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A B S T R A C T

In machine learning, the training process refines models by extracting patterns from vast
datasets. This refinement typically hinges on an optimization formulation that minimizes
a task-specific loss function over the model’s parameters. While numerous efficient first-
order optimization methods exist, they may fall short in addressing contemporary machine
learning tasks. For instance, Generative Adversarial Networks (GANs) employ a two-
player approach: one player generates data emulating the training data distribution, while
another discerns between the generated and real data. Also, Adversarial Training trains a
model against worst-case scenarios, anticipating perturbations in the training data. Such
two-player or worst-case tasks are typically framed as minimax optimization, where one
variable seeks to minimize a loss function, and another aims to maximize it.

Minimax optimization, expressed as minx maxy f (x, y), is pivotal across various domains.
While the study on it can be traced back to game theory and variational inequalities, we
spotlight three predominant challenges in its application to modern machine learning:
asymmetry, non-convexity, and adaptivity.

The initial part of this thesis addresses the asymmetry challenge. In real-world sce-
narios, the loss function often exhibits asymmetrical convexity/concavity properties for
two variables. For instance, it might be nonconvex with respect to x but concave with
respect to y. Optimal algorithms for such unbalanced minimax scenarios remain elusive,
especially when the objective function adopts a finite-sum form. Current solutions for
these unbalanced tasks are intricate, with distinct algorithms tailored to specific settings.
We propose a universal "Catalyst" framework, drawing inspiration from proximal point
methods. This approach solves a series of regularized problems using balanced-regime
algorithms, achieving near-optimal or state-of-the-art complexities in unbalanced settings.

The subsequent part delves into problems that are nonconvex in x and nonconcave in
y simultaneously. While some studies highlight the intractability of general nonconvex-
nonconcave minimax problems, we argue that discerning unique structures can pave
the way for efficient algorithms. For instance, when the objective function satisfies the
Polyak-Łojasiewicz inequality for both variables, we demonstrate that the Alternating
Gradient Descent Ascent (AGDA) — a single-loop, prevalent algorithm — can pinpoint
the global solution. If the inequality holds for just one variable, AGDA and its regularized
counterpart can find stationary points.
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Lastly, our focus shifts to adaptive methods for nonconvex minimax optimization, aiming
to obviate stepsize tuning. We observe that Gradient Descent Ascent, when paired with
prevalent adaptive stepsize schemes, still fails to converge without manual tuning. This
inconsistency might underpin the unstable training observed in minimax optimization,
especially in GANs. We introduce a nested-loop algorithm, combined with AdaGrad, that
adaptively balances updates in x and y, ensuring convergence without stepsize tuning.
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Z U S A M M E N FA S S U N G

Im maschinellen Lernen verfeinert der Trainingsprozess Modelle, indem er Muster
aus umfangreichen Datensätzen extrahiert. Diese Verfeinerung basiert in der Regel auf
einer Optimierungsformulierung, die eine aufgabenbezogene Verlustfunktion über die
Parameter des Modells minimiert. Obwohl zahlreiche effiziente Optimierungsmethoden
erster Ordnung existieren, können sie bei der Behandlung zeitgenössischer maschineller
Lernaufgaben an ihre Grenzen stoßen. Zum Beispiel verwenden Generative Adversarial
Networks (GANs) einen Zwei-Spieler-Ansatz: Ein Spieler erzeugt Daten, die die Verteilung
der Trainingsdaten nachahmen, während ein anderer zwischen den erzeugten und echten
Daten unterscheidet. Auch das Adversarial Training schult ein Modell gegen Worst-Case-
Szenarien und erwartet Störungen in den Trainingsdaten. Solche Zwei-Spieler- oder Worst-
Case-Aufgaben werden in der Regel als Minimax-Optimierung formuliert, bei der eine
Variable versucht, eine Verlustfunktion zu minimieren, und eine andere sie zu maximieren.

Die Minimax-Optimierung, ausgedrückt als minx maxy f (x, y), ist in verschiedenen
Bereichen von zentraler Bedeutung. Obwohl die Studie dazu auf die Spieltheorie und
Variationsungleichheiten zurückgeführt werden kann, beleuchten wir drei vorherrschende
Herausforderungen bei ihrer Anwendung auf modernes maschinelles Lernen: Asymmetrie,
Nicht-Konvexität und Adaptivität.

Der Anfangsteil dieser Arbeit befasst sich mit der Herausforderung der Asymmetrie.
In realen Szenarien zeigt die Verlustfunktion oft asymmetrische Konvexitäts- und Kon-
kavitätseigenschaften für zwei Variablen. Zum Beispiel könnte sie in Bezug auf x nicht
konvex sein, aber in Bezug auf y konkav. Optimale Algorithmen für solche unausgewoge-
nen Minimax-Szenarien sind schwer zu finden, insbesondere wenn die Zielfunktion eine
endliche Summenform annimmt. Aktuelle Lösungen für diese unausgewogenen Aufga-
ben sind komplex und es werden spezifische Algorithmen für bestimmte Einstellungen
entwickelt. Wir schlagen ein universelles “Catalyst”-Framework vor, das von proximalen
Punktmethoden inspiriert ist. Dieser Ansatz löst eine Reihe von regularisierten Proble-
men mit Algorithmen aus ausgewogenen Regimen und erreicht nahezu optimale oder
Spitzenkomplexitäten in unausgewogenen Einstellungen.

Note: The translation aims to preserve the meaning and context of the original text while
adapting it to the German language structure.

Der nachfolgende Teil geht auf Probleme ein, die gleichzeitig in x nicht konvex und
in y nicht konkav sind. Während einige Studien die Unlösbarkeit allgemeiner nicht
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konvexer-nicht konkaver Minimax-Probleme hervorheben, argumentieren wir, dass das
Erkennen einzigartiger Strukturen den Weg für effiziente Algorithmen ebnen kann. Wenn
die Zielfunktion zum Beispiel die Polyak-Łojasiewicz-Ungleichung für beide Variablen
erfüllt, zeigen wir, dass der Alternating Gradient Descent Ascent (AGDA) — ein weit
verbreiteter Einzelschleifen-Algorithmus — die globale Lösung finden kann. Wenn die
Ungleichung nur für eine Variable gilt, können AGDA und sein regularisiertes Gegenstück
stationäre Punkte finden.

Schließlich konzentrieren wir uns auf adaptive Methoden für nicht konvexe Minimax-
Optimierung, um die Schrittwertabstimmung zu vermeiden. Wir stellen fest, dass Gradient
Descent Ascent, wenn er mit gängigen adaptiven Schrittwertschemata kombiniert wird,
immer noch nicht ohne manuelle Abstimmung konvergiert. Diese Inkonsistenz könnte
das instabile Training untermauern, das bei der Minimax-Optimierung beobachtet wurde.
Wir führen einen verschachtelten Schleifenalgorithmus ein, der mit AdaGrad kombi-
niert wird und die Updates in x und y adaptiv ausgleicht, um eine Konvergenz ohne
Schrittwertabstimmung zu gewährleisten.
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1
I N T R O D U C T I O N

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

— Alan Turing

Machine learning, particularly deep learning, has catalyzed breakthroughs across a
diverse array of applications, ranging from image recognition and natural language
processing to autonomous vehicles and healthcare. Central to these advancements is a
fundamental concept: optimization. Many traditional applications can be formulated as a
simple optimization problem minx f (x), where the goal is to minimize a loss function over
the decision variable, often the weights of a neural network. A straightforward first-order
algorithm, (stochastic) gradient descent, has proven effective in machine learning. As noted
in the book "Deep Learning" [Goodfellow et al., 2016], "Nearly all of deep learning is
powered by one very important algorithm: stochastic gradient descent (SGD)." However,
with the rapid evolution and emerging trends in machine learning, the sufficiency of such
a minimization formulation is being questioned.

Despite the remarkable capabilities of machine learning models, their trustworthiness,
particularly in high-stakes real-world scenarios, has been a subject of concern. Trustworthi-
ness in machine learning encompasses a broad set of characteristics, including reliability,
interpretability, fairness, and privacy. For instance, a slight, carefully crafted alteration to
an input image — undetectable to the human eye — can cause a state-of-the-art image
classifier to misclassify the object in the image, illustrating a vulnerability in the model’s
robustness [Szegedy et al., 2013]. Adversarial Training methods [Goodfellow et al., 2015,
Madry et al., 2017] have been introduced to improve robustness by augmenting the training
data with adversarial data. This approach can be viewed as a defender seeking the best
model under the worst-case scenario when an attacker perturbs the data to degrade the
model. Moreover, concerns about fairness have been raised, with biases towards certain
population groups found to exist in various machine learning systems [Mehrabi et al.,
2021]. To mitigate such issues, a line of work [Agarwal et al., 2018] formulates fairness as a
constraint in the optimization process, preventing the model from discriminating against
certain groups. Many of these constraints are nontrivial and challenging to handle in the
optimization process.

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have gained tremen-
dous popularity over the past decade. GANs are naturally formulated as a contest between
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2 introduction

a Generator network, which tries to generate realistic data, and a Discriminator network,
which tries to distinguish generated data from real data. GANs have found wide applica-
tions, including generating artwork, improving astronomical images [Schawinski et al.,
2017], and image-to-image translation [Isola et al., 2017]. However, the training of GANs is
known to be challenging, often leading to non-convergence and instability.

Another trend in deep learning is the use of over-parametrization. For example, GPT-
3 has 175 billion parameters [Brown et al., 2020], and many other domains use over-
parametrized neural networks to achieve state-of-the-art results [Tan and Le, 2019]. While
over-parametrization simplifies the task of optimization algorithms in finding points with
low loss or even global solutions [Ma et al., 2018], there may exist a large set of global
minima with different test errors. Therefore, simply minimizing the loss function may
not necessarily yield good generalization. Some work [Keskar et al., 2016] connects the
geometry of the loss function (such as sharpness) around a solution with its generalization
errors. Instead of just finding a solution with a small loss, we would also want to ensure
that it satisfies certain geometrical properties [Foret et al., 2021].

From trustworthy machine learning and GANs to optimization in the over-parametrized
regime, we realize that many of the modern applications may not be adequately captured by
the simple formulation minx f (x). This realization motivates us to explore a particular form
of optimization that shows promise in addressing these challenges: minimax optimization.
This concept will be explored in depth in the following sections of this thesis.

1.1 minimax optimization

Minimax optimization serves as a cornerstone in contemporary machine learning, with
its applications extending across a broad spectrum of areas. These include, but are not
limited to, Generative Adversarial Networks [Goodfellow et al., 2014, Arjovsky et al., 2017],
adversarial learning [Goodfellow et al., 2015, Miller et al., 2020], reinforcement learning [Dai
et al., 2017, Modi et al., 2021], sharpness-aware minimization [Foret et al., 2021], domain-
adversarial training [Ganin et al., 2016]. A minimax problem can be mathematically
expressed as:

min
x∈X

max
y∈Y

f (x, y), (1.1)

where X and Y are the domains of the decision variables x and y, respectively, and
f : X × Y → R is the objective function. In the context of adversarial machine learning,
for instance, x could symbolize the parameters of a model, y could denote adversarial
perturbations to the input data, and f (x, y) could represent the loss function that the
model aims to minimize.
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Minimax optimization often manifests in the form of finite-sum or stochastic optimiza-
tion in machine learning scenarios:

min
x∈X

max
y∈Y

f (x, y) ≜
1
n

n

∑
i=1

fi(x, y), (finite-sum form)

min
x∈X

max
y∈Y

f (x, y) ≜ Eξ∼P [F(x, y; ξ)] , (stochastic form)

where P is an unknown distribution. The finite-sum form naturally arises in empirical risk
minimization (ERM), where the objective is to find model parameters that minimize the
average loss over a given dataset, with each fi in the sum corresponding to the loss on a
single data point. The stochastic form, on the other hand, is a general form that may arise
when the data follows a distribution P, and F(x, y; ξ) represents the loss function for a
single data point ξ.

Minimax optimization is intrinsically linked to two-player zero-sum games [Von Neu-
mann et al., 2007]. In such a game, Player 1 chooses strategies from set X and Player 2

from set Y . Given that Player 1 adopts strategy x and Player 2 strategy y, the payoff for
Player 1 is − f (x, y) and for Player 2, it’s f (x, y). As both players aim to maximize their
payoff, Player 1 seeks to minimize f , while Player 2 attempts to maximize it.

In the ensuing sections, we will delve deeper into the applications of minimax optimiza-
tion across various domains, elucidate definitions for different notions of optimality, and
discuss the challenges associated with minimax optimization.

1.2 applications

While we have listed numerous applications of minimax optimization in machine learn-
ing, we will delve into three specific ones: Generative Adversarial Networks, Sharpness-
Aware Minimization, and fairness in machine learning. Our aim is to elucidate how the
minimax formulation manifests and plays a crucial role in these domains.

1.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] represent a generative
modeling approach, designed to create new data instances that closely resemble a given set
of training data. GANs comprise two neural networks: the Generator Gθ(·), parameterized
by θ, and the Discriminator Dω(·), parameterized by ω. These networks are trained
simultaneously through a two-player minimax game.
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The Generator network Gθ takes random noise as input and generates samples as output.
Its goal is to produce data that is indistinguishable from real data. On the other hand, the
Discriminator network Dω aims to distinguish between real and generated data. Let pz

denote the distribution of the random noise and pdata denote the distribution of the real
data. When the input x originates from the real data distribution, the Discriminator seeks
to maximize Ex∼pdata [log Dω(x)]. When the input z comes from the noise distribution pz,
the Discriminator aims to minimize Ez∼pz [log(1− Dω(Gθ(z)))], while the Generator seeks
to maximize it.

Consequently, the objective function for a standard GAN can be formulated as a minimax
optimization problem:

min
θ

max
ω

L(Gθ , Dω) = Ex∼pdata [log Dω(x)] + Ez∼pz [log(1− Dω(Gθ(z)))].

The loss function above is closely related to the Jensen-Shannon divergence between
two distributions. Let pg denote the distribution of the generated distribution by the
Generator, i.e., pθ

g(x) = P(Gθ(z) = x) with z ∼ pz. The optimal Generator with respect
to the Discriminator Dω that maximizes L(Gθ , ·) can be shown to be [D∗(Gθ)](x) =

pdata(x)
pdata(x)+pθ

g(x) . Assuming the Generator network is expressive enough that there exists

an optimal parameter ω∗(θ) such that Dω∗(θ) = D∗(Gθ), it can be further shown that
the loss function is a similar quantity as the Jensen-Shannon divergence between the
real data distribution and generated distribution when the discriminator is optimal, i.e.,
L(Gθ , D∗(Gθ)) = 2DJS(pdata∥pθ

g) − 2 log 2, where DJS(·∥·) denotes the Jensen-Shannon
divergence between two distributions.

GANs are often found to suffer from training stability issues, such as mode collapse
[Goodfellow, 2016]. Mode collapse occurs when the generator produces limited diversity
in the samples, often generating very similar or even identical samples. The Wasserstein
GAN (WGAN) [Arjovsky et al., 2017] mitigates this issue by using the Wasserstein distance,
a metric that provides a more meaningful measure of the difference between the generated
and real data distributions. WGAN aims to minimize the Wasserstein Distance between the
distribution of the real data and generated data, W(pdata, pg). Although the Wasserstein
Distance itself is hard to compute, by Kantorovich-Rubinstein duality, it equals to

W
(

pdata, pg
)
=

1
K

sup
∥D∥L≤K

Ex∼pdata [D(x)]−Ex∼pg [D(x)],
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where D(·) is a function and ∥ · ∥L denotes the Lipchitz norm. Therefore, WGAN can be
formulated as a minimax optimization problem:

min
θ

max
ω:Dω∈D

Ex∼pdata [Dω(x)]−Ez∼pz [Dω(Gθ(z))].

Here, D is the set of K-Lipschitz functions.
To summarize, GAN and WGAN correspond to different distance metrics, and both

of them are formulated as minimax optimization. Other metrics are also considered in
the literature, for example, the family of f -divergence [Nowozin et al., 2016] and Sobolev
integral probability metric [Mroueh et al., 2017]. While GANs have been highly successful
in various applications, their training can be challenging.

1.2.2 Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) [Foret et al., 2021] is an optimization procedure
proposed to enhance the generalization performance. A conceptually similar approach,
termed Adversarial Model Perturbation, was independently proposed by Zheng et al.
[2021]. In the context of over-parameterized models, multiple solutions might yield the
same loss, but their resultant model qualities can differ. Recognizing the correlation
between function sharpness at a solution and the generalization bound, SAM’s core idea is
to concurrently minimize both the loss value and its sharpness. This approach contrasts
with traditional methods that prioritize only the reduction of training loss.

SAM is looking for a parameter that maintains low loss in a neighborhood around it.
Formally, given a loss function L(θ), where θ represents the model parameters, SAM aims
to solve the following minimax optimization problem:

min
θ

LSAM(θ) + λ∥θ∥2, with LSAM(θ) = max
δ:∥δ∥≤ρ

L(θ + δ),

where λ > 0 is a regularization parameter and ρ > 0 is the diameter of the neighborhood.
This formulation ensures that the selected parameters lie in a neighborhood with uniformly
low loss values, and therefore the local sharpness of the loss function is potentially low.

While LSAM above represents the worse-case loss in ℓ2 ball neighborhood of θ, several
variants of sharpness-aware loss have been proposed. For example, Kwon et al. [2021]
highlight that the aforementioned loss does not have the scale-invariant property, i.e.,
max∥δ∥≤ρ L(θ + δ) ̸= max∥δ∥≤ρ L(Aθ + δ) even with a scaling operator A such that L(θ) =
L(Aθ). To address this, they first introduce a family of normalization operator {Tθ : θ ∈
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Rk} which satisfies T−1
Aθ A = T−1

θ for any invertible operator A with L(θ) = L(Aθ). They
propose to use a different SAM loss:

LSAM(θ) = max
δ:∥T−1

θ δ∥≤ρ
L(θ + δ).

One potential normalization operator is Tθ = diag (|θ1| , . . . , |θk|) with θ = [θ1, θ2, . . . , θk].
This revised SAM loss ensures scale-invariance, that is, max∥T−1

θ δ∥≤ρ L(θ + δ) = max∥T−1
Aθ δ∥≤ρ

L(Aθ + δ). This still leads to a minimax optimization, albeit with a different constraint for
the dual variable δ.

In practice, SAM improves model generalization across a variety of tasks, including
image classification, fine-tuning, and machine translation. Notably, SAM also exhibits
robustness to label noise, a characteristic that aligns it with the performance of existing
methods designed to handle noisy data [Foret et al., 2021].

1.2.3 Machine Learning with Fairness

In machine learning applications that influence critical societal decisions—like credit
lending, resource allocation, and job opportunities—it’s imperative to ensure fairness. A
model trained solely to minimize loss might inadvertently harbor biases against certain
groups. Minimax optimization emerges as a pivotal tool in the realm of fair machine learn-
ing. In this section, we will delve into two applications: one where fairness is encapsulated
as a constraint and reformulated using the Lagrangian, and another that aims to optimize
the worst-case loss across diverse groups.

Agarwal et al. [2018] explored a binary classification scenario. Training samples are
represented as (X, A, Y), where X is the feature vector, A ∈ A is a protected attribute (e.g.,
race), and Y ∈ {0, 1} is the label. The objective is to derive a classifier h : X → {0, 1} from
the classifier family H, with a classifier’s loss denoted by L(h). To instill fairness, a linear
constraint, Mµ(h) ≤ c, is introduced. An example of a fairness criterion fitting this mold
is demographic parity, which mandates equal selection rates across groups. This can be
expressed as:

E[h(X) | A = a]−E[h(X)] ≤ 0, −E[h(X) | A = a] + E[h(X)] ≤ 0.
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Various fairness criteria can be articulated through the linear constraint Mµ(h) ≤ c. One
example is demographic parity, i.e., E[h(X) | A = a] = E[h(X)] for all a. For a randomized
classifier Q, the overarching optimization problem becomes:

min
Q∈∆(H)

L(Q) subject to Mµ(Q) ≤ c,

which can be further transformed into a minimax optimization using the Lagrangian:

min
Q∈∆(H)

max
λ∈R

j
+

L(Q) + λ
⊺
(Mµ(Q)− c).

This minimax optimization adeptly manages the constraint for the decision variable,
sidestepping the complexities of projection.

While the aforementioned method adopts fairness criteria that directly mitigate dif-
ferences between groups, other approaches strive to minimize the maximum loss across
all groups. For a classification task with data (X, A, Y), the group-specific loss, La(h) =
E [L(h) | A = a] is defined for a ∈ A. The objective is to find a randomized classifier Q
that minimizes the maximum loss across all groups [Diana et al., 2021]:

min
Q∈∆(H)

max
a∈A

La(Q).

Martinez et al. [2020] also consider a similar minimax formulation, but restricted their
focus to the set of Pareto optimal classifiers, PA,H = {h ∈ H : ∄h′ ∈ H such that La(h′) ≤
La(h)∀a ∈ A and La′(h′) < La′(h) for some a′}, instead of all classifiers in ∆(H). These
classifiers ensure that no other classifier performs equally well across all group-specific
losses and is strictly better in one of the groups.

1.3 optimality and equilibria

Defining optimality within minimax optimization is not an easy task due to its two-player
nature, involving one variable that seeks to minimize and another aiming to maximize.
Its notions of optimality are sometimes termed equilibria. We will begin by clarifying our
terminology. Subsequently, we will delve into the concept of global solutions, stationary
points, and local solutions.
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1.3.1 Settings and Terminology

Throughout this thesis, we will assume the objection function f in equation (1.1) to be
differentiable and ℓ-Lipschitz smooth, and the domain sets X and Y to be closed and
convex.

Assumption 1 (Lipschitz smoothness). There exists a positive constant ℓ > 0 such that

max
{
∥∇x f (x1, y1)−∇x f (x2, y2)∥ ,

∥∥∇y f (x1, y1)−∇y f (x2, y2)
∥∥ } ≤ ℓ[∥x1 − x2∥+ ∥y1 − y2∥],

holds for all x1, x2 ∈ X and y1, y2 ∈ Y .

We will categorize different minimax optimization settings based on their convexity in x
and concavity in y. Below, we provide the definitions of convexity and strong convexity
for differentiable functions.

Definition 1 (Convexity). A differentiable function g : X → R is convex if for all x1, x2 ∈ X ,
we have

g(x2) ≥ g(x1) +∇g(x1)
⊺
(x2 − x1).

Definition 2 (Strong Convexity). A function g : X → R is µ-strongly convex if for all
x1, x2 ∈ X , we have

g(x2) ≥ g(x1) +∇g(x1)
⊺
(x2 − x1) +

µ

2
∥x1 − x2∥2.

If function −g is convex, then g is concave. Similarly, if function −g is µ-strongly convex,
then g is µ strongly concave. We will also introduce the concepts of weak convexity and the
Polyak-Łojasiewicz (PL) inequality. Fréchet sub-differential of a function g at x is defined
as the set ∂g(x) =

{
u | lim infx′→x g (x′)− g(x)− u⊺(x′ − x)/ ∥x′ − x∥ ≥ 0

}
.

Definition 3 (Weak Convexity). A function g : X → R is ν-weakly convex1 if for all x1, x2 ∈ X
and all u ∈ ∂g(x1), we have

g(x2) ≥ g(x1) + u⊤(x2 − x1)−
ν

2
∥x1 − x2∥2.

If a differentiable function g is ℓ-smooth, it is also ℓ-weakly convex. This is because∇g(x)
is the only element in ∂g(x), and ℓ-smoothness implies −g(x2) ≤ −g(x1)−∇g(x1)

⊺(x2 −
x1) +

ℓ
2∥x1 − x2∥2 for all x1 and x2.

1 Some literature use weak convexity to mean the function is convex but not strictly convex.
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Definition 4 (Polyak-Łojasiewicz (PL) Inequality). A function g : X → R satisfies µ-PL
inequality if optimal value g∗ = maxx∈X is finite and for all x ∈ X , we have

∥∇g(x)∥2 ≥ 2µ(g(x)− g∗), ∀x

It’s worth noting that µ-strong convexity will imply µ-PL inequality. However, a function
satisfying the PL inequality can be nonconvex. A simple nonconvex example is g(x) =
x2 + 3 sin2 x. PL inequality is also observed in many nonconvex real-world scenarios, such
as deep neural networks [Du et al., 2019], phase retrieval [Sun et al., 2018], and linear
quadratic regulator (LQR) control [Fazel et al., 2018].

In this thesis, we will explore various settings of minimax optimization, each charac-
terized by distinct assumptions on the objective function f with respect to x and y. Since
we minimize over x and maximize over y, the condition of f with respect to x will be
described by strong convex, convex, or nonconvex, while its condition with respect to y
will be characterized as strongly concave, concave, or nonconcave. We denote these settings
using a dash to connect the assumptions about x and y. The following settings, which will
be frequently discussed throughout this thesis, provide a comprehensive overview of the
different scenarios we will consider.

(µx, µy)-Strongly-Convex-Strongly-Concave (SC-SC) Setting: f is µx-strongly
convex in x and µy-strongly concave in y.

µ-Strongly-Convex-Concave (SC-C) Setting: f is µ-strongly convex in x and
concave in y.

Convex-Concave (C-C) Setting: f is convex in x and concave in y.

µ-Nonconvex-Strongly-Concave (NC-SC) Setting: f is possibly nonconvex in
x and µ-strongly-concave in y.

Nonconvex-Concave (NC-C) Setting: f is nonconvex in x and concave in y.

Nonconvex-Nonconcave (NC-NC) Setting: f is possibly nonconvex in x and
nonconcave in y.

1.3.2 Global Optimality

In minimax optimization, saddle points and minimax points are two frequently used
global solutions. We will begin by defining two functions that will be referenced later in
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this thesis. These are termed the primal and dual functions, though some literature may
refer to them as envelope functions.

Φ(x) = max
y∈Y

f (x, y), (Primal Function)

Ψ(y) = min
x∈X

f (x, y). (Dual Function)

Definition 5 (Saddle Point). A point (x∗, y∗) is a (global) saddle point if, for all x ∈ X and
y ∈ Y :

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗).

If, for all x ∈ X and y ∈ Y ,

f (x∗, y)− ϵ ≤ f (x∗, y∗) ≤ f (x, y∗) + ϵ,

then (x∗, y∗) is an approximate ϵ-saddle point.

The saddle point definition implies that x∗ is the optimal solution for minx∈X f (x, y∗) and
y∗ is the optimal solution for maxy∈Y f (x∗, y). This corresponds to the Nash equilibrium in
a two-player zero-sum game. If the objective function f in Problem (1.1) is convex-concave,
and if the domains X and Y are closed and convex sets with one of them being bounded,
then a saddle point exists. In the convex-concave setting, first-order optimization methods
can efficiently find an approximate saddle point in polynomial time [Nemirovski, 2004].
However, outside this setting, a saddle point might not exist, as illustrated by the simple
example minx∈[0,1] maxy∈[0,1](x− y)2.

Definition 6 (Minimax Point and Maximin Point). A point (x∗, y∗) is a (global) minimax
point if, for all x ∈ X and y ∈ Y :

f (x∗, y) ≤ f (x∗, y∗) ≤ max
y′∈Y

f (x, y′).

A point (x∗, y∗) is a (global) maximin point if, for all x ∈ X and y ∈ Y :

min
x′∈X

f (x′, y) ≤ f (x∗, y∗) ≤ f (x, y∗).

The minimax point is a mathematically intuitive solution to minimax problems of the
form minx∈X maxy∈Y f (x, y). It suggests that y∗ is the optimal solution for maxy∈Y f (x∗, y)
and x∗ is the optimal solution for minx∈X Φ(x). This corresponds to the Stackelberg
equilibrium in two-player games, where the x player (leader) acts first, and the y player
(follower) acts second after observing the leader’s move. In general, saddle points, minimax
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points, and maximin points can differ significantly. For instance, consider the function
f (x, y) = x4

4 − x2

2 + xy [Zhang, 2021a]. The following theorem characterizes their relation-
ship.

Theorem 1.3.1. For any function f : X ×Y → R, the point (x∗, y∗) is a saddle point if and only
if it is both a minimax point and a maximin point, and if and only if:

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y),

x∗ ∈ Argmin
x∈X

Φ(x) and y∗ ∈ Argmax
y∈Y

Ψ(y).

In this thesis, when we explore settings within the convex-concave regime, including
SC-SC, SC-C, and C-C settings, our objective is to identify ϵ-saddle points.

1.3.3 Stationarity and Local Optimality

For minimax problems outside the convex-concave framework, seeking a global solution
is intractable. This is because even identifying a global solution for a nonconvex minimiza-
tion problem is NP-hard [Pardalos and Vavasis, 1991]. Therefore, we introduce notions of
stationary and local solutions.

To define an approximate stationary point, we can consider the gradient of the objective
function f (·, ·) or the primal function Φ(·). We use PC(·) to denote the projection onto a
closed convex set C.

Definition 7 (Stationary point of f (·, ·)). A point (x∗, y∗) is an (ϵ1, ϵ2)-stationary point of a
differentiable function f (·, ·) if

ℓ

∥∥∥∥x∗ −PX
(

x∗ − 1
ℓ
∇x f (x∗, y∗)

)∥∥∥∥ ≤ ϵ1, ℓ

∥∥∥∥y∗ −PY
(

y∗ +
1
ℓ
∇y f (x∗, y∗)

)∥∥∥∥ ≤ ϵ2.

For unconstrained problems, the definition simplifies to ∥∇x f (x∗, y∗)∥ ≤ ϵ1 and
∥∇y f (x∗, y∗)∥ ≤ ϵ2. We can also define the stationary point using the primal function Φ.
However, Φ is not always differentiable. When f is strongly convex in y, Φ is differentiable
and smooth [Lin et al., 2020a]. Otherwise, when Y is bounded, Φ is only guaranteed to be
ℓ-weakly convex (not necessarily differentiable) [Thekumparampil et al., 2019]. We will
use different definitions based on whether the function is differentiable.
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Definition 8 (Stationary point of differentiable Φ(·)). When Φ is differentiable, a point x∗ is
an ϵ-stationary point of Φ if

ℓ

∥∥∥∥x∗ −PX
(

x∗ − 1
ℓ
∇Φ(x∗)

)∥∥∥∥ ≤ ϵ.

Definition 9 (Stationary point of weakly convex Φ(·)). For a weakly convex (and potentially
non-differentiable) Φ, we first define the Moreau envelope as:

Φλ(z) ≜ min
x∈X

Φ(x) +
1

2λ
∥x− z∥2.

A point x∗ is an ϵ-stationary point of Φ if

∥∥∥∇Φ 1
2ℓ
(x∗)

∥∥∥ ≤ ϵ.

Definition 9 is meaningful because the condition implies the existence of some z near x∗

with a small subgradient. Later in this thesis, we will focus on seeking stationary points as
defined in Definitions 7 or 8 for the NC-SC setting, and stationary points as in Definition 9

for the NC-C setting.

Definition 10 (Local Saddle Point). A point (x∗, y∗) is a (ϵ, δ)-local saddle point if, for all
x ∈ X with ∥x− x∗∥ ≤ δ and for all y ∈ Y with ∥y− y∗∥ ≤ δ:

f (x∗, y)− ϵ ≤ f (x∗, y∗) ≤ f (x, y∗) + ϵ.

While our primary focus is not on finding a local solution, we have provided a definition
of a local saddle point above. In nonconvex minimization problems, local minimizers can
be identified using first-order methods like stochastic gradient descent [Jin et al., 2017].
However, finding a local saddle point is particularly challenging for NC-NC minimax
problems [Daskalakis et al., 2021]. We will discuss more about the difficulty in solving
NC-NC problems in the subsequent subchapter.

1.4 key challenges

We will spotlight three predominant challenges in minimax optimization that remain
inadequately addressed in current literature: asymmetry, nonconvexity-nonconcavity, and
adaptivity. Each challenge encapsulates distinct research questions. Through this thesis,
we endeavor to tackle these questions.
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1.4.1 Asymmetry

In minimax problems, we categorize a setting as “balanced” if it maintains symmetrical
assumptions regarding x and y, such as the (µ, µ)-SC-SC and C-C settings. Conversely, a
setting is deemed “unbalanced” if it exhibits asymmetrical assumptions, including the
(µx, µy)-SC-SC (with µx ̸= µy), SC-C, NC-SC, and NC-C settings. For balanced settings,
traditional algorithms like the extragradient (EG) can already achieve optimal complexities.
Specifically, EG attains a complexity of O( ℓµ log 1

ϵ ) in the (µ, µ)-SC-SC setting and O( ℓϵ )
in the C-C setting. Both complexities align with the lower bounds, leaving no room for
further enhancement. However, for unbalanced settings, these classic algorithms might
not be optimal. For instance, in the (µ, µ)-SC-SC setting, EG achieves a complexity of
O( ℓ

min{µx ,µy} log 1
ϵ ), whereas the lower bound stands at O( ℓ√

µxµy
log 1

ϵ ) [Zhang et al., 2019b].
As we will explore in Chapter 2, certain unbalanced settings still present a gap between the
upper and lower bounds. In other unbalanced scenarios, achieving optimal complexities
requires intricate algorithms.

In scenarios where the problem presents finite-sum structures, variance-reduction al-
gorithms can be employed. However, crafting such algorithms for unbalanced settings
remains a formidable challenge. For the finite-sum (µ, µ)-SC-SC setting, optimal algorithms
have already been developed, such as [Alacaoglu and Malitsky, 2022] and [Balamurugan
and Bach, 2016]. Yet, in the SC-C setting, a variance-reduction algorithm is notably absent.

Existing algorithms tailored for unbalanced settings tend to be more intricate than those
designed for balanced settings. Furthermore, distinct algorithms are often crafted for each
unique setting, complicating their practical application. Our aspiration is to unify these
algorithms across various settings, for both general and finite-sum structured minimax
problems. The challenge lies in designing a universal framework that can accommodate
these unbalanced minimax problems and achieve near-optimal guarantees across all
settings.

1.4.2 Nonconvexity-Nonconcavity

Finding a meaningful solution for nonconvex-nonconcave (NC-NC) minimax optimiza-
tion is recognized as a challenging task, a stark contrast to minimization optimization
where methods such as gradient descent or stochastic gradient descent can effectively
locate approximate stationary points or local minimizers. Daskalakis et al. [2021] show
that seeking a (ϵ, δ)-local saddle point in a function that is G-Lipschitz and ℓ-smooth is
PPAD-complete, with a polynomial-time Turing machine outputing approximate the values
for the objective function f and its gradients. Furthermore, when relying on a first-order
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oracle that returns the exact gradient, the discovery of a local saddle point necessitates a
number of oracle queries that is exponential in at least one of the following parameters:
1/ϵ, ℓ, G, or d, where d represents the dimension of the domain. Hsieh et al. [2021] also
show that many commonly used algorithms, such as gradient descent ascent (GDA) and
extragradient (EG), will converge to a spurious set that does not include stationary points.
This highlights the computational complexity and inherent challenges associated with
NC-NC minimax optimization.

Given the inherent difficulty of general smooth NC-NC minimax problems, researchers
have pivoted towards pinpointing sufficient conditions that guarantee convergence [Grim-
mer et al., 2020, Lu, 2021, Abernethy et al., 2021]. Notably, Nouiehed et al. [2019] introduced
an efficient algorithm tailored for a subset of NC-NC minimax problems where the ob-
jective function − f (x, ·) satisfies the Polyak-Łojasiewicz (PL) inequality [Polyak, 1963].
We refer to this setting as nonconvex-PL or NC-PL setting. Due to the ubiquity of the PL
condition, the NC-PL setting captures many important applications, such as generative
adversarial imitation learning of linear quadratic regulators [Cai et al., 2019].

While many of the applications we enumerate are formulated as NC-NC minimax
problems, it remains imperative to discern specific structures that can guide us towards
meaningful solutions. The true challenge resides in recognizing these structures and
designing efficient algorithms to exploit them.

1.4.3 Adaptivity

Adaptive gradient methods, such as AdaGrad [Duchi et al., 2011] and Adam [Kingma
and Ba, 2015], have emerged as the go-to optimization algorithms in numerous machine
learning applications. Their popularity stems from their robustness to hyper-parameter
selection and rapid empirical convergence. In minimax optimization, particularly in appli-
cations like generative adversarial networks [Goodfellow et al., 2014], these methods have
seen widespread adoption. Often, they are integrated with popular minimax optimization
algorithms like (stochastic) gradient descent ascent (GDA) as seen in works like [Gulrajani
et al., 2017, Mishchenko et al., 2020, Reisizadeh et al., 2020]. Specifically, the two step-
sizes, τx and τy, in GDA are determined adaptively according to some existing adaptive
mechanism:

xt+1 = xt − τx∇x f (xt, yt), yt+1 = yt + τy∇y f (xt, yt),

A standout benefit of adaptive step size schemes in minimization problems is their
ability to converge without prior knowledge of problem-specific parameters, such as
the smoothness constant. For intricate models like deep neural networks (DNNs), these
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parameters are often elusive. For instance, traditional analysis for gradient descent in
ℓ-smooth functions necessitates a step size smaller than 2/ℓ, where ℓ is the smoothness
parameter. However, many adaptive schemes, which typically vary step sizes based on
accumulated gradient information, can adapt to such parameters, achieving convergence
without hyper-parameter tuning [Ward et al., 2020, Xie et al., 2020].

Yet, this parameter-agnostic property remains unproven in minimax optimization out-
side the convex-concave domain. Within the convex-concave regime, several adaptive
algorithms, built upon EG and AdaGrad step sizes, retain this parameter-agnostic fea-
ture [Bach and Levy, 2019, Antonakopoulos et al., 2019]. However, when the objective
function is nonconvex with respect to one variable, most existing adaptive algorithms
necessitate knowledge of problem parameters [Huang and Huang, 2021, Huang et al.,
2021, Guo et al., 2021a].

A pressing research question is whether a straightforward combination of GDA with
adaptive schemes can yield a parameter-agnostic algorithm in minimax optimization. In
Chapter 5, we provide a simple nonconvex-strongly-concave function:

f (x, y) = −1
2

y2 + Lxy− L2

2
x2,

where L > 0 is a constant. Our findings indicate that directly employing adaptive step
sizes, such as AdaGrad, Adam, and AMSGrad, results in non-convergence without hyper-
parameter tuning. The challenge ahead is to devise parameter-agnostic adaptive algorithms,
as current algorithms for nonconvex minimax optimization often come with multiple
hyper-parameters, hampering their practical utility.

1.5 roadmap and contributions

This thesis is structured to systematically address each of the three identified challenges
in minimax optimization. In Chapter 2, we delve into the challenge posed by imbalance.
Chapters 3 and 4 are dedicated to exploring the NC-NC regimes. Chapter 5 focuses on the
challenge of adaptivity. To complement our discussions, Chapter 6 provides an analysis
of the advantages of adaptive methods for the minimization problem. We summarize the
contributions of each chapter as the following.

Chapter 2: A Catalyst Framework for Unbalanced Minimax Ploblems
This chapter is based on two papers [Yang et al., 2020b] and [Zhang et al., 2021b], as well
as an unpublished note prior to 2021 . We delve into four significant unbalanced regimes
in minimax optimization: (µx, µy)-SC-SC, SC-C, NC-SC, and NC-C. These regimes are
considered in both the general form (1.1) and the finite-sum form. We introduce a Catalyst
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framework, which is inspired by proximal point methods and the work of [Lin et al.,
2017]. The framework operates by iteratively solving a subproblem: (xt+1, yt+1) is set as an
approximate solution to the following:

min
x∈X

max
y∈Y

f (x, y) +
τx

2
∥x− x̄t∥2 − τy

2
∥y− zt∥2,

where x̄t comes from the previous epoch and zt is an extrapolated point from the previous
yt. By solving this subproblem using optimal existing algorithms for balanced regimes,
such as Extragradient (EG) for the general form or variance-reduction methods [Alacaoglu
and Malitsky, 2022] for the finite-sum form, we can achieve near-optimal or state-of-the-art
complexity in these unbalanced settings.

Chapter 3: Global Convergence for PL-PL Minimax Problems
This chapter is based on [Yang et al., 2020a]. We focus on the global convergence of a
specific class of NC-NC minimax problems. We introduce a class of minimax optimization
problems that satisfy the "two-sided Polyak-Łojasiewicz (PL) condition", in which the
objective function satisfies PL inequality in both variables, and establish the equivalence
between three global convergence notions. We then analyze the convergence behavior of
the Alternating Gradient Descent Ascent (AGDA) algorithm for this class of problems,
showing that AGDA exhibits linear convergence to the global solution in the deterministic
setting and sublinear convergence in the stochastic setting. Furthermore, we extend our
analysis to the case where the objective function has a finite-sum structure, demonstrating
that a variance reduction method can achieve linear convergence with a better dependence
on the number of components.

Chapter 4: Single-Loop Algorithms for Nonconvex-PL Minimax Problems
This chapter is based on [Yang et al., 2022b]. We extend our focus to a broader class of NC-
NC minimax problems, where the objective function satisfies the Polyak-Łojasiewicz (PL)
inequality with respect to only one variable. We denote the condition number as κ ≜ ℓ/µ,
where µ is the PL modulus. We show that the Alternating Gradient Descent Ascent (AGDA)
algorithm achieves a complexity of O(κ2ϵ−2) in deterministic settings and O(κ4ϵ−4) in
stochastic settings without minibatch. Notably, this is the first demonstration of an O(ϵ−4)

complexity for GDA-type algorithms without minibatch or additional assumptions, even
in the more stringent NC-SC setting. Furthermore, we prove another single-loop algorithm,
Smoothed AGDA, achieves a complexity of O(κϵ−2) in deterministic settings and O(κ2ϵ−4)

in stochastic settings. These results represent the best-known complexity for single-loop
algorithms even under the stronger assumption of NC-SC.

Chapter 5: Parameter-Agnostic Nonconvex Minimax Optimization
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This chapter is based on [Yang et al., 2022a]. We delve into the NC-SC setting. We begin
by demonstrating, through an example, that a straightforward combination of Gradient
Descent Ascent (GDA) with adaptive schemes, a common heuristic, fails to converge
without hyper-parameter tuning. To address this, we propose a nested adaptive framework,
NeAda, which consists of an inner loop that adaptively maximizes the y variable and
an outer loop that adaptively minimizes the x variable. When equipped with AdaGrad
[Duchi et al., 2011] step sizes, NeAda achieves an O(ϵ−2) complexity in deterministic
settings and an O(ϵ−4) complexity in stochastic settings, all without the need for prior
knowledge of problem parameters. Notably, we provide one of the first theoretical analyses
of AdaGrad without the bounded gradient assumptions in the stochastic setting. Prior to
this, this is not established, under the classic noise assumption of bounded variance, even
for minimization problems.

Chapter 6: Limit of Untuned SGD and Power of Adaptive Methods
This chapter is based on [Yang et al., 2023]. we investigate the advantages of adaptive
methods over Stochastic Gradient Descent (SGD) in nonconvex minimization problems. We
first demonstrate that while SGD with any polynomially decreasing step size can achieve
an order-optimal convergence rate for minimizing smooth objectives, it is hindered by an
unavoidable exponential dependence on the smoothness constant. We then scrutinize three
widely-used families of adaptive methods: Normalized SGD, AMSGrad, and AdaGrad. We
establish that these methods can circumvent the exponential dependency in deterministic or
stochastic settings. However, we also uncover some unexpected limitations of Normalized
SGD and AMSGrad in stochastic settings. Specifically, we find that Normalized SGD fails
to converge, and AMSGrad, without the bounded stochastic gradient assumption, can
converge at an arbitrarily slow rate.





2
A C ATA LY S T F R A M E W O R K F O R U N B A L A N C E D M I N I M A X
P L O B L E M S

In this chapter, we present a versatile framework designed for a range of balanced
smooth minimax optimization problems. These problems are characterized by an objective
function that exhibits asymmetric convexity and concavity properties with respect to the
primal and dual variables. Our framework applies the (accelerated) proximal point method
to the associated primal or dual problem of the original minimax problem. This results
in a sequence of harmoniously balanced, strongly-convex-strongly-concave subproblems,
which are readily addressed using established gradient-based algorithms. This single
cohesive framework is apt for all the unbalanced scenarios we delve into, encompassing
both the general and finite-sum forms. Despite its simplicity, it gives rise to a suite of
algorithms that achieve either near-optimal or state-of-the-art complexities.

2.1 overview

We focus on the minimax optimization problem in its general form:

min
x∈X

max
y∈Y

f (x, y), (general form)

where the function f : X ×Y → R is smooth (i.e., gradient Lipschitz), X is a convex set
in Rm, and Y is a convex set in Rn. In many machine learning applications, f possesses
a finite sum structure, where each component is associated with a loss from a single
observation, so we are also interested in the following form:

min
x∈X

max
y∈Y

f (x, y) ≜
1
n

n

∑
i=1

fi(x, y). (finite-sum form)

A vast array of first-order algorithms for minimax optimization can be found in the
literature, ranging from the classical projection method [Sibony, 1970], Korpelevich’s extra-
gradient method [Korpelevich, 1976], to many recent hybrid or randomized algorithms,
e.g., [Monteiro and Svaiter, 2010, He et al., 2015, Kong and Monteiro, 2019]. However,
most of these existing works are limited to the following settings (i) the well-balanced
strongly-convex-strongly-concave setting (e.g., [Tseng, 1995, Mokhtari et al., 2019]), where
the x-component and y-component share the same strong-convexity/concavity constant

19
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µ, (ii) the general convex-concave setting (e.g., [Nemirovski, 2004, Nesterov, 2007]), and
(iii) the special bilinear convex-concave setting (e.g., [Chambolle and Pock, 2016, Chen
et al., 2014]. The lower complexity bounds for these three settings established in [Zhang
et al., 2019b], [Nemirovsky and Yudin, 1983], [Ouyang and Xu, 2019], respectively, are
already attained by some existing algorithms. For example, extragradient (EG) achieves
the optimal O(1/ϵ) complexity for smooth convex-concave minimax problems, and the
optimal O(κ log(1/ϵ)) complexity for well-balanced strongly-convex-strongly-concave
minimax problems [Zhang et al., 2019b], where κ is the condition number.

Yet, results for configurations outside these settings are sparse. We are particularly
interested in the following unbalanced settings: (1) unbalanced strongly-convex-strongly-
concave (SC-SC) objectives with strong-convexity constant µx different from strong-
concavity constant µy, (2) strongly-convex-concave (SC-C) objectives, (3) nonconvex-
strongly-concave (NC-SC) objectives, (4) nonconvex-concave (NC-C) objectives.

In recent years, there has been a growing interest in addressing problems within
unbalanced regimes. For instance, [Thekumparampil et al., 2019] introduced the dual
implicit accelerated gradient algorithm (DIAG) specifically for the SC-C setting and its
proximal variant (Prox-DIAG) for the NC-C setting; Luo et al. [2020] developed a variance
reduction method for the NC-SC setting by integrating SARAH [Nguyen et al., 2017] into
minimax optimization. However, these algorithms are considerably more complex than
those crafted for balanced regimes, usually incorporating multiple acceleration procedures
and necessitating several loops. Moreover, as they are tailored for a specific setting, and it
is difficult to extend them to other unbalanced settings.

More recently, [Lin et al., 2020b] pioneered the development of near-optimal algorithms
catering to all the aforementioned unbalanced settings. Unfortunately, they still introduce
extra logarithmic terms in their complexities relative to the lower bounds in certain settings.
Additionally, while they cater to the general form of the problem, the integration of these
advanced algorithms with variance-reduction techniques remains ambiguous when the
problem adopts a finite-sum form. A notable gap in the current literature is the absence of
a dedicated variance reduction approach for the SC-C setting.

This raises the question:

Can we simply leverage the rich off-the-shelf methods designed for well-balanced
strongly-convex-strongly-concave minimax problems to design a universal framework
for all unbalanced settings in both general and finite-sum forms?

Inspired by the success of the Catalyst framework that uses gradient-based algo-
rithms originally designed for strongly convex minimization problems to minimize con-
vex/nonconvex objectives [Lin et al., 2017, Paquette et al., 2017], we introduce a generic
Catalyst framework for minimax optimization. Rooted in an inexact accelerated proximal
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point framework, the idea is to repeatedly solve the following auxiliary strongly-convex-
strongly-concave problems using an existing methodM:

minx∈X maxy∈Y f (x, y) + τx
2 ∥x− x̄t∥2 − τy

2 ∥y− zt∥2.

At first glance, the design of this algorithm might seem intuitive. However, the selection
of appropriate proximal parameters τx and τy, the prox centers x̄t, zt, and the methodM
for solving the auxiliary problems, plays a crucial role and significantly influences the
overall complexity. In this chapter, we provide a comprehensive guide on how to make
these selections.

With this generic Catalyst framework, we derive a series of compelling results. We
encapsulate our findings for the general form of the problem in Table 2.1 and for the
finite-sum form in Table 2.2. Notably, Catalyst combined with specific subroutineM either
matches with the lower complexities or improves over the previous known results.

2.1.1 Related Work.

Catalyst and Proximal Point Methods. Catalyst was first introduced by [Lin et al., 2015]
for minimization of convex and strongly-convex objectives, and it is further generalized to
nonconvex objectives by [Paquette et al., 2017]. Catalyst can be considered as a variant of
accelerated proximal point algorithm. The acceleration of the proximal point algorithm
[Rockafellar, 1976b,a, Güler, 1991] was first discussed in [Güler, 1992]. Several other
works, such as [Shalev-Shwartz and Zhang, 2014, He and Yuan, 2012, Salzo and Villa,
2012], also explore inexact accelerated proximal point algorithm under different settings
in minimization optimization. Although [Rockafellar, 1976b] discussed proximal point
algorithm for monotone operators including minimax optimization, before our work it
remains mysterious (i) how to apply the acceleration scheme to minimax optimization and
attain primal-dual gap convergence; (2) how to design practical notion of exactness for
minimax auxiliary problems.

SC-SC Setting. Classic algorithms like EG and Optimistic Gradient Descent Ascent
(OGDA) have demonstrated linear convergence with a complexity ofO

((
ℓ

µx
+ ℓ

µy

)
log
( 1

ϵ

))

[Mokhtari et al., 2019, Azizian et al., 2019, Tseng, 1995, Gidel et al., 2018]. This complexity
is optimal specifically when µx = µy. Later, [Lin et al., 2020b] introduced MINIMAX-APPA,
which improved the condition number dependency but had a less favorable ϵ dependency.
More recently, [Wang and Li, 2020] further refined this to O

(
ℓ√

µxµy
log
( 1

ϵ

))
, aligning with

the lower bound by [Zhang et al., 2019b]. Additionally, there are several variance-reduced
algorithms for strongly-convex-strongly-concave objectives. For instance, [Balamurugan
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Settings Algorithms/Lower Bound Oracle Complexity

SC-SC

Extragradient [Tseng, 1995] O
(
ℓ/ min{µx, µy} log(1/ϵ)

)

APPA-ABR [Wang and Li, 2020] Õ
(
ℓ/√µxµy log(1/ϵ)

)

MINIMAX-APPA [Lin et al., 2020b] Õ
(
ℓ/√µxµy log3(1/ϵ)

)

Catalyst-EG (this work) Õ
(
ℓ/√µxµy log(1/ϵ)

)

Lower bound [Zhang et al., 2019b] Ω
(
ℓ/√µxµy log(1/ϵ)

)

SC-C

DIAG [Thekumparampil et al., 2019] Õ
(
ℓ3/2DY/(µ

√
ϵ) log2(1/ϵ)

)

APPA-ABR [Wang and Li, 2020] Õ
(
ℓDY/

√
µϵ log(1/ϵ)

)

MINIMAX-APPA [Lin et al., 2020b] Õ
(
ℓDY/

√
µϵ log3(1/ϵ)

)

Catalyst-EG (this work) Õ
(
ℓDY/

√
µϵ log(1/ϵ)

)

Lower bound [Ouyang and Xu,
2019]

Ω
(
ℓDY/

√
µϵ
)

NC-SC

GDA/AGDA [Lin et al., 2020a, Yang
et al., 2020a]

O(ℓ3/µ2ϵ−2)

MINIMAX-PPA [Lin et al., 2020b] Õ
(
ℓ3/2/µ1/2ϵ−2 log2(1/ϵ)

)

Catalyst-EG (this work) Õ
(
ℓ3/2/µ1/2ϵ−2)

Lower bound Ω
(
ℓ3/2/µ1/2ϵ−2)

NC-C

Prox-DIAG [Thekumparampil et al.,
2019]

Õ(ℓ2DYϵ−3 log2(1/ϵ))

FNE-search [Ostrovskii et al., 2020] Õ(ℓ2DYϵ−3 log2(1/ϵ))

Catalyst-EG (this work) Õ(ℓ2DYϵ−3 log(1/ϵ))

Lower bound ?

