1 Limitations

While RoutedFusion mitigates the shortcomings of standard TSDF fusion
regarding thickening artifacts and surface vanishing due to its learned update func-
tion, it still lacks adequate outlier handling. As the fusion process is performed in
an explicit TSDF grid, the network struggles from differentiating between observ-

ing a new surface and an outlier since their local signal can be similar. To obtain a

55

3D Reconstruction

Intersection-over-Union w..t. different number of samples S Accuracy w.r.t. different number of samples S
7

1oU [0, 1]
°
2
e
Accuracy [%]

Figure 4.9: Intersection over Union on Modelnet [Zhirong Wu et al., 2015] test data
for different numbers of samples S. When sampling 9 SDF values inside the local
window, our pipeline shows the best performance in reconstructing models from noisy
depth measurements.

clean and outlier-free reconstruction, the measurements have to be pre-processed
by aggressively filtering low-confidence depth values or the reconstruction has to
be post-processed by removing all geometry with a low observation count. Both
strategies lead to a decrease in the completeness as these hand-crafted heuristics
do not discriminate between outliers and actual geometry as both the confidence

and the observation count are only proxies for the outlier decision.

Further, our results show that the RoutedFusion reconstructs fine geometry
with higher accuracy than existing baselines. Yet, in the presence of severe noise -
e.g. far away from the sensor - the reconstruction might become oversmoothed.
This can be alleviated by filtering far away measurements in the input. However,
this comes again at the cost of reduced completeness that manifests itself by holes

and missing geometry in the reconstruction.

The main driver for these two limitations is that we train the pipeline on
synthetic data with simulated sensor noise due to lack of high-quality real ground-
truth data. This is of course only an approximation of the real conditions. While
this works well for standard settings, it covers not all test conditions. In order
to solve this problem, we would need to train the pipeline on real-world data.
However, this is challenging for the following reason. There are no RGB-D
datasets with high-quality ground-truth. Most datasets, e.g. Scannet [Dai et al.,
2017a], create a "ground-truth" 3D geometry by fusing the RGB-D using standard
TSDF fusion. This leads to the problem that this ground-truth is biased towards

56

Learning-based Depth Map Fusion

the shortcomings of standard TSDF fusion and training a neural network of depth
map fusion on this data would introduce these biases into the network itself. Thus,
this limitation has to be overcome by either creating more accurate groundtruth
for real-world data or designing a supervision signal that does not require 3D

groundtruth.

4.3.2 Summary

We have presented a novel real-time capable depth map fusion method tackling
the common limitations of standard TSDF fusion [Curless and Levoy, 1996a].
Due to learned non-linear TSDF updates — rather than hand-crafted linear updates —
our method mitigates inconsistent reconstruction results that occur at object edges
and thin structures. The proposed split of our network architecture into a 2D
depth routing network and a 3D depth fusion network allows to effectively handle
noise and outliers at different processing stages. Moreover, sensor-specific noise
distributions can be learned from small amounts of training data. Our approach
outperforms competing methods on both synthetic and real data experiments. Due
to its low computational requirements and compact architecture, our method has
the potential to replace standard TSDF fusion in a variety of tasks and applications.

57

3D Reconstruction

58

Chapter 5
Moving the fusion to a latent

space

While we have addressed the challenge of online depth map fusion from a
machine learning perspective in the previous chapter, we move it one step further
in this chapter. The previously presented method, RoutedFusion, uses neural
networks for depth map fusion. Yet, it represents the scene as a traditional signed
distance field stored in a 3D voxel-grid. While this scene representations has
the advantage of being explicitly interpretable and the underlying geometry can
be easily extracted, this explicitness is a disadvantage when it comes to outlier
handling. As discussed in the limitations section of chapter 4, existing methods,
e.g. TSDF Fusion [Curless and Levoy, 1996a] and RoutedFusion, use various
heuristics to filter outliers in decoupled pre- or post-processing steps to tackle
this fundamental limitation. Such filtering techniques entail the usual trade-off in
terms of balancing accuracy against completeness. Especially in an online fusion
system, striking this balance is extremely challenging in the pre-filtering stage,
because it is difficult to distinguish between a first surface measurement and an
outlier. Consequently, to achieve complete surface reconstructions, one must use
conservative pre-filtering, which in turn requires careful post-filtering of outliers
by non-local reasoning on the TSDF volume or the final mesh.

In this chapter, we explore the potential of a learned scene representation for

online depth fusion in order to tackle the challenge of outlier handling. Therefore,

59

3D Reconstruction

TSDF Fusion RoutedFusion
[Curless and Levoy, 1996a] [Weder et al., 2020]

Ours

Figure 5.1: Results of our end-to-end depth fusion on real-world MVS data [Knapitsch
et al., 2017]. Our method learns to separate outliers and true geometry without the need of
filtering heuristics.

we represent - in contrast to RoutedFusion - the scene by learned features that are
stored in a voxel grid similar to [Sitzmann et al., 2019a]. This allows to move
the decision whether a certain measurement is an outlier or new geometry to a
later stage when translating the learned feature representation into a interpretable
representation of geometry. This allows to fuse all available information to
improve completeness and by learning to decide what measurements are beneficial
and what are not to have a clean reconstruction. In contrast to previous methods,
we perform the fusion step in this learned scene representation that implicitly
learned to encode features like confidence information or local scene information.
A final translation step simultaneously filters and decodes this learned scene
representation into the final output relevant to downstream applications.
In summary, we make the following contributions in this chapter:

* We propose a novel, end-to-end trainable network architecture, called NeuralFu-
sion, which separates the scene representations for depth fusion and the final

output into two different modules.
* The proposed latent representation yields more accurate and complete fusion re-

60

Moving the fusion to a latent space

sults for larger feature dimensions allowing to balance accuracy against resource

demands.

* Our network architecture allows for end-to-end learnable outlier filtering within

a translation step that significantly improves outlier handling.

* Although fully trainable, our approach still only performs very localized updates

to the global map which maintains the online capability of the overall approach.

5.1 Method

5.1.1 Overview

Given a stream of input depth maps D' : R?> — R with known camera
calibration for each time step ¢ € N, we aim to fuse all surface information
into a globally consistent scene representation g : R? — R while removing
noise and outliers as well as complete potentially missing observations. The final
output of our method is a TSDF map s : R? — R, which can be processed into a
mesh with standard iso-surface extraction methods as well as an occupancy map
o : R3 — [0, 1]. Figure 5.2 provides an overview of our method. The key idea is
to decouple the scene representation for geometry fusion from the output scene
representation. This decoupling is motivated by the difficulty for existing methods
to handle outliers within an online fusion method. Therefore, we propose to fuse
geometric information into a latent feature space without any preliminary outlier
pre-filtering. A subsequent translator network then decodes the latent feature space
into the output scene representation (e.g., a TSDF grid). This approach allows for
better and end-to-end trainable handling of outliers and avoids any handcrafted
post-filtering, which is inherently difficult to tune and typically decreases the
completeness of the reconstruction. Furthermore, the learned latent representation
also enables to capture complex and higher resolution shape information, leading
to more accurate reconstruction results.

Our feature fusion pipeline consists of four key stages depicted as networks in
Figure 5.2. The first stage extracts the current state of the global feature volume

into a local, view-aligned feature volume using an affine mapping defined by

61

3D Reconstruction

Input Depth Maps m_oﬂmﬂ_ﬂumwea TSDF Grid Output Mesh

&
t—1

Stream
Extraction Layer Feature Integration Layer

Dt /»%L Fusion e“\

bm h ,‘, > - o Features
- Fusion Network View-Aligned
,\ Feature Grid Networks

Figure 5.2: Proposed online reconstruction approach. Our pipeline consists of two main parts: 1) A fusion network with its extraction

and integration layers, and 2) A translator network that translates the feature representation into an interpretable TSDF representation.

For any new depth map D' a local, view-aligned feature grid v*~! is extracted from the previous global feature grid g*~*. The fusion
network updates the local feature grid v* which is then integrated back into an updated global feature grid g*. The translator network is
independent of the fusion process and can be used asynchronously for an efficient fusion process.

62

Moving the fusion to a latent space

the given camera parameters. After the extraction, this local feature volume is
passed together with the new depth measurement and the ray directions through
a feature fusion network. This feature fusion network predicts optimal updates
for the local feature volume, given the new measurement and its old state. The
updates are integrated back into the global feature volume using the inverse
affine mapping defined in the first stage. These three stages form the core of the
fusion pipeline and are executed iteratively on the input depth map stream. An
additional fourth stage translates the feature volume into an application-specific
scene representation, such as a TSDF volume, from which one can finally render

a mesh for visualization. We detail our pipeline in the following.

5.1.2 Feature Extraction

The goal of iteratively fusing depth measurements is to (a) fuse information
about previously unknown geometry, (b) increase the confidence about already
fused geometry, and (c) to correct wrong or erroneous entries in the scene. Towards
these goals, the fusion process takes the new measurements to update the previous

scene state gt~ !

, which encodes all previously seen geometry. For a fast depth
integration, we extract a local view-aligned feature subvolume v‘~! with one
ray per depth measurement centered at the measured depth via nearest neighbor
search in the grid positions. Each ray of features in the local feature volume is
concatenated with the ray direction and the new depth measurement. This feature

volume is then passed to the fusion network.

5.1.3 Feature Fusion

The fusion network fuses the new depth measurements D? into the existing
local feature representation v'~1. Therefore, we pass the feature volume through
four convolutional blocks to encode neighborhood information from a larger
receptive field. Each of these encoding blocks, consists of two convolutional layers
with a kernel size of three. These layers are followed by layer normalization and
tanh activation function. We found layer normalization to be crucial for training
convergence. The output of each block is concatenated with its input, thereby

generating a successively larger feature volume with increasing receptive field.

63

3D Reconstruction

The decoder then takes the output of the four encoding blocks to predict feature
updates.The decoder consists of four blocks with two convolutional layers and
interleaved layer normalization and tanh activation. The output of the final layer
is passed through a single linear layer. Finally, the predicted feature updates are

normalized and passed as v! to the feature integration.

5.1.4 Feature Integration

The updated feature state is integrated back into the global feature grid by
using the inverse global-local grid correspondences of the extraction mapping.
Similar to the extraction, we write the mapped features into the nearest neighbor
grid location. Since this mapping is not unique, we aggregate colliding updates
using an average pooling operation. Finally, the pooled features are combined with
old ones using a per-voxel running average operation, where we use the update
counts as weights. This residual update operation ensures stable training and a
homogeneous latent space, as compared to direct prediction of the global features.
Both the feature extraction and integration steps are inspired by RoutedFusion
introduced in the previous chapter, but they use tri-linear interpolation instead of
nearest-neighbor sampling. When extracting and integrating features instead of
SDF values, we empirically found that nearest-neighbor interpolation produces

better results and leads to more stable convergence during training.

5.1.5 Feature Translation

In the final and possibly asynchronous step, we translate the latent scene
representation g¢ into a representation usable for visualization of the scene (e.g.,
signed distance field or occupancy grid). The network architecture in this step
is inspired by IM-Net [Chen and Zhang, 2019]. For efficient and complete
translation, we sample a regular grid of world coordinates. Then, at each of these
sampled points p;, the translator aggregates the information stored in the features
of the local neighborhood and predicts the TSDF s(p;) as well as occupancy o(p;)
for this specific grid location. To this end, the translator concatenates the feature
vectors of the 5 x 5 x 5 neighborhood and compresses them into a single feature

vector using a linear layer followed by tanh activation. Next, the so combined

64

Moving the fusion to a latent space

features are concatenated with the query point feature g*(p;) and passed through
the remaining translation network, which consists of four linear layers interleaved
with tanh activations and channel-wise dropout preventing the network from
overfitting to a single feature channel. According to the desired output ranges,
the TSDF head is activated using tanh, while the occupancy head uses a sigmoid
activation. After each layer, we concatenate the output with the original query
point feature g*(p;).

5.1.6 Training Procedure and Loss Function.

All networks are jointly trained end-to-end. In each training epoch, we ran-
domly shuffle the input depth maps and iteratively fuse them one by one into
the corresponding latent feature grid g : R® — R™. After integrating the depth
map into the latent feature grid, we query the translator network, where the latent
feature grid was just updated, and render the TSDF s : R® — R and occupancy

o0 : R3 — [0, 1]. The entire pipeline is optimized using the following loss function:

1 N A
E :ﬁ Z Alﬁl(sia Si) + A2£2(Si; Si)

+ XoLo(04,0:) + Ngo2, (9) (5.1)

where £; and L5 denote the L; and Lo norms, and L, is the binary cross-entropy
on the predicted occupancy. The L loss is helpful with outliers, whereas the £
loss improves the reconstruction of fine details. In each step, n denotes the number
of all updated feature grid locations. When training with outlier contaminated
data, we found that setting n equal to all visited feature grid locations yields
the best results. Therefore, n is a crucial hyperparameter when training the
pipeline. Moreover, 5; and 6; denote the ground-truth TSDF and occupancy value,
respectively. To avoid large deviations for a single feature in the latent space, we
regularize the feature grid g by penalizing the mean of the channel-wise variance

by 02, (g). We empirically set the loss weights to A; = 1., Ay = 10., A, = 0.01,

ch

and A\, = 0.05.

65

3D Reconstruction

5.2 Experiments

We first discuss implementation details and evaluation metrics before evaluat-
ing our method on synthetic and real-world data in comparison to other methods.
We further analyze our method for varying numbers of features N in an ablation

study.

5.2.1 Implementation Details.

Our pipeline is implemented in PyTorch and trained on an NVIDIA RTX 2080.
All networks were trained using the Adam optimizer [Kingma and Ba, 2015]
with an initial learning rate of 0.01, which was adapted using an exponential
learning rate scheduler at a rate of 0.998. For momentum and beta, we empirically
found the default parameters to yield the best results. We trained all networks on
synthetic data being augmented with artificial noise and outliers. The batch-size
is set to one due to the nature of the sequential fusion process. However, we
accumulate the gradients across 8 scene update steps and then update the network
parameters. Our un-optimized implementation runs at ~ 7 frames per seconds with
a depth map resolution of 240 x 320 on an NVIDIA RTX 2080. This demonstrates

the real-time applicability of our approach.

5.2.2 Evaluation Metrics.

We use the following evaluation metrics to quantify the performance of our
approach: Mean Squared Error (MSE), Mean Absolute Distance (MAD), Accu-
racy (Acc.), Intersection-over-Union (IoU), Mesh Completeness (M.C.) Mesh
Accuracy (ML.A.), and F1 score.

Mean Squared Error (MSE) and Mean Absolute Distance (MAD). The mean
squared error measures the reconstruction error on the TSDF field by penalizing
large surface deviations and outliers. The mean absolute distance is also computed
on the TSDF grid. However, it mainly quantifies the performance on reconstructing
fine geometric details.

Accuracy (Acc.), F1 Score, Intersection-over-Union (IoU). The accuracy is

computed over the occupancy obtained from the sign of the TSDF grid. We

66

Moving the fusion to a latent space

also report the F1 score, which is the harmonic mean of precision and recall.
By measuring both, completeness and accuracy, it is a more holistic metric for
quantifying the performance of a reconstruction method. Moreover, we measure
the IoU on the occupancy grid. The IoU especially quantifies artifacts typically
encountered in reconstructions from noisy depth maps, such as surface and corner
thickening and the vanishing of fine geometric details.

Mesh Completeness (M.C.) and Accuracy (M.A.). We compute the complete-
ness using the evaluation pipeline from [Stutz and Geiger, 2018]. The complete-
ness describes the distance from points sampled on the ground-truth mesh to the
closest point on the reconstructed mesh. Vice-versa, the accuracy computes the
distance from points sampled on the reconstructed mesh to the closest point on

the ground-truth mesh.

5.2.3 Results on Synthetic Data

Datasets. We used the synthetic ShapeNet [Chang et al., 2015] and Model-
Net [Wu et al., 2015] datasets for performance evaluation. From ShapeNet, we
selected 13 classes for training and evaluate on the same test set as RoutedFusion
consisting of 60 objects from six classes, for which pretrained models [Park et al.,
2019] are available. For ModelNet [Wu et al., 2015], we trained and tested on
10 classes using the train-test split from RoutedFusion. We first generated water-
tight models using the mesh-fusion pipeline used in [Mescheder et al., 2019] and
computed TSDFs using the mesh-to-sdf’ library. Additionally, we render depth
frames for 100 randomly sampled camera views for each mesh. These depth maps
are the input to our pipeline and existing methods. For both datasets, we found
that training on one single object per class is sufficient for generalization to any
other object and class.

Comparison to Existing Methods. For performance comparisons, we fuse depth
maps and augment them with artificial depth-dependent noise as in [Riegler et al.,
2017a]. We compare to state-of-the-art learned scene representation methods
DeepSDF [Park et al., 2019], OccupancyNetworks [Mescheder et al., 2019], and
IF-Net [Chibane et al., 2020], as well as to the online fusion methods TSDF

]https ://github.com/mariand42/mesh_to_sdf

67

https://github.com/marian42/mesh_to_sdf

3D Reconstruction

Fusion [Curless and Levoy, 1996a] and RoutedFusion. We further implemented
two additional baselines to demonstrate the benefits of a fully learned scene
representation for depth map fusion: (1) one baseline performs a learned 2D
noise filtering before fusing the frames using TSDF Fusion [Curless and Levoy,
1996a], and (2) a baseline that post-processes models fused by TSDF Fusion
using a simplification of our translation network - the principle is similar to

OctnetFusion [Riegler et al., 2017a], but on a dense grid.

We compare all baselines on the test set of RoutedFusion in Figure 5.5. For
input data augmentation, we used the same scale 0.005 as in RoutedFusion.
Figure 5.5 shows that our method significantly outperforms all existing depth
map fusion as well as learned scene representations. We especially emphasize
the increase in IoU by more than 10%. This significant increase is due to many
fine-grained improvements, where RoutedFusion wrongly predicts the sign, as
shown in Figure 5.6. In all experiments, we set the truncation distance of TSDF

Fusion to 4cm, which is similar to the receptive field of our fusion network.

Higher Input Noise Levels. We also assess our method in fusing depth maps
corrupted with higher noise levels on the ModelNet dataset [Wu et al., 2015]
in Figure 5.7. For this experiment, we augment the input depth maps with
three different noise levels. We fuse the corrupted depth maps using standard
TSDF Fusion [Curless and Levoy, 1996a] and RoutedFusion. Since we showed
in RoutedFusion that the proposed routing network significantly improved the
robustness to higher input noise levels, we also tested our method with depth maps
pre-processed by a routing network. For these experiments, we use the pre-trained
routing network we trained for RoutedFusion.

Outlier Handling. As discussed, one of the main drawback of RoutedFusion is
its limitation in handling outliers. To this end, we run an experiment, where we
augment the input depth maps with random outlier blobs. We create this data by
sampling an outlier map from a fixed distribution scaled by a fixed outlier scale.
Additionally, we sample three masks with a given probability (outlier fraction)
and dilate it once, twice, and three times, respectively. Then, these masks are
used to select the outliers from the outlier map. We report the results of this

experiment in Figure 5.8. Note that the results might be better with even higher

68

Moving the fusion to a latent space

Table 5.1: Ablation Study. We assess our method for different numbers of feature
dimensions N. The performance saturates around N = 8. Note that N = 1 did not
converge.

N MSE|, MAD| Acc.t IoUt
[e-05] [e-02] [%] [0.1]

9.45 0.64 94.67 0.717
3 . 97.51 0.863
3.99 029 9746 0.862
391 029 97.50 0.863

N0 BN =
w A

=)

W

(=]

(98]

(=)

—_

outlier fractions since we only evaluate on updated grid locations. The consistency
in outlier filtering and increase in updated grid locations improves the metrics.

5.2.4 Ablation Study

In a series of ablation studies, we discuss several benefits of our pipeline and
justify design choices.
Iterative Fusion. Ideally, fusion algorithms should be independent from the
number of integrated frames and steadily improve the reconstruction as new
information becomes available. In Figure 5.9, we show that our method is not only
better than competing algorithms from the start, but also continuously improves
the reconstruction as more data is fused. The metrics are averaged at every fusion
step over all scenes in the test set used for all experiments on ShapeNet [Chang
etal., 2015].
Frame Order Permutation. Our method does not leverage any temporal
information from the camera trajectory apart from the previous fusion result. This
design choice allows to apply the method also to a broader class of scenarios
(e.g. Multi-View Stereo). Ideally, an online fusion method should be invariant to
permutations of the fusion frame order. To verify this property, we evaluated the
performance of our method in fusing the same set of frames in ten different random
frame orders. Figure 5.10 shows that our method converges to the same result for
any frame order and thus seems to be invariant to frame order permutations.
Feature Dimension. An important hyperparameter of our method is the feature
dimension N. Therefore, we show quantitative results for the reconstruction

from noisy and outlier contaminated depth maps using varying N in Table 5.1.

69

3D Reconstruction

We observe that a larger IV clearly improves the results, but the performance
eventually saturates, which justifies our default choice of NV = 8 features.
Latent Space Visualization. In order to verify our hypothesis that the translator
network mostly filters outliers, since the fusion network can hardly distinguish
between first entries and outliers, we visualize the fused latent space in Figure 5.11.
While the translated end result is outlier free, the latent space clearly shows that
the fusion network keeps track of most measurements.

Generalization from a Single Object. In order to demonstrate the compactness
and generalization performance of our network, we train it only on a single chair
object from the ModelNet [Wu et al., 2015] dataset. We augment the input depth
maps with artificial noise of scale 0.01. We report the results in Table 5.2 and show
that our method trained on a single object achieves almost the same performance as
our method trained on the full training set. Moreover, it outperforms the currently
best performing method - RoutedFusion - that is trained on the full training set.

This result indicates the applicability of our method to many real-world scenarios,

Table 5.2: Our method trained on the standard training split and on a single chair object
only. The model trained on a single object is almost on par with our model trained on the
full training set and outperforms the next best existing method trained on the full training
set.

Method MSE| MAD] Acc.t IoUt

[e-05] [e-02] [%] [0,1]
RoutedFusion (full training set) 6.79 0.56 94.44 0.821
Ours (full training set) 4.84 0.42 96.30 0.874
Ours (single object) 3.94 0.44 94.51 0.848

where the sensor setup might change. In fact, only very little training data is

required to retrain our method and achieve state-of-the-art reconstruction results.

5.2.5 Loss Ablation.

We have also run an ablation study to evaluate the importance of the different
terms in our loss function. In Figure 5.12, we show that the combination of all
three loss terms yields best results. The binary cross entropy is particularly useful

to improve convergence in the beginning of the training as the network learns to

70

Moving the fusion to a latent space

Burghers Stonewall Lounge Copyroom Cactusgarden
Method M.A. MC. MA. M.C. MA. MC. MA MC. MA MC.
TSDF Fusion [Curless and Levoy, 1996a] 21.01 22.58 17.67 21.16 21.88 26.31 39.56 42.57 1891 18.63
RoutedFusion 20.5041.32 19.44 80.54 22.6353.45 38.0757.35 19.20 4141
Ours 18.19 18.88 17.01 20.27 16.4517.96 19.06 20.25 15.87 16.96

Table 5.3: Quantitative evaluation on Scene3D [Zhou and Koltun, 2013]. Evaluated
are mesh accuracy (M.A.) [mm] & mesh completeness (M.C.) [mm].

predict a coarse shape that is further refined by the losses on the SDF as training

progresses.

5.2.6 Real-World Data

We also evaluate on real-world data and large-scale scenes to demonstrate

scalability and generalization.
Scene3D Dataset. For real-world data evaluation, we use the lounge and
stonewall scenes from the Scene3D dataset [Zhou and Koltun, 2013]. For compa-
rability to RoutedFusion, we only fuse every 10th frame from the trajectory using
a model solely trained on synthetic ModelNet [Wu et al., 2015] data augmented
with artificial noise and outliers.

In Figure 5.13, we present qualitative results of reconstructions from real-
world depth maps compared to RoutedFusion and TSDF Fusion [Curless and
Levoy, 1996a]. We note that our method reconstructs the scene with significantly
higher completeness than RoutedFusion. This is due to our learned translation
from feature to TSDF space, which allows to better handle noise artifacts and
outliers without the need for hand-tuned, heuristic post-filtering. Further, we show
improved outlier and noise artifact removal compared to TSDF Fusion [Curless
and Levoy, 1996a] while being on par with respect to completeness. These results
are also quantitatively shown in Table 5.3.

Tanks and Temples Dataset. In order to demonstrate our methods out-
lier handling capability, we also run experiments on the Tanks and Temples
dataset [Knapitsch et al., 2017]. We computed stereo depth maps using COLMAP
[Schonberger and Frahm, 2016, Schonberger et al., 2016] and fused this data using
our method, PSR [Kazhdan and Hoppe, 2013], TSDF Fusion [Curless and Levoy,
1996a], and RoutedFusion. To demonstrate the easy applicability to new datasets

in scenarios with limited ground-truth, we train our method on one single scene

71

3D Reconstruction

(Ignatius) from the Tanks and Temples training set. We reconstructed a dense
mesh using Poisson Surface Reconstruction (PSR) [Kazhdan and Hoppe, 2013],
rendered artificial depth maps, and used TSDF Fusion to generate a ground-truth
SDF. Then, we used this ground-truth to train the fusion of stereo depth maps.
Figure 5.14 shows the reconstructions of the unseen Caterpillar, Truck, and M60
scene from [Knapitsch et al., 2017]. Our proposed method significantly reduces
the amount of outliers in the scene across all models. While RoutedFusion shows
comparable results on some scenes, it is heavily dependent on its outlier post-filter,
which fails as soon as there are too many outliers in the scene (see also Figure 5.1).
Further, they also pre-process the depth maps using a 2D denoising network while

our network uses the raw depth maps.

5.3 Discussion

5.3.1 Limitations

Compared to RoutedFusion, we have addressed the limitation of heuristic-
based outlier filtering in this chapter. This led to a improvement in outlier handling
and cleaner final reconstructions. Yet, the pipeline is still trained on synthetic data.
The outlier distribution is artificially modelled in the synthetic data. While this
approximation shows impressive results, better performance could be achieved
if the pipeline is trained on real data with real outlier distributions, e.g. from
time-of-flight sensors or multi-view stereo pipelines. Given the generalization
capabilities, the dataset does not necessarily need to be large but the ground-truth
needs to be accurate to avoid introducing unwanted biases into the reconstruction
pipeline.

Large and diverse datasets with accurate groundtruth would be also beneficial,
as the network could learn strong priors that are especially valuable for completion
during the translation. However, acquiring large-scale datasets with accurate 3D
ground-truth is expensive and representing this ground-truth in a dense voxel-
grid is memory intensive. Thus, this limitation could be resolved by moving the
supervision from the 3D space to the 2D domain by rendering depth maps from

the geometry and supervising it on the sensor streams and coupling it with RGB

72

Moving the fusion to a latent space

supervision.

Moreover, while our pipeline shows excellent generalization capabilities, e.g.
generalizing from a single MVS training scene, it is biased to the number of
observations integrated during training leading to less complete results on some
test scene parts with very few observations. However, this issue can be overcome

by a more diverse set of training sequences with different number of observations.

5.3.2 Summary

In this chapter, we presented a novel approach to online depth map fusion with
real-time capability that leverages a learned scene representation. The key idea
is to perform the fusion operation in a learned latent space that allows to encode
additional information about undesired outliers and super-resolution complex
shape information. The separation of scene representations for fusion and final
output allows for an end-to-end trainable post-filtering as a translator network,
which takes the latent scene encoding and decodes it into a standard TSDF
representation. Our experiments on various synthetic and real-world datasets
demonstrate superior reconstruction results, especially in the presence of large
amounts of noise and outliers.

73

3D Reconstruction

Local, View-aligned
Latent Space Encoding Feature Grid
1 After Update

- Latent Space N ~-
‘;Er‘r‘ Update Prediction - I
3] A
Local, View-aligned

Feature Grid
Before Update l

Update Normalization

Figure 5.3: Feature Fusion Network. The feature fusion network consists of a latent
space encoder that fuses information from neighboring rays. This is followed by a latent
updated predictor that predicts the updates for the latent space. Finally, the predicted
features are normalized along the feature vector dimension.

Neighborhood MLP Feature Decoder

| Interpolator Occupancy Head x
s ¥

e

Local Neighborhood
in Latent Feature Grid

S Ligd

Figure 5.4: Translator Network. The translator network consists of a series of neural
blocks with linear layers, channel-wise dropout, and tanh activations. The first block
extracts neighborhood information that is concatenated with the central feature vector.
From the concatenated features, the TSDF value is then predicted. All joining arrows
correspond to a concatenation operation.

74

Moving the fusion to a latent space

Method MSE| MAD/ Ace.t ToU?T F17

[e-05] [e-02] [%] [0,1] [0,1]
DeepSDF [Park et al., 2019] 464.0 4.99 66.48 0.538 0.66
Occ.Net. [Mescheder et al., 2019] 56.8 1.66 85.66 0.484 0.62
IF-Net [Chibane et al., 2020] 6.2 0.47 93.16 0.759 0.86
TSDF Fusion [Curless and Levoy, 1996a] 11.0 0.78 88.06 0.659 0.79
TSDF + 2D denoising 27.0 0.84 87.48 0.650 0.78
TSDF + 3D denoising 8.2 0.61 94.76 0.816 0.89
RoutedFusion 59 0.50 94.77 0.785 0.87
Ours 2.9 0.27 97.00 0.890 0.94

Figure 5.5: Quantitative and qualitative results on ShapeNet [Chang et al., 2015]. Our
fusion approach consistently outperforms all baselines and state of the art in both, scene
representation and depth map fusion. The performance differences to [Weder et al., 2020]
are also visualized in Figure 5.6.

75

3D Reconstruction

DeepSDF
[Park et al., 2019]

Occ.Net.
[Mescheder et al., 2019]

IF-Net
[Chibane et al., 2020]

TSDF Fusion
[Curless and Levoy, 1996a]

Routed Fusion
[Weder et al., 2020]

Moving the fusion to a latent space

TSDF Fusion

RoutedFusion

Ours

»\—\\\&

Figure 5.6: Mesh Accuracy (M.A.) visualization on ShapeNet meshes. Our method
consistently reconstructs more accurate meshes than the baseline depth fusion methods.
Especially thin geometries (table/chair legs, lamp cable) are reconstructed with better
accuracy.

wmm TSDF Fusion wmm Ours w/ Routing
w=s RoutedFusion == Ours

=== TSDF Fusion wm= Ours w/ Routing
w=m RoutedFusion wmm Ours I |

0.01 0.03 0.01 0.03
Input Noise Level Input Noise Level

| g
S

w
-
N

»
-
o

N w
o o o
5 o ®

-

Mesh Accuracy Error (lower is better)
Mesh Completeness Error (lower is better)

o

Figure 5.7: Reconstruction from Noisy Depth Maps. Our method outperforms existing
depth fusion methods for various input noise levels. The performance can be further
boosted by preprocessing the depth maps with the routing network from RoutedFusion
leading to better robustness to high input noise levels, while it over-smoothes in the absence
of noise.

77

3D Reconstruction

Outlier Method MSE| MAD] Accet ToU?T Reconstructed Geometry Outlier Projection onto XY-Plane
Fraction [e-05] [e-02] [%] [0,1] TSDF Fusion RoutedFusion Ours TSDF Fusion RoutedFusion Ours
HwUﬂ 34.51 1.17 85.17 0.645
Fusion
0.01
Routed- 5.43 057 9521 0.837
Fusion
Ours 2.27 029 97.57 0.884
Sor 8072 202 7386 0432
usion
0.05
Routed- 9.84 0.68 9446 0.803
Fusion
Ours 491 0.22 98.05 0.851
‘ku.um 102.50 243 67.47 0.341
Fusion
0.1 Routed-
. 14.25 0.77 9295 0.764
Fusion
Ours 3.35 022 98.48 0.865

Figure 5.8: Reconstruction from Outlier-Contaminated Data. The left table states performance measures for various outlier fractions.

The parts/sources/02-neural-fusion/figures on the right show corresponding reconstruction results and errors projected on the xy-plane

for an exemplary ModelNet [Wu et al.

2015] model. Our method outperforms state-of-the-art depth fusion methods regardless of the

outlier fraction, but in particular with larger outlier amounts. Note that high outlier rates are common in multi-view stereo as shown in
the supp. material of [Knapitsch et al., 2017].

78

Moving the fusion to a latent space

Method Method
——— TSDF Fusion -~ RoutedFusion —— Ours —— TSDF Fusion —— RoutedFusion —— Ours
0.012 0.9
0.010
0.8
o 0.008
el Bo7
0.006
0.004 0.6
0.002 0.5
0 20 40 60 80 100 0 20 40 60 80 100
Step Step

Figure 5.9: Performance of iterative fusion over time. Our method consistently out-
performs both baselines - RoutedFusion and TSDF Fusion - at every step of the fusion
procedure.

less 0.90
6.0 Frame Sequence 0.88
55 L 6 0.86
2 ! 0.84
5.0 3 8 .
> 0.82 / Frame Sequence
2 — 6
0.80
—_—2 — 17
0.78 3 8
0.76 4 9
0.74 — 5 — 10
0 20 40 60 80 100
Step

Figure 5.10: Random frame order permutations. The proposed method seems to be
largely invariant to the frame integration order, since it always converges to the same result.

XY-Plane XZ-Plane YZ-Plane Output Mesh

Figure 5.11: Visualization of our learned latent space encoding. Our asynchronous
fusion network integrates all measurements including outliers, but the translator effectively
filters the outliers to generate a clean output mesh.

79

3D Reconstruction

Loss —— L1 — L2 — L1+L2 — L1+L2+BCEJ
—g
0.90 - _/_/__/_/—/x/_/_\ e
2
o
0.85 A
Epoch 0 5 10 15 20 25

Figure 5.12: Loss Ablation. All losses combined yield best results.

80

Moving the fusion to a latent space

SQAOWIRI 19139q poylaul Ino

3

*(UOT)ONNSUODAI AFUNO] 9IS) S)OBJI)IE III[INO PUE ISIOU
IOAIMOH ‘[B966] ‘A0AT pue ssopn)] uorsny JASI Y Jed uo SI pue (J[emauols 99s) UOISN,JpaInoy uey)

ssoualo[dwos 10119q Ap3ueoyrusis spraik poylow Q) [€1(7 ‘Un[0Y] Pue noyz] (eaudds uo synsaa uoisny dewr \pdo(q :¢1°s dan3L|

smQ

uoIsnpainoy [e966]1 “A0AdT pue ssopn)] uorsng JAS.L Qe yndug

[Tem Quol§

a8uno

81

3D Reconstruction

Caterpillar

Truck

M60

Input Frame PSR TSDF Fusion RoutedFusion Ours
[Kazhdan and Hoppe, 2013] [Curless and Levoy, 1996a]

Figure 5.14: Results on Tanks and Temples [Knapitsch et al., 2017]. Our method significantly reduces the number of outliers
compared to the other methods without using any outlier filtering heuristic and solely learning it from data. We especially highlight the
results on the caterpillar scene, where our proposed method filters most outliers while the reconstructions of competing methods are

heavily cluttered with outliers.

82

Chapter 6
Learning-based Appearance

Fusion

So far, we have only considered the geometric reconstruction of the 3D world
around us. However, oftentimes it is not sufficient to only reconstruct the geometry.
Many applications also require the reconstruction of the appearance of the world.
Le., we reconstruct how the world “really” looks like. This allows to not only
use the underlying geometry of the world, but also leverage the reconstruction
for immersive experiences through rendering onto the users devices. E.g., this
technology would enable a real-time stream of the environment to another location
such that it can be explored remotely from novel views.

To this end, realistic 3D model reconstruction from images and depth sensors
has been a central and long-studied problem in computer vision. Appearance
mapping is often treated as a separate post-processing step that follows 3D surface
reconstruction and is usually approached using batch-based optimization meth-
ods [Debevec et al., 1996, Eisemann et al., 2008, Waechter et al., 2014, Fu et al.,
2018b] that are unsuitable for many applications that do not have access to the
entire dataset at processing time, for instance, robot navigation [Breitenmoser
and Siegwart, 2012, Garrido et al., 2013, Bircher et al., 2015], augmented real-
ity [Newcombe et al., 2011b, Schops et al., 2017a], and virtual reality [Lombardi
etal., 2018, Lombardi et al., 2019, Chu et al., 2020] applications, Simultaneous
Localization and Mapping (SLAM) systems [Whelan et al., 2015], online scene

83

3D Reconstruction

(h Novel Viewpoint

Surfel Texels

Input Images and Geometry Online Updates Deep Surfel Representation S,
mﬁ.H
. Aligned : > Appearance
Appearance Fusion Surfel o Rendering
Texels 1 9 @
with % - |
//\ RGB Colors .
Sparse Grid of Aligned 5 Geometry-
S Surfel Patches Sarfel : Aligned

Figure 6.1: Overview of our online appearance fusion pipeline and the DeepSurfel scene representation. The Appearance Fusion
network efficiently aggregates appearance information from a stream of camera views into the proposed DeepSurfel representation
S¢—1 that maintains high-frequency geometric and appearance information. DeepSurfels is a sparse grid of 2D patches that consist
of surface-aligned texels, which encode appearance information either as RGB color values or learned feature vectors. The proposed
Appearance Rendering network interprets aggregated and interpolated geometric and appearance information stored in DeepSurfels for
rendering novel viewpoints. In this example we used DeepSurfels with a sparse 64° patch grid with 8 x 8 resolution surfel patches.

84

Learning-based Appearance Fusion

perception methods [Héne et al., 2017, Schops et al., 2017b], and many others.

Common online fusion methods like KinectFusion [Newcombe et al., 2011a]
and previously introduced RoutedFusion and NeuralFusion are well suited for
online geometry fusion and can efficiently handle noise and topological changes.
However, due to their high memory requirements at high voxel resolutions, they
have strong limitations when it comes to encoding high-frequency appearance
details on the surface. On the other hand, meshes with high-resolution texture
maps [Waechter et al., 2014, Fu et al., 2018b, Eisemann et al., 2008] are well-
suited for encoding high-frequency appearance information in an efficient manner,
but they have difficulties in handling topology changes in an online reconstruction
setting. Moreover, recent learning-based approaches [Sitzmann et al., 2019a,
Sitzmann et al., 2019b, Mildenhall et al., 2020a, Oechsle et al., 2019] have
achieved high-quality results by learning geometry and texture mapping directly
from RGB images. However, they are not well suited for local online updates, do

not scale to large-scale scenes, and easily overfit to the training data.