Table 2.1: The table summarizes results for general form minimax problems. The objective
function is ℓ-smooth. It presents the oracle complexities to find an ϵ-saddle point for
(µx, µy)-SC-SC and µ-SC-C settings, and an ϵ-stationary point of the primal function
for µ-NC-SC and NC-C settings. Here D2

Y denotes the diameter of Y . We assume
ϵ ≤ µD2

Y in SC-C setting and ϵ ≤ ℓD2
Y in NC-C setting. Õ only hides logarithmic

factors in problem parameters, but not ϵ−1.
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Settings Algorithms/Lower Bound Oracle Complexity

SVRG [Balamurugan and Bach, 2016] O
(

n +
(

ℓ
min{µx ,µy}

)2
log 1

ϵ

)

SC-SC Acc-SVRG [Balamurugan and Bach, 2016] Õ
(

n +
√

nℓ
min{µx ,µy} log 1

ϵ

)

Catalyst-Acc-SVRG (this work) Õ
((

n +
√

nℓ√
µxµy

+ n
3
4 ℓ

1
2√

µy

)
log 1

ϵ

)

Lower bound [Han et al., 2021] Ω
((

n +
√

nℓ√
µxµy

+ n
3
4 ℓ

1
2√

µy

)
log 1

ϵ

)

SC-C
Catalyst-Acc-SVRG (this work) Õ

((
n +

√
nℓDY√

µϵ + n
3
4 ℓ

1
2DY√
ϵ

)
log 1

ϵ

)

Lower bound [Han et al., 2021] Ω
(

n +
√

nℓDY√
µϵ + n

3
4 ℓ

1
2DY√
ϵ

)

NC-SC

SREDA [Luo et al., 2020]




Õ
(

n +
√

nℓ3

µ2
yϵ2

)
, n ≥ ℓ2

µ2

O
((

nℓ
µ + ℓ2

µ2
y

)
ℓ
ϵ2

)
, n ≤ ℓ2

µ2

Catalyst-SVRG (this work) Õ
((

n + n3/4
√
ℓ√

µ

)
ℓ
ϵ2

)

Lower bound [Zhang et al., 2021b] Ω
(

n +
√

nℓ
3
2√

µϵ2

)

NC-C

PG-SVRG [Rafique et al., 2022] Õ
(( n

ϵ2 + ϵ−6) log 1
ϵ

)

Catalyst-SVRG (this work) Õ
((

n
3
4 ℓ2DY

ϵ3 + nℓ
ϵ2

)
log 1

ϵ

)

Lower bound ?

Table 2.2: The table summarizes results for finite-sum form minimax problems. The objective
function f is ℓ-averaged-smooth (Assumption 4). It presents the oracle complexities
to find an ϵ-saddle point for (µx, µy)-SC-SC and µ-SC-C settings, and an ϵ-stationary
point of the primal function for µ-NC-SC and NC-C settings. Here D2

Y denotes the
diameter of Y . Õ only hides logarithmic factors in problem parameters, but not ϵ−1.
The dependence on problem parameters is not explicit in [Rafique et al., 2022].
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and Bach, 2016] adapted SVRG and SAGA for minimax optimization and provided an
accelerated variant with a complexity of O

(
n +
√

n
(

ℓ
µx

+ ℓ
µy

))
log
( 1

ϵ

)
, achieving an opti-

mal result in balanced settings, as confirmed by [Han et al., 2021]. A similar result was
reported by [Alacaoglu and Malitsky, 2022].

SC-C Setting. Several works have achieved a complexity of O
(

ℓ√
µϵ

)
for problems

where the coupling term is linear in both variables [Nesterov, 2005, Chambolle and Pock,
2016, Xie and Shi, 2019], or just in one variable [Hamedani and Aybat, 2018, Juditsky
et al., 2011]. For general problems, both [Lin et al., 2020b] and [Wang and Li, 2020]
transformed a general SC-C problem into an SC-SC problem by adding a term O(ϵ)∥y∥2.
While these methods yield complexities that closely align with the lower bound Ω

(
ℓ√
µϵ

)

up to logarithmic terms, they require the target accuracy ϵ to be predetermined. In contrast,
[Thekumparampil et al., 2019] merged accelerated gradient descent with Mirror Prox to
achieve near-optimal complexity without the need for a prefixed target accuracy. Notably,
before our contribution in [Yang et al., 2020b], no variance reduction method had been
proposed for this setting. A subsequent work by [Han et al., 2021] provided a nearly
matching lower bound.

NC-SC Setting. Basic algorithms like simultaneous GDA [Lin et al., 2020a] and alter-
nating GDA [Yang et al., 2020a, Boţ and Böhm, 2020, Xu et al., 2020c] have been shown
to achieve a complexity of O

(
ℓ3

µ2ϵ2

)
when seeking an ϵ-stationary point for the primal

function. The MINIMAX-PPA, introduced by [Lin et al., 2020b], employs the proximal point
algorithm on the primal function and addresses the auxiliary problems using accelerated
gradient ascent. This approach aligns with the lower bound Ω

(
ℓ3/2

µ1/2ϵ2

)
up to logarithmic

factors. Furthermore, [Luo et al., 2020] presented a variance-reduced algorithm named
SREDA, for stochastic NC-SC problems. However, its complexity does not fully align
with the lower bound for finite-sum form problems, particularly in its dependence on the
condition number, as highlighted by [Zhang et al., 2021b].

NC-C Setting. The prevailing best complexity for identifying an approximate stationary
point of the primal function stands at Õ(ℓ2ϵ−3) up to polynomial terms [Lin et al., 2020b,
Thekumparampil et al., 2019, Zhao, 2020, Ostrovskii et al., 2020]. Notably, both [Ostrovskii
et al., 2020] and [Lin et al., 2020b] suggest analogous algorithms that employ an inexact
accelerated method to address auxiliary problems derived from smoothed proximal steps.
Several other algorithms, such as those by [Nouiehed et al., 2019, Lu et al., 2020, Kong and
Monteiro, 2019], aim to achieve the stationarity of f (·, ·). Additionally, [Rafique et al., 2022]
introduced a variance-reduced algorithm for finite-sum objectives with a complexity of
Õ(nϵ−2 + ϵ−6). More recently, [Tran-Dinh et al., 2020] unveiled a hybrid variance-reduced
algorithm for stochastic nonconvex-concave minimax challenges with a coupling term
linear in y, achieving a complexity of O(ϵ−5).
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notations . Throughout the chapter, ∥ · ∥ stands for the standard ℓ2-norm. For non-
negative functions f and g, we say f = O(g) if f (x) ≤ cg(x) for some c > 0. We use Õ to
hide logarithmic factors of problem parameters and the initial point, but not that of ϵ−1.

2.2 strongly-convex-(strongly)-concave minimax optimization

In this subchapter, we focus on solving strongly-convex-strongly-concave (SC-SC) and
strongly-convex-concave (SC-C) minimax problems and introduce a general Catalyst
scheme. We formally make the following assumptions.

Assumption 2 (SC-SC/SC-C). f (·, y) is µx-strongly-convex for any y in Y with µx > 0, i.e.,

f (x1, y) ≥ f (x2, y) +∇x f (x2, y)T(x1 − x2) +
µx

2
∥x1 − x2∥2, ∀x1, x2 ∈ X .

f (x, ·) is µy-strongly-concave for any x in X with µy ≥ 0, i.e.,

f (x, y1) ≥ f (x, y2) +∇y f (x, y2)
T(y1 − y2) +

µy

2
∥y1 − y2∥2, ∀y1, y2 ∈ Y .

Without loss of generality, we assume µx ≥ µy. X and Y are convex and closed sets, and we further
assume Y to be bounded with diameter DY ≜ maxy,y′∈Y ∥y− y′∥ when µy = 0.

In the definition above we allow the strong concavity module about y to 0. When µx > 0
and µy > 0, we refer to such f as (µx, µy)-SC-SC; when µx > 0 and µy = 0, we refer to
such f as µx-SC-C. We further assume the objective function f is ℓ-smooth or ℓ-averaged
smooth defined as follows.

Assumption 3 (Lipschitz gradient). There exists a positive constant ℓ such that

max{
∥∥∇y f (x1, y1)−∇y f (x2, y2)

∥∥ , ∥∇x f (x1, y1)−∇x f (x2, y2)∥} ≤ ℓ[∥x1 − x2∥+ ∥y1 − y2∥],

holds for all x1, x2 ∈ X and y1, y2 ∈ Y . We call such f ℓ-smooth (ℓ-S).

Assumption 4 (Averaged Lipschitz gradient). For f (x, y) = 1
n ∑n

i=1 fi(x, y), we assume each
fi is differentiable and there exists a positive constant ℓ such that

1
n

n

∑
i=1
∥∇ fi(x1, y1)−∇ fi(x2, y2)∥2 ≤ ℓ2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
. (2.1)

holds for all x1, x2 ∈ X and y1, y2 ∈ Y . We call such f ℓ-averaged-smooth (ℓ-AS).

Remark 2.2.1. If f (x, y) = 1
n ∑n

i=1 fi(x, y) is ℓ-averaged-smooth, then it is ℓ-smooth and f (x, y)+
τx
2 ∥x− x̃∥2 − τy

2 ∥y− ỹ∥2 is
√

2(ℓ+ max{τx, τy})-AS for any x̃ and ỹ.
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Now we introduce the definitions of primal and dual functions, and the gap function
associated with objective function f .

Definition 11. For a function f : X ×Y → R, we define the primal function Φ : X → R as

Φ(x) = max
y∈Y

f (x, y),

and we define the dual function Ψ : Y → R as

Ψ(y) = min
x∈X

f (x, y).

The primal-dual gap function gap f : X ×Y → R is defined as

gap f (x, y) ≜ max
y′∈Y

f (x, y′)−min
x′∈X

f (x′, y) ≤ ϵ.

In the SC-SC and SC-C settings, our goal is to find an ϵ-saddle point (x, y) such
that gap f (x, y) ≤ ϵ. If gap f (x∗, y∗) = 0, then (x∗, y∗) is a saddle point, i.e., f (x∗, y) ≤
f (x∗, y∗) ≤ f (x, y∗) for all (x, y) ∈ X × Y . Observe that gap f (x, y) = Φ(x) + Ψ(y) in
these settings, so a small primal-dual gap at a point (x, y) is equivalent to optimality gaps
of both primal and dual functions being small.

2.2.1 A Catalyst Framework

We present a generic Catalyst scheme in Algorithm 1. Analogous to its prototype [Lin
et al., 2017, Paquette et al., 2017], this scheme consists of three important components: an
inexact accelerated proximal point step as the wrapper, a linearly-convergent first-order
methodM as the workhorse, as well as carefully chosen parameters and stopping criteria.

inexact accelerated proximal point step. The main idea is to repeatedly solve
a series of regularized problems by adding a quadratic term in y to the original problem:

min
x∈X

max
y∈Y

[
f̃t(x, y) := f (x, y)− τ

2
∥y− zt∥2

]
, (⋆)

where τ > 0 is a regularization parameter (to be specified later) and zt is the prox-center.
The prox-centers {zt}t are built on extrapolation steps of [Nesterov, 2013]. Noticeably, this
step can also be viewed as applying the original Catalyst scheme [Lin et al., 2017] to the
dual function Ψ(y) ≜ minx∈X f (x, y). The major distinction is that we do not have access
to the closed-form dual function or its gradient, which does not allow us to solve the
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Algorithm 1 Catalyst for SC-C/SC-SC Minimax Optimization

1: Input: initial point (x0, y0), parameter τ > 0
2: Initialization: q =

µy
µy+τ , v0 = y0; α1 = 1 if µy = 0 and α1 =

√
q if µy > 0.

3: for all t = 1, 2, ..., T do
4: Set zt = ηtvt−1 + (1− ηt)yt−1 with ηt =

αt−q
1−q

5: Find an inexact solution (xt, yt) to the following problem with AlgorithmM

min
x∈X

max
y∈Y

[
f̃t(x, y) ≜ f (x, y)− ℓ∥y− zt∥2

]
(⋆)

such that

if µy = 0 : f (xt, yt)−min
x∈X

f (x, yt) ≤ ϵt and ∇y f̃t(xt, yt)
T(y− yt) ≤ ϵt, ∀y ∈ Y ; (2.2)

if µy > 0 : gap f̃t
(xt, yt) ≤ ϵt. (2.3)

6: vt = yt−1 +
1
αt
(yt − yt−1);

7: Choose αt+1 ∈ [0, 1] such that α2
t+1 = (1− αt+1)α

2
t + qαt+1.

8: end for
9: Output: if µy = 0: (x̄T, yT) with x̄T = ∑T

t=1
1/αt

∑T
m=1 1/αm

xt; if µy > 0: (xT, yT).

auxiliary problem (⋆) with minimization algorithms and causes difficulty in measuring
the inexactness during solving auxiliary problems. Moreover, we should guarantee the
solution quality in terms of the primal-dual gap instead of just dual optimality.

linearly-convergent algorithm M . By construction, the series of auxiliary
problems (⋆) are (µx, µy + τ)-SC-SC, and (ℓ+ τ)-S or

√
2(ℓ+ τ)-AS if f is ℓ-S or ℓ-AS,

respectively. Consequently, they can be solved at a linear convergence rate by a broad range
of first-order algorithms documented in existing literature. LetM present any algorithm
that can solve the (µx, µy + τ)-SC-SC auxiliary problem at a linear convergence rate such
that after N iterations:

∥xN − x∗∥2 + ∥yN − y∗∥2 ≤
(

1− 1
ΛM,τ

)N
[∥x0 − x∗∥2 + ∥y0 − y∗∥2], (2.4)

ifM is a deterministic algorithm; or taking expectation to the left-hand side above ifM is
randomized. The choices forM include, but are not limited to, extragradient (EG) [Tseng,
1995], optimistic gradient descent ascent (OGDA) [Gidel et al., 2018], SVRG [Palaniappan
and Bach, 2016], SPD1-VR [Tan et al., 2018], Point-SAGA [Luo et al., 2019], and variance
reduced prox-method [Carmon et al., 2019]. Here ΛM,τ depends on τ and algorithmM.
For example, in the case of EG or OGDA, we have ΛM,τ = ℓ+τ

4 min{µx ,µy+τ} [Gidel et al.,
2018, Azizian et al., 2019]. When using SVRG or SAGA, assuming f is ℓ-AS, we have
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ΛM,τ ∝ n + ( ℓ+τ
min{µx ,µy+τ} )

2 [Balamurugan and Bach, 2016]. We will give more choices of
M later.

stopping criteria . To ensure the overall convergence in terms of the primal-dual
gap, it is important to approximately solve the auxiliary problem (⋆) with a reasonable
degree of accuracy, ensuring the pair (xt, yt) converges properly. For a more general
approach, we utilize the criterion specified in (2.2) and (2.3) in our scheme. Most existing
minimax optimization algorithms can meet this stopping criterion after a sufficient number
of iterations. However, it could still be hard to check in practice because minx∈X f (x, yt),
maxy∈Y ∇y f̃t(xt, yt)T(y− yt) and gap f̃t

(xt, yt) are not always computable. One approach
is to predetermine the number of iterations for running the algorithm M based on its
complexity in solving (⋆), although this will vary depending on the specific algorithm
used. Alternatively, the following lemma allows us to transform these conditions into ones
that are verifiable, with the minor cost of a full gradient evaluation and a projection step.

Lemma 2.2.2. Consider a function f̃ (x, y) that is (µ1, µ2)-SC-SC and has ℓ̃-Lipschitz gradient
on X × Y . Let z∗ = (x∗, y∗) be the saddle point. For any point z = (x, y) in X × Y , we define
[z]β = ([x]β, [y]β) with β > 2ℓ̃ to be the point after one step of projected gradient descent ascent:

[x]β = PX
(

x− 1
β∇x f̃ (x, y)

)
, [y]β = PY

(
y + 1

β∇y f̃ (x, y)
)

,

then we have

1. gap f̃ ([z]β) ≤ A∥z− z∗∥2, ∇ f̃ ([x]β, [y]β)T(ȳ− [y]β) ≤ A∥z− z∗∥2 + 2βDY∥z− z∗∥;

2. ∥z− z∗∥ ≤ β+ℓ̃
µ̃ ∥z− [z]β∥, ∥z− [z]β∥2 ≤ 2

(1−ℓ̃/β)3 ∥z− z∗∥2, µ̃
2 ∥z− z∗∥ ≤ gap f̃ (x, y),

where A = β + 2βℓ̃2

µ̃2 + 4βℓ̃2

µ̃2(1−ℓ̃/β)3 and µ̃ = min{µ1, µ2}

Based on this lemma, we can replace (2.2) by the following easy-to-check criterion:

∥x− [x]β∥2 + ∥y− [y]β∥2 ≤ min
{

µ̃2ϵt

2A(β + ℓ̃)2
,
(

µ̃ϵt

4βDY (β + ℓ̃)

)2}
, (2.5)

and (2.3) by the following:

∥x− [x]β∥2 + ∥y− [y]β∥2 ≤ µ̃2ϵt

A(β + ℓ̃)2
. (2.6)

Note that many algorithms such as EG or GDA, already compute ([x]β, [y]β) with β being
the stepsize, so there is no additional computation cost to check criterion (2.5) and (2.6).
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choice of regularization parameter . As we can see, the smaller τ is, the
auxiliary problem is closer to the original problem. However, smaller τ will give rise to
worse conditions of the auxiliary problems, making them harder to solve. We will discuss
the dependence of the inner and outer loop complexities on τ and provide a guideline for
choosing τ for differentM.

As a final remark, while the idea of employing the proximal point algorithm (PPA)
and adding regularization in minimax optimization has been explored in the literature,
it is crucial to emphasize that these existing approaches differ from our framework in
various ways. Each has its unique characteristics and methodologies that set it apart from
our proposed scheme. To list a few: [Rockafellar, 1976b, Monteiro and Svaiter, 2010, Lin
et al., 2018, Palaniappan and Bach, 2016] considered the inexact PPA for C-C or NC-NC
minimax problems by adding quadratic terms in both x and y; [Rafique et al., 2022,
Thekumparampil et al., 2019] considered the inexact PPA for NC-C minimax problems,
by adding a quadratic term in x; [Lin et al., 2020b] considered the inexact accelerated
PPA for SC-SC minimax problems by adding a quadratic term in x. On the other hand, a
number of work, e.g., [Kong and Monteiro, 2019, Lin et al., 2020b, Zhao, 2020] also add a
quadratic term in y to the minimax optimization when the objective is non-strongly concave
about y, but in the form O(ϵ)∥y∥2, which is completely different from PPA. Besides these
differences, the subroutines used to solve the auxiliary minimax problems and choices
of regularization parameters in these work are quite distinct from ours. Lastly, we point
out that the proposed framework is closely related to the inexact accelerated augmented
Lagrangian method designed for linearly constrained optimization problems [Kang et al.,
2015], which can be viewed as a special case by setting f (x, y) as the Lagrangian dual.
Nevertheless, the strategies for addressing the auxiliary problems and the theoretical
analyses between the two are distinctly separate.

2.2.2 Convergence Analysis

In order to derive the total complexity, we first establish the complexity of the outer loop
and then combine it with the inner loop complexity from algorithmM. We then discuss
the optimal choice of the regularization parameter τ for different settings.

Theorem 2.2.3 (Outer-loop complexity for SC-SC objectives). Suppose function f satisfies
Assumptions 2 with µy > 0 and Assumption 3. If we choose ϵt =

√
2

4 (1− ρ)t gap f (x0, y0) with
ρ <
√

q, the output (xT, yT) from Algorithm 1 satisfies

∥xT − x∗∥2 + ∥yT − y∗∥2 ≤
[

48ℓ2

µ2
xµy(
√

q− p)2 +

√
2

µx

]
(1− ρ)T gap f (x0, y0),
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where q ≜ µy
µy+τ as defined in Algorithm 1.

Remark 2.2.4. In practice, if we choose ρ = 0.9
√

q = 0.9
√

µy
µy+τ , Theorem 2.2.3 implies

that Algorithm 1 outputs a point (xT, yT) such that ∥xT − x∗∥2 + ∥yT − y∗∥2 ≤ ϵ within
Õ
(√

τ+µy
µy

log( 1
ϵ )
)

iterations. By Lemma 2.2.2, we can find a point with ϵ-primal-dual gap with
the same order of complexity by performing a projected gradient descent ascent step.

Theorem 2.2.5 (Outer-loop complexity for SC-C objectives). Suppose function f satisfies
Assumptions 2 with µy = 0 and Assumption 3. The output (x̄T, yT) from Algorithm 1 satisfies

gap f (x̄T, yT) ≤ α2
T

[
τ
2D2
Y + 2 ∑T

t=1
1
α2

t
ϵt

]
. (2.7)

If we further choose ϵt =
τ(ρ−1)D2

Yα2
t

4(t+1)ρ with ρ > 1, then

gap f (x̄T, yT) ≤ α2
TτD2

Y . (2.8)

Remark 2.2.6. The above result still holds true without requiring strong convexity in x. In addition,
the regularization parameter τ can be any positive value, so Algorithm 1 is quite flexible. Because
2/(t + 2)2 ≤ α2

t ≤ 4/(t + 1)2 [Paquette et al., 2017], Theorem 2.2.5 implies that the algorithm
finds a point with ϵ-primal-dual gap within O(

√
τ/ϵDY + 1) outer-loop iterations. Notice that

the outer-loop complexity decreases as τ decreases.

We now delve into the complexity of the inner loop. By design, the auxiliary problem (⋆)
is (µx, µy + τ)-SC-SC and can be solved by many existing first-order algorithms at a linear
convergence rate. For ease of reference, we denote the optimal solution to the auxiliary
problem (⋆) as (x∗t , y∗t ). We first introduce a straightforward warm start for the auxiliary
problems: the previous iterate, (xt−1, yt−1), serves as the initial point for M. We show
that the distance between this starting point and (x∗t , y∗t ) is relatively small or bounded.
Subsequently, we outline the complexity of the inner loop.

Lemma 2.2.7 (Warm start for SC-SC objectives). Suppose function f satisfies Assumptions 2
with µy > 0 and Assumption 3 and we run Algorithm 1 with ϵt specified in Theorem 2.2.3. If we
set the initial point of the auxiliary problem (⋆) at iteration t to be (xt−1, yt−1), then we have

∥xt−1 − x∗t ∥2 + ∥yt−1 − y∗t ∥2 ≤ Ctϵt,

where C1 = 16
√

2ℓ2

µ2
x min{µx ,µy} +

16
√

2ℓ2+4
√

2µ2
x

(2τ+µy)µ2
x

and Ct =
(

4
µx

+ 4
µy+τ

)
1

1−ρ +
2304
√

2τ2(ℓ2+µ2
x)

µyµ2
x(µy+τ)2(

√
q−p)

1
(1−ρ)2

for t > 1.
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Lemma 2.2.8 (Warm start for SC-C objectives). Suppose function f satisfies Assumptions 2
with µy = 0 and Assumption 3 and we run Algorithm 1 with ϵt specified in Theorem 2.2.5. If we
set the initial point of the auxiliary problem (⋆) at iteration t to be (xt−1, yt−1), then we have

∥xt−1 − x∗t ∥2 + ∥yt−1 − y∗t ∥2 ≤ Dt,

where D1 = 2∥x0− x∗∥2 +
(

2ℓ2

µ2
x
+ 1
)
D2
Y and Dt =

[
τ(ρ− 1)

(
1

µx
+ 1

µy+τ

)
+ 2

(
ℓ2

µ2
x
+ 1
)]
D2
Y

for t > 1.

Corollary 2.2.9 (Inner-loop complexity for SC-SC objectives). Under the same assumptions
as Lemma 2.2.7, suppose we apply a linearly convergent algorithm M described by (2.4) to
solve the auxiliary problem (⋆) with the initial point specified in Lemma 2.2.7. The number of
iterations (expected number of iterations ifM is stochastic) forM to find a point satisfying (2.6)
is Nt = O

(
ΛM,τ log

(
max{1,ℓ,τ}

min{1,µx ,µy}

))
.

Corollary 2.2.10 (Inner-loop complexity for SC-C objectives). Under the same assumptions
as Lemma 2.2.8, suppose we apply a linearly convergent algorithm M described by (2.4) to
solve the auxiliary problem (⋆) with the initial point specified in Lemma 2.2.8. The number of
iterations (expected number of iterations ifM is stochastic) forM to find a point satisfying (2.5)
is Nt = O

(
ΛM,τ log

(
max{1,ℓ,τ}(DY+∥x0−x∗∥)t

min{1,µx ,τ}

))
.

In practice, choosing a good initial point to warm start algorithmM can be helpful in
accelerating the convergence. Without the warm start strategy, one would require X to
be bounded and Nt = Õ

(
ΛM,τ log(DX+DYϵt

)
)

. The above corollaries show that in theory,
using a simple warm start strategy helps to remove the assumption on boundedness of X
and when µy > 0 the inner-loop complexity does not increase with t.

As we can see, the choice of τ plays a crucial role since it affects both inner-loop and
outer-loop complexities. Combining the above two results immediately leads to the total
complexities:

Corollary 2.2.11 (Total complexity for SC-SC objectives). Suppose function f satisfies As-
sumption 2 with µy > 0 and Assumption 3, and the auxiliary problems are solved by a linearly
convergent algorithm M to satisfy the stopping criterion (2.3) with accuracy ϵt as specified in
Theorem 2.2.3. For Algorithm 1 to find an ϵ-saddle point, the total number of gradient evaluations
(expected number ifM is stochastic) is

O
(

ΛM,τ

√
µy + τ

µy
log
(

max{1, ℓ, τ}
min{1, µx, µy}

)
log

(
max{1, ℓ} gap f (x0, y0)

min{1, µx, µy}
· 1

ϵ

))

= Õ
(

ΛM,τ

√
µy + τ

µy
log
(

1
ϵ

))
.
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Corollary 2.2.12 (Total complexity for SC-C objectives). Suppose function f satisfies As-
sumption 2 with µy = 0 and Assumption 3, and the auxiliary problems are solved by a linearly
convergent algorithmM to satisfy the stopping criterion (2.2) or (2.5) with accuracy ϵt as specified
in Theorem 2.2.5. For Algorithm 1 to find an ϵ-saddle point, the total number of gradient evaluations
(expected number ifM is stochastic) is

O
(

ΛM,τ

(√
τ/ϵDY + 1

)
log
(

max{1, ℓ, τ}(DY + ∥x0 − x∗∥)
min{1, µx, τ} · 1

ϵ

))

= Õ
(

ΛM,τ

(√
τ/ϵDY + 1

)
log
(

1
ϵ

))
.

For any given linearly-convergent method, denoted as M, and any selected regular-
ization parameter τ, the oracle complexity for SC-SC objectives stands at O

(
log 1

ϵ

)
. This

is already optimal in terms of ϵ as per [Ouyang and Xu, 2019]. Meanwhile, the oracle
complexity for SC-C objectives is O

(
DY/

√
ϵ log(DY/ϵ)

)
. This is optimal in both ϵ and

DY , up a logarithmic factor, as indicated by [Ouyang and Xu, 2019]. The dependence on
the condition number will be determined by the term ΛM,τ

√
τ, which we analyze in detail

below for specific algorithms.

2.2.3 Specific Algorithms and Complexities

In order to minimize the total complexity, we should choose the regularization parameter
τ > 0 that minimizes ΛM,τ

√
µy + τ when µy > 0, and minimizes ΛM,τ

√
τ when µy = 0.

Below we derive the choice of the optimal τ for different algorithmsM and present the
corresponding total complexity. Table 2.3 and Table 2.4 summarize the results for SC-SC
and SC-CC minimax optimization, respectively.

deterministic first-order algorithms . When employing GDA asM to solve
the auxiliary problem, the value of ΛM,τ is given by ΛM,τ =

(
ℓ+τ

2 min{µx ,µy+τ}
)2 [Facchinei

and Pang, 2007]. If we use EG or OGDA as M, then ΛM,τ = ℓ+τ
4 min{µx ,µy+τ} [Gidel et al.,

2018, Azizian et al., 2019]. Minimizing ΛM,τ
√

τ for both cases yields that the optimal
choice for τ is µx − µy. Specifically, when using EG or OGDA, the total complexity of
finding an ϵ-saddle point (ϵ ≤ µxD2

Y when µy = 0) is





Õ
(
ℓ · DY√

µxϵ
log

1
ϵ

)
, when µy = 0;

Õ
(

ℓ√
µxµy

log
1
ϵ

)
, when µy > 0.

(2.9)
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Remark 2.2.13. The complexity for the SC-SC setting matches the lower complexity bound for
this class of problem [Zhang et al., 2019b], up to only a logarithmic factor in problem parameters.
Lin et al. [2020b] and Wang and Li [2020] also achieve Õ

(
ℓ√

µxµy

)
dependency on the condition

number, but has higher order poly-logarithmic terms in ϵ or problem parameters.

Remark 2.2.14. The complexity for SC-C setting matches the lower complexity bound for this class
of problems [Ouyang and Xu, 2019] in ϵ, ℓx, µ and DY , up to a logarithmic factor. In addition, it
improves over [Thekumparampil et al., 2019] on the dependency in condition number and improves
over [Wang and Li, 2020], which has higher order poly-logarithmic factor in ℓ, µx and DY .

A key observation is that by setting τ = µx − µy, the auxiliary problem (⋆) becomes
(µx, µx)-SC-SC, and it is known that simple EG or OGDA achieves the optimal complexity
for solving this class of well-balanced SC-SC problems [Zhang et al., 2019b]. Subproblems
in [Thekumparampil et al., 2019, Lin et al., 2020b] are harder to solve because of ill-balanced
condition numbers, thus requiring complicated subroutines.

Besides the complexity improvement, our algorithm is significantly simpler and easier to
implement than the current state-of-the-arts. Under SC-SC setting, Minimax-APPA in [Lin
et al., 2020b] and APPA-ABR in [Wang and Li, 2020] are triple-loop algorithms which stack
several acceleration schemes together. Under SC-C setting, they add a smoothing term in
y to induce a SC-SC auxiliary problem. The DIAG algorithm in [Thekumparampil et al.,
2019] applies Nesterov’s accelerated gradient ascent to the dual function and an additional
two-loop algorithm to solve their subproblems. In contrast, our algorithm only requires
two loops for either setting, does not require to prefix accuracy ϵ, and has fewer tuning
parameters.

stochastic variance-reduced algorithms . We now turn our attention to
minimax problems with a finite-sum structure, represented as minx∈X maxy∈Y f (x, y) ≜
1
n ∑n

i=1 fi(x, y). Correspondingly, the SC-SC auxiliary problem (⋆) can also be readily
written in a finite-sum form. When f is ℓ-AS, this auxiliary problem can be solved by a
number of linearly-convergent variance-reduced algorithms, such as SVRG, accelerated
SVRG (Acc-SVRG) [Balamurugan and Bach, 2016]1 2, and EG with variance reduction
(VR-EG) [Alacaoglu and Malitsky, 2022].

When using SVRG or SAGA asM, we have ΛM,τ ∝ n +
(

ℓ+τ
min{µx ,µy+τ}

)2 [Balamurugan

and Bach, 2016]. If Acc-SVRG or VR-EG is employed, ΛM,τ ∝ n +
√

n(ℓ+τ)
min{µx ,τ} [Balamurugan

1 Although Balamurugan and Bach [2016] assumes individual smoothness, their analysis can be extended to the
averaged smoothness.

2 Algorithms in [Balamurugan and Bach, 2016] requires computing the proximal operator of an (µ, µ)-SC-SC
function. For any (µ, µ)-SC-SC function in the form of ∑i fi(x, y), we can rewrite it as ∑i[ fi(x, y)− µ

2n ||x||2 +
µ
2n ||y||2] +

µ
2 (||x||2 − ||y||2), where the first term is convex-concave, and the second term is (µ, µ)-SC-SC and

admits a simple proximal operator.
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M ΛM,τ ∝ Choice for τ Total Complexity of Catalyst

GDA
(

ℓ+τ
min{µx ,µy+τ}

)2
µx − µy Õ

(
nℓ2√
µ3

xµy
log 1

ϵ

)

EG/OGDA ℓ+τ
min{µx ,µy+τ} µx − µy Õ

(
nℓ√
µxµy

log 1
ϵ

)

SVRG/SAGA n +
(

ℓ+τ
min{µx ,µy+τ}

)2
µx − µy, if ℓ ≥ µx

√
n

Õ
((

n + ℓ2√
µ3

xµy
+ n

3
4 ℓ

1
2√

µy

)
log 1

ϵ

)
ℓ√
n − µy, if µy

√
n ≤ ℓ ≤ µx

√
n

0, if ℓ ≤ µy
√

n

Acc-SVRG/
VR-EG

n +
√

n(ℓ+τ)
min{µx ,µy+τ}

µx − µy, if ℓ ≥ µx
√

n

Õ
((

n +
√

nℓ√
µxµy

+ n
3
4 ℓ

1
2√

µy

)
log 1

ϵ

)
ℓ√
n − µy, if µy

√
n ≤ ℓ ≤ µx

√
n

0, if ℓ ≤ µy
√

n

Table 2.3: The table summarizes the optimal choice of regularization parameter τ and total
complexity of the proposed Catalyst framework for finite-sum SC-SC minimax opti-
mization with f (x, y) = 1

n ∑n
i=1 fi(x, y), when combined with different methodsM.

and Bach, 2016, Alacaoglu and Malitsky, 2022]. Specifically, for Acc-SVRG or VR-EG, the
optimal τ is (proportional to) µx − µy if ℓ ≥ µx

√
n, ℓ√

n − µy if µy
√

n ≤ ℓ ≤ µx
√

n, and 0
otherwise. Therefore, the total complexity for the case µy > 0 is





Õ
( √

nℓ√
µxµy

log
1
ϵ

)
, if ℓ ≥ µx

√
n;

Õ
(

n
3
4
√
ℓ√

µy
log

1
ϵ

)
, if µy

√
n ≤ ℓ ≤ µx

√
n;

Õ
(

n log
1
ϵ

)
, otherwise.

(2.10)

The total complexity for the case µy = 0 is





Õ
((

n +

√
nℓDY√
µxϵ

)
log

1
ϵ

)
, if ℓ ≥ µxn;

Õ
((

n +
n

3
4
√
ℓDY√
ϵ

)
log

1
ϵ

)
, otherwise.

(2.11)

Remark 2.2.15. In the SC-SC setting, our complexity, as presented in (2.10), aligns with the re-
cently established lower complexity bound in [Han et al., 2021], with differences only in logarithmic
factors related to µx, µy, and ℓ. For the SC-C setting, the complexity in (2.11) also nearly matches
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M ΛM,τ ∝ Choice for τ Total Complexity of Catalyst

GDA
(

ℓ+τ
min{µx ,τ}

)2
µx Õ

(
nℓ2DY√

µ3
xϵ

log 1
ϵ

)

EG/OGDA ℓ+τ
min{µx ,τ} µx Õ

(
nℓDY√

µxϵ log 1
ϵ

)

SVRG/SAGA n +
(

ℓ+τ
min{µx ,τ}

)2 µx, if ℓ ≥ µx
√

n Õ
((

n + ℓ2DY√
µ3

xϵ
+ n

3
4 ℓ

1
2DY√
ϵ

)
log 1

ϵ

)

ℓ√
n , if ℓ < µx

√
n

Acc-SVRG/
VR-EG n +

√
n(ℓ+τ)

min{µx ,τ}
µx, if ℓ ≥ µx

√
n Õ

((
n +

√
nℓDY√
µxϵ + n

3
4 ℓ

1
2DY√
ϵ

)
log 1

ϵ

)

ℓ√
n , if ℓ < µx

√
n

Table 2.4: The table summarizes the optimal choice of regularization parameter τ and total com-
plexity of the proposed Catalyst framework for finite-sum SC-C minimax optimization
with f (x, y) = 1

n ∑n
i=1 fi(x, y), when combined with different methodsM.

with the lower complexity bound in [Han et al., 2021], up to logarithmic factors with problem
parameters and ϵ. Notably, these complexities improve over Acc-SVRG and batch Catalyst-EG.

2.3 nonconvex-(strongly)-concave minimax optimization

We now shift our focus to nonconvex-strongly-concave (NC-SC) and nonconvex-concave
(NC-C) minimax problems. We continue to assume that f has ℓ-Lipschitz gradients, as
stated in Assumption 3.

Assumption 5. f (x, ·) is µ-strongly-concave for any x in X with µ ≥ 0 , i.e.,

f (x, y1) ≥ f (x, y2) +∇y f (x, y2)
T(y1 − y2) +

µy

2
∥y1 − y2∥2, ∀y1, y2 ∈ Y .

X and Y are convex and closed sets, and we further assume Y be bounded with diameter DY when
µy = 0.

When the strong concavity modulus µ > 0, we refer to the setting as µ-NC-SC; when
µ = 0, we refer to the setting as NC-C. Given the objective function is nonconvex about
x, finding a global solution will be intractable. Our goal is to identify an approximate
stationary solution for the primal function Φ(x). As per [Lin et al., 2020a], in the NC-SC
setting, Φ is differentiable and L-smooth with L = 2ℓ2

µ . In the NC-C setting, however,
Φ is ℓ-weakly convex and might not be differentiable [Thekumparampil et al., 2019].
Consequently, we adopt distinct stationarity concepts for these two settings.
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Definition 12 (Stationary point in NC-SC setting). For a differentiable Φ, a point x∗ is an
ϵ-stationary point of Φ if

ℓ

∥∥∥∥x∗ −PX
(

x∗ − 1
ℓ
∇Φ(x∗)

)∥∥∥∥ ≤ ϵ.

Definition 13 (Stationary point in NC-C setting). For a weakly convex (and potentially
non-differentiable) Φ, we first define the Moreau envelope as:

Φλ(z) ≜ min
x∈X

Φ(x) +
1

2λ
∥x− z∥2.

A point x∗ is an ϵ-stationary point of Φ if
∥∥∥∇Φ 1

2ℓ
(x∗)

∥∥∥ ≤ ϵ.

2.3.1 A Catalyst Framework

Our nonconvex Catalyst framework is described in Algorithm 2. This can be considered
as applying the proximal point algorithm to the primal function Φ(x) ≜ maxy∈Y f (x, y),
leading to a new minimax subproblem (⋆⋆), which is (ℓ, µ)-SC-SC after we add the
regularzation in x. This is in the same spirit as [Rafique et al., 2022, Thekumparampil et al.,
2019, Lin et al., 2020b]. The main difference lies in that we use Algorithm 1 to solve this
unbalanced subproblems. The algorithm is easier to implement than others, because the
overall algorithm, i.e., Algorithm 2 equipped with Algorithm 1 to solve the subproblem,
can be considered as a two-time-scale inexact proximal point algorithm, which repeatedly
solves a series of problem with changing prox centers x̃t and zt,

minx∈X maxy∈Y f (x, y) + ℓ∥x− x̄t∥2 + τ
2∥y− zt∥2, (2.12)

by some existing algorithmM.

2.3.2 Convergence Analysis

We begin by presenting the convergence analysis for the outer loop of Algorithm 2. The
subproblem (⋆⋆) is strongly-convex-(strongly)-concave, so we can utilize the results from
Chapter 2.2 to determine the inner-loop complexity.
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Algorithm 2 Catalyst for NC-C/NC-SC Minimax Optimization

1: Input: initial point (x0, y0)
2: for all t = 0, 1, ..., T do
3: Find an inexact solution (xt+1, yt+1) to the following problem by Algorithm 1 from

the initial point (xt, yt)

min
x∈X

max
y∈Y

[
f̂t(x, y) ≜ f (x, y) + ℓ∥x− xt∥2

]
(⋆⋆)

such that

if µy = 0 : gap f̂t
(xt+1, yt+1) ≤ ϵ̂t; (2.13)

if µy > 0 : gap f̂t
(xt+1, yt+1) ≤ αt(∥xt − x̂t∥2 + ∥yt − ŷt∥2). (2.14)

4: end for
5: Output: x̂T, which is uniformly sampled from x0, ..., xT−1 if µy = 0, and from x1, ..., xT

if µy > 0.

Theorem 2.3.1 (Outer-loop complexity for NC-SC objectives). Suppose f satisfies Assumption
5 with µy > 0 and Assumption 3. If we choose αt =

µ4

28ℓ3 for t > 0 and α0 = µ4

32ℓ4 max{1,ℓ} , the
output from Algorithm 2 satisfies

1
T

T

∑
t=1

ℓ2
∥∥∥∥x̂T −PX

(
x̂T −

1
ℓ
∇Φ(x̂T)

)∥∥∥∥
2

≤ 275ℓ
5T

∆ +
35ℓ
5T

D0
y, (2.15)

where ∆ = Φ(x0)−minx∈X Φ(x), D0
y = ∥y0 − y∗(x0)∥2 and y∗(x0) = argmaxy∈Y f (x0, y).

Theorem 2.3.2 (Outer-loop complexity for NC-C objectives). Suppose f satisfies Assumption
5 with µy = 0 and Assumption 3. The output from Algorithm 2 satisfies

E

∥∥∥∇Φ 1
2ℓ
(x̂T)

∥∥∥
2
≤ 8ℓ

T

[
∆ +

T−1

∑
t=0

ϵ̂t

]
,

where ∆ = Φ(x0)−minx∈X Φ(x). If T = 16ℓ∆ϵ−2 and ϵ̂t ≤ ϵ2

8ℓ , then E
[
∥∇Φ 1

2ℓ
(x̂T)∥

]
≤ ϵ.

Remark 2.3.3. Above we choose ϵ̂t = O(ϵ2), which requires to fix the target accuracy. We can
also choose ϵ̂t to be decreasing, i.e. ϵ̂t =

∆
t+1 , which leads to E

[
∥∇Φ1/2ℓ(x̂T)∥2] ≤ 8ℓ(1+2 log T)∆

T .
Compared with the constant ϵ̂t, it has an additional logarithmic term in T.

Corollary 2.2.11 and 2.2.12 will capture the complexity of solving auxiliary problems
(⋆⋆) with Algorithm 1. However, we should first specify how far the initial point (xt, yt)

we pick for the subproblem is from the optimal solution of (⋆⋆) compared to the target
accuracy we want.
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Lemma 2.3.4 (Warm start for NC-SC objectives). Under the assumptions in Theorem 2.3.1, if we
can find a point (xt+1, yt+1) such that gap f̂t

(xt+1, yt+1) ≤ αt
A gap f̂t

([zt]β), where zt = (xt, yt),
β > 6ℓ, and A and [zt]β are defined as in Lemma 2.2.2, then it also satisfies the stopping
criterion (2.14).

Lemma 2.3.5 (Warm start for NC-C objectives). Under the assumptions in Theorem 2.3.2,
suppose we run Algorithm 2 with ϵ̂t =

ϵ2

8ℓ . As we set the initial point of the algorithm for solving

subproblem (⋆⋆) as (xt, yt), then for all t < T = 16ℓ∆ϵ−2, we have ∥xt − x̂∗t ∥ ≤
√

6∆
ℓ , where

(x̂∗t , ŷ∗t ) is the saddle point of f̂t.

2.3.3 Specific Algorithms and Complexities

Theorem 2.3.2 and 2.3.1 imply that the outer-loop complexity is Õ
(
ℓ∆ϵ−2). In the

following corollaries, we specify the choices of τ andM for solving subproblems and the
total complexity.

deterministic first-order algorithms . Since (⋆⋆) is (ℓ, µy)-SC-SC, by our
discussion in Section 2.2.3, the best choice for τ is ℓ− µy no matter we choose GDA, EG
or OGDA asM in Algorithm 1. Then Algorithm 2 finds an ϵ-stationary point (ϵ ≤ ℓD2

Y
when µy = 0) with the total number of gradient evaluations of





Õ
(
ℓ2DY∆

ϵ3 log
(

1
ϵ

))
, when µ = 0;

Õ
(
ℓ

3
2 (∆ + D0

y)√
µϵ2

)
, when µ > 0.

Remark 2.3.6. The above complexity for the NC-SC setting matches the lower bound in [Zhang
et al., 2021b, Han et al., 2021], up to a logarithmic factor in L and κ (κ ≜ ℓ

µ ). It improves over

Minimax-PPA [Lin et al., 2020b] by log2(1/ϵ), GDA [Lin et al., 2020a] by κ
3
2 and therefore

achieves the best of two worlds in terms of dependency on κ and ϵ. In addition, our Catalyst-
EG/OGDA algorithm does not require the bounded domain assumption on y, unlike [Lin et al.,
2020b].

Remark 2.3.7. The complexity for the NC-C setting matches with the current state-of-the-art
complexity for nonconvex-concave minimization [Lin et al., 2020b, Thekumparampil et al., 2019,
Zhao, 2020, Ostrovskii et al., 2020] with improvement in logarithmic factors. Note that our
algorithm is much simpler than the existing algorithms, e.g., Prox-DIAG [Thekumparampil et al.,
2019] requires a four-loop procedure.
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stochastic variance-reduced algorithms . We now consider finite-sum-structure
minimax problems, f (x, y) ≜ 1

n ∑n
i=1 fi(x, y) and assume f is ℓ-AS. Since the ratio between

smoothness constant and strong-convexity constant in auxiliary problem (⋆⋆) is Θ(1),
according to Section 2.2.3, the best choice for τy is proportional to max

{
ℓ√
n − µy, 0

}
when

we choose SVRG or SAGA asM. In particular, the total complexity is





Õ
((

n
3
4 ℓ2DY∆

ϵ3 +
nℓ∆
ϵ2

)
log
(

1
ϵ

))
, when µy = 0;

Õ
((

n +
n3/4ℓ1/2

µ1/2
y

)
ℓ(∆ + G0

y)

ϵ2

)
, when µy > 0.

Remark 2.3.8. In the NC-SC setting, according to the lower bound established in [Zhang et al.,
2021b], the dependency on κ in the above upper bound is nearly tight, up to logarithmic factors. Re-
call that SREDA [Luo et al., 2020] achieves the complexity of Õ

(
κ2√nϵ−2 + n + (n + κ) log(κ)

)

for n ≥ κ2 and O
((

κ2 + κn
)

ϵ−2) for n ≤ κ2. Hence, our Catalyst-SVRG/SAGA algorithm
attains better complexity in the regime n ≤ κ4. Particularly, in the critical regime κ = Ω(

√
n)

arising in statistical learning [Shalev-Shwartz and Ben-David, 2014], our algorithm performs
strictly better.

Remark 2.3.9. Variance reduced algorithms are still under-explored for NC-C setting. PG-SVRG
proposed in [Rafique et al., 2022] provides a complexity of Õ

(
nϵ−2 + ϵ−6), which has a much

worse dependence on ϵ and n.

2.4 numerical experiments

In this subchapter, we carry out experiments across a range of applications to demon-
strate the enhanced performance of Catalyst in diverse settings. Our experiments encom-
pass a communication challenge involving an adversary, a binary classification task, and
distributionally robust logistic regression. Our primary emphasis will be on comparing
the performance of algorithms before and after the integration of Catalyst acceleration.
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2.4.1 2-D Nonconvex-Concave Example

We design a straightforward nonconvex-concave example, drawing inspiration from an
example presented in [Abernethy et al., 2019]. The smooth function is defined as:

F(x) =





− 1
2 cos x− 1

2 x− 1
4 π for x ≤ −π

2 ,

− cos x for − π
2 < x ≤ π

2 ,

− 1
2 cos x + 1

2 x− 1
4 π for x > π

2 .
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Figure 2.1: Comparison of GDA and Catalyst-GDA on the 2-dimensional example.

We apply both GDA and Catalyst-GDA to a minimax problem defined as: minx maxy f (x, y) =
F(x) + 10xy. The function f has a single saddle point and stationary point located at (0, 0).
Given it is 2-smooth, we select τ = 1 for Catalyst-GDA. Figure 2.1 contrasts the perfor-
mances of GDA and Catalyst-GDA, both utilizing a stepsize of 0.01 for x and y, based on
the gradient norm and trajectory. Notably, while GDA struggles to converge, Catalyst-GDA
converges without any issues.

2.4.2 Experiments on Simulated Datasets.

We explore a wireless communication problem as presented in [Boyd et al., 2004]. Given
n communication channels, each with signal power p ∈ Rn and noise power σ ∈ Rn, the
capacity of the i-th channel is proportional to log(1 + βi pi/(σ0

i + σi)), where both βi > 0
and σ0

i are predefined constants. Our objective is to optimize the channel capacity in the
face of noise chosen by an adversary, as discussed in [Garnaev and Trappe, 2009]. This
scenario can be modeled as a minimax problem:

min
p

max
σ

f (p, σ) := −
n

∑
i=1

log

(
1 +

βi pi

σ0
i + σi

)
+

λ

2
∥p∥2 − ν

2
∥σ∥2, (2.16)
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Figure 2.2: SC-SC experiment on power allocation with same stepsizes for EG and Catalyst-EG

subject to 1⊤σ = N, p ≥ 0, σ ≥ 0,

where N > 0 represents the total noise power constraint, and λ and ν serve as regulariza-
tion parameters.

sc-sc setting . For our experiments, we set β = 1, λ = 3, ν = 0.0001, and uni-
formly sample σ0 ∈ R1000 from [0, 100]1000. The problem defined by (2.16) is strongly
convex with respect to p and strongly concave in σ. Our primary focus is on compar-
ing the performance of EG, Catalyst-EG, SVRG, and Catalyst-SVRG to understand their
respective behaviors in SC-SC scenarios. For both EG and its Catalyst-enhanced ver-
sion, we employ the same stepsizes for the primal and dual variables. Within the Cata-
lyst framework, we employ the following as the stopping criterion for the subproblem:
∥xt −PX (xt − β∇x f (xt, yt))∥/β + ∥yt −PY (yt + β∇y f (xt, yt))∥/β. The subroutine accu-
racy, ϵt, is controlled as max{c

(
1− 0.9

√
q
)t , ϵ̃}, where c is a constant, ϵ̃ is a predetermined

threshold, and q is is set to be q = λ/ν as specified in Algorithm 1.
Figures 2.2(a) and 2.2(b) present results based on two error metrics with optimally-tuned

stepsizes: (a) distance to the limit point, represented as ∥pt − p∗∥ + ∥σt − σ∗∥, and (b)
the norm of gradient mapping, given by ∥∇p f (pt, σt))∥+ ∥σt −PΣ(σt + β∇σ f (pt, σt))∥/β.
To highlight the acceleration effects of Catalyst, Figure 2.2(c) compares the convergence
results of EG and the Catalyst-EG subroutine, both using the same stepsizes ranging from
0.05 to 0.2. Our observations indicate that SVRG achieves convergence significantly faster
than EG, and the Catalyst framework notably boosts the performance of both algorithms.

sc-c setting . For our experiments, we set β = 1, λ = 3, ν = 0, and uniformly sample
σ0 ∈ R500 from the interval [0, 10]500. The minimax problem, as defined in (2.16),is strongly-
convex-concave. We compare the performance of EG with averaged iterates, Catalyst-EG,
and DIAG. While EG with averaged iterates boasts a complexity of O(1/ϵ) in the convex-
concave setting [Nemirovski, 2004], both Catalyst-EG and DIAG are tailored for SC-C
minimax optimization. Specifically, Catalyst-EG has a complexity of Õ(ℓ/

√
µϵ), whereas
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Figure 2.3: SC-C experiment on power allocation with same stepsizes for EG and Catalyst-EG
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Figure 2.4: SC-C experiment on distributionally robust logistic regression

DIAG’s complexity is Õ
(
ℓ

3
2 /(µ

√
ϵ)
)

. Within the Catalyst framework, the subroutine

accuracy, ϵt, is controlled as max{c/t8, ϵ̃}, where c is a constant and ϵ̃ is a predetermined
threshold. In contrast, DIAG lacks a straightforward stopping criterion for its subroutine.
For DIAG’s subroutine, we employ the stopping criterion: ∥xk − xk−1∥2 + ∥yk − yk−1∥2,
where k denotes the subroutine iterations.

Figures 2.3(a) and 2.3(b) showcase a comparison of these algorithms using optimally-
tuned stepsizes, focusing on metrics like distance to the limit point and gradient mapping.
Another figure contrasts the performances of EG and Catalyst-EG across three stepsizes:
1, 1.5, and 2. Our observations confirm that Catalyst-EG not only accelerates EG but also
outperforms DIAG in performance.

2.4.3 Distributionally Robust Logistic Regression

We consider the distributionally robust logistic regression problem as presented in [Namkoong
and Duchi, 2016]. This problem aims to minimize the worst-case loss over an ambiguity
set centered around the empirical distribution, leading to a minimax formulation:

min
θ

max
p∈∆n

n

∑
i=1
−piϕ (yi log (ŷ (Xi)) + (1− yi) log (1− ŷ (Xi))) (2.17)

subject to ∥p− 1/n∥ ≤ ρ,
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where θ represents the parameters of the classifier ŷ(·), ϕ : R→ R is a specified function,
and (y, X) denotes the classification dataset.

sc-c setting . In this setting, we define ŷ(x) = eθ⊤x

1+eθ⊤x
and choose ϕ(z) = z. The prob-

lem in (2.17) can then be reformulated as an SC-C minimax problem with L2 regularization:

min
θ

max
p∈∆n

n

∑
i=1

pi log(1 + exp(−yiθ
⊤Xi)) +

λ

2
∥θ∥2 subject to ∥p− 1/n∥ ≤ ρ,

where λ denotes the regularization parameter.
For our experiments, we utilize the Wisconsin breast cancer dataset [Dua and Graff, 2017],

which comprises 30 attributes and 569 samples. We allocate 80% of the data for training.
Our comparative analysis includes EG, Catalyst-EG, and DIAG, with implementations
consistent with those in Chapter 2.4.2. Figures 2.4(a) and 2.4(b) present the convergence
behaviors of these algorithms using optimally-tuned stepsizes. In Figure 2.4(c), we compare
the performances of EG and Catalyst-EG across three stepsizes: 0.2, 0.3, and 0.4. Notably,
Catalyst-EG and DIAG exhibit comparable performances, both significantly outpacing EG.
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Figure 2.5: NC-C experiments on DRO on Breast Cancer Dataset with same stepsizes
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Figure 2.6: NC-C experiments on DRO with different stepsize
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nc-c setting . For this setting, we define ŷ(x) = eθ⊤x

1+eθ⊤x
and set ϕ(z) = 2 log

(
1 + z

2

)
.

We transition the constraint on p into a smoothed L1 regularization relative to p− 1/n :

Rα(p− 1/n) =
d

∑
i=1

1
a

(
log
(

1 + ea(pi−1/n)
)
+ log

(
1 + e−a(pi−1/n)

))
,

with the regularization parameter λ designated as 0.01. This leads us to the following
minimax formulation:

min
θ

max
p∈∆n

n

∑
i=1

piϕ
[
log(1 + exp(−yiθ

⊤Xi))
]
+ λRα(p− 1/n). (2.18)

Our comparison encompasses four algorithms: GDA, EG, Catalyst-GDA, and Catalyst-EG.
We employ the mushrooms dataset from LIBSVM [Chang and Lin, 2011], drawing a
random subset of 2000 samples for training, with each sample comprising 112 features.
It’s noteworthy that there is an absence of established theoretical outcomes for the vanilla
EG in this context, while GDA boasts a complexity of O(ϵ−6) [Lin et al., 2020a].

In Figure 2.6, we report the gradient mapping norm: ∥∇θ f (θt, pt))∥ + ∥pt − PP(pt +

β∇p f (θt, pt))∥/β in relation to the count of gradient evaluations, where P represents the
feasible set for p. Observationally, both EG and GDA experience a marked enhancement
in performance when integrated with the Catalyst framework.
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2.5 appendix

2.5.1 Notations and Useful Lemmas

Before we present the theorem and converge, we adopt the following notations.

• Ψ(y) = minx∈X f (x, y): the dual function;

• Φ(x) = maxy∈Y f (x, y): the primal function;

• x∗(y) = argminx∈X f (x, y): the optimal x w.r.t y;

• y∗(x) = argmaxy∈Y f (x, y): the optimal y w.r.t x;

• f̃t(x, y) = f (x, y)− ℓ∥y− zt∥2: the auxiliary problem (⋆) at iteration t;

• Ψt(y) = minx∈X f (x, y)− τ
2∥y− zt∥2 = Ψ(y)− τ

2∥y− zt∥2: the dual function of the
auxiliary problem (⋆);

• (x∗t , y∗t ): the saddle point the auxiliary problem (⋆) at iteration t.

Lemma 2.5.1 (Lemma B.2 [Lin et al., 2020b]). Consider a minimax problem minX maxY f (x, y).
Assume f (·, y) is µx-strongly convex for ∀y ∈ Y and f (x, ·) is µy-strongly concave for ∀x ∈ X
and f is ℓ-Lipschitz smooth. Then we have

a) y∗(x) = argmaxy∈Y f (x, y) is ℓ
µy

-Lipschitz;

b) Φ(x) = maxy∈Y f (x, y) is 2ℓ2

µy
-Lipschitiz smooth and µx-strongly convex with ∇Φ(x) =

∇x f (x, y∗(x));

c) x∗(y) = argminx∈X f (x, y) is ℓ
µx

-Lipschitz;

d) Ψ(y) = minx∈X f (x, y) is 2ℓ2

µx
-Lipschitiz smooth and µy-strongly concave with ∇Ψ(y) =

∇y f (x∗(y), y).

2.5.2 Proofs for Chapter 2.2

A. Proof for Chapter 2.2.1

Proof of Lemma 2.2.2
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Proof. We construct a "ghost" point:

x1 = PX
(

x− 1
β
∇x f̃ ([x]β, [y]β)

)
, y1 = PY

(
y +

1
β
∇y f̃ ([x]β, [y]β)

)
.

From (x, y) to (x1, y1) is just one step of extra-gradient with stepsize 1
β . According to

[Nemirovski, 2004] or Section 4.5 of [Bubeck, 2017], we have, ∀x̄ ∈ X , ȳ ∈ Y ,

∇x f̃ ([x]β, [y]β)T([x]β − x̄)−∇y f̃ ([x]β, [y]β)T([y]β − ȳ)

≤ β

2
[(∥x− x̄∥2 + ∥y− ȳ∥2)− (∥x1 − x̄∥2 + ∥y1 − ȳ∥2)]. (2.19)

1. Because f̃ is convex in x and concave in y, we have

gap f̃ ([z]β)

= f̃ ([x]β, [y]β)−min
x∈X

f̃ (x, [y]β) + max
y∈Y

f̃ ([x]β, y)− f̃ ([x]β, [y]β)

≤ ∇x f̃ ([x]β, [y]β)T([x]β − x∗([y]β))−∇y f̃ ([x]β, [y]β)T([y]β − y∗([x]β))

≤ β

2
[
(∥x− x∗([y]β)∥2 + ∥y− y∗([x]β)∥2)− (∥x1 − x∗([y]β)∥2 + ∥y1 − y∗([x]β)∥2)

]

≤ β[∥x− x∗∥2 + ∥x∗ − x∗([y]β)∥2 + ∥y− y∗∥2 + ∥y∗ − y∗([x]β)∥2] (2.20)

≤ β[∥x− x∗∥2 + ∥y− y∗∥2] +
βℓ̃2

µ̃2 [∥[x]β − x∗∥2 + ∥[y]β − y∗∥2]

≤
(

β +
2βℓ̃2

µ̃2

)
[∥x− x∗∥2 + ∥y− y∗∥2] +

2βℓ̃2

µ̃2 [∥[x]β − x∥2 + ∥[y]β − y∥2], (2.21)

where in the second inequality we apply (2.19), in the third and last inequalities we
use Young’s inequality, and in the fourth inequality we use ∥x∗ − x∗([y]β)∥ = ∥x∗(y∗)−
x∗([y]β)∥ ≤ ℓ̃

µ̃∥[y]β− y∗∥ (and similarly for ∥y∗− y∗([x]β)∥, by Lemma 2.5.1). From Lemma
3.1 and Proposition 3.2 in [Tseng, 1995], we have

∥[x]β − x∥2 + ∥[y]β − y∥2 ≤ 1
(1− ℓ̃/β)2

[∥x− x1∥2 + ∥y− y1∥2]

≤ 2
(1− ℓ̃/β)3

[∥x− x∗∥2 + ∥y− y∗∥2]. (2.22)

Combining with (2.21), we have

gap f̃ ([z]β) ≤
(

β +
2βℓ̃2

µ̃2 +
4βℓ̃2

µ̃2(1− ℓ̃/β)3

)
[∥x− x∗∥2 + ∥y− y∗∥2]. (2.23)
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Then again from (2.19), for any ȳ ∈ Y , we have

∇x f̃ ([x]β, [y]β)T([x]β − x∗([y]β))−∇y f̃ ([x]β, [y]β)T([y]β − ȳ)

≤ β

2
[(∥x− x∗([y]β)∥2 + ∥y− ȳ∥2)− (∥x1 − x∗([y]β)∥2 + ∥y1 − ȳ∥2)]

≤ β

2
∥x− x∗([y]β)∥2 +

β

2
[∥y− ȳ∥2 − ∥y1 − ȳ∥2]

≤ β

2
∥x− x∗([y]β)∥2 +

β

2
∥y− y1∥∥y− ȳ + y1 − ȳ∥

≤
(

β +
2βℓ̃2

µ̃2 +
4βℓ̃2

µ̃2(1− ℓ̃/β)3

)
[∥x− x∗∥2 + ∥y− y∗∥2] + βDY [∥y− y∗∥+ ∥y1 − y∗∥]

≤
(

β +
2βℓ̃2

µ̃2 +
4βℓ̃2

µ̃2(1− ℓ̃/β)3

)
[∥x− x∗∥2 + ∥y− y∗∥2] + 2βDY [∥x− x∗∥+ ∥y− y∗∥],

where in the fourth inequality, we bound ∥x− x∗([y]β)∥2 the same way as we did from
(2.20) to (2.22), and in the last inequality we use ∥z− z∗∥ ≤ ∥z1 − z∗∥ (Proposition 3.2 in
[Tseng, 1995]). By noting that

∇x f̃ ([x]β, [y]β)T([x]β − x∗([y]β)) ≥ 0,

we reach our conclusion.
2. Theorem 3.1 of [Pang, 1987] shows the relationship between ∥x − x∗∥+ ∥y− y∗∥

and ∥x− [x]β∥+ ∥y− [y]β∥ in the case β = 1. The proof can be extended to the following
general case:

∥x− x∗∥+ ∥y− y∗∥ ≤ β + ℓ̃

µ̃

[
∥x− [x]β∥+ ∥y− [y]β∥

]
.

The second inequality we want to show is just equation (2.22). To show the third
inequality, since Φ(x) is µx strongly-convex and differentiable, we have

Φ(x) ≥ Φ(x∗) + ⟨∇Φ(x∗), x− x∗⟩+ µx

2
∥x− x∗∥2 ≥ Φ(x∗) +

µx

2
∥x− x∗∥2.

Similarly, because Ψ(y) is µy strongly-concave and differentiable, we have Ψ(y∗)−Ψ(y) ≥
µy
2 ∥y− y∗∥2.

B. Outer-loop complexity

Proof of Theorem 2.2.5
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Proof. Because f̃ (xt, y) ≜ f (xt, y)− τ
2∥y− zt∥2 is τ-strongly-concave in y, we have, ∀y ∈ Y ,

f (xt, yt)−
τ

2
∥yt − zt∥2 − [ f (xt, y)− τ

2
∥y− zt∥2] ≥ 1

2
τ∥y− yt∥2 +∇y f̃ (xt, yt)

T(yt − y).

With stopping criterion of the auxiliary problem (2.2), we have

f (xt, yt)− f (xt, y) ≥ 1
2

τ∥y− yt∥2 +
τ

2
∥yt − zt∥2 − τ

2
∥y− zt∥2 − ϵt. (2.24)

Choose y = αtỹ + (1− αt)yt−1 in (2.24), where ỹ is an arbitrary vector in Y , then

f (xt, ỹ)− f (xt, yt) ≤ (1− αt)[ f (xt, ỹ)− f (xt, yt−1)]−
τ

2
α2

t (∥vt − ỹ∥2 − ∥vt−1 − ỹ∥2)

− τ

2
∥yt − zt∥2 + ϵt. (2.25)

Note that

f (xt, ỹ)− f (xt, yt−1)

= f (xt−1, ỹ)− f (xt−1, yt−1) + f (xt−1, yt−1)− f (xt, yt−1) + f (xt, ỹ)− f (xt−1, ỹ)

≤ f (xt−1, ỹ)− f (xt−1, yt−1) + f (xt, ỹ)− f (xt−1, ỹ) + ϵt−1, (2.26)

where the inequality follows because f (xt, yt)−minx∈X f (x, yt) ≤ ϵt. Plugging this back
to (2.25) and rearranging,

1
α2

t
[ f (xt, ỹ)− f (xt, yt)] +

τ

2
∥vt − ỹ∥2

≤ 1− αt

α2
t

[ f (xt−1, ỹ)− f (xt−1, yt−1)] +
τ

2
∥vt−1 − ỹ∥2+

1− αt

α2
t

[ f (xt, ỹ)− f (xt−1, ỹ)] +
1− αt

α2
t

ϵt−1 +
1
α2

t
ϵt. (2.27)

Using the update rule for sequence {α}t, for t > 1 we have

1
α2

t
[ f (xt, ỹ)− f (xt, yt)] +

τ

2
∥vt − ỹ∥2

≤ 1
α2

t−1
[ f (xt−1, ỹ)− f (xt−1, yt−1)] +

τ

2
∥vt−1 − ỹ∥2+

1
α2

t−1
[ f (xt, ỹ)− f (xt−1, ỹ)] +

1
α2

t−1
ϵt−1 +

1
α2

t
ϵt. (2.28)
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Iterating this inequality results in

1
α2

t
[ f (xt, ỹ)− f (xt, yt)] +

τ

2
∥vt − ỹ∥2

≤ 1
α2

1
[ f (x1, ỹ)− f (x1, y1)] +

τ

2
∥v1 − ỹ∥2+

T

∑
t=2

1
α2

t−1
[ f (xt, ỹ)− f (xt−1, ỹ)] +

T

∑
t=2

1
α2

t−1
ϵt−1 +

T

∑
t=2

1
α2

t
ϵt

= f (x1, ỹ)− f (x1, y1) +
τ

2
∥v1 − ỹ∥2+

T

∑
t=2

1
α2

t−1
[ f (xt, ỹ)− f (xt−1, ỹ)] +

T

∑
t=2

1
α2

t−1
ϵt−1 +

T

∑
t=2

1
α2

t
ϵt, (2.29)

where we use α1 = 1. Applying (2.27) with t = 1 (note α1 = 1), we have

f (x1, ỹ)− f (x1, y1) +
τ

2
∥v1 − ỹ∥2 ≤ τ

2
∥y0 − ỹ∥2 + ϵ1. (2.30)

Combining with (2.29),

1
α2

T
[ f (xT, ỹ)− f (xT, yT)] +

τ

2
∥vT − ỹ∥2

≤ τ

2
∥y0 − ỹ∥2 +

T

∑
t=2

1
α2

t−1
[ f (xt, ỹ)− f (xt−1, ỹ)] +

T

∑
t=2

1
α2

t−1
ϵt−1 +

T

∑
t=1

1
α2

t
ϵt

≤ τ

2
∥y0 − ỹ∥2 +

1
α2

T−1
f (xT, ỹ)−

T

∑
t=2

1
αt−1

f (xt−1, ỹ) +
T

∑
t=2

1
α2

t−1
ϵt−1 +

T

∑
t=1

1
α2

t
ϵt,

where in the last inequality we use 1
α2

t
− 1

α2
t−1

= 1
αt

. Rearranging,

τ

2
∥y0 − ỹ∥2 +

T

∑
t=2

1
α2

t−1
ϵt−1 +

T

∑
t=1

1
α2

t
ϵt

≥ 1
α2

T
[ f (xT, ỹ)− f (xT, yT)] +

τ

2
∥vT − ỹ∥2 − 1

α2
T−1

f (xT, ỹ) +
T

∑
t=2

1
αt−1

f (xt−1, ỹ)

≥
T

∑
t=1

1
αt

f (xt, ỹ)− 1
α2

T
f (xT, yT)

≥
T

∑
m=1

1
αm

f

(
T

∑
t=1

1/αt

∑T
k=1 1/αk

xt, ỹ

)
− 1

α2
T

f (xT, yT)

≥
T

∑
m=1

1
αm

f

(
T

∑
t=1

1/αt

∑T
k=1 1/αk

xt, ỹ

)
− 1

α2
T

f (x̃, yT)−
1

α2
T

ϵT, ∀x̃ ∈ X ,
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where in the third inequality we use the convexity of f (·, ỹ), and in the last inequality we
use f (xt, yt)−minx∈X f (x, yt) ≤ ϵt. Note that

t

∑
m=1

1
αm

=
1
α1

+

(
1
α2

2
− 1

α2
1

)
+

(
1
a2

3
− 1

α2
2

)
+ ... +

(
1
α2

t
− 1

α2
t−1

)
=

1
α2

t
. (2.31)

Therefore

f (x̄T, ỹ)− f (x̃, yT) ≤ a2
T

[
τ

2
∥y0 − ỹ∥2 + 2

T

∑
t=1

1
α2

t
ϵt

]
, ∀x̃ ∈ X , ỹ ∈ Y , (2.32)

which directly implies

gap f (x̄T, yT) ≤ α2
T

[
τ

2
D2
Y + 2

T

∑
t=1

1
α2

t
ϵt

]
. (2.33)

By choosing ϵt =
τ(ρ−1)D2

Yα2
t

4(t+1)ρ with ρ > 1,

T

∑
t=1

1
α2

t
ϵt =

τD2
Y (ρ− 1)

4

T

∑
t=1

1
(t + 1)ρ

≤ τD2
Y (ρ− 1)

4

∫ ∞

1

1
tρ

∂t =
D2
Yτ

4
, (2.34)

therefore,
gap f (x̄T, yT) ≤ α2

TτD2
Y . (2.35)

Before we prove Theorem 2.2.5, we present a lemma from [Lin et al., 2017]. Algorithm 1

can be considered as applying Catalyst for strongly-convex minimization in [Lin et al., 2017]
to the function −Ψ(y) = −minx∈X f (x, y). The following lemma captures the convergence
of Catalyst framework in minimization, which we present in Algorithm 3.

Lemma 2.5.2 ([Lin et al., 2017]). Assume function h is µ-strongly convex. Define At = ∏t
i=1(1−

αi), ηt =
αt−q
1−q and a sequence {vt}t with v0 = x0 and vt = xt−1 +

1
αt
(xt − xt−1) for t > 1. We

construct a potential function: St = h(xt)− h(x∗) + ηt+1αt+1τ
2(1−αt+1)

∥x∗ − vt∥2, where x∗ is the optimal
solution. After running Algorithm 3 for T iterations, we have

1
AT

ST ≤

√S0 + 2

T

∑
t=1

√
ϵt

At




2

. (2.37)

Proof of Theorem 2.2.5



2.5 appendix 51

Algorithm 3 Catalyst for Strongly-Convex Minimization

1: Input: function h, initial point x0, strong-convexity constant µ, parameter τ > 0
2: Initialization: q = µ

µ+τ , z1 = x0, α1 =
√

q.
3: for all t = 1, 2, ..., T do
4: Find an inexact solution xt to the following problem with algorithmM

min
x∈X

h̃t(x) :=
[

h(x) +
τ

2
∥x− zt∥2

]

such that

h̃t(xt)−min
x∈X

h̃t(x) ≤ ϵt. (2.36)

5: Choose αt+1 ∈ [0, 1] such that α2
t+1 = (1− αt+1)α

2
t + qαt+1.

6: zt+1 = xt + βt(xt − xt−1) where βt =
αt(1−αt)
α2

t +αt+1
.

7: end for
8: Output: xT.

Proof. First, we will see that sequences {zt}t in Algorithm 1 are built in the same way as
in Algorithm 3. Note that by the definition of zt,

zt = ηtvt−1 + (1− ηt)yt−1 = ηt

[
yt−2 +

1
αt−1

(yt−1 − yt−2)

]
+ (1− ηt)yt−1

= yt−1 + ηt

(
1

αt−1
− 1
)
(yt−1 − yt−2). (2.38)

Furthermore,

ηt

(
1

αt−1
− 1
)
=

αt−1 − q
1− q

(
1

αt−1
− 1
)
=

(1− αt)α2
t−1

αt(1− q)
· 1− αt−1

αt−1
=

(1− αt)α2
t−1(1− αt−1)

αt − αtq

=
(1− αt)α2

t−1(1− αt−1)

αt − α2
t + (1− αt)α2

t−1
=

αt−1(1− αt−1)

α2
t−1 + αt

=: βt−1, (2.39)

where in the second and fourth equality we use the update rule of {αt}t.
The dual function of f is Ψ(y) = minx∈X f (x, y). Define Ψt(y) = minx∈X f (x, y)− τ

2∥y−
zt∥2 = Ψ(y)− τ

2∥y− zt∥2, and y∗t = arg miny∈Y Ψt(y). The auxiliary problem (⋆) can be
considered as maxy∈Y Ψt(y). The stopping criterion (2.3) implies that maxy∈Y Ψt(y) −
Ψt(yt) ≤ ϵt. Therefore Algorithm 1 can be considered as applying Algorithm 3 to −Ψ(y)



52 a catalyst framework for unbalanced minimax ploblems

and Lemma 2.5.2 can guarantee the convergence of the dual function. Define St = Ψ(y∗)−
Ψ(yt) +

ηt+1αt+1τ
2(1−αt+1)

∥y∗ − vt∥2, and Lemma 2.5.2 gives rise to

1
AT

ST ≤

√S0 + 2

T

∑
t=1

√
ϵt

At




2

. (2.40)

When α1 =
√

q, it is easy to check that αt =
√

q, At = (1−√q)t and

η1α1τ

2(1− α1)
=

√
q− q

1− q

√
qτ

2(1−√q)
=

√
q− q

τ/(µy + τ)

√
qτ

2(1−√q)
=

q(µy + τ)

2
=

µy

2
.

Therefore S0 = Ψ(y∗)−Ψ(y0) +
µy
2 ∥y∗− y0∥2 ≤ 2(Ψ(y∗)−Ψ(y0)). Then with ϵt =

√
2

4 (1−
ρ)t gap f (x0, y0), we have

Right-hand side of (2.40)

≤


√

2(Ψ(y∗)−Ψ(y0)) +
T

∑
t=1

√
2
(

1− ρ

1−√q

)t

gap f (x0, y0)




2

≤ 2


1 +

T

∑
t=1

(√
1− ρ

1−√q

)t



2

gap f (x0, y0)

≤ 2




(√
1−ρ

1−√q

)T+1

√
1−ρ

1−√q − 1




2

gap f (x0, y0) ≤ 2




√
1−ρ

1−√q√
1−ρ

1−√q − 1




2 (
1− ρ

1−√q

)T

gap f (x0, y0).

Plugging back into (2.40),

ST ≤ 2

(
1√

1− ρ−√1−√q

)2

(1− ρ)T+1 gap f (x0, y0)

≤ 8
(
√

q− ρ)2 (1− ρ)T+1 gap f (x0, y0), (2.41)

where the second inequality is due to
√

1− x + x
2 is decreasing in [0, 1]. Note that

∥xT − x∗∥2 ≤ 2∥xT − x∗(yT)∥2 + 2∥x∗(yT)− x∗(y∗)∥2

≤ 4
µx

[ f (xT, yT)− f (x∗(yT), yT)] + 2
(

ℓ

µx

)2

∥yT − y∗∥2

≤ 4
µx

ϵT + 2
(

ℓ

µx

)2

∥yT − y∗∥2. (2.42)
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where in the second inequality we use Lemma 2.5.1. Then,

∥xT − x∗∥2 + ∥yT − y∗∥2 ≤
[

2
(

ℓ

µx

)2

+ 1

]
∥yT − y∗∥2 +

4
µx

ϵT. (2.43)

Because ∥yT − y∗∥2 ≤ 2
µy
[Ψ(y∗)−Ψ(yT)] ≤ 2

µy
ST, we finish the proof by plugging in (2.41)

and definition of ϵt and get

∥xT − x∗∥2 + ∥yT − y∗∥2 ≤
{[

2
(

ℓ

µx

)2

+ 1

]
16(1− ρ)

µy(
√

q− ρ)2 +

√
2

µx

}
(1− ρ)T gap f (x0, y0).

C. Inner-loop complexity

Proof of Lemma 2.2.8

Proof. We split the proof into case t = 1 and case t > 1.
Case t = 1: Note that z1 = y0 and therefore the auxiliary problem at iteration 1 is

min
x∈X

max
y∈Y

[
f̃1(x, y) ≜ f (x, y)− τ

2
∥y− y0∥2

]
. (2.44)

As x∗1 = argminx∈X f̃1(x, y∗1) = argminx∈X f (x, y∗1) and x∗ = argminx∈X f (x, y∗), by
Lemma 2.5.1, we have ∥x∗ − x∗1∥ ≤ ℓ

µx
∥y∗ − y∗1∥. Then we further have

∥x0 − x∗1∥2 + ∥y0 − y∗1∥2 ≤ 2∥x0 − x∗∥2 + 2∥x∗ − x∗1∥2 + ∥y0 − y∗1∥2

≤ 2∥x0 − x∗∥2 +
2ℓ2

µ2
x
∥y∗ − y∗1∥2 + ∥y0 − y∗1∥2 (2.45)

≤ 2∥x0 − x∗∥2 +

(
2ℓ2

µ2
x
+ 1
)
D2
Y .

Case t > 1: Since f (·, y) is µ-strongly convex, we have

∥x∗(y∗t−1)− x∗(y∗t )∥2 ≤
(

ℓ

µx

)2

∥y∗t − y∗t−1∥2. (2.46)

Define Φt(x) = maxy∈Y f (x, y)− τ
2∥y− zt∥2 to be the primal function of the the auxiliary

problem. Because it is µx-strongly convex,

∥xt−1 − x∗(y∗t−1)∥2 ≤ 2
µx

[gt(xt−1)− g∗t ] ≤
2ϵt−1

µx
. (2.47)
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We further have

∥xt−1 − x∗t ∥2 ≤ 2∥xt−1 − x∗(y∗t−1)∥2 + 2∥x∗(y∗t−1)− x∗(y∗t )∥2

≤ 4ϵt−1

µx
+ 2

(
ℓ

µx

)2

∥y∗t − y∗t−1∥2. (2.48)

Define Ψt(y) = minx∈X f (x, y)− τ
2∥y− zt∥2 to be the dual function of the the auxiliary

problem, which is (µy + τ)-strongly concave. Define Ψ∗t = maxy∈Y Ψt(y). We have

∥ỹ0 − y∗t ∥2 = 2∥yt−1 − y∗t−1∥2 + 2∥y∗t−1 − y∗t ∥2 ≤ 4
µy + τ

[Ψ∗t −Ψt(yt−1)] + 2∥y∗t−1 − y∗t ∥2

≤ 4ϵt−1

µy + τ
+ 2∥y∗t−1 − y∗t ∥2. (2.49)

Combining with (2.48), we have

∥x̃0 − x∗t ∥2 + ∥ỹ0 − y∗t ∥2 ≤
(

4
µx

+
4

µy + τ

)
ϵt−1 +

[
2
(

ℓ

µx

)2

+ 2

]
∥y∗t−1 − y∗t ∥2. (2.50)

We finish the proof by noting that ∥y∗t − y∗t−1∥ ≤ DY and ϵt ≤ τ(ρ−1)D2
Y

4 , ∀t.

Proof of Lemma 2.2.7

Proof. We split the proof into case t = 1 and case t > 1.
Case t = 1: Following (2.45) in the proof of Lemma 2.2.8, we have

∥x0 − x∗1∥2 + ∥y0 − y∗1∥2 ≤2∥x0 − x∗∥2 +
2ℓ2

µ2
x
∥y∗ − y∗1∥2 + ∥y0 − y∗1∥2

≤2∥x0 − x∗∥2 +
4ℓ2

µ2
x
∥y0 − y∗∥2 +

(
4ℓ2

µ2
x
+ 1
)
∥y0 − y∗1∥2

≤ 8ℓ2

µ2
x min{µx, µy}

gap f (x0, y0) +

(
4ℓ2

µ2
x
+ 1
)
∥y0 − y∗1∥2, (2.51)

where in the last inequaltiy we use the strong convexity of Φ(·) and strong concavity of
Ψ(·). It remains to bound ∥y0 − y∗1∥. Since Ψ(y)− τ

2∥y− y0∥2 is (µy + τ) strongly-concave
about y, we have

(
Ψ(y∗1)−

τ

2
∥y∗1 − y0∥2

)
− τ + µy

2
∥y∗1 − y0∥2 ≥ Ψ(y0) = Ψ∗ − [Ψ∗ −Ψ(y0)]

≥ Ψ(y∗1)− [Ψ∗ −Ψ(y0)],
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and it further implies

(
τ +

µy

2

)
∥y∗1 − y0∥2 ≤ Ψ∗ −Ψ(y0) ≤ gap f (x0, y0). (2.52)

Plugging back into (2.51), we have

∥x0 − x∗1∥2 + ∥y0 − y∗1∥2 ≤
[

8ℓ2

µ2
x min{µx, µy}

+
8ℓ2 + 2µ2

x
(2τ + µy)µ2

x

]
gap f (x0, y0)

≤
[

16
√

2ℓ2

µ2
x min{µx, µy}

+
16
√

2ℓ2 + 4
√

2µ2
x

(2τ + µy)µ2
x

]
1

1− ρ
ϵ1.

Case t > 1: (2.50) in the proof of Lemma 2.2.8 still holds. Now we want to bound
∥y∗t−1 − y∗t ∥. By optimality condition, we have for ∀y ∈ Y ,

(y− y∗t )
⊤∇Ψt(y∗t ) ≤ 0, (y− y∗t−1)

⊤∇Ψt−1(y∗t−1) ≤ 0. (2.53)

Choose y in the first inequality to be y∗t−1, y in the second inequality to be y∗t , and sum
them together, we have

(y∗t − y∗t−1)
⊤(∇Ψt−1(y∗t−1)−∇Ψt(y∗t )) ≤ 0. (2.54)

Using ∇Ψt(y) = ∇y f (x∗(y), y)− τ(y− zt), we have

(y∗t − y∗t−1)
⊤(∇y f (x∗(y∗t−1), y∗t−1)− τ(y∗t−1 − zt−1)−∇y f (x∗(y∗t ), y∗t ) + τ(y∗t − zt)) ≤ 0.

(2.55)
By strong concavity of Ψ(y) = maxx∈X f (x, y), we have

(y∗t − y∗t−1)
⊤(∇Ψ(y∗t )−∇Ψ(y∗t−1)) ≤ −µy∥y∗t − y∗t−1∥2. (2.56)

Adding to (2.55), we have

(y∗t − y∗t−1)
⊤[τ(y∗t − zt)− τ(y∗t−1 − zt−1)] ≤ −µy∥y∗t − y∗t−1∥2 (2.57)

Rearranging,
τ

µy + τ
(y∗t − y∗t−1)

⊤(zt−1 − zt) ≥ ∥y∗t − y∗t−1∥2. (2.58)

Further with (y∗t − y∗t−1)
⊤(zt−1 − zt) ≤ ∥y∗t − y∗t−1∥∥zt−1 − zt∥, we have

∥y∗t − y∗t−1∥ ≤
τ

µy + τ
∥zt−1 − zt∥. (2.59)
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From (2.38) and (2.39), we have for t > 2

∥zt − zt−1∥ = ∥yt−1 + βt−1(yt−1 − yt−2)− yt−2 − βt−2(yt−2 − yt−3)∥
≤ (1 + βt−1)∥yt−1 − yt−2∥+ βt−2∥yt−2 − yt−3∥
≤ 2∥yt−1 − yt−2∥+ ∥yt−2 − yt−3∥
≤ 6 max{∥yt−1 − y∗∥, ∥yt−2 − y∗∥, ∥yt−3 − y∗∥}

where in the second inequality we use βt ≤ 1, ∀t (shown in the proof of Proposition 12 in
[Lin et al., 2017]). Note that

∥zt − zt−1∥2 ≤ 36 max{∥yt−1 − y∗∥2, ∥yt−2 − y∗∥2, ∥yt−3 − y∗∥2}

≤ 72
µy

max{Ψ(yt−1)−Ψ∗, Ψ(yt−2)−Ψ∗, Ψ(yt−3)−Ψ∗}

≤ 72
µy

max{St−1, St−2, St−3},

where in the second inequality we use strongly concavity of h and in the last we use
Ψ(yt)−Ψ∗ ≤ St. Combining with (2.59) and (2.50), we have

∥x̃0 − x∗t ∥2 + ∥ỹ0 − y∗t ∥2

≤
(

4
µx

+
4

µy + τ

)
ϵt−1 +

144τ2

(µy + τ)2µy

[(
ℓ

µx

)2

+ 1

]
max{St−1, St−2, St−3}.

Plugging in St ≤ 8
(
√

q−ρ)2 (1− ρ)t+1 gap f (x0, y0) and definition of ϵt, we have

∥x̃0 − x∗t ∥2 + ∥ỹ0 − y∗t ∥2 ≤
{(

4
µx

+
4

µy + τ

)
1

1− ρ
+

2304
√

2τ2
(

ℓ2

µ2
x
+ 1
)

µy(µy + τ)2(
√

q− p)
1

(1− ρ)2

}
ϵt.

(2.60)
It left to discuss the case t = 2. Similarly, we have

∥z2 − z1∥ = ∥y1 + β1(y1 − y0)− y0∥ = (1 + β1)∥y1 − y0∥ ≤ 4 max{∥y1 − y∗∥, ∥y0 − y∗∥}

Then

∥z2 − z1∥2 ≤ 16 max{∥y1 − y∗∥2, ∥y0 − y∗∥2} ≤ 32
µy

max{Ψ(y1)−Ψ∗, Ψ(y0)−Ψ∗}

≤ 32
µy

max{S1, gap f (x0, y0)},
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Combining with (2.59) and (2.50), we have

∥x̃0 − x∗2∥2 + ∥ỹ0 − y∗2∥2

≤
(

4
µx

+
4

µy + τ

)
ϵ1 +

64τ2

(µy + τ)2µy

[(
ℓ

µx

)2

+ 1

]
max{S1, gap f (x0, y0)}.

Plugging in S1 ≤ 8
(
√

q−ρ)2 (1− ρ)2 gap f (x0, y0) and definition of ϵ2, we have

∥x̃0 − x∗2∥2 + ∥ỹ0 − y∗2∥2 ≤
{(

4
µx

+
4

µy + τ

)
1

1− ρ
+

1024
√

2τ2
(

ℓ2

µ2
x
+ 1
)

µy(µy + τ)2(
√

q− p)

}
ϵ2. (2.61)

Proof of Corollary 2.2.10

Proof. We seperate into deterministic and stochastic settings.

deterministic setting . We apply a deterministic algorithmM to solve the auxiliary
problem andM has a linear rate described by (2.4). Denote ℓ̃ = ℓ+ τ as gradient lipschtiz
constant of the auxiliary problem, and µ̃ = max{µx, τ}. By Lemma 2.2.2, after K iterations
of algorithmM,

∥xK − [xK]β∥2 + ∥yK − [yK]β∥2 ≤ 2
(1− ℓ̃/β)3

[∥xK − x∗∥2 + ∥yK − y∗∥2] (2.62)

≤ 2
(1− ℓ̃/β)3

(
1− 1

ΛM,τ

)K

[∥x̃0 − x∗∥2 + ∥ỹ0 − y∗∥2].

(2.63)

Let ϵ̃(t) = min
{

µ̃2ϵt

2A(β+ℓ̃)2 ,
(

µ̃ϵt

4βDY (β+ℓ̃)

)2
}

. Choosing

K = ΛM,τ log
(1− ℓ̃/β)3(∥x̃0 − x∗∥2 + ∥ỹ0 − y∗∥2)

2ϵ̃(t)
≤ ΛM,τ log

(1− ℓ̃/β)3D
2ϵ̃(t)

where D = D1 if t = 1 and D = D2 if t > 1 as specified in Lemma 2.2.8, then we have
∥xK − [xK]β∥2 + ∥yK − [yK]β∥2 ≤ ϵ̃(t).
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stochastic setting . We apply a stochastic algorithm M to solve the auxiliary
problem and M has a linear rate described by (2.4). With the same reasoning as in
deterministic setting and applying Appendix B.4 of [Lin et al., 2017], we have

K(ϵ) ≤ ΛM,τ log
(1− ℓ̃/β)3(∥x̃0 − x∗∥2 + ∥ỹ0 − y∗∥2)

2ΛM,τ ϵ̃(t)
+ 1,

and the conclusion follows.

Proof of Corollary 2.2.9

Proof. We discuss the deterministic setting, since the stochastic setting follows in the same
way as in the proof of Corollary 2.2.10.

deterministic setting . Denote ℓ̃ = ℓ + τ as gradient lipschtiz constant of the
auxiliary problem, and µ̃ = max{µx, µy + τ}. Then (2.63) still holds. Let ϵ̃(t) = µ̃2ϵt

A(β+ℓ̃)2 .
Choosing

K = ΛM,τ log
(1− ℓ̃/β)3(∥x̃0 − x∗∥2 + ∥ỹ0 − y∗∥2)

2ϵ̃(t)

≤ ΛM,τ log
C(1− ℓ̃/β)3ϵt

2ϵ̃(t)
= ΛM,τ log

C(1− ℓ̃/β)3(β + ℓ̃)2A
2µ̃

,

where C = C1 if t = 1 and C = C2 if t > 1 as specified in Lemma 2.2.7, then we have
∥xK − [xK]β∥2 + ∥yK − [yK]β∥2 ≤ ϵ̃(t).

D. Total Complexity

Proof of Corollary 2.2.11

Proof. By Theorem 2.2.3 and Lemma 2.2.2, Algorithm 1 finds a point (x, y) such that

∥x − x∗∥2 + ∥y − y∗∥2 ≤ ϵ after T = O
(√

µy+τ
µy

log
(

max{1,ℓ} gap f (x0,y0)

min{1,µx ,µy} · 1
ϵ

))
outer-loop

iterations. By Corollary 2.2.9, it takes at most

K = O
(

ΛM,τ log
(

max{1, ℓ, τ}
min{1, µx, µy}

))

gradient oracle calls forM to solve the auxiliary problem. The total complexity is K · T.
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Proof of Corollary 2.2.12

Proof. Because 2/(t + 2)2 ≤ α2
t ≤ 4/(t + 1)2, by Theorem 2.2.5, Algorithm 1 finds ϵ-saddle

point after T = O
(√

τ/ϵ · DY + 1
)

outer-loop iterations. Note that the accuracy we want
for solving auxiliary problem (⋆) is, ∀t ∈ [T],

ϵt =
τ(ρ− 1)D2

Yα2
t

4(t + 1)ρ
≥ τ(ρ− 1)D2

Y
(t + 1)ρ(t + 2)2 ≥

τ(ρ− 1)D2
Y

(T + 1)ρ(T + 2)2

= Ω(τρµ−1−ρ/2D−ρ
Y ϵ1+ρ/2),

By Corollary 2.2.10, it takes at most

K = O
(

ΛM,τ log
(

max{1, ℓ, τ}DY∥x0 − x∗∥
min{1, µx, τ} · 1

ϵ

))

gradient oracle calls forM to solve the auxiliary problem. The total complexity is K · T.

2.5.3 Proofs for Chapter 2.3

A. Outer-loop Complexity

Proof of Theorem 2.3.2

Proof. First we define ϕ as the extended-value function of Φ: ϕ(x) = Φ(x) if x ∈ X and
ϕ(x) = ∞ if x ̸∈ X . Note that Φ(x) = maxy∈Y f (x, y) is ℓ-weakly convex [Lemma 3,
[Thekumparampil et al., 2019]]. It directly follows from the definition of ϕ that ϕ is also
ℓ-weakly convex. We define Φτ(z; x) = Φ(z) + 1

2τ∥z− x∥2. Define the proximal point of x
by

proxτϕ(x) = argmin
z

{
ϕ(z) +

1
2τ
∥z− x∥2

}
= argmin

z∈X
Φτ(z; x).

With τ = 2ℓ, By Lemma 4.3 in [Drusvyatskiy and Paquette, 2019],

∥∥∥∇ϕ 1
2ℓ
(xt)

∥∥∥
2
= 4ℓ2∥xt − proxϕ/2ℓ(xt)∥2

≤ 8ℓ[Φ1/2ℓ(xt; xt)−Φ1/2ℓ(proxϕ/1/2ℓ(xt); xt)]

≤ 8ℓ[Φ1/2ℓ(xt; xt)−Φ1/2ℓ(xt+1; xt) + ϵ̂]

= 8ℓ
{

Φ(xt)−
[
Φ(xt+1) + ℓ∥xt+1 − xt∥2]+ ϵ̂

}

≤ 8ℓ[Φ(xt)−Φ(xt+1) + ϵ̂], (2.64)
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where in the first inequality we use ℓ-strong convexity of Φ1/2ℓ(·; xt), and the second
inequality follows from Φ1/2ℓ(xt+1; xt) ≤ minx∈X Φ1/2ℓ(x; xt) + ϵ̂. Summing from 0 to
T − 1, we get

1
T

T−1

∑
t=0

∥∥∥∇ϕ 1
2ℓ
(xt)

∥∥∥
2
≤ 8ℓ

[
Φ(x0)−Φ(xT)

T
+ ϵ̄

]
≤ 2τ2

x
τx − ℓ

[
∆
T
+ ϵ̂

]
.

We finish the proof by noting ∇ϕ 1
2ℓ
(x) = ∇Φ 1

2ℓ
(x) for x ∈ X .

Now we will provide the outer-loop complexity for the NC-SC setting. We denote (x̂t, ŷt)

as the optimal solution to the auxiliary problem (⋆⋆) at t-th iteration. It is easy to observe
that x̂t = proxΦ/2ℓ(xt). Define Φ̂t(x) = maxy f (x, y) + ℓ∥x− xt∥2.

In the following theorem, we first show the convergence of the Moreau envelope
∥∇Φ1/2ℓ(x)∥2.

Theorem 2.5.3. Under the same assumption as Theorem 2.3.1, if we pick αt =
µ4

28ℓ3 for t > 0 and

α0 = µ4

32ℓ4 max{1,ℓ} , then iterates from Algorithm 2 satisfy

T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2 ≤ 87L

5
∆0 +

7ℓ
5

D0
y, (2.65)

where D0
y = ∥y0 − y∗(x0)∥2 and ∆0 = Φ(x0)−minx Φ(x).

Proof. In this proof, we denote bt+1 = gap f̂t
(xt+1, yt+1). According to the last proof and

inequality (4.40),
∥∇Φ1/2ℓ(xt)∥2 ≤ 8ℓ[Φ(xt)−Φ(xt+1) + bt+1]. (2.66)

Then, for t ≥ 1

∥yt − ŷt∥2 ≤ 2∥yt − ŷt−1∥2 + 2∥y∗(x̂t−1)− y∗(x̂t)∥2

≤ 2∥yt − ŷt−1∥2 + 2
(
ℓ

µ

)2

∥x̂t − x̂t−1∥2

≤ 2∥yt − ŷt−1∥2 + 4
(
ℓ

µ

)2

∥x̂t − xt∥2 + 4
(
ℓ

µ

)2

∥xt − x̂t−1∥2

≤ 8ℓ2

µ3 bt + 4
(
ℓ

µ

)2

∥x̂t − xt∥2,
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where we use Lemma 2.5.1 in the second inequality, and (ℓ, µ)-SC-SC of f̃t−1(x, y) and
Lemma 2.2.2 in the last inequality. Therefore,

∥xt − x̂t∥2 + ∥yt − ŷt∥2 ≤ 8ℓ2

µ3 bt +

(
4ℓ2

µ2 + 1
)
∥x̂t − xt∥2. (2.67)

By our inner-loop stopping criterion and ∥∇Φ1/2ℓ(xt)∥2 = 4ℓ2∥xt − x̂t∥2, for t ≥ 1

bt+1 ≤ αt
[
∥xt − x̂t∥2 + ∥yt − ŷt∥2] ≤ 8ℓ2αt

µ3 bt + αt

(
1
µ2 +

1
4ℓ2

)
∥∇Φ1/2ℓ(xt)∥2.

Define θ = 2
7 and w = 5µ2

112ℓ3 . It is easy to verify that as αt = µ4

28ℓ3 , then 8ℓαt
µ2 ≤ θ and

αt

(
1

µ2 +
1

4ℓ2

)
≤ w. We conclude the following recursive bound

bt+1 ≤ θbt + w∥∇Φ1/2ℓ(xt)∥2. (2.68)

For t = 0,

∥y0 − ŷ0∥2 ≤ 2∥y0 − y∗(x0)∥2 + 2∥ŷ0 − y∗(x0)∥2 ≤ 2∥y0 − y∗(x0)∥2 + 2
(
ℓ

µ

)2

∥x0 − x̂0∥2.

(2.69)
Because Φ(x) + ℓ∥x− x0∥2 is ℓ-strongly convex, we have

(
Φ(x̂0) + ℓ∥x̂0 − x0∥2)+ ℓ

2
∥x̂0− x0∥2 ≤ Φ(x0) = Φ∗+(Φ(x0)−Φ∗) ≤ Φ(x̂0)+ (Φ(x0)−Φ∗).

This implies ∥x̂0 − x0∥2 ≤ ℓ
2 (Φ(x0)−Φ∗). Combining with (2.69)

∥y0 − ŷ0∥2 + ∥x0 − x̂0∥2 ≤
(
ℓ3

µ2 +
ℓ

2

)
(Φ(x0)−Φ∗) + 2∥y0 − y∗(x0)∥2.

Hence, by the stopping criterion,

b1 ≤ α0

(
ℓ3

µ2 +
ℓ

2

)
(Φ(x0)−Φ∗) + 2α0∥y0 − y∗(x0)∥2.

Define θ0 = µ2

16ℓ2 . With α0 = µ4

32ℓ4 max{1,ℓ} , α0

(
ℓ3

µ2 +
ℓ
2

)
≤ θ0 and 2α0 ≤ θ0. Then we can

write
b1 ≤ θ0(Φ(x0)−Φ∗) + θ0∥y0 − y∗(x0)∥2.
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Unravelling (2.68), we have for t ≥ 1

bt+1 ≤ θtb1 + w
t

∑
k=1

θt−k∥∇Φ1/2ℓ(xk)∥2

≤ θtθ0(Φ(x0)−Φ∗) + θtθ0∥y0 − y∗(x0)∥2 + w
t

∑
k=1

θt−k∥∇Φ1/2ℓ(xk)∥2.

Summing from t = 0 to T − 1,

T−1

∑
t=0

bt+1 =
T−1

∑
t=1

bt + b1

≤ θ0

T−1

∑
t=0

θt[Φ(x0)−Φ∗] + θ0

T−1

∑
t=0

θt∥y0 − y∗(x0)∥2 + w
T−1

∑
t=1

t

∑
k=1

θt−k∥∇Φ1/2ℓ(xk)∥2

≤ θ0

T−1

∑
t=0

θt[Φ(x0)−Φ∗] + θ0

T−1

∑
t=0

θt∥y0 − y∗(x0)∥2 + w
T−1

∑
t=1

1
1− θ

∥∇Φ1/2ℓ(xt)∥2,

(2.70)

where we use ∑T−1
t=1 ∑t

k=1 θt−k∥∇Φ1/2ℓ(xk)∥2 = ∑T−1
k=1 ∑T

t=k θt−k∥∇Φ1/2ℓ(xk)∥2 ≤
∑T−1

k=1
1

1−θ∥∇Φ1/2ℓ(xk)∥2. Now, by telescoping (2.66),

1
8ℓ

T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2 ≤ Φ(x0)−Φ∗ +

T−1

∑
t=0

bt+1.

Plugging (2.70) in,

1
8ℓ

T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2 − w

T−1

∑
t=1

1
1− θ

∥∇Φ1/2ℓ(xt)∥2

≤
(

1 +
θ0

1− θ

)
[Φ(x0)−Φ∗] +

θ0

1− θ
∥y0 − y∗(x0)∥2.

Plugging in w ≤ 5
112ℓ , 1

1−θ = 7
5 and θ0 ≤ 1

16

1
16ℓ

T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2 ≤ 87

80
[Φ(x0)−Φ∗] +

7
80
∥y0 − y∗(x0)∥2.

Proof of Theorem 2.3.1
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Proof. We still use bt+1 = gap f̂t
(xt+1, yt+1) as in the proof of Theorem 2.5.3. Since x̂t is the

optimal solution to minx∈X Φ̂t(x), Φ̂t is differentiable and X is convex, we have

∥∥∥∥x̂t −PX
(

x̂t −
∇Φ(x̂t) + 2ℓ(x̂t − xt)

ℓ

)∥∥∥∥ = 0. (2.71)

Therefore,
∥∥∥∥xt+1 −PX

(
xt+1 −

1
ℓ
∇Φ(xt+1)

)∥∥∥∥

=

∥∥∥∥xt+1 −PX
(

xt+1 −
1
ℓ
∇Φ(xt+1)

)∥∥∥∥−
∥∥∥∥x̂t −PX

(
x̂t −

∇Φ(x̂t) + 2ℓ(x̂t − xt)

ℓ

)∥∥∥∥

≤ 2∥xt+1 − x̂t∥+ 2∥xt − x̂t∥+
∥∇Φ(x̂t)−∇Φ(xt+1)∥

ℓ

≤ 2
(

1 +
ℓ

µ

)
∥xt+1 − x̂t∥+ 2∥xt − x̂t∥

≤ 4ℓ
µ
∥xt+1 − x̂t∥+ 2∥xt − x̂t∥, (2.72)

where in the second inequality we use Lemma 2.5.1. Further with Lemma 2.2.2 and Lemma
4.3 in [Drusvyatskiy and Paquette, 2019],

ℓ2
∥∥∥∥xt+1 −PX

(
xt+1 −

1
ℓ
∇Φ(xt+1)

)∥∥∥∥
2

≤ 32ℓ3

µ2 bt+1 + 2∥∇Φ1/2ℓ(xt)∥2.

Summing from t = 0 to T − 1, we have

ℓ2
T−1

∑
t=0

∥∥∥∥xt+1 −PX
(

xt+1 −
1
ℓ
∇Φ(xt+1)

)∥∥∥∥
2

≤ 32ℓ3

µ2

T−1

∑
t=0

bt+1 + 2
T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2. (2.73)

Applying (2.70), we have

32ℓ3

µ2

T−1

∑
t=0

bt+1 ≤
32ℓ3θ0

µ2

T−1

∑
t=0

θt[Φ(x0)−Φ∗] +
32ℓ3θ0

µ2

T−1

∑
t=0

θt∥y0 − y∗(x0)∥2+

32ℓ3w
µ2

T−1

∑
t=1

1
1− θ

∥∇Φ1/2ℓ(xt)∥2.

Plugging in θ0 = µ2

16ℓ2 , θ = 2
7 and w = 5µ2

112ℓ3 ,

32ℓ3

µ2

T−1

∑
t=0

bt+1 ≤
14ℓ
5

[Φ(x0)−Φ∗] +
14ℓ
5
∥y0 − y∗(x0)∥2 + 2

T−1

∑
t=1
∥∇Φ1/2ℓ(xt)∥2.
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Plugging back into (2.73),

ℓ2
T−1

∑
t=0

∥∥∥∥xt+1 −PX
(

xt+1 −
1
ℓ
∇Φ(xt+1)

)∥∥∥∥
2

≤ 14ℓ
5

[Φ(x0)−Φ∗] +
14ℓ
5
∥y0 − y∗(x0)∥2 + 3

T−1

∑
t=0
∥∇Φ1/2ℓ(xt)∥2.

Applying Theorem 2.5.3,

ℓ2
T

∑
t=1

∥∥∥∥xt −PX
(

xt −
1
ℓ
∇Φ(xt)

)∥∥∥∥
2

≤ 275ℓ
5T

[Φ(x0)−Φ∗] +
35ℓ
5T
∥y0 − y∗(x0)∥2.

B. Warm Start

Proof of Lemma 2.3.4

Proof. The subproblem is (ℓ, µ)-SC-SC and 3ℓ-smooth. By Lemma 2.2.2, with β > 6ℓ,

αt

A
gap f̂t

([zt]β]) ≤ αt∥zt − ẑt∥2.

Proof of Lemma 2.3.5

Proof. From equation (2.64) in the proof of Theorem 2.3.2, we have

∥xt − x∗t ∥2 ≤ 2
ℓ
[Φ(xt)−Φ(xt+1) + ϵ̂t].

Summing from 0 to T − 1, we get

T−1

∑
t=0
∥xt − x∗t ∥2 ≤ 2∆

ℓ
+

2
ℓ

T−1

∑
t=0

ϵ̂t ≤
6∆
ℓ

,

where in the second inequality, we use T = 16ℓ∆
ϵ2 and ϵ̂t =

ϵ2

8ℓ . Therefore, for ∀t ≤ 16ℓ∆
ϵ2 − 1,

we have ∥xt − x∗t ∥ ≤
√

6∆
ℓ .
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G L O B A L C O N V E R G E N C E F O R P L - P L M I N I M A X P R O B L E M S

Simple algorithms such as the gradient descent ascent (GDA) are the common practice
for solving these nonconvex games and receive lots of empirical success. Yet, it is known
that these vanilla GDA algorithms with constant step size can potentially diverge even in
the convex setting. In this chapter, we show that for a subclass of nonconvex-nonconcave
objectives satisfying a so-called two-sided Polyak-Łojasiewicz inequality, the alternating
gradient descent ascent (AGDA) algorithm converges globally at a linear rate and the
stochastic AGDA achieves a sublinear rate. We further develop a variance-reduced algo-
rithm that attains a provably faster rate than AGDA when the problem has a finite-sum
structure.

3.1 overview

We consider unconstrained minimax optimization problems of the forms

min
x∈Rd1

max
y∈Rd2

f (x, y) ≜ Eξ∼P[F(x, y; ξ)], (3.1)

and

min
x∈Rd1

max
y∈Rd2

f (x, y) ≜
1
n

n

∑
i=1

fi(x, y), (3.2)

where ξ is a random vector, and f (x, y) is a possibly nonconvex-nonconcave function.
The most frequently used methods for solving minimax problems are the gradient

descent ascent (GDA) algorithms (or their stochastic variants), with either simultaneous
or alternating updates of the primal-dual variables, referred to as SGDA and AGDA,
respectively. While these algorithms have received much empirical success, especially in
adversarial training, it is known that GDA algorithms with constant stepsizes could fail to
converge even for the bilinear games [Gidel et al., 2019, Mescheder et al., 2018]; when they
do converge, the stable limit point may not be a local Nash equilibrium [Daskalakis et al.,
2018, Mazumdar and Ratliff, 2018]. On the other hand, GDA algorithms can converge
linearly to the saddle point for strongly-convex-strongly-concave functions [Facchinei and
Pang, 2007]. Moreover, for many simple nonconvex-nonconcave objective functions, such
as, f (x, y) = x2 + 3 sin2 x sin2 y− 4y2 − 10 sin2 y, we observe that GDA algorithms with
constant stepsizes converge to the global saddle point (see Figure 1). These facts naturally

65
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Figure 3.1: (a) Surface plot of the nonconvex-nonconcave function f (x, y) = x2 + 3 sin2 x sin2 y−
4y2 − 10 sin2 y ; (b) Convergence of SGDA and AGDA; (c) Convergence of stochastic
SGDA and stochastic AGDA; (d) Trajectories of four algorithms

raise a question: Is there a general condition under which GDA algorithms converge to the global
optima?