In this chapter, we approach the problem of online appearance reconstruction
from RGB-D images by combining the advantages of 1) implicit grids, which
easily handle topological changes and where low resolution is often sufficient
to encode the scene topology, 2) scalable high-frequency appearance along the
surface via texture maps or learned feature maps, and 3) a learned scene repre-
sentation to build a framework for learning-based appearance fusion that allows
for online processing and scalability to large scenes. To this end, we propose
a novel scene representation DeepSurfels and an efficient learning-based online

appearance fusion pipeline, which is illustrated in Figure 6.3.

Our DeepSurfels representation is a hybrid between an implicit surface that
encodes the topology and low-frequency geometric details and a surfel representa-
tion that encodes high-frequency geometry and appearance information in form of
surface-aligned patches. These patches are arranged in a sparse grid and consist of
surface-aligned texels that encode appearance information either in the classical
form of RGB color values or, as proposed, via learned feature vectors. The sparse
grid allows for efficient volumetric rendering and enables explicit scene updates

that are crucial for online fusion, while the 2D patches enable quadratic memory

85

3D Reconstruction

storage complexity like meshes or sparse grid structures. Depending on the Deep-
Surfel parameters it can approximate between simple colored voxels (high grid
resolution, 1 x 1 patches) and textured meshes with high texture atlas resolutions
(lower grid resolution, higher patch resolution). Our online appearance fusion
pipeline iteratively fuses RGB-D frames into estimated DeepSurfels geometry
and is optimized by using a differentiable renderer for self-supervision and the
reprojection error as training signal. In this way, the pipeline does not require any
ground-truth texture maps and the training procedure allows for efficient transfer

to new sensors and scenes without the need for acquiring costly ground-truth data.

While we eventually target full online reconstruction of both geometry and
texture from monocular video, we only focus on online appearance estimation
in this chapter. Even in a setting with known geometry, our online approach
has scalability advantages: We can fuse arbitrary numbers of input frames and
the grid-aligned surfels have performance advantages during feature aggregation
across local neighbors and for controlling the sampling density. Our grid-aligned
surfel patches can also be seen as a spatial alignment of per-voxel sub-features
being anchored along the surface. In contrast to works that only save a single
feature vector per voxel, e.g. DeepVoxels [Sitzmann et al., 2019a], we can directly
relate sub-features with particular image pixels via projective mapping and as
such simplify the network learning task and improve output accuracy. As opposed
to many novel view synthesis works [Sitzmann et al., 2019b, Sitzmann et al.,
2019a, Mildenhall et al., 2020a], we do not overfit onto a single scene, but train a
network that generalizes over multiple scenes without re-training. While those
methods iterate many times over each input image in a slow optimization process,
our method processes every image only once with a single network forward pass
and is thus much faster. From the application point of view, our approach is thus
closer to classical texture mapping methods like [Debevec et al., 1996, Eisemann
et al., 2008, Fu et al., 2018b, Waechter et al., 2014].

We compare our novel scene representation and appearance fusion pipeline
to existing methods on single and multi-object datasets and show that our scene
representation better captures high-frequency textures. Moreover, our method

generalizes well and compares favorably even to existing texture optimization

86

Learning-based Appearance Fusion

methods that jointly optimize all images together. This is a crucial step towards
a fully end-to-end appearance fusion method that can be deployed to real-world

applications. In summary, our key contributions of this chapter are:

* A novel scalable and memory-efficient 3D scene representation, termed Deep-
Surfels, closing the gap between traditional interpretable and modern learned

representations.

* An end-to-end differentiable and efficient online appearance fusion pipeline
compatible with classical and learned texture mapping. The method yields
competitive texturing results without heavy optimization as every input frame is

processed only once with a single network forward pass.

 Contrary to other learning-based novel view synthesis methods [Sitzmann et al.,
2019a, Sitzmann et al., 2019b, Mildenhall et al., 2020a] that overfit onto a single

scene, our method generalizes to new scenes without retraining.

6.1 DeepSurfels 3D Scene Representation

We propose DeepSurfels as a powerful, scalable, and easy-to-use alternative

to mitigate previously mentioned problems of many scene representations.

6.1.1 Data Structure

DeepSurfels is a set of patches with L x L texels that can either store color
information or learned feature vectors. The elementary building block is an
oriented texel 7 € R€ that is associated with its weight parameter w and is stored
on the objects’ surface, where c denotes the number of feature channels. This
number can be chosen arbitrarily for learned appearance fusion as suited for the
problem setting, while we set ¢ = 3 for deterministic RGB texturing. The texels
T are arranged in an L x L resolution patch P, : {i,j7 — 7i;; ¢,5 € [1, L]}
that is located in a sparse patch grid P = { P,y }o<x y<v,.<z, Where X, Y, Z
represent DeepSurfels’ grid resolution. Although the spatial patch size can be

chosen arbitrarily, we empirically observed that texturing works best when the

87

3D Reconstruction

Structure

L x L patch resolution

Pyyz = C Tij

i)

2D side view (voxel vyy,)

/nr
£

Geometry fitting

Surface

Prys = Pyy, — dii

Figure 6.2: DeepSurfel surface fitting. In a recursive fitting procedure, we align the texels of each patch with the underlying SDF
surface by shifting and alignment. In every step of the recursion, we shift the (sub-)patch onto the surface and align its normal with the
normal of the surface. d denotes queried signed distance, n denotes SDF gradient VSDF in z, y, z directions.

88

Learning-based Appearance Fusion

patch size is equal to the grid cell size such that there is no overlap between
neighboring patches. For efficiency reasons, it is sufficient to store patches only
for grid cells that intersect the objects’ surface. However, it is also possible to
allocate more layers around the iso-surface to account for noisy geometry as it is

common for geometric fusion approaches [Newcombe et al., 201 1a].

6.1.2 Surface Fitting

We propose a recursive algorithm to align each texel 7;; of the patch with the
implicit surface of the geometry. We compute the patch position and orientation
from a signed distance function (SDF) representing the Euclidean distance to the
closest surface.

Initially, every patch P, in the grid P is positioned at the center of its grid
cell. Then, the patches are shifted to the closest surface by using the pre-computed
SDF, oriented according to the SDF gradient VSDF in all z, y, z directions, and

rotated to maximize the surface coverage. These patches are subdivided into
L

k2 non-overlapping patches of % x ¢ resolution, where x > 2 is the smallest
integer to non-trivially divide L. Each sub-patch is aligned again using the SDF
field, where we trilinearly interpolate the SDF value at non-integer grid positions.
This patch subdivision and alignment is repeated recursively until the resolution
reaches 1 x 1 when patches represent texels that lie on the isosurface. This process

is visually illustrated in Figure 6.2.

6.2 Online Appearance Fusion Pipeline

We also propose a pipeline for learning appearance fusion (depicted in Fig-
ure ??) that incrementally fuses RGB measurements into DeepSurfels at every
time step ¢ and yields DeepSurfel state .S;. The input to our pipeline are intrin-
sic camera parameters K; and extrinsic camera parameters R;, an RGB image
I; € REXWXC "and corresponding depth map D; € RE*W where H, W and C
denote image height, width, and the number of channels respectively. The pipeline

consists of four main components detailed in the following.

89

3D Reconstruction

B AR RS R E AR NN AAAEAARARAARARAAEAARARRARAREERRERAN, .

: Appearance Fusion - Appearance Rendering ;
A e e e e ey P S S S S S P S 2 E 3
. kg 7 Fusion Network o : I
i lg IEFe Mg ——— === — — — Fy 1 e
Qo= ()] ;

D, H _ | . H
. : Feature E Feature q 3
- Feature Blending . : = . Rendering | Feature -

Ma 3 |+_ chmn&LQ Network| ™| noaﬂw&_cu vn-v I cmnoa&ﬂmmm_ou Network ™ Decoder 3
3 _ o E

I t - _f ||||||||||| = . . 1

Y N NN NN EEEEE RN R E NN EE NN EEEE N EE AR NN EEAENEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEES

Figure 6.3: Overview of our learned appearance fusion pipeline. The pipeline consists of an Appearance Fusion module that
integrates a new RGB measurement I; into DeepSurfels S;—1 and a differentiable Appearance Rendering module that interprets and
renders the content of representation for a given viewpoint. White blocks denote differentiable deterministic operations, rectangular
blocks denote data, rounded rectangular blocks are trainable modules, and ® is a feature stacking operation.

90

Learning-based Appearance Fusion

6.2.1 Differentiable Projection II

The projection module renders a super-resolved feature map Fi_y € REHXxkWxe,
where k is an upsampling factor inspired by [Cook et al., 1984] to ensure dense
coverage of the geometry. There are three steps to render this feature map from

already stored scene content.

First, each pixel in the incoming frame D; is subdivided into k2 distinct sub-
pixels pi; (i € [L,kH], j € [1,kW]), thus forming an upsampled image grid.
Second, by leveraging camera and depth information, the center of the sub-pixel
pﬁj is un-projected into the scene. From the un-projected scene point, the closest
DeepSurfel texel and all texels within the surrounding [, ball are selected. The
size of this ball is chosen proportional to the size of the un-projected sub-pixel
in the world space. Third, an efficient uniform average of the selected texels

determines the value of the feature entry Afj*l S Ft,l (6.1):

w1
froi] 3o 6.1)

TE Tfj

where Tltj is the set of selected texels. This algorithm is simple, leverages the grid
representation for fast rendering, and can flexibly render optionally stored features
or a surface normal map]\Aft,l that we jointly denote as meta features]\th,l. Note
that all operations are differentiable and the selection can be implemented as a

differentiable multiplication by an indicator function.

6.2.2 Fusion Network

The input image I; is deterministically upsampled I} € RFIXEWXC py
factor k (nearest-neighbor interpolation) and stacked ® with the super-resolved
features Ft,l ® Mt,l ® It’“. This stacked representation is embedded into a
higher-dimensional feature space by a trainable linear transformation (Feature
Embedding module Figure ??). Then, the embeddings are refined by the Blending
Network that consists of five convolutional layers (3 x 3 kernel size) interleaved
with dropout and leaky ReLU activations. This network, based on a small receptive

field, produces refined features aware of neighboring information that alleviates

91

3D Reconstruction

the problem of discretization artifacts, which can occur for low DeepSurfels
resolutions. Lastly, these features are compressed by the Feature Compression
W layer to a lower dimensional feature space that is defined by DeepSurfels’
number of channels. The final output is an updated feature map F} that blends old

information from F}_; with the new appearance information from I;.

6.2.3 Inverse Projection I1~!

While the fusion module and the explicit geometry representation preserve
spatial coherence, this module is responsible for integrating the new appearance
information in a temporally coherent way. Without temporal coherence, a new
observation could overwrite old states minimizing the reprojection error for the
current frame while erasing valuable prior information. The inverse projection
module I~ integrates the updated feature map F} into the representation S;_1

to produce the new state S;. For efficiency reasons, only texel values V7,1 €
kH,EW

Ui

sub-pixels are updated using the following moving average scheme:

Tf_;l and their weights w;_; that were intersected by at least one of the

KH.EW 3¢
1 n i ij frea €T
Tt = 7 | Tt-1Wt-1 CH. W)
wi—1+1 ’
-1t Zi,j HthleTfj’l
Wy = wt_1—|—1, (62)

where [is an indicator function being one, if F is true, and zero otherwise. The
texel weights are initialized to wg = 0.

The new state S; is optimally computed in 2D space without interrupting the
gradient flow. This way, the scene is seamlessly stored in RAM or disk and can
only be partially loaded and updated, which is crucial for scalability.

6.2.4 Appearance Rendering Module

In a first step, this module extracts compressed scene content .S; using 11
and embeds these features into a higher dimensional space via a transposed

linear compressor (Feature Decompression W) which acts as a regularizer. Pre-

92

Learning-based Appearance Fusion

computed meta features M,_, are optionally concatenated and all features are
downsampled by a custom masked average pooling with a stride of k£ and k x k
kernel size, where the mask indicates which features to ignore (features that are
empty or located outside the scene space). The current H x W resolution feature
map is passed through the seven-layer convolutional Rendering Network refining
features and filling potential holes that occur when the scene representation is
sparsely populated. Lastly, the high-level features are decoded to RGB values
by (Feature Decoder) three linear layers interleaved with Leaky ReLU activation
functions. The final output is activated using HardTanh activation for generating

valid normalized RGB values.

6.2.5 Loss and Optimization

The entire pipeline is trained end-to-end from scratch until convergence using
the reprojection error between the rendered image I, and input image I; as self-
supervision. Thus, the network can learn to optimally fuse and encode appearance
information from 2D training data without any ground-truth textures. Our pipeline
is trained using a weighted combination of £, and £ loss between input image

I and rendered image I, given by

. 1 " 1 .
L1y, Iy) = > llp =2l + 510 = Bll2 (6.3)

- C-H-W 3

pel;,pely
We empirically found thata 1 : % weight ratio worked best in our experiments.
The entire pipeline has less than 0.6M parameters and was optimized using the
Adam optimizer [Kingma and Ba, 2015] with a learning rate of 10~* and batch

size 1, except for the generalization experiment, where we used 2.

6.3 Evaluation

We evaluate our method by comparing the representation power of both, our
learned and our deterministic approach (direct rendering from RGB surfels) with

state-of-the-art methods on novel view synthesis tasks. We further demonstrate

93

3D Reconstruction

Ours
GT Ours Deterministic
[Fu et al., 2018b]
PSNR? / SSIM*: 32.94/0.950 29.44/0.889 32.14/0.912
PSNR? / SSIM*: 35.42/0.966 32.03/0.958 27.23/0.835

Texture
Fields
[Oechsle et al., 2019]

27.99/0.856

27.8070.841

TSDF
Coloring
[Seitz and Dyer, 1999]

24.89/0.621

27.37/0.810

[Waechter et al., 2014]

18.52/0.631

16.24/0.370

Surfel-
Meshing
[Schops et al., 2019]

9.928/0.510

12.3170.458

Figure 6.4: Qualitative and quantitative comparison on novel view synthesis with DeepSurfels on a 128% sparse grid with learned
3-channel 4 x 4 feature patches. The experiment demonstrates that our scene representation is able to better represent high-frequency
textures compared to other state-of-the-art methods. "Ours deterministic” shows direct rendering from RGB surfel patches. Please note
that SurfelMeshing [Schops et al., 2019] is the only method in this comparison which also estimates geometry while the other methods

use known geometry.

94

Learning-based Appearance Fusion

how our method generalizes to different scenes for a small number of distinct
training samples and provide an ablation study to validate the design choices for

our model.

6.3.1 Datasets

We conduct experiments on datasets generated from Shapenet [Chang et al.,
2015], publicly available human and cat' models, the indoor Replica dataset [Straub
et al., 2019], and the cube scene from [Sitzmann et al., 2019a]. Replica dataset
images were rendered with Habitat-Sim [Savva et al., 2019] and all other models
with Blender [Community, 2020].

6.3.2 Maetrics

We quantify model performances with the following two metrics [Wang et al.,
2004].
PSNR. The Peak Signal-to-Noise Ratio (PSNR) is the ratio between the maximum
pixel value in the ground-truth image and the pixel-wise mean-squared error
between ground-truth and rendered image.
SSIM. The Structural Similarity Index (SSIM)s measures similarity between
patches of rendered and ground-truth images. We omit other perceptron based
metrics because we are interested in recovering the true pixel value as our fusion

approach can be used for more general types of data.

6.3.3 Novel View Synthesis

The model is optimized on 500 randomly rendered 512 x 512 training im-
ages for the cat and human model and the results for a single unseen frontal
viewpoint® are compared with state-of-the-art batch-based methods (Fu et al. [Fu
et al., 2018b], Texture Fields [Oechsle et al., 2019], Waechter et al. [Waechter
et al., 2014]), and online methods (SurfelMeshing [Schops et al., 2019], TSDF
Coloring [Curless and Levoy, 1996a]) on a 1283 grid. The results in Figure 6.4

13D models from free3d.comand turbosquid. com.
2For a fair comparison with the results of Texture Fields [Oechsle et al., 2019].

95

free3d.com
turbosquid.com

3D Reconstruction

demonstrate that our approach compares favorably even to slower batch-based
methods in representing high-frequency textures. Figure 6.7 further shows that our
approach does not suffer from blurry artifacts as the recently proposed SRNs [Sitz-
mann et al., 2019b], or from multi-view consistency issues like DeepVoxels [Sitz-
mann et al., 2019a]. Note that these approaches jointly estimate geometry and
appearance while we only estimate appearance. Table 6.2 shows the effect of
varying the number of channels on the cube dataset for DeepSurfels of 4 x 4

patches on a 643 sparse grid.

6.3.4 Generalization

Our pipeline scales and generalizes well on realistic room-size scenes. We
trained our pipeline on 288 480 x 640 images of one Replica [Straub et al., 2019]
room represented with DeepSurfels of 11cm voxel size with (3+3)-channel 6 x 6
resolution patches. We disentangled 3 color channels to improve generalization.
The pipeline evaluation is performed on every 25th unseen frame in a sequence
of frames generated by a moving agent in the Habitat Sim [Savva et al., 2019].
Figure 6.5 shows results of our trained pipeline on an optimized (left) and a
non-optimized (right) scene. Our learned approach outperforms baselines in

representing fine details.
We further demonstrate that our pipeline generalizes well when trained on a

larger set of distinct scenes. We render 100 312 x 312 training images from 150
Shapenet [Chang et al., 2015] car scenes and test the pipeline on 50 unseen scenes
by fusing 100 views and evaluating results on additional 60 unseen viewpoints.
The whole pipeline is trained to be frame order independent by randomly shuffling
scenes and frames after each optimization step. Results on test scenes (Figure 6.6,
Table 6.1) indicate that our learned approach improves for discretization artifacts
and overall yields sharper results which are supported by higher PSNR and SSIM

SCOres.

6.3.5 Ablation Studies

For the unobserved test car scenes, we quantify in Table 6.1 the impact of: (i)

depth as a meta feature that helps our method to reason about the confidence of

96

Learning-based Appearance Fusion

updates since pixels with larger depth values are less important; (ii) multi-view
consistency regularization that corrects for geometric misalignments and improves
interpolation among neighboring viewpoints by adding an additional error signal
(6.3) for a viewpoint closest to the fused frame; (iii) pixel ray directions with
surface orientation map to improve reasoning about light information and non-
Lambertian surfaces; (iv) DeepSurfel parameters (grid and patch resolution). For
almost all experiments use 3 feature and 3 disentangled color channels (denoted
as 3+3 in Table 6.1) which outperforms the baselines. We observe that every
attribute (i-iii) improves generalization and that higher DeepSurfel resolution (iv)
consistently benefits reconstruction quality. (v) Lastly, we demonstrate the benefit
of explicitly modeling the reprojection of pixel colors via texels which can be
seen as subfeatures of a large feature vector stored in every voxel. We compare
the proposed 6 x 6 patches, 3+3 channels to 1 x 1 patches, 213+3 channels which
amounts to the same number of features per voxel. We argue that the benefit of
using more features per voxel quickly saturates unless subfeatures are anchored

along the surface and trained with separate pixel data as supported by our results.

6.3.6 Real-world data

In Fig. 6.8 we present results on unseen real-world data from [Maier et al.,

2017b] for which our method yields the most detailed appearance reconstructions.

6.3.7 Runtime

Our method takes 57ms and 21ms for fusing and rendering a single 312 x 312
frame on 323 DeepSurfels with 6-channel patches with resolution 6 x 6 (Table 6.1).
This is significantly faster compared to other deep learning methods that overfit on
a single scene. For example, the state-of-the-art method NeRF [Mildenhall et al.,
2020a] requires ~ 2 days for training on a single scene being unable to generalize
to other scenes, while our method can easily be used on unseen scenes without
any optimization as demonstrated in Figure 6.5, which is a speed up of over a

thousand times on unobserved scenes for comparable or even favorable results.

97

3D Reconstruction

6.4 Discussion

6.4.1 Limitations

One of the main limitations of the proposed methods is the assumption of
known geometry. We assume that the geometry is given as a signed distance field
that can be created from previously proposed fusion methods RoutedFusion and
NeuralFusion or standard TSDF fusion [Curless and Levoy, 1996a]. This signed
distance field is used to align the proposed DeepSurfel architecture. Because of
this assumption, the underlying geometry is fixed and cannot be changed. This
fixation makes our proposed method suffer from camera-geometry misalignment
that can lead to blurry results as it is the case for standard TSDF Coloring. A
joint reconstruction of geometry and appearance would allow us to alleviate the
sensitivity to these misalignments by adjusting the geometry on the fly.

A second limitation in order is the lack of modeling view-dependent effects.
This leads to washed-out colors due to the local feature averaging. Integrating
the view-dependency into the model would allow us to generate higher quality
renderings similar to neural radiance fields [Mildenhall et al., 2020a].

The final limitation is given by the limited training data. As we require
known geometry, we suffer from the same limitation as the previously presented
reconstruction algorithms. However, this limitation is exacerbated by the fact that
we also map appearance into learned features. In order to learn this mapping much
more training data is required compared to the geometric case to generalize to
any test scenario. As we do not have enough training data available, our method
sometimes suffers from distorted colors as the model has not seen the correct color

during training and cannot represent it.

6.4.2 Summary

We introduced DeepSurfels in this chapter, a novel scene representation for
geometry and appearance encoding, that combines explicit and implicit scene
representation to improve for scalability and interpretability. It is defined on a

sparse voxel grid to maintain topology relations and implements 2D geometry

98

Learning-based Appearance Fusion

oriented patches to store high-frequency appearance information. We further
presented a learned approach for online appearance fusion that compares favorably
to existing offline and online texture mapping methods since it learns to correct

for typical noise and discretization artifacts.
As future work we consider the joint online fusion of shape and appearance

and address some weaknesses of our appearance fusion pipeline such as the
limitation in filling large missing parts and rendering translucent surfaces.

99

3D Reconstruction

d::._._

A RR R

PSNR/SSIM 32.63/0912 33.15/0.891 31.42/0.888 25.11/0.766 mmzm\mm:s 34.03/0.924 33.39/0.917 33.13/0.911 27.58/0.818

O:_.m nmnmﬂn_:_mn_a

NeRF Ours deterministic TSDF Coloring

l[l[:

Figure 6.5: Novel view synthesis for Replica [Straub et al., 2019] indoor scenes. The figure shows different views on two scenes (left
and right). Our learned approach has been trained only on the room on the left. NeRF [Mildenhall et al., 2020a] is optimized separately

on both scenes.

100

Learning-based Appearance Fusion

's1oBJIIE
UOIJBZIQIOSIP J921109 0] [NJasn A[Te[noned S1 S[oxa) AU UT SAINJBIJ pautes] 3uliols ‘sdn 9so[d oy} Ul umoys ST 1 sy s[relop Aouanbaiy-ysiy
a1ow Apjueoyrusis sppaIk pus g¢ osreds v uo sayojed 9 x 9 [oUURYD-(¢+¢) PouIed] YIM s[eIngdes ‘senfeA gOY WO SuLepudl
onsIUIIUIRAP 0) paredwo) *[STOZ “I& 32 Suey)] JONIdeyS WOIJ SIUIIS UIIASUN U0 [JPOUL .INO JO S)[NSAI dAneend) :9°9 InsLy

sanQ sanQ sinQ sinQ

- L0t

JisIuIwILlLp sanQ JNISIUIULIv}dP SaInQ JnSsIuIuIalap sanQ J[ISIUIWIL}Lp sanQ

101

3D Reconstruction

GT Ours SRN
[Sitzmann et al., 2019b]

ABCDEFGHIJKLM ABCDEFGHIJKLM ABCDEFGHIJKLM
NOPQRSTUVWXYZ NOPQRSTUVWXYZ NOPQRSTUVWXYZ
ABCDEFGHIJKLM ABCDEFGHIJKLM ABCDEFCHIJEKLM
NOPQRSTUVWXYZ NOPQRSTUVWXYZ NCPQRSTUVWXYZ
ABCDEFGHIJKLM ABCDEFGHIJKLM ARCDEFCEIJKLM
NOPQRSTUVWXYZ NOPQRSTUVWXYZ NCPQARSTIVWXYZ
ABCDEFGHIJKLM ABCDEFGHIJKLM AR TDLFo=_JKLM
NOPQRSTUVWXYZ NOPQRSTUVWXYZ NComT— wxXYZ
ABCDEFGHIJKLM ABCDEFGHIJKLM ABC=—_ ¥IM

PSNR? / SSIM1: 22.19/0.93 16.74 /0.65
GT Ours DeepVoxels
[Sitzmann et al., 2019a]

PSNR* / SSIM1: 22.54/0.91 20.12/0.84

Figure 6.7: Comparison of SRNs [Sitzmann et al., 2019b] and DeepVoxels [Sitzmann
et al., 2019a] to our learned DeepSurfel fusion with a 64° grid of 8-channel 1 x 1 resolution
feature patches on the synthetic cube dataset from [Sitzmann et al., 2019a]. Our method
produces fewer blur artifacts and multi-view inconsistencies and overall yields significantly
better images reconstruction results than both baselines. Note that both baselines perform
global appearance fusion with unknown geometry.

102

Learning-based Appearance Fusion

Table 6.1: Ablation study on ShapeNet [Chang et al., 2015] cars. The top part of the
table compares various baselines. Our deterministic coloring at 32° is still better than
TSDF Coloring at 1283 resolution. The mid part shows the impact of the proposed
losses. The bottom part shows the influence of the voxel grid, surfel patch and channel
resolution, demonstrating that quality improvements saturate for higher resolutions. 3+3
denotes 3 feature and 3 color channels (disentangled) per texel. We also compare to 1x1
patches with 21343 channels corresponding to the same number of features as for 6x6,
3+3, demonstrating the benefit of a spatial sub-feature alignment in our network.

Method PSNR1 SSIM?1
SurfelMeshing [Schops et al., 2019] 13.92 0.2748
‘Waechter et al. [Waechter et al., 2014] 18.27 0.4753
«» Fuetal. [Fuetal., 2018b] 18.84 0.5196

o

.£ TSDF Coloring [Curless and Levoy, 1996a] (32%) 21.57 0.6375

[}

3 TSDF Coloring [Curless and Levoy, 1996a] (643) 24.05 0.7552
TSDF Coloring [Curless and Levoy, 1996a] (1283) 26.68 0.8526

Ours Det. (322, 6x6, 3) 27.20 0.8723
Ours Det. (642, 4x4, 3) 28.73 0.9036
Learned (322, 6x6, 3+3) 28.27 0.8777
&+ depth 2831 0.8782
§+mum-view consist. 2836 0.8889
<+ viewing direction &
surface orientation 28.89 0.8907
323, 1x1, 213+3 2295 0.7083
£ 647, 1x1,21343 25.41 0.7940
S 645, 4x4,343 29.92 0.9086
£ 642, 5x5,343 30.15 0.9126
E, 643, 6x6, 343 30.27 0.9147
2128°, 1x1, 21343 26.75 0.8324
81283, 2x2, 343 3023 09133
P 1283, 3x3, 343 30.51 0.9181
1282, 4x4, 3+3 30.60 0.9196
1283, 5x5, 3+3 30.63 0.9200
1283, 6x6, 3+3 30.64 0.9202

Table 6.2: Varying number of feature channels for the cube [Sitzmann et al., 2019a]
dataset on 643 sparse grid with 4 x 4 patches. Additional feature channels improve the
reconstruction quality.

#Channels PSNRT SSIMT

2 25.95 0.9432
4 26.72 0.9506
6 27.33 0.9568
10 28.27 0.9638

103

3D Reconstruction

Training scene (Lion) Evaluation scenes (Gate, Bricks)

Coloring

Figure 6.8: Novel-view synthesis on unseen real-world data [Maier et al., 2017b]. Our
DeepSurfel method with 4 x 4 patches is trained on the Lion scene for 80 training iterations
and then evaluated on the Gate and the Bricks scenes. The images show novel viewpoints.

104

Part I11

3D Scene Understanding

105

Chapter 7

Introduction

Humans possess both a spatial model and understanding of our environment.
A spatial model is not worth much without understanding. The model, i.e. a
mental map of the world, is only a pre-condition for interacting with it. In order
to solve complex problems and accomplish our goals, we also need to have some
form of understanding. Where are the chairs I want to rearrange before my friends
come over for dinner? And where do I place the cutlery? On the chair or on the
table? It is not sufficient to only know the geometry of the objects around us to
answer these questions.

Imagine stepping into a room and instantly knowing its purpose, the objects
within it, and how they relate to each other. E.g., we recognize not just a chair,
but understand its function, its potential interactions, and its place in the greater
context of the space. This is the power of 3D scene understanding. What does it
mean to truly "understand" a 3D scene? Is it merely recognizing our surroundings,
like identifying we are in a kitchen versus a living room? Or is it deeper than that
— discerning the function of each object, anticipating how they might interact, and
predicting what we can do within that environment?

Understanding our surroundings occurs on various hierarchical levels. At the
top level, we discern the type of building or environment we are in — whether it is a
house, an office, or a public space. Within this context, we can further differentiate
between specific rooms like a living room, bedroom, kitchen, or bathroom. Yet,
as we dive deeper into lower levels, our understanding shifts to individual objects

within these rooms. We begin to recognize chairs, tables, cups, and countless

107

3D Scene Understanding

other items that give context to the space. Further refinement can even allow us to
distinguish exact boundaries between objects. This might be delineating objects
of different categories, known as semantic segmentation, or even demarcating
instances of the same category, termed instance segmentation. However, this
hierarchical understanding is not a one way street; there is an intricate interplay
among the levels. Recognizing the purpose of a room often is based on identifying
its constituent objects. The presence of a table and a chair might suggest a living
room. But context is paramount: in my kitchen, for example, both a chair and a

table coexist.

So, how can enable machines with these capabilities? Since the early days
of computer vision, understanding has been one of its central fields of research.
We will give a review of the background and all relevant related work in the next
chapter. In general understanding is driven by the advances in deep learning over
the last decade.

For machines and general agents interacting with the world, understand-
ing capabilities mirror the intrinsic cognitive functions humans possess. This
understanding aids in planning, navigation, and interaction; think of a robotic
vacuum cleaner discerning its way to a kitchen to cleanse the floor. The realms of
Augmented Reality and Virtual Reality further amplify the importance of such
understanding. Here, information and content tailored for the user’s gaze need
precise contextual alignment. Imagine the dissonance of seeing a virtual chair
placed atop a real table; it belongs beside it. In mixed reality tools designed
for field workers, the significance of correctly positioned information becomes
even more paramount. When a worker’s viewpoint gets cluttered by misplaced
or irrelevant details, the application can range from being merely ineffective to
downright dangerous. Hence, for these diverse applications, the crux lies in the

machine’s ability to understand its environment.

In this thesis, we delve deep into the intricacies of 3D scene understanding,
focusing primarily on two pivotal questions. The initial query centers on the
efficient acquisition of large-scale labels, vital for both training and evaluating 3D
scene understanding techniques. The subsequent question dives into the realm of

online semantic mapping of our surroundings. As agents traverse and engage with

108

Introduction

their environment, their comprehension of it must continually evolve. Drawing
parallels with our earlier discussions on 3D reconstruction, we posit that the
majority of semantic mapping applications necessitate real-time, online processing.
This is especially pertinent when considering their deployment on agents and
devices actively navigating and mingling with their surroundings. Consequently,
we enhance the methods formerly introduced, steering them towards online 3D
scene comprehension. In this endeavor, we probe into the synergistic use of 2D

and 3D data, harnessing the power of innovative neural network frameworks.
This part is structured as following. In the next chapter, we will provide all

necessary background information that is required to understand this part’s context.
Then, we will discuss our work on improving datasets for 3D scene understanding
without any human intervention. Finally, we will discuss our work on enabling

online semantic 3D reconstruction using a spatio-temporal attention mechanism.

109

3D Scene Understanding

110

Chapter 8

Background

8.1 Overview about Scene Understanding

As motivated above, understanding the world around us is crucial for many
tasks. Thus, it has been one of the main goals to replicate this capability in
machines since the advent of artificial intelligence and more specifically computer
vision.

Scene understanding consists of different subtasks that address different levels
on the hierarchy of understanding. While we mostly focus on 3D semantic
segmentation in this thesis, we will give an initial review of the different levels
and their evolution through the past three decades. We will start with the most
high-level task of recognition and then move towards segmentation at the bottom

of the hierarchy of understanding, which is the main focus of this thesis.

8.1.1 Recognition

Recognition is an overall term for scene understanding and its application in
computer vision. Originally, it mainly involved classifying images and detecting
known objects in images. The results were usually either per image labels or
bounding boxes around the recognized objects. As mentioned above, recognition is
a mid- to high-level understanding task. There were two main approaches in early
works. Feature-based methods extract hand-crafted features from image regions

and use subsequent matching [Lowe, 2004] or classification [Viola and Jones,

111

3D Scene Understanding

2001, Dalal and Triggs, 2005]. For these works, the main focus was on exploring
different types of features and classifiers to improve the detection performance.
With the advent of deep learning, this field also received a boost in performance.
Methods leveraging neural networks, like the R-CNN line of work [Girshick et al.,
2014, Girshick, 2015, Ren et al., 2015], improved the performance significantly.
Alternatively, YOLO [Redmon et al., 2016] or SSD [Liu et al., 2016] networks
are popular alternatives with a fast runtime and good detection performance that
are used in many applications. In recent years, the performance increase, in both
accuracy and runtime, can be mostly attributed to an increase in dataset size
and various backbones such as more powerful transformer-based backbones [Li
et al., 2022b] or decoders [Carion et al., 2020, Zhu et al., 2020] or more efficient
backbones [Howard et al., 2017] While mid-level recognition is a powerful tool,
in this thesis we are interest in low-level understanding namely segmentation. We

will therefore go through the history of this application next

8.1.2 Image Segmentation

In parallel to the efforts in recognition, the problem of segmenting images into
groups of pixels has been extensively explored. While understanding was limited
as most methods did not attach a specific label to these groups, these methods
were a pre-condition for later semantic segmentation. The first approaches to
understanding images on a pixel level, were all based on the following principle.
1) Measure the affinity or similarity between pixels, 2) build a cost function
from these similarities, 3) minimize the cost function to find a solution to the
grouping the pixels in to separate segments. The main focus of early works usually
considered one or more of these three stages. In general, they can be separate in
clustering-based and graph-based approaches. Clustering-based approaches [Tou
and Gonzalez, 1974, Coleman and Andrews, 1979] extract features from images,
or use the raw color data, and group these features into clusters using a similarity
measure. One can differentiate between parametric algorithms such k-means
clustering [Tou and Gonzalez, 1974] as that require a-priori knowledge of the
number of segments and non-parametric that do not require a fixed number of

clusters with Mean Shift [Comaniciu and Meer, 2002] being the most prominent

112

Background

member of this group. Alternatively, graph-based methods [Wu and Leahy, 1993,
Shi and Malik, 2000, Felzenszwalb and Huttenlocher, 2004] approach the problem
from a graph theoretic perspective. They build an undirected graph from the data,
construct a cost function, and optimize the cost function to find an optimal solution
to the segmentation problem. Most progress has been focused on proposing better
cost functions that includes finding priors and regularization terms improving the
results [Shi and Malik, 2000, Rother et al., 2004, Yu and Shi, 2004, Arbelaez
et al., 2010]. Yet, all this methods only considered grouping low-level pixels into
segments and these methods did not provide any understanding of the scene by

classifying the objects into classes.

8.1.3 Semantic Segmentation

So far, image segmentation and image recognition have been treated as two
distinct tasks. Ie., grouping pixels of a segment into segments or recognize
objects in an image. Semantic segmentation bridges this gap by assigning a
category to each segment. Thus, we obtain a low-level understanding of the
scene. The first approaches were based on techniques that were already used in
recognition. Top-down approaches matched object templates to image regions
and measure agreement [Borenstein and Ullman, 2002]. If an agreement is
found, the segment is classified as the recognized object. Then, people started
to integrate top-down approaches into bottom-up grouping methods. Ie., they
proposed ways to combine different priors in the cost function that connect the low-
level grouping with higher-level understanding [Yu et al., 2002]. Then, the deep
learning revolution happened and the entire field turned upside down. Almost
over night, the performance received a significant boost by neural networks.
[Long et al., 2015] proposed to use fully convolutional networks for semantic
segmentation. They showed that convolutional neural networks can be trained
end-to-end with pixel supervision and their performance exceeds state-of-the-art.
An impactful follow-up was U-Net [Ronneberger et al., 2015] that introduced
skip connections and to date is the backbone of many applications in 2D and 3D.
Afterwards, the performance has been mostly boosted by architectural changes

that are oftentimes specifically adapted to a use-case such as autonomous driving

113

3D Scene Understanding

or indoor segmentation, or increased size of datasets for large scale training [Zhou
et al., 2017]. E.g., DeepLab [Chen et al., 2017a] proposed to leverage atrous
convolutions in order to increase the receptive field and avoid too much signal
downsampling for semantic segmentation. More recently, one major remaining
problem has been addressed by coupling semantic segmentation with language.
The main problem with semantic segmentation still is that most methods and
datasets group the world in a fixed number of classes. While for very specific
use cases this might be sufficient, the world has not a fixed number of object
categories. Categories do change given the context and the environment your in.
Moreover, semantic categories are oftentimes ambiguous and different people
use different names for the same class (even when using the same language).
Hence, works like [Ghiasi et al., 2022, Li et al., 2022a, Liang et al., 2023] coupled
large language models with semantic segmentation models to couple the tasks
and address this challenge. Alternatively, Internlmage [Wang et al., 2022b] draws
inspiration from recent large-scale vision models [Dosovitskiy et al., 2020] and
trains large-scale CNNss for the task of semantic segmentation showing the benefit

of large-scale pre-training.

8.1.4 3D Semantic Segmentation

However, in this work we are mostly interested in 3D scene understanding.
In this task instead of grouping pixels, we group voxels, points, vertices or other
geometric primitives into segments and classify them. With the rise of 3D datasets,
this task became more and more popular in the community. The first approaches
mostly focused building a 3D cost function and find its optimum [Vineet et al.,
2015, Valentin et al., 2013, Héne et al., 2013, Cherabier et al., 2016] or map
2D predictions into 3D [Sengupta et al., 2013]. However, techniques that learn
the task from data have been proven to be more effective. This required the
creation of semantically annotated 3D datasets, which we will discuss in the next
section. Once these datasets have been established, algorithmic advances could
be made. Initial progress was made on point clouds and voxels as they offered
ease of processing with neural networks by either using linear layers [Qi et al.,
2017a, Qi et al., 2017b] or 3D convolutions [Dai and Niefiner, 2018]. One major

114

Background

breakthrough was the proposal of sparse convolutions for 3D processing [Graham
et al., 2018, Choy et al., 2019a]. This significantly improved efficiency in both
training and inference. Moreover, a significant improvement was made by boosting
data augmentation during training [Nekrasov et al., 2021]. Most recently, 3D
semantic segmentation got coupled with large language models [Peng et al.,
2023, RozenberszKki et al., 2022].

8.2 Datasets for Scene Understanding

So far, we have ignored one key ingredient for the rapid advance of the
field in the last decade. Datasets for scene understanding have been crucial
since the inception of the field. While in the very early days it was sufficient
to show that a proposed method works on a few images, systematic evaluation
on benchmarks was a main driver for progress in the last decades. One of the
first successful attempts to establish a benchmark was [Everingham et al., 2010]
This allowed to quantitatively compare different methods on a variety of images
advancing the progress in the field. With the advent of machine learning in the
field, datasets became not only essential for evaluation but also for training models
that understand the world. This led to a huge increase of the number of datasets

available for training and evaluation.

8.2.1 2D Datasets

Early datasets were all 2D due to a lack of 3D sensing technology. The first
datasets mainly consisted of images containing a single object [Fei-Fei et al.,
2006, Griffin et al., 2007]. This was ultimately scaled by ImageNet [Deng et al.,
2009] the data backbone of many neural networks to date. For a long time, most
datasets were designed for a specific use-case or application. LabelMe [Russell
et al., 2008] provided in addition to images annotated with bounding polygons
a convenient web-based labeling tool. As already mentioned, one of the first
standard benchmark datasets for object detection was [Everingham et al., 2010].
It provides a dataset and a corresponding benchmark for originally 500k images

with 20 annotated object classes. The next step in scale and annotation quality

115

3D Scene Understanding

was Microsoft COCO [Lin et al., 2014]. It provides one of the first datasets that
tackle the challenge of semantic instance segmentation. Further, there are several
more specific datasets for different domains in the last years. Cityscapes [Cordts
et al., 2016] is one of the most established 2D semantic segmentation datasets
focusing on autonomous driving. Similar frame-by-frame manual annotations
were provided in NYU Depth [Silberman et al., 2012], ADE20k [Zhou et al., 2017],
or COCO-stuff [Caesar et al., 2018]. While frame-by-frame annotations yield
very high quality segmentation masks, they are expensive to obtain. Although
the effort can be reduced through comfortable annotation tools [labelme github
contributors, , Bréhéret, 2017], it cannot be avoided that a human inspects every
image and performs at least a couple of clicks.

8.2.2 3D Datasets

With the commodization of 3D sensing technology 3D scene understanding
datasets came into reach. Early 3D datasets for scene understanding [Nathan Sil-
berman and Fergus, 2012, Song et al., 2015, Xiao et al., 2013] provided RGB-D
sequences with semantic annotations. Yet, their scale was limited, the camera
poses not available for all frames, and the full 3D reconstruction and dense an-
notations were not always provided. The first large 3D scene understanding
datasets got proposed by [Hua et al., 2016], [Dai et al., 2017a], and [Armeni et al.,
2016]. [Armeni et al., 2016] provides 3D pointclouds together with semantic
annotations. [Dai et al., 2017a] and [Hua et al., 2016] also provide annotated 3D
meshes that are associated with RGB-D scans. They additionally provide instance
annotations and established a popular benchmark for 2D and 3D semantic instance
segmentation. More recently, with the integration of 3D sensing technology in
consumer products, more datasets have been collected that are closer to real-world
applications. [Johanna Wald, 2019] offers semantic instance labels in changing
environments, i.e., they re-scan the same room after some time to capture dynamic
changes. ARKitScenes [Baruch et al., 2021b] is a large-scale indoor datasets
for different tasks. It leverages the ARKit [Apple, 2017] framework provided in
Apple products to get odometry and RGB-D data. This data is accompanied with
high-resolution laser scans. While there are some annotations, they are sparse

116

Background

and not complete. Thus, it does not fulfill its complete potential. An even newer
indoor dataset is MultiScan [Mao et al., 2022] that not only annotated 3D scans
with posed RGB-D trajectories but also provides scene dynamics.

An entire line of datasets [Chang et al., 2017, Xia et al., 2018, Straub et al.,
2019] has been integrated into the Habitat Al environment [Savva et al., 2019].
They all offer easy access semantic object annotations. Habitat Al can be used
to render trajectories from these datasets. Nevertheless, the quality of the gen-
erated data often falls short in comparison to scanned datasets, primarily due to

underlying issues in the scanning methodology and mesh reconstruction.

8.2.3 Annotating Datasets for Scene Understanding

If scenes are annotated in 3D, their annotations can easily be rendered into
any localized camera image in the same scene, therefore potentially reducing 2D
labeling effort. This approach was followed in Replica [Straub et al., 2019] and
ScanNet [Dai et al., 2017a]. iLabel [Zhi et al., 2021b] pioneered to use neural ra-
diance fields (NeRFs) for this type of rendering, additionally showing that NeRFs
have an intrinsic capability to segment whole objects along texture boundaries
from a few clicks. Similarly, [Kontogianni et al., 2023] also reduces the manual
labeling effort to a few positive and negative clicks per object. Matterport [Chang
et al., 2017] consists of large labeled 3D scans, but does not have corresponding
2D images and therefore can only be used for 3D methods.

Yet, to leverage the full power of large neural networks for 3D scene under-
standing, large-scale 3D datasets with dense annotations are required. These
annotations are costly to obtain if human labor is needed and oftentimes suffer
from issues in label quality. Hence, we present a fully automatic labeling pipeline
for RGB-D trajectories to generate both 2D and 3D labels of scenes for training

and evaluation in chapter 9 of this thesis.

8.3 3D Semantic Segmentation

Given the focus of this thesis, we review 3D scene understanding in more

detail and pay special attention to online processing for 3D scene understanding

117

3D Scene Understanding

as - similarly do 3D reconstruction - agents usually consume a stream of data for
this task.

8.3.1 Offline vs. Online Processing.

3D semantic segmentation can be split into two separate design principles.
The first principle follows an offline design while the second follows an online
design.
Offline Methods. Offline methods require an a-priori reconstruction of the scene.
This model can be reconstructed from images or 3D measurements and be stored
in one of the common 3D representations such as point clouds, triangle meshes,
or voxel grids. Moreover, the color and sometimes surface normals are usually
required as input to the offline model. Hence, these features are stored in the points,
voxels, or vertices. The offline method takes the model as its input and predicts a
semantic label for each point, voxel, or vertex. A benefit of offline methods is their
large receptive field that is advantageous for semantic segmentation as it helps
to incorporate high-level context into the labeling decision. Yet, this comes at
the cost of increased runtime and memory footprint, which make offline methods
difficult to directly apply to real-time applications on mobile devices.
Online methods. In contrast to offline methods, online methods do not require
an a-priori reconstruction of the scene. They jointly reconstruct the geometric and
semantic map using a online mapping mechanism such as TSDF fusion [Curless
and Levoy, 1996a, Newcombe et al., 2011a], RoutedFusion, or NeuralFusion.
They consume RGB(-D) measurements and take these as an input to predict
semantic labels for every point in the scene. Many methods predict semantic
labels in 2D and map these into 3D, where they are potentially refined. We will
review these methods in the next section. While the online design is adapted
to real-time applications, it is challenging to incorporate required context for
semantic segmentation available in offline methods.

We first review prior work on offfine semantic segmentation and then look
at existing online methods in the context of incrementally building semantic 3D

maps.

118

Background

8.3.2 Offline 3D Semantic Segmentation

Offline 3D semantic segmentation is the problem of assigning a class label to
each point, voxel, or vertex given a reconstruction of the 3D scene. It is central to
many applications and pipelines that require some form of understanding. In recent
years, many different methods tackled this problem. Semantic Stixels [Schneider
et al., 2016] predict 2D semantic labeling and stereo depth maps that are aggre-
gated in a 3D stixel representation. While this representation can be sufficient
for outdoor applications, it lacks representation power for indoor applications.
[Graham et al., 2018] proposed sparse sub-manifold convolutions to improve
efficiency for 3D semantic segmentation. This has been extended by [Choy et al.,
2019b] into a complete framework for sparse 3D neural networks and it has been
established as the backbone of many 3D semantic segmentation methods to date.
Kundu et al. [Kundu et al., 2020] address the problem of lack of context in the
2D views by rendering views from an already reconstructed mesh to have a larger
field-of-view that improves the performance of 2D semantic segmentation. The
predictions are afterwards aggregated again on the 3D mesh. As this approach is
dependent on an already reconstructed mesh, it is not suitable for an online fusion
approach. Atlas [Murez et al., 2020] jointly reconstructs a semantic and geometric
map from visual inputs by learning multi-view fusion. As this approach needs to
aggregate dense viewing frustums to solve the multi-view stereo problem, it is
not suitable for fast online updates. SemanticNeRF [Zhi et al., 2021b] proposes
the application of recently proposed neural radiance fields [Mildenhall et al.,
2020b] to the problem of 3D semantic segmentation. While this approach shows
impressive results, it is also not applicable to fast and accurate online updates of
a semantic map. Mix3D [Nekrasov et al., 2021] boosts the performance of 3D
segmentation methods by proposing a novel data augmentation technique that
combines different scenes. While this augmentation works for global methods, it
cannot be applied to online fusion systems since we jointly learn the fusion across
time and segmentation of the scene. BPNet [Hu et al., 2021a] couples 2D and 3D
predictions of scene labels by proposing a bi-directional projection module. This
boosts the performance on 3D semantic segmentation but is dependent on global

processing and a-priori scene reconstructions. VMNet [Hu et al., 2021b] combines

119

3D Scene Understanding

Euclidean and geodesic information to address the short-comings of voxel-only
approaches. Yet, it also requires global processing to unfold its full potential.
OccuSeg [Han et al., 2020] enhances supervoxel-based geometric segmentation
with learned features and refines them using graph-based clustering but requires
a global receptive field, which makes them unnecessarily expensive for online

processing.

8.3.3 Online 3D Semantic Segmentation.

In contrast to the previously mentioned offline approaches, online methods
iteratively process the scene making them better suitable to real-time applications,
where agents are interacting with their environment such as robotics or mixed
reality in unknown environments. As discussed before, there is a long line of work
aiming at the real-time reconstruction of geometry and appearance such as [Curless
and Levoy, 1996a, Newcombe et al., 201 1a], RoutedFusion, and NeuralFusion.
These works have been extended to scene understanding to enable agents with
understanding capabilities. The approaches [Vineet et al., 2015] and [McCormac
et al., 2017] proposed to fuse 2D semantic predictions into a global semantic
map that is refined using a conditional random field (CRF). This idea has been
extended by several works. SceneCode [Zhi et al., 2019] stores a per-keyframe
latent code encoding the semantic information of the scene that is optimized at
test time. Meanwhile, MaskFusion [Riinz et al., 2018] and Fusion++ [McCormac
et al., 2018] focus on 3D object segmentation while ignoring their semantic class.
ProgressiveFusion [Pham et al., 2019] improves efficiency by clustering voxels
into supervoxels and apply a CRF on that level. SemanticReconstruction [Jeon
et al., 2018] follows a similar approach as [McCormac et al., 2017], but shows
that their scene representation can be used for downstream tasks such as scene
completion and manipulation. PanopticFusion [Narita et al., 2019] estimates 3D
semantic instance maps by predicting 2D semantic and instance segmentation
using off-the-shelf networks, aggregates them in 3D, and also regularizes them
using a CRF. While these works leverage 2D processing in combination with
optimization-based 3D regularization, they all resort to traditional voxel fusion

and do not utilize trainable 3D neural networks. This shortcoming has been

120

Background

addressed in SVCNN [Huang et al., 2021b], which clusters voxels that store
explicit semantic information into supervoxels, and then processes them using a
special convolutional operator designed for supervoxels. However, [Huang et al.,
2021b] still resorts to an explicit fusion of 2D semantic information into voxels.
An alternative is FusionAware [Zhang et al., 2020] that represents scenes using
efficient point cloud representations and uses point-convolutions to aggregate
new information. More recently, [Liu et al., 2022b] presented an online method
predicting semantic instance maps using only 3D processing. Nevertheless, these

two works disregard useful 2D information.
In chapter 10 of this thesis, we address these limitations by a) combining

2D and 3D information in a temporal expert network leveraging both sources
of information, and b) applying a powerful yet lightweight 3D network on the

current viewing frustum.

121

3D Scene Understanding

122

Chapter 9
Automatic Annotation for 3D

Semantic Segmentation

As we have learned above, semantic perception is a central element of many
applications that interact with the world around us. Without semantic perception,
meaningful interaction with our environment is hardly possible. Thus, seman-
tic scene perception has been a long-standing problem in computer vision and
robotics. As reviewed above, most solutions have converged towards using deep
neural networks in recent years. However, training and evaluating these networks
is hard. As recent works such as SAM [Kirillov et al., 2023], language-based
models [Liang et al., 2023, Ghiasi et al., 2021], or Internlmage [Wang et al.,
2022b] have shown, huge quantities of training data, orders of magnitude larger
than any single existing research dataset, are necessary to achieve good general-
ization. On the other hand, generalization is necessary because the distribution of
the deployment environment - e.g. a particular user’s home, in which a robotic
application is to be deployed - is outside of the distribution of existing annotated
training datasets. To evaluate generalization in or adapt to specific deployment
environments, labeled data of these environments is necessary. From both training
and deployment perspectives, the availability of labeled data is therefore a key
problem. Unfortunately, the acquisition of this data is usually very expensive
as semantic groundtruth annotation is a time-consuming manual process. There-

fore, we propose a fully automatic method to obtain annotations for 3D scene

123

3D Scene Understanding

understanding in this chapter.

In particular, we focus on 3D semantic segmentation. The available scale of
3D semantic segmentation data such as ScanNet [Dai et al., 2017a] or Matter-
port3D [Chang et al., 2017] is far below the scale of 2D semantic segmentation
datasets like ADE20k [Zhou et al., 2017], COCO-stuff [Caesar et al., 2018], or oth-
ers [Silberman et al., 2012, Yu et al., 2020, Cordts et al., 2016]. Even tough tasks
such as semantic segmentation or online semantic reconstruction gain maturity
and are crucial for interactive applications, there is even less semantic data with
paired camera trajectories and corresponding scene reconstructions. ScanNet [Dai
et al., 2017a] is by far the largest in this domain with an abundance of scenes
and a well-established benchmark. However, both camera images and labels are
oftentimes noisy, making it hard to generalize from ScanNet to other datasets.
ARKitScenes [Baruch et al., 2021b] shows the growing possibility to capture
RGB-D trajectories at scale, and at the same time illustrates the cost of semantic
annotations. It provides RGB-D scans of several thousand rooms paired with
high-resolution laser scans providing accurate 3D geometry. Yet, the annotations
are extremely sparse. Instead of dense semantic annotations, ARKitScenes only

provides an incomplete list of bounding boxes.

To push the scale and accuracy of 3D semantic segmentation datasets, we
present LabelMaker in this chapter. LabelMaker automatically creates labels
that are on the same level of accuracy as the established ScanNet benchmark,
but without any human annotation. Further, we show that it can produce better
labels than the original ScanNet labels when using the human annotations as an

additional input.

The design of our method is motivated by two observations. The first ob-
servation is on recent advances in 2D semantic segmentation, where a leap in
training data scale through combination of different tasks and datasets [Wang et al.,
2022b] or visual-language models [Liang et al., 2023] has boosted generalization.
The second observation is in the field of neural radiance fields, where [Zhi et al.,
2021b, Liu et al., 2023, Siddiqui et al., 2023] have shown that NeRFs can be used
to denoise semantic input labels and learn a multi-view consistent semantic label
field.

124

Automatic Annotation for 3D Semantic Segmentation

We leverage these two observations and motivate an automatic labeling
pipeline with two main components at its heart. First, we leverage large 2D
models, that combine the power of different tasks and input modalities, in order to
predict different hypothesis for labels in 2D. These labels are aggregated using our
consensus voting mechanism in order to obtain a single 2D prediction for every
frame. Second, all 2D predictions are aggregated and made consistent using a
neural radiance field. This neural radiance field can be used to render clean and
consistent 2D label maps. Alternatively, the labels can be aggregated and mapped
into 3D to obtain labeled point clouds or meshes.

In an extensive comparison to state-of-the-art methods and datasets and an
detailed ablation studies, we showcase that our method automatically generates
labels of similar quality than human annotators. We also demonstrate fully

automatic labeling for ARKitScenes, for which no dense labels exist to date.
In summary, our main contributions in this chapter are the following:

* A curated mapping between the established indoor label sets NYU40, ADE20k,

ScanNet, Replica, as well as a mapping into the wordnet graph.

* A pipeline to automatically label trajectories of RGB-D sensors, as well as
corresponding 3D point clouds, that achieves higher quality than the original
labels of ScanNet.

* Generated labels in 3D meshes and 2D images for ScanNet [Dai et al., 2017a]
and ARKitScenes [Baruch et al., 2021b].

9.1 Method

We present an automatic labeling pipeline for RGB-D trajectories. This
requires obtaining automated labels using strong pre-trained models, aggregated

them in a unified label space, and fuse them into a globally consistent 3D model.

9.1.1 Base Models

Our aim is to build a fully automatic labeling pipeline to generate semantic

annotations for RGB-D trajectories. To this end, we somehow need to obtain

125

3D Scene Understanding

automatic semantic labels. Therefore, we employ an ensemble of strong base
models, each state-of-the-art in their respective task and data characteristic. We
use these models to predict a 2D semantic segmentation for each frame in the
trajectory.

InternImage [Wang et al., 2022b]. is a supervised 2D RGB-only semantic
segmentation model that at the time of writing has state-of-the-art performance
on the Cityscapes and ADE20k benchmarks. It proposes the use of dynamic
sparse kernels, deformable convolutions, to model long-range dependencies and
adaptively aggregate spatial information while still being compute and memory
efficient. Using this underlying operator, the overall network size is scaled to
one billion parameters. To fully leverage this capacity, the overall network is pre-
trained on 427 million images obtained from combining Laion-400M [Schuhmann
etal., 2021], YFCC-15M [Thomee et al., 2016], and CC12M [Changpinyo et al.,
2021] and fine-tuned on ADE20K [Zhou et al., 2017]. In this work, we use the
ADE20k fine-tuned variant.

OVSeg [Liang et al., 2023]. is an open-vocabulary semantic segmentation
model based on CLIP [Radford et al., 2021], a visual-language representation
model. OVSeg segments images by assigning region proposals to a set of given
prompts and is therefore not limited to a fixed set of classes. In particular, we
added such an open-vocabulary segmentation model not because they achieve the
best performance on a given task but because of their generalization ability. We
generate prompts from our set of wordnet synkeys discussed in the next section
by averaging over language prompts such as “A _ in a room.”, but also using all
possible synonyms according to wordnet.

CMX [Zhang et al., 2023b]. is at the time of writing the state-of-the-art
2D semantic segmentation model for NYU Depth v2, a RGB-D indoor dataset.
CMX unify multi-model semantic segmentation in a single framework. To this
end, the propose a cross-modal feature rectification module to better utilize the
complementary information in different models and a feature fusion module
combining the information extracted from the different modalities. In our work,

we use RGB and depth map as the two input modalities.

Mask3D [Schult et al., 2023]. is at the time of writing the state-of-the-art 3D

126

Automatic Annotation for 3D Semantic Segmentation

Label Space
Translation

Label Space
Translation

Figure 9.1: Label space translation. We created a curated mapping that allows to
translate each label space (e.g. NYU40, ADE20K, ScanNet200) to every other translation
space. While translating from a high-resolution label space to a low-resolution space is
straightforward, the challenge lies in translating from the low-resolution to high-resolution.

instance segmentation model on ScanNet200 [Rozenberszki et al., 2022]. This
method operates on an accumulated point cloud of a scene instead of frames,
therefore taking even better the geometry into account. We use the publicly
released weights trained on ScanNet200. We render the 3D semantic instance
predictions into the 2D training frames to map them into the same space as all
other base models.

The four semantic models produce classifications in four different sets of
classes. Internlmage predicts 150 ADE20k classes, CMX predicts 40 NYU
classes, Mask3D predicts 200 ScanNet classes, and our OVSeg prompts cover 186
wordnet classes. In addition to the semantic models, we use OmniData [Eftekhar

et al., 2021] to complement the depth sensor.

9.1.2 Translation between Label Spaces

As we learned above, we employ different models that were trained on different
datasets with different numbers and definitions of classes. To use these predictions
in an ensemble, we need to merge them in a unified prediction space. This requires
translating between different prediction spaces. We therefore build a mapping
between the class definitions of NYU40, ADE20k, ScanNet20, ScanNet200,
Replica, and the WordNet semantic language graph.

In this effort, we build on top of previous work, as the original ScanNet [Dai

et al., 2017a] already defined a mapping between ScanNet classes, NYU40

127

3D Scene Understanding

Evaluation Prediction

r ; i
1 Multiple Predictions Resolution by voting
from different models

e m e ———————————————
1True Positives

Resolution by taking
first label

Figure 9.2: Resolving the translation from low-resolution to high-resolution label
space. In evaluation, if the one of the translated classes is the groundtruth class it is counted
as true positive. If none of the translated classes is the groundtruth, all of them are counted
as false positive. During prediction, the conflict is either resolved through voting (multiple
predictions) or taking the first label (single prediction).

[Nathan Silberman and Fergus, 2012] classes, Eigen13 [Eigen and Fergus, 2015]
classes, and wordnet synkeys [Miller, 1995]. Further, [Lambert et al., 2020]
curated mappings between the taxonomies of semantic segmentation datasets,
out of which mappings between NYU40, SUN RGB-D [Song et al., 2015], and
ADE20k are most relevant for indoor perception. We took the union of both works
as initial mapping, but found that many corrections were needed especially with
regard to wordnet synkeys and many ADE20k were missing because [Lambert
et al., 2020] only considered 20 NYU categories. Thus, we also added mappings
to the Replica categories for the purpose of evaluation, since Replica is one of the

most accurately annotated indoor semantic datasets.

When mapping between two label spaces, for any class in the source space
there are three cases in the target space: a) there is no corresponding class in the
target space, b) there is exactly one corresponding class in the target space. This
may be an exact match, or a class to which multiple class ids from the source
space are matched (e.g. the source space may distinguish between office chair,
chair, and stool but the target space just has one general chair class), c) there are
multiple corresponding classes in the target space because the target space has a
higher resolution than the source space (e.g. a general chair class in the source
space can be split up in the target space to distinguish between office chair, chair,

or stool).

128

Automatic Annotation for 3D Semantic Segmentation

For (a) and (b), mappings are straightforward. We resolve (c) dependent on

the use cases:

* During evaluation: If one of the classes after translation corresponds to the
groundtruth label it is counted as a true positive. If none of the translated classes

is the true label, all of them are counted as false positives.

* During model consensus computation: Predictions in the source space vote for
all possible correspondences in the target space. The ambiguity between the
possible correspondences is usually resolved through an additional predictor
with a prediction space of higher resolution. If no resolution is achieved, we

pick the first of the possible classes.

9.1.3 Model Consensus

Given the individual predictions of the base models that have been translated
into the unified label space using the mappings described above, we merge the
predictions into a single consensus prediction. In addition to the straight-forward
base model predictions, we also exploit test time augmentation to make the
consensus more robust. Therefore, we use left-right flipping, which means we
horizontally flip the image before passing it through the network and flip the result
back again. Finally, each pixel receives votes for possible classes from:

¢ the predictions of the standard RGB images of of all 2D segmentation models
Internlmage, CMX, and OV Seg.

* the predictions of the flipped version of the RGB images for the 2D segmentation
models.

* two votes (to equalize the test-time augmentation of the RGB frame) from the

Mask3D prediction rendered into the 2D frame

» if we have human annotations available and also use them, we take five votes

from the original labels

129

3D Scene Understanding

Consensus Ll 3D Lifting ﬂ,\z\

__ Frames

Label Mapping
an L asgd Annotated

3D Scene

NeRF

2D Labels
T

pol

Consensus Voting

ﬁ __ - sl Rendering

__ Unified Label Space

L e S i U —

Figure 9.3: LabelMaker pipeline overview. The LabelMaker pipeline consists of three main blocks. In the prediction block, state-of-the
art 2D and 3D models predict per-frame semantic maps. These predictions are aggregated in the aggregation block. To aggregate
the predictions of different models, we need to first translate the different label spaces into our unified label space, before we run the
consensus voting to obtain the final per-frame consensus. In the 3D lifting block, the per-frame consensus is lifted into 3D using a neural
radiance fields. This further denoises the predictions and makes the labeling multi-view consistent. From this representation, we can
finally render the final annotations back into the individual frames.

130

Automatic Annotation for 3D Semantic Segmentation

For every pixel, we choose the class with the maximum number of votes.
For additional robustness, we check if the maximum number of votes is above a
certain threshold. If it is not, the prediction is set to unknown’ and this particular

pixel is not used in the optimization during 3D lifting.

9.1.4 3D Lifting

By computing a consensus over a diverse set of 2D predictors, we leverage
the knowledge and scale of 2D semantic segmentation datasets. However, the
per-frame predictions are noisy and often inconsistent, especially around image
boundaries. These inconsistencies can be mitigated and the performance can even
be improved, as previous work has shown [Siddiqui et al., 2023, Liu et al., 2023],
by lifting the 2D predictions into 3D.

Therefore, we leverage the recent progress on neural radiance fields to generate
multi-view consistent 2D semantic segmentation labels in all frames. Previous
works [Siddiqui et al., 2023, Liu et al., 2023] observed that neural radiance
fields hallucinate geometry to explain inconsistencies in different 2D predictions.
Yet, if these hallucinations are avoided and accurate geometry is enforced, the
inconsistencies between the frames can be resolved. There, we train an implicit
surface model from sdfstudio [Yu et al., 2022] that has a more explicit surface
definition compared to a NeRF yielding improved geometry compared to vanilla
NeRF. Thus, we add a semantic head to the Neus-Acc model, train it on all
available views and supervise it with RGB, depth, normals, and our semantic
losses. The RGB and depth are directly used from the sensor while the normals are
estimated using omnidata [Eftekhar et al., 2021] and the semantic segmentation is
obtained from the previously described consensus voting. Finally, we render the
optimized semantics back into all camera frames.

To generate consistent 3D semantic segmentation labels, we follow an estab-
lished and more direct approach. Given a point cloud of the scene, we project the
poin tcloud into each consensus frame to find corresponding pixels and then take
a majority vote over all pixels corresponding to a point. This approach has proved
to be as effective yet much cheaper than the NeRF-based approach to obtain the
3D labels.

131

3D Scene Understanding

9.1.5 Relabeling ScanNet Scenes

To evaluate the quality of LabelMaker, we want to compare it against existing
human annotations. We choose the ScanNet dataset because its scale has a large
potential for automatic processing. To be able to evaluate the quality of the existing
labels and compare them with LabelMaker, we create high-quality annotations for

a selection of scenes.
The original ScanNet [Dai et al., 2017a] labels were created using free text user

prompts. They consequently have duplicates or are ill-defined. This reflects the
open-world approach of [Dai et al., 2017a], but contradicts the use as benchmark
labels, for which they map them to other class sets. As a set of annotation
classes, we therefore did not directly annotate with ScanNet classes, but use
wordnet [Miller, 1995] synkeys'. In particular, we start from the mapping that
ScanNet defined between their labels and wordnet and take the categories that
occur at least three times in the dataset. This yields an initial list of 199 categories,
already resolving many ambiguities. We then check the definitions of all of these
categories in the wordnet database and correct the initial mapping, as well as
merged categories that are still too ambiguous by their definitions in wordnet (e.g.
rug.n.01 “rug, carpet, carpeting; floor covering consisting of a piece of thick
heavy fabric (usually with nap or pile)” and mat .n.01 “a thick flat pad used as
a floor covering”). The result are 186 categories that come with a text definition,
a defined hierarchy, and all possible synonyms that describe the category.

We then annotate the selected ScanNet scenes with these 186 categories based
on their wordnet definitions. We use [Kontogianni et al., 2023] to annotate the
fine meshes of the scenes with a minimum number of necessary clicks. Only the
authors of this paper provided annotations, and each annotation was cross-checked
by at least one other author. In case of doubt, individual objects were discussed

together. On average, labeling of a scene took 5 hours.

'Wordnet is a dictionary and synkeys are the names of its entries. Le., a set of synonymous words
has one synkey, but a word with different meanings as one synkey per definition.

132

Automatic Annotation for 3D Semantic Segmentation

9.2 Experiments

9.2.1 Implementation Details

For the 2D models, we use the corresponding available open-source code and
adjust it to our pipeline. As described in Section 9.1.2, we generate votes from
each 2D model into a common label space. We choose our defined 186 class
wordnet label space as output. We choose the label with highest votes, but require
a minimum of 3 out of 13 (with ScanNet annotations) resp. 4 out of 8 (automatic
pipeline) votes. For 3D optimization, we build on top of SDFStudio [Yu et al.,
2022], specifically the Neus-Acc [Wang et al., 2021] model, and add a semantic

head and semantic rendering similar to [Zhi et al., 2021b].

9.2.2 Datasets

We run our proposed method on three different datasets to show its perfor-

mance and validate our design choices.

ScanNet [Dai et al., 2017a]. We randomly select 5 scenes from the ScanNet that
cover all frequent room types. We carefully annotate high-resolution meshes of
the scenes using [Kontogianni et al., 2023] as described in Section 9.1.5 in order

to have a complete and accurate groundtruth to evaluate against.

Replica [Straub et al., 2019]. We also evaluate our method on the Replica dataset.
This is a semi-synthetic dataset, captured as a high accuracy mesh from real
environments and then rendered into trajectories in [Zhi et al., 2021b]. We select

the 3 ‘room’ scenes and evaluate against the given annotation.

ARKitScenes [Baruch et al., 2021b]. To showcase the automatic labeling
pipeline on an existing dataset, we run it on selected scenes of the ARKitScenes
dataset, where only sparse bounding box labels are available up to date. ARK-
itScenes consists of trajectories captured with consumer smartphones which are

registered to a professional 3D scanner.

133

2D 3D

evaluation classes NYU (40 classes) wordnet (186 classes) NYU (40 classes) wordnet (186 classes)
metric mloU mAcc tAcc mloU mAcc tAcc mloU mAcc tAcc mloU mAcc tAcc

3D Scene Understanding

ScanNet labels [Dai et al., 2017a] 47.7 56.2 69.2 38.1 463 69.7 40.1 482 68.6 177 213 70.6
SemanticNerf* [Zhi et al., 2021b] 45.2 56.6 69.3 329 437 712 3677 471 684 148 193 71.0
LabelMaker w/o ScanNet (automatic labels) 50.7 64.0 75.3 33.5 435 723 413 473 712 157 18.1 71.5
LabelMaker (Ours) 534 65.0 77.5 391 493 772 441 534 76.1 182 22.0 76.7

Table 9.1: Comparison of the label quality of the ScanNet labels. We compare with the original ScanNet labels and the original
ScanNet labels refined by SemanticNerf [Zhi et al., 2021b]. Further, we compare LabelMaker without any human input, and LabelMaker
taking the ScanNet annotations as additional input. The results are measured over 5 scenes from ScanNet against newly annotated
high-quality ground truth. Based on our translation of prediction spaces, we measure metrics over the medium-tail NYU40 set of
categories and our full long-tail ground truth categories. For NYU40 classes, LabelMaker is capable of producing labels of higher quality
than the ScanNet human annotations, without any human input. For more long-tail categories, the automatic mode does not reach the
quality of ScanNet, but LabelMaker is able to considerably improve human annotations.

134

Automatic Annotation for 3D Semantic Segmentation

9.2.3 Baselines

We mainly compare LabelMaker to the existing manually created annotations
in ScanNet [Dai et al., 2017a]. As an additional baseline, we report the result of fit-
ting and rendering the ScanNet annotations with our adapted SemanticNeRF [Zhi
et al., 2021b]. We briefly discuss these two main baselines in the following.

ScanNet [Dai et al., 2017a]. For this baseline, we measure the quality of the
annotations in ScanNet. This baseline is motivated by the fact that datasets that
have been annotated using some form of crowdsourcing oftentimes suffer from
noisy groundtruth annotations. Therefore, we aim to quantify this issue in case of
ScanNet. To this end, we take the raw ScanNet labels and map them into our label
space defined by wordnet. The mapping from ScanNet IDs to wordnet synkeys is
to a large extent already provided in [Dai et al., 2017a].

SemanticNeRF [Zhi et al., 2021b]. This baseline is inspired by [Zhi et al., 2021b]
and adapted to our pipeline by integrating the semantic head into SDFStudio. Then,
we run this version of SemanticNeRF on the ScanNet 2D semantic labels. Thus,
we can measure the effect of multi-view aggregation and optimization on the
groundtruth ScanNet labels. The hypothesised effect is that through the extra
RGB and geometry information provided to the NeRF, segmentation boundaries

may be smoother than those of the ScanNet ‘supervoxels’.

9.2.4 Comparison to State-of-the-Art

In Table 9.1, we compare LabelMaker to the state-of-the-art baselines ScanNet
and SemanticNeRF. We report mean intersection-over-union (mloU), mean accu-
racy (mAcc), as well as total accuracy (tAcc). We evaluate the methods in 2D by
comparing the renderings or labeled frames with renderings from the groundtruth
3D mesh and in 3D by mapping the 2D renderings onto the corresponding ver-
tices in the 3D groundtruth mesh. Further, we measure the metrics over two
different label sets. The NYU40 label set [Silberman et al., 2012] consists of 40
semantic classes representing the common indoor classes in the short tail of the
label distribution. Our curated wordnet label set consists of 186 classes, therefore

additionally measuring performance over the long tail of the label distribution.

135

3D Scene Understanding

LabelMaker
NYU40

RGB ScanNet label LabelMaker
— - T

Ground-truth
[| @

Figure 9.4: LabelMaker generates more accurate and more complete labels compared to
the labels annotated by humans and provided by ScanNet. Particularly, unlabeled sections
in ScanNet are correctly filled in and many wrong annotations such as missing rogs and
pictures are corrected. The output labels can then be projected into differnet label spaces,
such as our wordnet space or the NYU40 categories.

136

Automatic Annotation for 3D Semantic Segmentation

Scannet LabelMaker (Ours) Groundtruth

Figure 9.5: Dense 3D labels for ScanNetv2 [Dai et al., 2017a]. We generate more
consistent labels compared to human annotators and preserve rare classes (e.g. swivel chair
in front of the desk). Further, the labels are more complete (e.g. wall in bathroom) and we
can capture all object in the scene (e.g. dustpan in bathroom).

137

3D Scene Understanding

ScanNet (186 classes) Replica (150 classes)

mloU mAcc tAcc mloUmAcc tAcc

OVSeg 153 244 437 20.7 265 694
InternImage 30.8 435 594 383 477 846
CMX 282 410 542 17.0 38.0 84.6
Mask3D 337 402 385 22,6 279 304
Consensus 38.9 483 77.0 39.1 46.2 84.3

LabelMaker (ours) 39.1 49.3 77.2 42.1 51.0 86.7

Table 9.2: Ablation of all base models in LabelMaker on our 5 labelled ScanNet [Dai
et al., 2017a] scenes and Replica [Straub et al., 2019]. InternImage is the strongest single
base model, but the fusion with other predictions and 3D lifting increases the accuracy
considerably beyond any of the state-of-the-art single models.

We demonstrate that our proposed pipeline generates better labels than both
human-annotated ScanNet labels as well as their lifted version through Seman-
ticNeRF [Zhi et al., 2021b]. Particularly, on the short tail of the distribution
(NYU label set), our pipeline significantly improves over the human annotated
labels. This is due to more accurate object boundaries as well as more consistent
and complete labels. For the long tail of the label distribution, our method also
outperforms all existing baselines indicating that different 2D expert votes and 3D
aggregation boosts the quality of the annotated labels. Finally, we show that even
our fully automatic pipeline outperforms human annotations on NYU4O0 classes,

showing the potential of LabelMaker to generate labels at scale.

Qualitative comparison with ScanNet [Dai et al., 2017a]. In Figure 9.5, we
compare qualitative results for ScanNet [Dai et al., 2017a] with LabelMaker,
and our groundtruth. To this end, we mapped the 2D renderings onto the high-
resolution groundtruth mesh by projecting the mesh vertices into all labels using
a visibility check. One can see that our pipeline produces consistently more
complete and correct labels than the human annotations provided by ScanNet [Dai
et al., 2017a]. E.g., our method consistently labels the kitchen counter top, the

mats in the bathroom, and even the folded chair leaned against the desk.

ScanNet Label Quality. Because our experiments require new high-accuracy
annotations of ScanNet scenes, we are able to estimate the quality of the default

ScanNet labels. As Table 9.1 shows, but also any human who inspects the ScanNet

138

Automatic Annotation for 3D Semantic Segmentation

LabelMaker LabelMaker
RGB 2D (Ours) Mask3D 3D (Ours)

Figure 9.6: Automatic dense labeling of ARKitScenes. We demonstrate the applicability
to label RGB-D datasets that do not have dense labels available. Compared to state-of-
the-art Mask3D [Schult et al., 2023], we generate dense annotations for all classes in the
scene. Further, we segment on a higher level of detail (see picture and books in bookshelf,
or objects on the cabinet/nightstand). Thus, our labeling pipeline can readily be used on
non-label dataset to provide training data for segmentation methods.

139

3D Scene Understanding

labels knows, these are not perfect. We argue in Section 9.1.5 that this reflects the
open-world approach of the dataset and annotation workflow, where — exactly as
in any real application — semantics are ambiguous and not always clearly defined.
‘We should also point out that even the detailed annotations we provide are not
fully perfect. However, given the background that the ScanNet labels are also used
as a benchmark to compare accuracy of semantic classifiers, our results indicate
that a perfect prediction would reach accuracy values much lower than 100%. If
two methods achieve higher mIoU on ScanNet than the ScanNet labels themselves,
it is not possible to draw a clear conclusion about which method is better. This
highlights the usefulness of improving the quality of the labels in data sets where
some labels already exist.

9.2.5 Ablation Studies

Does consensus voting make the model better? Table 9.2 shows the evaluation
on the standard metrics (mIoU, mAcc, tAcc) in 2D for the ScanNet and the Replica
datasets. We demonstrate that aggregating individual 2D predictions with our
consensus voting mechanism improves upon the individual 2D models. Further,
we also show that lifting the 2D consensus into 3D using our optimization pipeline

further improves the results compared to the individual 2D models.

Which model is the most important? Table 9.2 shows that the performance
of models differs noticeably. Compared to the others, Internlmage and Mask3D
have the strongest positive impact on the segmentation quality. Additionally and
unsurprisingly, Table 9.1 shows that using ScanNet [Dai et al., 2017a] labels as

additional votes further improves performance.