Furthermore, the use of variance reduction techniques has played a prominent role
in improving the convergence over stochastic or batch algorithms for both convex and
nonconvex minimization problems [Johnson and Zhang, 2013, Reddi et al., 2016a,b, Xiao
and Zhang, 2014]. However, when it comes to the minimax problems, there are limited
results, except under convex-concave setting [Palaniappan and Bach, 2016, Du and Hu,
2019]. This leads to another open question: Can we improve GDA algorithms for nonconvex-
nonconcave minimax problems?

3.1.1 Contributions

In this chapter, we address these two questions and specifically focus on the alternating
gradient descent ascent, namely AGDA. AGDA is widely used for training GANs and
other minimax problems in practice; see e.g., [Liu and Tuzel, 2016, Metz et al., 2016]. Yet
there is a lack of discussion on the convergence of AGDA for general minimax problems
in the literature, even for the favorable strongly-convex-strongly-concave setting. Our main
contributions are summarized as follows.

two-sided pl condition. First, we identity a general condition that relaxes the
convex-concavity requirement of the objective function while still guaranteeing global
convergence of AGDA and stochastic AGDA (Stoc-AGDA). We call this the two-sided PL
condition, which requires that both players’ utility functions satisfy Polyak-Łojasiewicz (PL)
inequality [Polyak, 1963]. The two-sided PL condition is very general and is satisfied by
many important classes of functions: (a) all strongly-convex-strongly-concave functions; (b)
all PL-strongly-concave function (discussed in [Guo et al., 2020]) and (c) many nonconvex-
nonconcave objectives. Such conditions also hold true for various applications, including
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Figure 3.2: Consider f (x, y) = log (1 + ex) + 3xy− log (1 + ey): (a) Convergence of AGDA and
SGDA with the stepsize τ = 0.01; (b) Trajectories of two algorithms with τ = 0.01; (c)
Convergence of AGDA and SGDA with stepsize τ = 0.025; (d) Trajectories of two
algorithms with τ = 0.025;

robust least square, generative adversarial imitation learning for linear quadratic regulator
(LQR) dynamics [Cai et al., 2019], zero-sum linear quadratic game [Zhang et al., 2019c], and
potentially many others in adversarial learning [Du et al., 2019], robust phase retrieval [Sun
et al., 2018, Zhou et al., 2016], robust control [Fazel et al., 2018], and etc. We first investigate
the landscape of objectives under the two-sided PL condition. In particular, we show
that three notions of optimality: saddle point, minimax point, and stationary point are
equivalent.

global convergence of agda . We show that under the two-sided PL condition,
AGDA with proper constant stepsizes converges globally to a saddle point at a linear
rate of O(1− κ−3)t, while Stoc-AGDA with proper diminishing stepsizes converges to a
saddle point at a sublinear rate of O(κ5/t), where κ is the underlying condition number.
To the best of our knowledge, this is the first result on the global convergence of a class of
nonconvex-nonconvex problems. In contrast, most previous work deals with nonconvex-
concave problems and obtains convergence to stationary points. On the other hand, because
all strongly-convex-strongly-concave and PL-strongly-concave functions naturally satisfy
the two-sided PL condition, our analysis fills the theoretical gap with the first convergence
results of AGDA under these settings.

variance reduced algorithm . For minimax problems with the finite-sum struc-
ture, we introduce a variance-reduced AGDA algorithm (VR-AGDA) that leverages the
idea of stochastic variance reduced gradient (SVRG) [Johnson and Zhang, 2013, Reddi et al.,
2016a] with the alternating updates. We prove that VR-AGDA achieves the complexity of
O
(
(n + n2/3κ3) log(1/ϵ)

)
, which improves over the O

(
nκ3 log 1

ϵ

)
complexity of AGDA

and the O
(
κ5/ϵ

)
complexity of Stoc-AGDA when applied to finite-sum minimax problems.

Our numerical experiments further demonstrate that VR-AGDA performs significantly
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better than AGDA and Stoc-AGDA, especially for problems with large condition numbers.
To our best knowledge, this is the first work to provide a variance-reduced algorithm and
theoretical guarantees in the nonconvex-nonconcave regime of minimax optimization. In
contrast, most previous variance-reduced algorithms require full or partial strong convexity
and only apply to simultaneous updates.

3.1.2 Related work

nonconvex minimax problems . There has been a recent surge in research on
solving minimax optimization beyond the convex-concave regime [Sinha et al., 2017, Chen
et al., 2017, Qian et al., 2019, Thekumparampil et al., 2019, Lin et al., 2018, Nouiehed et al.,
2019, Abernethy et al., 2019, Lin et al., 2020b, Barazandeh and Razaviyayn, 2020, Ostrovskii
et al., 2020], but they differ from our work from various perspectives. Most of these work
focus on the nonconvex-concave regime and aim for convergence to stationary points of
minimax problems [Chen et al., 2017, Sinha et al., 2017, Lin et al., 2020a, Thekumparampil
et al., 2019]. Algorithms in these work require solving the inner maximization or some sub-
problems with high accuracy, which are different from AGDA. Lin et al. [2018] proposed
an inexact proximal point method to find an ϵ-stationary point for a class of weakly-
convex-weakly-concave minimax problems. Their convergence result relies on assuming
the existence of a solution to the corresponding Minty variational inequality, which is hard
to verify. Abernethy et al. [2019] showed the linear convergence of a second-order iterative
algorithm, called Hamiltonian gradient descent, for a subclass of "sufficiently bilinear"
functions. Very recently, Xu et al. [2020c] and Boţ and Böhm [2020] anslyze AGDA in
nonconvex-(strongly-)concave setting. There is also a line of work in understanding the
dynamics in minimax games [Mazumdar et al., 2020, Fiez et al., 2019, Fiez and Ratliff,
2020, Fiez et al., 2020, Daskalakis and Panageas, 2018, Hsieh et al., 2021].

variance-reduced minimax optimization. Palaniappan and Bach [2016], Luo
et al. [2019], Chavdarova et al. [2019] provided linear-convergent algorithms for strongly-
convex-strongly-concave objectives, based on simultaneous updates. Du and Hu [2019]
extended the result to convex-strongly-concave objectives with full-rank coupling bilinear
term. In contrast, we are dealing with a much broader class of objectives that are possibly
nonconvex-nonconcave. We point out that Luo et al. [2020] and Xu et al. [2020a] recently
introduced variance-reduced algorithms for finding the stationary point of nonconvex-
strongly-concave problems, which is again different from our setting.
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3.2 global optima and two-sided pl condition

We assume that the function f (x, y) in (4.1) is continuously differentiable and has Lipschitz
gradient. Here ∥ · ∥ is used to denote the Euclidean norm.

Assumption 6 (Lipschitz gradient). There exists a positive constant l > 0 such that

max{
∥∥∇y f (x1, y1)−∇y f (x2, y2)

∥∥ , ∥∇x f (x1, y1)−∇x f (x2, y2)∥} ≤ l[∥x1 − x2∥+ ∥y1 − y2∥],

holds for all x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2 .

We now define three notions of optimality for minimax problems. The most direct
notion of optimality is the global minimax point, at which x∗ is an optimal solution to the
function g(x) := maxy f (x, y) and y∗ is an optimal solution to maxy f (x∗, y). In the two-
player zero-sum game, the notion of saddle point is also widely used [Von Neumann et al.,
2007, Nash, 1953]. For a saddle point (x∗, y∗), x∗ is an optimal solution to minx f (x, y∗)
and y∗ is an optimal solution to maxy f (x∗, y).

Definition 14 (Global optima).

1. (x∗, y∗) is a global minimax point, if for any (x, y) : f (x∗, y) ≤ f (x∗, y∗) ≤ maxy′ f (x, y′).

2. (x∗, y∗) is a saddle point, if for any (x, y) : f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗).

3. (x∗, y∗) is a stationary point, if : ∇x f (x∗, y∗) = ∇y f (x∗, y∗) = 0.

For general nonconvex-nonconcave minimax problems, these three notions of optimality
are not necessarily equivalent. A stationary point may not be a saddle point or a global
minimax point; a global minimax point may not be a saddle point or a stationary point.
Note that for minimax problems, a saddle point or a global minimax point may not always
exist. However, since our goal in this chapter is to find global optima, in the remainder of
the chapter, we assume that a saddle point always exists.

Assumption 7 (Existence of saddle point). The objective function f has at least one saddle point.
We also assume that for any fixed y, minx∈Rd1 f (x, y) has a nonempty solution set and a optimal
value, and for any fixed x, maxy∈Rd2 f (x, y) has a nonempty solution set and a finite optimal value.

For unconstrained minimization problems: minx∈Rn f (x), Polyak [1963] proposed Polyak-
Łojasiewicz (PL) condition, which is sufficient to show global linear convergence for
gradient descent without assuming convexity. Specifically, a function f (·) satisfies PL
condition if it has a nonempty solution set and a finite optimal value f ∗, and there exists



70 global convergence for pl-pl minimax problems

some µ > 0 such that ∥∇ f (x)∥2 ≥ 2µ( f (x)− f ∗), ∀x. As discussed in Karimi et al. [2016],
PL condition is weaker, or not stronger, than other well-known conditions that guarantee
linear convergence for gradient descent, such as error bounds (EB) [Luo and Tseng, 1993],
weak strong convexity (WSC) [Necoara et al., 2018] and restricted secant inequality (RSI)
[Zhang and Yin, 2013].

We introduce a straightforward generalization of the PL condition to the minimax
problem: function f (x, y) satisfies the PL condition with constant µ1 with respect to x, and
- f satisfies PL condition with constant µ2 with respect to y. We formally state this in the
following definition.

Definition 15 (Two-sided PL condition). A continuously differentiable function f (x, y) satisfies
the two-sided PL condition if there exist constants µ1, µ2 > 0 such that: ∀x, y,

∥∇x f (x, y)∥2 ≥ 2µ1[ f (x, y)−min
x

f (x, y)], ∥∇y f (x, y)∥2 ≥ 2µ2[max
y

f (x, y)− f (x, y)].

The two-sided PL condition does not imply convexity-concavity, and it is a much weaker
condition than strong-convexity-strong-concavity. In Lemma 3.2.1, we show that three
notions of optimality are equivalent under the two-sided PL condition. Note that they may
not be unique.

Lemma 3.2.1. If the objective function f (x, y) satisfies the two-sided PL condition, then the
following holds true:

(saddle point)⇔ (global minimax)⇔ (stationary point).

Below we give some examples that satisfy this condition.

Example 1. The nonconvex-nonconcave function in the introduction, f (x, y) = x2 + 3 sin2 x sin2 y−
4y2 − 10 sin2 y satisfies the two-sided PL condition with µ1 = 1/16, µ2 = 1/11 (see Appendix
3.6.1).

Example 2. f (x, y) = F(Ax, By), where F(·, ·) is strongly-convex-strongly-concave and A and
B are arbitrary matrices, satisfies the two-sided PL condition.

Example 3. The generative adversarial imitation learning for LQR can be formulated as minK maxθ m(K, θ),
where m is strongly-concave in terms of θ and satisfies PL condition in terms of K (see [Cai et al.,
2019] for more details), thus satisfying the two-sided PL condition.

Example 4. In a zero-sum linear quadratic (LQ) game, the system dynamics are characterized by
xt+1 = Axt + But + Cvt, where xt is the system state and ut, vt are the control inputs from two-
players. After parameterizing the policies of two players by ut = −Kxt and vt = −Lxt, the value
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function is C(K, L) = Ex0∼D
{

∑∞
t=0

[
x⊤t Qxt + (Kxt)

⊤ Ru (Kxt)− (Lxt)
⊤ Rv (Lxt)

]}
, whereD

is the distribution of the initial state x0 (see [Zhang et al., 2019c] for more details). Player 1 (player
2) wants to minimize (maximize) C(K, L), and the game is formulated as minK maxL C(K, L).
Fixing L (or K), C(·, L) (or −C(K, ·)) becomes an objective of an LQR problem, and therefore
satisfies the PL condition [Fazel et al., 2018] when argminK C(K, L) and argmaxL C(K, L) are
well-defined.

The two-sided PL condition includes rich classes of functions, including: (a) all strongly-
convex-strongly-concave functions; (b) some convex-concave functions (e.g., Example 2);
(c) some nonconvex-strongly-concave functions (e.g., Example 3); (d) some nonconvex-
nonconcave functions (e.g., Example 1 and 4). Under the two-sided PL condition, the
function g(x) := maxy f (x, y) satisfies PL condition with µ1 (see Appendix 3.6.1). Moreover,
it holds that g is also L-smooth with L := l + l2/µ2 [Nouiehed et al., 2019]. Finally, we
denote µ = min(µ1, µ2) and κ = l

µ , which represents the condition number of the problem.

3.3 global convergence of agda and stoc-agda

In this subchapter, we establish the convergence rate of the stochastic alternating gradient
descent ascent (Stoc-AGDA) algorithm, which we present in Algorithm 4, under the two-
sided PL condition. Stoc-AGDA updates variables x and y sequentially using stochastic
gradient descent/ascent steps. Here we make standard assumptions about stochastic
gradients Gx(x, y, ξ) and Gy(x, y, ξ).

Assumption 8 (Bounded variance). Gx(x, y, ξ) and Gy(x, y, ξ) are unbiased stochastic estima-
tors of ∇x f (x, y) and ∇y f (x, y) and have variances bounded by σ2 > 0.

Algorithm 4 Stoc-AGDA
1: Input: (x0, y0), stepsizes {τt

1}t > 0, {τt
2}t > 0

2: for all t = 0, 1, 2, ... do
3: Draw two i.i.d. samples ξt1, ξt2 ∼ P(ξ)
4: xt+1 ← xt − τt

1Gx(xt, yt, ξt1)
5: yt+1 ← yt + τt

2Gy(xt+1, yt, ξt2)
6: end for

Note that Stoc-AGDA with constant stepsizes (i.e., τt
1 = τ1 and τt

2 = τ2) and noiseless
stochastic gradient (i.e., σ2 = 0) reduces to AGDA:

xt+1 = xt − τ1∇x f (xt, yt),

yt+1 = yt + τ2∇y f (xt+1, yt).
(3.3)
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We measure the inaccuracy of (xt, yt) through the potential function

Pt := at + λ · bt, (3.4)

where at = E[g(xt)− g∗], bt = E[g(xt)− f (xt, yt)] and the balance parameter λ > 0 will be
specified later in the theorems. Recall that g(x) := maxy f (x, y) and g∗ = minx g(x). This
metric is driven by the definition of minimax point, because g(x)− g∗ and g(x)− f (x, y)
are non-negative for any (x, y), and both equal to 0 if and only if (x, y) is a minimax point.

stoc-agda with constant stepsizes We first consider Stoc-AGDA with constant
stepsizes. We show that {(xt, yt)}t will converge linearly to a neighbourhood of the optimal
set.

Theorem 3.3.1. Suppose Assumptions 10, 7, 12 hold and f (x, y) satisfies the two-sided PL
condition with µ1 and µ2. Define Pt := at +

1
10 bt. If we run Algorithm 4 with τt

2 = τ2 ≤ 1
l and

τt
1 = τ1 ≤ µ2

2τ2
18l2 ,

Pt ≤(1−
1
2

µ1τ1)
tP0 + δ, (3.5)

where δ =
(1−µ2τ2)(L+l)τ2

1 +lτ2
2 +10Lτ2

1
10µ1τ1

σ2.

Remark 3.3.2. In the theorem above, we choose τ1 smaller than τ2, τ1/τ2 ≤ µ2
2/(18l2), because

our potential function is not symmetric about x and y. Another reason is because we want yt

to approach y∗(xt) ∈ arg maxy f (xt, y) faster so that ∇x f (xt, yt) is a better approximation for
∇g(xt) (∇g(x) = ∇x f (x, y∗(x)), see Nouiehed et al. [2019]). Indeed, it is common to use different
learning rates for x and y in GDA algorithms for nonconvex minimax problems; see e.g., Jin et al.
[2020] and Lin et al. [2020a]. Note that the ratio between these two learning rates is quite crucial
here. We also observe empirically when the same learning rate is used, even if small, the algorithm
may not converge to saddle points.

Remark 3.3.3. When t → ∞, Pt → δ. If τ1 → 0 and τ2
2 /τ1 → 0, the error term δ will go to 0.

When using smaller stepsizes, the algorithm reaches a smaller neighbour of the saddle point yet at
the cost of a slower rate, as the contraction factor also deteriorates.

linear convergence of agda Setting σ2 = 0, it follows immediately from the pre-
vious theorem that AGDA converges linearly under the two-sided PL condition. Moreover,
we have the following:
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Theorem 3.3.4. Suppose Assumptions 10, 7 hold and f (x, y) satisfies the two-sided PL condition
with µ1 and µ2. Define Pt := at +

1
10 bt. If we run AGDA with τ1 =

µ2
2

18l3 and τ2 = 1
l , then

Pt ≤
(

1− µ1µ2
2

36l3

)t

P0. (3.6)

Furthermore, {(xt, yt)}t converges to some saddle point (x∗, y∗), and

∥xt − x∗∥2 + ∥yt − y∗∥2 ≤ α

(
1− µ1µ2

2
36l3

)t

P0, (3.7)

where α is a constant depending on µ1, µ2 and l.

The above theorem implies that the limit point of {(xt, yt)}t is a saddle point and the
distance to the saddle point decreases in the order ofO

(
(1− κ−3)t). Note that in the special

case when the objective is strongly-convex-strongly-concave, it is known that SGDA (GDA
with simultaneous updates) achieves an O(κ2 log(1/ϵ)) iteration complexity (see, e.g.,
Facchinei and Pang [2007]) and this can be further improved to match the lower complexity
bound O(κ log(1/ϵ)) [Zhang et al., 2019b] by extragradient methods [Korpelevich, 1976]
or Nesterov’s dual extrapolation [Nesterov and Scrimali, 2006]. However, these results
heavily rely on the strong monotonicity of the corresponding variational inequality, which
does not apply here. Since the general two-sided PL condition contains a much broader
class of functions, we may not expect to achieve the same dependency on κ.

stoc-agda with diminishing stepsizes While Stoc-AGDA with constant step-
sizes only converges linearly to a neighbourhood of the saddle point, Stoc-AGDA with
diminishing stepsizes converges to the saddle point but at a sublinear rate O(1/t).

Theorem 3.3.5. Suppose Assumptions 10, 7, 12 hold and f (x, y) satisfies the two-sided PL
condition with µ1 and µ2. Define Pt = at +

1
10 bt. If we run algorithm 4 with stepsizes τt

1 = β
γ+t

and τt
2 = 18l2β

µ2
2(γ+t) for some β > 2/µ1 and γ > 0 such that τ1

1 ≤ min{1/L, µ2
2/18l2}, then we

have

Pt ≤
ν

γ + t
, where ν := max

{
γP0,

[
(L + l)β2 + 182l5β2/µ4

2 + 10Lβ2]σ2

10µ1β− 20

}
. (3.8)

Remark 3.3.6. Note the rate is affected by ν, and the first term in the definition of ν is controlled
by the initial point. In practice, we can find a good initial point by running Stoc-AGDA with
constant stepsizes so that only the second term in the definition of ν matters. Then by choosing
β = 3/µ1, we have ν = O

(
l5σ2

µ2
1µ4

2

)
. Thus, the convergence rate of Stoc-AGDA is O

(
κ5σ2

µt

)
.
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Algorithm 5 VR-AGDA
1: input: (x̃0, ỹ0), stepsizes τ1, τ2, iteration numbers N, T
2: for all k = 0, 1, 2, ... do
3: for all t = 0, 1, 2, ...T − 1 do
4: xt,0 = x̃t, yt,0 = ỹt,
5: compute ∇x f (x̃t, ỹt) =

1
n ∑n

i=1∇x fi(x̃t, ỹt) and ∇y f (x̃t, ỹt) =
1
n ∑n

i=1∇y fi(x̃t, ỹt)
6: for all j = 0 to N − 1 do
7: sample i.i.d. indices i1

j , i2
j uniformly from [n]

8: xt,j+1 = xt,j − τ1[∇x fi1
j
(xt,j, yt,j)−∇x fi1

j
(x̃t, ỹt) +∇x f (x̃t, ỹt)]

9: yt,j+1 = yt,j + τ2[∇y fi2
j
(xt,j+1, yt,j)−∇y fi2

j
(x̃t, ỹt) +∇y f (x̃t, ỹt)]

10: end for
11: x̃t+1 = xt,N , ỹt+1 = yt,N
12: end for
13: choose (xk, yk) from {{(xt,j, yt,j)}N−1

j=0 }T−1
t=0 uniformly at random

14: x̃0 = xk, ỹ0 = yk

15: end for

3.4 stochastic variance-reduced algorithm

In this subchapter, we study the minimax problem with the finite-sum structure: minx maxy

f (x, y) = 1
n ∑n

i=1 fi(x, y), which arises ubiquitously in machine learning. We are especially
interested in the case when n is large. We assume the overall objective function f (x, y)
satisfies the two-sided PL condition with µ1 and µ2, but do not assume each fi to satisfy
the two-sided PL condition. Instead of Assumption 10, we assume each component fi has
Lipschitz gradients.

Assumption 9. Each fi has l-Lipschitz gradients.

If we run AGDA with full gradients to solve the finite-sum minimax problem, the total
complexity for finding an ϵ-optimal solution is O(nκ3 log(1/ϵ)) by Theorem 3.3.4. Despite
the linear convergence, the per-iteration cost is high and the complexity can be huge
when the number of components n and condition number κ are large. Instead, if we run
Stoc-AGDA, this leads to the total complexity O

(
κ5σ2

µ2ϵ

)
by Remark 3.3.6, which has worse

dependence on ϵ.
Motivated by the recent success of stochastic variance reduced gradient (SVRG) tech-

nique [Johnson and Zhang, 2013, Reddi et al., 2016a, Palaniappan and Bach, 2016], we
introduce the VR-AGDA algorithm (presented in Algorithm 5), that combines AGDA with
SVRG so that the linear convergence is preserved while improving the dependency on n
and κ. VR-AGDA can be viewed as the applying SVRG to AGDA with restarting: at every
epoch k, we restart the SVRG subroutine by initializing it with (xk, yk), which is randomly
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selected from previous SVRG subroutine. This is partly inspired by the GD-SVRG algo-
rithm for minimizing PL functions [Reddi et al., 2016a]. Notice when T = 1, VR-AGDA
reduces to a double-loop algorithm which is similar to the SVRG for saddle point problems
proposed by Palaniappan and Bach [2016], except for several notable differences: (i) we
are using the alternating updates rather than simultaneous updates, (ii) as a result, we
require to sample two independent indices rather than one at each iteration, and (iii)
most importantly, we are dealing with possibly nonconvex-nonconcave objectives that
satisfy the two-sided PL condition. The following two theorems capture the convergence
of VR-AGDA under different hyper-parameter setups.

Theorem 3.4.1. Suppose Assumptions 7 and 9 hold and f (x, y) satisfies the two-sided PL condition
with µ1 and µ2. Define Pk = ak + 1

20 bk, where ak = E[g(xk)− g∗] and bk = E[g(xk)− f (xk, yk)].
If we run VR-AGDA with τ1 = β/(28κ8l), τ2 = β/(lκ6), N = ⌊αβ−2/3κ9(2 + 4β1/2κ−3)−1⌋
and T = 1, where α, β are constants irrelevant to l, n, µ1, µ2, then Pk+1 ≤ 1

2 Pk. This implies
complexity of

O
(
(n + κ9) log(1/ϵ)

)

total for VR-AGDA to achieve an ϵ-optimal solution.

Theorem 3.4.2. Under the same assumptions as Theorem 3.4.1 , if we run VR-AGDA with
τ1 = β/(28κ2ln2/3), τ2 = β/(ln2/3), N = ⌊αβ−2/3n(2+ 4β1/2n−1/3)−1⌋, and T = ⌈κ3n−1/3⌉,
where α, β are constants irrelevant to l, n, µ1, µ2, then Pk+1 ≤ 1

2 Pk. This implies complexity of

O
(
(n + n2/3κ3) log(1/ϵ)

)

for VR-AGDA to achieve an ϵ-optimal solution.

Remark 3.4.3. Theorems 3.4.1 and 3.4.2 are different in their choices of stepsizes and iteration
numbers, which gives rise to different complexities. VR-AGDA with the second setting has a lower
complexity than the first setting in the regime n ≤ κ9, but the first setting allows for a simpler
double-loop algorithm with T = 1. The two theorems imply that VR-AGDA always improves over
AGDA. To the best of our knowledge, this is also the first theoretical analysis of variance-reduced
algorithms with alternating updating rules for minimax optimization.

3.5 experiments

We present experiments on two applications: robust least square and imitation learning
for LQR. We mainly focus on the comparison between AGDA, Stoc-AGDA, and VR-
AGDA, which are the only algorithms with known theoretical guarantees. Because of their
simplicity, only few hyperparameters are induced and are tuned based on grid search.
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Figure 3.3: GDA, Stoc-AGDA and SVRG-AGDA for robust least square.
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Figure 3.4: AGDA and VR-AGDA on generative adversarial learning for LQR

3.5.1 Robust Least Square

We consider the least square problems with the coefficient matrix A ∈ Rn×m and noisy
vector y0 ∈ Rn subject to bounded deterministic perturbation δ. Robust least square (RLS)
minimizes the worst-case residual, and can be formulated as [El Ghaoui and Lebret, 1997]:
minx maxδ:∥δ∥≤ρ ∥Ax− y∥2, where δ = y0 − y. We consider RLS with soft constraint:

minx maxy F(x, y) := ∥Ax− y∥2
M − λ∥y− y0∥2

M, (3.9)

where we adopt the general M-(semi-)norm in: ∥x∥2
M = xT Mx and M is positive semi-

definite. F(x, y) satisfies the two-sided PL condition when λ > 1, because it can be written
as the composition of a strongly-convex-strongly-concave function and an affine function
(Example 2). However, F(x, y) is not strongly convex about x, and when M is not full-rank,
it is not strongly concave about y.

Datasets. We use three datasets in the experiments, and two of them are generated in the
same way as in Du and Hu [2019]. We generate the first dataset with n = 1000 and m = 500
by sampling rows of A from a Gaussian N (0, In) distribution and setting y0 = Ax∗ + ϵ
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with x∗ from Gaussian N (0, 1) and ϵ from Gaussian N (0, 0.01). We set M = In and λ = 3.
The second dataset is the rescaled aquatic toxicity dataset by Cassotti et al. [2014], which
uses 8 molecular descriptors of 546 chemicals to predict quantitative acute aquatic toxicity
towards Daphnia Magna. We use M = I and λ = 2 for this dataset. The third dataset
is generated with A ∈ R1000×500 from Gaussian N (0, Σ) where Σi,j = 2−|i−j|/10, M being
rank-deficit with positive eigenvalues sampled from [0.2, 1.8] and λ = 1.5. These three
datasets represent cases with low, median, and high condition numbers, respectively.

Evaluation. We compare four algorithms: AGDA, Stoc-AGDA, VR-AGDA and extra-
gradient (EG) with fine-tuned stepsizes. For Stoc-AGDA, we choose constant stepsizes to
form a fair comparison with the other two. We report the potential function value, i.e.,
Pt described in our theorems, and distance to the limit point ∥(xt, yt)− (x∗, y∗)∥2. These
errors are plotted against the number of gradient evaluations normalized by n (i.e., number
of full gradients). Results are reported in Figure 3.3. We observe that VR-AGDA and
AGDA both exhibit linear convergence, and the speedup of VR-AGDA is fairly significant
when the condition number is large, whereas Stoc-AGDA progresses fast at the beginning
and stagnates later on. These numerical results clearly validate our theoretical findings.
EG performs poorly in this example.

3.5.2 Generative Adversarial Imitation Learning for LQR

The optimal control problem for LQR can be formulated as [Fazel et al., 2018]:

minimize
πt

Ex0∼D
∞

∑
t=0

x⊤t Qxt + u⊤t Rut such that xt+1 = Axt + But, ut = πt(xt),

where xt ∈ Rd is a state, ut ∈ Rk is a control, D is the distribution of initial state x0,
and πt is a policy. It is known that the optimal policy is linear: ut = −K∗xt, where
K∗ ∈ Rk×d. If we parametrize the policy in the linear form, ut = −Kxt, the problem
can be written as: minK C(K; Q, R) := Ex0∼D

[
∑∞

t=0
(
x⊤t Qxt + (Kxt)⊤R(Kxt)

)]
where the

trajectory is induced by LQR dynamics and policy K. In generative adversarial imitation
learning for LQR, the trajectories induced by an expert policy KE are observed and part
of the goal is to learn the cost function parameters Q and R from the expert. This can be
formulated as a minimax problem [Cai et al., 2019]:

min
K

max
(Q,R)∈Θ

{
m(K, Q, R) := C(K; Q, R)− C(KE; Q, R)−Φ(Q, R)

}
,
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where Θ = {(Q, R) : αQ I ⪯ Q ⪯ βQ I, αR I ⪯ R ⪯ βR I} and Φ is a strongly-convex regu-
larizer. We sample n initial points x(1)0 , x(2)0 , ..., x(n)0 from D and approximate C(K; Q, R) by
sample average Cn(K; Q, R) := 1

n ∑n
i=1
[
∑∞

t=0
(
x⊤t Qxt + u⊤t Rut

)]
x0=x(i)0

. We then consider:

min
K

max
(Q,R)∈Θ

{mn(K, Q, R) := Cn(K; Q, R)− Cn(KE; Q, R)−Φ(Q, R)}. (3.10)

Note that mn satisfies the PL condition in terms of K [Fazel et al., 2018], and mn is
strongly-concave in terms of (Q, R), so the function satisfies the two-sided PL condition.

In our experiment, we use Φ(Q, R) = λ(∥Q − Q̄∥2 + ∥R − R̄∥2) for some Q̄, R̄ and
λ = 1. We generate a dataset with different n and k: (1) d = 3, k = 2; (2) d = 20, k = 10; (3)
d = 30, k = 20. The initial distribution D is N (0, Id) and we sample n = 100 initial points.
The exact gradients can be computed based on the compact forms established in [Fazel
et al., 2018, Cai et al., 2019]. We compare AGDA and VR-AGDA under fine-tuned stepsizes,
and track their errors in terms of ∥Kt − K∗∥2 + ∥Qt − Q∗∥2

F + ∥Rt − R∗∥2
F. The result is

reported in Figure 3.4, which again indicates that VR-AGDA significantly outperforms
AGDA.
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3.6 appendix

3.6.1 Proofs for Chapter 3.2

We first present several key lemmas.

Lemma 3.6.1 (Karimi et al. [2016]). If f (·) is l-smooth and it satisfies PL with constant µ, then
it also satisfies error bound (EB) condition with µ, i.e.

∥∇ f (x)∥ ≥ µ∥xp − x∥, ∀x,

where xp is the projection of x onto the optimal set, also it satisfies quadratic growth (QG) condition
with µ, i.e.

f (x)− f ∗ ≥ µ

2
∥xp − x∥2, ∀x.

Conversely, if f (·) is l-smooth and it satisfies EB with constant µ, then it satisfies PL with constant
µ/l.

From the above lemma, we easily derive that l ≥ µ.

Lemma 3.6.2 (Nouiehed et al. [2019]). In the minimax problem, when − f (x, ·) satisfies PL
condition with constant µ2 for any x and f satisfies Assumption 10, then the function g(x) :=
maxy f (x, y) is L-smooth with L := l + l2/µ2 and ∇g(x) = ∇x f (x, y∗(x)) for any y∗(x) ∈
arg maxy f (x, y).

Lemma 3.6.3. In the minimax problem 4.1, when the objective function f satisfies Assumption
10 (Lipschitz gradient) and the two-sided PL condition with constant µ1 and µ2, then function
g(x) := maxy f (x, y) satisfies the PL condition with µ1.

Proof. From Lemma 4.6.3,

∥∇g(x)∥2 = ∥∇x f (x, y∗(x))∥2.

Since f (·, y) satisfies PL condition with constant µ1, we get

∥∇g(x)∥2 ≥ 2µ1[ f (x, y∗(x))−min
x′

f (x′, y∗(x))]. (3.11)

Also,

f (x′, y∗(x)) ≤ max
y

f (x′, y) =⇒ min
x′

f (x′, y∗(x)) ≤ min
x′

max
y

f (x′, y) = g∗. (3.12)

Combining equation (3.11) and (3.12), we obtain,

∥∇g(x)∥2 ≥ 2µ1(g(x)− g∗).
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The following lemma states that stochastic gradient descent converges linearly to the
neighbourhood of the optimal set under PL condition. The proof is based on [Karimi et al.,
2016].

Lemma 3.6.4. Consider the optimization problem minx f (x) = E[F(x; ξ)], where f is l-smooth
and satisfies PL condition with constant µ. Using the stochastic gradient descent with stepsize
τ ≤ 1/l,

xt+1 = xt − τG(xt, ξt),

where
E[G(x, ξ)−∇ f (x)] = 0, E[∥G(x, ξ)−∇ f (x)∥2] ≤ σ2,

then we have

E[ f (xt+1)− f ∗] ≤ (1− µτ)E[ f (xt)− f ∗] +
lτ2

2
σ2.

Proof. By smoothness of f we have

f (xt+1)− f ∗ ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
l
2
∥xt+1 − x∥2 − f ∗

= f (xt)− τ⟨∇ f (xt), G(xt, ξt)⟩+
lτ2

2
∥G(xt, ξt)∥2 − f ∗.

Taking expectations of both sides, we get

E[ f (xt+1)− f ∗] ≤ E[ f (xt)− f ∗]− τE[∥∇ f (xt)∥2] +
lτ2

2
E[∥G(xt, ξt)∥2]

= E[ f (xt)− f ∗]− τE[∥∇ f (xt)∥2] +
lτ2

2
E[∥∇ f (xt)∥2]

+
lτ2

2
E[∥∇ f (xt)− G(xt, ξt)∥2]

≤ E[ f (xt)− f ∗]− τ

2
E[∥∇ f (xt)∥2] +

lτ2

2
σ2

≤ (1− µτ)E[ f (xt)− f ∗] +
lτ2

2
σ2,

where in the equality we use E[G(xt, ξt)] = ∇ f (xt), in the second inequality we use
τ ≤ 1/l, and we use PL condition in the last inequality.

Proof for Lemma 3.2.1

Proof. • (stationary point) =⇒ (saddle point): From the definition of PL condition, if
(x∗, y∗) is a stationary point,

max
y

f (x∗, y)− f (x∗, y∗) ≤ 1
2µ2

∥∥∇y f (x∗, y∗)
∥∥2

= 0,
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f (x∗, y∗)−min
x

f (x, y∗) ≤ 1
2µ1
∥∇x f (x∗, y∗)∥2 = 0,

so maxy f (x∗, y) = f (x∗, y∗) = minx f (x, y∗), and therefore f (x∗, y∗) is a saddle
point.

• (saddle point) =⇒ (global minimax point): Follow from definitions.

• (global minimax point) =⇒ (stationary point): If (x∗, y∗) is a global minimax point,
then by definition,

y∗ ∈ arg max
y

f (x∗, y∗), x∗ ∈ arg min
x

g(x),

Then by first order necessary condition, we have,

∇y f (x∗, y∗) = 0,∇g(x∗) = 0,

Further with Lemma 4.6.3,

∇g(x∗) = ∇x f (x∗, y∗) = 0

Thus, (x∗, y∗) is a stationary point.

Proposition 1. The function

f (x, y) = x2 + 3 sin2 x sin2 y− 4y2 − 10 sin2 y,

satisfies the two-sided PL condition with µ1 = 1/16, µ2 = 1/14.

Proof. It is not hard to derive that arg minx f (x, y) = 0, ∀y, and arg maxy f (x, y) = 0, ∀x,
i.e. x∗(y) = y∗(x) = 0, ∀x, y. Therefore, (0, 0) is the only saddle point. Then compute the
gradients:

∇x f (x, y) = 2x + 3 sin2(y) sin(2x),

∇y f (x, y) = −8y + 3 sin2(x) sin(2y)− 10 sin(2y).

and

|∇2
x f (x, y)| = |2 + 6 sin2(y) cos(2x)| ≤ 8,

|∇2
y f (x, y)| = | − 8 + 6 sin2(x) cos(2y)− 20 cos(2y)| ≤ 28.

so f (·, y) is L1-smooth with L1 = 8 for any x and f (x, ·) is L2-smooth with L2 = 28 for any
y. Then note that:

|∇x f (x, y)|
|x− x∗(y)| =

|∇x f (x, y)|
|x| =

|2x + 3 sin2(y) sin(2x)|
|x| ≥ 1

2
,

|∇y f (x, y)|
|y− y∗(x)| =

|∇y f (x, y)|
|y| =

| − 8y + 3 sin2(x) sin(2y)− 10 sin(2y)|
|y| ≥ 2.
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So f (·, y) satisfies EB with µEB1 = 1/2, and - f (x, ·) satisfies EB with µEB2 = 2. By Lemma
4.6.2, we have f (·, y) satisfies PL with constant µ1 = 1/16 and - f (x, ·) satisfies PL with
constant µ1 = 1/14.

3.6.2 Proofs for Chapter 3.3

Before we step into proofs for Theorem 3.3.1, 3.3.4 and 3.3.5, we first present a contraction
theorem for each iteration.

Theorem 3.6.5. Assume Assumption 10, 7, 12 hold and f (x, y) satisfies the two-sided PL condition
with µ1 and µ2. Define at = E[g(xt)− g∗] and bt = E[g(xt)− f (xt, yt)]. If we run one iteration
of Algorithm 4 with τt

1 = τ1 ≤ 1/L (L is specified in Lemma 4.6.3) and τt
2 = τ2 ≤ 1/l, then

at+1 + λbt+1 ≤ max{k1, k2}(at + λbt) + λ(1− µ2τ2)
L + l

2
τ2

1 σ2 +
l
2

λτ2
2 σ2 +

L
2

τ2
1 σ2,

where

k1 := 1− µ1
[
τ1 + λ(1− µ2τ2)τ1 − λ(1 + β)(1− µ2τ2)(2τ1 + lτ2

1 )
]
, (3.13)

k2 := 1− µ2τ2 +
l2τ1

µ2λ
+ (1− µ2τ2)

l2

µ2
τ1 + (1 +

1
β
)(1− µ2τ2)

l2

µ2
(2τ1 + lτ2

1 ), (3.14)

and λ, β > 0 such that k1 ≤ 1.

Proof. Because g is L-smooth by Lemma 4.6.3, we have

g(xt+1)− g∗ ≤ g(xt)− g∗ + ⟨∇g(xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= g(xt)− g∗ − τ1⟨∇g(xt), Gx(xt, yt, ξt1)⟩+
L
2

τ2
1 ∥Gx(xt, yt, ξt1)∥2.

Taking expectations of both sides and using Assumption 12, we get

E[g(xt+1)− g∗]

≤ E[g(xt)− g∗]− τ1E[⟨∇g(xt),∇x f (xt, yt)⟩] +
L
2

τ2
1 E[∥Gx(xt, yt, ξt1)∥2]

≤ E[g(xt)− g∗]− τ1E[⟨∇g(xt),∇x f (xt, yt)⟩] +
L
2

τ2
1 E[∥∇x f (xt, yt)∥2] +

L
2

τ2
1 σ2

≤ E[g(xt)− g∗]− τ1E[⟨∇g(xt),∇x f (xt, yt)⟩] +
τ1

2
E[∥∇x f (xt, yt)∥2] +

L
2

τ2
1 σ2

≤ E[g(xt)− g∗]− τ1

2
E∥∇g(xt)∥2 +

τ1

2
E∥∇x f (xt, yt)−∇g(xt)∥2 +

L
2

τ2
1 σ2, (3.15)

where in the second inequality we use Assumption 12, and in the third inequality we use
τ1 ≤ 1/L. Because − f (xt+1, y) is l-smooth and µ1-PL, by Lemma 3.6.4, when τ1 ≤ 1/l we
have

E[g(xt+1)− f (xt+1, yt+1)]
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≤ (1− µ2τ2)E[g(xt+1)− f (xt+1, yt)] +
l
2

τ2
2 σ2

≤ (1− µ2τ2)E[g(xt)− f (xt, yt) + f (xt, yt)− f (xt+1, yt) + g(xt+1)− g(xt)] +
l
2

τ2
2 σ2.

(3.16)

Because of the Lipschitz continuity of the gradient, we can bound f (xt, yt)− f (xt+1, yt) as

f (xt, yt)− f (xt+1, yt) ≤ −⟨∇x f (xt, yt), xt+1 − xt⟩+
l
2
∥xt+1 − xt∥2

≤ τ1⟨∇x f (xt, yt), Gx(xt, yt, ξt1)⟩+
l
2

τ2
1 ∥Gx(xt, yt, ξt1)∥2.

Taking expectations of both sides and using Assumption 12,

E[ f (xt, yt)− f (xt+1, yt)] ≤ (τ1 +
l
2

τ2
1 )E∥∇x f (xt, yt)∥2 +

l
2

τ2
1 σ2. (3.17)

Also from (3.15) ,

E[g(xt+1)− g(xt)] ≤ −
τ1

2
E∥∇g(xt)∥2 +

τ1

2
E∥∇x f (xt, yt)−∇g(xt)∥2 +

L
2

τ2
1 σ2. (3.18)

Combining (3.16), (3.17) and (3.18),

E[g(xt+1)− f (xt+1, yt+1)]

≤ (1− µ2τ2)E[g(xt)− f (xt, yt)] + (1− µ2τ2)(τ1 +
l
2

τ2
1 )E∥∇x f (xt, yt)∥2−

(1− µ2τ2)
τ1

2
E∥∇g(xt)∥2 + (1− µ2τ2)

τ1

2
E∥∇x f (xt, yt)−∇g(xt)∥2+

(1− µ2τ2)
L + l

2
τ2

1 σ2 +
l
2

τ2
2 σ2. (3.19)

Combining (3.15) and (3.19), we have ∀λ > 0,

at+1 + λbt+1

≤ at −
[τ1

2
+ λ(1− µ2τ1)

τ1

2

]
E∥∇g(xt)∥2 + λ(1− µ2τ2)bt+

[τ1

2
+ λ(1− µ2τ2)

τ1

2

]
E∥∇x f (xt, yt)−∇g(xt)∥2 + λ(1− µ2τ2)

(
τ1 +

l
2

τ2
1

)
E∥∇x f (xt, yt)∥2+

λ(1− µ2τ2)
L + l

2
τ2

1 σ2 +
l
2

λτ2
2 σ2 +

L
2

τ2
1 σ2

≤ at −
[

τ1

2
+ λ(1− µ2τ1)

τ1

2
− λ(1 + β)(1− µ2τ2)

(
τ1 +

l
2

τ2
1

)]
E∥∇g(xt)∥2 + λ(1− µ2τ2)bt+

[
τ1

2
+ λ(1− µ2τ2)

τ1

2
+ λ

(
1 +

1
β

)
(1− µ2τ2)

(
τ1 +

l
2

τ2
1

)]
E∥∇x f (xt, yt)−∇g(xt)∥2+

λ(1− µ2τ2)
L + l

2
τ2

1 σ2 +
l
2

λτ2
2 σ2 +

L
2

τ2
1 σ2, (3.20)

where in the second inequality we use Young’s Inequality and β > 0. Now it suffices to
bound ∇∥g(xt)∥2 and ∥∇x f (xt, yt)−∇g(xt)∥2 by at and bt. With Lemma 4.6.3, we have:

∥∇x f (xt, yt)−∇g(xt)∥2 = ∥∇x f (xt, yt)−∇x f (xt, y∗(xt))∥2 ≤ l2∥y∗(xt)− yt∥2, (3.21)
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for any y∗(xt) ∈ arg maxy f (xt, y). Now we fix y∗(xt) to be the projection of yt on the the
set arg maxy f (xt, y). Because − f (xt, ·) satisfies PL condition with µ2, and Lemma 4.6.2
therefore indicates it also satisfies quadratic growth condition with µ2, i.e.

∥y∗(xt)− yt∥2 ≤ 2
µ2

[g(xt)− f (xt, yt)], (3.22)

along with (3.21), we get

∥∇x f (xt, yt)−∇g(xt)∥2 ≤ 2l2

µ2
[g(xt)− f (xt, yt)]. (3.23)

Because g satisfies PL condition with µ1 by Lemma 3.6.3,

∥∇g(xt)∥2 ≥ 2µ1[g(xt)− g∗]. (3.24)

Plugging (3.23) and (3.24) into (3.20), we can get

at+1 + λbt+1 ≤
{

1− µ1
[
τ1 + λ(1− µ2τ2)τ1 − λ(1 + β)(1− µ2τ2)(2τ1 + lτ2

1 )
]}

at+

λ
{

1− µ2τ2 +
l2τ1

µ2λ
+ (1− µ2τ2)

l2

µ2
τ1 + (1 +

1
β
)(1− µ2τ2)

l2

µ2
(2τ1 + lτ2

1 )
}

bt+

λ(1− µ2τ2)
L + l

2
τ2

1 σ2 +
l
2

λτ2
2 σ2 +

L
2

τ2
1 σ2. (3.25)

proof of theorem 3 .3 .1

Proof. In the setting of Theorem 1, τt
1 = τ1 and τt

2 = τ2, ∀t. By Thoerem 3.6.5, we only need
to choose τ1, τ2, λ and β to let k1, k2 < 1. Here we first choose β = 1 and λ = 1/10. Then

k1 = 1− µ1
[
τ1 + λ(1− µ2τ2)τ1 − λ(1 + β)(1− µ2τ2)(2τ1 + lτ2

1 )
]

≤ 1− µ1
{

τ1 − λ(1− µ2τ2)τ1[(1 + β)(2 + lτ1)− 1]
}
≤ 1− 1

2
τ1µ1, (3.26)

where in the last inequality we just plug in β and λ and use lτ1 ≤ 1. Also,

k2 = 1− µ2τ2 +
l2τ1

µ2λ
+ (1− µ2τ2)

l2

µ2
τ1 + (1 +

1
β
)(1− µ2τ2)

l2

µ2
(2τ1 + lτ2

1 )

≤ 1− l2τ1

µ2

{
µ2

2τ2

τ1l2 −
1
λ
− (1− µ2τ2)

[
1 +

(
1 +

1
β

)
(2 + lτ1)

]}

≤ 1− l2τ1

µ2
, (3.27)

where in the last inequality we plug in β and λ and we use µ2
2τ2

τ1l2 ≤ 18 by our choice of

τ1. Note that 1
2 τ1µ1 < l2τ1

µ2
, because

( 1
2 τ1µ1

)
/
(

l2τ1
µ2

)
= µ1µ2

2l2 < 1. Define Pt := at +
1

10 bt. By
Theorem 3.6.5,

Pt+1 ≤
(

1− 1
2

τ1µ1

)
Pt +

(1− µ2τ2)(L + l)τ2
1

20
σ2 +

lτ2
2

20
σ2 +

Lτ2
1

2
σ2.
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With some simple computation,

Pt ≤ (1− 1
2

µ1τ1)
tP0 +

(1− µ2τ2)(L + l)τ2
1 + lτ2

2 + 10Lτ2
1

10µ1τ1
σ2.

We verify that τ1 ≤ 1/L by noting: τ1 ≤ µ2
2τ2

18l2 ≤ µ2
2

18l3 ≤ µ2
2l2 and L = l + l2

µ2
≤ 2l2

µ2
.

proof of theorem 3 .3 .4

Proof. The first part of Theorem 3.3.4 is a direct corollary of Theorem 3.3.1 by setting σ = 0.
We show the second part by noting that

∥xt+1 − xt∥2 = τ2
1 ∥∇x f (xt, yt)∥2 , and ∥yt+1 − yt∥2 = τ2

2
∥∥∇y f (xt+1, yt)

∥∥2 . (3.28)

Also,

∥∇y f (xt+1, yt)∥2 ≤ ∥∇y f (xt, yt)∥2 + ∥∇y f (xt+1, yt)−∇y f (xt, yt)∥2

≤ ∥∇y f (xt, yt)−∇y f (xt, y∗(xt))∥2 + l2∥xt+1 − xt∥2

≤ l2∥yt − y∗(xt)∥2 + l2∥xt+1 − xt∥2

≤ 2l2

µ2
bt + l2∥xt+1 − xt∥2 =

2l2

µ2
bt + l2τ2

1 ∥∇x f (xt, yt)∥2, (3.29)

where in the second inequality y∗(xt) is the projection of yt on the set arg maxy f (xt, y)
and ∇y f (xt, y∗(xt)) = 0, in the third inequality we use the Lipschitz continuity of gradient,
and in the last inequality we use quadratic growth condition. Also,

∥∇x f (xt, yt)∥2 ≤ ∥∇g(xt)∥2 + ∥∇x f (xt, yt)−∇g(xt)∥2

= ∥∇g(xt)−∇g(x∗)∥2 + ∥∇x f (xt, yt)−∇g(xt)∥2

≤ L2∥xt − x∗∥2 + l2∥y∗(xt)− yt∥2

≤ 2L2

µ1
at +

2l2

µ2
bt, (3.30)

where in the first equality x∗ is the projection of xt on the set arg minx g(x) and∇g(x∗) = 0,
in the second inequality y∗(xt) is the projection of yt on the set arg maxy f (xt, y) and
∇g(xt) = ∇x f (xt, yt), and in the last inequality we use quadratic growth condition.
Therefore with (3.29) and (3.30),

∥xt − xt+1∥2 + ∥yt − yt+1∥2 ≤ τ2
1 ∥∇x f (xt, yt)∥2 + τ2

2
∥∥∇y f (xt+1, yt)

∥∥2

≤ (1 + τ2
2 l2)τ2

1 ∥∇x f (xt, yt)∥2 +
2l2

µ2
τ2

2 bt

≤ 2(1 + τ2
2 l2)τ2

1 L2

µ1
at +

2(1 + τ2
2 l2)τ2

1 l2 + 2l2τ2
2

µ2
bt

≤
[

2(1 + τ2
2 l2)τ2

1 L2

µ1
+

20(1 + τ2
2 l2)τ2

1 l2 + 20l2τ2
2

µ2

]
P0ct,



86 global convergence for pl-pl minimax problems

where c = 1− µ1µ2
2

36l3 . Letting α1 =
[

2(1+τ2
2 l2)τ2

1 L2

µ1
+

20(1+τ2
2 l2)τ2

1 l2+20l2τ2
2

µ2

]
P0, we have

∥xt+1 − xt∥+ ∥yt+1 − yt∥ ≤
√

2α1ct/2.

For n ≥ t,

∥xn − xt∥+ ∥yn − yt∥ ≤
n−1

∑
i=t
∥xi+1 − xi∥+ ∥yi+1 − yi∥ ≤

√
2α1

∞

∑
i=t

ci/2 ≤
√

2α1ct/2

1−√c
,

so {(xt, yt)}t converges and by first part of this theorem the limit (x∗, y∗) must be a saddle
point. Thus we have

∥xt − x∗∥2 + ∥yt − y∗∥2 ≤ 2α1

(1−√c)2 ct = αctP0,

with α = 2
[

2(1+τ2
2 l2)τ2

1 L2

µ1
+

20(1+τ2
2 l2)τ2

1 l2+20l2τ2
2

µ2

]
/(1−√c)2.

proof of theorem 3 .3 .5

Proof. First note that since τt
1 ≤ µ2

2/18l2, τt
2 = 18l2β

µ2
2(γ+t) =

18l2τt
1

µ2
2
≤ 1

l . Similar to the proof
of Theorem 3.3.1, by choosing β = 1 and λ = 1/10 in the Theorem 3.6.5, we have
min{k1, k2} = 1

2 µ1τt
1. We prove the theorem by induction. When t = 1, it is naturally

satisfied by the definition of ν. We assume that Pt ≤ ν
γ+t . Then by Theorem 3.6.5,

Pt+1 ≤
(

1− 1
2

µ1τ1

)
Pt + λ(1− µ2τt

2)
L + l

2
(τt

1)
2σ2 +

l
2

λ(τt
2)

2σ2 +
L
2
(τt

1)
2σ2

≤ γ + t− 1
2 µ1β

γ + t
ν

γ + t
+

[
(L + l)β2

20(γ + t)2 +
182l5β2

20µ4
2(γ + t)2

+
Lβ2

2(γ + t)2

]
σ2

≤ γ + t− 1
(γ + t)2 ν−

1
2 µ1β− 1
(γ + t)2 ν +

[
(L + l)β2

20(γ + t)2 +
182l5β2

20µ4
2(γ + t)2

+
Lβ2

2(γ + t)2

]
σ2 (3.31)

≤ ν

γ + t + 1
,

where in the second inequality we plug in τt
1 and τt

2, and in the last inequality we use
(γ + t + 1)(γ + t− 1) ≤ (γ + t)2 and the fact that sum of last two terms in (3.31) is no
greater than 0 by our choice of ν.