Importance of 3D Lifting? We show in Table 9.2 the effect of 3D lifting to
aggregate semantic labels and make them multi-view consistent. We compare
LabelMaker with the aggregated consensus, as well as with individual models,and
compute the 2D metrics on ScanNet and Replica. One can see that the 3D lifting
significantly improves the performance by at least +1 mloU.

140

Automatic Annotation for 3D Semantic Segmentation

9.2.6 Experiments on ARKitScenes

To demonstrate the applicability of our labeling pipeline to new datasets,
for which no dense labels exist, we run our pipeline on a set of scenes from
the ARKitScenes [Baruch et al., 2021b] dataset. To this end, we process the
smartphone trajectories using the low resolution depth maps as sensor depth and
the corresponding VGA-resolution images as RGB input. We established these
correspondences by synchronizing the depth and RGB timestamps. In Figure 9.6,
we show qualitative results for 2 scenes of the data set. One can see that the
produced labels are more complete and accurate than for Mask3D, a state-of-the-
art 3D instance segmentation method. Thus, we demonstrate the feasibility of

automatically labeling huge datasets with zero human intervention.

9.3 Discussion

9.3.1 Limitations

One main limitation is that LabelMaker is still limited to a fixed set of classes.
Thus, it does not address one of the major shortcomings of existing semantic
segmentation datasets. An interesting direction to mitigate this limitation is to
optimize the scene with language embeddings. Extending it to output language
embeddings instead of classes would make it more flexible and potentially help to
resolve ambiguities.

A second limitation are the many hyper-parameters involved in the 3D lifting.
Existing work [Zhi et al., 2021b] has shown that semantic segmentation benefits
from 3D lifting and this has been confirmed by our work. However, this comes
at the cost of an increased number of hyper-parameters Our 3D lifting pipeline,
SDFStudio, has numerous hyper-parameters. Oftentimes the optimization is rather
sensitive to the hyperparameter setting and we have not yet found the optimal
setting. At the moment, the optimization has to be carefully tuned on a per scene
basis in order to get the best results. Thus, the quality of the automatic labels
could be a) improved and b) the scaling could be even better if we use a more

robust lifting mechanism.

141

3D Scene Understanding

Finally, the pipeline can be further profit from newly developed models as
research progresses, which will improve the output quality. Thus, we continuously
add or replace models to our pipeline. An interesting next step would be to
implement a feedback loop where LabelMaker is used to produce a vast amount
of automatically labeled training data, on which an additional model can be

bootstrapped in a distillation mechanism.

9.3.2 Summary

In this chapter, we presented LabelMaker, a fully automatic labeling pipeline
that generates semantic annotations of similar quality to human annotations,
but with zero manual human labeling effort. The method can also improve the
accuracy and consistency of existing annotations. We quantitatively validate the
performance of our pipeline on the ScanNet and Replica datasets. On ScanNet,
it outperforms the existing human annotations, and on Replica it is better than
all baseline methods. Finally, we demonstrate the applicability to large-scale 3D

datasets and label images and point clouds of ARKitScenes.

142

Chapter 10
Online Semantic 3D

Reconstruction

As we have learned, humans not only require low-level spatial awareness of
their surroundings to interact with the world, but also rely on a higher-level seman-
tic understanding of its contents in real-time. In order to enable autonomous agents
with similar capabilities, we aspire to model these processes using computational
methods - this is the goal of this chapter. Building spatial awareness through 3D
reconstruction has been a long-standing topic in computer vision. More recently,
and given the success in spatial reconstruction, the challenge of understanding the
world on a higher-level has been approached. While we have presented a method
to acquire automatically annotated data in the previous chapter 9, we now present
a method that enables agents to understand the world in an online scenario.

We have discussed in Chapter 8 that one can understand the world on different
levels — from low-level reconstruction of 3D geometric primitives to high-level
scene classification. While high-level understanding (e.g., scene classification)
is usually sufficient for planning and navigation, interaction also requires a fine-
grained understanding with accurate semantic boundaries. As such, semantic
segmentation is oftentimes at the heart of algorithms and pipelines that interact
with the world, in which most approaches assign a discrete semantic class label to
each reconstructed point in the scene.

In the past, there has been a large number of works in 3D scene understanding

143

3D Scene Understanding

Scene Representation Semantic Map
e e

2D)
Network é
Q

Q) -— R —
/) o
Network =

Figure 10.1: We propose an online semantic 3D reconstruction pipeline, which fuses
RGB-D observations into a globally consistent semantic map. The key component is a
local spatio-temporal expert network that fuses new observations into a learned scene
representation. This temporal expert learns to select information from 2D, 3D, and previous
steps using an attention mechanism.

which take a point-cloud, a mesh, or a voxel-grid as input, and estimate a per point
semantic label [Nekrasov et al., 2021, Han et al., 2020, Kundu et al., 2020, Choy
et al., 2019a]. While there has been impressive progress with these works in
recent years, a large majority of these have one major shortcoming that we aim to
address. All these works require an a priori reconstruction of the scene and use
this global information for the understanding task. Therefore, they are considered
offline methods. However, autonomous agents (as well as humans) typically build
a “mental" map of the environment in an incremental manner, that is, continuously
update it over time as new information is collected. Thus, scene understanding
must inherently be an iterative process, as an autonomous agent cannot assume all
information known a priori. In this chapter, we investigate this particular problem,
where we incrementally build a semantic map given a stream of posed RGB-D
data that allows for online processing of the incoming data streams and can be
integrated in real-time systems. This online processing is essential for enabling
real-world applications, such as robotics and mixed reality, where an updated

semantic map is required to solve complex tasks in the world.

Only few approaches tackle the problem specified above. The seminal works

144

Online Semantic 3D Reconstruction

of Vineet et al. [Vineet et al., 2015] and SemanticFusion [McCormac et al., 2017]
map 2D semantic predictions into 3D. One step further, PanopticFusion [Narita
etal., 2019] predicts a semantic instance map in 2D that is mapped and aggregated
in 3D. While these methods reason in 2D as well as 3D, the 3D reasoning is
a CRF-based regularizer that is limited compared to modern neural networks.
Further, the CRF requires global information of the entire scene that limits the
scalability of the methods to small scenes. Similarly, INS-Conv [Liu et al., 2022b]
estimates semantic instance maps using 3D processing with a large UNet that
requires global processing to avoid drifting errors. In contrast, other works [Zhang
et al., 2020, Huang et al., 2021b] perform 3D reasoning using point- or supervoxel
convolutions in a local frame. However, they only store explicit labels that only
encode per-point information, while our work uses learned features encoding low-,
mid- and high-level information.

Our work is based on the observation that 2D and 3D information is com-
plementary for the task of scene understanding. Some elements are better to be
understood in 2D depending on context and geometry whereas others are easier to
be segmented in 3D given their spatial structure. To this end, we present a novel
attention-based aggregation mechanism that fuses 2D, 3D, as well as existing
features into the scene. Our method only operates in a local region defined by
the new measurement and integrates the updates into the learned global scene
representation. Through this design, our method is independent of the scene size
and can scale to large-scale scenes.

In an extensive experimental evaluation, we show that our method is com-
petitive with existing approaches to online semantic 3D reconstruction while not
requiring passes over the entire reconstruction as opposed to some other meth-
ods [Liu et al., 2022b]. This is particularly important for online processing on
mobile devices and agents that are constrained in the amount of compute and
memory available. We evaluate our method on ScanNet as well as SceneNN
and present in-depth ablation studies to motivate our design choices. We will
release the source code on acceptance of this paper to foster further research in

this direction. In summary, our key contributions in this chapter are:
* We show that 2D and 3D information are complementary for the task of online

145

3D Scene Understanding

3D semantic reconstruction and improve the overall result.

* We propose a novel local fusion approach that leverages an attention mechanism
to combine existing features with new 2D and 3D information in an online
fashion. We evaluate our pipeline design on the well-known ScanNet [Dai et al.,
2017a] benchmark and show competitive results compared to existing online

local reconstruction methods.

10.1 Method

How do we reconstruct and understand the world around us from a stream of
RGB-D data? In this chapter, we present an online reconstruction pipeline shown
in Fig.. 10.2 that contains a spatio-temporal expert network to enable efficient

local updates of the scene representation.

10.1.1 Overview

How is our overall model designed? Our proposed model consists of three
major components (Fig. 10.2) and a learned 3D scene representation. The first
stage is a 2D encoder F?P that extracts 2D feature maps from an incoming stream
of RGB-D images. The second stage is a 3D encoder F3P that incorporates 3D
geometry into each feature map after lifting it to 3D using the given camera
parameters and depth maps. The third stage is a new temporal expert network
FAT that consolidates 3D scene representations using complementary information

from 2D and 3D as well as the so-far reconstructed 3D scene.

10.1.2 Scene Representation

As discussed in chapter 3, the backbone of every online reconstruction method
is a suitable scene representation. Typically, the primary choice are voxels, points,
meshes or implicit (neural) representation. Meshes and implicit representations
are difficult to update with new observations, while points lack information about
geometric connectivity. This is crucial for scene understanding where decisions

about segmentation boundaries are oftentimes guided by geometric boundaries.

146

Online Semantic 3D Reconstruction

Therefore, we represent scenes using a hybrid representation S combining learned
and explicit features that are stored in a sparse voxel grid. Sparse voxel grids
allow for efficient processing using neural networks. In particular and similar to
NeuralFusion presented in 5, each voxel stores a learned feature F' of dimension
D =40 encoding the aggregated information about the scene content. This
learned scene representation allows to store high-, mid-, and low-level information
useful for the semantic segmentation task. This mitigates the need for expensive
re-processing in deep neural networks at every time step to fuse existing and new
information. The voxels also store the number of per-voxel observations, which is

relevant for the subsequent fusion step.

10.1.3 2D Encoder

The aim of the first stage is to extract semantic features from incoming 2D
RGB-D images using a 2D convolutional network F?P. The 2D network F2P
with trainable parameters 6°° takes RGB-D frames (I, D;) as input and predicts

semantic features f2° per frame:
22 = F ([, Dy, Vi) 6°) (10.1)

The normal map [V, is estimated from the depth map D; and serves as additional
input. The network consists of DeepLabV3+ [Chen et al., 2017b] and uses,
similar to [Kundu et al., 2020], an Xception65 [Chollet, 2017] encoder that is
adjusted to handle RGB-D-N input data (color, depth, normals) since geometric
information improves semantic segmentation [Gupta et al., 2014, Wang et al.,
2016, Hazirbas et al., 2016]. The semantic features fED are directly obtained from
the DeepLab decoder. However, the original dimension of the features ftZD is
D fop =256 which is too memory intensive for online processing of large indoor
scenes. Instead, we project the feature maps to D?P =40. This compression
allows online processing for the remaining of the pipeline while still retaining
all relevant information needed for 3D semantic understanding. The 2D network
F?P is pre-trained on ImageNet [Deng et al., 2009] and fine-tuned on 2D training
data from ScanNet [Dai et al., 2017a]. During the training of the full pipeline, the

147

3D Scene Understanding

/
2D

Encoder

L

Temporal Expert

/

3D
Encoder

3D Lifting

I —

-

@ O

-s504)

@ 2D Features [Old Features
(0 3D Features (@ Updated Features

Figure 10.2: Pipeline Overview: Our pipeline consists of three main stages. The 2D encoder extracts information from incoming
RGB-D imagery. This information is enhanced with 3D information using a light-weight 3D encoder. The information from these two
sources is combined with existing information in the learned scene representation using the temporal expert.

148

Online Semantic 3D Reconstruction

2D encoder is partially fine-tuned using an auxiliary semantic segmentation head
enforcing consistent performance across frames and for regularization of the joint

feature space.

10.1.4 3D Encoder

We additionally process the incoming information in 3D as geometry is com-
plementary to 2D appearance. This processing is particularly motivated by the
possible reasoning about hidden geometric object boundaries occluded in the
current 2D frame. To this end, we lift the obtained 2D feature map f?° to 3D
point clouds by projecting the depth map D; using the known, gravity-aligned
camera orientation R € SO(3) and intrinsics. Due to noisy depth estimates, we
additionally filter out points that are more than 3 m away from the camera. The
resulting local 3D feature volume is refined using a light-weight U-Net [Ron-
neberger et al., 2015] F3P yielding a 3D feature map f;° with the same feature
dimension Dy = 40 as the 2D feature map f7°. The UNet consists of four blocks
and each block consists of two residual layers with interleaved batch norm and
ReLU layers. The output of this layer is downsampled to the resolution of the next
block using a convolutional layer with a kernel size and stride of two. The output
of the lower block is processed by a transposed convolution and combined with
the skip connection of the current level. Similar to the 2D encoder, the 3D encoder
is also supervised using an auxiliary head for semantic segmentation enforcing an

as good performance as possible from a single 3D frame.

10.1.5 Spatio-Temporal Expert

In the previous stages, 2D features are extracted and enhanced with 3D in-
formation. In the next step, this information is integrated into the existing global

scene representation S;_;. To this end, we propose the spatio-temporal expert

FAT

network with weights #27 . The task of the spatio-temporal expert network

FAT is to update the features stored in the learned scene representation given the

. . . . lobal
new information from ftzD, ED, and the existing information tgfla . The feature

volume ftgl_oi’al is a crop of the relevant local sub-volume from the global scene

149

3D Scene Understanding

representation S;_; using the known camera pose [R|t] € SE(3). The overall

mapping is computed as:
tglobal — FAT (|:J('g10$a]7 tSD 2D:| 9AT> (102)

The resulting local volume fg'Oba'

is then written back, using the inverse camera
pose, to obtain the new global scene representation .S;. By providing access to
both the 2D and 3D features in parallel, the expert network can learn where it is
beneficial to rely more on 2D appearance features or where it is advantageous
to trust the 3D geometry-based features, see Fig. 10.4 for an illustration. The
3D features reveal geometrical details while the 2D features provide textural
information in flat areas with little geometric information.

FAT is implemented as a transformer consisting of cross-attention and feed-
forward layers (see Fig. 10.3). The task of the cross-attention layer is to extract
relevant information from the three sources of information (f2P, f3P, &>
using ftgl_oi’al as query features. The attention is defined as f = W ,gioba ¥ potobu +

t—1 t—1
W 20V 20 + W gV g3 and the weights (w W paions, W 20, W fm) are defined as:

wpe = Q(fE’E“)TK (fk) , (10.3)

where f5 € {20 3P, f°}. The values vy are obtained using a linear
projection layer vy =V (f%).

The features obtained from the cross-attention layer are first normalized us-
ing layer norm and then refined using a feed-forward layer as it is standard in
transformer architecture. Furthermore, both layers are augmented with a skip
connection guaranteeing healthy gradients during training. The reﬁned features
that consist of information extracted from the three sources fZ°, 7P, and f;° gk’bal
are written back into the global scene representation. The temporal expert is also
supervised by a point-wise segmentation loss that enforces optimal segmentation
given the currently available 3D scene information.

Positional encoding of encoder features. To enable the spatio-temporal expert

network to make optimal fusion decisions, it has to learn from which encoder

150

Online Semantic 3D Reconstruction

@ Dot-Product @ Weighted Sum

.
1
:
1
m I
8 o T :
g = —~ Q :
2 !
| -
1
- T a : -
8[\) —h ! 8'8_
S K S ——e¢g
] s i 38
(2] 1 w
— 2 :
o 1
!
Ry — !
!
Q 1
€8 v :
(‘D 1
w 1
!

Figure 10.3: Temporal expert network. The temporal expert network takes the three

features (ftg'_mia], 2D, and 3D) as input, and iteratively refines the old feature vector to obtain

the update feature that can be stored in the scene representation. The old feature is used as
the query in the attention mechanism.

to select information from. However, transformer architectures are invariant to
permutations in their input sequence. This means that the network cannot learn
from which source a specific feature in the input is obtained. Thus, we have to
encode the source information into the feature that is passed to the network. As
we keep the ordering of the different sources fixed in the input sequence, we can
treat the source information like positional information. Therefore, we encode the
source information using positional encoding as it is standardized in transformer
networks. This positional encoding allows to inform the temporal expert network

from which source a specific feature is coming.

10.1.6 Loss Function and Training Details

The pipeline is trained using focal loss [Lin et al., 2017] at several stages in
the pipeline. These losses are applied after the 2D encoder 2, the 3D encoder
F3P_and the temporal expert network F2T. These auxiliary supervision signals

are required to constrain the feature space that encodes the information throughout

151

3D Scene Understanding

2D Labels 2D Attention 3D Label 3D Attention

By

i

]

Figure 10.4: Temporal expert attention maps. We visualize the attention maps for the
2D and 3D input features in the expert network. The expert attends to the 3D features to
refine the segmentation of fine details (legs of the chair, lamps), while it attends to the 2D
features to predict the label for large areas (table, walls, ezc.).

the entire pipeline. Further, these auxiliary losses ensure that each stage solves the
task of semantic segmentation as good as possible for themselves providing the
temporal expert network with valuable information. The overall loss is the sum of
these losses:

L = MpLop + A3pL3p + Agxpert LExpert (10.4)

where each term Lp, £3p, Lexpert 18 @ focal loss, defined as:

L=(1-9)"CE(3,y) (10.5)

As the loss is applied on a per-voxel level, the corresponding groundtruth labels
first need to be mapped from the ground truth polygon mesh to a voxelized
representation. To this end, we first voxelize all scenes using the target resolution
and assign the label of the closest vertex of the mesh. Closest points are efficiently

found using KD-tree-based nearest neighbor search.

Auxiliary heads. After each sub-network, we leverage a additional classification
head to supervise the pipeline using an auxiliary semantic loss. The additional

head consumes the features predicted by the network and passes them through a

152

Online Semantic 3D Reconstruction

two-layer MLP that is interleaved with batch normalization and ReLU activation.
For all sub-networks, we use the exact same architecture in order to uniformly
constrain the feature space. The goal of these additional heads is to enable
an auxiliary loss that enforces the sub-networks to encode as much semantic

information as they possibly can extract from the given input.

Avoiding feature drift. When using learned features during iterative fusion of
sensor measurements, the problem of feature drift can arise. Feature drift is a
problem during inference. During inference, features might drift outside the
distribution they have been trained on. Thus, the trained neural networks fail to
handle them properly as they represent unknown information. Oftentimes, this
drift manifests itself by the growing scale of the norm of the individual features.
In our pipeline, this is primarily caused by the bias of the different layers in the
3D encoder and the spatio-temporal expert network that are iteratively added on
top of the features. Thus, we have to prevent that during training and testing.
While other works, e.g., INS-Conv [Liu et al., 2022b], address this issue by
performing network passes over the entire scene (which can limit scalability to
large-scale scenes), we approach this problem such that it is more suitable for
online fusion: Given the observation that the growing norm is the main driver
of feature drift, we utilize a simple normalization strategy. To this end, after all
sub-networks — 2D encoder, 3D encoder, and spatio-temporal expert network —
we pass the final features through a one-dimensional layer norm. This yields
normalized features and prevents their norm from growing outside the training

distribution.

Sequential Training. The temporal expert network needs to learn how to fuse
new information into the existing scene representation based on sequential data.
A key challenge is catastrophic forgetting, where the network forgets what it
has learned during the beginning of a sequence and only focuses on the last few
frames along a camera trajectory. To overcome this challenge, it is critically
important to randomly select camera views along each video trajectory, i.e., a
permutation of the original frame order. Similarly, to avoid that the model only
sees fully reconstructed scenes after some initial training time, we randomly reset

the reconstructed scenes so that the model always sees scenes at varying levels of

153

3D Scene Understanding

reconstruction.

10.2 Experiments

10.2.1 Implementation Details

We implement the proposed pipeline in PyTorch. We use the MinkowskiEngine
[Choy et al., 2019a] for the sparse 3D convolutions in the 3D encoder, and Py-
torch3D [Ravi et al., 2020] for the geometric projections. The entire pipeline
is trained with the Adam optimizer and a OneCycle [Smith and Topin, 2017]
learning rate scheduler. Due to memory constraints, the batch size is 4 but we
obtain an effective batch size of § by aggregating the gradients across two batches.
We set the maximum learning rate to 0.001 for the 3D and temporal expert net-
works, while the maximum learning rate for the pre-trained 2D encoder is set
to le — 05. We equally weight the different terms in the loss function setting
A3D = Aop = Agxpert. = 1. Further, we set the parameter of the focal loss y=1. We
use five layers in the temporal expert transformer with a hidden dimension of
Dhidden = 128 in the feed-forward layers. The voxel grid resolution for the entire

pipeline is set to 4 cm.

10.2.2 Online Methods in Comparison

FusionAware [Zhang et al., 2020]. Unlike our voxel-based representation, Fu-
sionAware is a point-based online 3D semantic segmentation method. The method
aggregates measurements in 3D space using point convolutions and computes
intra- and inter-frame features.

SVCNN [Huang et al., 2021b]. Similar to ours, Supervoxel Convolution
(SVCNN) is another candidate from the space of voxel-based approaches. SVCNN
uses dedicated convolutional operators that operate directly on supervoxels and

aggregate multi-view features during online reconstruction.

154

Online Semantic 3D Reconstruction

‘NoJW ¢¢+ 1589 18 £q sauraseq Junsixa 1040 saaroxdwr yoeordde pasodoid ano ‘spoyjow [eoo] Suowy syurod pajepdn
AUL1LIND UO pUE WINISNIJ SUIMIIA) UTYIIM UONRULIOJUT [BIO0] UO ATUO UOSEAI PUB QUI[UO I8 SPOYIAW [200] “dUIDS [[NJ Y} J9A0 sassed
1eqorS armbar Jnq SutuoseaI SUI[UO Op SAuT[aseq INQ SUI[UQ "AUIS AIMUS AY) IoA0 sossed pUE SUOTIONI)SUOIAT dUAIS (J§
uorrd-e Sursn sfoqe] onuewas 101pard souT[aseq JUIPIO 39S 3593 [BLT(T “I& 19 1e(] 1I9NUEIS U0 uonejudwsas dnueuwnds (¢ 1°07 dqeL

99 L'I8 9°S6 O°LS T'SL 9°LL 085 88¢ 0°LE 68 996 I'I9 S'SS 1'9L T'vS €'€8 I'S9 96y T'LL TT8 899 [B007] (SI0) YHLSTV
I'I9 T6L 798 80S S+9 ¥'99 1'€S 9€9 TLT 8Ly 876 995 ¥'€S S9L v'¥y L'SL €19 61L T'IL 969 §'€9 [B007] [9120T “1e 12 SuenH] NNDAS

L'T9 S6L 968 ¥'¥S 889 L9 0Ty 0CS €T ¥Sy 616 LTS €0S v'EL 1°0S LYL 065 99L T'vL ¥'09 0°€9 [020T 12 19 Sueyz] sremyuorsng .nOh.
€99 S¥8 £€¢6 0V9 €6L 6'1L ¥'98 919 €6C PES €66 809 609 TH8 L'€S 898 v'OL TI8 6SL I'SL LIL [4z20z “[2 10] AUOD-SNI B
196 T09 96L TYY 6%9 LOS 699 66V 1'vC 8¥E I8 €6T v'ev SOL STC TE9 98¢ ¥'09 889 1'6v 6T [610€ 18 10 waLreN] uotsngondoueq
L'TL TS8 ¥'L8 €89 TLL L9 €68 1'€L 98T ¥¥S 166 €9 099 €68 1'CS 08 60L TE8 818 668 9¢L [2610T 12 12 KoyD] PsmoyuIA Q
8TL 998 $'€6 ¥'OL 9'6L ¥OL 1'S8 9¥L 0°€E 88S 86 ¥'99 6'69 668 L6 $98 CTOL 8¥8 018 I'LL 9¥L [0Z0T "[e 32 npuny] uoISNIAN[ENMIA W
STL L'S8 0'V6 €TL 618 I'8 T68 108 0'I€ #'6S 6L6 V'IL S'89 1'€8 S'LS 8'C8 I'8L ¢¥8 S'S8 $'96 1'8L [120T 1210 AoseryoN] AEXIN &
5 F Ed op% .mMA um.b Jmu @ hw. auq JHJ I oIJ & ‘s.uQ o 990 & ooou MH bmq lnorw Buissadoag POYRIA
s 8 & & A~ g9 S F AF S S 3 s £ < S
s < 2 a~ s » s £7 7 5 & F 5 5 5 a
$ h s§ % 2 §7 § £ g § §

~

155

3D Scene Understanding

=

v
2

E
-
a
a

Figure 10.5: Qualitative results of our proposed method and comparison between
the different stages. The expert successfully selects the correct information from the two
encoders. The 2D encoder is focused on object-level decisions (e.g., table in column 1,
bench in column 2) while the 3D information is used for fine details (e.g. lamp in column
3, desk in column 5).

10.2.3 Datasets and Metrics

ScanNet [Dai et al., 2017a]. consists of 1513 scans from 707 unique indoor
scenes containing 2.5M RGB-D frames. All scenes provide dense 3D semantic
annotations mapped to the NYU40 class labels. Each scene is recorded up to three
times using an iPad equipped with an Occipital depth sensor. The camera poses
and dense reconstruction of the scenes are obtained using BundleFusion [Dai
et al., 2017b]. The 3D labels are projected into all 2D frames to provide the 2D
labels.

SceneNN [Hua et al., 2016]. SceneNN consists of 76 scenes with semantic
annotations and corresponding posed RGB-D data. We follow [Huang et al.,
2021b, Liu et al., 2022b] and demonstrate the generalization capabilities of our

156

Online Semantic 3D Reconstruction

method by training on ScanNet and evaluating on the 76 SceneNN scenes.
Metrics. We follow the standard metrics of the ScanNet and SceneNN datasets.
In particular, we compute the mean and per-class intersection over union (IoU)
on ScanNet, as well as the mean accuracy (mAcc) and weighted intersection over
union (wloU) on SceneNN.

10.2.4 3D Semantic Segmentation

Table 10.1 reports 3D semantic segmentation scores of our and recent methods
on the well-established ScanNet [Dai et al., 2017a] test benchmark. We compare
online and offline methods, as well as local and global methods. While offline
methods rely on a pre-computed 3D scene reconstruction in the form of a point
cloud or polygon mesh, online methods are able to reconstruct the 3D scene
on the fly as new frames become available. This functionality is attractive for
online applications in robotics or AR/VR devices, however they cannot rely
on the full scene context which makes semantic reasoning harder and semantic
scores are generally higher for offline methods [Nekrasov et al., 2021, Kundu
et al., 2020, Choy et al., 2019a]. In the group of online methods, our approach
improves over the existing local methods like SVCNN [Huang et al., 2021b] and
FusionAware [Zhang et al., 2020] by at least +3.3 mIoU. Local methods operate on
a local window defined by the newly incoming frames and are therefore memory
and computationally efficient, both attractive qualities for real-time processing.
Global methods require global passes over the reconstructed scenes either by
CREF regularization or neural network processing. This step takes increasingly
more time as the reconstructed scene becomes larger in size. These methods are
therefore less applicable for real-time applications. Specifically no upper bound
on the processing time can be guaranteed.

In Table 10.3, we compare our method to existing baselines on the ScanNet
validation set as well as SceneNN. For ScanNet, we report the mIoU over all
benchmark classes. For SceneNN, we compute the weighted intersection over
union (wloU) and the mean accuracy (mAcc) for all annotated NYU40 classes.
In addition to the quantitative metrics, we also report the voxel resolution for all

methods where it is available. A smaller voxel size generally results in better

157

3D Scene Understanding

g s
s S 5

* A o A I) &

& s 5 & ¥ 5 g & 3

s § 35 » §F o % §F F § 5 855 F 58

.qu L & 3 s S * S .WI S S S [<) Fal 5] = & x

Method mloUt & O & U g & Q q & O Q9 O & & & & & O
Ours - 2D 68.2 834 96.3 60.1 75.0 85.8 77.0 68.7 65.7 60.3 66.7 28.2 64.8 56.1 68.3 61.8 58.8 86.6 62.7 86.0 52.1

Ours - 3D 69.0 85.0 96.8 59.2 739 87.3 75.8 69.7 69.5 613 629 33.1 65.7 56.1 684 61.2 602 89.0 64.1 87.0 52.8
Ours - Temp 70.6 85.6 96.9 59.6 77.1 87.3 75.0 71.9 68.4 658 659 36.6 67.2 61.1 69.4 62.6 65.0 89.8 65.2 87.1 53.8
Dp =64 679 84.4 96.2 59.4 76.9 85.6 73.0 69.5 66.3 63.1 364 248 65.6 61.6 71.3 61.5 67.1 89.1 64.7 89.4 52.9

Dp =40 70.6 85.6 96.9 59.6 77.1 87.3 75.0 71.9 68.4 65.8 65.9 36.6 67.2 61.1 69.4 62.6 65.0 89.8 652 87.1 53.8
Dp =32 68.2 83.0 949 60.8 78.5 86.3 76.0 69.8 61.6 58.7 63.6 24.6 645 61.1 70.0 60.9 504 90.6 67.5 87.5 53.0
Dp=16 68.1 832 952 585 77.9 849 75.8 69.4 61.5 63.8 529 33.0 60.1 582 649 61.5 64.7 90.8 639 859 55.0

Xception 70.6 85.6 96.9 59.6 77.1 87.3 75.0 71.9 68.4 65.8 65.9 36.6 67.2 61.1 694 62.6 65.0 89.8 652 87.1 53.8
MobileNet 66.0 81.2 959 57.8 73.9 83.1 70.8 68.0 60.3 50.2 63.9 37.3 63.1 61.9 634 563 50.1 88.6 58.5 86.2 50.0

Table 10.2: Ablating different aspects of our pipeline on ScanNet [Dai et al., 2017a] validation set. We show that the expert selects
valuable information from the two encoders and the existing scene representation by evaluating the individual pipeline outputs. The
expert network consistently improves upon the two other stages in terms of IoU. We also evaluate the impact of the stored feature
dimension Dr on the overall result. While the smaller feature sizes suffer from compression due to limited capacity the larger features

(Dr = 64) suffer from slight overfitting. Finally, we compare the Xception 2D encoder to the lighter MobileNet (x 20 fewer parameters).

Unsurprisingly, the smaller encoder leads to a slight deterioration of performance, but the results indicate potential for runtime-accuracy
tradeoffs in time-critical applications.

158

Online Semantic 3D Reconstruction

3D Semantic Segmentation

ScanNet SceneNN

Processing Res. [cm] val. mloU wloU mAcc

SemanticFusion [McCormac et al., 2017] N/A 42.3 47.1 58.5
PanopticFusion [Narita et al., 2019] 2.4 53.1 - -

InsConv [Liu et al., 2022b] 2 72.4 - 79.5
SemanticReconstruction [Jeon et al., 2018] Local N/A 44.0 - -

ProgressiveFusion [Pham et al., 2019] Local 0.8 55.0 522 61.6
FusionAware [Zhang et al., 2020] Local N/A 67.2 639 71.7
SVCNN [Huang et al., 2021b] Local N/A 68.3 69.0 769
ALSTER (Ours) Local 4 70.6 67.8 769

Table 10.3: 3D Semantic Segmentation on ScanNet and SceneNN. Scores are mean
intersection over union (mloU) on ScanNet [Dai et al., 2017a] validation, the mean accuracy
(mAcc) and weighted IoU (wloU) on SceneNN [Pham et al., 2019]. All other scores are as
reported in [Huang et al., 2021b] and [Liu et al., 2022b].

scores since finer details can be represented, however this comes at increased
memory costs. Our proposed method performs best among all local methods on
both ScanNet and SceneNN (with a close second on the wloU metric). When
also compared to global methods, INS-Conv [Liu et al., 2022b] performs only
marginally better on ScanNet, even when using a voxel resolution that is twice as
high, highlighting the memory efficiency of our method.

Qualitative Results.

In Figure 10.6 and 10.7, we show additional qualitative results emphasizing
the benefits of leveraging the complementary information obtained from 2D and
3D. As it can be seen from comparing the outputs of the 2D and 3D networks,
the 2D network is mainly responsible for avoiding object-scale confusion of the
semantic class. E.g., a desk that this erroneously confused as a table by the 3D
network is correctly classified by 2D network. The spatio-temporal expert network
learns to select the correct information and corrects the errors. On the other hand,
the 3D network mainly refines low-level misclassifications of points in the scene
and acts as a neural regularizer making sure that all points belonging to the same
object are consistently labelled. E.g., this can be seen in the case of the chair or
desks, where only partially wrong predictions made by the 2D network, which
are subsequently refined by the 3D network. The spatio-temporal expert learns

to leverage this information from the 3D network. In summary, the output of the

159

3D Scene Understanding

2D Output 3D Output Expert Output Ground-truth

2D Output 3D Output Expert Output Ground-truth
Figure 10.6: Additional qualitative results on the ScanNetv2 validation set.

160

Online Semantic 3D Reconstruction

2D Output 3D Output Expert Outpu Ground-truth

71

2D Output 3D Output Expert Output Ground-truth

Figure 10.7: Additional qualitative results on the ScanNetv2 validation set.
spatio-temporal expert network is consistently better than the output of the two
separate branches by fusing their complementary information with the already
integrated information.

10.2.5 Ablation Studies

Does the temporal expert network improve upon the individual 2D and 3D
networks? In Table 10.2, we report the numbers for the different stages in our
pipeline. For each stage, we compute the per-class intersection over union on
the ScanNet validation set. The per-stage labels are obtained from the auxiliary
heads used during training to constrain the joint feature space and aggregated
using a simple voting mechanism. These labels are then mapped to the ScanNet
groundtruth and evaluated using their evaluation pipeline. The numbers show that
the expert is consistently better than the individual branches (Ours - 2D and Ours -
3D). Further, the fact that sometimes the 2D labeling is better than the 3D labels
and the significant margin between 3D and expert indicate that 1) bypassing the
2D information around the 3D encoder is useful and 2) our attention-based fusion

161

3D Scene Understanding

mechanism allows better reasoning over time than simple voting. We also show
the differences between the different stages in Figure 10.5, where one can see the

benefits of selecting information from the two different encoders.

How does our method handle limited data? In order to evaluate the perfor-
mance of our method on limited data, we randomly selected 10 scenes from the
ScanNet validation set. Then, we subsampled the trajectories with different set
sizes in order to simulate limited data. In Figure 10.8, we show the performance
for these different step sizes. For small step sizes, the performance only slightly
changes. For larger step sizes (step size > 10), the performance starts to drop to a
subpar performance. However, even for a very large step size (step size = 50), the
performance does not completely deteriorate.

What does the temporal expert network attend to? In Figure 10.4, we visualize
the attention maps for different frames during the fusion process together with the
corresponding predicted labels. We qualitatively show that they learn to leverage
the two different encoder according to their individual strengths. The temporal
expert network attends to the 3D network for fine-details usually refining edges
and geometric details (e.g., legs of a chair, edge of a table) while it attends to
the 2D feature for information about large regions. Further, we observe that the
fusion with the old scene representation happens in later layers while earlier layers

combine the 2D and 3D information.

What is the impact of the feature dimension Dz? The dimension Dy of the
features stored in the learned scene representation is a key hyperparameter of the
pipeline. Thus, we evaluate its impact on the overall performance in Table 10.2.
One can see that for D below 40 (the default value), the performance is slightly
deteriorated due to the required compression of the semantic information. For
Dr = 64 the main reason for the slight performance drop is the increased
overfitting to the training data due to the increased capacity of the features.

How fast is our method? An average step through our entire (non-optimized)
pipeline takes 116.1 ms (8.6 FPS) on an NVIDIA RTX 2080 and 3.6 GHz In-
tel CPU i9-9900K. To identify the main bottleneck, we analyse the runtime
of the individual components in Fig. 10.9. One pass through the 2D network
DeepLabV3 [Chen et al., 2017b] plus lifting takes on average 83.5ms. One

162

Online Semantic 3D Reconstruction

Semantic reconstruction on limited data

0.69 4

0.68

mioU

0.67 1

0.66 1

0.65

1 5 10 20 50
Subsample Step Size

Figure 10.8: Our model on limited data. We evaluate the performance of the proposed
pipeline on limited data by subsampling the trajectories with different step sizes. We can
see that up to a subsampling step size of 10, the performance drop is insignificant while
above that it starts to drop. However, also under these conditions the performance does not
completely deteriorate.

pass through our light-weight 3D UNet takes 28.6 ms on average, and the tem-
poral expert network operates at 4 ms per frame. These numbers reveal the 2D
DeepLabV3 as the main bottleneck. Thus, we also report the performance of
MobileNet [Howard et al., 2017] in Tab. 10.2 instead of the standard Xception
encoder. This reduces the 2D processing time to 45.2 ms and boosts the overall
runtime to 12.9 FPS.

How many parameters does our pipeline have? Our pipeline consists in
51 - 105 parameters in total. The largest share is due to the the DeepLabV3
(Xception) model, which consists of 41 - 10° parameters. The 3D U-Net consists
of 10 - 10° parameters. Compared to both encoders, the expert model takes a

relatively small share of 92 - 10® parameters. This further justifies our architecture

163

3D Scene Understanding

116.1 ms

28.6 8.6 FPS

77.8 ms

28.6 12.9 FPS

-2D Encoder (MobileNet) -2D Encoder (Xception) |:|3D UNet-Encoder -Temporal Expert

Figure 10.9: Runtime analysis for different 2D backbones. A smaller 2D encoder trades
runtime for accuracy (c.f. Tab. 10.2).

design, with a marginal increase in model size and runtime, we obtain a notable

boost in performance (+1.6 mloU, see Tab. 10.2)

10.3 Discussion

10.3.1 Discussion of Baseline Comparison

Firstly, we would like to further detail the differences to the main baselines.
While our pipeline purely operates in a local frame, some other baselines aggregate
global information at some stage in the pipeline. E.g., INS-Conv [Liu et al., 2022b]
runs a network pass over the entire reconstruction of the scene in order to avoid
feature drift. This is expensive when the pipeline is applied in the reconstruction
of large-scale scenes. There it can become a severe bottleneck to run global
processing to avoid feature drift. We improve this issue by carefully designing
the pipeline with normalization layers in order to avoid this feature drift without
requiring global processing. Secondly, due to the difficulty of unavailable code
for the global methods, we cannot get more qualitative and quantitative results
than the information in their papers.

10.3.2 Why is there no qualitative comparison to baselines?

As the reader might have noted, there is no qualitative comparison to one of
the baselines. This is due to the fact that it is not standard practice to publish the

full pipeline source code for the proposed methods'. Thus, it is not possible to

'INS-Conv [Liu et al., 2022b] has released a code snippet on https:/github.com/THU-
luvision/INS-Conv for their proposed model architecture, but not the full training and evaluation
pipeline. SVCNN [Huang et al., 2021b] has released the training code for their neural network, but not
the full model on https://github.com/shishenghuang/SVNet_jittor

164

https://github.com/THU-luvision/INS-Conv
https://github.com/THU-luvision/INS-Conv
https://github.com/shishenghuang/SVNet_jittor

Online Semantic 3D Reconstruction

show qualitative results on reconstructed data in a baseline comparison. With this
paper, we aim to change this practice by releasing the source code on acceptance

of this manuscript in order to foster more research in this field.

10.3.3 Limitations

One main limitation of our method is the sensitivity to labeling errors in the
groundtruth annotations. In Figure 10.10, we visualize the confusion matrix for
our pipeline on the ScanNetv2 dataset. To better visualize the differences, the
values are normalized in each column, which is the relevant axis for evaluation.
A difficult class on ScanNetv2 is the ‘picture’ category. One can see from the
confusion matrix that this class is oftentimes confused for the wall class. However,
this is also a class where the complementary benefit of 2D and 3D information is
striking. We can show a significant improvement over the two encoders as well
as to all baselines. We also address the problems with the two classes where a
significant drop in performance is visible on the test set. We first focus on the
bookshelf class. There are two issues with the bookshelf class. The first issue is
caused by the hierarchical nature of the labels. I.e., books inside a bookshelf are
oftentimes labelled as bookshelf. However, our method predominantly “correctly*
classifies these books as books. This causes a significant drop in performance. The
second issue is caused by the confusion between bookshelf and shelf. These are
not consistently labelled in the dataset. Thus, our pipeline does not robustly learn
this distinction and miss-classifies this category. The second class are refrigerators.
For this class, the confusion is fuzzier. I.e., refrigerators are confused with different
classes (wall, other furniture, window, and wall).

Similar to the previously presented annotation pipeline, a second limitation
of the presented method is its fixed set of labels. As discussed, the world can be
hardly grouped in a fixed number of categories as these categories not only change
from situation to situation but are also strongly dependent on the context. At the
moment, if the proposed pipeline is deployed into a different, potentially more
specialized or more general setting than indoor scenes, it has to be retrained on a
different dataset. An alternative avenue would be to explore the recent advances

in coupling language with scene understanding for online mapping. This would

165

3D Scene Understanding

00 02 04 05 s 10

wall
floor
cabinet
bed
chair
sofa
table
door
window
bookshelf
picture
counter

floor mat
clothes
ceiling

books
refridgerator
television
paper

towel

shower curtain
box
whiteboard
erson
nightstand
toilet

sink

lamp

bathtub

bag
otherstructure
otherfurniture
otherprop

box

whiteboard

otherprop

shower curtain

Figure 10.10: Confusion matrix of ScanNet validation set results.
potentially allow to train the pipeline only once and deploy it to any environment

afterwards without retraining.

10.3.4 Summary

We presented a novel pipeline for online joint geometric and semantic 3D
reconstruction. The pipeline consists of three components and a learned scene
representation that represents the scene as sparse voxel grid. In order to leverage
the complementary nature of 2D and 3D information, the first two stages encode
2D RGB-D data and enhance the encoded features with 3D spatial information.
At the heart of your pipeline sits a spatio-temporal expert network that fuses
the different sources of information and sequentially updates the learned scene
representation. This network uses an attention mechanism to the 2D, 3D, and
existing features to extract relevant information for the updates. We experimentally
show that this design improves the performance on semantic segmentation upon

the two individual branches.

166

Part IV

3D Scene Editing

167

Chapter 11

Introduction

Throughout history, humans have sought the means to reshape and redefine
reality, a desire that spans from ancient mythologies to cutting-edge technological
innovations. This quest for altering reality extends seamlessly into the realm of
augmented reality, where through technology like computer vision and computer
graphics the possibilities are boundless. The ability to manipulate the fabric of
reality holds the potential to revolutionize various domains, ranging from enter-
tainment and education to enhancing privacy. Consider the scenario where you
are in search of inspiration for new furnishings to adorn your home. Traditionally,
this endeavor entails a visit to a furniture store, where you look at beautiful pieces
displayed in the showroom. However, envisioning how these pieces might fit
harmoniously within the confines of your own living room can be an elusive skill
truly mastered by only a few. For most of us, this imaginative leap is challenging,
if not impossible. This is where the power of altering reality through 3D scene
editing comes into play. 3D scene editing allows to visualize how a particular
piece of furniture, or any object for that matter, would look and feel within your
own home. Achieving this visualization necessitates manipulating the real world
through digital means.

These manipulations are the focus of 3D scene editing. In essence, 3D scene
editing involves a set of fundamental operations that make it all possible. These
operations encompass removing existing objects from a scene, adding new ele-
ments, resizing objects, and transforming them into different poses and positions.

In theory, one can reduce all these operations to a combination of removal and

169

3D Scene Editing

addition of objects to the scene. In doing so, we unlock the potential to reshape
our surroundings and explore new possibilities with technology like augmented

reality.

To convincingly edit reality, the changes must seamlessly integrate with the
three-dimensional world in a manner that does not disrupt the viewer’s immersion.
This implies the need for edits that allow individuals to move within the real
world and explore the augmented reality. Augmented reality (AR) holds the key to
making this theoretical concept a practical reality. However, achieving this vision
presents a multitude of challenges that must be overcome. These hurdles span
various domains of computer vision, including reconstruction, understanding, and
editing. While we have discussed reconstruction and understanding in parts II
and III, we address the problem of editing in this section. Solving this problem is
essential to realize the full potential of augmented reality as a means to truly alter

and enhance our perception of the world around us.

To delve into the intricacies of this challenge, it is crucial to understand the
inherent complexities in convincingly editing scene. Let us take the example of
removing an object from a scene, simplifying the discussion for clarity. Imagine
the task of removing a sofa from your living room. In reality, this operation triggers
a cascade of transformations: 1) By removing the sofa, previously concealed
aspects of the room’s geometry come into view. For instance, the walls and the
floor hidden behind and beneath the sofa are suddenly exposed. 2) The absence
of the sofa leads to a change in the lighting conditions within the room. Light
rays that were once obstructed by the sofa can now illuminate areas that were
previously in shadow. This, in turn, reshapes the patterns of shadows and the
overall lighting ambiance across the scene. In the physical world, these changes
occur organically when an object is removed. However, when undertaking this
task in the digital space, such as removing the sofa from the living room, these
transformations must be computationally modeled. In essence, we must recreate
the real-world effects of object removal digitally, requiring a sophisticated blend
of techniques from computer vision and computer graphics. In the scope of this
part, we focus on the first problem, the problem of digitally removing an object

from a scene.

170

Introduction

The endeavor to digitally manipulate reality involves the manipulation of
measurements that define our perception of the world using the operations de-
scribed above. This necessitates a thoughtful choice of the modality in which
the operations are executed. As digital image processing gained prominence,
the ability to modify photographs became increasingly accessible to the masses.
Consumer software like Photoshop [Adobe Systems, Inc., 1990] empowered users
to wield creative control over static images, granting them the power to manipulate
photographs to suit their preferences. However, these manipulations were confined
to the 2D space, offering a mere snapshot of reality.

While the manipulation of 2D images suffices for certain applications, more
complex scenarios demand a higher degree of sophistication. The next challenge
emerges when striving to consistently edit every frame within a video sequence. In
a static 2D image, the primary focus revolves around solving the aforementioned
problem — removing the object and filling the created hole. However, when it
comes to video, the complexity increases. Achieving a convincing removal and
inpainting necessitates not only solving these challenges for an individual frame
but also maintaining consistency across all frames. This consistency is paramount

for convincing the viewer of the seamless edit.
Yet, an inherent limitation of video arises — it is constrained to a predeter-

mined trajectory through the scene. It confines our ability to freely navigate and
explore the edited space along various paths. To overcome this limitation and
enable unrestricted exploration, we must adopt a scene representation that permits
rendering from any viewpoint within the scene, while still facilitating the desired
edits, such as the removal of an object. Neural radiance fields [Mildenhall et al.,
2020a] have emerged as a popular technique to represent scenes and render novel
views from it. Therefore, we explore the potential of neural radiance fields for
3D scene editing in this part. We propose a method that allows to remove objects
from a neural radiance field and thereby enabling one category of edits that are

required for altering reality.

171

3D Scene Editing

172

Chapter 12

Background

12.1 Overview

As we have learned above, people have always wanted to change and control
reality. With the rise of computer technology, especially in computer vision, this
dream has become more attainable than ever before. We have also learned that
most edits can be reduced to the form of subtraction and addition. As we focus on
object removal in this part, we limit ourselves to discussing the background and
literature for object removal. Subtraction requires to cut out an object of the scene
and plausible fill the created hole with content such that - ideally - the viewer does

not realize that the image has been edited.

12.1.1 Image Inpainting

First works in object removal was based on a stream of research that investi-
gated the task of texture synthesis [Heeger and Bergen, 1995, Efros and Leung,
1999]. ILe., an object gets cut out and the hole is filled with a synthesized texture
based on the surroundings of matching texture from somewhere else [Bornard
et al., 2002]. [Criminisi et al., 2003] combine texture synthesis with structurally
guided inpainting. Yet, all these works look in the same image for patterns and
textures that might fit to fill the hole created by removing the object. [Hays and
Efros, 2007] is the first data-driven approach that looks for matching patches in
millions of images to fill the gap. Another popular approach is [Barnes et al.,

173

3D Scene Editing

2009a], in which the authors propose to look for matching patches in the same im-
age. The method enables interactive edits of images by random sampling and fast
match propagation that exploits the natural coherence of images. Similar to the
two previously discussed fields, the field of image editing was turned upside down
by deep learning. All of the approaches before the revolution were hand-crafted
optimization algorithms with the only way to leverage data are similarities in the
same image or in an existing database of images. This changed in 2012. Context
encoders [Pathak et al., 2016] first proposed to use neural networks for image
inpainting. This was followed by a long line of work that used different neural
network architectures and loss functions to better solve the problem [Liu et al.,
2018, Zeng et al., 2019]. One big challenge in inpainting is to incorporate both -
local and global context. This can be done using dilated convolutions [lizuka et al.,
2017], multiple branches with different receptive fields [Wang et al., 2018], or an
attention mechanism [Yu et al., 2018]. One elegant approach is LaMa [Suvorov
et al., 2022]. This method leverages Fourier convolutions to encode global context
in to the inpainting method. As datasets are ever growing larger, the size of the
inpainting networks become larger and larger and thus more powerful. Most
recently, an especially data hungry approach took over in the field of inpainting -
diffusion models. The learn to denoise a normal Gaussian noise to a real-image.
[Lugmayr et al., 2022, Zhang et al., 2023a] showed that this can be applied to
image inpainting leveraging the strong priors in these diffusion models. Moreover,
it has been shown that the inpainting task can also be guided by language to give
the user more control over the inpainting [Xie et al., 2023, Nichol et al., 2021] In
addition to RGB image inpainting, the inpainting operation was also extended to
depth images by [Fujii et al., 2020]. Despite all this progress in image inpainting,
these methods all suffer from the same shortcoming - multi-view consistency.

This will be addressed in the next sections.

12.1.2 Video Inpainting

How are objects removed consistently across frames? With more computing
power and data, convincingly subtracting content from videos became into the

reach of the possible. The goal of this task is to convincingly remove an object

174

Background

from a video sequence. In image inpainting the created hole only needs to be
filled once. However, in video inpainting the hole needs to be consistently filled
across all frames of the sequence. The consistency is crucial as inconsistent
inpaintings lead to flickering artifacts in the video and the final result is not
convincing to the viewer. Thus, the main focus of video inpainting is on this
consistency. As with images, there has been an extensive body of software that
allowed professionals to laboursly edit videos with the desired content. However,
this is very time consuming and thus motivated research into automated tooling to
speed it up or even fully automate this task. The first step was to extend methods
that were used for image inpainting to videos. This was done by [Patwardhan
et al., 2005]. [Wexler et al., 2007] also leverages texture synthesis from local
patches, but enforce global consistency in the optimization as this is key for video
inpainting. [Granados et al., 2012] leverage the fact that moving objects are
occluding different parts of the scene at different times. This fact can be used for
inpainting by propagating the information about occluded regions from frames
where they have not been occluded. [Newson et al., 2014] employ another image
inpainting technique for video inpainting namely patch-based inpainting. This
approach has been extended by a flow-based term in the cost function by [Huang
et al., 2016] leading to more consistent results. Due to the complexity of handling
video data, it took more time until learning-based approaches tackled the problem
of video inpainting. Not until 2019 was deep learning considered for the task,
when [Wang et al., 2019a, Kim et al., 2019] proposed to leverage neural networks
for the task. This is typically achieved with guidance from nearby frames, e.g.
via estimating flow [Gao et al., 2020, Xu et al., 2019b, Huang et al., 2016, Li
et al., 2022d], sometimes using depth [Liao et al., 2020, BeSi¢ and Valada, 2022],
or an attention mechanism [Zeng et al., 2020]. The approaches presented so far
solve the inpainting problem in an offline manner. [Herling and Broll, 2014]
proposes a video inpainting method that allows for the manipulation of live video
streams. Perhaps counter-intuitively, moving objects make the task easier, since
their movement disoccludes the background, making most parts of the scene

visible in at least one of the frames. This is not the case for static objects.

Removing Static Objects from Videos. Where occluded pixels are visible in

175

3D Scene Editing

other frames in the sequence, these can be used to inpaint regions [Lepetit et al.,
2001, Mori et al., 2020, Mori et al., 2022]. For example, [Liu et al., 2020b, Liu
et al., 2021b] remove static foreground distractors from videos, e.g. fences and
raindrops. However, there are typically still pixels which cannot be seen in other
views, for which some other method is required to fill them in. For example,
[Herling and Broll, 2010] propagates patches from visible pixels into the region
to inpaint, and [Mori et al., 2020, Thonat et al., 2016] inpaint missing pixels
via PatchMatch. Kim et al. [Kim et al., 2021] rely on a pre-computed mesh of
each scene for object removal. Our key difference to these methods is that our

inpaintings can be extrapolated to novel viewpoints.

12.1.3 3D Editing

We already discussed above that editing images or videos has inherent lim-
itations. Editing images allows us to only edit reality from a single viewpoint.
Editing videos allows us to edit reality along a fixed trajectory. While there are
use cases for both of these problems, ideally we want to alter reality in a way
such that a user can explore it from any view point along any trajectory. This
requires to create 2D renderings (images) from a 3D scene with ideally known
lighting. Thus, altering this, requires 3D editing. There are works that propose the
completion of scenes on a geometric and semantic level [Song et al., 2017, Dai
et al., 2018]. However, for altering reality this is not sufficient and oftentimes these
works try to reconstruct the missing object. In order to alter reality, geometry
and appearance have to be inpainted in a plausible way. [Kawai et al., 2015]
leverages background geometry for image inpainting yet the inpainting is still in
2D. [Thonat et al., 2016] were one of the first works that tackled this problem
by representing the scene as a 3D mesh and solve the inpainting using an EM
algorithm based PatchMatch [Barnes et al., 2009b]

Given the limitations of existing 3D editing methods, we propose a NeRF-
based scene editing approach in this part. Our approach allows us to a) remove

objects from a scene and b) re-render novel views of this scenes.

176

Background

12.2 Novel View Synthesis

12.2.1 Neural Radiance Fields

Neural radiance fields (or NeRF) [Mildenhall et al., 2020a] is a highly popular
image-based rendering method which uses a differentiable volume-rendering
formulation to represent a scene; a multi-layer perceptron (MLP) is trained to
regress the color and opacity given a 3D coordinate and ray viewing direction.

The volume rendering equation is given by

N
C'(r) = ZTi (1 — exp (—aiéi)) c; where T; =exp | — Zajéj . (12.1)

i=1

The camera ray r is parameterized using origin o and direction d as r =
o + td. The color ¢; and density are the outputs of the MLP F'(x;,d;) at the a
particular 3D position x; = o + ¢;d observed from direction d. The beauty of
this formulation is that it can be simply optimized from a set of input images with

known poses using a pixel-wise loss function such as

Ly = |R| > llcE) - C)l3 (12.2)

rerR

NeRF combined works on implicit 3D scene representations [Liu et al., 2019a,
Park et al., 2019, Mescheder et al., 2019, Runz et al., 2020, Saito et al., 2019, Saito
et al., 2020, Chibane et al., 2020] discussed in part II, with light-field rendering
[Davis et al., 2012] and novel view synthesis [Hedman et al., 2018, Liu et al.,
2019b, Xu et al., 2019c]. Extensions include work that reduces aliasing artifacts
[Barron et al., 2021], can cope with unbounded scenes [Barron et al., 2022],
reconstructs a scene from only sparse views [Chen et al., 2021, Niemeyer et al.,
2022, Long et al., 2022, Kim et al., 2022] or makes NeRFs more efficient, e.g. by
using octrees [Tremblay et al., 2022, Yu et al., 2021] or other sparse structures
[Sara Fridovich-Keil and Alex Yu et al., 2021].

Depth-aware Neural Radiance Fields To overcome NeRFs requirement for

177

3D Scene Editing

dense views and the limits in the quality of the reconstructed geometry, depth can
be used in training [Deng et al., 2022, Roessle et al., 2022]. Sparse depth is usually
available when a structure from motion framework is used to obtain camera poses
[Schonberger and Frahm, 2016, Schonberger et al., 2016]. Alternatively, depth
from sensors can be used in implicit representations [Rematas et al., 2022, Sucar
etal., 2021].

Object-centric and Semantic NeRFs for Editing One direction of progress in
NeRFs is the decomposition of the scene into its constituent objects [Ost et al.,
2021, Yang et al., 2021, Wu et al., 2022]. This is done based on motion for
dynamic scenes [Ost et al., 2021], or instance segmentation for static scenes [Yang
et al., 2021]. Both lines of work also model the background of the scene as a
separate model. However, similar to video inpainting, dynamic scenes allow a
better modeling of the background since more of it is visible. In contrast, visual
artifacts can be seen in the background representation of [Yang et al., 2021, Wu
et al., 2022], which model static scenes. Methods that decompose the scene
based on semantics [Zhi et al., 2021a, Kobayashi et al., 2022] can also be used to
remove objects. However, they do not try to complete the scene when a semantic
part is removed and, for example, [Kobayashi et al., 2022] discusses how “the
background behind the deleted objects can be noisy or have a hole because it lacks

observation”.

12.2.2 Generative Models for Novel View Synthesis

3D aware generative models can be used to synthesize views of an object or
scene from different viewpoints, in a 3D consistent manner [Nguyen-Phuoc et al.,
2019, Schwarz et al., 2020, DeVries et al., 2021, Rockwell et al., 2021]. In contrast
with NeRF models, which only have a test time component and “overfit” to a
specific scene, generative models can be used to hallucinate views of novel objects
by sampling in the latent variable space. There has also been some interest in 3D
generative models that work for full indoor scenes [DeVries et al., 2021, Rockwell
etal., 2021, Li et al., 2022c]. Howeyver, their capacity to fit the source views (or
memorization) can be limited, as shown in the qualitative results of [DeVries
et al., 2021]. To train the generative model, [DeVries et al., 2021, Li et al.,

178

Background

2022c, Rockwell et al., 2021] require a large dataset of indoor scenes with RGB
and camera poses and in some cases depth [DeVries et al., 2021, Li et al., 2022c].
In contrast, we use a pre-trained 2D inpainting network, which can be trained on
any image, is less dependent on the existence of training data and less constrained

to indoor scenarios.

12.2.3 Inpainting in Novel View Synthesis

Inpainting is often used as a component of novel view synthesis, to estimate
textures for regions unobserved in the inputs [Shih et al., 2020, Wang et al.,
2022a], e.g. for panorama generation [Koh et al., 2021, Hsu et al., 2021]. [Philip
and Drettakis, 2018] enable object removal from image-based-rendering, but
with an assumption that background regions are locally planar. Similarly to our
approach, two concurrent works [Liu et al., 2022a, Mirzaei et al., 2023] leverage
single image inpaintings to remove objects from NeRFs. To deal with multi-view
inconsistencies, [Liu et al., 2022a] manually selects a single view to use in the
NeRF optimization inside the mask, while [Mirzaei et al., 2023] uses a perceptual

loss.

179

3D Scene Editing

180

Chapter 13
Removing Objects from

Scenes

Removing objects from 3D scenes and coupling it with novel view synthesis
for use-cases such as augmented reality is challenging for several reasons. First,
holes that are created by the removal of the object have to be filled with consistent
geometry and appearance. Second, the rendered images have to multi-view
consistent and be of high quality in order to provide a convincing and immersive
experience to a user.

In this chapter, we approach the problem of jointly removing objects from
scenes and render novel views using neural radiance fields. Since the initial
publication of Neural Radiance Fields (NeRFs) [Mildenhall et al., 2020a], there
has been an explosion of extensions to the original framework, e.g. [Barron et al.,
2021, Barron et al., 2022, Chen et al., 2021, Deng et al., 2022, Kim et al., 2022, Liu
etal., 2021a, Long et al., 2022, Mildenhall et al., 2020a]. NeRFs are being used
beyond the initial task of novel view synthesis. It is already appealing to get
them into the hands of non-expert users for novel applications, e.g. for NeRF
editing [Yuan et al., 2022] or live capture and training [Miiller et al., 2022], and
these more casual use cases are driving interesting new technical issues.

One of those issues is how to seamlessly remove parts of the rendered scene
as described above. Removing parts of the scene can be desirable for a variety of

reasons. For example, a house scan being shared on a property selling website

181

3D Scene Editing

Novel views

Novel view . .
ovelviews without the object

Figure 13.1: Removal of unsightly objects. Our method allows for objects to be plausibly
removed from NeRF reconstructions, inpainting missing regions whilst preserving multi-
view coherence.

182

Removing Objects from Scenes

may need unappealing or personally identifiable objects to be removed [Sulaiman
et al., 2020]. Similarly, objects could be removed so they can be replaced in an
augmented reality application, e.g. removing a chair from a scan to see how a new
chair fits in the environment [Ozturkcan, 2021]. Removing objects might also be
desirable when a NeRF is part of a traditional computer vision pipeline, e.g. remov-
ing parked cars from scans that are going to be used for relocalization [Moreau
etal., 2022].

Some editing of NeRFs has already been explored. For example, object-
centric representations disentangle labeled objects from the background, which
allows editing of the trained scene with user-guided transformations [Yang et al.,
2021, Wu et al., 2022], while semantic decomposition allows selective editing
and transparency for certain semantic parts of the scene [Kobayashi et al., 2022].
However, these previous approaches only augment information from the input
scan, limiting their generative capabilities, i.e. the hallucination of elements that
have not been observed from any view.

In this chapter, we tackle the problem of removing objects from scenes,

while realistically filling the resulting holes, as shown in Fig. 13.1. Solving this
problem requires: a) exploiting multi-view information when parts of the scene
are observed in some frames but occluded in others and, b) leveraging a generative
process to fill areas that are never observed. To this end, we pair the multi-view
consistency of NeRFs with the generative power of 2D inpainting models [Suvorov
et al., 2022] that are trained on large scale 2D image datasets. Such 2D inpaintings
are not multi-view consistent by construction, and may contain severe artifacts.
Using these inpaintings directly causes corrupted reconstructions, so we design a
new confidence-based view-selection scheme that iteratively removes inconsistent
inpaintings from the optimization. We validate our approach on a new dataset and
show that we outperform existing approaches for novel view synthesis on standard

metrics of image quality, as well as producing multi-view consistent results.
In summary, we make the following contributions in this chapter:

* We propose the first approach focusing on inpainting NeRFs by leveraging the

power of single image inpainting.
* We introduce a novel view-selection mechanism that automatically removes

183

3D Scene Editing

Bad Inpaintings Good Inpaintings
h i3 —

o

Figure 13.2: Per-frame inpainting can give plausible results for each frame, but they are
not consistent between viewpoints and sometimes contain severe artifacts corrupting the
optimization.

inconsistent views from the optimization.

* We present a new dataset for evaluating object removal and inpainting in indoor

and outdoor scenes.

13.1 Method

We assume we are given an RGB-D sequence with camera poses and intrinsics.
Depths and poses could be acquired, for example, using a dense structure-from-
motion pipeline [Schonberger et al., 2016, Schonberger and Frahm, 2016]. For
most of our experiments we capture posed RGB-D sequences directly using
Apple’s ARKit framework [Apple, 2017], but we also show that we can relax this
requirement through use of a multi-view stereo method to estimate depth for an

RGB sequence. Along the way, we also assume access to a per-frame mask of the

184

Removing Objects from Scenes

"POAOWIAI USq Sky 109[q0 Y 2ISYM ‘QUIDS 9Y) WOIJ PAIIPUI 9q UBD SMIIA [9AOU ‘A[[eUL] J[NSAI [eUY

oy ur sjoejniIe pajuemun Sunuosdid uorezrundo oY) WOIJ SMITA JUI)SISUOIUL SOAOUWIAI AJ[EOTJEWIOINE UOT)OI[OS MIIA PISEQ-I0UIPLUOD
1o ‘voneziundo Suung "prey doueIpel [einadu e ozrwndo 0 pasn uay) pue [zz0z 1t 10 Aozoang] Suisn pajuredur axe sowel) (g YL,

i [}
panowai 103[qo
YUM SisayuAs main [anoN

‘ndur se sysew g Surpuodsariod ym 193050} saSewt (-gOY pasod Jo 2ouanbas € axe) oA\ POYIIU INO JO MIIAIIAOC UY :¢°¢T 9INSI

Ssen

)

dew yidap pajuredu|

&

§ - G300

3
i

a8ew) pajuredu|

UOI393]3S M3IA UM uoneziwndo JYaN poylaw Sunuiedul gz induj

v
oo}
—

3D Scene Editing

object to be removed. The goal is to learn a NeRF model from this input, which
can be used to synthesize consistent novel views, where the per-frame masked
region should be plausibly inpainted. An overview of our method is shown in
Figure 13.3.

13.1.1 RGB and Depth Inpainting Network

Our method relies on a 2D image inpainting method to inpaint each RGB
image individually. We motivate this choice with the abundance of training data
available for training 2D inpainting methods. By training on this data, the model
can incorporate strong priors from the data. Moreover, the inpainting task can be
simply modelled by masking out regions in the input image, while keeping the
the training data as natural as possible. In contrast, achieving the same results in
3D would require capturing large-scale 3D datasets. Especially the naive masking
would not necessarily lead to the same results as the 2D training procedure. ILe., if
you randomly mask out you rather model to reconstruct or complete the (partially)
removed object than inpaint the background. Thus, we decide to leverage 2D
inpainting models for our method. Furthermore, we also require a depth inpainting
network. We use both networks as black-boxes and our approach is agnostic to
the method chosen. Future improvements in 2D image inpainting can be directly
translated to improvements to our method.

Given an image [,, and corresponding mask M, the per-image inpainting
algorithm produces a new image I,,. Similarly, the depth inpainting algorithm
produces an inpainted depth map D,,. We show some results for the 2D inpainting

network in Figure 13.2.

13.1.2 Background on NeRFs

Following the original NeRF paper [Mildenhall et al., 2020a], we represent
the scene as an MLP Fg that predicts color ¢ = [r, g, b] and density o, for a 5
dimensional input containing z, y, z position and two viewing directions. The

predicted color for pixel r, fn(r), is obtained by volume rendering along its

186

Removing Objects from Scenes

associated ray, so

Ly(r) =Y Ti(1 —exp (—0:6)) ¢, (13.1)
i=1 »
where
T = exp Zgj . (13.2)

K is the number of samples along the ray, ¢; is a sample location, §; = t;11—1;
is the distance between adjacent samples, and w; is the alpha compositing weight
which, by construction, sum to less than or equal to 1.

The NeRF loss operates on training images as

2

Lrep = ; (13.3)

~ L(x)|

n=1reQ,

where I,,(r) is the input RGB value for pixel r, and I, (r) is its predicted color.
,, indicates the 2D domain of image n. The parameters of the MLP, O, are
optimized to minimize this loss. Similarly to [Roessle et al., 2022], if input depth

is available, then an additional loss can be added,

N
Lo = Y D | Dalr) = Dufw)|, with Da(Zw, o (134)

n=1reQ,

where D,,(r) is the input depth for pixel r, and D, (r) is the corresponding
predicted depth.

Finally, a distortion regularizer loss was introduced in [Barron et al., 2022] to
better constrain the NeRF optimization and remove “floaters”. It encourages the
non-zero compositing weights w; to be concentrated in a small region along the

ray, so for each pixel r,

ldlSl § W; W,

4,J

ittt +t3+1
2

Zw25 (13.5)

187

3D Scene Editing

13.1.3 Confidence-based View Selection

Despite most of the individual inpainted RGB images I, looking realistic,
they still suffer from two issues: 1) some of the inpaintings are incorrect, and 2)
despite individual plausibility, they are not multi-view consistent, i.e. the same
area observed in multiple views is not necessarily completed in a consistent way
(Figure 13.2). For this reason, we propose a confidence-based view selection
scheme, that automatically chooses which views are used in the NeRF optimiza-
tion. We associate to each image I,, a non-negative uncertainty measure .
The corresponding per-image confidence, e~“~, is used to re-weight the NeRF
losses. This confidence value can be seen as a loss attenuation term, similar to the

aleatoric uncertainty prediction term in [Kendall and Gal, 2017].

The RGB loss for our model is then set out as

Lep(D) = Z > ‘In(r)*fn(l‘)H2+Ze’“" 3

n=1reQ,\M, nep reM,

(1) = (o)

(13.6)
where the color for pixels r is supervised by the inpainted image for pixels inside

the mask, and by the input RGB image for pixels outside the mask. Note that
the second term of this loss is only computed over a restricted set of images P,
where P C {1,.., N}. This is indicated by the superscript P in the loss term
LEsp- In practice, that means that only some inpainted regions are used in the

NeRF optimization. We discuss below how we choose the set P.

We use a similar split into pixels inside and outside the mask for the depth

loss, so

Fu=y Y D) = Dafx)| + - e 3 [Dalr) = Dur)]-

n=1lreQ,\M, nep reM,
(13.7)

Finally, we include two regularizers. One is on the uncertainty weights
Ezgg = > _nep Un, to prevent a trivial solution where e~*» is 0. The other is

a distortion regularizer, based on [Barron et al., 2022], using the loss detailed in

188

Removing Objects from Scenes

Equation (13.5), so

N
CE=3" Y @+ Y (). (13.8)

n=1reQ,\M, nePreM,

View Direction and Multi-view Consistency. When optimizing the NeRF, we
made three observations: a) the multi-view inconsistencies in the inpaintings are
modelled by the network using the viewing direction; b) we can enforce multi-
view consistency by removing the viewing direction from the input; and c) the
inconsistencies introduce cloud-like artifacts in the density when not using the
viewing direction as input. To prevent a) and c) and correctly optimize the variables
u,, that capture the uncertainty about the inpaintings I,,, we propose: 1) adding an
auxiliary network head, Fé” V' to the NeRF that does not take the viewing direction
as input and, 2) stopping the gradient from the color inpainting and F3'"" to the
density, leaving the uncertainty variable u,, as the only view-dependent input. This
design forces the model to encode the inconsistencies between inpaintings into
the uncertainty prediction while keeping the model consistent across views. Fé”v
has a loss term based on Equation 13.6: L, (I™V). The outputs of the auxiliary
head Féy V' are not used in the final rendering. Instead, the loss associated to
this extra head is a regularisation term. See Figure 13.4 for an illustration of our
architecture.

Our final loss is then

P = /\RGB£7RDGB (f) + /\RGB£7RDGB (f MV) +)‘depthﬁzizpth + AregﬁZe)g +)‘distﬁfisw

(13.9)
which is optimized over the MLP parameters © = {©7,0¢,0MV} and the
uncertainty weights U” = {u,,n € P}. The confidence of all images is

initialized to 1, i.e. u,, := 0.

Iterative Refinement. We use the predicted per-image uncertainty, u,,, in an
iterative scheme that progressively removes non-confident images from the NeRF
optimization, i.e. we iteratively update the set P of images that contribute to the
loss in masked regions. After Kgpq steps of optimizing £7, we find the median

estimated confidence value m. We then remove from the training set all 2D

189

3D Scene Editing

view - C
direction HHH—* color 1

c

E (S} o o

density é

MV _ ¥

ro et

) MV =
un

Losses

Vi +7g

P P
E dist L RGB L depth Ereg RGB

Figure 13.4: Full network architecture. The backbone of our NeRF is a MLP consuming
the 3D coordinate as input. This branches into two parts, where one takes the view-direction
as input and the other does not. The output are the density, a view-dependent and view-
independent color. These outputs are used to volume render two images. The one is
view-dependent while the other ™MV is multi-view consistent. The losses 517:(;13 and [,;Zpth
are weighted by the view-specific uncertainty variable u,,, which only receives gradient
from MV .

190

Removing Objects from Scenes

Algorithm 1: Iterative refinement using confidence based view selection.

Data: Input images I,,, Inpainted images /,,, Depth maps D,,, Inpainted depth
maps D,,, Masks M,

Result: Trained NeRF model Fg with object removed

/* Set of images used for training NeRF is initialized with all
images. x/

P+ {l,..,N}andup < 0, n€P

for i < 0 to Kyyrer do

© < randomly initialized

/* Gradient iterations of NeRF training. */

for j < 0 to Kgyyq do

0+ 6 -VeLP

U? + UP —vypL?

/* Calculate median of confidence values. */
m = median({e~%",n € P})
/+ Update P by removing images with small confidence. */
for n € P do
if e™“n < m then
| P+« P\n

inpainted regions which have associated confidence scores less than m. We then
retrain the NeRF with the updated training set, and repeat these steps K oyer times.
Note that images excluded from 7P still participate in the optimization, but only
for rays in the unmasked regions as they contain valuable information about the

scene. This is summarized in Algorithm 1.

13.1.4 Implementation Details

Masking the Object to be Removed. Similarly to other inpainting methods, our
method requires per-frame masks as input. Manually annotating each frame with
a 2D mask, as done in other inpainting methods [Suvorov et al., 2022, Xu et al.,
2019b, Li et al., 2022d], is time consuming. Instead, we manually annotate a 3D
box that contains the object using MeshLab [Cignoni et al., 2008] to visualise and
annotate a 3D point cloud. This only has to be done once per scene. Alternatively,
we could have relied on 2D object segmentation methods, e.g. [He et al., 2017],
or 3D object bounding box detectors, e.g. one of the baselines in [Ahmadyan et al.,
2021].

Mask Refinement In practice, we observe that masks obtained from the annotated

3D bounding boxes can be quite coarse and include large parts of the background.

191

3D Scene Editing

Raw masks Refined masks

i - i i -

Figure 13.5: Mask refinement Our mask refinement leads to smaller masks and therefore
higher quality inpainting.

Since large masks have a negative effect on the inpainting quality, we propose
a mask refinement step to obtain masks which are tighter around the object.
This step is not required if input masks are already tight. Intuitively, this mask
refinement step removes parts of the 3D bounding box that are empty space. We
start by taking all points in the reconstructed 3D point cloud that are inside the
3D bounding box. The refined mask is then obtained by rendering these points
into each image and performing a simple comparison with the depth map to check
occlusions in the current image. The resulting mask is cleaned up by dilating any
pixel leaks caused by sensor noise using binary dilation and erosion. The effect of

our mask refinement step can be seen in Figure 13.5.

Inpainting Network We used [Suvorov et al., 2022] for inpainting both RGB and
depth. The inpainting of RGB images and depth maps is done independently and
we use the reference network provided by the authors of [Suvorov et al., 2022] for
both. Our depth maps are preprocessed by clipping to 5 m and linearly mapping
depths in [0 m, 5 m)] to pixel values of [0, 255]. We observed empirically that this
approach provided good results, but an inpainting method specific for depth maps

could improve over this baseline.

NeRF Estimation The implementation of our method is built upon [Niemeyer
et al., 2022] and [Barron et al., 2021]. We weight the terms in the loss function
with ARgB = Adepth = Adist = 1, and Az = 0.005. We do a filtering step,
where we remove low confidence images every Kyr,g = 50, 000 steps, resulting

in Koyer = 4 filtering steps. Timings for our method are comparable to those of a

192

Removing Objects from Scenes

standard NeRF, in our case [Niemeyer et al., 2022] and [Barron et al., 2021].

13.2 Experiments

13.2.1 Datasets

While previous approaches have tackled static object removal from videos,
no standard dataset/metrics to evaluate these systems has been proposed, to our
knowledge. This work introduces an RGB-D dataset of real scenes, designed to
evaluate the quality of object removal. Our dataset has two variants, which are
used differently when benchmarking. Please see Appendix B for a full overview
about our dataset.

Ours - Real Objects. This dataset comprises 17 scenes focusing on a small
area with one object of interest. They vary in difficulty in terms of background
texture, size of the object, and complexity of scene geometry. For each scene, we
collected two sequences, one with and the other without the object that we want to
remove. The sequences are collected using ARKit [Apple, 2017] on an iPhone 12
Pro with Lidar, and contain RGB-D images and poses. The masks are annotated
and refined as described in Section 13.1.4. For each scene, we use the sequence
with the object and corresponding masks for training the NeRF model, and the
sequence without the object for testing. The use of real objects makes it easier to
evaluate how the systems deal with real shadows and reflections, as well as novel
view synthesis.

Ours - Synthetic Objects. Most video and image inpainting methods, e.g.
[Suvorov et al., 2022, Li et al., 2022d], do not perform novel view synthesis,
meaning such methods cannot be fairly evaluated on our ‘Real objects’ dataset.
We therefore introduce a separate synthetically-augmented variant of our dataset.
This uses the same scenes as the real objects dataset, but we only use the sequence
without the object. We then manually position a 3D object mesh from ShapeNet
[Chang et al., 2015] in each scene. The object is placed so that it has a plausible
location and size, e.g. a laptop on a table. The masks are obtained by projecting
the mesh into the input images, which is the only use we make of the 3D object

mesh. For this synthetic dataset, following e.g. [Barron et al., 2022], we use every

193

3D Scene Editing

Synthetic objects - Masked Real objects - Masked
PSNRT SSIMT LPIPS| Depth L; | Depth Lz | PSNRt SSIMt LPIPS| DepthL; | Depth Ly |

Image and video inpainting baselines

LaMa [Suvorov et al., 2022]F 27.999 0.898 0.060 0.070 0.075 - - - - -
E2FGVI [Li et al., 2022d] ¥ 24.568 0.874 0.102 - - - - - - -
3D scene completion baselines
PixelSynth [Rockwell et al., 2021]% 25.481 0.887 0.116 - - 25.438 0.851 0.152 - -
CompNVS [Li et al., 2022c] 17.389 0.823 0.171 1.697 3.641 - - - - -
Object compositional NeRF [Yang et al., 2021]* - - - - - 21.757 0.836 0.134 0.312 0.341
Ablations
Masked NeRF 26.126 0.882 0.093 0.084 0.105 21.644 0.815 0.142 0.096 0.054
Inpainted NeRF 28.760 0.905 0.086 0.278 0.400 23.705 0.848 0.134 0.145 0.121
Inpainted NeRF + inpainted Depth 27.568 0.898 0.094 0.231 0.318 23.652 0.844 0.136 0.313 0.387
Ours — no depth 28.290 0.906 0.079 0.296 0.335 24.228 0.848 0.130 0.345 0.288
Ours — depth predicted using [Sayed et al., 2022] 26.540 0.895 0.087 0.112 0.118 25.010 0.856 0.128 0.142 0.140
Our method 29.437 0.916 0.078 0.069 0.096 25.271 0.859 0.125 0.071 0.044

Table 13.1: Comparison with baselines and state of the art methods. Our method is either best or second-best compared to other
novel-view synthesis baselines in inpainting the missing regions of the scene, by propagating multi-view information and leveraging
2D inpainting information. Notes: TThese methods can’t be evaluated on the proposed real dataset as they do not synthesize novel
views. These methods do not produce depth maps. *[Yang et al., 2021] requires the actual object therefore it cannot be evaluated on the
proposed synthetic dataset.