3.6.3 Proofs for Chapter 3.4

proof of theorem 3 .4 .1

Proof. Because the proof is long, we break the proof into three parts for the convenience of
understanding the intuition behind it.
Part 1.
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Consider in one outer loop k. Define at,j = E[g(xt,j)− g∗], bt,j = E[g(xt,j)− f (xt,j, yt,j)],
ãt = E[g(x̃t) − g∗] and b̃t = E[g(x̃t) − f (x̃t, ỹt)]. We omit the subscript t for now and
denote the stochastic gradients as

Gx(xj, yj) = ∇x fij(xj, yj)−∇x fij(x̃, ỹ) +∇x f (x̃, ỹ),

Gy(xj, yj+1) = ∇y fij(xj+1, yj)−∇y fij(x̃, ỹ) +∇y f (x̃, ỹ).

Note that these are unbiased stochastic gradients. Similar to the proof of Theorem 3.6.5
(replace σ2 in (3.15) ), with τ1 ≤ 1/L, we have

aj+1 ≤ aj−
τ1

2
E∥∇g(xj)∥2 +

τ1

2
E∥∇x f (xj, yj)−∇g(xj)∥2 +

L
2

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2.

(3.32)
By Lemma 3.6.4, with τ2 ≤ 1/l,

bj+1 ≤ E[g(xj+1)− f (xj+1, yj)]−
τ2

2
E∥∇y f (xj+1, yj)∥2 +

l
2

τ2
2 E∥Gy(xj+1, yj)−∇y f (xj+1, yj)∥2.

(3.33)
Furthermore, we bound the distance to the x̃ = x0 as

E∥xj+1 − x̃∥2 = E∥xj − τ1Gx(xj, yj)− x̃∥2

= E∥xj − x̃∥2 + 2E⟨xj − x̃, τ1∇x f (xj, yj)⟩+ τ2
1 E∥∇x f (xj, yj)∥2+

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2

≤ (1 + τ1β1)E∥xj − x̃∥2 +

(
τ2

1 +
τ1

β1

)
E∥∇x f (xj, yj)∥2+

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2, (3.34)

where in the last inequality we use Young’s inequality to the inner product, and β1 > 0 is
a constant which we will determine later. Similarly,

E∥yj+1 − ỹ∥2 ≤ (1 + τ2β2)E∥yj − ỹ∥2 +

(
τ2

2 +
τ2

β2

)
E∥∇y f (xj+1, yj)∥2+

τ2
2 E∥Gy(xj+1, yj)−∇y f (xj+1, yj)∥2, (3.35)

where in the last inequality we use Young’s inequality to the inner product and β2 > 0 is a
constant. We construct a potential function

Rj = aj + λbj + cj∥xj − x̃∥2 + dj∥yj − ỹ∥2, (3.36)

and we will determine λ, cj and dj later. Combining (3.32), (3.33) and (3.35),

Rj+1 ≤ aj −
τ1

2
E∥∇g(xj)∥2 +

τ1

2
E∥∇x f (xj, yj)−∇g(xj)∥2 +

L
2

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2+

λE[g(xj+1)− f (xj+1, yj)]−
λτ2

2
E∥∇y f (xj+1, yj)∥2+

cj+1E∥xj+1 − x̃∥2 +

(
dj+1 +

λl
2

)
τ2

2 E∥Gy(xj+1, yj)−∇y f (xj+1, yj)∥2+
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dj+1(1 + τ2β2)E∥yj − ỹ∥2 + dj+1

(
τ2

2 +
τ2

β2

)
E∥∇y f (xj+1, yj)∥2 (3.37)

Then we bound the variance of the stochastic gradients,

E∥Gy(xj+1, yj)−∇y f (xj+1, yj)∥2

= E∥∇y fij(xj+1, yj)−∇y fij(x̃, ỹ) +∇y f (x̃, ỹ)−∇y f (xj+1, yj)∥2

≤ E∥∇y fij(xj+1, yj)−∇y fij(x̃, ỹ)∥2 ≤ l2E∥xj+1 − x̃∥2 + l2E∥yj − ỹ∥2, (3.38)

where in the first inequality we apply E[∇y fij(xj+1, yj)−∇y fij(x̃, ỹ)] = ∇y f (xj+1, yj)−
∇y f (x̃, ỹ). Similarly,

E∥Gx(xj, yj)−∇x f (xj, yj)∥2 ≤ l2E∥xj − x̃∥2 + l2E∥yj − ỹ∥2. (3.39)

Plugging (3.38) into (3.37),

Rj+1 ≤ aj −
τ1

2
E∥∇g(xj)∥2 +

τ1

2
E∥∇x f (xj, yj)−∇g(xj)∥2 +

L
2

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2+

λE[g(xj+1)− f (xj+1, yj)]−
λτ2

2
E∥∇y f (xj+1, yj)∥2+

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
E∥xj+1 − x̃∥2+

[
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
E∥yj − ỹ∥2 + dj+1

(
τ2

2 +
τ2

β2

)
E∥∇y f (xj+1, yj)∥2.

(3.40)

Then we plug in (3.34) and rearrange,

Rj+1 ≤ aj −
τ1

2
E∥∇g(xj)∥2+

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
E∥∇x f (xj, yj)∥2 +

τ1

2
E∥∇x f (xj, yj)−∇g(xj)∥2+

λE[g(xj+1)− f (xj+1, yj)]−
[

λτ2

2
− dj+1

(
τ2

2 +
τ2

β2

)]
E∥∇y f (xj+1, yj)∥2+

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
(1 + τ1β1)E∥xj − x̃∥2 +

[
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
E∥yj − ỹ∥2+

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
τ2

1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2. (3.41)

Consider the third line. Using PL condition ∥∇y f (xj+1, yj)∥2 ≥ 2µ2[g(xj+1)− f (xj+1, yj)]

and assuming λ ≥ dj+1(τ2 + 1/β2), which we will justify later by our choices of dj+1 and
β2, we have

the third line

≤ λ

[
1− τ2µ2 +

λ

2
dj+1

(
τ2

2 +
τ2

β2

)
µ2

]
E[g(xj+1)− f (xj+1, yj)]

≤ λ

[
1− τ2µ2 +

λ

2
dj+1

(
τ2

2 +
τ2

β2

)
µ2

] {
bj + E

(
f (xj, yj)− f (xj+1, yj)

)
+ (aj+1 − aj)

}
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≤ λ

[
1− τ2µ2 +

λ

2
dj+1

(
τ2

2 +
τ2

β2

)
µ2

] {
bj +

(
τ1 +

l
2

τ2
1

)
E∥∇x f (xj, yj)∥2+

l
2

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj∥2 − τ1

2
E∥∇g(xj)∥2+

τ1

2
E∥∇x f (xj, yj)−∇g(xj)∥2 +

L
2

τ2
1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2

}
,

where in the last inequality we use (3.32) and (3.17). Now we plug this into Rj+1,

Rj+1 ≤ aj −
τ1

2
(1 + λζ)E∥∇g(xj)∥2+

{ [
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
+ λζ

(
τ1 +

l
2

τ2
1

)}
E∥∇x f (xj, yj)∥2+

τ1

2
(1 + λζ)E∥∇x f (xj, yj)−∇g(xj)∥2 + λζbj+

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
(1 + τ1β1)E∥xj − x̃∥2 +

[
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
E∥yj − ỹ∥2+

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2, (3.42)

where we define ζ = 1− τ2µ2 +
λ
2 dj+1

(
τ2

2 + τ2
β2

)
µ2 and ψ = 1− ζ. With ∥∇x f (xj, yj)∥2 ≤

2∥∇g(xj)∥2 + 2∥∇g(xj)−∇x f (xj, yj)∥2, we have

Rj+1 ≤

aj −
{

τ1

2
(1 + λζ)− 2

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 2λζ

(
τ1 +

l
2

τ2
1

)}
E∥∇g(xj)∥2+

λζbj +

{
τ1

2
(1 + λζ) + 2

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 2λζ

(
τ1 +

l
2

τ2
1

)}
E∥∇x f (xj, yj)−∇g(xj)∥2+

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
(1 + τ1β1)E∥xj − x̃∥2 +

[
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
E∥yj − ỹ∥2+

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 E∥Gx(xj, yj)−∇x f (xj, yj)∥2. (3.43)

Then plugging in (3.23), (3.24) and (3.39), we get

Rj+1 ≤

aj −
{

τ1(1 + λζ)− 4
[

cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 4λζ

(
τ1 +

l
2

τ2
1

)}
µ1aj+

λbj − λ
1
λ

{
λψ− l2τ1

µ2
(1 + λζ)− 4l2

µ2

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 4l2

µ2
λζ

(
τ1 +

l
2

τ2
1

)}
bj+

{ [
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
(1 + τ1β1) +

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 l2
}

E∥xj − x̃∥2+

{ [
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
+

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 l2
}

E∥yj − ỹ∥2.

(3.44)
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Now we are ready to define sequences {cj}j and {dj}j. Let cN = dN = 0, and

cj =

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

]
(1 + τ1β1) +

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 l2,

dj =

[
dj+1(1 + τ2β2) +

(
dj+1 +

λl
2

)
l2τ2

2

]
+

[
L
2
+ cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2 + λζ
L + l

2

]
τ2

1 l2.

We further define

m1
j ≜ τ1(1 + λζ)− 4

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 4λζ

(
τ1 +

l
2

τ2
1

)
, (3.45)

m2
j ≜

1
λ

{
λψ− l2τ1

µ2
(1 + λζ)− 4l2

µ2

[
cj+1 +

(
dj+1 +

λl
2

)
l2τ2

2

] (
τ2

1 +
τ1

β1

)
− 4l2

µ2
λζ

(
τ1 +

l
2

τ2
1

)}
.

(3.46)

Then we can write (3.44) as

Rj+1 ≤ Rj −m1
j aj − λm2

j bj (3.47)

Now we bring back the subscript t. Summing the equation from 0 to N − 1,
N−1

∑
j=0

at,j + λbt,j ≤
R0 − RN

Nγ
=

at,0 + λbt,0 − at,N − λbt,N

Nγ
=

ãt + λb̃t − ãt+1 − λb̃t+1

Nγ
, (3.48)

where γ := minj{m1
j , m2

j }, and the first equality is due to cN = dN = 0 and (xt,0, yt,0) =

(x̃t, ỹt). Summing t from 0 to T − 1, we get

1
NT

T−1

∑
t=0

N−1

∑
j=0

at,j + λbt,j ≤
ã0 + λb̃0

NTγ
=

ak + λbk

NTγ
. (3.49)

The left hand side is exactly ak+1 + λbk+1, because (xk, yk) is sampled uniformly from
{{(xt,j, yt,j)}N−1

j=0 }T−1
t=0 .

Part 2.
It suffices to choose proper τ1, τ2, N and T such that NTγ > 1. Driven by the proof, we

choose
τ1 =

k1

κ2l
, β1 = k2κ2l, τ2 =

k3

l
, β2 = lk4.

We will choose k1, k2, k3 and k4 later and we let k1, k2, k3, k4 ≤ 1. Plug back to cj and dj, we
have

cj =

(
1 + k1k2 +

k2
1

κ4

)
cj+1 +

[
k2

3(1 + k1k2) +
k2

1k2
3

κ4 + (L + l)
k2

1
κ4

(
k2

3
l2 +

k3

l2k4

)
µ2

]
dj+1+

λ

2
lk2

3(1 + k1k2) +
L

2κ4 k2
1 +

λ

2κ4 lk2
1k2

3 +
λ

2κ4 (L + l)k2
1(1− k3k4)

≤
(

1 + k1k2 +
k2

1
κ4

)
cj+1 +

(
3k2

3 + 3
1
κ3 k2

1

)
dj+1 + 2λlk2

3 + (1 + 2λ)
l

κ3 k2
1, (3.50)
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where in the last inequality we assume k2
3 +

k3
k4
≤ 1.

dj =
k2

1
κ4 cj+1 +

[
1 + k3k4 + k2

3 + (L + l)
k2

1
κ4

(
k2

3
l2 +

k3

l2k4

)
µ2 +

1
κ4 k2

1k2
3

]
dj+1+

λ

2
lk2

3 +
L

2κ4 k2
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We define ej = max{cj, dj}. Then combining (3.50) and (3.51), we easily get
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and note that ej > ej+1 so ej ≤ e0, ∀j. Then we want to lower bound γ. Rearrange (3.45),
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where in the inequality, we use λ = 1/20 and assume that 1
κ2 k2
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) ≤ 10. Rearranging
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where in the inequality we use λ = 1/20 and assume k1 ≤ k3/28 and 1
κ2 k2

3
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)
≤ 1/4.

Note that 1
2 τ1µ1 = µ1

2κ2l k1 and l2τ1
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l
2κ2 min{µ1,µ2}k1. Then we have
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Letting k1/k2 = k3/k4 and k1 = 1
28 k3, we have
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where we use cj, dj ≤ e0, ∀j. By plugging in k1 = k3/28 and λ = 1/20 into (3.52), we have
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Plugging this into (3.57), we have
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We choose k4 = k1/2
3 , then
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Part 3
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Therefore, for choosing α small enough and β small enough, we have NTγ ≥ 2. Now it
remains to verify several assumptions we made in the proof. The first is k3
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So this assumption can also be easily satisfied when β is small. The last assumption we
need to verify is λ ≥ dj+1
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So this assumption holds when α and β are small.

proof of theorem 3 .4 .2

Proof. We start from Part 3 of the proof of Theorem 3.4.1. We now choose k3 = βn−2/3,
N = α(2k3/2

3 + 4k2
3)
−1, and T = κ3n−1/3 then

NTγ ≥ 1
2

[
1
56
− 2× 360(eα − 1)

]
αβ−1/2 (3.62)

Therefore, for choosing α small enough and β small enough, we have NTγ ≥ 2. Note
that when κ3n−1/3 ≤ 1, we choose T = 1 and the complexity is therefore Õ(n). Other
assumptions can be easily verified by the same way as in the proof of Theorem 3.4.1.





4
S I N G L E - L O O P A L G O R I T H M S F O R N O N C O N V E X - P L M I N I M A X
P R O B L E M S

This chapter establishes new convergence results for two alternative single-loop al-
gorithms – alternating GDA and smoothed GDA – under the mild assumption that the
objective satisfies the Polyak-Łojasiewicz (PL) condition about one variable. We prove that,
to find an ϵ-stationary point, (i) alternating GDA and its stochastic variant (without mini
batch) respectively require O(κ2ϵ−2) and O(κ4ϵ−4) iterations, while (ii) smoothed GDA
and its stochastic variant (without mini batch) respectively require O(κϵ−2) and O(κ2ϵ−4)

iterations. The latter greatly improves over the vanilla GDA and gives the hitherto best
known complexity results among single-loop algorithms under similar settings.

4.1 overview

In this chapter, we consider finding stationary points for the smooth minimax optimiza-
tion problems:

min
x∈Rd1

max
y∈Rd2

f (x, y) ≜ E[F(x, y; ξ)], (4.1)

where ξ is a random vector and f (x, y) is nonconvex in x and possibly nonconcave in y.
Due to its simplicity and single-loop nature, gradient descent ascent (GDA) and its

stochastic variants, have become the de facto algorithms for training GANs and many other
applications in practice. Their theoretical properties have also been extensively studied in
recent literature [Lei et al., 2020, Nagarajan and Kolter, 2017, Heusel et al., 2017, Mescheder
et al., 2017, 2018].

Lin et al. [2020a] derived a complexity analysis for simultaneous GDA (with simul-
taneous updates for x and y) and for stochastic GDA (hereafter Stoc-GDA) for finding
stationary points when the objective is concave in y. In particular, they show that GDA
requires O(ϵ−6) iterations and Stoc-GDA without mini-batch requires O(ϵ−8) samples
to achieve an ϵ-approximate stationary point. When the objective is strongly concave in
y, the iteration complexity of GDA can be significantly improved to O(κ2ϵ−2) while the
sample complexity for Stoc-GDA reduces to O(κ3ϵ−4) with a large batch of size O(ϵ−2) or
O(κ3ϵ−5) without the batch, i.e., using a single sample to construct the gradient estimator.
Here κ is the underlying condition number defined as l/µ with l being Lipschitz smooth-
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Algorithms
Complexity
∥∇Φ(x)∥ ≤ ϵ

Complexity
∥∇ f (x, y)∥ ≤ ϵ

Loops Additional assumptions

GDA [Lin et al., 2020a] O(κ2∆lϵ−2) O(κ2∆lϵ−2)⋆ 1 strong concavity in y

Catalyst-EG [Zhang et al., 2021b] O(
√

κ∆lϵ−2) O(
√

κ∆lϵ−2)⋆ 3 strong concavity in y

Multi-GDA [Nouiehed et al., 2019] Õ(κ3∆lϵ−2)⋆ Õ(κ2∆lϵ−2) 2

Catalyst-AGDA [Appendix 4.6.4] O(κ∆lϵ−2) O(κ∆lϵ−2) 2

AGDA O(κ2∆lϵ−2)⋄ O(κ2∆lϵ−2) 1

Smoothed-AGDA O(κ∆lϵ−2) O(κ∆lϵ−2) 1

Table 4.1: Oracle complexities for deterministic NC-PL problems. Here Õ(·) hides poly-
logarithmic factors. l: Lipschitz smoothness parameter; µ: PL parameter, κ: condi-
tion number l

µ ; ∆: initial gap of the primal function. We measure the stationarity by
∥∇Φ(x)∥ with Φ(x) = maxy f (x, y) and ∥∇ f (x, y)∥. Here ⋆ means the complexity is
derived by translating from one stationary measure to the other (see Proposition 2). ⋄
it recovers the same complexity for AGDA as Appendix D in [Yang et al., 2020a]

ness parameter and µ strong concavity parameter. However, the following question is still
unsettled:

Can stochastic GDA-type algorithms achieve the better sample complexity of O(ϵ−4)

without a large batch size?

Besides the dependence on ϵ, the condition number also plays a crucial role in the
convergence rate. There is a long line of research aiming to reduce such a dependency, see
e.g. [Lin et al., 2020b, Zhang et al., 2021b] for some recent results for minimax optimization.
These algorithms are typically more complicated as they rely on multiple loops, and
are equipped with several acceleration mechanisms. Single-loop algorithms are far more
favorable in practice because of their simplicity in implementation. Recently, several single-
loop variants of GDA have been proposed, including Alternating Gradient Projection
(AGP) [Xu et al., 2020c] and Smoothed-AGDA [Zhang et al., 2020a]. Unfortunately, most
of them fail to provide faster convergence in terms of the condition number and they only
consider the deterministic setting. The following question is therefore still unanswered:

Is it possible to improve the dependence on the condition number without resorting to
multi-loop procedures?

In short, there is an urgent need to obtain faster convergence in terms of both the target
accuracy ϵ and the condition number κ with single-loop algorithms. This is even more challenging
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Algorithms
Complexity
∥∇Φ(x)∥ ≤ ϵ

Complexity
∥∇ f (x, y)∥ ≤ ϵ

Batch size Additional assumptions

Stoc-GDA[Lin et al., 2020a] O(κ3∆lϵ−4) O(κ3∆lϵ−4)⋆ O(ϵ−2) strong concavity in y

Stoc-GDA[Lin et al., 2020a] O(κ3∆lϵ−5) O(κ3∆lϵ−5)⋆ O(1) strong concavity in y

PDSM[Guo et al., 2021b] O(κ3∆lϵ−4) O(κ3∆lϵ−4)⋆ O(1) strong concavity in y

ALSET[Chen et al., 2021b] O(κ3∆lϵ−4) O(κ3∆lϵ−4)⋆ O(1) strong concavity in y, Lipschitz▽

Stoc-AGDA O(κ4∆lϵ−4) O(κ4∆lϵ−4) O(1)

Stoc-Smoothed-AGDA O(κ2∆lϵ−4) O(κ2∆lϵ−4) O(1)

Table 4.2: Sample complexities for stochastic NC-PL problems when the target accuracy ϵ is
small, i.e. ϵ ≤ Õ(

√
∆l/κ3). We measure the stationarity by ∥∇Φ(x)∥ with Φ(x) =

maxy f (x, y) and ∥∇ f (x, y)∥. Here ⋆ means the complexity is derived by translating
from one stationary measure to the other (see Proposition 2). ▽ It assumes the function
f is Lipschitz continuous about x and its Hessian is Lipschitz continuous.

when the objective is not strongly-concave about y. In this chapter, we investigate two
viable single-loop algorithms to address this question: (i) alternating GDA (hereafter AGDA
and Stoc-AGDA for their stochastic variance) and (ii) Smoothed-AGDA. Importantly, AGDA,
with sequential updates between x and y, is one of the most popular algorithms used in
practice and has an edge over GDA in several settings [Zhang et al., 2021a]. Smoothed-
AGDA, first introduced by [Zhang et al., 2020a], utilizes a regularization term to stabilize
the performance of GDA when the objective is convex in y. We show that these two
algorithms can satisfy our need to achieve faster convergence under milder assumptions.

We are interested in analyzing their theoretical behaviors under the general NC-PL
setting, namely, the objective is nonconvex in x and satisfies the Polyak-Łojasiewicz (PL)
condition in y [Polyak, 1963]. This is a milder assumption than strong concavity and does
not even require the objective to be concave in y. Such an assumption has been shown to
hold in linear quadratic regulators [Fazel et al., 2018], as well as overparametrized neural
networks [Liu et al., 2020a]. This setting has driven a lot of the recent progress in the quest
for understanding deep neural networks [Lee et al., 2017, Jacot et al., 2018], and it therefore
appears as an ideal candidate to deepen our understanding of the convergence properties
of minimax optimization.
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4.1.1 Contributions

In this chapter, we study the convergence of AGDA and Smoothed-AGDA in the NC-PL
setting. Our goal is to find an approximate stationary point for the objective function
f (·, ·) and its primal function Φ(·) ≜ maxy f (·, y). For each algorithm, we present a unified
analysis for the deterministic setting, when we have access to exact gradients of (4.1), and
the stochastic setting, when we have access to noisy gradients. We denote the smoothness
parameter by l, PL parameter by µ, condition number by κ ≜ l

µ and initial primal function
gap Φ(x)− infx Φ(x) by ∆.

deterministic setting . We first show that the output from AGDA is an ϵ-stationary
point for both the objective function f and primal function Φ after O(κ2∆lϵ−2) iterations,
which recovers the result of primal function stationary convergence in [Yang et al., 2020a]
based on a different analysis. The complexity is optimal in ϵ, since Ω(ϵ−2) is the lower
bound for smooth optimization problems [Carmon et al., 2020]. We further show that
Smoothed-AGDA has O(κ∆lϵ−2) complexity in finding an ϵ-stationary point of f . We
can translate this point to an ϵ-stationary point of Φ after an additional negligible Õ(κ)

oracle complexity. This result improves the complexities of existing single-loop algorithms
that require the more restrictive assumption of strong-concavity in y (we refer to this
class of function as NC-SC). A comparison of our results to existing complexity bounds is
summarized in Table 6.1.

stochastic setting . We show that Stoc-AGDA achieves a sample complexity of
O(κ4∆lϵ−4) for both notions of stationary measures, without having to rely on the O(ϵ−2)

batch size and Hessian Lipschitz assumption used in prior work. This is the first conver-
gence result for stochastic NC-PL minimax optimization and is also optimal in terms of the
dependency to ϵ. We further show that the stochastic Smoothed-AGDA (Stoc-Smoothed-
AGDA) algorithm achieves the O(κ2∆lϵ−4) sample complexity in finding an ϵ stationary
point of f or Φ for small ϵ. This result improves upon the state-of-the-art complexity
O(κ3∆lϵ−4) for NC-SC problems, which is a subclass of the NC-PL family. We refer the
reader to Table 4.2 for a comparison.

4.1.2 Related Work

pl conditions in minimax optimization. In the deterministic NC-PL setting,
Yang et al. [2020a] and Nouiehed et al. [2019] show that AGDA and its multi-step variant,
which applies multiple updates in y after one update of x, can find an approximate
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stationary point within O(κ2ϵ−2) and Õ(κ2ϵ−2) iterations, respectively. Recently, Fiez et al.
[2021] showed that GDA converges asymptotically to a differential Stackelberg equilibrium
and establish a local convergence rate of O(ϵ−2) for deterministic problems. In comparison,
our work establishes non-asymptotic convergence to an ϵ-stationary point regardless of the
starting point in both deterministic and stochastic settings, and we also focus on reducing
the dependence to the condition number. Xie et al. [2021] consider NC-PL problems in the
federated learning setting, showing O(ϵ−3) communication complexity when each client’s
objective is Lipschitz smooth.

nc-sc minimax optimization. NC-SC problems are a subclass of NC-PL family.
In the deterministic setting, GDA-type algorithms has been shown to have O(κ2ϵ−2)

iteration complexity [Lin et al., 2020a, Xu et al., 2020c, Boţ and Böhm, 2020, Lu et al., 2020].
Later, Lin et al. [2020b] and Zhang et al. [2021b] improve this to Õ(

√
κϵ−2) by utilizing a

proximal point method and Nesterov acceleration, and Zhang et al. [2021b] and Han et al.
[2021] develop a tight lower complexity bound of Ω(

√
κϵ−2). Yan et al. [2020] introduce

Epoch-GDA for weakly-convex-strongly-concave problems. Comparatively, there are less
studies in the stochastic setting. Recently, Chen et al. [2021b] extend their analysis from
bilevel optimization to minimax optimization and show O(κ3ϵ−4) sample complexity for
an algorithm called ALSET without the O(ϵ−2) batch size required in [Lin et al., 2020a].
ALSET reduces to AGDA in minimax optimization when it only does one step of y
update in the inner loop. Guo et al. [2021b] utilize stochastic moving-average estimator
to nonconvex optimization and their algorithm PDSM achieves the same complexity for
NC-SC minimax problems. We also refer the reader to the increasing body of bilevel
optimization literature; e.g. [Guo and Yang, 2021, Ji et al., 2020, Hong et al., 2020, Chen
et al., 2021a, Zhang, 2021b]. Also, Luo et al. [2020], Huang and Huang [2021] and Tran-
Dinh et al. [2020] explore variance-reduced algorithms in this setting under the averaged
smoothness assumption. Concurrently, Fiez et al. [2021] prove perturbed GDA converges
to ϵ–local minimax equilibria with complexities of Õ(ϵ−4) and Õ(ϵ−2) in stochastic and
deterministic problems, respectively, under additional second-order conditions. Notably, Li
et al. [2021] develop the lower complexity bound of Ω

(√
κϵ−2 + κ1/3ϵ−4) for the stochastic

setting. Other than first-order algorithms, there are a few explorations of zero-order
methods [Xu et al., 2021, Huang et al., 2020, Xu et al., 2020b, Wang et al., 2020b, Liu et al.,
2020e, Anagnostidis et al., 2021] and second-order methods [Luo and Chen, 2021, Chen
and Zhou, 2021]. All the results above hold in the NC-SC regime, while the PL condition
is significantly weaker than strong-concavity as it lies in the nonconvex regime.
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4.2 preliminaries

notations . Throughout the chapter, we let ∥ · ∥ =
√
⟨·, ·⟩ denote the ℓ2 (Euclidean)

norm and ⟨·, ·⟩ denote the inner product. For non-negative functions f (x) and g(x), we
write f = O(g) if f (x) ≤ cg(x) for some c > 0, and f = Õ(g) to omit poly-logarithmic
terms. We define the primal-dual gap of a function f (·, ·) at a point (x̂, ŷ) as gap f (x̂, ŷ) ≜
maxy∈Rd2 f (x̂, y)−minx∈Rd1 f (x, ŷ).

We are interested in minimax problems of the form:

min
x∈Rd1

max
y∈Rd2

f (x, y) ≜ E[F(x, y; ξ)], (4.2)

where ξ is a random vector with support Ξ, and f is possibly nonconvex-nonconcave. We
now present the main setting considered in this paper.

Assumption 10 (Lipschitz Smooth). The function f is differentiable and there exists a positive
constant l such that

∥∇x f (x1, y1)−∇x f (x2, y2)∥ ≤ l[∥x1 − x2∥+ ∥y1 − y2∥],∥∥∇y f (x1, y1)−∇y f (x2, y2)
∥∥ ≤ l[∥x1 − x2∥+ ∥y1 − y2∥],

holds for all x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2 .

Assumption 11 (PL Condition in y). For any fixed x, maxy∈Rd2 f (x, y) has a nonempty solution
set and a finite optimal value. There exists µ > 0 such that: ∥∇y f (x, y)∥2 ≥ 2µ[maxy f (x, y)−
f (x, y)], ∀x, y.

The PL condition was originally introduced in [Polyak, 1963] who showed that it
guarantees global convergence of gradient descent at a linear rate. This condition is shown
in [Karimi et al., 2016] to be weaker than strong convexity as well as other conditions
under which gradient descent converges linearly. The PL condition has also drawn much
attention recently as it was shown to hold for various non-convex applications of interest
in machine learning [Fazel et al., 2018, Cai et al., 2019], including problems related to
deep neural networks [Du et al., 2019, Liu et al., 2020a]. In this work, we assume that the
objective function f in (4.2) is Lipschitz smooth and satisfies the PL condition about the
dual variable y, i.e. Assumption 10 and 11, which is the same setting as in [Nouiehed
et al., 2019] and [Yang et al., 2020b] (Appendix D). However, to the best of our knowledge,
stochastic algorithms have not yet been studied under such a setting.

From now on, we will define Φ(x) ≜ maxy f (x, y) as the primal function and κ ≜ l
µ as

the condition number. We will assume that Φ(·) is lower bounded by a finite Φ∗. According
to [Nouiehed et al., 2019], Φ(·) is 2κl-lipschitz smooth with Assumption 10 and 11. There
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are two popular and natural notions of stationarity for minimax optimization in the form
of (4.2): one is measured with ∇ f and the other is measured with ∇Φ. We give the formal
definitions below.

Definition 16 (Stationarity Measures).

a) (x̂, ŷ) is an (ϵ1, ϵ2)-stationary point of a differentiable function f (·, ·) if ∥∇x f (x̂, ŷ)∥ ≤ ϵ1

and ∥∇y f (x̂, ŷ)∥ ≤ ϵ2. If (x̂, ŷ) is an (ϵ, ϵ)-stationary point, we call it ϵ-stationary point
for simplicity.

b) x̂ is an ϵ-stationary point of a differentiable function Φ(·) if ∥∇Φ(x̂)∥ ≤ ϵ.

These two notions can be translated to each other by the following proposition.

Proposition 2 (Translation between Stationarity Measures).
a) Under Assumptions 10 and 11, if x̂ is an ϵ-stationary point of Φ and ∥∇y f (x̂, ỹ)∥ ≤ ϵ′,

then we can find another ŷ by maximizing f (x̂, ·) from the initial point ỹ with (stochastic) gradient
ascent such that (x̂, ŷ) is an O(ϵ)-stationary point of f , which requires O

(
κ log

(
κϵ′
ϵ

))
gradients

or Õ
(
κ + κ3σ2ϵ−2) stochastic gradients.

b) Under Assumptions 10 and 11, if (x̃, ỹ) is an (ϵ, ϵ/
√

κ)-stationary point of f , then we
can find an O(ϵ)-stationary point of Φ by approximately solving minx maxy f (x, y) + l∥x− x̃∥2

from the initial point (x̃, ỹ) with (stochastic) AGDA, which requires O (κ log (κ)) gradients or
Õ
(
κ + κ5σ2ϵ−2) stochastic gradients.

Remark 4.2.1. The proposition implies that we can convert an ϵ-stationary point of Φ to an
ϵ-stationary point of f and an (ϵ, ϵ/

√
κ)-stationary point of f to an ϵ-stationary point of Φ,

at a low cost in 1/ϵ dependency compared to the complexity of finding the stationary point of
either notion. Therefore, we consider the stationarity of Φ a slightly stronger notion than the other.
Lin et al. [2020a] establish the similar conversion under the NC-SC setting, but it requires an
(ϵ/κ)-stationary point of f to find an ϵ-stationary point of Φ. Later we will use this proposition to
establish the stationary convergence for some algorithms.

Finally, we assume to have access to unbiased stochastic gradients of f with bounded
variance.

Assumption 12 (Stochastic Gradients). Gx(x, y, ξ) and Gy(x, y, ξ) are unbiased stochastic
estimators of ∇x f (x, y) and ∇y f (x, y) and have variances bounded by σ2 > 0.

4.3 stochastic agda
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Algorithm 6 Stoc-AGDA
1: Input: (x0, y0), step sizes τ1 > 0, τ2 > 0
2: for all t = 0, 1, 2, ..., T − 1 do
3: Draw two i.i.d. samples ξt

1, ξt
2

4: xt+1 ← xt − τ1Gx(xt, yt, ξt
1)

5: yt+1 ← yt + τ2Gy(xt+1, yt, ξt
2)

6: end for
7: Output: choose (x̂, ŷ) uniformly from {(xt, yt)}T−1

t=0

Stochastic alternating gradient descent ascent (Stoc-AGDA) presented in Algorithm
6 sequentially updates primal and dual variables with simple stochastic gradient de-
scent/ascent. In each iteration, only two samples are drawn to evaluate stochastic gradients.
Here τ1 and τ2 denote the stepsize of x and y, respectively, and they can be very different.

Theorem 4.3.1. Under Assumptions 10, 11 and 12, if we apply Stoc-AGDA with stepsizes

τ1 = min
{ √

∆
4σκ2
√

Tl
, 1

68lκ2

}
and τ2 = min

{
17
√

∆
σ
√

Tl
, 1

l

}
, then we have

1
T

T−1

∑
t=0

E∥∇Φ(xt)∥2 ≤1088lκ2

T
∆ +

136lκ2

T
a0 +

8κ2
√

la0√
∆T

σ +
1232κ2

√
l∆√

T
σ,

where ∆ = Φ(x0) − Φ∗ and a0 := Φ(x0) − f (x0, y0). This implies a sample complexity of
O
(

lκ2∆
ϵ2 + lκ4∆σ2

ϵ4

)
to find an ϵ-stationary point of Φ.

We can either use Proposition 2 to translate to the other notion with extra computations
or show that Stoc-AGDA directly outputs an ϵ-stationary point of f with the same sample
complexity.

Corollary 4.3.2. Under the same setting as Theorem 4.3.1, the output (x̂, ŷ) from Stoc-AGDA
satisfies E∥∇x f (x̂, ŷ)∥ ≤ ϵ and E∥∇y f (x̂, ŷ)∥ ≤ ϵ after O

(
lκ2∆

ϵ2 + lκ4∆σ2

ϵ4

)
iterations, which

implies the same sample complexity as Theorem 4.3.1.

Remark 4.3.3. The dependency on a0 = Φ(x0)− f (x0, y0) can be improved by initializing y0

with gradient ascent or stochastic gradient ascent to maximize the function f (x0, ·) satisfying the
PL condition, which has exponential convergence in the deterministic setting and O( 1

T ) sublinear
rate in the stochastic setting [Karimi et al., 2016].

Remark 4.3.4. The complexity above has different dependency as a function of ϵ and κ for the
terms with and without the variance term σ. When σ = 0, iterations the output from AGDA
after O

(
lκ2∆ϵ−2) will be an ϵ-stationary point of both f and Φ. It recovers the same complexity

result in [Yang et al., 2020b] for the primal function stationary convergence. Nouiehed et al. [2019]
show the same complexity for multi-GDA based on the stationary measure of f , which implies
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O(lκ3∆ϵ−2) complexity for the stationary convergence of Φ by Proposition 2. See Table 6.1 for
more comparisons.

Remark 4.3.5. When σ > 0, we establish the brand-new sample complexity of O(lκ4∆ϵ−4)

for Stoc-AGDA. It is the first analysis of stochastic algorithms for NC-PL minimax problems.
The dependency on ϵ is optimal, because the lower complexity bound of Ω(ϵ−4) for stochastic
nonconvex optimization [Arjevani et al., 2022] still holds when considering f (x, y) = F(x) for
some nonconvex function F(x). Even under the strictly stronger assumption of imposing strong-
concavity in y, to the best of our knowledge, it is the first time that vanilla stochastic GDA-type
algorithm is showed to achieve O(ϵ−4) sample complexity without either increasing batch size as in
[Lin et al., 2020a] or Lipschitz continuity of f (·, y) and its Hessian as in [Chen et al., 2021b]. In
[Lin et al., 2020a], they show a worse complexity of O(ϵ−5) for GDA with O(1) batch size. We
refer the reader to Table 4.2.

Remark 4.3.6. We point out that under our weaker assumption, the dependency on the condition
number κ is slightly worse than that in [Lin et al., 2020a, Chen et al., 2021b]. If only O(1) samples
are available in each iteration, Stoc-GDA only achieves O(ϵ−5) sample complexity [Lin et al.,
2020a]. On the other hand, the analysis in [Chen et al., 2021a] is not applicable here. It uses
a potential function Vt = Φ(xt) + O(µ)∥yt − y∗(xt)∥2], where y∗(xt) = argmaxy f (x, y). To
show a descent lemma for E[Vt], it shows the Lipschitz smoothness of y∗(·), which heavily depends
on Lipschtiz continuity of f and its hessian, while under PL condition y∗(x) might not be unique
and we no longer make additional Lipschitz assumptions. Instead, we present an analysis based on
the potential function Vt = Φ(xt) + O(1)[Φ(xt)− f (xt, yt)] (see Appendix 4.6.2).

4.4 stochastic smoothed agda

Algorithm 7 Stochastic Smoothed-AGDA
1: Input: (x0, y0, z0), step sizes τ1 > 0, τ2 > 0
2: for all t = 0, 1, 2, ..., T − 1 do
3: Draw two i.i.d. samples ξt

1, ξt
2

4: xt+1 = xt − τ1[Gx(xt, yt, ξt
1) + p(xt − zt)]

5: yt+1 = yt + τ2Gy(xt+1, yt, ξt
2)

6: zt+1 = zt + β(xt+1 − zt)
7: end for
8: Output: choose (x̂, ŷ) uniformly from {(xt, yt)}T−1

t=0
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Stochastic Smoothed-AGDA presented in Algorithm 7 is closely related to proximal
point method (PPM) on the primal function Φ(·). In each iteration, we consider solving an
auxiliary problem: minx Φ(x) + p

2∥x− zt∥2, which is equivalent to:

min
x

max
y

f̂ (x, y; zt) ≜ f (x, y) +
p
2
∥x− zt∥2,

where zt is called a proximal center to be defined later. Recently, proximal type algorithms
including Catalyst have been shown to efficiently accelerate minimax optimization [Lin
et al., 2020b, Yang et al., 2020b, Zhang et al., 2021b, Luo et al., 2021]. While these algorithms
require multiple loops to solve the auxiliary problem to some high accuracy1, Stoc-
Smoothed-AGDA only applies one step of Stoc-AGDA to solve it from the point (xt, yt) as
in step 4 and 5. Step 6 in Algorithm 7 with some β ∈ (0, 1) guarantees that the proximal
point zt in the auxiliary problem is not too far from the previous one zt−1. Smoothed-
AGDA was first introduced by Zhang et al. [2020a] in the deterministic nonconvex-
concave minimax optimization. To the best of our knowledge, its convergence has not been
discussed in either the stochastic or the NC-PL setting.

Stoc-Smoothed-AGDA still maintains the single-loop structure and use only O(1) sam-
ples in each iteration. If we choose β = 1 or p = 0, it reduces to Stoc-AGDA. Later in the
analysis, we choose p = 2l so that the auxiliary problem is l-strongly convex in x. We will
see in the next theorem that this quadratic regularization term enables Smoothed-AGDA
to take larger stepsizes for x compared to AGDA. In Smoothed-AGDA, the ratio between
stepsize of x and y is Θ(1)2, while this ratio is Θ(1/κ2) in AGDA.

Theorem 4.4.1. Under Assumptions 10, 11 and 12, if we apply Algorithm 7 with τ1 =

min
{ √

∆
2σ
√

Tl
, 1

3l

}
, τ2 = min

{ √
∆

96σ
√

Tl
, 1

144l

}
, p = 2l and β = τ2µ

1600 , then

1
T

T−1

∑
t=0

E
{
∥∇x f (xt, yt)∥2 + κ

∥∥∇y f (xt, yt)
∥∥2 } ≤ c0lκ

T
[∆ + b0] +

c1κ
√

lb0√
∆T

σ +
c2κ
√

l∆√
T

σ,

where ∆ = Φ(z0)−Φ∗ and b0 = 2 gap f̂ (·,·;z0)
(x0, y0) is the primal-dual gap of the first auxiliary

function at the initial point, and c0, c1 and c2 are O(1) constants. This implies the sample complexity
of O

(
lκ∆
ϵ2 + lκ2∆σ2

ϵ4

)
to find an (ϵ, ϵ/

√
κ)-stationary point of f .

Remark 4.4.2. In the theorem above, b0 measures the optimality of (x0, y0) in the first auxiliary
problem: minx maxy f (x, y) + l∥x− z0∥2, which is l-strongly convex about x and µ-PL about y.
Therefore, the dependency on b0 can be reduced if we initialize (x0, y0) by approximately solving the
first auxiliary problem with (Stochastic) AGDA, which converges exponentially in the deterministic
setting and sublinearly at O(1/T) rate in the stochastic setting for strongly-convex-PL minimax
optimization [Yang et al., 2020a].

1 In Appendix 4.6.4, we present a two-loop Catalyst algorithm combined with AGDA (Catalyst-AGDA) that
achieves the same complexity as Algorithm 7 in the deterministic setting.

2 In Appendix 4.6.4, we show Catalyst-AGDA takes the stepsizes of the same order in the deterministic setting.
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By Proposition 2, we can convert the output from Stoc-Smoothed-AGDA to an O(ϵ)-
stationary point of Φ.

Corollary 4.4.3. From the output (x̂, ŷ) of stochastic Smoothed-AGDA, we can apply (stochastic)
AGDA to find an O(ϵ)-stationary point of Φ by approximately solving minx maxy f (x, y)+ l∥x−
x̂∥2. The total complexity is O

(
lκ∆
ϵ2

)
in the deterministic setting and Õ

(
lκ∆
ϵ2 + lκ2∆σ2

ϵ4 + κ5σ2

ϵ2

)
in

the stochastic setting.

Remark 4.4.4. In the deterministic setting, the translation cost is κ log(κ), which is dominated
by the complexity of finding (ϵ, ϵ/

√
κ)-stationary point of f in Theorem 4.4.1. In the stochastic

setting, the extra translation cost Õ
(

κ5σ2

ϵ2

)
is low in the dependency of 1

ϵ but larger in terms of
the condition number. In practice, the inverse of the target accuracy is usually large. We leave the
question of reducing translation cost and whether Stocastic Smoothed-AGDA can directly output
an approximate stationary point of Φ to future research.

Remark 4.4.5. The term without variance σ has better dependency on ϵ and κ than the term with
σ. In the deterministic setting, Smoothed-AGDA achieves the complexity of O(lκ∆ϵ−2), which
improves over AGDA [Yang et al., 2020a] and Multi-AGDA [Nouiehed et al., 2019] with either
notion of stationarity. Notably, this complexity under our weaker assumptions is better than that
of other single-loop algorithms under a stronger assumption of strong-concavity in y (see Table
4.2). Recently, Zhang et al. [2021b] provide a tight lower bound of O(l

√
κ∆ϵ−2) for deterministic

NC-SC minimax optimization. However, we do not expect the same complexity can be achieved
under weaker assumptions.

Remark 4.4.6. In the stochastic setting, we show Stoc-Smoothed-AGDA achieves a sample
complexity of O(lκ2∆ϵ−4) for finding an ϵ-stationary point of f . To find an ϵ-stationary point of Φ,
it bears an additional complexity of O(κ5σ2ϵ−2), which is negligible as long as ϵ is asymptotically
small, i.e. when ϵ ≤ Õ(

√
∆/lκ3). This sample complexity improves over O(lκ4∆ϵ−4) sample

complexity of Stoc-AGDA in NC-PL setting, and even O(lκ3∆ϵ−4) complexity of Stoc-GDA
[Lin et al., 2020a] and ALSET [Chen et al., 2021b] in NC-SC setting. Moreover, this sample
complexity improvement comes without any large batch size, additional Lipschitz assumptions,
or multi-loop structure. Very recently, Li et al. [2021] develop the lower complexity bound of
Ω
(√

κϵ−2 + κ1/3ϵ−4) in NC-SC setting, but there is no matching upper bound yet.

4.5 experiments

We illustrate the effectiveness of stochastic AGDA (Algorithm 6) and stochastic Smoothed-
AGDA (Algorithm 7) for solving NC-PL min-max problems. In particular, we show that
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Figure 4.1: Training of a toy regularized WGAN with linear generator. Shown is the evolution of
the stochastic gradients norm and the distance to the optimum. All methods are tuned
at best for a minibatch size of 100, and each experiment is repeated 5 times (1 std
shown). For Adam and RMSprop, we tuned over 4 learning rates (1e− 4, 5e− 4, 1e−
3, 5e− 3) and 2 momentum parameters 0.5, 0.9. The optimal configuration is obtained
for a stepsize of 5e− 4 and momentum 0.5. For stochastic AGDA we considered each
combination of τ1, τ2 ∈ {1e− 2, 5e− 2, 1e− 1, 5e− 1, 1}. The optimal configuration
was found to be τ1 = 5e− 1, τ2 = 1. For stochastic Smoothed-AGDA we use β = 0.9,
p = 10 and tuned it to best: τ1 = 5e− 1, τ2 = 5e− 1.

the smoothed version of stochastic AGDA can compete with state-of-the-art deep learning
optimizers 3.

toy wgan with linear generator . We consider the same setting as [Loizou
et al., 2020], i.e. using a Wasserstein GAN [Arjovsky et al., 2017] to approximate a one-
dimensional Gaussian distribution. In particular, we have a dataset of real data xreal and
latent variable z from a normal distribution with mean 0 and variance 1. The generator is
defined as Gµ,σ(z) = µ + σz and the discriminator (a.k.a the critic) as Dϕ(x) = ϕ1x + ϕ2x2,
where x is either real data or fake data from the generator. The true data is generated from
µ̂ = 0, σ̂ = 0.1. The problem can be written in the form of:

min
µ,σ

max
ϕ1,ϕ2

f (µ, σ, ϕ1, ϕ2) ≜ E(xreal ,z)∼D Dϕ(xreal)− Dϕ(Gµ,σ(z))− λ∥ϕ∥2,

where D is the distribution for the real data and latent variable, and the regularization
λ∥ϕ∥2 with λ = 0.001 makes the problem strongly concave. This problem is non-convex
in σ: indeed since z is symmetric around zero, both σ and −σ are solutions. We fixed
the batch size to 100 and tuned each algorithm at best (see plots in the appendix). Each
experiment is repeated 3 times. In Figure 4.1 we provide evidence of the superiority of Stoc-
Smoothed-AGDA over Stoc-AGDA, Adam [Kingma and Ba, 2014] and RMSprop [Tieleman
et al., 2012]. As the reader can notice, Stoc-Smoothed-AGDA is competitive with fine-tuned
popular adaptive methods, and provides a significant speedup over AGDA with carefully
tuned learning rates, which verifies our theoretical results.

3 Code available at https://github.com/aorvieto/NCPL.git

https://github.com/aorvieto/NCPL.git
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Figure 4.2: ReLU Network generator for a regularized WGAN (same settings as for Figure 4.1).
Each algorithm is tuned to yield best performance, with a procedure similar to
the one in Figure 4.1. The gradient with respect to the discriminator evolves very
similarly to the last example, with fast convergence to a non-zero value.

Figure 4.3: Robust non-linear regression on a synthetic Gaussian Dataset. Using τ1 = 5e− 4, τ2 =
5 for both AGDA and Smoothed-AGDA, we notice a performance improvement for
the latter using β = 0.5, p = 10.

toy wgan with neural generator . Inspired by [Lei et al., 2020], we consider
a regularized WGAN with a neural network as the generator. For ease of comparison,
we leave all the problem settings identical to the last paragraph, and only change the
generator Gµ,σ to Gθ , where θ are the parameters of a small neural network (one hidden
layer with five neurons and ReLU activations). After careful tuning for each algorithm, we
observe from Figure 4.2 that Stoc-Smoothed-AGDA still performs significantly better than
vanilla Stoc-AGDA and Adam in this setting. The adaptiveness (without momentum) of
RMSprop is able to yield slightly better results. This is not surprising, as adaptive methods
are the de facto optimizers of choice in generative adversarial nets. Hence, a clear direction
of future research is to combine adaptiveness and Smoothed-AGDA.

robust non-linear regression. The experiments above suggest that Smoothed-
AGDA accelerates convergence of AGDA. We found that this holds true also outside the
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WGAN setting: in this last paragraph, we show how this accelerated behavior in a few
robust regression problems. We first consider a synthetic dataset of 1000 datapoints z in
500 dimensions, sampled from a Gaussian distribution with mean zero and variance 1.
The target values y0 are sampled according to a random noisy linear model. We consider
fitting this synthetic dataset with a two-hidden-layer ReLU network (256 units in the first
layer, 64 in the second): netx(z) with x being the parameter. For the robustness part, we
proceed in the standard way (see e.g.[Adolphs et al., 2019]) and add the concave objective
−λ

2 ∥y− y0∥2 to the loss:

F(x, y) =
1
n

n

∑
i=1

1
2
∥netx(z)− y∥2 − λ

2
∥y− y0∥2,

where we chose λ = 1. In this experiement, we compare the performance of AGDA
and Smoothed-AGDA under the same stepsize τ1, τ2. From Figure 4.3, we observe that
Smoothed-AGDA has much faster convergence than AGDA both in the stochastic and
deterministic setting (i.e. with full batch).
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4.6 appendix

4.6.1 Useful Lemmas

Lemma 4.6.1 (Lemma B.2 [Lin et al., 2020b]). Assume f (·, y) is µx-strongly convex for
∀y ∈ Rd2 and f (x, ·) is µy-strongly concave for ∀x ∈ Rd1 (we will later refer to this as (µx, µy)-
SC-SC)) and f is l-Lipschitz smooth. Then we have

a) y∗(x) = argmaxy∈Rd2 f (x, y) is l
µy

-Lipschitz;

b) Φ(x) = maxy∈Rd2 f (x, y) is 2l2

µy
-Lipschitz smooth and µx-strongly convex with ∇Φ(x) =

∇x f (x, y∗(x));

c) x∗(y) = argminx∈Rd1 f (x, y) is l
µx

-Lipschitz;

d) Ψ(y) = minx∈Rd1 f (x, y) is 2l2

µx
-Lipschitz smooth and µy-strongly concave with ∇Ψ(y) =

∇y f (x∗(y), y).

Lemma 4.6.2 (Karimi et al. [2016]). If f (·) is l-smooth and it satisfies PL condition with constant
µ, i.e.

∥∇ f (x)∥2 ≥ 2µ[ f (x)−min
x

f (x)], ∀x,

then it also satisfies error bound (EB) condition with µ, i.e.

∥∇ f (x)∥ ≥ µ∥xp − x∥, ∀x,

where xp is the projection of x onto the optimal set, and it satisfies quadratic growth (QG) condition
with µ, i.e.

f (x)−min
x

f (x) ≥ µ

2
∥xp − x∥2, ∀x.

Lemma 4.6.3 (Nouiehed et al. [2019]). Under Assumption 10 and 11, define Φ(x) = maxy f (x, y)
then

a) for any x1, x2, and y∗(x1) ∈ Argmaxy f (x1, y), there exists some y∗(x2) ∈ Argmaxy f (x2, y)
such that

∥y∗1 − y∗2∥ ≤
l

2µ
∥x1 − x2∥ .

b) Φ(·) is L-smooth with L := l + lκ
2 with κ = l

µ and ∇Φ(x) = ∇x f (x, y∗(x)) for any
y∗(x) ∈ Argmaxy f (x, y).
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Now we present a Theorem adopted from [Yang et al., 2020a]. Under the two-sided PL
condition, it captures the convergence of AGDA with dual updated first4:

yk+1 = yk + τ2∇y f (xk, yk),

xk+1 = xk − τ1∇x f (xk, yk+1). (4.3)

Theorem 4.6.4 (Yang et al. [2020a]). Consider a minimax optimization problem under Assumption
12:

min
x∈Rd1

max
y∈Rd2

f (x, y) ≜ E[F(x, y; ξ)].

Suppose the function f is l-smooth, f (·, y) satisfies the PL condition with constant µ1 and − f (x, ·)
satisfies the PL condition with constant µ2 for any x and y. Define

Pk = E[Ψ∗ −Ψ(yt)] +
1
10

E[ f (xk, yk)−Ψ(xk)]

with Ψ(y) = minx f (x, y) and Ψ∗ = maxy Ψ(y). If we run Stoc-AGDA (with update rule (4.3))

with stepsizes τ1 ≤ 1
l and τ2 ≤ µ2

1τ1
18l2 , then

Pk ≤
(

1− µ2τ2

2

)k
P0 +

23l2τ2
2 /µ1 + lτ2

1
10µ2τ2

σ2. (4.4)

In the deterministic setting, e.g. σ = 0, if we run AGDA with stepsizes τ1 = 1
l and τ2 =

µ2
1

18l3 then

Pk ≤
(

1− µ2
1µ2

36l3

)k

P0. (4.5)

Definition 17 (Moreau Envelope). The Moreau envelope of a function Φ with a parameter λ > 0
is:

Φλ(x) = min
z∈Rd1

Φ(z) +
1

2λ
∥z− x∥2.

The proximal point of x is defined as: proxλΦ(x) = argminz∈Rd1

{
Φ(z) + 1

2λ∥z− x∥2}.
The gradients of Φ and and Φλ are closely related by the following well-known lemma;
see e.g. [Drusvyatskiy and Paquette, 2019].

Lemma 4.6.5. When F is differentiable and ℓ-Lipschitz smooth, for λ ∈ (0, 1/ℓ) we have
∇Φ(proxλF(x)) = ∇Φλ(x) = λ−1(x− proxλΦ(x)).