194

Removing Objects from Scenes

8th frame for testing and the rest of the frames for training the NeRF model.
ARKitScenes. We further validate our approach qualitatively on ARKitScenes
[Baruch et al., 2021a]. This is an RGB-D dataset of 1,661 scenes, where depth

was captured via iPhone Lidar.

Input

Rendering

i

Figure 13.6: Results on ARKitScenes [Baruch et al., 2021a]. We can successfully
remove objects from casually captured sequences in indoor scenes.

13.2.2 Metrics

To evaluate the object removal and inpainting quality, we compare our system’s
output image against the ground truth image, for each test image in the dataset.
All metrics in the paper are only computed inside the masked region. We use
the three standard metrics for NeRF evaluation [Mildenhall et al., 2020a]: PSNR
[Hore and Ziou, 2010], SSIM [Wang et al., 2004] and LPIPS [Zhang et al., 2018].

195

3D Scene Editing

To evaluate the geometric completion, we compute the L; and L, error between
the rendered and the ground-truth depth maps inside masked regions. The metrics

are averaged over all frames of a sequence, and then averaged over all sequences.

13.2.3 Ablations and Comparison with Baselines

In Table 13.1, we compare our approach with alternative methods for object
removal, with a focus on methods that use an underlying NeRF representation.
Image and Video Inpainting Baselines. We compare with two state-of-the-art
methods for image LaMa [Suvorov et al., 2022] and video inpainting E2FGVI [Li
et al., 2022d]. In both cases, we use their reference implementation and provided
trained network. Neither of these methods allows novel view synthesis, so they
are only evaluated on the synthetic objects dataset.
3D Scene Completion Baselines. We compare with several published works
for 3D scene completion. Note that none of these baselines specifically targets
inpainting, so results should be viewed with this in mind. For all of them, we use
their publicly available implementation. PixelSynth [Rockwell et al., 2021] and
CompNVS [Li et al., 2022c] were both proposed for scene outpainting. Given one
or a few frames of a scene their goal is to complete the scene to enable novel view
synthesis. Both of these methods rely on a generative model of indoor scenes
and neither requires test-time optimization. Both methods are adapted to use our
masks as input. Object compositional NeRF [Yang et al., 2021] editing of objects
in NeRFs via pose transformations. We adapt their code for object removal by
setting a transformation that moves the object outside the camera’s field of view.
Ablations. We compare different ablations of our method, including different
ways of training a baseline NeRF model. Masked NeRF corresponds to training
a NeRF using the full input RGB-D data, but pixels and depths in the masked
regions are ignored in the NeRF losses. Inpainted NeRF is a NeRF trained with all
inpainted images, but not using the inpainted depth maps, while Inpainted NeRF
+ Inpainted Depth uses all the inpainted images and inpainted depth maps. This
baseline corresponds to “All views” in Table 13.2. We also present results for
our method, i.e. training the NeRF with the confidence-based view selection step,

but without using depth maps as input (“Ours - no depth” and using depth maps

196

Removing Objects from Scenes

from a state-of-the-art multi-view depth prediction method [Sayed et al., 2022]
to show that we do not necessarily rely on sensor depth (“Ours - depth predicted
using [Sayed et al., 2022]7).

Finally, “Our method” is our proposed approach, which uses the method
described in Section 13.1.

As shown in Table 13.1, our method is superior to other novel-view synthesis
baselines across most appearance and depth metrics. Moreover, as opposed to
the single image inpainting LaMa [Suvorov et al., 2022], our method is close to
multi-view consistent, significantly reducing inter-frame flickering. Our method
also outperforms the naive baselines, which train a NeRF with a masked version
of the image, or all the inpainted images. Training our method without using
depth maps leads to comparable performance in terms of image metrics, while the
depth metrics are considerably worse indicating a degrade in the quality of the
recovered 3D shape. Using predicted depth maps from [Sayed et al., 2022] gives

competitive results, while pointing to an interesting direction for future research.

Qualitative Comparison. In Figure 13.7, we show that the proposed method suc-
cessfully removes the selected object compared to the baselines. While Masked
NeRF fails to complete large holes and Inpainted NeRF suffers from bad in-
paintings in the training set, our method can leverage the 2D inpaintings, while
avoiding integrating artifacts by removing those input frames. In contrast to Object
compositional NeRF [Yang et al., 2021], leveraging the inpaintings also helps to
mitigate the appearance of artifacts below the object’s surface. Compared to [Yang
et al., 2021] and [Rockwell et al., 2021], our method is better able to generate
plausible scene completions. We also show results from the ARKitScenes dataset

in Figure 13.6.

View Selection Ablation Here we validate that our view selection procedure
from Section 13.1.3 contributes to improved results. We compare our method with
different view selection strategies in Table 13.2 on our synthetic object dataset.
“All views” uses all the inpainting views when training the NeRF model. The
other baselines use a subset of views to train the NeRF model, spaced at regular
intervals: every 10th frame for 1/10th; every 50th frame for 1/50th, and single
middle frame for Single view. The number of views used for each sequence

197

3D Scene Editing

Method #of views PSNRT SSIMtT LPIPS| L] Lol
All views 82-382 27.568 0.898 0.094 0.231 0.318
1/10th 8-38 27.098 0.900 0.079 0.202 0.291
1/50th 1-7 26.718 0.893 0.087 0.229 0.309
Single view 1 26.232 0.892 0.079 0.133 0.198
Ours 10-185 29.437 0.916 0.078 0.069 0.096

Table 13.2: Ablation on view selection methods. We validate our view selection formula-
tion by comparing to alternative approaches. Ours consistently produces better performing
models.

varies depending on the length of the sequence. We outperform these baselines,
suggesting that our proposed strategy for view selection is effective in choosing a

good set of views to include in the NeRF optimization.

13.3 Discussion

13.3.1 Limitations

The main limitation of our method is that it is upper bounded by the perfor-
mance of the 2D inpainting method. Context is important for inpainting models
as the 2D context is the main responsible for defining how the hole in the image is
inpainted. Therefore, the 2D inpainting fails if the masks are too large not enough
context is provided to do plausible hole filling. If this is the case along the entire
trajectory, our method cannot inpaint the hole and the object removal fails as there
needs to be a minimum number of inpainted images that also agree with each

other to successfully remove the object from the scene.

Second, the 2D inpainting networks to do not consistently inpaint high-
frequency textures. This is especially visible when looking at inpaintings of the
inpainted frames. The inconsistency manifests itself by flickering high-frequency
between frames of the sequence. Due to this flickering, our renderings some-
times suffer from blurring as the optimization can only resolve this low-level
inconsistency by averaging the information from the different views.

Third, cast shadows or reflections of the object are not handled well. The

chosen inpainting method [Suvorov et al., 2022] is remarkably good in reconstruct

198

Removing Objects from Scenes

shapes from its shadows. This leads that the reconstruction is sometimes contami-
nated by shadow artifacts that are introduced by the 2D model. This problem can
be naively mitigated by increasing the mask. However, the larger the mask the
higher the risk that we start to suffer from inpainting failure. Moreover, reflections

are not handled with our method.

13.3.2 Summary

We presented a framework to train neural radiance fields, where objects
are plausibly removed from the output renderings. Our method draws upon
existing work in 2D inpainting, and introduces an automatic confidence-based view
selection scheme to select single-view inpaintings with multi-view consistency.
We experimentally validated that our proposed method improves novel-view
synthesis from 3D inpainted scenes compared to existing work, despite suffering
from blurring. We have also introduced a dataset for evaluating this work, which

sets a benchmark for other researchers in the field.

199

3D Scene Editing

Masked NeRF{

Inpainted NeRFf{

Obj. comp.
[Yang et al., 2021]

PixelSynth
[Rockwell et al., 2021]

Ours

Ground-truth

Removing Objects from Scenes

HIeN
pajuredu] pue JYON POYSBIA :SQUIasEq paseq JYON 0M] Yim aredurod os[e opy -l "UONOS[as MIIA drjewoIne Jnoyjim aurfeseq sunuredur
9 0) pareduwiod 90UATIOAU0D SAZI[IqR)S PUE SIOBJIMIE sjeSnIw 31 ‘Joying “Sunuredur ¢ Suisn ousds € woij s309[qo Suraowal Jo yse}
ay Joj seurfeseq uona[dwod ausds (¢ 10A0 seaoidwir A[jueoyIuSis poylow InQ *dUIPseq YPim suostredwod danejeng) :L°¢1 danSiy

[120T “Te 10 Suex]
“dwoo *fq0 119eN parureduy LIoN padiseN ndug

(1202 e 12 [[PM}00]
IN0-punoin smQ uksexIg

201

3D Scene Editing

Rendering) Rendering

Figure 13.8: Failure cases and limitations. Our method can not recover when the 2D
inpainting method fails all the frames, for example when the mask and covers a large part
of the image. Further, our method keeps the shadows of the removed object, if they are not
included in the object mask.

202

Part V

Conclusion

203

Chapter 14

Summary

In conclusion, we explored three fundamental pillars within of augmented
reality pipelines: 3D scene reconstruction, 3D scene understanding, and 3D scene
editing. Reconstruction is the foundation of most AR applications providing
essential spatial awareness. This spatial awareness, in turn, underpins critical
functionalities like interaction and creation of immersive user experiences. Under-
standing, as the second pillar, proves indispensable for the creation of experiences
in the physical world that necessitate the generation of contextually relevant con-
tent for augmented reality users. Lastly, 3D scene editing serves as the third
essential component, allowing for alterations of reality in various forms. This
capability finds application in diverse scenarios, ranging from visualizing new
furniture arrangements in a living room to crafting captivating augmented reality
gaming experiences. In concert, these three pillars represent the building blocks
that enable augmented reality technologies to seamlessly integrate with our daily

lives, transforming how we perceive and interact with the world around us.

3D Scene Reconstruction In the part dedicated to 3D scene reconstruction,
our primary focus revolved around addressing the challenge of real-time scene
updates using a continuous stream of RGB-D sensor data. We leveraged the power
of machine learning for depth map fusion, demonstrating its superior accuracy
compared to conventional hand-crafted methods. We started by addressing the
challenge of handling depth-dependent noise that is common in depth sensing tech-

nology from a machine learning perspective while keeping the overall lightweight

205

Conclusion

and efficient. To this end, we extracted the current state of the reconstruction that
is observed by the new measurement into a view-dependent local grid, update
this local grid with the new information, and integrate the updated local geometry
into the global scene. We showed that fusing depth maps using this approach
increases accuracy compared to hand-crafted methods such as [Curless and Levoy,
1996a]. Further, we tackled the persistent issue of outliers contaminating re-
constructed geometry, a common affliction of 3D reconstruction algorithms like
two-view dense stereo. This approach involved moving the fusion process to
a latent space, subsequently translating this latent representation into the final
output geometry using neural networks. This technique not only facilitated the
fusion of all available information but also efficiently eliminated outliers during
the translation process. Remarkably, our method achieved a significant reduction
in outlier contamination without compromising the completeness of the recon-
struction, a persistent challenge encountered by traditional post-processing-based
outlier removal methods. Furthermore, we ventured into the territory of efficient
and accurate RGB-D fusion. Here, we introduced a scene representation termed
"DeepSurfels," combining the efficiency of surfels with learned features. Comple-
menting this novel representation, we proposed a learning-based fusion pipeline
to seamlessly integrate RGB-D data into the DeepSurfels scene representation.
Our empirical experiments confirmed the effectiveness of this combined approach,
highlighting the effectiveness of DeepSurfels in enhancing the quality of the
rendered images.

3D Scene Understanding. In the realm of 3D scene understanding, we con-
fronted two pivotal questions. Firstly, we grappled with the challenge of automat-
ing the scaling of annotations for 3D scene understanding datasets. Our solution
entailed the development of an automated annotation pipeline that commenced
by generating semantic predictions for individual frames through state-of-the-art
segmentation models. These predictions were subsequently merged into a uni-
fied consensus prediction. Navigating the complexity of varying label spaces
employed by different models, we carefully crafted a framework for mapping
these diverse label spaces into a unified label space. This endeavor involved two

critical components: a) the deliberate design of a unified label space, which not

206

Summary

only resolved ambiguities but also boasted high resolution to capture the intricate
nuances of the real world, and b) the construction of label space translations to
align each unique label space with the unified one. To lift our approach to three
dimensions, we mapped the 2D consensus into 3D, introducing an additional
layer of aggregation and denoising. This lifting also facilitated the creation of
multi-view consistent 2D maps through the rendering of 3D annotations back into
2D views. Our empirical evaluation demonstrated that the proposed pipeline not
only rivaled human-annotated labeling approaches but also significantly outper-
formed them when human labels were integrated into the pipeline. This method
empowers the scalability of 3D semantic segmentation to large-scale datasets,
enabling the training of expansive models and the evaluation of existing ones with

unprecedented efficiency and accuracy.

Secondly, we tackled the challenge of incremental semantic mapping with
only using local information. To this end, we proposed a spatio-temporal expert
network that combines information from the 2D and 3D domain with existing
information stored in the learned scene representation. The key is that incremental
mapping methods have to incorporate an as large receptive field as possible
yet they should be efficient in terms of runtime and memory. Therefore, we
kept the 3D processing local and avoid expensive recomputation of intermediate
representations across the entire scene. Instead, we extracted valuable global
context from the current 2D view, refined it in the local 3D window and combined
it with previously aggregated information. In an extensive experimental evaluation,
we showed that this approach outperforms all existing local methods while only
being slightly inferior to state-of-the-art methods that all require global context to

achieve their results.

3D Scene Editing. Within the domain of 3D scene editing, we tackled the
challenge of object removal from neural radiance fields - a widely popular scene
representation known for its versatility in novel view synthesis, geometry recon-
struction, and appearance modeling. Numerous practical scenarios call for the
ability to seamlessly eliminate objects from reconstructed scenes, whether driven
by privacy concerns, the desire to remove unsightly elements, or the need to focus

on the fundamental underlying geometry (e.g., the room).

207

Conclusion

To this end, we introduced a method that automates the removal of objects
from these neural radiance fields. Leveraging strong priors derived from 2D
inpainting models, we designed on a two stage process. Initially, we inpainted
2D images, harnessing the output frames within the optimization of the neural
radiance field. However, our initial attempts revealed unsatisfactory results due to
inconsistencies among the inpainted frames.

To surmount this challenge, we proposed an uncertainty-based optimization
framework. This framework assigned a confidence value to each view, encapsu-
lating the consistency of the inpainted region with all other frames. Based on
this confidence measure, we automatically identified and excluded frames that
exhibited inconsistencies with the overall set. To evaluate this newly introduced
task, we further introduced a novel dataset. The goal is to have accurate ground-
truth for the removal task. Therefore, we captured RGB-D sequences using a
custom scanning app. To simulate the removal of objects, we scanned the scene
with the object, removed the object while keeping the scanning session running,
and re-scanned the scene to capture the ground-truth for the removal task. Our
empirical experiments on this dataset compellingly demonstrated the effectiveness
of our proposed removal approach, showcasing significant improvements over

existing methods and solidifying its contribution to the field of 3D scene editing.

208

Chapter 15

Future Work

At the start of this thesis, we illuminated the boundless possibilities that
augmented reality can unlock, underscoring its potential to reshape our daily
experiences. We identified three fundamental pillars — 3D scene reconstruction,
3D scene understanding, and 3D scene editing — as the key to enable these
transformative capabilities. Throughout this thesis, we have diligently tackled
specific challenges within each of these subfields, contributing novel solutions
and insights. Yet, it is crucial to acknowledge that the path toward the widespread
integration of augmented reality into our everyday lives remains strewn with open

questions and uncharted territories.

15.1 3D Scene Reconstruction

In part II, we have explored the application of machine learning to the problem
of incremental RGB-D fusion to generate a globally consistent 3D model.
Scaling up learning. We showed the potential of using machine learning and
that it generalizes well to unseen data. However, one main limitation of the
proposed methods that we train on synthetic data only and require 3D ground-
truth for training. Recent advances in machine learning have shown the power of
large-scale training. Thus, an interesting avenue would be to learn the incremental
mapping easily available RGB stream through coupling explicit mapping with with
2D self-supervision. This would allow learn incremental dense 3D reconstruction

in an end-to-end framework with RGB as input and a dense 3D reconstruction as

209

Conclusion

output while only requiring 2D frames for supervision.

Test-time optimization A second interesting direction would be incorporating
some form of test-time optimization into the fusion process. While strong priors
can be learned from training on datasets, it is oftentimes reasonable to adjust
the reconstruction that it better fits the input data. Signals that can be used for
self-supervision mentioned above could also be used for optimizing the scene
at test time to yield a higher accuracy of the reconstruction. This might become
more and more popular by the increased power of compute systems available on

portable devices.

15.2 3D Scene Understanding

In part III, we have addressed the challenge of automating data annotation and
incremental semantic mapping.
Latent annotation pipeline We have proposed a fully automatic labeling pipeline
that allows to effectively scale dense semantic 3D annotation to large datasets.
One limitation is still that the annotations are fixed to our carefully curated unified
label space. However, the set of required labels is not fixed and might change
from application to application. One application might consider labels that are
focused on indoor living spaces, another application is better served with labels
for indoor office spaces, and a third is not interested into object categories but
object affordances. Thus, it would be worthwhile to explore a labeling pipeline
that can be easily adjustable to the scenario the labels are used in. To this end, it
would be an interesting avenue, to tightly couple language features with 3D data
similar to [Peng et al., 2023] yet leverage the power of a model ensemble.
Fusing language features The same limitation applies to incremental mapping.
All mapping pipelines up to date either segment the scene into a fixed label set
or produce weak segmentation results [Jatavallabhula et al., 2023]. Nevertheless,
coupling online pipelines with powerful models and features embedding language
information is an interesting direction of research. Especially, how can you deploy
the full power of language models to systems that have limited compute and

memory and require real-time capabilities? This is a question that would be

210

Future Work

interesting to explore in the context of incremental semantic mapping.

15.3 3D Scene Editing

In part IV, we proposed a method that removes objects from neural radiance
fields. The proposed pipeline mostly suffered from inpainting failures and high-
frequency flickering. Thus, resolving these issues would be interesting directions
to be explored in future work.

Confidence-based pixel selection and iterative refinement The current pipeline
selects the inpainted views on a per-view basis. Yet, the quality of the inpainting is
not uniform across the entire inpainted region. Therefore, it would be interesting to
explore to optimize a dense pixel-wise confidence-map for each view. This would
allow to iteratively shrink the mask produced by the removed object using the
rendered image. In return, this information could be used to reduce the difficulty
of the inpainting problem. That way, information is effectively propagated in
between views and the inpainting can be bootstrapped using existing information.
Interactive editing One limitation of our 3D editing method is the runtime of
the underlying neural radiance field used as a scene representation. However, the
initially described use of editing in augmented reality oftentimes require on-device
online editing to enable truly immersive experience. I.e., you do not want to wait
for hours until your living room is cleared to visualize new furniture. Hence, to
enable interactive immersive applications, this shortcoming has to be addressed.
One first step into this direction are fast neural radiance field architecture such as
Instant-NGP [Miiller et al., 2022] or just recently released Gaussian Splats [Kerbl
et al., 2023]. However, these models are more local representations as opposed
to neural radiance fields and the spatial priors are less strong. Therefore, an
interesting direction is to couple local representation with 2D priors for object

removal and inpainting to enable interactive 3D editing in neural radiance fields.

211

Conclusion

212

Appendix

213

Appendix A

Additional Results

In this section, we present all additional qualitative results for the different

methods presented in this thesis.

A.1 Learning-based Depth Map Fusion

215

Appendix

TSDF [Curless and Levoy, 1996b] RoutedFusion

Figure. A.1: More qualitative results of standard TSDF and RoutedFusion on scene
3D data. They illustrate the significant performance difference in reconstructing fine
geometries and clean edges.

216

Appendix

TSDF [Curless and Levoy, 1996b] RoutedFusion

Figure. A.2: More qualitative results of standard TSDF and RoutedFusion on scene
3D data. They illustrate the significant performance difference in reconstructing fine
geometries and clean edges.

217

Appendix

DeepSDF Occ.Net. TSDF RoutedFusion GT
[Park et al., 2019] [Mescheder et al., 2019] [Curless and Levoy, 1996b]

Figure. A.3: More qualitative results on ShapeNet test data. They illustrate the significant performance difference in reconstructing
fine geometries and clean edges between RoutedFusion and standard TSDF as well as recent learning-based approaches.

Appendix

‘soyoroidde paseq-SuruIed] JUdAI Sk [[om St J(S.I, PIEPUERIS PUB UOISNIPIINOY UIIMIAq SOFPa UBI[O UL SILIOWO0IT duy
Sunonnsuodal ur 90uIeIp douewIo)rad Jueoyrusis oy arensnylr Aoy], ejep 3s9) 9N2deys uo sjnsax daneyenb IO Y -danSi

[49661 “KoAdT pue ssapn))] [610T “Ie 39 19payosaN] [610€ “Ie 39 yred]
19 uorsngpamoy JASL 1ON"990 dasdeag

EEEREEREN
L 3 3 % % 9
S wss

Appendix

DeepSDF Occ.Net. TSDF RoutedFusion
[Park et al., 2019] [Mescheder et al., 2019] [Curless and Levoy, 1996b]

A Hes la

r
2
1

Figure. A.5: More qualitative results on ShapeNet test data. They illustrate the significant performance difference in reconstructing
fine geometries and clean edges between RoutedFusion and standard TSDF as well as recent learning-based approaches.

220

Appendix

soyoeoidde peseq-Iurured] Juadal se [[om se JJSL PIEpPUeRIS PUE UOISNIPIAINOY U2aM)q SOTPI UBI[O PUB SALAWO0AS Uy

SunoONISUOAI UI 9OUIIYIP douewIoj1ad Jueoyrusis oy ensn[r A9y, “ejep 3533 J9N2deys uo sjjnsai anejenb aI0A :9°y *3anSi

[Q9661 “K0AT put ssapn))] [610C “I¢ 12 19paysaN] [610C “T¢ 12 Yed]
uoIsngpaAINOY JdsL JON'990 dasdeaq

ayb

| §

221

Appendix

DeepSDF Occ.Net. TSDF RoutedFusion
[Park et al., 2019] [Mescheder et al., 2019] [Curless and Levoy, 1996b]

Figure. A.7: More qualitative results on ShapeNet test data They illustrate the significant performance difference in reconstructing
fine geometries and clean edges between RoutedFusion and standard TSDF as well as recent learning-based approaches

222

Appendix

soyoeoxdde paseq-3ururea] Juadal se [[oM St J(SI PIEPUL)S PUE UOISNIPIIN0Y UM} SaSPI UB[O PUE SALIWOT ouy
SunoNISUOAI UT 9OUAIIYIP 9ouewLIoj1ad Jueoyrusis oy ensnr Ay, ejep 3593 JoNadeys uo sjjnsax dapejenb aIoA :8°V *2anSiy

[9966T A0aaT pue ssapm))] [610T “"T¥ 12 19payasoN] [610T “1e 19 31ed]
1D uolsngpainoy 4dSL N0 dasdeaq

223

Appendix

A.2 Moving the Fusion to a Learned Space

224

Mesh Reconstruction Outlier Projection

TSDF Fusion NeuralFusion RoutedFusion TSDF Fusion NeuralFusion RoutedFusion ~ TSDF Fusion

RoutedFusion

A

NeuralFusion

0.01 0.05 0.1 0.01 0.05 0.1
Figure. A.9: More qualitative results for different outlier fractions on ModelNet [Wu

et al., 2015] examples. NeuralFusion consistently removes more outliers than existing
depth map fusion methods compared to RotuedFusion and TSDF Fusion [Curless and
Levoy, 1996a]. Even for large outlier fractions, our method successfully filters almost all
of them.

225

Appendix

Lounge - top view Cactus garden - top view Cactus garden

Lounge - Chair close-up

Stonewall

RoutedFusion NeuralFusion

Figure. A.10: Additional results on Scene3D [Zhou and Koltun, 2013].. NeuralFusion
reconstructs scenes with significantly higher completeness. This is due to the learned
translation that can effectively discriminate between outliers and geometry. Furthermore,
our method can filter large outlier blobs.

226

Appendix

A.3 Learning-based Appearance Fusion

227

Appendix

323, 6x6 643, 4x4 643, 6x6 1282, 3x3 1282, 6x6

THLLRLL Y

Figure. A.11: Qualitative results of our model on unseen ShapeNet [Chang et al., 2015]
car scenes for different DeepSurfel parameters. The column names denote DeepSurfel
grid and patch resolution respectively. We used DeepSurfels with 3 feature and 3 color
channels (3+3 configuration).

228

Appendix

323, 6x6 643, 4x4 642, 6x6 1282, 3x3 1283, 6x6

TS
AaddD
S B BB s S

b B B B B B
i gie g gilin gl it

Figure. A.12: Qualitative results of our model on unseen ShapeNet [Chang et al.,
2015] car scenes for different DeepSurfel parameters. DeepSurfels with 5 feature and 3
color channels (5+3 configuration) demonstrate better results compared to our method with
less channels (3+3) displayed in Figure. A.11. The column name denotes DeepSurfel gird
and patch resolution respectively.

229

Appendix

230

Appendix B

Dataset for Object Removal

In this section, we present the dataset we proposed and used in part I'V.

231

Appendix

Example training images

A

Test: 139

Training: 156

Test: 139

Training: 108 # Test: 102
Figure. B.1: Our real objects dataset — Part 1 of 3
232

Appendix

Example test images

93

Test: 277

Example training images

Training: 235 # Test: 173

Training: 251 # Test: 439)
Training: 219 # Test: 179

Training: 201 # Test: 209
= == N -

Training: 287 # Test: 233
Figure. B.2: Our real objects dataset — Part 2 of 3
233

Appendix

Example training images Example test images

Test: 131

Training: 149 # Test: 203

Figure. B.3: Our real objects dataset — Part 3 of 3

234

Appendix

Example training images Example test images

Test: 18

Test: 20

Training: 89 # Test: 13
Figure. B.4: Our synthetic objects dataset — Part 1 of 3
235

Appendix

Example training images Example test images

Trammg 242 # Test:

Training: 151

382

Training: 156 # Test: 23

Training: 182

203 # Test: 30
Figure. B.5: Our synthetic objects dataset — Part 2 of 3

236

Appendix

Example training images
T il =

Example test images
f T = - S

Test: 17

Test: 28

Test: 34

Training: 177 # Test: 26

Figure. B.6: Our synthetic objects dataset — Part 3 of 3

237

Appendix

238

Bibliography

[Adobe Systems, Inc., 1990] Adobe Systems, Inc. (1990). Adobe photoshop.

Computer software. 8, 171

[Agarwal et al., 2011] Agarwal, S., Furukawa, Y., Snavely, N., Simon, 1., Curless,
B., Seitz, S. M., and Szeliski, R. (2011). Building rome in a day. Communica-
tions of the ACM, 54(10):105-112. 20

[Ahmadyan et al., 2021] Ahmadyan, A., Zhang, L., Ablavatski, A., Wei, J., and
Grundmann, M. (2021). Objectron: A large scale dataset of object-centric

videos in the wild with pose annotations. In CVPR. 191

[Aliev et al., 2020] Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., and
Lempitsky, V. (2020). Neural point-based graphics. In ECCV. 27

[Allene et al., 2008] Allene, C., Pons, J.-P., and Keriven, R. (2008). Seamless
image-based texture atlases using multi-band blending. In ICCV. 32

[Apple, 2017] Apple (2017). ARKit. Accessed: 14 October 2022. 21, 116, 184,
193

[Arbelaez et al., 2010] Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2010).
Contour detection and hierarchical image segmentation. IEEE transactions on

pattern analysis and machine intelligence, 33(5):898-916. 113

[Armando et al., 2019] Armando, M., Franco, J., and Boyer, E. (2019). Adaptive
mesh texture for multi-view appearance modeling. In International Conference
on 3D Vision (3DV). 33

239

Bibliography

[Armeni et al., 2016] Armeni, L., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., and Savarese, S. (2016). 3D Semantic Parsing of Large-Scale
Indoor Spaces. In CVPR. 116

[Badki et al., 2020] Badki, A., Gallo, O., Kautz, J., and Sen, P. (2020). Meshlet
priors for 3d mesh reconstruction. CoRR, abs/2001.01744. 26

[Barnes et al., 2009a] Barnes, C., Shechtman, E., Finkelstein, A., and Goldman,
D. B. (2009a). Patchmatch: a randomized correspondence algorithm for
structural image editing. ACM Trans. Graph., 28(3):24. 174

[Barnes et al., 2009b] Barnes, C., Shechtman, E., Finkelstein, A., and Goldman,
D. B. (2009b). PatchMatch: A randomized correspondence algorithm for
structural image editing. ACM Transactions on Graphics (ToG). 176

[Barron et al., 2021] Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P.,
Martin-Brualla, R., and Srinivasan, P. P. (2021). Mip-NeRF: A multiscale
representation for anti-aliasing neural radiance fields. In ICCV. 177, 181, 192,
193

[Barron et al., 2022] Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P.,
and Hedman, P. (2022). Mip-NeRF 360: Unbounded anti-aliased neural
radiance fields. In CVPR. 177, 181, 187, 188, 193

[Baruch et al., 2021a] Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y.,
Fu, P., Gebauer, T., Joffe, B., Kurz, D., Schwartz, A., and Shulman, E. (2021a).
ARKitscenes - a diverse real-world dataset for 3D indoor scene understanding
using mobile RGB-D data. In NeurIPS. xvii, 195

[Baruch et al., 2021b] Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y.,
Fu, P., Gebauer, T., Joffe, B., Kurz, D., Schwartz, A., and Shulman, E. (2021b).
ARKitscenes - a diverse real-world dataset for 3d indoor scene understanding
using mobile RGB-d data. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1). 116, 124, 125,
133, 141

240

Bibliography

[Berger et al., 2014] Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P,
Levine, J. A., Sharf, A., and Silva, C. T. (2014). State of the art in surface
reconstruction from point clouds. In 35th Annual Conference of the Euro-
pean Association for Computer Graphics, Eurographics 2014-State of the Art
Reports, number CONF. The Eurographics Association. 23

[Bernardini et al., 2001] Bernardini, F., Martin, I. M., and Rushmeier, H. E.
(2001). High-quality texture reconstruction from multiple scans. IEEE TVCG.
32

[Besi¢ and Valada, 2022] Besié, B. and Valada, A. (2022). Dynamic object re-
moval and spatio-temporal RGB-D inpainting via geometry-aware adversarial

learning. IEEE Transactions on Intelligent Vehicles. 175

[Bietal., 2017] Bi, S., Kalantari, N. K., and Ramamoorthi, R. (2017). Patch-
based optimization for image-based texture mapping. 32

[Bietal., 2020] Bi, S., Xu, Z., Sunkavalli, K., HaSan, M., Hold-Geoffroy, Y.,
Kriegman, D., and Ramamoorthi, R. (2020). Deep reflectance volumes: Re-
lightable reconstructions from multi-view photometric images. In ECCV. 27

[Bircher et al., 2015] Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari,
S., Mantel, T., and Siegwart, R. (2015). Structural inspection path planning via
iterative viewpoint resampling with application to aerial robotics. In Interna-

tional Conference on Robotics and Automation (ICRA). 83

[Bldha et al., 2016] Blaha, M., Vogel, C., Richard, A., Wegner, J. D., Pock, T.,
and Schindler, K. (2016). Large-scale semantic 3d reconstruction: an adaptive

multi-resolution model for multi-class volumetric labeling. In CVPR. 35

[Bleyer et al., 2011] Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch
stereo-stereo matching with slanted support windows. In Bmvc, volume 11,
pages 1-11. 20

[Bloesch et al., 2018] Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S.,
and Davison, A. J. (2018). Codeslam - learning a compact, optimisable repre-
sentation for dense visual SLAM. In CVPR, pages 2560-2568. 31

241

Bibliography

[Borenstein and Ullman, 2002] Borenstein, E. and Ullman, S. (2002). Class-
specific, top-down segmentation. In Computer Vision—ECCV 2002: 7th
European Conference on Computer Vision Copenhagen, Denmark, May 28-31,
2002 Proceedings, Part II 7, pages 109—122. Springer. 113

[Bornard et al., 2002] Bornard, R., Lecan, E., Laborelli, L., and Chenot, J. (2002).
Missing data correction in still images and image sequences. In Rowe, L. A.,
Mérialdo, B., Miihlhduser, M., Ross, K. W., and Dimitrova, N., editors, Pro-
ceedings of the 10th ACM International Conference on Multimedia 2002, Juan
les Pins, France, December 1-6, 2002, pages 355-361. ACM. 173

[Bozic et al., 2021] Bozic, A., Palafox, P., Thies, J., Dai, A., and Nief3ner, M.
(2021). Transformerfusion: Monocular rgb scene reconstruction using trans-
formers. Advances in Neural Information Processing Systems, 34:1403-1414.
31

[Bréhéret, 2017] Bréhéret, A. (2017). Pixel Annotation Tool. https://
github.com/abreheret/PixelAnnotationTool. 116

[Breitenmoser and Siegwart, 2012] Breitenmoser, A. and Siegwart, R. (2012).
Surface reconstruction and path planning for industrial inspection with a climb-
ing robot. In Proc. International Conference on Applied Robotics for the Power
Industry (CARPI). 83

[Caesar et al., 2018] Caesar, H., Uijlings, J., and Ferrari, V. (2018). Coco-stuff:
Thing and stuff classes in context. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1209-1218. 116, 124

[Cao et al., 2018] Cao, Y., Liu, Z., Kuang, Z., Kobbelt, L., and Hu, S. (2018).
Learning to reconstruct high-quality 3d shapes with cascaded fully convolu-
tional networks. In ECCV, pages 626—643. 29

[Carion et al., 2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object detection with transformers.

In European conference on computer vision, pages 213-229. Springer. 112

242

https://github.com/abreheret/PixelAnnotationTool
https://github.com/abreheret/PixelAnnotationTool

Bibliography

[Chabra et al., 2020] Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J.,
Lovegrove, S., and Newcombe, R. A. (2020). Deep local shapes: Learning
local SDF priors for detailed 3d reconstruction. In Vedaldi, A., Bischof, H.,
Brox, T., and Frahm, J., editors, ECCV, volume 12374 of Lecture Notes in
Computer Science, pages 608—625. Springer. 26

[Chang et al., 2017] Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner,
M., Savva, M., Song, S., Zeng, A., and Zhang, Y. (2017). Matterport3d:
Learning from rgb-d data in indoor environments. International Conference on
3D Vision (3DV). 117, 124

[Chang et al., 2015] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan,
P, Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.
(2015). Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012. xv, xvi, xvii, xviii, Xix, 46, 47, 48, 49, 67, 69, 75, 95, 96,
101, 103, 193, 228, 229

[Changpinyo et al., 2021] Changpinyo, S., Sharma, P., Ding, N., and Soricut, R.
(2021). Conceptual 12m: Pushing web-scale image-text pre-training to recog-
nize long-tail visual concepts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3558-3568. 126

[Chen et al., 2021] Chen, A., Xu, Z., Zhao, F.,, Zhang, X., Xiang, F., Yu, J., and
Su, H. (2021). MVSNeRF: Fast generalizable radiance field reconstruction
from multi-view stereo. In ICCV. 177, 181

[Chen et al., 2017a] Chen, L.-C., Papandreou, G., Kokkinos, 1., Murphy, K., and
Yuille, A. L. (2017a). Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. IEEE transactions

on pattern analysis and machine intelligence, 40(4):834-848. 114

[Chen et al., 2017b] Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.
(2017b). Rethinking Atrous Convolution for Semantic Image Segmentation.
arXiv preprint arXiv:1706.05587. 147, 162

243

Bibliography

[Chen and Zhang, 2019] Chen, Z. and Zhang, H. (2019). Learning implicit fields
for generative shape modeling. In CVPR. 26, 64

[Cherabier et al., 2016] Cherabier, 1., Hine, C., Oswald, M. R., and Pollefeys, M.
(2016). Multi-label semantic 3d reconstruction using voxel blocks. In 2016
Fourth International Conference on 3D Vision (3DV), pages 601-610. IEEE.
28,114

[Cherabier et al., 2018] Cherabier, 1., Schonberger, J. L., Oswald, M. R., Polle-
feys, M., and Geiger, A. (2018). Learning priors for semantic 3d reconstruction.