4 The update is equivalent to applying AGDA with primal variable update first to miny maxx − f (x, y), so its
convergence is a direct result from [Yang et al., 2020a]. We believe a similar convergence rate to Theorem
4.6.4 holds for AGDA with x update first. But for simplicity, here we consider update (4.3) without additional
derivation.
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proof of proposition 2

Proof. We will prove Part (a) and (b) separately.
Part (a): If we can find ŷ such that maxy f (x̂, y)− f (x̂, ŷ) ≤ ϵ2

lκ , then as ∥∇y f (x̂, y∗(x̂))∥ = 0,

∥∇y f (x̂, ŷ)∥ = ∥∇y f (x̂, ŷ)−∇y f (x̂, y∗(x̂))∥

≤ l∥ŷ− y∗(x̂)∥ ≤ l

√
2
µ
[max

y
f (x̂, y)− f (x̂, ŷ)] ≤

√
2ϵ,

where in the first inequality we fix y∗(x) to the projection from ŷ to Argmaxy f (x̂, y), in
the second inequality we use Lipschitz smoothness, and in the third inequality we use PL
condition and Lemma 4.6.2. Also,

∥∇x f (x̂, ŷ)∥ ≤ ∥∇x f (x̂, y∗(x̂)∥+ ∥∇x f (x̂, ŷ)−∇x f (x̂, y∗(x̂))∥
≤ ∥∇Φ(x̂)∥+ l∥ŷ− y∗(x̂)∥

≤ ∥∇Φ(x̂)∥+ l

√
2
µ
[max

y
f (x̂, y)− f (x̂, ŷ)] ≤ (1 +

√
2)ϵ,

where in the second inequality we use Lemma 4.6.3. Therefore, our goal is to find ŷ such
that maxy f (x̂, y)− f (x̂, ŷ) ≤ ϵ2

lκ by applying (stochastic) gradient ascent to f (x̂, ·) from
initial point ỹ.

Deterministic case: Since ∥∇y f (x̂, ỹ)∥ ≤ ϵ′, we have maxy f (x̂, y)− f (x̂, ỹ) ≤ ϵ′2
2µ by PL

condition. Let yk denote k-th iterates of gradient ascent from initial point ỹ with stepsize 1
l .

Then by [Karimi et al., 2016]

max
y

f (x̂, y)− f (x̂, yk) ≤
(

1− 1
κ

)k [
max

y
f (x̂, y)− f (x̂, ỹ)

]
.

So after O
(

κ log
(

κϵ′
ϵ

))
, we can find the point we want.

Stochastic Case: Let yk denote k-th iterates of stochastic gradient ascent from initial point
ỹ with stepsize τ ≤ 1

l . Then by Lemma A.4 in [Yang et al., 2020b]

E

[
max

y
f (x̂, y))− f (x̂, yk+1)

]
≤ (1− µτ)E

[
max

y
f (x̂, y))− f (x̂, yk)

]
+

lτ2

2
σ2,

which implies

E

[
max

y
f (x̂, y))− f (x̂, yk)

]
≤ (1− µτ)kE

[
max

y
f (x̂, y))− f (x̂, ỹ)

]
+

κτ

2
σ2.

So with τ = min
{

1
l , Θ

(
ϵ2

lκ2σ2

)}
, we can find the point we want with a complexity of

O
(

κ log
(

κϵ′
ϵ

)
+ κ3σ2 log

(
κϵ′
ϵ

)
ϵ−2
)

.
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Part (b): We first look at Φ1/2l(x̃) = minz Φ(z) + l∥z− x̃∥2. Then by Lemma 4.3 in [Drusvy-
atskiy and Paquette, 2019],

∥∇Φ1/2l(x̃)∥2

= 4l2∥x̃− proxΦ/2l(x̃)∥2

≤ 8l[Φ(x̃)−Φ(proxΦ/2l(x̃))− l∥proxΦ/2l(x̃)− x̃∥2]

= 8l
[
Φ(x̃)− f (x̃, ỹ) + f (x̃, ỹ)− f (proxΦ/2l(x̃), ỹ) + f (proxΦ/2l(x̃), ỹ)−Φ(proxΦ/2l(x̃))

−l∥proxΦ/2l(x̃)− x̃∥2]

≤ 8l
[

1
2µ
∥∇y f (x̃, ỹ)∥2 + f (x̃, ỹ)− f (proxΦ/2l(x̃), ỹ)− l∥proxΦ/2l(x̃)− x̃∥2

]
(4.6)

where in the first inequality we use the l-strong-convexity in x of Φ(x) + l∥x − x̃∥2, in
the second inequality we use Φ(x̃) − f (x̃, ỹ) ≤ 1

2µ∥∇y f (x̃, ỹ)∥2 by PL condition, and
f (proxΦ/2l(x̃), ỹ)−Φ(proxΦ/2l(x̃)) ≤ 0. Note that by defining f̂ (x, y) = f (x, y) + l∥x −
x̃∥2, we have

f (x̃, ỹ)− f (proxΦ/2l(x̃), ỹ)− l∥proxΦ/2l(x̃)− x̃∥2

= f̂ (x̃, ỹ)− f̂ (proxΦ/2l(x̃), ỹ)

≤ ⟨∇x f (x̃, ỹ), x− proxΦ/2l(x̃)⟩ − l
2
∥x− proxΦ/2l(x̃)∥2

≤ 1
2l
∥∇x f̂ (x̃, ỹ)∥2 +

l
2
∥x− proxΦ/2l(x̃)∥2 − l

2
∥x− proxΦ/2l(x̃)∥2

≤ 1
2l
∥∇x f̂ (x̃, ỹ)∥2 =

1
2l
∥∇x f (x̃, ỹ)∥2,

where in the second inequality we use l-strong-convexity in x of f̂ (x, y). Plugging into
(4.6),

∥∇Φ1/2l(x̃)∥2 = 4l2∥x̃− proxΦ/2l(x̃)∥2 ≤ 4κ∥∇y f (x̃, ỹ)∥2 + 4∥∇x f (x̃, ỹ)∥2 ≤ 8ϵ. (4.7)

If we can find x̂ such that ∥proxΦ/2l(x̃)− x̂∥ ≤ ϵ
κl , then

∥∇Φ(x̂)∥ ≤ ∥∇Φ(proxΦ/2l(x̃))∥+ ∥∇Φ(x̂)−∇Φ(proxΦ/2l(x̃))∥
≤ ∥∇Φ1/2l(x̃)∥+ 2κl∥proxΦ/2l(x̃)− x̂∥ ≤ (2

√
2 + 2)ϵ,

where in the second inequality we use Lemma 4.6.3 and Lemma 4.6.5. Note that proxΦ/2l(x̃)
is the solution to minx Φ(x) + l∥x− x̃∥2, which is equivalent to

min
x

max
y

f (x, y) + l∥x− x̃∥2. (4.8)

This minimax problem is l-strongly convex about x, µ-PL about y and 3l-smooth. Therefore,
we can use (stochastic) alternating gradient descent ascent (AGDA) to find x̂ such that
∥proxΦ/2l(x̃)− x̂∥ ≤ ϵ

κl from initial point (x̃, ỹ).
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Deterministic case: Let (xk, yk) denote k-th iterates of AGDA with y updated first from
initial point (x̃, ỹ) on function (4.8). Define Φ̂(x) = maxy f̂ (x, y) = maxy f (x, y)+ l∥x− x̃∥2,
Ψ̂(y) = minx f̂ (x, y) = minx f (x, y) + l∥x− x̃∥2 and Ψ̂∗ = maxy Ψ̂(y). We also denote x∗ =

argminx Φ̂(x) = proxΦ/2l(x̃). Then we define Pk = Ψ̂∗ − Ψ̂(yk) + 1
10

[
f̂ (xk, yk)− Ψ̂(yk)

]
.

Note that

P0 = Ψ̂∗ − Ψ̂(ỹ) +
1
10

[
f̂ (x̃, ỹ)− Ψ̂(ỹ)

]
≤ Ψ̂∗ − Ψ̂(ỹ) +

1
20l
∥∇x f̂ (x̃, ỹ)∥2

≤ Ψ̂∗ − Ψ̂(ỹ) +
ϵ2

20l
. (4.9)

Also, we note that

Ψ̂∗ − Ψ̂(ỹ) = max
y

min
x

f̂ (x, y)−min
x

f̂ (x, ỹ)

= max
y

min
x

f̂ (x, y)−max
y

f̂ (x̃, y) + max
y

f̂ (x̃, y)− f̂ (x̃, ỹ) + f̂ (x̃, ỹ)−min
x

f̂ (x, ỹ)

≤ 1
2µ
∥∇y f̂ (x̃, ỹ)∥2 +

1
2l
∥∇x f̂ (x̃, ỹ)∥2 =

1
2µ
∥∇y f (x̃, ỹ)∥2 +

1
2l
∥∇x f (x̃, ỹ)∥2 ≤ ϵ2

l
,

where in the first inequality we use maxy minx f̂ (x, y) ≤ maxy f̂ (x̃, y), l-strong-convexity
of f̂ (·, ỹ) and µ-PL of f̂ (x̃, ·). Combined with (4.9) we have

P0 ≤
2ϵ2

l
.

Then we note that

∥xk − x∗∥2 ≤ 2∥xk − x∗(yk)∥2 + 2∥x∗(yk)− x∗∥2 ≤ 4
l
[ f̂ (xk, yk)− Ψ̂(yk)] + 18∥yk − y∗∥2

≤ 4
l
[ f̂ (xk, yk)− Ψ̂(yk)] +

18
µ
[Ψ̂(yk)− Ψ̂∗] ≤ 40

µ
Pk,

where in the second inequality we use l-strong-convexity of f̂ (·, yk) and Lemma 4.6.1, in
the third inequality we use µ-PL of Ψ̂(·) (see e.g. [Yang et al., 2020a]). Because f̂ (x, y)
is l-strongly convex about x, µ-PL about y and 3l-smooth, it satifies the two-sided PL
condition in [Yang et al., 2020a] and it can be solved by AGDA. By Theorem 4.6.4, if we
choose τ1 = 1

3l and τ2 = l2

18(3l)3 = 1
486l , we have

Pk ≤ (1− 1
972κ

)kP0,

Therefore,

∥xk − x∗∥2 ≤ 40
µ

Pk ≤
40
µ

(
1− 1

972κ

)k

P0 ≤
80ϵ2

µl

(
1− 1

972κ

)k

.

So after O(κ log κ) iterations we have ∥xk − x∗∥2 ≤ ϵ2

κ2l2 .
Stochastic case: By Theorem 4.6.4, if we choose τ1 ≤ 1

3l and τ2 = l2τ1
18(3l)2 = τ1

162 , we have

Pk ≤
(

1− µτ2

2

)k
P0 + O(κτ2σ2).
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With τ2 = min
{

1
486l , Θ

(
ϵ2

κ4lσ2

)}
and τ1 = 162τ2, we have ∥xk − x∗∥2 ≤ ϵ2

κ2l2 after

O
(
κ log(κ) + κ5σ2 log(κ)ϵ−2) iterations.

4.6.2 Proofs for Stochastic AGDA

proof of theorem 4 .3 .1

Proof. Because Φ is L-smooth with L = l + lκ
2 by Lemma 4.6.3, we have the following by

Lemma A.4 in [Yang et al., 2020a]

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= Φ(xt)− τ1⟨∇Φ(xt), Gx(xt, yt, ξt1)⟩+
L
2

τ2
1 ∥Gx(xt, yt, ξt

1)∥2.

Taking expectations of both sides and using Assumption 12, we get

E[Φ(xt+1)] ≤ E[Φ(xt)]− τ1E[⟨∇Φ(xt),∇x f (xt, yt)⟩] +
L
2

τ2
1 E[∥Gx(xt, yt, ξt

1)∥2]

≤ E[Φ(xt)]− τ1E[⟨∇Φ(xt),∇x f (xt, yt)⟩] +
L
2

τ2
1 E[∥∇x f (xt, yt)∥2] +

L
2

τ2
1 σ2

≤ E[Φ(xt)]− τ1E[⟨∇Φ(xt),∇x f (xt, yt)⟩] +
τ1

2
E[∥∇x f (xt, yt)∥2] +

L
2

τ2
1 σ2

≤ E[Φ(xt)]−
τ1

2
E∥∇Φ(xt)∥2 +

τ1

2
E∥∇x f (xt, yt)−∇Φ(xt)∥2 +

L
2

τ2
1 σ2,

(4.10)

where in the second inequality we use Assumption 12, and in the third inequality we use
τ1 ≤ 1/L. By smoothness of f (x, ·), we have

f (xt+1, yt+1) ≥ f (xt+1, yt) + ⟨∇y f (xt+1, yt), yt+1 − yt⟩ −
l
2
∥yt+1 − yt∥2

≥ f (xt+1, yt) + τ2⟨∇y f (xt+1, yt), Gy(xt+1, yt, ξt
2)⟩ −

lτ2
2

2
∥Gy(xt+1, yt, ξt

2)∥2.

Taking expectation, as τ2 ≤ 1
l

E f (xt+1, yt+1)−E f (xt+1, yt) ≥ τ2E∥∇y f (xt+1, yt)∥2 − lτ2
2

2
E∥∇y f (xt+1, yt)∥2 − lτ2

2
2

σ2

≥ τ2

2
E∥∇y f (xt+1, yt)∥2 − lτ2

2
2

σ2. (4.11)

By smoothness of f (·, y), we have

f (xt+1, yt) ≥ f (xt, yt) + ⟨∇x f (xt, yt), xt+1 − xt⟩ −
l
2
∥xt+1 − xt∥2

≥ f (xt, yt)− τ1⟨∇x f (xt, yt), Gx f (xt, yt, ξt
1)⟩ −

lτ2
1

2
∥Gx(xt, yt, ξt

1)∥2.
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Taking expectation, as τ1 ≤ 1
l

E f (xt+1, yt)−E f (xt, yt) ≥ −τ1E∥∇x f (xt, yt)∥ −
lτ2

1
2

E∥∇x f (xt, yt)∥ −
lτ2

1
2

σ2

≥ −3τ1

2
E∥∇x f (xt, yt)∥2 − lτ2

1
2

σ2. (4.12)

Therefore, summing (4.12) and (4.11) together

E f (xt+1, yt+1)−E f (xt, yt)

≥ τ2

2
E∥∇y f (xt+1, yt)∥2 − 3τ1

2
E∥∇x f (xt, yt)∥2 − lτ2

1
2

σ2 − lτ2
2

2
σ2. (4.13)

Now we consider the following potential function, for some α > 0 which we will pick later

Vt ≜ V(xt, yt) ≜ Φ(xt) + α[Φ(xt)− f (xt, yt)] = (1 + α)Φ(xt)− α f (xt, yt).

Then by combining (4.10) and (4.13) we have

EVt −EVt+1

≥ τ1

2
(1 + α)E ∥∇Φ (xt)∥2 − τ1

2
(1 + α)E ∥∇x f (xt, yt)−∇Φ (xt)∥2 +

τ2α

2
E∥∇y f (xt+1, yt)∥2−

3τ1α

2
E∥∇x f (xt, yt)∥2 −

[
L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2

]
σ2

≥
[τ1

2
(1 + α)− 3τ1α

]
E ∥∇Φ (xt)∥2 −

[τ1

2
(1 + α) + 3τ1α

]
E ∥∇x f (xt, yt)−∇Φ (xt)∥2 +

τ2α

4
E∥∇y f (xt, yt)∥2 − τ2α

2
E∥∇y f (xt+1, yt)−∇y f (xt, yt)∥2 −

[
L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2

]
σ2

≥
[τ1

2
(1 + α)− 3τ1α

]
E ∥∇Φ (xt)∥2 −

[τ1I

2
(1 + α) + 3τ1α

]
E ∥∇x f (xt, yt)−∇Φ (xt)∥2 +

τ2α

4
E∥∇y f (xt, yt)∥2 − τ2α

2
l2E∥xt+1 − xt∥2 −

[
L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2

]
σ2

≥
[τ1

2
(1 + α)− 3τ1α

]
E ∥∇Φ (xt)∥2 −

[τ1

2
(1 + α) + 3τ1α

]
E ∥∇x f (xt, yt)−∇Φ (xt)∥2 +

τ2α

4
E∥∇y f (xt, yt)∥2 − τ2α

2
l2τ2

1 E∥∇x f (xt, yt)∥2 −
[

L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2
+

τ2

2
αl2τ2

1

]
σ2

≥
[τ1

2
(1 + α)− 3τ1α− τ2αl2τ2

1

]
E ∥∇Φ (xt)∥2−

[τ1

2
(1 + α) + 3τ1α + τ2αl2τ2

1

]
E ∥∇x f (xt, yt)−∇Φ (xt)∥2 +

τ2α

4
E∥∇y f (xt, yt)∥2 −

[
L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2
+

τ2

2
αl2τ2

1

]
σ2, (4.14)

where in the first inequality we use ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 and ∥a∥2 ≥ ∥b∥2/2 −
∥a− b∥2, in the second inequality we use smoothness, and in the last inequality we use
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∥a + b∥2 ≤ ∥a∥2 + ∥b∥2. Note that by smoothness and PL condition, fixing y∗(xt) to be the
projection of yt to the set Argmin

y
f (xt, y),

∥∇x f (xt, yt)−∇Φ (xt)∥2 ≤ l2∥yt − y∗(xt)∥2 ≤ κ2∥∇y f (xt, yt)∥2.

Plugging it into (4.14), we get

EVt −EVt+1 ≥
[τ1

2
(1 + α)− 3τ1α− τ2αl2τ2

1

]
E ∥∇Φ (xt)∥2 +

[τ2α

4
− τ1

2
(1 + α)κ2 − 3τ1ακ2 − τ2αl2τ2

1 κ2
]

E∥∇y f (xt, yt)∥2−
[

L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2
+

τ2

2
αl2τ2

1

]
σ2. (4.15)

Then we note that when α = 1
8 , τ1 ≤ 1

l and τ2 ≤ 1
l ,

τ1

2
(1 + α)− 3τ1α− τ2αl2τ2

1 ≥
τ1

16
.

Furthermore, when τ1 ≤ τ2
68κ2 , then

τ2α

4
− τ1

2
(1 + α)κ2 − 3τ1ακ2 − τ2αl2τ2

1 κ2 ≥ 1
64

τ2 ≥
17
16

κ2τ1.

Also, as α = 1
8 , τ2 ≤ 1

l and τ1 = τ2
68κ2

L(1 + α)

2
τ2

1 +
lτ2

2 α

2
+

lτ2
1 α

2
+

τ2

2
αl2τ2

1 ≤ 292κ4lτ2
1 .

Therefore,

EVt −EVt+1 ≥
τ1

16
E ∥∇Φ (xt)∥2 +

17
16

κ2τ1E∥∇y f (xt, yt)∥2 − 292κ4lτ2
1 σ2. (4.16)

Telescoping and rearraging, with a0 ≜ Φ(x0)− f (x0, y0),

1
T

T−1

∑
t=0

E ∥∇Φ (xt)∥2 ≤ 16
τ1T

[V0 −min
x,y

V(x, y)] + 4762κ4lτ1σ2

≤ 16
τ1T

[Φ(x0)−Φ∗] +
2

τ1T
a0 + 4672κ4lτ1σ2,

where in the second inequality we note that since for any x we can find y such that
Φ(x) = f (x, y),

V0 −min
x,y

V(x, y) = Φ(x0) + α[Φ(x0)− f (x0, y0)]−min
x,y
{Φ(x) + α[Φ(x)− f (x, y)]}

= Φ(x0)−Φ∗ + α[Φ(x0)− f (x0, y0)].

Picking τ1 = min
{√

Φ(x0)−Φ∗

4σκ2
√

Tl
, 1

68lκ2

}
,

1
T

T−1

∑
t=0

E ∥∇Φ (xt)∥2
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≤ max
{

4σκ2
√

Tl√
Φ(x0)−Φ∗

, 68lκ2
}

16
T
[Φ(x0)−Φ∗] + max

{
4σκ2
√

Tl√
Φ(x0)−Φ∗

, 68lκ2
}

2
T

a0+

√
Φ(x0)−Φ∗

4σκ2
√

Tl
4672κ4lσ2

≤ 1088lκ2

T
[Φ(x0)−Φ∗] +

136lκ2

T
a0 +

8κ2
√

la0√
[Φ(x0)−Φ∗]T

σ +
1232κ2

√
l[Φ(x0)−Φ∗]√

T
σ.

Here we can pick τ2 = min
{

17
√

Φ(x0)−Φ∗

σ
√

Tl
, 1

l

}
.

proof of corollary 4 .3 .2

Proof. Similar to the proof of part (a) in Proposition 2, fixing y∗(xt) to be the projection of
xt to Argmaxy f (xt, y), we have

∥∇x f (xt, yt)∥2 ≤ 2∥∇x f (xt, y∗(xt))∥2 + 2∥∇x f (xt, yt)−∇x f (xt, y∗(xt))∥2

≤ 2∥∇Φ(xt)∥2 + 2l2∥yt − y∗(xt)∥2

≤ 2∥∇Φ(xt)∥+ 2κ2∥∇y f (xt, yt)∥2,

where in the first inequality we use Lemma 4.6.3 and in the last inequality we use Lemma
4.6.2. Plugging into (4.16),

EVt −EVt+1 ≥
τ1

32
E ∥∇Φ (xt)∥2 + κ2τ1E∥∇y f (xt, yt)∥2 − 292κ4lτ2

1 σ2.

By the same reasoning as the proof of Theorem 4.3.1 (after equation (4.16)), with the same
stepsizes, we can show

1
T

T−1

∑
t=0

E ∥∇x f (xt, yt)∥2 + 32κ2E
∥∥∇y f (xt, yt)

∥∥2

≤ d0lκ2

T
[Φ(x0)−Φ∗] +

d1lκ2

T
a0 +

d2κ2
√

la0√
[Φ(x0)−Φ∗]T

σ +
d3κ2

√
l[Φ(x0)−Φ∗]√

T
σ,

where d0, d1, d2 and d3 are O(1) constants.

4.6.3 Proofs for Stochastic Smoothed AGDA

Before we present the theorems and proofs, we adopt the following notations.

• f̂ (x, y; z) = f (x, y) + p
2∥x− z∥2: the auxiliary function;

• Ψ(y; z) = minx f̂ (x, y; z): the dual function of the auxiliary problem;
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• Φ(x; z) = maxy f̂ (x, y; z): the primal function of the auxiliary problem;

• P(z) = minx maxy f̂ (x, y; z): the optimal value for the auxiliary function fixing z;

• x∗(y, z) = argminx f̂ (x, y; z): the optimal x w.r.t y and z in the auxiliary function;

• x∗(z) = argminx Φ(x; z): the optimal x w.r.t z in the auxiliary function when y is
already optimal w.r.t x;

• Y∗(z) = Argmaxy Ψ(y; z): the optimal set of y w.r.t z when x is optimal to y;

• y+(z) = y + τ2∇y f̂ (x∗(y, z), y; z): y after one step of gradient ascent in y with the
gradient of the dual function;

• x+(y, z) = x− τ1∇x f̂ (x, y; z): x after one step of gradient descent with gradient at
current point;

• Ĝx(x, y, ξ; z) = Gx(x, y, ξ) + p(x− z): the stochastic gradient for regularized auxiliary
function.

Lemma 4.6.6. We have the following inequalities as p > l

∥x∗(y, z)− x∗(y, z′)∥ ≤ γ1∥z− z′∥,
∥x∗(z)− x∗(z′) ≤ γ1∥z− z′∥,
∥x∗(y, z)− x∗(y′, z)∥ ≤ γ2∥y− y′∥,
E∥xt+1 − x∗(yt, zt)∥2 ≤ γ2

3τ2
1 E∥∇x f̂ (xt, yt; zt)∥2 + 2τ2

1 σ2,

where γ1 = p
−l+p , γ2 = l+p

−l+p and γ2
3 = 2

τ2
1 (−l+p)2 + 2.

Proof. The first and second inequality is the same as Proposition B.4 in [Zhang et al., 2020a].
The third inequality is a direct result of Lemma 4.6.1. Now we show the last inequality.

∥xt+1 − x∗(yt, zt)∥2 ≤2∥xt − x∗(yt, zt)∥2 + 2∥xt+1 − xt∥2

≤ 2
(−l + p)2 ∥∇x f̂ (xt, yt; zt)∥2 + 2τ2

1 ∥Ĝx(xt, yt, ξt
1; zt)∥2.

where the second inequality use (−l + p)-strong convexity of f̂ (·, yt; zt). Taking expectation

E∥xt+1 − x∗(yt, zt)∥2 ≤ 2
(−l + p)2 E∥∇x f̂ (xt, yt; zt)∥2 + 2τ2

1 E∥∇x f̂ (xt, yt; zt)∥2 + 2τ2
1 σ2

≤2
[

1
(−l + p)2 + τ2

1

]
E∥∇x f̂ (xt, yt; zt)∥2 + 2τ2

1 σ2.

Lemma 4.6.7. The following inequality holds

∥x∗(z)− x∗(y+(z), z)∥2 ≤ 1
(p− l)µ

(
1 + τ2l +

τ2l(p + l)
p− l

)2

∥∇y f̂ (x∗(y, z), y; z)∥2. (4.17)
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Proof. By the (p− l)-strong convexity of Φ(·; z), we have

∥x∗(z)− x∗(y+(z), z)∥2

≤ 2
p− l

[
Φ(x∗(y+(z), z); z)−Φ(x∗(z); z)

]

≤ 2
p− l

[
Φ(x∗(y+(z), z); z)− f̂ (x∗(y+(z), z), y+(z); z) + f̂ (x∗(y+(z), z), y+(z); z)−Φ(x∗(z); z)

]

≤ 1
(p− l)µ

∥∇y f̂ (x∗(y+(z), z), y+(z); z)∥2,

where in the last inequality we use µ-PL of f̂ (x, ·; z) and f̂ (x∗(y+(z), z), y+(z); z) ≤
Φ(x∗(z); z). Then

∥∇y f̂ (x∗(y+(z), z), y+(z); z)∥
≤ ∥∇y f̂ (x∗(y, z), y; z)∥+ ∥∇y f̂ (x∗(y, z), y; z)−∇y f̂ (x∗(y+(z), z), y+(z); z)∥
≤ ∥∇y f̂ (x∗(y, z), y; z)∥+ l∥x∗(y, z)− x∗(y+(z), z)∥+ l∥y− y+(z)∥

≤
(

1 +
τ2l(p + l)

p− l
+ τ2l

)
∥∇y f̂ (x∗(y, z), y; z)∥,

where in the last inequality we use Lemma 4.6.6 and ∥y− y+(z)∥ = τ2∥∇y f̂ (x∗(y, z), y; z)∥.
We reach our conclusion by combining with the previous inequality.

proof of theorem 4 .4 .1

Proof. We separate our proof into several parts: we first present three descent lemmas,
then we show the descent property for a potential function, later we discuss the relation
between our stationary measure and the potential function, and last we put things together.

primal descent : By the (p + l)-smoothness of f̂ (·, yt; zt),

f̂ (xt+1, yt; zt) ≤ f̂ (xt, yt; zt) + ⟨∇x f̂ (xt, yt; zt), xt+1 − xt⟩+
p + l

2
∥xt+1 − xt∥2

= f̂ (xt, yt; zt)− τ1⟨∇x f̂ (xt, yt; zt), Ĝx(xt, yt, ξt
1; zt)⟩+

p + l
2

τ2
1 ∥Ĝx(xt, yt, ξt

1; zt)∥2,

We can easily verify that EĜx(xt, yt, ξt
1; zt) = ∇x f̂ (xt, yt; zt) and E∥Ĝx(xt, yt, ξt

1; zt) −
EĜx(xt, yt, ξt

1; zt)∥2 = E∥Gx(xt, yt, ξt
1)−∇x f (xt, yt)∥2 ≤ σ2. Taking expectations of both

sides, we have

E f̂ (xt+1, yt; zt) ≤ E f̂ (xt, yt; zt)− τ1E∥∇x f̂ (xt, yt; zt)∥2+

p + l
2

τ2
1 E∥∇x f̂ (xt, yt; zt)∥2 +

p + l
2

τ2
1 σ2.
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As τ1 ≤ 1
p+l ,

E f̂ (xt, yt; zt)−E f̂ (xt+1, yt; zt) ≥
τ1

2
E∥∇x f̂ (xt, yt; zt)∥2 − p + l

2
τ2

1 σ2. (4.18)

Also, because f̂ (xt+1, ·; zt) is smooth,

f̂ (xt+1, yt; zt)− f̂ (xt+1, yt+1; zt)

≥ ⟨∇y f̂ (xt+1, yt; zt), yt − yt+1⟩ −
l
2
∥yt − yt+1∥2

= −τ2⟨∇y f̂ (xt+1, yt; zt), Gy(xt+1, yt, ξt
2)⟩ −

l
2

τ2
2 ∥Gy(xt+1, yt, ξt

2)∥2.

Taking expectations of both sides,

E f̂ (xt+1, yt; zt)−E f̂ (xt+1, yt+1; zt)

≥ −τ2E∥∇y f (xt+1, yt)∥2 − l
2

τ2
2 E∥∇y f (xt+1, yt)∥2 − l

2
τ2

2 σ2

= −
(

1 +
lτ2

2

)
τ2E∥∇y f (xt+1, yt)∥2 − l

2
τ2

2 σ2. (4.19)

Furthermore, by definition of f̂ and zt+1, as 0 < β < 1,

f̂ (xt+1, yt+1; zt)− f̂ (xt+1, yt+1; zt+1)

=
p
2
[∥xt+1 − zt∥2 − ∥xt+1 − zt+1∥2] =

p
2

[
1
β2 ∥(zt+1 − zt)∥2 − ∥(1− β)(xt+1 − zt)∥2

]

=
p
2

[
1
β2 ∥zt+1 − zt∥2 − (1− β)2

β2 ∥zt+1 − zt∥2
]
≥ p

2β
∥zt − zt+1∥2. (4.20)

Combining (4.18), (4.19) and (4.20),

E f̂ (xt, yt; zt)−E f̂ (xt+1, yt; zt) ≥
τ1

2
E∥∇x f̂ (xt, yt; zt)∥2 −

(
1 +

lτ2

2

)
τ2E∥∇y f (xt+1, yt)∥2+

p
2β

E∥zt − zt+1∥2 − l
2

τ2
2 σ2 − p + l

2
τ2

1 σ2. (4.21)

dual descent : Since the dual function Ψ(y; z) is LΨ smooth with LΨ = l + lγ2 by
Lemma B.3 in [Zhang et al., 2020a],

Ψ(yt+1; zt)−Ψ(yt; zt) ≥ ⟨∇yΨ(yt; zt), yt+1 − yt⟩ −
LΨ

2
∥yt+1 − yt∥2

= ⟨∇y f̂ (x∗(yt, zt), yt; zt), yt+1 − yt⟩ −
LΨ

2
∥yt+1 − yt∥2.

Taking expectation,

EΨ(yt+1; zt)−EΨ(yt; zt) ≥ τ2E⟨∇y f̂ (x∗(yt, zt), yt; zt),∇y f (xt+1, yt)⟩−
LΨ

2
τ2

2 E∥∇y f (xt+1, yt)∥2 − LΨ

2
τ2

2 σ2. (4.22)
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Also,

Ψ(yt+1; zt+1)−Ψ(yt+1; zt) = f̂ (x∗(xt+1, zt+1), yt+1; zt+1)− f̂ (x∗(yt+1, zt), yt+1; zt)

≥ f̂ (x∗(xt+1, zt+1), yt+1; zt+1)− f̂ (x∗(yt+1, zt+1), yt+1; zt)

=
p
2
[
∥zt+1 − x∗(yt+1, zt+1)∥2 − ∥zt − x∗(yt+1, zt+1)∥2]

=
p
2
(zt+1 − zt)

⊤[zt+1 + zt − 2x∗(yt+1, zt+1)]. (4.23)

Combining with (4.22), we have

EΨ(yt+1; zt+1)−EΨ(yt; zt)

≥ τ2E⟨∇y f̂ (x∗(yt, zt), yt; zt),∇y f (xt+1, yt)⟩ −
LΨ

2
τ2

2 E∥∇y f (xt+1, yt)∥2+

p
2

E(zt+1 − zt)
⊤[zt+1 + zt − 2x∗(yt+1, zt+1)]−

LΨ

2
τ2

2 σ2. (4.24)

proximal descent : for all y∗(zt+1) ∈ Y∗(zt+1) and y∗(zt) ∈ Y∗(zt),

P(zt+1)− P(zt) = Ψ(y∗(zt+1); zt+1)−Ψ(y∗(zt); zt)

≤ Ψ(y∗(zt+1); zt+1)−Ψ(y∗(zt+1); zt)

= f̂ (x∗(y∗(zt+1), zt+1), y∗(zt+1); zt+1)− f̂ (x∗(y∗(zt+1), zt), y∗(zt+1); zt)

≤ f̂ (x∗(y∗(zt+1), zt), y∗(zt+1); zt+1)− f̂ (x∗(y∗(zt+1), zt), y∗(zt+1); zt)

=
p
2
(zt+1 − zt)

⊤[zt+1 − zt − 2x∗(y∗(zt+1), zt)]. (4.25)

potential function We use the potential function Vt = V(xt, yt, zt) = f̂ (xt, yt; zt)−
2Ψ(yt; zt) + 2P(zt). By three descent steps above, we have

EVt −EVt+1

≥ τ1

2
E∥∇x f̂ (xt, yt; zt)∥2 −

(
1 +

lτ2

2

)
τ2E∥∇y f (xt+1, yt)∥2 +

p
2β

E∥zt − zt+1∥2+

2τ2E⟨∇y f̂ (x∗(yt, zt), yt; zt),∇y f (xt+1, yt)⟩ − LΨτ2
2 E∥∇y f (xt+1, yt)∥2+

pE(zt+1 − zt)
⊤[zt+1 + zt − 2x∗(yt+1, zt+1)]− pE(zt+1 − zt)

⊤[zt+1 − zt − 2x∗(y∗(zt+1), zt)]−
l
2

τ2
2 σ2 − p + l

2
τ2

1 σ2 − LΨτ2
2 σ2

≥ τ1

2
E∥∇x f̂ (xt, yt; zt)∥2 +

(
1− lτ2

2
− LΨτ2

)
τ2E∥∇y f (xt+1, yt)∥2 +

p
2β

E∥zt − zt+1∥2+

2τ2E⟨∇y f̂ (x∗(yt, zt), yt; zt)−∇y f (xt+1, yt),∇y f (xt+1, yt)⟩+

pE(zt+1 − zt)
⊤[2x∗(y∗(zt+1), zt)− 2x∗(yt+1, zt+1)]−

l
2

τ2
2 σ2 − p + l

2
τ2

1 σ2 − LΨτ2
2 σ2



122 single-loop algorithms for nonconvex-pl minimax problems

≥ τ1

2
E∥∇x f̂ (xt, yt; zt)∥2 +

τ2

2
E∥∇y f (xt+1, yt)∥2 +

p
2β

E∥zt − zt+1∥2+

2τ2E⟨∇y f̂ (x∗(yt, zt), yt; zt)−∇y f (xt+1, yt),∇y f (xt+1, yt)⟩+

2pE(zt+1 − zt)
⊤[x∗(y∗(zt+1), zt)− x∗(yt+1, zt+1)]−

l
2

τ2
2 σ2 − p + l

2
τ2

1 σ2 − LΨτ2
2 σ2,

(4.26)

where in the last inequality we use 1− lτ2
2 − LΨτ2 ≥ 1

2 since LΨ = 4l by our choice of τ2

and p. Now we denote A = 2τ2⟨∇y f̂ (x∗(yt, zt), yt; zt)−∇y f (xt+1, yt),∇y f (xt+1, yt)⟩ and
B = 2p(zt+1 − zt)⊤[x∗(y∗(zt+1), zt)− x∗(yt+1, zt+1)]. We note that

B = 2p(zt+1 − zt)
⊤[x∗(y∗(zt+1), zt)− x∗(y∗(zt+1), zt+1)]+

2p(zt+1 − zt)
⊤[x∗(y∗(zt+1), zt+1)− x∗(yt+1, zt+1)]

≥ −2pγ1∥zt+1 − zt∥2 + 2p(zt+1 − zt)
⊤[x∗(y∗(zt+1), zt+1)− x∗(yt+1, zt+1)]

≥ −
(

2pγ1 +
p

6β

)
∥zt+1 − zt∥2 − 6pβ∥x∗(y∗(zt+1), zt+1)− x∗(yt+1, zt+1)∥2, (4.27)

where we use 4.6.6 in the first inequality. Also,

A ≥ −2τ2∥∇y f̂ (x∗(yt, zt), yt; zt)−∇y f (xt+1, yt)∥∥∇y f (xt+1, yt)∥
≥ −2τ2l∥xt+1 − x∗(yt, zt)∥∥∇y f (xt+1, yt)∥
≥ −τ2

2 lν∥∇y f (xt+1, yt)∥2 − lν−1∥xt+1 − x∗(yt, zt)∥2, (4.28)

where in the second inequality we use ∇y f̂ (x∗(yt, zt), yt; zt) = ∇y f (x∗(yt, zt), yt) and in
the third inequality ν > 0 and we will choose it later. Taking expectation and applying
Lemma 4.6.6

EA ≥ −τ2
2 lνE∥∇y f (xt+1, yt)∥2 − lτ2

1 ν−1γ2
3E∥∇x f̂ (xt, yt; zt)∥2 − 2lν−1τ2

1 σ2. (4.29)

Plugging (4.29) and (4.27) into (4.26),

EVt −EVt+1

≥
(τ1

2
− lτ2

1 ν−1γ2
3

)
E∥∇x f̂ (xt, yt; zt)∥2 +

(τ2

2
− τ2

2 lν
)

E∥∇y f (xt+1, yt)∥2+
(

p
2β
− 2pγ1 −

p
6β

)
E∥zt − zt+1∥2 − 6pβE∥x∗(y∗(zt+1), zt+1)− x∗(yt+1, zt+1)∥2−

(
p + l

2
+ 2lν−1

)
τ2

1 σ2 −
(

l
2
+ LΨ

)
τ2

2 σ2, (4.30)

We rewrite ∥∇y f (xt+1, yt)∥2 as:

∥∇y f (xt+1, yt)∥2 =∥∇y f̂ (x∗(yt, zt), yt; zt) +∇y f (xt+1, yt)−∇y f̂ (x∗(yt, zt), yt; zt)∥2

≥∥∇y f̂ (x∗(yt, zt), yt; zt)∥2/2− ∥∇y f (xt+1, yt)−∇y f̂ (x∗(yt, zt), yt; zt)∥2

≥∥∇y f̂ (x∗(yt, zt), yt; zt)∥2/2− l2∥xt+1 − x∗(yt, zt)∥2. (4.31)
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Taking expectation and applying Lemma 4.6.6

E∥∇y f (xt+1, yt)∥2 ≥ E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2/2−
l2γ2

3τ2
1 E∥∇x f̂ (xt, yt; zt)∥2 − 2l2τ2

1 σ2. (4.32)

Note that x∗(y∗(zt+1), zt+1) = x∗(zt+1). We rewrite ∥x∗(y∗(zt+1), zt+1)− x∗(yt+1, zt+1)∥2

as the following

∥x∗(zt+1)− x∗(yt+1, zt+1)∥2

≤ 4∥x∗(zt+1)− x∗(zt)∥2 + 4∥x∗(zt)− x∗(y+t (zt), zt)∥2+

4∥x∗(y+t (zt), zt)− x∗(yt+1, zt)∥2 + 4∥x∗(yt+1, zt)− x∗(yt+1, zt+1)∥2

≤ 4γ2
1∥zt+1 − zt∥2 + 4∥x∗(zt)− x∗(y+t (zt), zt)∥2 + 4γ2

2∥y+t (zt)− yt+1∥2 + 4γ2
1∥zt − zt+1∥2

≤ 4∥x∗(zt)− x∗(y+t (zt), zt)∥2 + 8γ2
2τ2

2 ∥∇y f̂ (x∗(yt), zt), yt; zt)−∇y f (xt+1, yt)∥2+

8γ2
2τ2

2 ∥∇y f (xt+1, yt)− Gy(xt+1, yt, ξt
2)∥2 + 8γ2

1∥zt − zt+1∥2

≤ 4∥x∗(zt)− x∗(y+t (zt), zt)∥2 + 8γ2
2τ2

2 l2∥x∗(yt)− xt+1∥2+

8γ2
2τ2

2 ∥∇y f (xt+1, yt)− Gy(xt+1, yt, ξt
2)∥2 + 8γ2

1∥zt − zt+1∥2,

where in the second and last inequality we use Lemma 4.6.6, and in the third inequality
we use the definition of y+t (zt). Taking expectation and applying Lemma 4.6.6

E∥x∗(zt+1)− x∗(yt+1, zt+1)∥2

≤ 8γ2
1E∥zt − zt+1∥2 + 4E∥x∗(zt)− x∗(y+t (zt), zt)∥2+

8γ2
2τ2

2 l2γ2
3τ2

1 E∥∇x f̂ (xt, yt; zt)∥2 + 16γ2
2τ2

2 l2τ2
1 σ2 + 8γ2

2τ2
2 σ2. (4.33)

Plugging (4.33) and (4.32) into (4.30), we have

EVt −EVt+1

≥
[τ1

2
− lτ2

1 ν−1γ2
3 −

(τ2

2
− τ2

2 lν
)

l2γ2
3τ2

1 − 48pβγ2
2τ2

2 l2γ2
3τ2

1

]
E∥∇x f̂ (xt, yt; zt)∥2−

24pβE∥x∗(zt)− x∗(y+t (zt), zt)∥2 +

(
τ2

4
− τ2

2 lν
2

)
E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2+

[
p

2β
− 2pγ1 −

p
6β
− 48pβγ2

1

]
E∥zt − zt+1∥2−

[
p + l

2
+ 2lν−1 + 96pβγ2

2τ2
2 l2 + 2l2

(τ2

2
− τ2

2 lν
)]

τ2
1 σ2 −

[
l
2
+ LΨ + 48pβγ2

2

]
τ2

2 σ2

≥ τ1

4
E∥∇x f̂ (xt, yt; zt)∥2 +

τ2

8
E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2 +

p
4β

E∥zt − zt+1∥2−

24pβE∥x∗(zt)− x∗(y+t (zt), zt)∥2 − 2lτ2
1 σ2 − 5lτ2

2 σ2. (4.34)
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The last inequality above holds because by our choice of τ1, τ2, p and β, we have γ1 = 2,
γ2 = 3 and γ3 = 2

τ2
1 l2 + 2, and therefore when we choose ν = 1

4lτ2
= 12

lτ1
, we have

τ2
4 −

τ2
2 lν
2 = τ2

8 and

lτ2
1 ν−1γ2

3 +
(τ2

2
− τ2

2 lν
)

l2γ2
3τ2

1 + 48pβγ2
2τ2

2 l2γ2
3τ2

1

=

[
ν−1(lτ1γ2

3)−
1
τ1

τ2

4
(l2τ2

1 γ2
3) + 486lβ

τ2
2

τ1
(l2τ2

1 γ2
3)

]
τ1

≤
[

2ν−1
(

1
τ1l

+ τ1l
)
+

1
96
(
1 + τ2

1 l2)+ 486× 2
48× 1600

lµτ2
2
(
1 + τ2

1 l2)
]

τ1

≤
[

20
9ν

1
τ1l

+
1
96

(
1 +

1
9

)
+

486× 2
48× 1600

(
1 +

1
9

)
lµτ2

2

]
τ1 ≤

τ1

4
,

and
p + l

2
+ 2lν−1 + 96pβγ2

2τ2
2 l2 + 2l2

(τ2

2
− τ2

2 lν
)
≤
[

3
2
+

τ1l
12

+
96× 2× 9

1600
l2µτ3

2 +
τ2l
2

]
l ≤ 2l,

and
l
2
+ LΨ + 48pβγ2

2 ≤
[

1
2
+ 4 + 48× 2× 4× 9β

]
l ≤ 5l,

and
p

2β
− 2pγ1 −

p
6β
− 48pβγ2

1 ≥
[

1
3
− 4β− 192β2

]
p
β
≥ p

4β
.

stationary measure : First we note that

∥∇x f (xt, yt)∥ ≤ ∥∇x f̂ (xt, yt; zt)∥+ p∥xt − zt∥
≤ ∥∇x f̂ (xt, yt; zt)∥+ p∥xt − xt+1∥+ p∥xt+1 − zt∥
≤ ∥∇x f̂ (xt, yt; zt)∥+ pτ1∥Ĝx(xt, yt, ξt

1; zt)∥+ p∥xt+1 − zt∥.
Taking square and expectation

E∥∇x f (xt, yt)∥2

≤ 6E∥∇x f̂ (xt, yt; zt)∥2 + 6p2τ2
1 E∥∇x f̂ (xt, yt; zt)∥2 + 6p2E∥xt+1 − zt∥2 + 6p2τ2

1 σ2

= 6(1 + p2τ2
1 )E∥∇x f̂ (xt, yt; zt)∥2 + 6p2E∥xt+1 − zt∥2 + 6p2τ2

1 σ2. (4.35)

Also,

∥∇y f (xt, yt)∥
≤ ∥∇y f (xt+1, yt)∥+ ∥∇y f (xt, yt)−∇y f (xt+1, yt)∥
≤ ∥∇y f (xt+1, yt)∥+ l∥xt+1 − xt∥
≤ lτ1∥Ĝx(xt, yt, ξt

1; zt)∥+ ∥∇y f̂ (x∗(yt, zt), yt; zt)∥+ ∥∇y f̂ (x∗(yt, zt), yt; zt)−∇y f (xt+1, yt)∥
≤ lτ1∥Ĝx(xt, yt, ξt

1; zt)∥+ ∥∇y f̂ (x∗(yt, zt), yt; zt)∥+ l∥xt+1 − x∗(yt, zt)∥.
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Taking square and expectation, and applying Lemma 4.6.6

E∥∇y f (xt, yt)∥2

≤ 6l2τ2
1 E∥∇x f̂ (xt, yt; zt)∥2 + 6l2τ2

1 σ2 + 6E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2+

6l2γ2
3τ2

1 E∥∇x f̂ (xt, yt; zt)∥2 + 12l2τ2
1 σ2

≤ 6l2τ2
1 (1 + γ2

3)E∥∇x f̂ (xt, yt; zt)∥2 + 6E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2 + 18l2τ2
1 σ2. (4.36)

Combining with (4.35),

E∥∇x f (xt, yt)∥2 + κE∥∇y f (xt, yt)∥2

≤ 6(1 + p2τ2
1 + κl2τ2

1 + κl2γ2
3τ2

1 )E∥∇x f̂ (xt, yt; zt)∥2 + 6κE∥∇y f̂ (x∗(yt, zt), yt; zt)∥2+

6p2E∥xt+1 − zt∥2 + (6p2 + 18κl2)τ2
1 σ2

≤ 24κE∥∇x f̂ (xt, yt; zt)∥2 + 6κE∥∇y f̂ (x∗(yt, zt), yt; zt)∥2v + 6p2E∥xt+1 − zt∥2 + 42κl2τ2
1 σ2,

(4.37)

where in the last inequality we use 6p2 + 18κl2 = 24l2 + 18κl2 ≤ 42κl2 and

1 + p2τ2
1 + kl2τ2

1 + κl2γ2
3τ2

1 =1 + 4l2τ2
1 + κl2τ2

1 + 2κ(1 + τ2
1 l2)

≤13
9

+ 2κ + 3κl2τ2
1 ≤ 4κ.

putting pieces together : From Lemma 4.6.7,

24pβ∥x∗(z)− x∗(y+(z), z)∥2 ≤ 24pβ

(p− l)µ

(
1 + τ2l +

τ2l(p + l)
p− l

)2

∥∇y f̂ (x∗(y, z), y; z)∥2

≤ 1
16

τ2∥∇y f̂ (x∗(yt, zt), yt; zt)∥2,

where in the second inequality we use

24pβ

(p− l)µ

(
1 + τ2l +

τ2l(p + l)
p− l

)2

=
48β

µ
(1 + τ2l + 3τ2l)2 ≤ 96β

µ
≤ 1

16
τ2.

Plugging into (4.34),

EVt −EVt+1 ≥
τ1

4
E∥∇x f̂ (xt, yt; zt)∥2 +

τ2

16
E∥∇y f̂ (x∗(yt, zt), yt; zt)∥2+

pβ

4
E∥zt − xt+1∥2 − 2lτ2

1 σ2 − 5lτ2
2 σ2.

Plugging into (4.37),

E∥∇x f (xt, yt)∥2 + κE∥∇y f (xt, yt)∥2

≤ 24κE∥∇x f̂x(xt, yt; zt)∥2 + 6κE∥∇y f̂ (x∗(yt, zt), yt; zt)∥+ 6p2E∥xt+1 − zt∥2 + 42κl2τ2
1 σ2

≤ max
{

96κ

τ1
,

96κ

τ2
,

24p
β

} [
EVt −EVt+1 + 2lτ2

1 σ2 + 5lτ2
2 σ2]+ 42κl2τ2

1 σ2

≤ O(1)κ
τ2

[EVt −EVt+1] +
O(1)κlτ2

1
τ2

σ2 + O(1)κlτ2σ2 + O(1)κl2τ2
1 σ2



126 single-loop algorithms for nonconvex-pl minimax problems

≤ O(1)κ
τ1

[EVt −EVt+1] + O(1)κlτ1σ2 + O(1)κl2τ2
1 σ2

≤ O(1)κ
τ1

[EVt −EVt+1] + O(1)κlτ1σ2, (4.38)

where in the second and fourth inequality we use τ1 = 48τ2 and p/β = 3200κ/τ2.
Telescoping,

1
T

T−1

∑
t=0

E∥∇x f (xt, yt)∥2 + κE∥∇y f (xt, yt)∥2 ≤O(1)κ
Tτ1

[V0 −min
x,y,z

V(x, y, z)] + O(1)κlτ1σ2.

Since for any z we can find x, y such that ( f̂ (x, y; z)−Ψ(y; z)) + (P(z)−Ψ(y; z)) = 0,

V0 −min
x,y,z

V(x, y, z)

= P(z0) + ( f̂ (x0, y0; z0)−Ψ(y0; z0)) + (P(z0)−Ψ(y0; z0))−
min
x,y,z

[P(z) + ( f̂ (x, y; z)−Ψ(y; z)) + (P(z)−Ψ(y; z))]

≤ (P(z0)−min
z

P(z)) + ( f̂ (x0, y0; z0)−Ψ(y0; z0)) + (P(z0)− h(y0; z0)).

Note that for any z

P(z) = min
x

max
y

f (x, y) + l∥x− z∥2 = min
x

Φ(x) + l∥x− z∥2 = Φ1/2l(z) ≤ Φ(z),

and P(z) = Φ1/2l(z) also implies minz P(z) = minx Φ(x). Hence

V0−min
x,y,z

V(x, y, z) ≤ (Φ(z0)−min
x

Φ(x))+ ( f̂ (x0, y0; z0)−Ψ(y0; z0))+ (P(z0)−Ψ(y0; z0)).

(4.39)
With b = ( f̂ (x0, y0; z0)−Ψ(y0; z0)) + (P(z0)−Ψ(y0; z0)), we write

1
T

T−1

∑
t=0

E∥∇x f (xt, yt)∥2 + κE∥∇y f (xt, yt)∥2 ≤ O(1)κ
Tτ1

[∆ + b] + O(1)κlτ1σ2.

with ∆ = Φ(z0)−Φ∗. Picking τ1 = min
{√

Φ(x0)−Φ∗

2σ
√

Tl
, 1

3l

}
,

1
T

T−1

∑
t=0

E∥∇x f (xt, yt)∥2 + κE∥∇y f (xt, yt)∥2

≤ max
{

2σ
√

Tl√
∆

, 3l
}

O(1)κ
T

[Φ(z0)−Φ∗ + b] +
O(1)

√
∆

2σ
√

Tl
· κlτ1σ2

≤ O(1)κ
T

[∆ + b] +
O(1)κ

√
lb√

∆T
σ +

O(1)κ
√

l∆√
T

σ.

We reach our conclusion by noting that b ≤ 2 gap f̂ (·,·;z0)
(xt, yt).
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4.6.4 Catalyst-AGDA

Algorithm 8 Catalyst-AGDA
1: Input: (x0, y0), step sizes τ1 > 0, τ2 > 0.
2: for all t = 0, 1, 2, ..., T − 1 do
3: Let k = 0 and x0

0 = x0.
4: repeat
5: yt

k+1 = yt
k + τ2∇y f (xt

k, yt
k)

6: xt
k+1 = xt

k − τ1[∇x f (xt
k, yt

k+1) + 2l(xt
k − xt

0)]
7: k = k + 1
8: until gap f̂t

(xt
k, yt

k) ≤ β gap f̂t
(xt

0, yt
0) where f̂t(x, y) ≜ f (x, y) + l∥x− xt

0∥2

9: xt+1
0 = xt

k+1, yt+1
0 = yt

k+1
10: end for
11: Output: x̃T, which is uniformly sampled from x1

0, ..., xT
0

Now we present a new algorithm, called Catalyst-AGDA, in Algorithm 8. It iteratively
solves an augmented auxiliary problem similar to Smoothed-AGDA:

f̂t(x, y) ≜ f (x, y) + l∥x− xt
0∥2,

by AGDA with y update first5. The stopping criterion for the inner-loop is

gap f̂t
(xt

k, yt
k) ≤ β gap f̂t

(xt
0, yt

0),

and we will specify β later. For Catalyst-AGDA, we only consider the deterministic case,
in which we have the exact gradient of f (·, ·).