In European Conference on Computer Vision (ECCV). 29

[Chibane et al., 2020] Chibane, J., Alldieck, T., and Pons-Moll, G. (2020). Im-
plicit functions in feature space for 3D shape reconstruction and completion.
In CVPR. 26, 67,75,76, 177

[Choi et al., 2015] Choi, S., Zhou, Q., and Koltun, V. (2015). Robust reconstruc-
tion of indoor scenes. In CVPR, pages 5556-5565. 29

[Chollet, 2017] Chollet, F. (2017). Xception: Deep Learning with Depthwise
Separable Convolutions. In CVPR. 147

[Choy et al., 2019a] Choy, C., Gwak, J., and Savarese, S. (2019a). 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Networks. In CVPR.
115, 144, 154, 155, 157

[Choy et al., 2019b] Choy, C., Gwak, J., and Savarese, S. (2019b). 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Networks. In CVPR.
119

[Choy et al., 2016] Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
(2016). 3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Proceedings of the European Conference on Computer
Vision (ECCV). 26

244

Bibliography

[Chu et al., 2020] Chu, H., Ma, S., la Torre, F. D., Fidler, S., and Sheikh, Y.
(2020). Expressive telepresence via modular codec avatars. In ECCV, Lecture

Notes in Computer Science. 83

[Cignoni et al., 2008] Cignoni, P., Corsini, M., and Ranzuglia, G. (2008). Mesh-
Lab: an open-source 3D mesh processing system. ERCIM News. 191

[Coleman and Andrews, 1979] Coleman, G. B. and Andrews, H. C. (1979). Im-
age segmentation by clustering. Proceedings of the IEEE, 67(5):773-785.
112

[Comaniciu and Meer, 2002] Comaniciu, D. and Meer, P. (2002). Mean shift: A
robust approach toward feature space analysis. IEEE Transactions on pattern
analysis and machine intelligence, 24(5):603-619. 112

[Community, 2020] Community, B. O. (2020). Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender Foundation, Ams-
terdam. 95

[Cook et al., 1984] Cook, R. L., Porter, T., and Carpenter, L. (1984). Distributed

ray tracing. 91

[Cordts et al., 2016] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The Cityscapes
Dataset for Semantic Urban Scene Understanding. pages 3213-3223. 116, 124

[Criminisi et al., 2003] Criminisi, A., Pérez, P., and Toyama, K. (2003). Object
removal by exemplar-based inpainting. In 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR 2003), 16-22 June
2003, Madison, WI, USA, pages 721-728. IEEE Computer Society. 173

[Curless and Levoy, 1996a] Curless, B. and Levoy, M. (1996a). A volumetric
method for building complex models from range images. 16, 27, 29, 30, 35,
36, 39, 46, 48, 49, 51, 53, 54, 55, 57, 59, 60, 68, 71, 75, 76, 81, 82, 95, 98, 103,
118, 120, 206, 225

245

Bibliography

[Curless and Levoy, 1996b] Curless, B. and Levoy, M. (1996b). A volumetric
method for building complex models from range images. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996, pages 303-312.
216,217, 218, 219, 220, 221, 222, 223

[Czarnowski et al., 2020] Czarnowski, J., Laidlow, T., Clark, R., and Davison, A.
(2020). Deepfactors: Real-time probabilistic dense monocular slam. IEEE
Robotics and Automation Letters, 5:721-728. 31

[Dai et al., 2017a] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T.,
and Niefiner, M. (2017a). ScanNet: Richly-Annotated 3D Reconstructions of
Indoor Scenes. In CVPR. xvi, xix, 56, 116, 117, 124, 125, 127, 132, 133, 134,
135, 137, 138, 140, 146, 147, 155, 156, 157, 158, 159

[Dai and NieBner, 2018] Dai, A. and Niefner, M. (2018). 3dmv: Joint 3d-multi-
view prediction for 3d semantic scene segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 452-468. 28, 35,
114

[Dai et al., 2017b] Dai, A., NieBner, M., Zollhofer, M., Izadi, S., and Theobalt, C.
(2017b). Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration. ACM Trans. Graph., 36(3):24:1-24:18. 29,
35,156

[Dai et al., 2018] Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., and
NieBner, M. (2018). Scancomplete: Large-scale scene completion and semantic
segmentation for 3d scans. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 4578-4587. Computer Vision Foundation / IEEE Computer Society. 29,
35,176

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), volume 1, pages 886-893.
Teee. 112

246

Bibliography

[Davis et al., 2012] Davis, A., Levoy, M., and Durand, F. (2012). Unstructured
light fields. In Computer Graphics Forum. 177

[Debevec et al., 1996] Debevec, P. E., Taylor, C. J., and Malik, J. (1996). Mod-
eling and rendering architecture from photographs: A hybrid geometry-and
image-based approach. 32, 83, 86

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.
115, 147

[Deng et al., 2022] Deng, K., Liu, A., Zhu, J.-Y., and Ramanan, D. (2022). Depth-
supervised NeRF: Fewer views and faster training for free. In CVPR. 178,
181

[DeVries et al., 2021] DeVries, T., Bautista, M. A., Srivastava, N., Taylor, G. W.,
and Susskind, J. M. (2021). Unconstrained scene generation with locally
conditioned radiance fields. In ICCV. 178, 179

[Dong et al., 2018] Dong, W., Wang, Q., Wang, X., and Zha, H. (2018). Psdf
fusion: Probabilistic signed distance function for on-the-fly 3d data fusion and
scene reconstruction. In ECCV. 16, 31, 46, 52, 54

[Donné and Geiger, 2019] Donné, S. and Geiger, A. (2019). Defusr: Learning
non-volumetric depth fusion using successive reprojections. In CVPR, pages
7634-7643. Computer Vision Foundation / IEEE. 31, 44

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold,
G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929. 114

[Duan et al., 2012] Duan, Y., Pei, M., and Jia, Y. (2012). Probabilistic depth map
fusion for real-time multi-view stereo. In Proceedings of the 21st International
Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, November
11-15, 2012, pages 368-371. 30

247

Bibliography

[Duzceker et al., 2021] Duzceker, A., Galliani, S., Vogel, C., Speciale, P., Dus-
manu, M., and Pollefeys, M. (2021). Deepvideomvs: Multi-view stereo on
video with recurrent spatio-temporal fusion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 15324—15333.
20

[Efros and Leung, 1999] Efros, A. A. and Leung, T. K. (1999). Texture synthesis
by non-parametric sampling. In Proceedings of the International Conference
on Computer Vision, Kerkyra, Corfu, Greece, September 20-25, 1999, pages
1033-1038. IEEE Computer Society. 173

[Eftekhar et al., 2021] Eftekhar, A., Sax, A., Malik, J., and Zamir, A. (2021).
Omnidata: A scalable pipeline for making multi-task mid-level vision datasets
from 3d scans. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10786-10796. 127, 131

[Eigen and Fergus, 2015] Eigen, D. and Fergus, R. (2015). Predicting depth,
surface normals and semantic labels with a common multi-scale convolutional
architecture. In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 2650-2658. IEEE
Computer Society. 21, 128

[Eisemann et al., 2008] Eisemann, M., De Decker, B., Magnor, M., Bekaert, P.,
de Aguiar, E., Ahmed, N., Theobalt, C., and Sellent, A. (2008). Floating
Textures. Comput. Graph. Forum. 32, 83, 85, 86

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn,
J., and Zisserman, A. (2010). The pascal visual object classes (voc) challenge.

International journal of computer vision, 88:303-338. 115

[Fei-Fei et al., 2006] Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot
learning of object categories. IEEE transactions on pattern analysis and
machine intelligence, 28(4):594-611. 115

248

Bibliography

[Felzenszwalb and Huttenlocher, 2004] Felzenszwalb, P. F. and Huttenlocher,
D. P. (2004). Efficient graph-based image segmentation. International journal
of computer vision, 59:167-181. 113

[Flynn et al., 2019] Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G.,
Overbeck, R., Snavely, N., and Tucker, R. (2019). Deepview: View synthesis
with learned gradient descent. In CVPR. 27

[Fuetal., 2018a] Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D.
(2018a). Deep ordinal regression network for monocular depth estimation. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 2002-2011. Computer
Vision Foundation / IEEE Computer Society. 21

[Fu et al., 2020] Fu, Y., Yan, Q., Liao, J., and Xiao, C. (2020). Joint texture and
geometry optimization for RGB-D reconstruction. In CVPR. 32

[Fuetal., 2018b] Fu, Y., Yan, Q., Yang, L., Liao, J., and Xiao, C. (2018b).
Texture mapping for 3d reconstruction with RGB-D sensor. In CVPR. 32, 83,
85, 86, 94, 95, 103

[Fuhrmann and Goesele, 2011] Fuhrmann, S. and Goesele, M. (2011). Fusion of
depth maps with multiple scales. ACM Trans. Graph., 30(6):148:1-148:8. 29

[Fujii et al., 2020] Fujii, R., Hachiuma, R., and Saito, H. (2020). RGB-D image
inpainting using generative adversarial network with a late fusion approach. In
International Conference on Augmented Reality, Virtual Reality and Computer
Graphics. 174

[Gal et al., 2010] Gal, R., Wexler, Y., Ofek, E., Hoppe, H., and Cohen-Or, D.
(2010). Seamless montage for texturing models. Comput. Graph. Forum. 32

[Gallup et al., 2007] Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., and Polle-
feys, M. (2007). Real-time plane-sweeping stereo with multiple sweeping
directions. In 2007 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1-8. IEEE. 20

249

Bibliography

[Gao et al., 2020] Gao, C., Saraf, A., Huang, J.-B., and Kopf, J. (2020). Flow-
edge guided video completion. In ECCV. 175

[Garrido et al., 2013] Garrido, S., Malfaz, M., and Blanco, D. (2013). Appli-
cation of the fast marching method for outdoor motion planning in robotics.

Robotics and Autonomous Systems. 83

[Genova et al., 2019a] Genova, K., Cole, F., Sud, A., Sarna, A., and Funkhouser,
T. A. (2019a). Deep structured implicit functions. CoRR, abs/1912.06126. 26

[Genova et al., 2019b] Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman,
W. T., and Funkhouser, T. A. (2019b). Learning shape templates with structured
implicit functions. CoRR, abs/1904.06447. 26

[Geosystems, 2016] Geosystems, L. (2016). B1k360 laser scan-
ner. https://leica-geosystems.com/de-ch/products/
laser—scanners/scanners/blk360. Accessed: 2023-10-02. 21

[Ghiasi et al., 2021] Ghiasi, G., Gu, X., Cui, Y., and Lin, T.-Y. (2021). Scaling
Open-Vocabulary Image Segmentation with Image-Level Labels. In ECCV.
123

[Ghiasi et al., 2022] Ghiasi, G., Gu, X., Cui, Y., and Lin, T.-Y. (2022). Scaling
open-vocabulary image segmentation with image-level labels. In European

Conference on Computer Vision, pages 540-557. Springer. 114

[Girshick, 2015] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE

international conference on computer vision, pages 1440-1448. 112

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection and semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 580-587. 112

[Gkioxari et al., 2019] Gkioxari, G., Malik, J., and Johnson, J. (2019). Mesh
r-cnn. In ICCV. 29

250

https://leica-geosystems.com/de-ch/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/de-ch/products/laser-scanners/scanners/blk360

Bibliography

[Goldliicke et al., 2014] Goldliicke, B., Aubry, M., Kolev, K., and Cremers, D.
(2014). A super-resolution framework for high-accuracy multiview reconstruc-
tion. IJCV. 32

[Graham et al., 2018] Graham, B., Engelcke, M., and Van Der Maaten, L. (2018).
3d semantic segmentation with submanifold sparse convolutional networks. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 9224-9232. 115, 119

[Granados et al., 2012] Granados, M., Tompkin, J., Kim, K. L., Grau, O., Kautz,
J., and Theobalt, C. (2012). How not to be seen - object removal from videos
of crowded scenes. Comput. Graph. Forum, 31(2pt1):219-228. 175

[Griffin et al., 2007] Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256
object category dataset. 115

[Groueix et al., 2018] Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and
Aubry, M. (2018). Atlasnet: A papier-maché approach to learning 3d surface
generation. In CVPR, pages 216-224. 29

[Gupta et al., 2014] Gupta, S., Girshick, R. B., Arbeldez, P. A., and Malik, J.
(2014). Learning rich features from RGB-D images for object detection and
segmentation. In Fleet, D. J., Pajdla, T., Schiele, B., and Tuytelaars, T.,
editors, Computer Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VII, volume 8695 of
Lecture Notes in Computer Science, pages 345-360. Springer. 147

[Han et al., 2020] Han, L., Zheng, T., Xu, L., and Fang, L. (2020). OccuSeg:
Occupancy-Aware 3D Instance Segmentation. In CVPR. 120, 144

[Héne et al., 2017] Hine, C., Heng, L., Lee, G. H., Fraundorfer, F., Furgale, P.,
Sattler, T., and Pollefeys, M. (2017). 3d visual perception for self-driving cars
using a multi-camera system: Calibration, mapping, localization, and obstacle

detection. Image and Vision Computing (IVC). 85

251

Bibliography

[Hine et al., 2013] Hine, C., Zach, C., Cohen, A., Angst, R., and Pollefeys, M.

(2013). Joint 3d scene reconstruction and class segmentation. In CVPR, pages
97-104. 28, 114

[Héne et al., 2017] Hine, C., Zach, C., Cohen, A., and Pollefeys, M. (2017).
Dense semantic 3d reconstruction. 39(9):1730-1743. 28

[Hays and Efros, 2007] Hays, J. and Efros, A. A. (2007). Scene completion using
millions of photographs. ACM Trans. Graph., 26(3):4. 173

[Hazirbas et al., 2016] Hazirbas, C., Ma, L., Domokos, C., and Cremers, D.
(2016). Fusenet: Incorporating depth into semantic segmentation via fusion-
based CNN architecture. In Lai, S., Lepetit, V., Nishino, K., and Sato, Y.,
editors, Computer Vision - ACCV 2016 - 13th Asian Conference on Computer
Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part I,

volume 10111 of Lecture Notes in Computer Science, pages 213-228. Springer.
147

[He et al., 2017] He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask
R-CNN. In ICCV. 191

[Hedman et al., 2018] Hedman, P., Philip, J., Price, T., Frahm, J.-M., Drettakis,
G., and Brostow, G. (2018). Deep blending for free-viewpoint image-based
rendering. ACM Transactions on Graphics (ToG), 37(6). 177

[Heeger and Bergen, 1995] Heeger, D. J. and Bergen, J. R. (1995). Pyramid-
based texture analysis/synthesis. In Proceedings of the 22nd annual conference

on Computer graphics and interactive techniques, pages 229-238. 173

[Herling and Broll, 2010] Herling, J. and Broll, W. (2010). Advanced self-
contained object removal for realizing real-time diminished reality in uncon-

strained environments. In ISMAR. 176

[Herling and Broll, 2014] Herling, J. and Broll, W. (2014). High-quality real-
time video inpaintingwith PixMix. IEEE TVCG. 175

252

Bibliography

[Hoppe et al., 1992] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. A.,
and Stuetzle, W. (1992). Surface reconstruction from unorganized points. In
Thomas, J. J., editor, Proceedings of the 19th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1992, Chicago, IL, USA,
July 27-31, 1992, pages 71-78. ACM. 23

[Hore and Ziou, 2010] Hore, A. and Ziou, D. (2010). Image quality metrics:
PSNR vs. SSIM. In ICPR. 195

[Howard et al., 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861. 112, 163

[Hsu et al., 2021] Hsu, C.-Y., Sun, C., and Chen, H.-T. (2021). Moving in
a 360 world: Synthesizing panoramic parallaxes from a single panorama.
arXiv:2106.10859. 179

[Hu et al., 2021a] Hu, W., Zhao, H., Jiang, L., Jia, J., and Wong, T.-T. (2021a).
Bidirectional Projection Network for Cross Dimension Scene Understanding.
In CVPR. 119

[Hu et al., 2021b] Hu, Z., Bai, X., Shang, J., Zhang, R., Dong, J., Wang, X.,
Sun, G., Fu, H., and Tai, C.-L. (2021b). Vmnet: Voxel-mesh network for

geodesic-aware 3d semantic segmentation. In /ICCV. 119

[Hua et al., 2016] Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K,, Yu, L.-F,,
and Yeung, S.-K. (2016). SceneNN: A Scene Meshes Dataset with Annotations.
In International Conference on 3D Vision (3DV). 116, 156

[Huang et al., 2021a] Huang, J., Huang, S.-S., Song, H., and Hu, S.-M. (2021a).
Di-fusion: Online implicit 3d reconstruction with deep priors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8932-8941. 31

253

Bibliography

[Huang et al., 2020] Huang, J., Thies, J., Dai, A., Kundu, A., Jiang, C., Guibas,
L. J., NieBner, M., and Funkhouser, T. (2020). Adversarial texture optimization
from RGB-D scans. In CVPR. 27

[Huang et al., 2016] Huang, J.-B., Kang, S. B., Ahuja, N., and Kopf, J. (2016).
Temporally coherent completion of dynamic video. ACM Transactions on
Graphics (ToG). 175

[Huang et al., 2021b] Huang, S.-S., Ma, Z.-Y., Mu, T.-J., Fu, H., and Hu, S.-M.
(2021b). Supervoxel Convolution for Online 3D Semantic Segmentation. ACM
TOG. 121, 145, 154, 155, 156, 157, 159, 164

[Huang et al., 2018] Huang, Z., Li, T., Chen, W., Zhao, Y., Xing, J., LeGendre,
C., Luo, L., Ma, C., and Li, H. (2018). Deep volumetric video from very sparse
multi-view performance capture. In Ferrari, V., Hebert, M., Sminchisescu, C.,
and Weiss, Y., editors, ECCV, volume 11220 of Lecture Notes in Computer
Science, pages 351-369. Springer. 26

[lizuka et al., 2017] lizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Globally
and locally consistent image completion. ACM Transactions on Graphics
(ToG), 36(4):1-14. 174

[Intel, 2014] Intel (2014). Intel realsense. https://www.intelrealsense.com/stereo-
depth/. Accessed: 2023-10-17. 21

[Izadi et al., 2011] Izadi, S., Newcombe, R. A., Kim, D., Hilliges, O., Molyneaux,
D., Hodges, S., Kohli, P., Shotton, J., Davison, A. J., and Fitzgibbon, A. W.
(2011). Kinectfusion: real-time dynamic 3d surface reconstruction and inter-
action. In International Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2011, Vancouver, BC, Canada, August 7-11, 2011,
Talks Proceedings, page 23. 29, 35

[Jatavallabhula et al., 2023] Jatavallabhula, K., Kuwajerwala, A., Gu, Q.
Omama, M., Chen, T., Li, S., Iyer, G., Saryazdi, S., Keetha, N., Tewari, A.,
Tenenbaum, J., de Melo, C., Krishna, M., Paull, L., Shkurti, F., and Torralba,
A. (2023). ConceptFusion: Open-Set Multimodal 3D Mapping. arXiv. 210

254

Bibliography

[Jeon et al., 2018] Jeon, J., Jung, J., Kim, J., and Lee, S. (2018). Semantic
Reconstruction: Reconstruction of Semantically Segmented 3D Meshes via

Volumetric Semantic Fusion. In Computer Graphics Forum. 120, 159

[Jietal., 2017] Ji, M., Gall, J., Zheng, H., Liu, Y., and Fang, L. (2017). Sur-
facenet: An end-to-end 3d neural network for multiview stereopsis. In ICCV,
pages 2326-2334. 28

[Jiang et al., 2020] Jiang, C. M., Sud, A., Makadia, A., Huang, J., NieB3ner, M.,
and Funkhouser, T. A. (2020). Local implicit grid representations for 3d scenes.
In CVPR, pages 6000-6009. IEEE. 26

[Johanna Wald, 2019] Johanna Wald, Armen Avetisyan, N. N. F. T. M. N. (2019).
Rio: 3d object instance re-localization in changing indoor environments. 116

[Kéhler et al., 2015] Kihler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P.
H. S., and Murray, D. W. (2015). Very high frame rate volumetric integra-

tion of depth images on mobile devices. IEEE Trans. Vis. Comput. Graph.,
21(11):1241-1250. 29

[Kéhler et al., 2016] Kihler, O., Prisacariu, V. A., Valentin, J. P. C., and Murray,
D. W. (2016). Hierarchical voxel block hashing for efficient integration of
depth images. IEEE Robotics and Automation Letters, 1(1):192-197. 29

[Kar et al., 2017] Kar, A., Héane, C., and Malik, J. (2017). Learning a multi-view
stereo machine. In Guyon, 1., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 365-376. 26

[Kawai et al., 2015] Kawai, N., Sato, T., and Yokoya, N. (2015). Diminished
reality based on image inpainting considering background geometry. /EEE

transactions on visualization and computer graphics, 22(3):1236-1247. 176

255

Bibliography

[Kazhdan et al., 2006] Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson
surface reconstruction. In Proceedings of the fourth Eurographics symposium

on Geometry processing, volume 7, page 0. 23

[Kazhdan and Hoppe, 2013] Kazhdan, M. M. and Hoppe, H. (2013). Screened
poisson surface reconstruction. ACM Trans. Graph., 32(3):29:1-29:13. 71, 72,
82

[Keller et al., 2013] Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T.,
and Kolb, A. (2013). Real-time 3d reconstruction in dynamic scenes using
point-based fusion. In 2013 International Conference on 3D Vision, 3DV 2013,
Seattle, Washington, USA, June 29 - July 1, 2013, pages 1-8. 30

[Kendall and Gal, 2017] Kendall, A. and Gal, Y. (2017). What uncertainties do
we need in bayesian deep learning for computer vision? In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages
5574-5584. 44, 188

[Kerbl et al., 2023] Kerbl, B., Kopanas, G., Leimkiihler, T., and Drettakis, G.
(2023). 3d gaussian splatting for real-time radiance field rendering. ACM
Transactions on Graphics (ToG), 42(4):1-14. 211

[Kim et al., 2019] Kim, D., Woo, S., Lee, J., and Kweon, L. S. (2019). Deep video
inpainting. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 5792-5801.
Computer Vision Foundation / IEEE. 175

[Kim et al., 2021] Kim, J., Hyeon, J., and Doh, N. (2021). Generative multiview
inpainting for object removal in large indoor spaces. International Journal of
Advanced Robotic Systems, 18(2). 176

[Kim et al., 2022] Kim, M., Seo, S., and Han, B. (2022). Infonerf: Ray entropy

minimization for few-shot neural volume rendering. In CVPR. 177, 181

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In ICLR. 66, 93

256

Bibliography

[Kirillov et al., 2023] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., et al. (2023).
Segment anything. arXiv preprint arXiv:2304.02643. 123

[Knapitsch et al., 2017] Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V.
(2017). Tanks and temples: Benchmarking large-scale scene reconstruction.
ACM Transactions on Graphics, 36(4). xvi, 60, 71, 72,78, 82

[Kobayashi et al., 2022] Kobayashi, S., Matsumoto, E., and Sitzmann, V. (2022).
Decomposing NeRF for editing via feature field distillation. In NeurIPS. 178,
183

[Koh et al., 2021] Koh, J. Y., Lee, H., Yang, Y., Baldridge, J., and Anderson, P.
(2021). Pathdreamer: A world model for indoor navigation. In ICCV. 179

[Kolev et al., 2009] Kolev, K., Klodt, M., Brox, T., and Cremers, D. (2009).
Continuous global optimization in multiview 3d reconstruction. IJCV, 84(1):80—
96. 28, 35

[Kontogianni et al., 2023] Kontogianni, T., Celikkan, E., Tang, S., and Schindler,
K. (2023). Interactive object segmentation in 3d point clouds. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 2891—
2897.IEEE. 117, 132, 133

[Kundu et al., 2020] Kundu, A., Yin, X., Fathi, A., Ross, D., Brewington, B.,
Funkhouser, T., and Pantofaru, C. (2020). Virtual Multi-view Fusion for 3D
Semantic Segmentation. In ECCV. 119, 144, 147, 155, 157

[Kutulakos and Seitz, 1999] Kutulakos, K. N. and Seitz, S. M. (1999). A theory
of shape by space carving. In ICCV. 33

[labelme github contributors,] labelme github contributors. labelme: Image

polygonal annotation with python. 116

[Ladicky et al., 2017] Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., and
Pollefeys, M. (2017). From point clouds to mesh using regression. In /CCV,
pages 3913-3922. 25, 26

257

Bibliography

[Lambert et al., 2020] Lambert, J., Liu, Z., Sener, O., Hays, J., and Koltun, V.
(2020). MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation.
pages 2879-2888. 128

[Lee et al., 2020] Lee, J. H., Ha, H., Dong, Y., Tong, X., and Kim, M. H. (2020).
Texturefusion: High-quality texture acquisition for real-time rgb-d scanning.
In CVPR. 32, 33

[Lefloch et al., 2015] Lefloch, D., Weyrich, T., and Kolb, A. (2015). Anisotropic
point-based fusion. In /8th International Conference on Information Fusion,
FUSION 2015, Washington, DC, USA, July 6-9, 2015, pages 2121-2128. 30

[Lempitsky and Ivanov, 2007] Lempitsky, V. and Ivanov, D. (2007). Seamless

mosaicing of image-based texture maps. In CVPR. 32

[Lensch et al., 2001] Lensch, H. P. A., Heidrich, W., and Seidel, H.-P. (2001). A
silhouette-based algorithm for texture registration and stitching. Graphical
Models. 32

[Lepetit et al., 2001] Lepetit, V., Berger, M.-O., and Lorraine, L.-1. (2001). An in-
tuitive tool for outlining objects in video sequences: Applications to augmented
and diminished reality. In ISMAR. 176

[Leroy et al., 2018] Leroy, V., Franco, J., and Boyer, E. (2018). Shape reconstruc-
tion using volume sweeping and learned photoconsistency. In ECCV, pages
796-811. 28

[Liet al., 2022a] Li, B., Weinberger, K. Q., Belongie, S. J., Koltun, V., and
Ranftl, R. (2022a). Language-driven semantic segmentation. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net. 114

[Liet al., 2022b] Li, Y., Mao, H., Girshick, R., and He, K. (2022b). Explor-
ing plain vision transformer backbones for object detection. In European

Conference on Computer Vision, pages 280-296. Springer. 112

258

Bibliography

[Lietal., 2019] Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., and Gool, L. V.
(2019). 3d appearance super-resolution with deep learning. In CVPR. 33

[Li et al., 2022c] Li, Z., Fang, T., Li, Z., Cui, Z., Sato, Y., Pollefeys, M., and Os-
wald, M. R. (2022c). CompNVS: Novel view synthesis with scene completion.
In ECCV. 178, 179, 194, 196

[Li et al., 2022d] Li, Z., Lu, C.-Z., Qin, J., Guo, C.-L., and Cheng, M.-M. (2022d).
Towards an end-to-end framework for flow-guided video inpainting. In CVPR.
175, 191, 193, 194, 196

[Li and Snavely, 2018] Li, Z. and Snavely, N. (2018). Megadepth: Learning
single-view depth prediction from internet photos. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 2041-2050. Computer Vision Foundation / [EEE
Computer Society. 21

[Liang et al., 2023] Liang, F., Wu, B., Dai, X., Li, K., Zhao, Y., Zhang, H., Zhang,
P, Vajda, P, and Marculescu, D. (2023). Open-vocabulary semantic segmenta-
tion with mask-adapted clip. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7061-7070. 114, 123, 124,
126

[Liao et al., 2020] Liao, M., Lu, F., Zhou, D., Zhang, S., Li, W., and Yang, R.
(2020). DVI: Depth guided video inpainting for autonomous driving. In ECCV.
175

[Lin et al., 2017] Lin, T., Goyal, P., Girshick, R. B., He, K., and Dolldr, P. (2017).
Focal loss for dense object detection. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2999—
3007. IEEE Computer Society. 151

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollar, P., and Zitnick, C. L. (2014). Microsoft coco: Common

259

Bibliography

objects in context. In Computer Vision—-ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pages 740-755. Springer. 116

[Liu et al., 2018] Liu, G., Reda, F. A., Shih, K. J., Wang, T., Tao, A., and Catan-
zaro, B. (2018). Image inpainting for irregular holes using partial convolutions.
In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Com-
puter Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XI, volume 11215 of Lecture Notes
in Computer Science, pages 89—105. Springer. 174

[Liu et al., 2022a] Liu, H.-K., Shen, I.-C., and Chen, B.-Y. (2022a). NeRF-In:
Free-form NeRF inpainting with RGB-D priors. arXiv. 179

[Liu et al., 2022b] Liu, L., Zheng, T., Lin, Y., Ni, K., and Fang, L. (2022b). INS-
Conv: Incremental Sparse Convolution for Online 3D Segmentation. In CVPR.
121, 145, 153, 155, 156, 159, 164

[Liu et al., 2019a] Liu, S., Saito, S., Chen, W., and Li, H. (2019a). Learning to
infer implicit surfaces without 3D supervision. Neural Information Processing
Systems (NeurlPS). 26, 177

[Liu et al., 2021a] Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.-Y., and
Russell, B. (2021a). Editing conditional radiance fields. In ICCV. 181

[Liu et al., 2020a] Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., and Cui,
Z. (2020a). DIST: rendering deep implicit signed distance function with
differentiable sphere tracing. In CVPR, pages 2016-2025. IEEE. 26

[Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer
Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I 14, pages 21-37. Springer. 112

[Liu et al., 2019b] Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., and Gao, S.
(2019b). Liquid warping GAN: A unified framework for human motion imita-

tion, appearance transfer and novel view synthesis. In ICCV. 177

260

Bibliography

[Liu et al., 2020b] Liu, Y.-L., Lai, W.-S., Yang, M.-H., Chuang, Y.-Y., and Huang,
J.-B. (2020b). Learning to see through obstructions. In CVPR. 176

[Liu et al., 2021b] Liu, Y.-L., Lai, W.-S., Yang, M.-H., Chuang, Y.-Y., and Huang,
J.-B. (2021b). Learning to see through obstructions with layered decomposition.
IEEE TPAMI. 176

[Liu et al., 2019] Liu, Z., Cao, Y., Kuang, Z., Kobbelt, L., and Hu, S. (2019).
High-quality textured 3d shape reconstruction with cascaded fully convolu-
tional networks. /IEEE TVCG. 27

[Liu et al., 2023] Liu, Z., Milano, F., Frey, J., Siegwart, R., Blum, H., and Ca-
dena, C. (2023). Unsupervised continual semantic adaptation through neural
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 124, 131

[Lombardi et al., 2018] Lombardi, S., Saragih, J. M., Simon, T., and Sheikh, Y.
(2018). Deep appearance models for face rendering. 83

[Lombardi et al., 2019] Lombardi, S., Simon, T., Saragih, J., Schwartz, G.,
Lehrmann, A., and Sheikh, Y. (2019). Neural volumes: Learning dynamic

renderable volumes from images. 27, 83

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 3431-3440. 113

[Long et al., 2022] Long, X., Lin, C., Wang, P., Komura, T., and Wang, W. (2022).
SparseNeuS: Fast generalizable neural surface reconstruction from sparse
views. In ECCV. 177, 181

[Lorensen and Cline, 1987] Lorensen, W. E. and Cline, H. E. (1987). Marching

cubes: A high resolution 3d surface construction algorithm. 24

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60:91-110. 111

261

Bibliography

[Lugmayr et al., 2022] Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion
probabilistic models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11461-11471. 174

[Maier et al., 2017a] Maier, R., Kim, K., Cremers, D., Kautz, J., and NieBner,
M. (2017a). Intrinsic3d: High-quality 3D reconstruction by joint appearance
and geometry optimization with spatially-varying lighting. In International
Conference on Computer Vision (ICCV), Venice, Italy. 33

[Maier et al., 2017b] Maier, R., Schaller, R., and Cremers, D. (2017b). Efficient
online surface correction for real-time large-scale 3D reconstruction. In British
Machine Vision Conference (BMVC), London, United Kingdom. xvi, 29, 33,
97, 104

[Mao et al., 2022] Mao, Y., Zhang, Y., Jiang, H., Chang, A. X., and Savva, M.
(2022). Multiscan: Scalable rgbd scanning for 3d environments with articulated

objects. In Advances in Neural Information Processing Systems. 117

[Marniok and Goldluecke, 2018] Marniok, N. and Goldluecke, B. (2018). Real-
time variational range image fusion and visualization for large-scale scenes
using GPU hash tables. In 2018 IEEE Winter Conference on Applications
of Computer Vision, WACV 2018, Lake Tahoe, NV, USA, March 12-15, 2018,
pages 912-920. 29

[Marniok et al., 2017] Marniok, N., Johannsen, O., and Goldluecke, B. (2017).
An efficient octree design for local variational range image fusion. pages
401-412. 29

[McCormac et al., 2018] McCormac, J., Clark, R., Bloesch, M., Davison, A. J.,
and Leutenegger, S. (2018). Fusion++: Volumetric Object-Level SLAM. In
International Conference on 3D Vision (3DV). 120

[McCormac et al., 2017] McCormac, J., Handa, A., Davison, A. J., and Leuteneg-
ger, S. (2017). Semanticfusion: Dense 3d semantic mapping with convolutional

neural networks. In 2017 IEEE International Conference on Robotics and

262

Bibliography

Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages
4628-4635. IEEE. 120, 145, 159

[Mescheder et al., 2019] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin,
S., and Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in
function space. In CVPR. 26, 47, 48, 49, 67,75, 76, 177, 218, 219, 220, 221,
222,223

[Michalkiewicz et al., 2019] Michalkiewicz, M., Pontes, J. K., Jack, D., Baktash-
motlagh, M., and Eriksson, A. (2019). Implicit surface representations as layers
in neural networks. In ICCV. 26

[Microsoft, 2020] Microsoft (2020). Azure kinect.
https://azure.microsoft.com/en-us/products/kinect-dk. =~ Accessed: 2023-
10-17. 22

[Mihajlovic et al., 2021] Mihajlovic, M., Weder, S., Pollefeys, M., and Oswald,
M. R. (2021). Deepsurfels: Learning online appearance fusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14524—-14535. 11

[Mildenhall et al., 2019] Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R., Kalan-
tari, N. K., Ramamoorthi, R., Ng, R., and Kar, A. (2019). Local light field

fusion: Practical view synthesis with prescriptive sampling guidelines. 27

[Mildenhall et al., 2020a] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron,
J. T., Ramamoorthi, R., and Ng, R. (2020a). NeRF: Representing scenes as
neural radiance fields for view synthesis. In ECCV. 27, 85, 86, 87, 97, 98, 100,
171,177, 181, 186, 195

[Mildenhall et al., 2020b] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron,
J. T., Ramamoorthi, R., and Ng, R. (2020b). NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis. In CVPR, volume abs/2003.08934.
119

[Miller, 1995] Miller, G. A. (1995). Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39-41. 128, 132

263

Bibliography

[Mirzaei et al., 2023] Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K. G.,
Kelly, J., Brubaker, M. A., Gilitschenski, 1., and Levinshtein, A. (2023). SPIn-
NeRF: Multiview segmentation and perceptual inpainting with neural radiance
fields. In CVPR. 179

[Moreau et al., 2022] Moreau, A., Piasco, N., Tsishkou, D., Stanciulescu, B., and
de La Fortelle, A. (2022). LENS: Localization enhanced by NeRF synthesis.

In Conference on Robot Learning. 183

[Mori et al., 2020] Mori, S., Erat, O., Broll, W., Saito, H., Schmalstieg, D., and
Kalkofen, D. (2020). Inpaintfusion: Incremental RGB-D inpainting for 3d
scenes. IEEE Trans. Vis. Comput. Graph., 26(10):2994-3007. 176

[Mori et al., 2022] Mori, S., Schmalstieg, D., and Kalkofen, D. (2022). Good
keyframes to inpaint. JEEE TVCG. 176

[Miiller et al., 2022] Miiller, T., Evans, A., Schied, C., Foco, M., B4dis-Szomord,
A., Deutsch, 1., Shelley, M., and Keller, A. (2022). Instant neural radiance
fields. In ACM SIGGRAPH 2022. 181, 211

[Murez et al., 2020] Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badri-
narayanan, V., and Rabinovich, A. (2020). Atlas: End-to-end 3d scene re-
construction from posed images. In ECCV. 31, 119

[Narita et al., 2019] Narita, G., Seno, T., Ishikawa, T., and Kaji, Y. (2019). Panop-
ticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and
Things. In International Conference on Intelligent Robots and Systems (IROS).
120, 145, 155, 159

[Nathan Silberman and Fergus, 2012] Nathan Silberman, Derek Hoiem, P. K.
and Fergus, R. (2012). Indoor segmentation and support inference from rgbd
images. In ECCV. 7, 116, 128

[NavVis, 2021] NavVis (2021). VIx-2. https://www.navvis.com/
v1x—2. Accessed: 2023-10-02. 21

264

https://www.navvis.com/vlx-2
https://www.navvis.com/vlx-2

Bibliography

[Nekrasov et al., 2021] Nekrasov, A., Schult, J., Litany, O., Leibe, B., and Engel-
mann, F. (2021). Mix3D: Out-of-Context Data Augmentation for 3D Scenes.
In International Conference on 3D Vision (3DV). 115, 119, 144, 155, 157

[Newcombe et al., 2011a] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux,
D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., and Fitzgibbon,
A. (2011a). KinectFusion: Real-time dense surface mapping and tracking. 33,
85, 89, 118, 120

[Newcombe et al., 2011b] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J.
(2011b). Dtam: Dense tracking and mapping in real-time. In ICCV. 83

[Newson et al., 2014] Newson, A., Almansa, A., Fradet, M., Gousseau, Y., and
Pérez, P. (2014). Video inpainting of complex scenes. SIAM J. Imaging Sci.,
7(4):1993-2019. 175

[Nguyen-Phuoc et al., 2019] Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C.,
and Yang, Y.-L. (2019). Hologan: Unsupervised learning of 3D representations
from natural images. In CVPR. 178

[Nichol et al., 2021] Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P.,
McGrew, B., Sutskever, 1., and Chen, M. (2021). Glide: Towards photorealistic
image generation and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741. 174

[Niemeyer et al., 2022] Niemeyer, M., Barron, J. T., Mildenhall, B., Sajjadi, M.
S. M., Geiger, A., and Radwan, N. (2022). RegNeRF: Regularizing neural
radiance fields for view synthesis from sparse inputs. In CVPR. 177, 192, 193

[Niemeyer et al., 2020] Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger,
A. (2020). Differentiable volumetric rendering: Learning implicit 3d represen-
tations without 3d supervision. In CVPR. 26, 27

[NieBner et al., 2013] NieBner, M., Zollhofer, M., Izadi, S., and Stamminger, M.
(2013). Real-time 3d reconstruction at scale using voxel hashing. ACM Trans.
Graph., 32(6):169:1-169:11. 25, 29, 35, 36

265

Bibliography

[Oechsle et al., 2019] Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and
Geiger, A. (2019). Texture fields: Learning texture representations in function
space. In ICCV. 27, 85, 94, 95

[Oechsle et al., 2020] Oechsle, M., Niemeyer, M., Reiser, C., Mescheder, L.,
Strauss, T., and Geiger, A. (2020). Learning implicit surface light fields. In
International Conference on 3D Vision (3DV). 27

[Ostet al., 2021] Ost, J., Mannan, F., Thuerey, N., Knodt, J., and Heide, F. (2021).
Neural scene graphs for dynamic scenes. In CVPR. 178

[Ozturkcan, 2021] Ozturkcan, S. (2021). Service innovation: Using augmented
reality in the IKEA Place app. Journal of Information Technology Teaching
Cases, 11(1). 183

[Park et al., 2019] Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. (2019). Deepsdf: Learning continuous signed distance functions for
shape representation. In CVPR. 26, 47, 48, 49, 67, 75,76, 177, 218, 219, 220,
221,222,223

[Paschalidou et al., 2018] Paschalidou, D., Ulusoy, A. O., Schmitt, C., Gool,
L. V., and Geiger, A. (2018). Raynet: Learning volumetric 3d reconstruction
with ray potentials. In CVPR, pages 3897-3906. 28

[Pathak et al., 2016] Pathak, D., Kriahenbiihl, P., Donahue, J., Darrell, T., and
Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 2536-2544. IEEE Computer
Society. 174

[Patwardhan et al., 2005] Patwardhan, K. A., Sapiro, G., and Bertalmio, M.
(2005). Video inpainting of occluding and occluded objects. In Proceed-
ings of the 2005 International Conference on Image Processing, ICIP 2005,
Genoa, Italy, September 11-14, 2005, pages 69-72. IEEE. 175

266

Bibliography

[Peng et al., 2023] Peng, S., Genova, K., Jiang, C. M., Tagliasacchi, A., Pollefeys,
M., and Funkhouser, T. (2023). OpenScene: 3D Scene Understanding with
Open Vocabularies. In CVPR. 115,210

[Peng et al., 2020] Peng, S., Niemeyer, M., Mescheder, L. M., Pollefeys, M., and
Geiger, A. (2020). Convolutional occupancy networks. In ECCV. 26

[Penner and Zhang, 2017] Penner, E. and Zhang, L. (2017). Soft 3d reconstruc-
tion for view synthesis. 27

[Pfister et al., 2000] Pfister, H., Zwicker, M., Van Baar, J., and Gross, M. (2000).