In this subchapter, we use (xt, yt) as a shorthand for (xt
0, yt

0). We denote (x̂t, ŷt) with
ŷt ∈ Ŷt as the optimal solution to the auxiliary problem at t-th iteration:
minx∈Rd1 maxy∈Rd2

[
f̂t(x, y) ≜ f (x, y) + l∥x− xt∥2

]
. Define Φ̂t(x) = maxy f (x, y) + l∥x −

xt∥2. We use Y∗(x) to denote the set Argmaxy f (x, y). In the following lemma, we show
the convergence of the Moreau envelop ∥∇Φ1/2l(x)∥2 when we choose β appropriately in
the stopping criterion of the AGDA subroutine.

Lemma 4.6.8. Under Assumptions 10 and 11, define ∆ = Φ(x0)− Φ∗, if we apply Catalyst-
AGDA with β = µ2

4l2 in the stopping criterion of the inner-loop, then we have
T−1

∑
t=0
∥∇Φ1/2l(xt)∥2 ≤ 35l

2
∆ + 3la0,

where a0 := Φ(x0)− f (x0, y0).

5 We believe that updating x first in the subroutine will lead to the same convergence property. For simplicity,
we update y first so that we can directly apply Theorem 4.6.4.
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Proof. Define gt+1 = gap f̂t
(xt+1, yt+1). It is easy to observe that x̂t = proxΦ/2l(xt). Define

Φ̂t(x) = maxy f (x, y) + l∥x− xt∥2. By Lemma 4.3 in [Drusvyatskiy and Paquette, 2019],

∥∇Φ1/2l(xt)∥2 = 4l2∥xt − x̂t∥2 ≤ 8l[Φ̂t(xt)− Φ̂t(proxΦ/2l(xt))]

≤ 8l[Φ̂t(xt)− Φ̂t(xt+1) + bt+1]

= 8l
{

Φ(xt)−
[
Φ(xt+1) + l∥xt+1 − xt∥2

]
+ bt+1

}

≤ 8l[Φ(xt)−Φ(xt+1) + gt+1], (4.40)

where in the first inequality we use l-strongly convexity of Φ̂t. Because f̂ is 3l-smooth,
l-strongly convex in x and µ-PL in y, its primal and dual function are 18lκ and 18l smooth,
respectively, by Lemma 4.6.3. Then we have

gap f̂t
(xt, yt) = max

y
f̂t(xt, y)−min

x
max

y
f̂t(x, y) + min

x
max

y
f̂t(x, y)−min

x
f̂t(x, yt)

≤ 9lκ∥xt − x̂t∥2 + 9l∥yt − ŷt∥2, (4.41)

for all ŷt ∈ Ŷt. For t ≥ 1, by fixing ŷt−1 to be the projection of yt to Ŷt−1, there exists
ŷt ∈ Ŷt so that

∥yt − ŷt∥2 ≤2∥yt − ŷt−1∥2 + 2∥y∗(x̂t−1)− y∗(x̂t)∥2

≤ 2∥yt − ŷt−1∥2 + 2
(

l
µ

)2

∥x̂t − x̂t−1∥2

≤ 2∥yt − ŷt−1∥2 + 4
(

l
µ

)2

∥x̂t − xt∥2 + 4
(

l
µ

)2

∥xt − x̂t−1∥2

≤ 8l
µ2 gt + 4

(
l
µ

)2

∥x̂t − xt∥2,

where we use Lemma 4.6.3 in the second inequality, and strong-convexity and PL condition
in the last inequality. By our stopping criterion and ∥∇Φ1/2l(xt)∥2 = 4l2∥xt − x̂t∥2, for
t ≥ 1

gt+1 ≤ β gap f̂t
(xt, yt) ≤ 9lκβ∥xt − x̂t∥2 + 9lβ∥yt − ŷt∥2 ≤ 72κ2βgt +

12κ2β

l
∥∇Φ1/2l(xt)∥2.

(4.42)
For t = 0, by fixing y∗(x0) to be the projection of y0 to Y∗(x0),

∥y0 − ŷ0∥2 ≤ 2∥y0 − y∗(x0)∥2 + 2∥ŷ0 − y∗(x0)∥2 ≤ 4
µ

a0 + 2κ2∥x0 − x̂0∥2. (4.43)

Because Φ(x) + l∥x− x0∥2 is l-strongly convex, we have
(
Φ(x̂0) + l∥x̂0 − x0∥2)+ l

2
∥x̂0− x0∥2 ≤ Φ(x0) = Φ∗+(Φ(x0)−Φ∗) ≤ Φ(x̂0)+ (Φ(x0)−Φ∗).

This implies ∥x̂0 − x0∥2 ≤ 2
3l (Φ(x0)−Φ∗). Hence, by the stopping criterion,

g1 ≤ β gap f̂0
(x0, y0) ≤ 9lκβ∥x0 − x̂0∥2 + 9lβ∥y0 − ŷ0∥2 ≤ 18κ2β∆ + 36κβa0. (4.44)
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Recursing (4.42) and (4.44), we have for t ≥ 1

gt+1 ≤ (72κ2β)tg1 +
12κ2β

l

t

∑
k=1

(72κ2β)t−k∥∇Φ1/2l(xk)∥2

≤ 18κ2β(72κ2β)t∆ + 36κβ(72κ2β)ta0 +
12κ2β

l

t

∑
k=1

(72κ2β)t−k∥∇Φ1/2l(xk)∥2.

Summing from t = 0 to T − 1,
T−1

∑
t=0

gt+1 =
T−1

∑
t=1

gt + g1

≤ 18κ2β
T−1

∑
t=0

(72κ2β)t∆ + 36κβ
T−1

∑
t=0

(72κ2β)ta0 +
12κ2β

l

T−1

∑
t=1

t

∑
k=1

(72κ2β)t−k∥∇Φ1/2l(xk)∥2

≤ 18κ2β

1− 72κ2β
∆ +

36κβ

1− 72κ2β
a0 +

12κ2β

l(1− 72κ2β)

T−1

∑
t=1
∥∇Φ1/2l(xt)∥2, (4.45)

where in the last inequality we use
T−1

∑
t=1

t

∑
k=1

(72κ2β)t−k∥∇Φ1/2l(xk)∥2 =
T−1

∑
k=1

T

∑
t=k

(72κ2β)t−k∥∇Φ1/2l(xk)∥2

≤
T−1

∑
k=1

1
1− (72κ2β)

∥∇Φ1/2l(xk)∥2.

Now, by telescoping (4.40),

1
8l

T−1

∑
t=0
∥∇Φ1/2l(xt)∥2 ≤ Φ(x0)−Φ∗ +

T−1

∑
t=0

gt+1.

Plugging (4.45) in,
(

1
8l
− 12κ2β

l(1− 72κ2β)

) T−1

∑
t=0
∥∇Φ1/2l(xt)∥2 ≤

(
1 +

18κ2β

1− 72κ2β

)
∆ +

36κβ

1− 72κ2β
a0. (4.46)

With β = 1
264κ4 , we have κ2β

1−72κ2β
≤ 1

192κ2 . Therefore,

T−1

∑
t=0
∥∇Φ1/2l(xt)∥2 ≤ 35l

2
∆ + 3la0.

Theorem 4.6.9. Under Assumptions 10 and 11, if we apply Catalyst-AGDA with β = 1
264κ4 in

the stopping criterion of the inner-loop, then the output from Algorithm 8 satisfies
T

∑
t=1
∥∇Φ(xt

0)∥2 ≤ 1
T

T

∑
t=1
∥∇Φ(xt+1)∥2 ≤ 19l

T
∆ +

6l
T

a0 (4.47)

which implies the outer-loop complexity of O(l∆ϵ−2). Furthermore, if we choose τ1 = 1
3l and

τ2 = 1
486l , it takes K = O(κ log(κ)) inner-loop iterations to satisfy the stopping criterion. Therefore,

the total complexity is O(κl∆ϵ−2 log κ).
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Proof. We separate the proof into two parts: 1) outer-loop complexity 2) inner-loop conver-
gence rate.

Outer-loop: We still denote gt+1 = gap f̂t
(xt+1, yt+1). First, note that

∥∇Φ(xt+1)∥2 ≤ 2∥∇Φ(xt+1)−∇Φ(x̂t)∥2 + 2∥∇Φ(x̂t)∥2

≤ 2
(

2l2

µ

)
∥xt+1 − x̂t∥2 + 2∥∇Φ1/2l(xt)∥2

≤ 16l3

µ2 gt+1 + 2∥∇Φ1/2l(xt)∥2. (4.48)

where in the second inequality we use Lemma 4.6.1 and Lemma 4.3 in [Drusvyatskiy and
Paquette, 2019]. Summing from t = 0 to T − 1, we have

T−1

∑
t=0
∥∇Φ(xt+1)∥2 ≤ 16l3

µ2

T−1

∑
t=0

gt+1 + 2
T−1

∑
t=0
∥∇Φ1/2l(xt)∥2. (4.49)

Applying (4.45), we have
T−1

∑
t=0
∥∇Φ(xt+1)∥2 ≤

[
16l3

µ2 ·
12κ2β

l(1− 72κ2β)
+ 2
] T−1

∑
t=1
∥∇Φ1/2l(xt)∥2+

16l3

µ2 ·
18κ2β

1− 72κ2β
∆ +

16l3

µ2 ·
36κβ

1− 72κ2β
a0,

With β = 1
264κ4 , we have

T−1

∑
t=0
∥∇Φ(xt+1)∥2 ≤ 3

T−1

∑
t=1
∥∇Φ1/2l(xt)∥2 +

3l
2

∆ + 3la0.

Applying Lemma 4.6.8,

1
T

T

∑
t=1
∥∇Φ(xt+1)∥2 ≤ 19l

T
∆ +

6l
T

a0.

Inner-loop: The objective of auxiliary problem minx maxy f̂t(x, y) ≜ f (x, y) + l∥x− xt
0∥2

is 3l-smooth and (l, µ)-SC-PL. We denote the dual function of the auxiliary problem by
Ψ̂t(y) = minx f̂t(x, y). We also define

Pt
k ≜

[
max

y
Ψ̂t(y)− Ψ̂t(yt

k)

]
+

1
10

[
f̂t(xt

k, yt
k)− Ψ̂t(yt

k)
]

.

By Theorem 4.6.4, AGDA with stepsizes τ1 = 1
3l and τ2 = l2

18(3l)3 = 1
486l satisfies

Pt
k ≤

(
1− µ

972l

)k
Pt

0.

We denote xt
∗(y) = argminx f̂t(x, y). We note that

∥xt
k − x̂t∥2 =2∥xt

k − xt
∗(y

t
k)∥2 + 2∥xt

∗(y
t
k)− x̂t∥2

=2∥xt
k − xt

∗(y
t
k)∥2 + 2∥xt

∗(y
t
k)− xt

∗(ŷ
t)∥2
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≤4
l

[
f̂t(xt

k, yt
k)− Ψ̂t(yt

k)
]
+ 2

(
3l
µ

)2

∥yt
k − ŷt∥2

≤4
l

[
f̂t(xt

k, yt
k)− Ψ̂t(yt

k)
]
+

36l2

µ3 [Ψ̂t(ŷt)− Ψ̂t(yt
k)]

≤
(

40
l
+

36l2

µ3

)(
1− µ

972l

)k
Pt

0, (4.50)

where in the first inequality we use l-strong convexity of f̂t(·, yt
k) and Lemma 4.6.1, and in

the second inequality we use µ-PL of Ψ̂t and Lemma 4.6.2. Since Φ̂t is smooth by Lemma
4.6.3,

Φ̂t(xt
k)− Φ̂t(x̂t) ≤ 2(3l)2

2µ
∥xt

k − x̂t∥2 ≤ 9l2

µ

(
40
l
+

36l2

µ3

)(
1− µ

972l

)k
Pt

0. (4.51)

Therefore,

gap f̂t
(xt

k, yt
k) = Φ̂t(xt

k)− Φ̂t(x̂t) + Ψ̂t(ŷt)− Ψ̂t(yt
k) ≤

[
9l2

µ

(
40
l
+

36l2

µ3

)
+ 1
] (

1− µ

972l

)k
Pt

0

≤754κ4
(

1− 1
972κ

)k

gap f̂t
(xt

0, yt
0).

where in the last inequality we note that Pt
0 ≤ 11

10 gap f̂t
(xt

0, yt
0). So after K = O(κ log(κ))

iterations of AGDA, the stopping criterion gap f̂t
(xt

k, yt
k) ≤ β gap f̂t

(xt
0, yt

0) can be satisfied.

Remark 4.6.10. The theorem above implies that Catalyst-AGDA can achieve the complexity of
Õ(κl∆ϵ−2) in the deterministic setting, which is comparable to the complexity of Smoothed-AGDA
up to a logarithmic term in κ.





5
PA R A M E T E R - A G N O S T I C N O N C O N V E X M I N I M A X O P T I M I Z AT I O N

Adaptive algorithms like AdaGrad and AMSGrad are successful in nonconvex opti-
mization owing to their parameter-agnostic ability – requiring no a priori knowledge about
problem-specific parameters nor tuning of learning rates. However, when it comes to
nonconvex minimax optimization, direct extensions of such adaptive optimizers without
proper time-scale separation may fail to work in practice. We provide such an example prov-
ing that the simple combination of Gradient Descent Ascent (GDA) with adaptive stepsizes
can diverge if the primal-dual stepsize ratio is not carefully chosen; hence, a fortiori,
such adaptive extensions are not parameter-agnostic. To address the issue, we formally
introduce a Nested Adaptive framework, NeAda for short, that carries an inner loop for
adaptively maximizing the dual variable with controllable stopping criteria and an outer
loop for adaptively minimizing the primal variable. Such a mechanism can be equipped
with off-the-shelf adaptive optimizers and automatically balance the progress in the primal
and dual variables. Theoretically, for nonconvex-strongly-concave minimax problems, we
show that NeAda with AdaGrad stepsizes can achieve the near-optimal Õ(ϵ−2) and Õ(ϵ−4)

gradient complexities respectively in the deterministic and stochastic settings, without prior
information on the problem’s smoothness and strong concavity parameters. To the best
of our knowledge, this is the first algorithm that simultaneously achieves near-optimal
convergence rates and parameter-agnostic adaptation in the nonconvex minimax setting.

5.1 overview

Adaptive gradient methods, whose stepsizes and search directions are adjusted based on
past gradients, have received phenomenal popularity and are proven successful in a variety
of large-scale machine learning applications. Prominent examples include AdaGrad [Duchi
et al., 2011], RMSProp [Hinton et al., 2012], AdaDelta [Zeiler, 2012], Adam [Kingma
and Ba, 2015], and AMSGrad [Reddi et al., 2019], just to name a few. Their empirical
success is especially pronounced for nonconvex optimization such as training deep neural
networks. Besides improved performance, being parameter-agnostic is another important
trait of adaptive methods. Unlike (stochastic) gradient descent, adaptive methods often
do not require a priori knowledge about problem-specific parameters (such as Lipschitz
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constants, smoothness, etc.).1 On the theoretical front, some adaptive methods can achieve
nearly the same convergence guarantees as (stochastic) gradient descent [Duchi et al., 2011,
Ward et al., 2019, Reddi et al., 2019].

Recently, adaptive methods have sprung up for minimax optimization:

min
x∈Rd

max
y∈Y

f (x, y) ≜ E[F(x, y; ξ)], (5.1)

where f is l-Lipschitz smooth jointly in x and y, Y is closed and convex, and ξ is a random
vector. A common practice is to simply combine adaptive stepsizes with popular minimax
optimization algorithms such as Gradient Descent Ascent (GDA), extragradient method
(EG) and the like; see e.g., [Gidel et al., 2018, Gulrajani et al., 2017, Goodfellow, 2016]. It is
worth noting that these methods are reported successful in some applications yet at other
times can suffer from training instability. In recent years, theoretical behaviors of such
adaptive methods are extensively studied for convex-concave minimax optimization; see
e.g., [Bach and Levy, 2019, Antonakopoulos et al., 2019, Antonakopoulos, 2021, Ene and
Nguyen, 2020, Stonyakin et al., 2018, Gasnikov et al., 2019, Malitsky, 2020, Diakonikolas,
2020]. However, for minimax optimization in the important nonconvex regime, little theory
related to adaptive methods is known.

Unlike the convex-concave setting, a key challenge for nonconvex minimax optimization
lies in the necessity of a problem-specific time-scale separation of the learning rates between the
min-player and max-player when GDA or EG methods are applied, as proven in [Yang et al.,
2022b, Lin et al., 2020a, Sebbouh et al., 2022, Boţ and Böhm, 2020]. This makes the design
of adaptive methods fundamentally different from and more challenging than nonconvex
minimization. Several recent attempts [Guo et al., 2021a, Huang and Huang, 2021, Huang
et al., 2021] studied adaptive methods for nonconvex-strongly-concave minimax problems;
yet, they all require explicit knowledge of the problems’ smoothness and strong concavity
parameters to maintain a stepsize ratio proportional to the condition number. Such a
requirement evidently undermines the parameter-agnostic trait of adaptive methods. This
raises a two interesting questions: (1) Without a problem-dependent stepsize ratio, does simple
combination of GDA and adaptive stepsizes still converge? (2) Can we design an adaptive algorithm
for nonconvex minimax optimization that is truly parameter-agnostic and provably convergent?

In this chapter, we address these questions and make the following key contributions:

• We investigate two generic frameworks for adaptive minimax optimization: one is a
simple (non-nested) adaptive framework, which performs one step of update of x
and y simultaneously with adaptive gradients; the other is Nested Adaptive (NeAda)
framework, which performs multiple updates of y after one update of x, each with

1 For distinction, we use “parameter-agnostic” to describe algorithms that do not ask for problem-specific
parameters in setting their stepsizes or hyperparameters; we refer to "adaptive algorithms" as methods whose
stepsizes are based on the previously observed gradients.
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Figure 5.1: Comparison between the two families of non-nested and nested adaptive methods on
function f (x, y) = − 1

2 y2 + 2xy− 2x2 with deterministic gradient oracles. r = ηy/ηx

is a pre-fixed learning rate ratio.

adaptive gradients. Both frameworks allow flexible choices of adaptive mechanisms
such as Adam, AMSGrad and AdaGrad. We provide an example proving that the
simple adaptive framework can fail to converge without setting an appropriate
stepsize ratio; this applies to any of the adaptive mechanisms mentioned above, even
in the noiseless setting. In contrast, the NeAda framework is less sensitive to the
stepsize ratio, as numerically illustrated in Figure 5.1.

• We provide the convergence analysis for a representative of NeAda that uses Ada-
Grad stepsizes for x and a convergent adaptive optimizer for y, in terms of nonconvex-
strongly-concave minimax problems. Notably, the convergence of this general scheme
does not require to know any problem parameters and does not assume the bounded
gradients. We demonstrate that NeAda is able to achieve Õ(ϵ−2) oracle complexity
for the deterministic setting and Õ(ϵ−4) for the stochastic setting to converge to
ϵ-stationary point, matching best known bounds. To the best of our knowledge, this
seems to be the first adaptive framework for nonconvex minimax optimization that
is provably convergent and parameter-agnostic.

• We further make two complementary contributions, which can be of independent
interest. First, we propose a general AdaGrad-type stepsize for strongly-convex prob-
lems without knowing the strong convexity parameters, and derive a convergence
rate comparable to SGD. It can serve as a subroutine for NeAda. Second, we provide
a high probability convergence result for the primal variable of NeAda under a
subGaussian assumption.

• Finally, we numerically validate the robustness of the NeAda framework on several
test functions compared to the non-nested adaptive framework, and demonstrate the
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effectiveness of the NeAda framework on distributionally robust optimization task
with a real dataset.

5.1.1 Related work

adaptive algorithms . Duchi et al. [2011] introduce AdaGrad for convex online
learning and achieve O(

√
T) regrets. Li and Orabona [2019] and Ward et al. [2019] show

an Õ(ϵ−4) complexity for AdaGrad in the nonconvex stochastic optimization. There are
an extensive number of works on AdaGrad-type methods; to list a few, [Levy et al.,
2018, Antonakopoulos and Mertikopoulos, 2021, Kavis et al., 2019, Orabona and Pál, 2018].
Another family of algorithms uses more aggressive stepsizes of exponential moving average
of the past gradients, such as Adam [Kingma and Ba, 2015] and RMSProp [Hinton et al.,
2012]. Reddi et al. [2019] point out the non-convergence of Adam and provide a remedy
with non-increasing stepsizes. There is a surge in the study of Adam-type algorithms due
to their popularity in the deep neural network training [Zaheer et al., 2018, Chen et al.,
2019, Liu et al., 2020c]. Some work provides the convergence results for adaptive methods
in the strongly-convex optimization [Wang et al., 2020a, Levy, 2017, Mukkamala and Hein,
2017]. Line search and stochastic line search are another effective strategy that can detect
the objective’s curvature and have received much attention [Vaswani et al., 2019, 2021,
2020]. Notably, many adaptive algorithms are parameter-agnostic [Duchi et al., 2011, Reddi
et al., 2019, Ward et al., 2019].

adaptive algorithms in minimax optimization. There exist many adaptive
and parameter-agnostic methods designed for convex-concave minimax optimization as a
special case of monotone variational inequality [Bach and Levy, 2019, Antonakopoulos
et al., 2019, Antonakopoulos, 2021, Ene and Nguyen, 2020, Stonyakin et al., 2018, Gasnikov
et al., 2019, Malitsky, 2020, Diakonikolas, 2020]. Most of them combine extragradient
method, mirror prox [Nemirovski, 2004] or the like, with AdaGrad mechanism. Liu et al.
[2019] and Dou and Li [2021] relax the convexity-concavity assumption to the regime where
Minty variational inequality (MVI) has a solution. In these settings, time-scale separation
of learning rates is not required even for non-adaptive algorithms. For nonconvex-strongly-
concave problems, Huang and Huang [2021], Huang et al. [2021], Guo et al. [2021a] propose
adaptive methods, which set the learning rates based on knowledge about smoothness
and strong-concavity modulus and the bounds for adaptive stepsizes.
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5.2 non-nested and nested adaptive methods

In this subchapter, we investigate two generic frameworks that can incorporate most
existing adaptive methods into minimax optimization. We remark that many variants
encapsulated in these two families are already widely used in practice, such as training
of GAN [Goodfellow, 2016], distributionally robust optimization [Sinha et al., 2018], etc.
These two frameworks, coined as non-nested and nested adaptive methods, can be viewed
as adaptive counterparts of GDA and GDmax. We aim to illustrate the difference between
these two adaptive families, even though GDA and GDmax are often considered “twins”.

non-nested adaptive methods . In Algorithm 9, non-nested methods update the
primal and dual variables in a symmetric way. Weighted gradients mx

t and my
t are the

moving average of the past stochastic gradients with the momentum parameters βx and

βy. The effective stepsizes of x and y are ηx/
√

vx
t and ηy/

√
vy

t , where the division is taken
coordinate-wise. We refer to ηx and ηy as learning rates, and vx

t , vy
t are some average of

squared-past gradients through function ψ. Many popular choices of adaptive stepsizes
are captured in this framework, see also [Reddi et al., 2019]:

(GDA) β = 0; ψ
(
v0, {g2

i }t
i=0
)
= 1, (AdaGrad) β = 0; ψ

(
v0, {g2

i }t
i=0
)
= v0 +

t

∑
i=0

g2
i ,

(Adam) ψ
(
v0, {g2

i }t
i=0
)
= γt+1v0 + (1− γ)

t

∑
i=0

γt−ig2
i ,

(AMSGrad) ψ
(
v0, {g2

i }t
i=0
)
= max

m=0,...,t
γm+1v0 + (1− γ)

m

∑
i=0

γm−ig2
i .

nested adaptive (neada) methods . NeAda, presented in Algorithm 10, has a
nesting inner loop to maximize y until some stopping criterion is reached (see details in
Chapter 5.3). Instead of using a fixed number of inner iterations or a fixed target accuracy
as in GDmax [Lin et al., 2020a, Nouiehed et al., 2019], NeAda gradually increases the
accuracy of the inner loop as the outer loop proceeds to make it fully adaptive.

We refer to the ratio between two learning rates, i.e. ηy/ηx, as the two-time-scale. The
current analysis of GDA in nonconvex-strongly-concave setting requires two-time-scale
to be proportional with the condition number κ = l/µ, where l and µ are Lipschitz
smoothness and strongly-concavity modulus [Lin et al., 2020a, Yang et al., 2022b]. We
provide an example showing that the problem-dependent two-time-scale is necessary for
GDA and most non-nested methods even in the deterministic setting.
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Algorithm 9 Non-nested Adaptive
Method

1: Input: x0 and y0

2: for t = 0, 1, 2, ... do

3: sample ξt and let

gx
t = ∇xF(xt, yt; ξt) and

gy
t = ∇yF(xt, yt; ξt)

4: // update the first moment

mx
t+1 = βxmx

t + (1− βx)gx
t and

my
t+1 = βymy

t + (1− βy)gy
t

5: // update the second moment

vx
t+1 = ψ

(
vx

0 , {(gx
i )

2}t
i=0

)
and

vy
t+1 = ψ

(
vy

0, {(gy
i )

2}t
i=0

)

6: // update variables

xt+1 = xt − ηx√
vx

t+1
mx

t+1 and

yt+1 = yt +
ηy√
vy

t+1

my
t+1

7: end for

Algorithm 10 Nested Adaptive (NeAda)
Method

1: Input: x0 and y0
0

2: for t = 0, 1, 2, ... do

3: for k = 0, 1, 2, ... until a stopping criterion

is satisfied do

4: sample ξ̂k
t and gy

t,k = ∇yF(xt, yk
t ; ξ̂k

t )

5: my
t,k+1 = βymy

t,k + (1− βy)gy
t,k

6: vy
t,k+1 = ψy

(
vy

t,0, {(gy
t,i)

2}k
i=0

)

7: yk+1
t = yk

t +
ηy

√
vy

t,k+1

my
t,k+1

8: end for

9: vy
t+1,0 = vy

t,k+1 and my
t+1,0 = my

t,k+1

10: sample ξt and gx
t = ∇xF(xt, yk+1

t ; ξt)

11: mx
t+1 = βxmx

t + (1− βx)gx
t

12: vx
t+1 = ψx (vx

0 , {(gx
i )

2}t
i=0

)

13: xt+1 = xt − ηx√
vx

t+1
mx

t+1

14: end for

Lemma 5.2.1. Consider the function f (x, y) = − 1
2 y2 + Lxy− L2

2 x2 in the deterministic setting.
Let rηx = ηy. (1) GDA will not converge to the stationary point when r ≤ L2:

∇x f (xT, yT) = ∇x f (x0, y0)
T−1

∏
t=0

[
1 + ηx(L2 − r)

]
.

(2) Assume the averaging function ψx and ψy are the same, and satisfy that for any τ, if vx
t = τvy

t

and (gx
t )

2 = τ(gy
t )

2 then vx
t+1 = τvy

t+1. With βx = βy, vx
0 = vy

0 = 0 and mx
0 = my

0 = 0 (which
are commonly used in practice), non-nested adaptive method will not converge when r ≤ L:

∇x f (xT, yT) ≥ ∇x f (x0, y0)
T−1

∏
t=0

[
1 +

Lηx
√

vx
t
(1− βx)(L− r)

]
.

When r = L, ∇x f (xt, yt) = ∇x f (x0, y0) for all t.

Remark 5.2.2. Most popular adaptive stepsizes we mentioned before, such as Adam, AMSGrad
and AdaGrad, have averaging functions satisfying the assumption in the lemma. Any point on
the line y = Lx is a stationary point for the above function, and the distance from a point to
this line is proportional to its gradient norm, so the divergence in gradient norm will also implies
that of iterates. In the proof, we will also show that the averaged or best iterate will still diverge
under the same condition. The lemma implies that for any given time-scale r, there exists a problem
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for which the non-nested algorithm does not converge to the stationary point, so they are not
parameter-agnostic.

We compare non-nested and nested methods combined with different stepsizes schemes:
Adam, AMSGrad, AdaGrad and fixed stepsize, on the function: − 1

2 y2 + 2xy− 2x2. In the
experiments of this subchapter, we halt the inner loop when the (stochastic) gradient about
y is smaller than 1/t or the number iteration is greater than t. We observe from Figure 5.1
that the thresholds for the non-convergence of non-nested methods (r = 2 for adaptive
methods and r = 4 for GDA) are exactly as predicted by the lemma. Although the adaptive
methods admit a smaller two-time-scale threshold than GDA in this example, it is not a
universal phenomenon from our experiments in Chapter 5.4. Interestingly, nested adaptive
methods are robust to different two-time-scales and always have the trend to converge to
the stationary point.

5.3 convergence analysis of neada-adagrad

In this subchapter, we reveal the secret behind the robust performance of NeAda by
providing the convergence guarantee for a representative member of the family. For the
sake of simplicity and clarity, we mainly focus on NeAda with AdaGrad. The Adam-type
mechanism can suffer from non-convergence already for nonconvex minimization despite
its good performance in practice. Our result also sheds light on the analysis of other more
sophisticated members such as AMSGrad in the family.

neada-adagrad : Presented in Algorithm 11, NeAda-AdaGrad adopts the scalar
AdaGrad scheme for the x-update in the outer loop and uses mini-batch in the stochastic
setting. For the inner loop for maximizing y, we run some adaptive algorithm for maximiz-
ing y until some easily checkable stopping criterion is satisfied. We suggest two criteria
here: at t-th outer loop: (I) the squared gradient mapping norm about y is smaller than
1/(t + 1) in the deterministic setting, (II) the number of inner loop iterations reaches t + 1
in the stochastic setting.

For the purpose of theoretical analysis, we mainly focus on the minimax problem of the
form (5.1) under the nonconvex-strongly-concave (NC-SC) setting2, formally stated in the
following assumptions.

Assumption 13 (Lipschitz smoothness). There exists a positive constant l > 0 such that

max
{
∥∇x f (x1, y1)−∇x f (x2, y2)∥ ,

∥∥∇y f (x1, y1)−∇y f (x2, y2)
∥∥ } ≤ l[∥x1 − x2∥+ ∥y1 − y2∥],

2 Note that for other nonconvex minimax optimization beyond the NC-SC setting, even the convergence of
non-adaptive gradient methods has not been fully understood.
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Algorithm 11 NeAda-AdaGrad
1: Input: (x0, y−1), v0 > 0, η > 0.

2: for t = 0, 1, 2, ..., T − 1 do

3: from yt−1 run an adaptive algorithm A for maximizing f (xt, ·) to obtain yt

(a) stopping criterion I (deterministic): stop when ∥yt − ProjY (yt +∇y f (xt, yt))∥2 ≤
1

t+1

(b) stopping criterion II (stochastic): stop after t + 1 inner loop iterations.

4: vt+1 = vt +
∥∥∥ 1

M ∑M
i=1∇xF(xt, yt; ξ i

t)
∥∥∥

2
where {ξ i

t}M
i=1 are i.i.d samples

5: xt+1 = xt − η√
vt+1

(
1
M ∑M

i=1∇xF(xt, yt; ξ i
t)
)

6: end for

holds for all x1, x2 ∈ Rd, y1, y2 ∈ Y .

Assumption 14 (Strong-concavity in y). There exists µ > 0 such that: f (x, y1) ≥ f (x, y2) +

⟨∇y f (x, y1), y1 − y2⟩+ µ
2 ∥y1 − y2∥2, ∀x ∈ Rd, y1, y2 ∈ Y .

For simplicity of notation, define κ = l/µ as the condition number, Φ(x) = maxy∈Y f (x, y)
as the primal function, and y∗(x) = argmaxY f (x, y) as the optimal y w.r.t x. Since the
objective is nonconvex about x, we aim at finding an ϵ-stationary point (xt, yt) such that
E∥∇x f (xt, yt)∥ ≤ ϵ and E∥yt − y∗(xt)∥ ≤ ϵ, where the expectation is taken over the
randomness in the algorithm.

5.3.1 Convergence in Deterministic and Stochastic settings

Assumption 15 (Stochastic gradients). ∇xF(x, y; ξ) and ∇yF(x, y; ξ) are unbiased stochastic
estimators of ∇x f (x, y) and ∇y f (x, y) and have variances bounded by σ2 ≥ 0.

We assume the unbiased stochastic gradients have the variance σ2, and the problem
reduces to the deterministic setting when σ = 0. Now we provide a general analysis of the
convergence for any adaptive optimizer used in the inner loop.

Theorem 5.3.1. Define the expected cumulative suboptimality of inner loops as E = E
[
∑T−1

t=0
l2∥yt−y∗(xt)∥2

2
√

v0

]
.

Under Assumptions 13, 14 and 15, the output from Algorithm 11 satisfies

E



√√√√ 1

T

T−1

∑
t=0
∥∇x f (xt, yt)∥2


 ≤ 2(A + E)√

T
+

v
1
4
0

√
A + E√
T

+
2
√
(A + E)σ
(MT)

1
4

,

where A = 2∆
η +

(
4σ√

M
+ 2κlη

) [
1 + 2 log

(
Poly

(
T, E , ∆

η , σ√
M

, κlη, v0, 1
v0

))]
.
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Remark 5.3.2. The general analysis is built upon milder assumptions than existing work on
AdaGrad in nonconvex optimization, not requiring either bounded gradient in [Ward et al., 2019]
or prior knowledge about the smoothness modulus in [Li and Orabona, 2019]. This theorem implies
the algorithm attains convergence for the nonconvex variable x with any constant η > 0 and
v0 > 0 that does not depend on any problem parameter, so it is parameter-agnostic.

Remark 5.3.3. Another benefit of this analysis is that the variance σ appears in the leading term
T−

1
4 , which means the convergence rate can interpolate between the deterministic and stochastic

settings. It implies a complexity of Õ(ϵ−2) in the deterministic setting and Õ(ϵ−4) in the stochastic
setting for the primal variable as long as the accumulated suboptimality for the inner-loops E is
Õ(1), regardless of the batch size M. However, M can control the number of outer loops and there
affect the sample complexity for the dual variable.

In the next two theorems, we derive the total complexities, in the deterministic and
stochastic settings, of finding ϵ-stationary point by controlling the cumulative suboptimality
E in Theorem 5.3.1 for subroutine A with specific convergence rate. In fact, we can also use
any off-the-shelf adaptive optimizer for solving the inner maximization problem up to the
desired accuracy. Note that (stochastic) GDmax fixes each inner-loop’s accuracy or steps
to be related with µ, ℓ and ϵ so that E can be easily bounded [Lin et al., 2020a, Nouiehed
et al., 2019]. In contrast, since we do not have access to the problem parameters and ϵ,
Algorithm 11 gradually increases the inner-loop accuracy. In the proof of the following
theorems, we will show that with our proposed stopping criteria and desired subroutines,
E is bounded by O(log T).

Theorem 5.3.4 (deterministic). Suppose we have a linearly-convergent subroutine A for maxi-
mizing any strongly concave function h(·):

∥yk − y∗∥2 ≤ a1(1− a2)
k∥y0 − y∗∥2

where yk is k-th iterate, y∗ is the optimal solution, and a1 > 0 and 0 < a2 < 1 are constants
that can depend on the parameters of h. Under the same setting as Theorem 5.3.1 with σ = 0, for
Algorithm 11 with M = 1 and a subroutineA under stopping criterion I, there exists t∗ ≤ Õ

(
ϵ−2)

such that (xt∗ , yt∗) is an ϵ-stationary point. Therefore, the total gradient complexity is Õ
(
ϵ−2).

Remark 5.3.5. This complexity is optimal in ϵ up to logarithmic term [Zhang et al., 2021b],
similar to GDA [Lin et al., 2020a]. Note that many adaptive and parameter-agnostic algorithms
can achieve the linear rate when solving smooth and strongly concave maximization problems; to
list a few, gradient ascent with backtracking line-search [Vaswani et al., 2019], SC-AdaNGD [Levy,
2017] and polyak stepsize [Hazan and Kakade, 2019, Loizou et al., 2021, Orvieto et al., 2022] 3.

3 Levy [2017] needs to know the diameter of Y . Hazan and Kakade [2019], Loizou et al. [2021], Orvieto et al.
[2022] use polyak stepsize which requires knowledge of the minimum or lower bound of the function value.
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Here we can also pick more general subproblem accuracy in criterion I that only needs to scale with
1/t.

Theorem 5.3.6 (stochastic). Suppose we have a sub-linearly-convergent subroutine A for maxi-
mizing any strongly concave function h(·): after K = k + 1 iterations

E∥yK − y∗∥2 ≤ b1∥y0 − y∗∥2 + b2

k
,

where yk is k-th iterate, y∗ is the optimal solution, and b1, b2 > 0 are constants that can depend on
the parameters of h. Under the same setting as Theorem 5.3.1, for Algorithm 11 with M = ϵ−2 and
subroutine A under the stopping criterion II, there exists t∗ ≤ Õ

(
ϵ−2) such that (xt∗ , yt∗) is an

ϵ-stationary point. Therefore, the total stochastic gradient complexity is Õ
(
ϵ−4) .

Remark 5.3.7. This Õ
(
ϵ−4) complexity is nearly optimal in the dependence of ϵ for stochastic

NC-SC problems [Li et al., 2021]. Here we set M = ϵ−2 for the simplicity of exposition, and a
similar result also holds for gradually increasing M. The sublinear rate specified above for solving
the stochastic strongly convex subproblem can be achieved by several existing parameter-agnostic
algorithms under some additional assumptions, such as FreeRexMomentum [Cutkosky and
Boahen, 2017] and Coin-Betting [Cutkosky and Orabona, 2018]4. Parameter-free SGD [Carmon
and Hinder, 2022] is partially parameter-agnostic that only requires the stochastic gradient bound
rather than the strongly-convexity parameter. Mukkamala and Hein [2017] and Wang et al. [2020a]
introduce the variants of AdaGrad, RMSProp and Adam for strongly-convex online learning, but
they need to know both gradient bounds and strongly-convexity parameter for setting stepsizes. We
will show in the next subchapter that AdaGrad with a slower decaying rate is parameter-agnostic.
We note that the analysis of this theorem is not the simple gluing of the outer loop and inner loop
complexity, but requires more sophisticated control of the cumulative suboptimality E .

5.3.2 Generalized AdaGrad for Strongly-Convex Subproblem

We now introduce the generalized AdaGrad for minimizing strongly convex objectives,
which can serve as an adaptive subroutine for Algorithm 11, without requiring knowledge
on the strongly convex parameter. We analyze it for the more general online convex
optimization setting: at each round t, the learner updates its decision xt, then it suffers
a loss ft(xt) and receives the sub-gradient of ft. The generalized AdaGrad, described in
Algorithm 12, keeps the cumulative gradient norm vt and takes the stepsize η/vα

t with

AdaGrad achieves the linear rate if the learning rate is smaller than O(1/l), and O(1/k) rate otherwise [Xie
et al., 2020].

4 FreeRexMomentum [Cutkosky and Boahen, 2017] and Coin-Betting [Cutkosky and Orabona, 2018] can
achieves O(log k/k) convergence rate when the stochastic gradient is bounded in Y . If the subroutine has
additional logarithmic dependence, it suffices to run the subroutine for t log2(t) times using criterion II (see
Appendix 5.5.2).
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a decaying rate α ∈ (0, 1]. When α = 1/2, it reduces to the scalar version of the original
AdaGrad [Duchi et al., 2011]; when α = 1, it reduced to the scalar version of SC-AdaGrad
[Mukkamala and Hein, 2017].

Algorithm 12 Generalized AdaGrad for Strongly-convex Online Learning
1: Input: x0, v0 > 0 and 0 < α ≤ 1 .

2: for t = 0, 1, 2, ... do

3: receive gt ∈ ∂ ft(xt)

4: vt+1 = vt + ∥gt∥2

5: xt+1 = PX
(

xt − η
vα

t+1
gt

)

6: end for

Theorem 5.3.8. Consider Algorithm 12 for online convex optimization and assume that (i) ft is
continuous and µ-strongly convex, (ii) X is convex and compact with diameter D; (iii) ∥gt∥ ≤ G
for every t. Then for 0 < α < 1 with any η > 0, the regret of Algorithm 12 satisfies:

max
x∈X

T−1

∑
t=0

( ft(xt)− ft(x)) ≤ cα + dα

(
v0 +

T−1

∑
t=1
∥gt∥2

)1−α

,

and for α = 1 with η ≥ G2

2µ ,

max
x∈X

T−1

∑
t=0

( ft(xt)− ft(x)) ≤ cα + dα log

(
v0 +

T−1

∑
t=1
∥gt∥2

)
,

where cα and dα are constants depending on the problem parameters, α and η.

The theorem implies a logarithmic regret for the case α = 1, but the stepsize needs
knowledge about problem’s parameters µ and G; similar results are shown for SC-
AdaGrad [Mukkamala and Hein, 2017] and SAdam [Wang et al., 2020a]. When α < 1, the
algorithm becomes parameter-agnostic and attains an O(T1−α) regret. Such parameter-
agnostic phenomenon for smaller decaying rates is also observed for SGD in stochastic
optimization [Fontaine et al., 2021]. Proving the regret bound for the generalized AdaGrad
with α < 1 in the online setting is challenging, since the adversarial gt can lead to a
“sudden” change in the stepsize. In the proof, we bound the possible number of times such
“sudden” change could happen.

To the best of our knowledge, this is the first regret bound for adaptive methods with gen-
eral decaying rates in the strongly convex setting. By online-to-batch conversion [Kakade
and Tewari, 2008], it can be converted to O(T−α) rate in the strongly convex stochastic
optimization. Xie et al. [2020] prove the O(1/T) convergence rate, or a linear convergence
rate when the smoothness parameter is known, for AdaGrad with α = 1/2 in this setting,
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Figure 5.2: Comparison between the two families of non-nested and nested adaptive methods
on McCromick function with stochastic gradient oracles. σ = 0.01, ηy = 0.01 and
r = ηy/ηx.

but under a strong assumption — Restricted Uniform Inequality of Gradients (RUIG) —
that requires the loss function with respect to each sample ξ to satisfy the error bound
condition with some probability.

5.4 experiments

To evaluate the performance of NeAda, we conducted experiments on simple test
functions and a real-world application of distributional robustness optimization (DRO).
In all cases, we compare NeAda with the non-nested adaptive methods using the same
adaptive schemes. For notational simplicity, in all figure legends, we label the non-nested
methods with the names of the adaptive mechanisms used. We observe from all our
experiments that: 1) while non-nested adaptive methods can diverge without the proper
two-time-scale, NeAda with adaptive subroutine always converges; 2) when the non-nested
method converges, NeAda can achieve comparable or even better performance.

5.4.1 Test functions

In Chapter 5.2, we have compared NeAda with non-nested methods on a quadratic
function in Figure 5.1 and the observations match Theorem 5.2.1. Now we consider a more
complicated function that is composed of McCormick function in x, a bilinear term, and a
quadratic term in y,

f (x, y) = sin(x1 + x2) + (x1 − x2)
2 − 3

2
x1 +

5
2

x2 + 1 + x1y1 + x2y2 −
1
2
(y2

1 + y2
2),
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For this function, we compare the adaptive frameworks in the stochastic setting with
Gaussian noise. As demonstrated in Figure 5.2, non-nested methods are sensitive to the
selection of the two-time-scale. When the learning rate ratio is too small, e.g., ηy/ηx = 0.01,
non-nested Adam, AMSGrad and GDA all fail to converge. We observe that GDA converges
when the ratio reaches 0.03, while non-nested Adam and AMSGrad still diverge until
0.05. Although non-nested adaptive methods require a smaller ratio than GDA in Lemma
5.2.1, this example illustrates that adaptive algorithms sometimes can be more sensitive to
the time separation. In comparison, NeAda with adaptive subroutine always converges
regardless of the learning rate ratio.

5.4.2 Distributional robustness optimization

To justify the effectiveness of NeAda on real-world applications, we carried out ex-
periments on distributionally robust optimization [Sinha et al., 2018], where the primal
variable is the model weights to be learned by minimizing the empirical loss while the
dual variable is the adversarial perturbed inputs. The dual variable problem targets finding
perturbations that maximize the empirical loss but not far away from the original inputs.
Formally, for model weights x and adversarial samples y, we have:

min
x

max
y=[y1,...,yn]

f (x, y), where f (x, y) :=
1
n

n

∑
i=1

fi(x, yi)− γ∥yi − vi∥2,

where n is the total number of training samples, vi is the i-th original input and fi is the loss
function for the i-th sample. γ is a trade-off parameter between the empirical loss and the
magnitude of perturbations. When γ is large enough, this problem is nonconvex-strongly-
concave, and following the same setting as [Sinha et al., 2018, Sebbouh et al., 2022], we set
γ = 1.3. For NeAda, we use both stopping criterion I with stochastic gradient and criterion
II in our experiments. For the results, we report the training loss and the test accuracy on
adversarial samples generated from fast gradient sign method (FGSM) [Goodfellow et al.,
2015]. FGSM can be formulated as

xadv = x + ϵ · sign (∇x f (x)) ,

where ϵ is the noise level. To get reasonable test accuracy, NeAda with Adam as subroutine
is compared with Adam with fixed 15 inner loop iterations, which is consistent with the
choice of inner loop steps in [Sinha et al., 2018], and such choice obtains much better
test accuracy than the completely non-nested Adam. Our experiments include a synthetic
dataset and MNIST [LeCun, 1998] with code modified from [Lv, 2019].
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Figure 5.3: Experimental results of distributional robustness optimization task on a synthetic
dataset.

results on synthetic dataset. We use the same data generation process as
in [Sinha et al., 2018]. The inputs are 2-dimensional i.i.d. random Guassian vectors, i.e.,
xi ∼ N (0, I2), where I2 is the 2× 2 identity matrix. The corresponding yi is defined as
yi = sign(∥xi∥2 −

√
2). Data points with norm in range (

√
2/1.3, 1.3

√
2) are removed to

make the classification margin wide. 10000 training and 4000 test data points are generated
for our experiments. The model we use is a three-layer MLP with ELU activations.

As shown in Figure 5.3(a), when the learning rates are set to different scales, i.e.,
ηx = 0.01, ηy = 0.08 (red curves in the figure), both methods achieve reasonable test
errors. In this case, NeAda has higher test accuracy and reaches such accuracy faster than
Adam. If we change the learning rates to the same scale, i.e., ηx = 0.01, ηy = 0.01 (blue
curves in the figure), NeAda retains good accuracy while Adam drops to an unsatisfactory
performance. This demonstrates the adaptivity and less-sensitivity to learning rates of
NeAda. In addition, Figure 5.3(b) illustrates the convergence speeds on the loss function,
and NeAda (solid lines) always decreases the loss faster than Adam. Note that Adam with
the same learning rates converges to a lower loss but suffers from overfitting, as shown in
Figure 5.3(a) that its test accuracy is only about 68%.

results on mnist dataset. For MNIST, we use a convolutional neural network with
three convolutional layers and one final fully-connected layer. Following each convolutional
layer, ELU activation and batch normalization are used.

We compare NeAda with Adam under three different noise levels and the accuracy is
shown in Figures 5.4(a) to 5.4(c). Under all noise levels, NeAda outperforms Adam with
the same learning rates. When we have proper time-scale separation (the red curves), both
methods achieve good test accuracy, and NeAda achieves higher accuracy and converges
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Figure 5.4: Results of distributional robustness optimization task on MNIST. ϵ is the noise level.

faster. After we change to the same learning rates for the primal and dual variables (the
blue curves), the accuracy drop of NeAda is slighter compared to Adam, especially when
ϵ = 0.1. As for the training loss shown in Figure 5.4(d), NeAda (the solid curves) is always
faster at the beginning. We also observed that with proper time-scale separation, NeAda
reaches a lower loss.
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5.5 appendix

5.5.1 Helper Lemmas and Proofs for Chapter 5.2

A. Helper Lemmas

Lemma 5.5.1 (Lemma 4.3 in [Lin et al., 2020a] and Lemma A.5 in [Nouiehed et al., 2019]).
Under Assumption 13 and 14, define Φ(x) = maxy∈Y f (x, y). Define y∗(x) = argmaxy∈Y f (x, y).
Then y∗(·) is κ-Lipschitz with κ = l

µ , Φ(·) is L-smooth with L := l + lκ and ∇Φ(x) =

∇x f (x, y∗(x)).

Lemma 5.5.2. Let x1, ..., xT be a sequence of non-negative real numbers, x1 > 0 and 0 < α < 1.
Then we have (

T

∑
t=1

xt

)1−α

≤
T

∑
t=1

xt(
∑t

k=1 xk
)α ≤

1
1− α

(
T

∑
t=1

xt

)1−α

.

When α = 1, we have
T

∑
t=1

xt(
∑t

k=1 xk
)α ≤ 1 + log

(
∑t

t=1 xt

x1

)
.

Remark 5.5.3. The case α = 1/2 has been noticed in [Auer et al., 2002], and the upper bound in
the case α = 1 has already been noticed in [Ward et al., 2019]. Here we we extend it to 0 < α ≤ 1.

Proof. For the first inequality, we have

T

∑
t=1

xt(
∑t

k=1 xk
)α ≥

T

∑
t=1

xt(
∑T

k=1 xk

)α =
∑T

t=1 xt(
∑T

t=1 xt

)α =

(
T

∑
t=1

xt

)1−α

.

For the second inequality, we follow a similar procedure as in the proof of Lemma 3.5
of [Auer et al., 2002]. First consider the case 0 < α < 1. By Bernoulli’s inequality, as y ≤ 1
and 0 < α < 1, we have 1− (1− α)y ≥ (1− y)1−α. Denoting St = ∑t

k=1 xk and S0 = 0, by
replacing y with xt/St, we have

(1− α)
xt

St
≤ 1−

(
1− xt

St

)1−α

.

Multiplying both sides by S1−α
t , then we have

(1− α)
xt

Sα
t
≤ S1−α

t − S1−α
t−1 .

Summing over the inequalities for t = 1, ..., T gives us the desired result. For α = 1, it is
proved by [Ward et al., 2019].
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Proposition 3. If x2 ≤ (a1 + a2x) (a3 + a4 log(a5a1 + a5a2x)) with x, a1, a2, a3, a4, a5 ≥ 0 and
a2 > 0, then

x ≤ a1

a2
+ 16a3

2a2
4a5 + 3a2

2a2
3

Proof. The proof is similar to Lemma 6 in [Li and Orabona, 2019]. If a2x < a1, we have
x ≤ a1/a2. Assume a2x ≥ a1, then

x2 ≤ 2a2x(a3 + a4 log(2a5a2x)) ≤ 2a2x
(
a3 + a4

√
2a5a2x

)
,

which implies

x ≤ 2a2a3 + 2a2a4
√

2a5a2x =⇒ x2 ≤ 8a2
2a2

3 + 16a3
2a2

4a5x.

Solving this, we get

x ≤ 8a3
2a2

4a5 +
√

64a6
2a4

4a2
5 + 8a4

2a4
3 ≤ 16a3

2a2
4a5 + 3a2

2a2
3.

Proposition 4. Assume xt, at, bt > 0, for t = 0, 1, 2, ..., and xt+1 ≤ atxt + bt, then we have

xT ≤
(

T−1

∏
t=0

at

)
x0 +

T−2

∑
t=0

(
T−1

∏
i=t+1

ai

)
bt + bT−1, T ≥ 2

Proof. Let’s prove it by induction. It is obvious that this inequality holds for T = 2:

x2 = a1x1 + b1 = a1a0x0 + a1b0 + b1.

Assume this inequality holds for T, then

xT+1 ≤aT

[(
T−1

∏
t=0

at

)
x0 +

T−2

∑
t=0

(
T−1

∏
i=t+1

ai

)
bt + bT−1

]
+ bT

=

(
T

∏
t=0

at

)
x0 +

T−1

∑
t=0

(
T

∏
i=t+1

ai

)
bt + bT.

Lemma 5.5.4. Assume xt > 0, for t = 0, 1, 2, ..., and xt+1 = a1xt/(t + 1) + a2/(t + 1), then we
have

T

∑
t=0

xt ≤ a2(1 + log T) + a2ea1 + x0ea1 .