Surfels: Surface elements as rendering primitives. 17, 25

[Pham et al., 2019] Pham, Q., Hua, B., Nguyen, D. T., and Yeung, S. (2019).

Real-Time Progressive 3D Semantic Segmentation for Indoor Scenes. 120, 159

[Philip and Drettakis, 2018] Philip, J. and Drettakis, G. (2018). Plane-based
multi-view inpainting for image-based rendering in large scenes. In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. 179

[PrimeSense, | PrimeSense. Primesense carmine.
http://web.archive.org/web/20131102094504/http://www.primesense.com/solutions/techne
Accessed: 2023-10-19. 22

[Qietal., 2017a] Qi, C.R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet:
Deep learning on point sets for 3d classification and segmentation. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages
652-660. 114

[Qietal., 2017b] Qi, C.R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. Advances in

neural information processing systems, 30. 114

[Radford et al., 2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G.,
and Sutskever, 1. (2021). Learning Transferable Visual Models From Natural

267

Bibliography

Language Supervision. In International Conference on Machine Learning
(ICML). 126

[Rahaman et al., 2019] Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. (2019). On the spectral bias of
neural networks. In International Conference on Machine Learning (ICML).
26

[Ranftl et al., 2021] Ranftl, R., Bochkovskiy, A., and Koltun, V. (2021). Vision
transformers for dense prediction. In 2021 IEEE/CVF International Conference
on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 12159-12168. IEEE. 21

[Ranftl et al., 2022] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and
Koltun, V. (2022). Towards robust monocular depth estimation: Mixing da-
tasets for zero-shot cross-dataset transfer. /IEEE Trans. Pattern Anal. Mach.
Intell., 44(3):1623-1637. 21

[Ravi et al., 2020] Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.-Y.,
Johnson, J., and Gkioxari, G. (2020). Accelerating 3d deep learning with
pytorch3d. arXiv:2007.08501. 154

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 779—
788. 112

[Rematas and Ferrari, 2020] Rematas, K. and Ferrari, V. (2020). Neural voxel

renderer: Learning an accurate and controllable rendering tool. In CVPR. 27

[Rematas et al., 2022] Rematas, K., Liu, A., Srinivasan, P. P., Barron, J. T.,
Tagliasacchi, A., Funkhouser, T., and Ferrari, V. (2022). Urban radiance
fields. In CVPR. 178

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances

in neural information processing systems, 28. 112

268

Bibliography

[Richard et al., 2019] Richard, A., Cherabier, I., Oswald, M. R., Tsiminaki, V.,
Pollefeys, M., and Schindler, K. (2019). Learned multi-view texture super-
resolution. In International Conference on 3D Vision (3DV). 33

[Riegler and Koltun, 2020] Riegler, G. and Koltun, V. (2020). Free view synthe-
sis. In ECCV. 27

[Riegler et al., 2017a] Riegler, G., Ulusoy, A. O., Bischof, H., and Geiger, A.
(2017a). Octnetfusion: Learning depth fusion from data. In 2017 International
Conference on 3D Vision, 3DV 2017, Qingdao, China, October 10-12, 2017,
pages 57-66. 28, 67, 68

[Riegler et al., 2017b] Riegler, G., Ulusoy, A. O., and Geiger, A. (2017b). Octnet:
Learning deep 3d representations at high resolutions. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 6620-6629. 28

[Rockwell et al., 2021] Rockwell, C., Fouhey, D. F., and Johnson, J. (2021).
PixelSynth: Generating a 3D-consistent experience from a single image. In
ICCV. 178, 179, 194, 196, 197, 200, 201

[Roessle et al., 2022] Roessle, B., Barron, J. T., Mildenhall, B., Srinivasan, P. P.,
and Niefiner, M. (2022). Dense depth priors for neural radiance fields from
sparse input views. In CVPR. 178, 187

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image segmentation. In Navab,
N., Hornegger, J., Wells, W. M., and Frangi, A. F., editors, Medical Image
Computing and Computer-Assisted Intervention — MICCAI 2015, pages 234—
241, Cham. Springer International Publishing. 42, 113, 149

[Rother et al., 2004] Rother, C., Kolmogorov, V., and Blake, A. (2004). " grabcut"
interactive foreground extraction using iterated graph cuts. ACM transactions
on graphics (TOG), 23(3):309-314. 113

[Rothermel et al., 2016] Rothermel, M., Haala, N., and Fritsch, D. (2016). A

median-based depthmap fusion strategy for the generation of oriented points. In

269

Bibliography

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, volume III-3. 29

[Rozenberszki et al., 2022] Rozenberszki, D., Litany, O., and Dai, A. (2022).
Language-Grounded Indoor 3D Semantic Segmentation in the Wild. In ECCV.
115, 127

[Riinz et al., 2018] Riinz, M., Buffier, M., and Agapito, L. (2018). MaskFusion:
Real-Time Recognition, Tracking and Reconstruction of Multiple Moving
Objects. 120

[Runz et al., 2020] Runz, M., Li, K., Tang, M., Ma, L., Kong, C., Schmidt, T.,
Reid, I., Agapito, L., Straub, J., Lovegrove, S., et al. (2020). FroDO: From
detections to 3D objects. In CVPR. 177

[Russell et al., 2008] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman,
W. T. (2008). Labelme: a database and web-based tool for image annotation.

International journal of computer vision, 77:157-173. 115

[Saito et al., 2019] Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa,
A., and Li, H. (2019). PIFu: Pixel-aligned implicit function for high-resolution
clothed human digitization. In ICCV. 26, 27, 177

[Saito et al., 2020] Saito, S., Simon, T., Saragih, J., and Joo, H. (2020). PIFuHD:
Multi-level pixel-aligned implicit function for high-resolution 3d human digiti-
zation. In CVPR. 26,27, 177

[Sandstrom et al., 2022] Sandstrom, E., Oswald, M. R., Kumar, S., Weder, S., Yu,
F., Sminchisescu, C., and Van Gool, L. (2022). Learning online multi-sensor
depth fusion. In European Conference on Computer Vision, pages 87-105.
Springer. 12

[Sara Fridovich-Keil and Alex Yu et al., 2021] Sara Fridovich-Keil and Alex Yu,
Tancik, M., Chen, Q., Recht, B., and Kanazawa, A. (2021). Plenoxels: Radiance
fields without neural networks. In CVPR. 177

270

Bibliography

[Savinov et al., 2016] Savinov, N., Hine, C., Ladicky, L., and Pollefeys, M.
(2016). Semantic 3d reconstruction with continuous regularization and ray
potentials using a visibility consistency constraint. In CVPR, pages 5460-5469.
28, 35,51,52

[Savinov et al., 2015] Savinov, N., Ladicky, L., Hane, C., and Pollefeys, M.
(2015). Discrete optimization of ray potentials for semantic 3d reconstruction.
In CVPR, pages 5511-5518. 28, 35

[Savvaet al., 2019] Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., and Batra, D.
(2019). Habitat: A Platform for Embodied Al Research. In ICCV. 95, 96, 117

[Sayed et al., 2022] Sayed, M., Gibson, J., Watson, J., Prisacariu, V., Firman,
M., and Godard, C. (2022). SimpleRecon: 3D reconstruction without 3D
convolutions. In ECCV. 20, 31, 194, 197

[Schneider et al., 2016] Schneider, L., Cordts, M., Rehfeld, T., Pfeiffer, D., En-
zweiler, M., Franke, U., Pollefeys, M., and Roth, S. (2016). Semantic Stixels:
Depth is not enough. 119

[Schonberger and Frahm, 2016] Schonberger, J. L. and Frahm, J.-M. (2016).
Structure-from-motion revisited. In Conference on Computer Vision and Pat-
tern Recognition (CVPR). 20, 23, 52,71, 178, 184

[Schonberger et al., 2016] Schonberger, J. L., Zheng, E., Pollefeys, M., and
Frahm, J.-M. (2016). Pixelwise view selection for unstructured multi-view
stereo. In European Conference on Computer Vision (ECCV). 52,71, 178, 184

[Schops et al., 2017a] Schops, T., Oswald, M. R., Speciale, P., Yang, S., and
Pollefeys, M. (2017a). Real-time view correction for mobile devices. IEEE
TVCG. 83

[Schops et al., 2017b] Schops, T., Sattler, T., Héne, C., and Pollefeys, M. (2017b).
Large-scale outdoor 3d reconstruction on a mobile device. Computer Vision
and Image Understanding (CVIU). 85

271

Bibliography

[Schuhmann et al., 2021] Schuhmann, C., Vencu, R., Beaumont, R., Kaczmar-
czyk, R., Mullis, C., Katta, A., Coombes, T., Jitsev, J., and Komatsuzaki, A.
(2021). Laion-400m: Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114. 126

[Schult et al., 2023] Schult, J., Engelmann, F., Hermans, A., Litany, O., Tang, S.,
and Leibe, B. (2023). Mask3D for 3D Semantic Instance Segmentation. In
International Conference on Robotics and Automation (ICRA). 126, 139

[Schwarz et al., 2020] Schwarz, K., Liao, Y., Niemeyer, M., and Geiger, A.
(2020). Graf: Generative radiance fields for 3D-aware image synthesis.
NeurIPS. 178

[Schops et al., 2019] Schops, T., Sattler, T., and Pollefeys, M. (2019). Sur-
felMeshing: Online surfel-based mesh reconstruction. 25, 30, 33, 94, 95,
103

[Seitz and Dyer, 1999] Seitz, S. M. and Dyer, C. R. (1999). Photorealistic scene
reconstruction by voxel coloring. IJCV. 33,94

[Sengupta et al., 2013] Sengupta, S., Greveson, E., Shahrokni, A., and Torr, P. H.
(2013). Urban 3d semantic modelling using stereo vision. In 2013 IEEE
International Conference on robotics and Automation, pages 580-585. IEEE.
114

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. /[EEE Transactions on pattern analysis and machine intelligence,
22(8):888-905. 113

[Shih et al., 2020] Shih, M.-L., Su, S.-Y., Kopf, J., and Huang, J.-B. (2020). 3D
photography using context-aware layered depth inpainting. In CVPR. 179

[Shotton et al., 2013] Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A.,
and Fitzgibbon, A. (2013). Scene coordinate regression forests for camera
relocalization in rgb-d images. In CVPR. IEEE. xv, 36, 52, 53

272

Bibliography

[Siddiqui et al., 2023] Siddiqui, Y., Porzi, L., Bulo, S. R., Miiller, N., NieBner,
M., Dai, A., and Kontschieder, P. (2023). Panoptic lifting for 3d scene under-
standing with neural fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9043-9052. 124, 131

[Silberman et al., 2012] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R.
(2012). Indoor Segmentation and Support Inference from RGBD Images.
pages 746-760. Springer Berlin Heidelberg. 116, 124, 135

[Sitzmann et al., 2019a] Sitzmann, V., Thies, J., Heide, F., NieBner, M., Wet-
zstein, G., and Zollhofer, M. (2019a). Deepvoxels: Learning persistent 3d
feature embeddings. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
2437-2446. xvi, 27, 60, 85, 86, 87, 95, 96, 102, 103

[Sitzmann et al., 2019b] Sitzmann, V., Zollhofer, M., and Wetzstein, G. (2019b).
Scene representation networks: Continuous 3d-structure-aware neural scene
representations. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, pages 1119-1130. xvi,
217, 85, 86, 87, 96, 102

[Smith and Topin, 2017] Smith, L. N. and Topin, N. (2017). Super-convergence:
Very fast training of residual networks using large learning rates. CoRR,
abs/1708.07120. 154

[Song et al., 2015] Song, S., Lichtenberg, S. P., and Xiao, J. (2015). Sun rgb-d:
A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 567-576. 116,
128

[Song et al., 2017] Song, S., Yu, F, Zeng, A., Chang, A. X., Savva, M., and
Funkhouser, T. A. (2017). Semantic scene completion from a single depth
image. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 190-198. IEEE
Computer Society. 176

273

Bibliography

[Srinivasan et al., 2019] Srinivasan, P. P., Tucker, R., Barron, J. T., Ramamoorthi,
R., Ng, R., and Snavely, N. (2019). Pushing the boundaries of view extrapola-
tion with multiplane images. In CVPR. 27

[Stathopoulou and Remondino, 2023] Stathopoulou, E. K. and Remondino, F.
(2023). A survey on conventional and learning-based methods for multi-view

stereo. The Photogrammetric Record. 20

[Steinbriicker et al., 2013] Steinbriicker, F., Kerl, C., and Cremers, D. (2013).
Large-scale multi-resolution surface reconstruction from RGB-D sequences.
In IEEE International Conference on Computer Vision, ICCV 2013, Sydney,
Australia, December 1-8, 2013, pages 3264-3271. 29, 36

[Stereolabs, 2019] Stereolabs (2019). Zed 2. https://www.stereolabs.
com/zed-2/. Accessed: 2023-10-02. 21

[Stier et al., 2021] Stier, N., Rich, A., Sen, P., and Hollerer, T. (2021). Vortx:
Volumetric 3d reconstruction with transformers for voxelwise view selection
and fusion. In 2021 International Conference on 3D Vision (3DV), pages
320-330. IEEE. 31

[Straub et al., 2019] Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green,
S., Engel, J. J., Mur-Artal, R., Ren, C., Verma, S., Clarkson, A., Yan, M.,
Budge, B., Yan, Y., Pan, X., Yon, J., Zou, Y., Leon, K., Carter, N., Briales, J.,
Gillingham, T., Mueggler, E., Pesqueira, L., Savva, M., Batra, D., Strasdat,
H. M., Nardi, R. D., Goesele, M., Lovegrove, S., and Newcombe, R. (2019).
The Replica dataset: A digital replica of indoor spaces. arXiv. xvi, xix, 95, 96,
100, 117, 133, 138

[Stiickler and Behnke, 2014] Stiickler, J. and Behnke, S. (2014). Multi-resolution
surfel maps for efficient dense 3d modeling and tracking. J. Visual Communi-
cation and Image Representation, 25(1):137-147. 30

[Stutz and Geiger, 2018] Stutz, D. and Geiger, A. (2018). Learning 3d shape
completion from laser scan data with weak supervision. In IEEE Conference

274

https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/

Bibliography

on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society.
67

[Sucar et al., 2021] Sucar, E., Liu, S., Ortiz, J., and Davison, A. (2021). iMAP:
Implicit mapping and positioning in real-time. In ICCV. 31, 178

[Sulaiman et al., 2020] Sulaiman, M. Z., Aziz, M. N. A., Bakar, M. H. A., Halili,
N. A., and Azuddin, M. A. (2020). Matterport: virtual tour as a new marketing
approach in real estate business during pandemic COVID-19. In International
Conference of Innovation in Media and Visual Design (IMDES). 183

[Sun et al., 2021] Sun, J., Xie, Y., Chen, L., Zhou, X., and Bao, H. (2021). Neu-
ralrecon: Real-time coherent 3d reconstruction from monocular video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15598-15607. 31

[Suvorov et al., 2022] Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A.,
Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K., and Lempitsky, V.
(2022). Resolution-robust large mask inpainting with fourier convolutions. In
WACV. 174, 183, 185, 191, 192, 193, 194, 196, 197, 198

[Szeliski and Golland, 1998] Szeliski, R. and Golland, P. (1998). Stereo matching
with transparency and matting. In /CCV. 33

[Takai et al., 2010] Takai, T., Hilton, A., and Mastuyama, T. (2010). Harmonised
texture mapping. In International Conference on 3D Vision (3DV). 32

[Tarini et al., 2017] Tarini, M., Yuksel, C., and Lefebvre, S. (2017). Rethinking
texture mapping. In ACM SIGGRAPH 2017 Courses. 33

[Tewari et al., 2020] Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi,
S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., NieBner, M.,
Pandey, R., Fanello, S., Wetzstein, G., Zhu, J.-Y., Theobalt, C., Agrawala, M.,
Shechtman, E., Goldman, D. B., and Zollhofer, M. (2020). State of the art on
neural rendering. Comput. Graph. Forum. 27

275

Bibliography

[Theobalt et al., 2007] Theobalt, C., Ahmed, N., Lensch, H. P. A., Magnor, M. A.,
and Seidel, H.-P. (2007). Seeing people in different light-joint shape, motion,
and reflectance capture. IEEE TVCG. 32

[Thies et al., 2019] Thies, J., Zollhofer, M., and NieBner, M. (2019). Deferred

neural rendering: Image synthesis using neural textures. 27

[Thies et al., 2020] Thies, J., Zollhofer, M., Theobalt, C., Stamminger, M., and
NieBner, M. (2020). Image-guided neural object rendering. In ICLR. 27

[Thomee et al., 2016] Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B.,
Ni, K., Poland, D., Borth, D., and Li, L.-J. (2016). Yfcc100m: The new data in
multimedia research. Communications of the ACM, 59(2):64-73. 126

[Thonat et al., 2016] Thonat, T., Shechtman, E., Paris, S., and Drettakis, G.
(2016). Multi-view inpainting for image-based scene editing and rendering. In
3DV. 176

[Tou and Gonzalez, 1974] Tou, J. T. and Gonzalez, R. C. (1974). Pattern recog-
nition principles. 112

[Tremblay et al., 2022] Tremblay, J., Meshry, M., Evans, A., Kautz, J., Keller, A.,
Khamis, S., Loop, C., Morrical, N., Nagano, K., Takikawa, T., and Birchfield,
S. (2022). RTMV: A ray-traced multi-view synthetic dataset for novel view
synthesis. ECCVW. 177

[Tsiminaki et al., 2019] Tsiminaki, V., Dong, W., Oswald, M. R., and Pollefeys,
M. (2019). Joint multi-view texture super-resolution and intrinsic decomposi-
tion. In BMVC, page 15. BMVA Press. 32

[Tsiminaki et al., 2014] Tsiminaki, V., Franco, J.-S., and Boyer, E. (2014). High

resolution 3d shape texture from multiple videos. In CVPR. 32

[Ulusoy et al., 2016] Ulusoy, A. O., Black, M. J., and Geiger, A. (2016). Patches,
planes and probabilities: A non-local prior for volumetric 3d reconstruction. In
CVPR, pages 3280-3289. 31

276

Bibliography

[Ulusoy et al., 2015] Ulusoy, A. O., Geiger, A., and Black, M. J. (2015). Towards
probabilistic volumetric reconstruction using ray potentials. In 2015 Inter-
national Conference on 3D Vision, 3DV 2015, Lyon, France, October 19-22,
2015, pages 10-18. 31

[Ummenhofer and Brox, 2013] Ummenhofer, B. and Brox, T. (2013). Point-
based 3d reconstruction of thin objects. In ICCV, pages 969-976. xv, 51,
52

[Valentin et al., 2013] Valentin, J. P., Sengupta, S., Warrell, J., Shahrokni, A., and
Torr, P. H. (2013). Mesh based semantic modelling for indoor and outdoor

scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2067-2074. 114

[Velodyne, 2019] Velodyne (2019). Alpha prime. https://
velodynelidar.com/products/alpha-prime/. Accessed:
2023-10-02. 21

[Vineet et al., 2015] Vineet, V., Miksik, O., Lidegaard, M., Nieiner, M.,
Golodetz, S., Prisacariu, V. A., Kihler, O., Murray, D. W., Izadi, S., Pérez, P.,
et al. (2015). Incremental dense semantic stereo fusion for large-scale semantic
scene reconstruction. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 75-82. IEEE. 114, 120, 145

[Viola and Jones, 2001] Viola, P. and Jones, M. (2001). Rapid object detection
using a boosted cascade of simple features. In Proceedings of the 2001 IEEE
computer society conference on computer vision and pattern recognition. CVPR

2001, volume 1, pages I-1. Ieee. 112

[Waechter et al., 2014] Waechter, M., Moehrle, N., and Goesele, M. (2014). Let
there be color! large-scale texturing of 3d reconstructions. In ECCV. 32, 83,
85, 86, 94, 95, 103

[Wang et al., 2019a] Wang, C., Huang, H., Han, X., and Wang, J. (2019a). Video

inpainting by jointly learning temporal structure and spatial details. In The

277

https://velodynelidar.com/products/alpha-prime/
https://velodynelidar.com/products/alpha-prime/

Bibliography

Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, [AAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
5232-5239. AAAI Press. 175

[Wang et al., 2016] Wang, J., Wang, Z., Tao, D., See, S., and Wang, G. (2016).
Learning common and specific features for RGB-D semantic segmentation
with deconvolutional networks. In Leibe, B., Matas, J., Sebe, N., and Welling,
M., editors, Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V,
volume 9909 of Lecture Notes in Computer Science, pages 664—679. Springer.
147

[Wang et al., 2019b] Wang, K., Gao, F., and Shen, S. (2019b). Real-time scalable
dense surfel mapping. In International Conference on Robotics and Automation
(ICRA). 25, 33

[Wang et al., 2021] Wang, P.,, Liu, L., Liu, Y., Theobalt, C., Komura, T., and
Wang, W. (2021). Neus: Learning neural implicit surfaces by volume rendering

for multi-view reconstruction. arXiv preprint arXiv:2106.10689. 133

[Wang et al., 2022a] Wang, Q., Li, Z., Salesin, D., Snavely, N., Curless, B., and
Kontkanen, J. (2022a). 3D moments from near-duplicate photos. In CVPR.
179

[Wang et al., 2022b] Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X.,
Hu, X, Lu, T, Lu, L., Li, H., et al. (2022b). Internimage: Exploring large-
scale vision foundation models with deformable convolutions. arXiv preprint
arXiv:2211.05778. 114,123, 124, 126

[Wang et al., 2018] Wang, Y., Tao, X., Qi, X., Shen, X., and Jia, J. (2018). Im-
age inpainting via generative multi-column convolutional neural networks.

Advances in neural information processing systems, 31. 174

278

Bibliography

[Wang et al., 2004] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibility to structural similarity.
IEEE TIP. 95, 195

[Weder et al., 2023a] Weder, S., Blum, H., Engelmann, F., and Pollefeys, M.
(2023a). Labelmaker: Automatic semantic label generation from rgb-d trajec-

tories. Preprint. 11

[Weder et al., 2023b] Weder, S., Engelmann, F., Schonberger, J. L., Seki, A.,
Pollefeys, M., and Oswald, M. R. (2023b). Alster: A local spatio-temporal

expert for online 3d semantic reconstruction. Preprint. 11

[Weder et al., 2023c] Weder, S., Garcia-Hernando, G., Monszpart, A., Pollefeys,
M., Brostow, G. J., Firman, M., and Vicente, S. (2023c). Removing objects
from neural radiance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16528-16538. 11

[Weder et al., 2020] Weder, S., Schonberger, J. L., Pollefeys, M., and Oswald,
M. R. (2020). RoutedFusion: Learning real-time depth map fusion. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
11, 60, 75,76

[Weder et al., 2021] Weder, S., Schonberger, J. L., Pollefeys, M., and Oswald,
M. R. (2021). NeuralFusion: Online Depth Fusion in Latent Space. In CVPR.
11

[Wen et al., 2019] Wen, C., Zhang, Y., Li, Z., and Fu, Y. (2019). Pixel2mesh++:

Multi-view 3d mesh generation via deformation. In ICCV. 29

[Wexler et al., 2007] Wexler, Y., Shechtman, E., and Irani, M. (2007). Space-time
completion of video. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463-476.
175

[Whelan et al., 2015] Whelan, T., Kaess, M., Johannsson, H., Fallon, M.,
Leonard, J. J., and McDonald, J. (2015). Real-time large-scale dense rgb-
d slam with volumetric fusion. The Int. J. Robotics Research. 83

279

Bibliography

[Whelan et al., 2016] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison,
A.J., and Leutenegger, S. (2016). Elasticfusion: Real-time dense SLAM and
light source estimation. The Int. J. Robotics Research. 25, 29, 30, 33, 35

[Wood et al., 2000] Wood, D. N., Azuma, D. 1., Aldinger, K., Curless, B.,
Duchamp, T., Salesin, D. H., and Stuetzle, W. (2000). Surface light fields
for 3d photography. 32

[Woodford and Vogiatzis, 2012] Woodford, O. J. and Vogiatzis, G. (2012). A
generative model for online depth fusion. In ECCV, pages 144-157. 30

[Worrall et al., 2017] Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. (2017). Interpretable transformations with encoder-decoder
networks. In ICCV. 27

[Wu et al.,, 2022] Wu, Q., Liu, X., Chen, Y., Li, K., Zheng, C., Cai, J., and Zheng,
J. (2022). Object-compositional neural implicit surfaces. In ECCV. 178, 183

[Wu and Leahy, 1993] Wu, Z. and Leahy, R. (1993). An optimal graph theoretic
approach to data clustering: Theory and its application to image segmentation.

IEEE transactions on pattern analysis and machine intelligence, 15(11):1101—
1113. 113

[Wuet al, 2015] Wu, Z., Song, S., Khosla, A., Yu, F.,, Zhang, L., Tang, X., and
Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 1912-1920. IEEE Computer Society.
xvii, 67, 68, 70, 71, 78, 225

[Xia et al., 2018] Xia, F., R. Zamir, A., He, Z.-Y., Sax, A., Malik, J., and Savarese,
S. (2018). Gibson env: real-world perception for embodied agents. In Computer
Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on. IEEE. 117

[Xiao et al., 2013] Xiao, J., Owens, A., and Torralba, A. (2013). Sun3d: A
database of big spaces reconstructed using sfm and object labels. In Pro-
ceedings of the IEEE international conference on computer vision, pages

1625-1632. 116

280

Bibliography

[Xie et al., 2023] Xie, S., Zhang, Z., Lin, Z., Hinz, T., and Zhang, K. (2023).
Smartbrush: Text and shape guided object inpainting with diffusion model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22428-22437. 174

[Xu et al., 2019a] Xu, Q., Wang, W., Ceylan, D., Mech, R., and Neumann, U.
(2019a). DISN: deep implicit surface network for high-quality single-view
3d reconstruction. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, pages 490-500. 26

[Xu et al., 2019b] Xu, R., Li, X., Zhou, B., and Loy, C. C. (2019b). Deep flow-
guided video inpainting. In CVPR. 175, 191

[Xuetal., 2019c] Xu, X., Chen, Y.-C., and Jia, J. (2019c). View independent
generative adversarial network for novel view synthesis. In ICCV. 177

[Yang et al., 2021] Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang,
G., and Cui, Z. (2021). Learning object-compositional neural radiance field for
editable scene rendering. In ICCV. 178, 183, 194, 196, 197, 200, 201

[Ylimiki et al., 2018] Ylimaki, M., Kannala, J., and Heikkila, J. (2018). Accurate
3-d reconstruction with rgb-d cameras using depth map fusion and pose re-
finement. 2018 24th International Conference on Pattern Recognition (ICPR),
pages 1977-1982. 31

[Yuetal., 2021] Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa, A.
(2021). PlenOctrees for real-time rendering of neural radiance fields. In ICCV.
177

[Yuetal., 2020] Yu, E.,, Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Mad-
havan, V., and Darrell, T. (2020). Bdd100k: A diverse driving dataset for
heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 2636-2645. 124

[Yuetal, 2018] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S.

(2018). Generative image inpainting with contextual attention. In Proceedings

281

Bibliography

of the IEEE conference on computer vision and pattern recognition, pages
5505-5514. 174

[Yu et al., 2002] Yu, S. X., Gross, R., and Shi, J. (2002). Concurrent object recog-
nition and segmentation by graph partitioning. Advances in neural information

processing systems, 15. 113

[Yu and Shi, 2004] Yu, S. X. and Shi, J. (2004). Segmentation given partial
grouping constraints. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):173-183. 113

[Yuetal, 2022] Yu, Z., Chen, A., Antic, B., Peng, S. P., Bhattacharyya, A.,
Niemeyer, M., Tang, S., Sattler, T., and Geiger, A. (2022). Sdfstudio: A unified

framework for surface reconstruction. 131, 133

[Yuan et al., 2022] Yuan, Y.-J., Sun, Y.-T., Lai, Y.-K., Ma, Y., Jia, R., and Gao, L.
(2022). NeRF-editing: geometry editing of neural radiance fields. In CVPR.
181

[Yuksel et al., 2010] Yuksel, C., Keyser, J., and House, D. H. (2010). Mesh colors.
33

[Yuksel et al., 2019] Yuksel, C., Lefebvre, S., and Tarini, M. (2019). Rethinking
texture mapping. In Comput. Graph. Forum. 33

[Zach, 2008] Zach, C. (2008). Fast and high quality fusion of depth maps. In In-
ternational Symposium on 3D Data Processing, Visualization and Transmission
(3DPVT). 35,51,52

[Zach et al., 2007] Zach, C., Pock, T., and Bischof, H. (2007). A globally optimal
algorithm for robust tv-11 range image integration. In /CCV, pages 1-8. 28, 35

[Zeng et al., 2020] Zeng, Y., Fu, J., and Chao, H. (2020). Learning joint spatial-

temporal transformations for video inpainting. In ECCV. 175

[Zeng et al., 2019] Zeng, Y., Fu, J., Chao, H., and Guo, B. (2019). Learning
pyramid-context encoder network for high-quality image inpainting. In CVPR.
174

282

Bibliography

[Zhang et al., 2023a] Zhang, G., Ji, J., Zhang, Y., Yu, M., Jaakkola, T. S., and
Chang, S. (2023a). Towards coherent image inpainting using denoising diffu-

sion implicit models. 174

[Zhang et al., 2023b] Zhang, J., Liu, H., Yang, K., Hu, X., Liu, R., and Stiefelha-
gen, R. (2023b). Cmx: Cross-modal fusion for rgb-x semantic segmentation

with transformers. IEEE Transactions on Intelligent Transportation Systems.
126

[Zhang et al., 2020] Zhang, J., Zhu, C., Zheng, L., and Xu, K. (2020). Fusion-
Aware Point Convolution for Online Semantic 3D Scene Segmentation. In
CVPR. 121, 145, 154, 155, 157, 159

[Zhang et al., 2018] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
0. (2018). The unreasonable effectiveness of deep features as a perceptual
metric. In CVPR. 195

[Zhang et al., 2021] Zhang, X., Fanello, S., Tsai, Y.-T., Sun, T., Xue, T., Pandey,
R., Orts-Escolano, S., Davidson, P., Rhemann, C., Debevec, P., et al. (2021).
Neural light transport for relighting and view synthesis. 27

[Zhi et al., 2019] Zhi, S., Bloesch, M., Leutenegger, S., and Davison, A. J. (2019).
Scenecode: Monocular dense semantic reconstruction using learned encoded
scene representations. In CVPR, pages 11776-11785. 31, 120

[Zhi et al., 2021a] Zhi, S., Laidlow, T., Leutenegger, S., and Davison, A. (2021a).
In-place scene labelling and understanding with implicit scene representation.
InICCV. 178

[Zhi et al., 2021b] Zhi, S., Laidlow, T., Leutenegger, S., and Davison, A. J.
(2021b). In-place scene labelling and understanding with implicit scene repre-
sentation. In ICCV. 117, 119, 124, 133, 134, 135, 138, 141

[Zhirong Wu et al., 2015] Zhirong Wu, Song, S., Khosla, A., Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Xiao, J. (2015). 3d shapenets: A deep representation
for volumetric shapes. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1912-1920. xv, 46, 47, 56

283

Bibliography

[Zhou et al., 2017] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and
Torralba, A. (2017). Scene parsing through ade20k dataset. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages
633-641. 114, 116, 124, 126

[Zhou et al., 2020] Zhou, H., Ummenhofer, B., and Brox, T. (2020). Deeptam:
Deep tracking and mapping with convolutional neural networks. Int. J. Comput.
Vis., 128(3):756-769. 31

[Zhou and Koltun, 2013] Zhou, Q. and Koltun, V. (2013). Dense scene recon-
struction with points of interest. ACM Trans. Graph., 32(4):112:1-112:8. xv,
Xvi, Xvii, xix, 50, 52, 54, 71, 81, 226

[Zhu et al., 2020] Zhu, X., Su, W,, Lu, L., Li, B., Wang, X., and Dai, J. (2020).
Deformable detr: Deformable transformers for end-to-end object detection.
arXiv preprint arXiv:2010.04159. 112

[Zhu et al., 2022] Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald,
M. R., and Pollefeys, M. (2022). Nice-slam: Neural implicit scalable encoding
for slam. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12786-12796. 32

[Zienkiewicz et al., 2016] Zienkiewicz, J., Tsiotsios, A., Davison, A. J., and
Leutenegger, S. (2016). Monocular, real-time surface reconstruction using
dynamic level of detail. In Fourth International Conference on 3D Vision, 3DV
2016, Stanford, CA, USA, October 25-28, 2016, pages 37-46. 30

[Zollhofer et al., 2015a] Zollhofer, M., Dai, A., Innmann, M., Wu, C., Stam-
minger, M., Theobalt, C., and NieBner, M. (2015a). Shading-based refinement

on volumetric signed distance functions. ACM Transactions on Graphics
(TOG), 34(4). 28, 33

[Zollhofer et al., 2015b] Zollhofer, M., Dai, A., Innmann, M., Wu, C., Stam-
minger, M., Theobalt, C., and NieBner, M. (2015b). Shading-based Refinement
on Volumetric Signed Distance Functions. 33

284

Bibliography

[Zollhofer et al., 2018] Zollhofer, M., Stotko, P., Gorlitz, A., Theobalt, C.,
NieBner, M., Klein, R., and Kolb, A. (2018). State of the Art on 3D Re-
construction with RGB-D Cameras. Computer Graphics Forum (Eurographics
State of the Art Reports 2018), 37(2). 33

285

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	I Preamble
	Introduction
	Scope of this work
	Contributions

	Outline

	II 3D Reconstruction
	Introduction
	Background
	From Measurements to 3D Model
	Obtaining the Measurements
	Aggregating the Measurements

	Scene Representations for 3D Reconstruction
	Non-learned Representations
	Learned Representations

	Global Depth Fusion
	Online Depth Fusion
	Surfel-based Fusion Methods.
	Probabilistic Depth Map Fusion.
	Learned Depth Map Fusion
	Learned RGB fusion

	Appearance Reconstruction
	Classical Texture Mapping.
	Online Appearance Aggregation.

	Learning-based Depth Map Fusion
	Method
	Review of Standard TSDF Fusion
	Pipeline Overview
	Depth Routing
	TSDF Extraction
	Depth Fusion
	TSDF Update Integration
	Outlier Filtering
	Loss Function and Training Procedure

	Experiments
	Implementation Details
	Results
	Synthetic Data
	Real-World Data
	Ablation Studies

	Discussion
	Limitations
	Summary

	Moving the fusion to a latent space
	Method
	Overview
	Feature Extraction
	Feature Fusion
	Feature Integration
	Feature Translation
	Training Procedure and Loss Function.

	Experiments
	Implementation Details.
	Evaluation Metrics.
	Results on Synthetic Data
	Ablation Study
	Loss Ablation.
	Real-World Data

	Discussion
	Limitations
	Summary

	Learning-based Appearance Fusion
	DeepSurfels 3D Scene Representation
	Data Structure
	Surface Fitting

	Online Appearance Fusion Pipeline
	Differentiable Projection
	Fusion Network
	Inverse Projection -1
	Appearance Rendering Module
	Loss and Optimization

	Evaluation
	Datasets
	Metrics
	Novel View Synthesis
	Generalization
	Ablation Studies
	Real-world data
	Runtime

	Discussion
	Limitations
	Summary

	III 3D Scene Understanding
	Introduction
	Background
	Overview about Scene Understanding
	Recognition
	Image Segmentation
	Semantic Segmentation
	3D Semantic Segmentation

	Datasets for Scene Understanding
	2D Datasets
	3D Datasets
	Annotating Datasets for Scene Understanding

	3D Semantic Segmentation
	Offline vs@汥瑀瑯步渠. Online Processing.
	Offline 3D Semantic Segmentation
	Online 3D Semantic Segmentation.

	Automatic Annotation for 3D Semantic Segmentation
	Method
	Base Models
	Translation between Label Spaces
	Model Consensus
	3D Lifting
	Relabeling ScanNet Scenes

	Experiments
	Implementation Details
	Datasets
	Baselines
	Comparison to State-of-the-Art
	Ablation Studies
	Experiments on ARKitScenes

	Discussion
	Limitations
	Summary

	Online Semantic 3D Reconstruction
	Method
	Overview
	Scene Representation
	2D Encoder
	3D Encoder
	Spatio-Temporal Expert
	Loss Function and Training Details

	Experiments
	Implementation Details
	Online Methods in Comparison
	Datasets and Metrics
	3D Semantic Segmentation
	Ablation Studies

	Discussion
	Discussion of Baseline Comparison
	Why is there no qualitative comparison to baselines?
	Limitations
	Summary

	IV 3D Scene Editing
	Introduction
	Background
	Overview
	Image Inpainting
	Video Inpainting
	3D Editing

	Novel View Synthesis
	Neural Radiance Fields
	Generative Models for Novel View Synthesis
	Inpainting in Novel View Synthesis

	Removing Objects from Scenes
	Method
	RGB and Depth Inpainting Network
	Background on NeRFs
	Confidence-based View Selection
	Implementation Details

	Experiments
	Datasets
	Metrics
	Ablations and Comparison with Baselines

	Discussion
	Limitations
	Summary

	V Conclusion
	Summary
	Future Work
	3D Scene Reconstruction
	3D Scene Understanding
	3D Scene Editing

	Appendices
	Additional Results
	Learning-based Depth Map Fusion
	Moving the Fusion to a Learned Space
	Learning-based Appearance Fusion

	Dataset for Object Removal
	Bibliography