Proof. By Proposition 4, we have
T

∑
t=0

xt ≤x0 + (a1x0 + a2) +
T

∑
t=2

[(
t−1

∏
i=0

a1

i + 1

)
x0 +

t−2

∑
i=0

(
t−1

∏
j=i+1

a1

j + 1

)
a2

i + 1
+

a2

t

]

=x0 + x0

T

∑
t=1

t−1

∏
i=0

a1

i + 1
+

T

∑
t=2

[
t−2

∑
i=0

(
t−1

∏
j=i+1

a1

j + 1

)
a2

i + 1

]
+

T

∑
t=1

a2

t
. (5.2)
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We note that ∑T
t=1

a2
t ≤ a2(1 + log T) and

x0

T

∑
t=1

t−1

∏
i=0

a1

i + 1
= x0

T

∑
t=1

at
1

t!
≤ x0ea1 ,

where the last inequality can be derived from Taylor expansion of exponential function.
Then it remains to bound the third term on the right hand side of (5.2). We can upper
bound it by noticing

T

∑
t=2

[
t−2

∑
i=0

(
t−1

∏
j=i+1

a1

j + 1

)
a2

i + 1

]
=a2

T−1

∑
t=1

T−t

∑
i=1

(
i+t−1

∏
j=i

a1

j + 1

)
1
i

=a2

T−1

∑
t=1

at
1

T−t

∑
i=1

i+t

∏
j=i

1
j

=a2

T−1

∑
t=1

at
1

T−t

∑
i=1

1
t

(
i+t−1

∏
j=i

1
j
−

i+t

∏
j=i+1

1
j

)

=a2

T−1

∑
t=1

at
1
t

(
t

∏
j=1

1
j
−

T

∏
j=T−t+1

1
j

)
≤ a2

T−1

∑
t=1

at
1

t · (t!) ≤ a2ea1 ,

where in the third equality we use 1
t

(
∏i+t−1

j=i
1
j −∏i+t

j=i+1
1
j

)
= ∏i+t

j=i
1
j , the last inequality

can be derived from Taylor expansion of exponential function; and to see the first equality,
the left hand side is the sum of the following

a2 × a1
2

a2 × a1
2 × a1

3
a2
2 × a1

3

a2 × a1
2 × a1

3 × a1
4

a2
2 × a1

3 × a1
4

a2
3 × a1

4
...

...
. . .

a2 × a1
2 × · · · × a1

T−1
a2
2 × a1

3 × · · · × a1
T−1

a2
T−2 × a1

T−1

a2 × a1
2 × · · · × a1

T
a2
2 × a1

3 × · · · × a1
T

a2
T−2 × a1

T−1 × a1
T

a2
T−1 × a1

T ,

and on the right hand side we sum them by each diagonal.

B. Proofs for Chapter 5.2

Proof for Lemma 5.2.1. Note that ∇x f (x, y) = −L2x + Ly and ∇y f (x, y) = Lx− y. Then we
have

∇x f (xt+1, yt+1) = −L2xt+1 + Lyt+1

= −L2

[
xt −

ηx
√

vx
t

mx
t

]
+ L


yt +

rηx
√

vy
t

my
t
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= −L2xt + Lyt +
L2ηx
√

vx
t

mx
t +

Lrηx
√

vy
t

my
t .

gda . With vx
t = vy

t = 1, mx
t = −L2xt + Lyt and my

t = Lxt − yt,

∇x f (xt+1, yt+1) = −L2xt + Lyt + L2ηx(−L2xt + Lyt) + Lrηx(Lxt − yt)

= (−L2xt + Lyt)(1 + L2ηx − rηx)

= (1 + L2ηx − rηx)∇x f (xt, yt).

adaptive methods . Note that (gx
t )

2 = L2(gy
t )

2, so by our assumption, vx
t = L2vy

t for
all t. Also, with βx = βy, we have

mx
t + rmy

t = βxmx
t−1 + (1− βx)(−L2xt + Lyt) + rβxmy

t−1 + r(1− βx)(Lxt − yt)

= βx(mx
t−1 + rmy

t−1) +
(

1− r
L

)
(1− βx)∇x f (xt, yt).

Recursing this with

∇x f (xt+1, yt+1) = ∇x f (xt, yt) +
Lηx
√

vy
t

(mx
t + rmy

t ), and mx
0 = my

0 = 0,

when r ≤ L we have

∇x f (xT, yT) ≥ ∇x f (x0, y0)
T−1

∏
t=0

[
1 +

Lηx
√

vx
t
(1− βx)(L− r)

]
.

averaged and best iterate . We note that the distance from a point (x, y) to the line
y = Lx, the set of stationary point, is |Lx−y|√

L2+1
that is proportional to |∇x f (x, y)|. Therefore,

the iterate converges to the set of stationary point if and only if the gradient about x
converges to 0. This also explains the best iterate will not converge to the set of stationary
point for GDA with r ≤ L2 and for adaptive methods with r ≤ L. Average iterate will not
converge under the same condition by observing that if an iterate (xt, yt) is on the one side
of the line y = Lx, the next iterate (xt+1, yt+1) will stay on the same side. Without loss of
generality, assume (xt, yt) is on the right of the line y = Lx, i.e., yt < Lxt. By the update of
GDA,

xt+1 = xt + ηx(L2xt − Lyt), yt+1 = yt + rηx(Lxt − yt),

we have yt+1 < Lxt+1 as r ≤ L2. For adaptive methods, by the recursion of mx
t and my

t ,
if ys < Lxs for all s ≤ t, we have −mx

t > Lmy
t . The update of adaptive methods can be

written as:
xt+1 = xt +

ηx

L
√

vy
t

(−mx
t ), yt+1 = yt +

rηx
√

vy
t

my
t .
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Then yt+1 < Lxt+1 as r ≤ L2. Now we conclude that the iterate will always stay on the one
side of line y = Lx.

5.5.2 Proofs for Chapter 5.3

A. Proofs for NeAda-AdaGrad

proofs for Theorem 5 .3 .1

Proof. Part of the proof is motivated by [Ward et al., 2019]. By the smoothness of Φ from
Theorem 5.5.1, we have

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+ κl∥xt+1 − xt∥2

= Φ(xt)−
〈
∇Φ(xt),

η√
vt+1

(
1
M ∑

i
∇x f (xt, yt; ξ i

t)

)〉
+

κlη2

vt+1

∥∥∥∥∥
1
M ∑

i
∇x f (xt, yt; ξ i

t)

∥∥∥∥∥

2

.

Note that

Eξt

[〈
∇Φ(xt),∇x f (xt, yt)− 1

M ∑i∇x f (xt, yt; ξ i
t)
〉

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

]
= 0.

Therefore,

Eξt

[
Φ(xt+1)−Φ(xt)

η

]

≤ Eξt

[(
1√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
− 1√

vt+1

)〈
∇Φ(xt),

1
M ∑

i
∇x f (xt, yt; ξ i

t)

〉]
−

⟨∇Φ(xt),∇x f (xt, yt)⟩√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

+ κlηEξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
. (5.3)

Now we want to bound the first term on the right hand side and let’s denote it as K. First
we note that∥∥∥∥∥

1√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

− 1√
vt+1

∥∥∥∥∥

≤
∥∥∥∥∥

√
vt+1 −

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

∥∥∥∥∥

=

∥∥∥∥∥∥

(√
vt+1 −

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

) (√
vt+1 +

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

(√
vt+1 +

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)

∥∥∥∥∥∥
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=

∥∥∥∥∥∥

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2 − ∥∇x f (xt, yt)∥2 − σ2/M

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

(√
vt+1 +

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)

∥∥∥∥∥∥

=

∥∥∥∥∥∥

(∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥− ∥∇x f (xt, yt)∥

) (∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥+ ∥∇x f (xt, yt)∥

)
− σ2/M

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

(√
vt+1 +

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)

∥∥∥∥∥∥

≤ max
{∣∣∥∥ 1

M ∑i∇x f (xt, yt; ξ i
t)
∥∥− ∥∇x f (xt, yt)∥

∣∣
√

vt+1
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
,

σ/
√

M
√

vt+1
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M

}
,

where in the second equality we use the definition of vt. Therefore we have

K ≤ max

{
Eξt

[∣∣∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥− ∥∇x f (xt, yt)∥

∣∣ ∥∇Φ(xt)∥
∥∥ 1

M ∑i∇x f (xt, yt; ξ i
t)
∥∥2

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

]
,

Eξt




σ√
M
∥∇Φ(xt)∥

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

√
vt+1

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M



}

. (5.4)

By Young’s inequality ab ≤ 1
4λ a2 + λb2 with λ = σ2/M√

vt+∥∇x f (xt,yt)∥2+σ2/M
,

a =
|∥ 1

M ∑i∇x f (xt,yt;ξ i
t)∥−∥∇x f (xt,yt)∥|∥∇Φ(xt)∥√

vt+∥∇x f (xt,yt)∥2+σ2/M
and b =

∥ 1
M ∑i∇x f (xt,yt;ξ i

t)∥√
vt+1

, the first term on the

right hand side of (5.4) can be upper bounded by

Eξt



√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
4σ2/M

(∣∣∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥− ∥∇x f (xt, yt)∥

∣∣ ∥∇Φ(xt)∥√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)2

+

Eξt


 σ2/M√

vt + ∥∇x f (xt, yt)∥2 + σ2/M

(∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥

√
vt+1

)2



≤ ∥∇Φ(xt)∥2Eξt

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)−∇x f (xt, yt)
∥∥2

4σ2

M

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

+
σ√
M

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]

≤ ∥∇Φ(xt)∥2

4
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
+

σ√
M

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
.

Similarly, by Young’s Inequality with λ = σ2/M√
vt+∥∇x f (xt,yt)∥2+σ2/M

, a =
σ√
M
∥∇Φ(xt)∥√

vt+∥∇x f (xt,yt)∥2+σ2/M

and b =
∥ 1

M ∑i∇x f (xt,yt;ξ i
t)∥√

vt+1
, the second term on the right hand side of (5.4) can be upper

bounded by

Eξt



√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
4σ2/M

( σ√
M
∥∇Φ(xt)∥

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

)2

+

Eξt


 1√

vt + ∥∇x f (xt, yt)∥2 + σ2/M

(∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥

√
vt+1

)2
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≤ ∥∇Φ(xt)∥2

4
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
+

σ√
M

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
.

Therefore,

K ≤ ∥∇Φ(xt)∥2

4
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
+

σ√
M

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
.

Plugging this into (5.3),

Eξt

[
Φ(xt+1)−Φ(xt)

η

]

≤ ∥∇Φ(xt)∥2

4
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
+

σ√
M

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
−

⟨∇Φ(xt),∇x f (xt, yt)⟩√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

+ κlηEξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]

≤
(

σ√
M

+ κlη
)

Eξt

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
− ∥∇x f (xt, yt)∥2

2
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
+

∥∇x f (xt, yt)−∇Φ(xt)∥2

2
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
, (5.5)

where in the second inequality we use ∥a∥2/4− ⟨a, b⟩ ≤ −∥b∥2/2 + ∥a− b∥2/2. Applying
the total law of probability,

1
2

T−1

∑
t=0

E

[
∥∇x f (xt, yt)∥2

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

]

≤ Φ(x0)−minx Φ(x)
η

+

(
σ√
M

+ κlη
)

E
T−1

∑
t=0

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
+

E
T−1

∑
t=0

∥∇x f (xt, yt)−∇Φ(xt)∥2

2
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
. (5.6)

Denote

Z ≜
T−1

∑
t=0
∥∇x f (xt, yt)∥2, C ≜

T−1

∑
t=0

E

[
∥∇x f (xt, yt)∥2

√
vt + ∥∇x f (xt, yt)∥2 + σ2/M

]
,

D ≜ E
T−1

∑
t=0

[∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

vt+1

]
, Q ≜ E

T−1

∑
t=0

∥∇x f (xt, yt)−∇Φ(xt)∥2

2
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
.

By Theorem 5.5.2 with α = 1,

D ≤E

[
1 + log

(
1 +

T−1

∑
t=0

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)
∥∥2

v0

)]

≤1 + E

[
log

(
1 +

∑T−1
t=0

∥∥ f (xt, yt; ξ i
t)
∥∥2

+ ∑T−1
t=0

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)−∇x f (xt, yt)
∥∥2

v0

)]



5.5 appendix 155

≤1 + 2E


log

(
1 +

Z + ∑T−1
t=0

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)−∇x f (xt, yt)
∥∥2

v0

)1/2


≤1 + 2E


log


1 +

√
Z√
v0

+

√
∑T−1

t=0

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)−∇x f (xt, yt)
∥∥2

√
v0






≤1 + 2 log


1 +

E[
√

Z]√
v0

+

E

[√
∑T−1

t=0

∥∥ 1
M ∑i∇x f (xt, yt; ξ i

t)−∇x f (xt, yt)
∥∥2
]

√
v0




≤1 + 2 log


1 +

E[
√

Z]√
v0

+

√
∑T−1

t=0 σ2/M
√

v0


 ≤ 1 + 2 log

(
1 +

E[
√

Z]√
v0

+

√
Tσ√

v0M

)
,

where in the fourth inequality we use (a + b)1/2 ≤ a1/2 + b1/2 with a, b ≥ 0, the fifth and
sixth inequalities are from Jensen’s inequality. Also, by l-smoothness of f ,

Q = E
T−1

∑
t=0

∥∇x f (xt, yt)−∇Φ(xt)∥2

2
√

vt + ∥∇x f (xt, yt)∥2 + σ2/M
≤ E

[
T−1

∑
t=0

l2∥yt − y∗(xt)∥2

2
√

v0

]
≜ E . (5.7)

Also,

C ≥
T−1

∑
t=0

E


 ∥∇x f (xt, yt)∥2
√

v0 + ∑T−2
k=0

∥∥ 1
M ∑i∇x f (xk, yk; ξ i

k)
∥∥2

+ ∑T−1
j=0 ∥∇x f (xj, yj)∥2 + σ2/M




≥
T−1

∑
t=0

E


 ∥∇x f (xt, yt)∥2
√

v0 + 3 ∑T−1
j=0 ∥∇x f (xj, yj)∥2 + 2 ∑T−1

k=0 ∥∇x f (xk, yk)− 1
M ∑i∇x f (xk, yk; ξ i

k)∥2 + σ2/M




≥E


 Z√

v0 + 3Z + 2 ∑T−1
k=0 ∥∇x f (xk, yk)− 1

M ∑i∇x f (xk, yk; ξ i
k)∥2 + σ2/M




≥

(
E[
√

Z]
)2

E

[√
v0 + 3Z + 2 ∑T−1

k=0 ∥∇x f (xk, yk)− 1
M ∑i∇x f (xk, yk; ξ i

k)∥2 + σ2/M
]

≥

(
E[
√

Z]
)2

√
v0 + 3E[

√
Z] + σ/

√
M + 2

√
∑T−1

t=1 σ2/M
≥

(
E[
√

Z]
)2

√
v0 + 3E[

√
Z] + 2σ

√
T/
√

M
,

where in the fourth inequality we use Holder’s inequality, i.e. E[X2] ≥ (E[XY])2

E[Y2]
with

X =

(
Z√

v0+3Z+2 ∑T−1
k=0 ∥∇x f (xk ,yk)− 1

M ∑i∇x f (xk ,yk ;ξ i
k)∥2+σ2/M

)1/2

and

Y =
(

v0 + 3Z + 2 ∑T−1
k=0 ∥∇x f (xk, yk)− 1

M ∑i∇x f (xk, yk; ξ i
k)∥2 + σ2/M

)1/4
, and in the fifth
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inequality we use (a + b)1/2 ≤ a1/2 + b1/2 and Jensen’s inequality. Plugging the bounds
for C, D and Q into (5.6),

(
E[
√

Z]
)2

√
v0 + 3E[

√
Z] + 2σ

√
T/
√

M

≤ 2 (Φ(x0)−minx Φ(x))
η

+

(
4σ√

M
+ 2κlη

)[
1 + 2 log

(
1 +

E[
√

Z]√
v0

+
σ
√

T
√

v0
√

M

)]
+ E .

(5.8)

Now we want to solve for E[
√

Z]. Denote ∆ = Φ(x0)−minx Φ(x). By Proposition 3, we
have

E[
√

Z] ≤
√

v0

3
+

432∆2

η2 +
2σ
√

T
3
√

M
+ 432

(
1 +

32√
v0

)(
κ2l2η2 +

4σ2

M

)
+ 108E2.

We plug this loose upper bound into the logarithmic term on the right hand side of (5.8)
and denote the right hand side as A + E . Then we solve the inequality

(
E[
√

Z]
)2

√
v0 + 2E[

√
Z] + 2σ

√
T/
√

M
≤ A + E ,

which gives rise to

E[
√

Z] ≤ 2(A + E) +
(

v
1
4
0 + 2σ

1
2 T

1
4 M−

1
4

)√
A + E . (5.9)

Note that

A =
2∆
η

+

(
4σ√

M
+ 2κlη

) [
1 + 2 log

(
Poly

(
T, E ,

∆
η

,
σ√
M

, κlη, v0,
1
v0

))]
.

proof for Theorem 5 .3 .4 Now we state Theorem 5.3.4 in a more detailed way.

Theorem 5.5.5 (deterministic). Suppose we have a linearly-convergent subroutine A for maxi-
mizing any strongly concave function h(·):

∥yk − y∗∥2 ≤ a1(1− a2)
k∥y0 − y∗∥2

where yk is k-th iterate, y∗ is the optimal solution, and a1 > 0 and 0 < a2 < 1 are constants that
can depend on the parameters of h.

Under the same setting as Theorem 5.3.1 with σ = 0, for Algorithm 11 with subroutine A under
criterion I: ∥yt − ProjY (yt +∇y f (xt, yt))∥2 ≤ 1

t+1 , and M = 1, there exists t∗ ≤ Õ
(
ϵ−2) such

that (xt∗ , yt∗) is an ϵ-stationary point. Therefore, the total gradient complexity is Õ
(
ϵ−2).

Proof. For convenience, we denote Gy(x, y) = ∥y− ProjY (y +∇y f (x, y))∥ as the gradient
mapping about y at (x, y). From Theorem 3.1 in [Pang, 1987] and Lemma 10.10 in [Beck,
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2017], we have µ
l+1∥y− y∗(x)∥ ≤ ∥Gy(x, y)∥ ≤ (2 + l)∥y− y∗(x)∥. With criterion I, E can

be bounded as the following

E ≤ E

[
T−1

∑
t=0

l2(l + 1)2∥Gy f (xt, yt)∥2

2µ2√v0

]
≤ κ2(l + 1)2

2
√

v0

T−1

∑
t=0

1
t + 1

≤ κ2(l + 1)2(1 + log T)
2
√

v0
,

where in the first inequality we use the strong concavity. By setting σ = 0 and M = 1 in
Theorem 5.3.1, we have

1
T

T−1

∑
t=0
∥∇x f (xt, yt)∥2 ≤ 4(A + E)2

T
+

√
v0(A + E)

T
,

where A + E = Õ
(

Φ(x0)−minx Φ(x)
η + 2σ + κlη + κ2(l+1)2

√
v0

)
. We use O(·) to include the prob-

lem parameters in O(·), and similarly Õ(·) ignores the logarithmic terms. Second, we need
to compute the inner-loop complexity. At (t + 1)-th inner loop, we need to bound the
initial distance from yt to the optimal y w.r.t xt+1.

∥yt − y∗(xt+1)∥2 ≤ 2∥yt − y∗(xt)∥2 + 2∥y∗(xt)− y∗(xt+1)∥2

≤ 2(l + 1)2

µ2 ∥Gy f (xt, yt)∥2 + 2κ2∥xt − xt+1∥2

≤ 2(l + 1)2

µ2 · 1
t + 1

+
2κ2η2

vt+1
∥∇x f (xt, yt)∥2 ≤ 2(l + 1)2

µ2 + 2κ2η2,

where in the second inequality we use Theorem 5.5.1, and in the third we use xt+1

update rule. Therefore subroutine A takes O
(

1
a2

log(1/t)
)

iterations to find yt+1 such that

∥Gy(xt+1, yt+1)∥2 ≤ (2 + l)2∥yt+1 − y∗(xt+1)∥2 ≤ 1
t+2 . Then we note that

T−1

∑
t=0
∥∇x f (xt, yt)∥2 + ∥yt − y∗(xt)∥2 ≤

T−1

∑
t=0
∥∇x f (xt, yt)∥2 +

(l + 1)2

µ2 ∥Gy f (xt, yt)∥2

≤ 4(A + E)2 +
√

v0(A + E) + (l + 1)2

µ2 (1 + log T).

So there exists t ≤ Õ
((
(A + E)2 +

√
v0(A + E) + (κ2 + 1/µ2)

)
ϵ2) such that ∥∇x f (xt, yt)∥ ≤

ϵ and ∥yt− y∗(xt)∥ ≤ ϵ. Therefore the total complexity is Õ
((

(A+E)2

a2
+
√

v0(A+E)
a2

+ (l+1)2

µ2a2

)
ϵ−2
)

with A + E = Õ
(

Φ(x0)−minx Φ(x)
η + 2σ + κlη + κ2(l+1)2

√
v0

)
.

Remark 5.5.6. As long as we use the stopping criterion ∥yt − ProjY (yt +∇y f (xt, yt))∥2 ≤ 1
t+1 ,

the exact same oracle complexity as above can be attained for the primal variable, regardless of the
subroutine choice. The convergence rate of the subroutine (not necessarily linear rate) will only
affect the oracle complexity of the dual variable.

proof for Theorem 5 .3 .6 Now we state Theorem 5.3.6 in a more detailed way. Here
we consider more general subroutines with Õ(1/k) convergence rate. When the subroutine
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has the convergence rate O(1/k) without additional logarithmic terms, it reduces to the
setting of Theorem 5.3.6. The proof of the theorem relies on Theorem 5.5.4.

Theorem 5.5.7 (stochastic). Suppose we have a sub-linearly-convergent subroutine A for maxi-
mizing any strongly concave function h(·): after K = k logp(k) + 1 iterations

E∥yK − y∗∥2 ≤ b1∥y0 − y∗∥2 + b2

k
,

where yk is k-th iterate, y∗ is the optimal solution, p ∈N is an arbitrary non-negative integer and
b1, b2 > 0 are constants that can depend on the parameters of h.

Under the same setting as Theorem 5.3.1, for Algorithm 11 with M = ϵ−2 and subroutine A
under the stopping criterion: at t-th inner loop the subroutine stops after t logp(t) + 1 steps, there
exists t∗ ≤ Õ

(
ϵ−2) such that (xt∗ , yt∗) is an ϵ-stationary point. Therefore, the total stochastic

gradient complexity is Õ
(
ϵ−4) .

Proof. First we note that

∥yt − y∗(xt+1)∥2 ≤ 2∥yt − y∗(xt)∥2 + 2∥y∗(xt)− y∗(xt+1)∥2 ≤ 2∥yt − y∗(xt)∥2 + 2κ2η2.

By the convergence guarantee of subroutine A, after t logp(t) + 1 inner loop steps, it
outputs

E∥yt+1 − y∗(xt+1)∥2 =
b1∥yt − y∗(xt+1)∥2 + b2

t
≤ 2b1∥yt − y∗(xt)∥2 + 2κ2η2b1 + b2

t
.

(5.10)

Taking expectation of both sides and by Theorem 5.5.4, we have

E
T

∑
t=0
∥yt − y∗(xt)∥2 ≤ b3(1 + log T) + b3e2b1 + X0e2b1 , (5.11)

with b3 = 2κ2η2b1 + b2 and X0 denotes ∥y0 − y∗(x0)∥2. Then

E =
l2

2
√

v0
E

T−1

∑
t=0
∥yt − y∗(xt)∥2 ≤ l2

2
√

v0

[
b3(1 + log T) + b3e2b1 + X0e2b1

]
.

By setting M = ϵ−2 in Theorem 5.3.1, we have

E



√√√√ 1

T

T−1

∑
t=0
∥∇x f (xt, yt)∥2


 ≤ 2(A + E)√

T
+

v
1
4
0

√
A + E√
T

+
2
√
(A + E)σϵ

T
1
4

,

where A = Õ
(

Φ(x0)−minx Φ(x)
η +

(
2σ√

M
+ κlη

)
(1 + b1)

)
. Therefore,

E



√√√√ 1

T

T−1

∑
t=0
∥∇x f (xt, yt)∥2


+

√√√√E

[
1
T

T−1

∑
t=0
∥yt − y∗(xt)∥2

]

≤ 2(A + E)√
T

+
v

1
4
0

√
A + E√
T

+
2
√
(A + E)σϵ

T
1
4

+

√
b3(1 + log T) + b3e2b1 + X0e2b1√

T
.
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By setting the right-hand side to ϵ, we need

T = Õ
((

(A + E)2 +
√

v0(A + E)(1 + σ) + b3 + (b3 + X0)e2b1
)

ϵ−2
)

outer-loop iterations. Since M = ϵ−2, the sample complexity for x is Tϵ−2 = Õ(ϵ−4).
Since the inner loop iteration is at most T logp T + 1, the sample complexity for y is
T2 logp T + T = Õ(ϵ−4).

Remark 5.5.8. The same sample complexity for the primal variable can be attained as above, as long
as (5.10) holds. The choice for the subroutine will affect the number of samples needed to achieve
(5.10), and therefore the sample complexity for the dual variable. Although the complexity above
includes an exponential term in b1, we note that b1 = 0 in many subroutines for strongly-convex
objectives [Cutkosky and Boahen, 2017, Rakhlin et al., 2012, Lacoste-Julien et al., 2012].

B. Proofs for Generalized AdaGrad

proof of Theorem 5 .3 .8

Proof. We separate the proof into three parts.

part i . From the update of Algorithm 12, we have for any x ∈ X

∥xt+1 − x∥2 =

∥∥∥∥xt −
η

vα
t+1

gt − x
∥∥∥∥

2

= ∥xt − x∥2 +
η2

v2α
t+1
∥gt∥2 − 2η

vα
t+1
⟨gt, xt − x⟩.

Multiple each side by vα
t+1,

vα
t+1∥xt+1 − x∥2 = vα

t+1∥xt − x∥2 +
η2

vα
t+1
∥gt∥2 − 2η⟨gt, xt − x⟩.

By strong convexity,

ft(xt)− ft(x) ≤ ⟨gt, xt − x⟩ − µ

2
∥xt − x∥2.

Plug it into the previous inequality,

vα
t+1∥xt+1 − x∥2 ≤ vα

t+1∥xt − x∥2 +
η2

vα
t+1
∥gt∥2 − 2η[ ft(xt)− ft(x∗)]− ηµ∥xt − x∥2.

Telescope from t = 0 to T − 1,

2η
T−1

∑
t=0

[ ft(xt)− ft(x)] ≤ vα
1∥x0 − x∥2 − vα

T∥xT − x∥2 −
T−1

∑
t=1

[vα
t − vα

t+1 + ηµ] ∥xt − x∥2

+
T−1

∑
t=0

η2

vα
t+1
∥gt∥2. (5.12)
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part ii . In the part, we focus on the second term on the right hand side of the previous
inequality. For convenience, we denote

Bt = vα
t+1 − vα

t − ηµ.

Denote set S = {t : Bt > 0}. We will first bound the number of t for which the coefficient
Bt is positive, i.e., |S|, for the case 0 < α < 1. We note that

Bt = (vt + ∥gt∥2)α − vα
t − ηµ = vα

t

[(
vt + ∥gt∥2

vt

)α

− 1

]
− ηµ

≤ vα
t

(
1 + α

∥gt∥2

vt
− 1
)
− ηµ =

α∥gt∥2

v1−α
t

− ηµ, (5.13)

where in the inequality we apply Bernoulli’s inequality, i.e., (1 + x)r ≤ 1 + rx with
0 ≤ r ≤ 1 and x ≥ −1. If Bt is positive, it leads to

Bt > 0 ⇐⇒ ∥gt∥2 >
ηµ

α
v1−α

t (5.14)

=⇒ ∥gt∥2 >
ηµ

α
v1−α

0 (5.15)

This means ∥gt∥ is not small once we observe Bt > 0. Since ∥gt∥2 ≤ G2, if the right hand
side of (5.14) is larger or equal to G2, then Bt can not be positive, i.e.

ηµ

α
v1−α

t ≥ G2 ⇐⇒ vt ≥
(

αG2

ηµ

) 1
1−α

.

On the other hand, because vt+1 = vt + ∥gt∥2, (5.15) implies that once we observe Bt > 0,
vt will increase by at least ηµ

α v1−α
0 . Therefore, it can be positive for only finite times, i.e.,

|S| ≤

(
αG2

ηµ

) 1
1−α

ηµ
α v1−α

0

=
α(αG2)

1
1−α

(ηµ)
2−α
1−α v1−α

0

. (5.16)

Even when Bt is positive, its value is bounded above from (5.13),

Bt ≤
α∥gt∥2

v1−α
t

− ηµ ≤ αG2

v1−α
0

. (5.17)

Now it is left to discuss the case α = 1. When α = 1,

Bt = −vt + vt+1 − ηµ ≤ ∥gt∥2 − ηµ ≤ G2 − ηµ.

Therefore, when η ≥ G2

µ , we have Bt ≤ 0 for all t.

part iii . In this part we wrap up everything for two cases: i) 0 < α ≤ 1; ii) α = 1. From
equation (5.12),

2η
T−1

∑
t=0

[ ft(xt)− ft(x)] ≤ vα
1D2 + ∑

t∈S
BtD2 + η2

T−1

∑
t=0

1
vα

t+1
∥gt∥2 (5.18)
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case 0 < α ≤ 1. By Lemma 5.5.2, (5.16) and (5.17),

2η
T−1

∑
t=0

[ ft(xt)− ft(x)] ≤ vα
1D2 + ∑

t∈S
BtD2 +

η2

1− α
v1−α

t+1

≤ (v0 + G2)αD2 +
α(αG2)

2−α
1−α

(ηµ)
2−α
1−α v2−2α

0

+
η2

1− α
v1−α

t+1 .

case α = 1. We have Bt ≤ 0 for all t as η ≥ G2

µ . Then by Lemma 5.5.2,

2η
T−1

∑
t=0

[ ft(xt)− ft(x)] ≤ (v0 + G2)D2 + η2 log

(
∑T−1

t=0 ∥gt∥2

v0

)
.

Remark 5.5.9. We note that the regret bounds contain a constant term µ−
1

1−α , which increases
exponentially as α approaches 1. However, such term is common even in the convergence result of
SGD with a non-adaptive stepsize η

tα in strongly-convex stochastic optimization; e.g., Theorem 1
in [Moulines and Bach, 2011] and Theorem 31 in [Fontaine et al., 2021] both contain a term that
will not diminish before Θ

(
µ−

1
1−α

)
iterations.





6
L I M I T O F U N T U N E D S G D A N D P O W E R O F A D A P T I V E M E T H O D S

The classical analysis of Stochastic Gradient Descent (SGD) with polynomially decaying
stepsize ηt = η/

√
t relies on well-tuned η depending on problem parameters such as

Lipschitz smoothness constant, which is often unknown in practice. In this work, we
prove that SGD with arbitrary η > 0, referred to as untuned SGD, still attains an order-
optimal convergence rate Õ(T−1/4) in terms of gradient norm for minimizing smooth
objectives. Unfortunately, it comes at the expense of a catastrophic exponential dependence
on the smoothness constant, which we show is unavoidable for this scheme even in the
noiseless setting. We then examine three families of adaptive methods — Normalized
SGD (NSGD), AMSGrad, and AdaGrad — unveiling their power in preventing such
exponential dependency in the absence of information about the smoothness parameter
and boundedness of stochastic gradients. Our results provide theoretical justification for
the advantage of adaptive methods over untuned SGD in alleviating the issue with large
gradients.

6.1 overview

In this chapter, we study the stochastic optimization problem of the form:

min
x∈Rd

f (x) = Eξ∼P [F(x; ξ)] ,

where P is an unknown probability distribution, and f : Rd → R is an ℓ-Lipschitz smooth
function and can be non-convex. In the context of machine learning, ξ may represent an
individual training sample from the data distribution P, and x denotes the weights of the
model.

Stochastic Gradient Descent (SGD), originated from the seminal work [Robbins and
Monro, 1951], performs the following update iteratively:

xt+1 = xt − ηt∇F(xt; ξt),

where ηt > 0 is some stepsize and ∇F(xt; ξt) is an unbiased stochastic gradient. SGD
has shown remarkable empirical success in many modern machine learning applications,
e.g., [Bengio, 2009, Sutton and Barto, 2018]. Its efficiency is usually attributed to its cheap
per iteration cost and the ability to operate in an online fashion, making it suitable for
large-scale problems. However, empirical evidence also reveals undesirable behaviors
of SGD, often related to challenges in selecting appropriate stepsizes. In particular, a
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Algorithms
Upper bound;
deterministic

Lower bound;
deterministic

Upper bound;
stochastic

Lower bound;
stochastic

SGD (Eq. 6.1)
ηt =

η√
t+1

Õ
(
(4e)2(ηℓ)2

ϵ−4
)

[Thm. 6.3.1, 6.5.1]

Ω
(
(8e)η2ℓ2/8ϵ−4

)

[Thm. 6.3.3]
Õ
(
(4e)2(ηℓ)2

ϵ−4
)

[Thm. 6.3.1, 6.5.1]
Ω
(
(8e)η2ℓ2/8ϵ−4

)

[Thm. 6.3.3]

NSGD (Alg. 16)
ηt =

γ√
t+1∥g(xt ;ξt)∥

Õ
(
ϵ−2)

[Cutkosky and Mehta, 2020] & [Prop. 5]

Ω
(
ϵ−2)

[Carmon et al., 2020]
N/A due to
lower bound

Nonconvergent
[Thm. 6.4.1]

NSGD-M (Alg. 13)
ηt =

γ
(t+1)α∥gt∥

Õ
(
ϵ−2), α = 1/2

[Cutkosky and Mehta, 2020] & [Prop. 5]

Ω
(
ϵ−2)

[Carmon et al., 2020]
Õ
(
ϵ−4), α = 3/4

[Cutkosky and Mehta, 2020] & [Prop. 13]

Ω
(
ϵ−4)

[Arjevani et al., 2022]

AMSGrad-norm (Alg. 14)
ηt =

γ√
(t+1)v̂2

t+1

Õ
(
ϵ−4)

[Thm. 6.4.3, 6.5.6]
Ω
(
ϵ−4)

[Thm. 6.5.9]
N/A due to
lower bound

Ω
(

ϵ
− 2

1−ζ

)
∀ζ ∈ (0.5, 1)

[Thm. 6.4.2]

AdaGrad-norm (Alg. 15)
ηt =

η√
v2

0+∑t
k=0 ∥g(xk ;ξk)∥2

Õ
(
ϵ−2)

[Yang et al., 2022a] & [Prop. 6.4.4]
Ω
(
ϵ−2)

[Carmon et al., 2020]
Õ
(
ϵ−4)

[Yang et al., 2022a] & [Prop. 6.4.4]
Ω
(
ϵ−4)

[Arjevani et al., 2022]

Table 6.1: Complexities of finding an ϵ-stationary point for SGD, NSGD [Nesterov, 1984], NSGD-
M [Cutkosky and Mehta, 2020], AMSGrad-norm (norm version of AMSGrad [Reddi
et al., 2019]), and AdaGrad-norm [Streeter and McMahan, 2010]. We only assume
f is ℓ-smooth, and unbiased stochastic gradients have bounded variance σ2. Hyper-
parameters (e.g., γ and η) are untuned. Here, Õ and Ω hide polynomial terms in
problem parameters and hyper-parameters. The bounds are with respect to specific
algorithms and stepsizes, and lower bounds for general first-order methods still hold
[Carmon et al., 2020, Arjevani et al., 2022]. We denote the effective stepsize at iteration
t as ηt.

number of works report the gradient explosion effect [Bengio et al., 1994, Pascanu et al.,
2013, Goodfellow et al., 2016] during the initial phase of training, which may eventually
lead to divergence or prohibitively slow convergence. The phenomenon is also observed in
our experiments (see Figure 6.1(b)) when the stepsize is poorly chosen. Unfortunately, this
phenomenon is not well understood from a theoretical point of view. The classical analysis
of SGD in the smooth non-convex case [Ghadimi and Lan, 2013], prescribes to select
a non-increasing sequence of stepsizes {ηt}t≥1 with η1 < 2/ℓ. In particular, the choice
ηt = 1/(ℓ

√
t), guarantees1 to find a point x with E [∥∇ f (x)∥] ≤ ϵ after O

(
ϵ−4) stochastic

gradient calls, which is also known to be unimprovable in the smooth non-convex setting
unless additional assumptions are made [Arjevani et al., 2022, Drori and Shamir, 2020].

However, the bound on the smoothness parameter ℓ is usually not readily available for
practitioners, and the limited computing power usually refrains them from exhaustive tun-
ing to find the best stepsize. It is therefore important to provide theoretical understanding
for SGD with an arbitrary stepsize (which we refer to as untuned SGD) that is agnostic to
the problem parameter. The following intriguing question remains elusive in the stochastic
optimization literature:

1 Given access to unbiased stochastic gradient oracle with bounded variance.
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How does untuned SGD with decaying stepsize ηt = η/
√

t perform when η is
independent of the smoothness parameter? How to explain the undesirably large
gradients encountered in training with SGD?

Recently, there has been a surge of interest in adaptive gradient methods such as Adam
[Kingma and Ba, 2015], RMSProp [Hinton et al., 2012], AdaDelta [Zeiler, 2012], AMSGrad
[Reddi et al., 2019], AdaGrad [Duchi et al., 2011], Normalized SGD [Hazan et al., 2015] and
many others. These methods automatically adjust their stepsizes based on past stochastic
gradients rather than using pre-defined iteration-based schedules. Empirically, they are
observed to converge faster than SGD and mitigate the issue of gradient explosion across
a range of problems, even without explicit knowledge of problem-specific parameters
[Kingma and Ba, 2015, Liu et al., 2020b, Pascanu et al., 2013]. Figure 6.1(a) provides a
basic illustration of performance differences between SGD with ηt = 1/

√
t stepsizes and

adaptive schemes such as AdaGrad and Normalized SGD with momentum (NSGD-M)
[Cutkosky and Mehta, 2020]. Notably, when the initial stepsize is too large (compared
to 1/ℓ value), SGD reaches the region with large gradients, while adaptive methods do
not suffer from such effect. However, the theoretical benefits of adaptive methods over
SGD remain unclear. A large number of existing analyses of adaptive methods assume
bounded gradients, or even stochastic gradients, precluding not only a fair comparison
with SGD whose convergence does not need bounded gradient but also the possibility to
explain their benefit when facing gradient explosions. While recent developments show
that AdaGrad-type methods [Faw et al., 2022, Yang et al., 2022a] can attain Õ

(
ϵ−4) sample

complexity under the same standard assumptions as for SGD analysis, there still lacks a
good explanation for the huge performance gap observed in practice despite SGD with
well-tuned stepsizes theoretically achieving the lower complexity bound. We will address
the following open question:

Can we justify the theoretical benefits of adaptive methods over untuned SGD for
smooth non-convex problems without assuming bounded gradients?

Consequently, this work is based on the premise of not assuming bounded gradients
and hyper-parameters being independent of problem parameters. The main contributions
are as follows:

• We show that untuned SGD with diminishing stepsizes ηt = η/
√

t finds an ϵ-stationary
point of an ℓ-smooth function within Õ((ℓ2 + σ4η4ℓ4)(4e)2η2ℓ2

ϵ−4) iterations for any
η > 0. Here σ2 corresponds to the variance of the stochastic gradient. Although this
classical algorithm converges and has the optimal dependence on ϵ, we further show
that the disastrous exponential term in η2ℓ2 is not avoidable even when the algorithm
has access to exact gradients. This explains its proneness to gradient explosion when
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Figure 6.1: Comparison of SGD, AdaGrad, and NSGD-M on a quadratic function f (x) = ℓx2/2

and a neural network. SGD employs a diminishing stepsize of η/
√

t, while the step-
sizes for AdaGrad and NSGD-M are specified in Propositions 6 and 6.4.4, respectively.
In the left figure, we set η = 1 for all methods and test with two different values of ℓ.
In the right figure, we train a 3-layer neural network on the MNIST dataset [LeCun,
1998] using cross-entropy loss and set η = 10.

the problem parameter is unknown. Previous analyses fail to capture this exponential
term, since they assume η is well-tuned to be Θ(1/ℓ).

• AMSGrad, proposed to fix the nonconvergence of Adam, is not yet well-understood, with
previous analyses depending on bounded stochastic gradients. We show that AMSGrad
(norm version) is free from exponential constants in the deterministic setting without
tuning, in stark contrast with SGD. Surprisingly, in the stochastic setting when the
stochastic gradients are unbounded, we show that AMSGrad may converge at an
arbitrarily slow polynomial rate. To the best of our knowledge, these are the first results
of AMSGrad without assuming bounded gradients.

• To further illuminate the advantages of adaptive methods, we re-examine the results
for Normalized Gradient Descent (NGD), Normalized SGD with momentum (NSGD-
M) from [Cutkosky and Mehta, 2020] and AdaGrad-norm from [Yang et al., 2022a],
considering stepsize independent of the problem parameters similar to untuned SGD.
They all achieve near-optimal complexities while shredding off the exponential factor. As
a side result, we provide a strong non-convergence result of NSGD without momentum
under any bounded stepsizes, which might be of independent interest.

Our findings contribute a fresh understanding of the performance gap between SGD and
adaptive methods. Albeit with a near-optimal rate, untuned SGD is vulnerable to gradient
explosion and slow convergence due to a large exponential constant in its complexity,
which can be circumvented by several adaptive methods. To the best of our knowledge,
this substantial difference is unformed in the previous literature, because the majority
of analyses for SGD and adaptive methods turn to either well-tuned stepsize based on
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problem parameters or the assumption of bounded gradients. Part of our results are
summarized in Table 6.1 and full results for a broader range of stepsizes can be found in
Table 6.2 in the appendix.

6.1.1 Related Work

SGD in nonconvex optimization. Stochastic approximation methods and SGD in
particular have a long history of development [Robbins and Monro, 1951, Kiefer and
Wolfowitz, 1952, Blum, 1954, Chung, 1954, Nemirovski and Yudin, 1983, Polyak and
Juditsky, 1992]. When the objective is ℓ-smooth and the gradient noise has bounded
variance σ2, Ghadimi and Lan [2013] and Bottou et al. [2018] prove that if stepsize
ηt = η/

√
T, where η = η(ℓ, σ2) and T is the total iteration budget, then SGD can find an

ϵ-stationary point within O(ℓσ2ϵ−4) iterations. Similar complexity (up to a logarithmic
term) can also be achieved by decaying stepsizes η/

√
t [Ghadimi and Lan, 2013, Drori and

Shamir, 2020, Wang et al., 2021]. This result was later shown to be optimal for first-order
methods under these assumptions [Arjevani et al., 2022]. Several works consider various
relaxations of the stochastic oracle model with bounded variance, for instance, biased oracle
[Ajalloeian and Stich, 2021] or expected smoothness [Khaled and Richtárik, 2020]. However,
these results also heavily rely on sufficiently small η, e.g., η ≤ 1/ℓ, and the convergence
behavior in the large η regime is rarely discussed. Remarkably, Lei et al. [2019] characterize
the convergence of SGD under individual smoothness and unbiased function values. They
consider Robbins-Monro stepsize schemes, which includes η/tα when α > 1/2, and derive
O(ϵ 2

α−1 ) sample complexity including an exponential dependence on the smoothness
parameter. Unlike [Lei et al., 2019], we focus on the standard assumptions and derive
better dependency in smoothness constant when α > 1/2. Importantly, we further justify
that the exponential constants are unavoidable with a lower bound.

Adaptive methods. We focus on methods directly using gradients to adjust stepsize,
rather than other strategies like backtracking line search [Armijo, 1966]. Normalized Gradi-
ent Descent (NGD) was introduced by [Nesterov, 1984] for quasi-convex functions. Hazan
et al. [2015] apply NGD and NSGD with minibatch to the class of locally-quasi-convex
functions. Later, Cutkosky and Mehta [2020] and Zhao et al. [2021] prove NSGD with
momentum or minibatch can find an ϵ-stationary point in smooth nonconvex optimization
with sample complexity O(ϵ−4). AdaGrad was introduced in the online convex opti-
mization [Duchi et al., 2011, McMahan and Streeter, 2010]. In nonconvex optimization,
AdaGrad and its scalar version, AdaGrad-norm [Streeter and McMahan, 2010], achieve
competitive convergence rates with SGD [Ward et al., 2020, Li and Orabona, 2019, Kavis
et al., 2022a, Li and Orabona, 2020]. RMSProp [Hinton et al., 2012] and Adam [Kingma
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and Ba, 2015] use the moving average of past gradients, but may suffer from divergence
without hyper-parameter tuning [Reddi et al., 2019]. Recently, it was shown in the finite-
sum setting that they converge to a neighborhood, whose size shrinks to 0 by tuning
hyper-parameters [Shi and Li, 2021, Zhang et al., 2022]. However, most of the results on
AdaGrad and Adam-type algorithms assume both Lipschitz and bounded gradients [Zhou
et al., 2018, Chen et al., 2019, Défossez et al., 2020, Ward et al., 2020, Zou et al., 2019]. Very
recently, Faw et al. [2022] and Yang et al. [2022a] independently show that AdaGrad-norm
converges without assuming bounded gradients and without the need for tuning, attaining
a sample complexity of Õ(ϵ−4).

SGD v.s. adaptive methods. Despite similar complexities, adaptive methods typically
converge faster than SGD in practice [Brown et al., 2020, Liu et al., 2020d] and are widely
used to prevent large gradients [Pascanu et al., 2013, Ginsburg et al., 2019]. Various
attempts have been made to theoretically explain these differences. Some suggest that the
advantage of adaptive algorithms is their ability to achieve order-optimal rates without
knowledge of problem parameters such as smoothness and noise variance [Ward et al.,
2020, Levy et al., 2021, Kavis et al., 2019]. Other studies investigate the faster escape from
saddle points by adaptive methods [Levy, 2016, Murray et al., 2019, Xie et al., 2022]. The
importance of coordinate-wise normalization in Adam has also been highlighted [Balles
and Hennig, 2018, Kunstner et al., 2023]. Furthermore, the influence of heavy-tail noise
on the performance of adaptive methods is studied [Zhang et al., 2020b]. However, most
previous works do not provide an explanation for the faster convergence of adaptive
methods in terms of sample complexity. Notably, Zhang et al. [2019a] and Wang et al.
[2022] explain the benefits of gradient clipping and Adam under a relaxed smoothness
assumption, a setting where SGD with non-adaptive stepsizes may not converge. In
contrast, we analyze SGD and several adaptive methods under standard smoothness and
noise assumptions, distinguishing it from the recent work of Wang et al. [2022] that focuses
on one variant of Adam for finite-sum problems with individual relaxed smoothness and
random shuffling.

6.2 problem setting

Throughout this chapter, we focus on minimizing an ℓ-smooth function f : Rd → R. We
have access to a stochastic gradient oracle that returns g(x; ξ) at any point x, and we make
the following standard assumptions in nonconvex optimization.

Assumption 16 (smoothness). Function f (x) is ℓ-smooth with ℓ > 0, that is, ∥∇ f (x1) −
∇ f (x2)∥ ≤ ℓ∥x1 − x2∥ for any x1 and x2 ∈ Rd.
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Assumption 17 (stochastic gradients). The stochastic gradient g(x; ξ) is unbiased and has
a bounded variance, that is, Eξ [g(x; ξ)] = ∇ f (x) and Eξ

[
∥g(x; ξ)− f (x)∥2

]
≤ σ2 for any

x ∈ Rd.

We present the general scheme of SGD with initial point x0 and a stepsize sequence
{ηt}∞

t=0:
xt+1 = xt − ηt g(xt; ξt). (6.1)

Some commonly used stepsizes include polynomially and geometrically decaying stepsize,
constant stepsize, cosine stepsize, etc. When the stepsize depends on the instantaneous
or past gradients, i.e., {g(x; ξk)}k≤t, we call it adaptive stepsize, namely Normalized
SGD [Hazan et al., 2015], AdaGrad [Duchi et al., 2011], Adam [Kingma and Ba, 2015],
AMSGrad [Reddi et al., 2019], etc. In some adaptive methods, momentum is also considered,
replacing g(xt; ξt) in (6.1) with a moving average mt+1 of the past stochastic gradients
(see Chapter 6.4 for more details). To set the stage for our analysis, we assume that
f (x0)−minx∈Rd f (x) ≤ ∆, where ∆ represents the initial gap. Given that the function class
of interest is nonconvex, we aim to find an ϵ-stationary point x with E[∥∇ f (x)∥] ≤ ϵ.

6.3 convergence of untuned sgd

In this subchapter, we focus on SGD with the decaying stepsize:

ηt =
η√

t + 1
,

where η > 0 is the initial stepsize. Most convergent analysis requires η < 2/ℓ [Ghadimi
and Lan, 2013, Bottou et al., 2018] so that there is “sufficient decrease" in function value
after each update, and if η is carefully chosen, it can achieve the near-optimal complexity
of Õ(ℓϵ−4σ2) [Arjevani et al., 2022]. Nevertheless, as the smoothness parameter is usually
unknown, providing guarantees with optimal η or assuming η to be problem-dependent
does not give enough insights into practical training with SGD. Hence we are interested in
its convergence behavior in both small and large initial stepsize regimes, i.e., η ≤ 1/ℓ and
η > 1/ℓ.

Theorem 6.3.1. Under Assumptions 16 and 17, if we run SGD with stepsize ηt =
η√
t+1

, where
η > 0,

1
T

T−1

∑
t=0

E∥∇ f (xt)∥2 ≤





2Aη−1T−
1
2 , when η ≤ 1/ℓ,

4
√

2ℓA(4e)τ(πT)−
1
2 , when η > 1/ℓ,

where τ = ⌈η2ℓ2 − 1⌉ and A =
(

∆ + ℓσ2η2

2 (1 + log T)
)

.
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This theorem implies that when the initial stepsize η > 1/ℓ, SGD still converges with
a sample complexity of Õ((ℓ2 + σ4η4ℓ4)(4e)2η2ℓ2

ϵ−4) . Although the dependency in the
target accuracy ϵ is near-optimal, it includes a disastrous exponential term in η2ℓ2. This is
due to polynomially decaying stepsizes: in the first stage before τ = ⌈(ηℓ)2 − 1⌉ iterations,
the function value and gradients may keep increasing in expectation until reaching an
exponential term in η2ℓ2, which is in stark contrast with adaptive methods that we will see
in Chapter 6.5.3; in the second stage after t ≥ τ, the stepsize is small enough to decrease
the function value in expectation at a rate of 1/

√
T up to a small term in σ.

If we pick an arbitrary η = Θ(1), untuned SGD may induce large gradients growing
exponentially in ℓ in the first stage, which matches our observation in Figure 6.1. On the
other hand, deriving the dependence in hyper-parameter η is essential for assessing the
effort required in its tuning: SGD with η that is c > 1 times larger than the optimally tuned
one can have an exp(poly(c)) times larger gradient norm in the convergence guarantee. To
the best of our knowledge, there is limited study for non-asymptotic analysis of untuned
SGD under the same assumptions. Moulines and Bach [2011] study untuned SGD under
individual smoothness and convexity assumptions, i.e., g(x; ξ) is Lipschitz continuous and
F(x; ξ) is convex almost surely. They show an O(1/T1/3) rate, which is suboptimal in the
convex case. Later, Fontaine et al. [2021] provide O(1/T1/2) convergence rate for untuned
SGD in the convex setting yet without an explicit dependency in ℓ and η.

Remark 6.3.2. We focus on the stepsize of the order of 1/
√

t, because it is known for SGD
to achieve the best dependency in ϵ for nonconvex optimization [Drori and Shamir, 2020] and
easier to compare with adaptive stepsizes. We also present the convergence results for more general
polynomially decaying stepsizes, i.e., ηt =

η
(t+1)α with 0 < α < 1, in Theorem 6.5.1 of the appendix.

There exists a trade-off between convergence speed O(1/T
1−α

2 ) and the exponential term in (ηℓ)1/α

for α ∈ [1/2, 1). Intuitively, larger α leads to a shorter time in adapting to 1/ℓ stepsize but a
slower convergence rate. We do not consider constant stepsize, i.e., α = 0, because it is well known
to diverge even in the deterministic setting if the stepsize is agnostic to the problem parameter
[Nesterov, 2013, Ahn et al., 2022].

The question arises as to whether the exponential term is necessary. In the following, we
provide a lower bound for SGD under this choice of stepsize.

Theorem 6.3.3. Fixing T ≥ 1, η > 0, ℓ > 0 and ∆ > 0 that ηℓ ≥ 5, there exists a ℓ-smooth
function f : R → R and an initial point x0 with f (x0)− f ∗ ≤ ∆ such that if we run Gradient
Descent with stepsize ηt =

η√
t+1

, then for t ≤ t0 =
⌊
η2ℓ2/16− 1

⌋
,

|∇ f (xt)| ≥
√

2ℓ∆
3
√

t
(8e)t/2 and |∇ f (xt0)| ≥

√
8∆
3η

(8e)η2ℓ2/32−4 ;
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∆̃ exponentially
depends on η2ℓ2

w

Segment 1:
f(x) = ℓ

2
x2

Segment 4:

f(x) =

(
x−xt0+1+

√
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Figure 6.2: Demonstration of the constructed function for proving the lower bound.

if T > t0, then for t0 < t ≤ T,

|∇ f (xt)| ≥
1
4

√
∆̃ min

{
ℓ1/2, (2η)−1/2T−1/4

}
, where ∆̃ ≥ 4

3ηℓ
(8e)η2ℓ2/16−2∆.

This theorem suggests that Gradient Descent with decaying stepsize η/
√

t + 1 needs
at least Ω(η−4ℓ−2(8e)η2ℓ2/8ϵ−4) iterations to find an ϵ-stationary point in the large initial
stepsize regime. Therefore, it justifies that an exponential term in η2ℓ2 multiplied by 1/

√
T

is not avoidable even in the deterministic setting. Note that our result is limited to untuned
(S)GD with the particular stepsize scheme. It is worth pointing out that the existing lower
bounds for first-order methods [Arjevani et al., 2022] and SGD [Drori and Shamir, 2020]
do not contain any exponential terms.

We illustrate our hard instance for Theorem 6.3.3 in Figure 6.2, which is one-dimensional.
The algorithm starts from a valley of the function f (x) = ℓx2/2, i.e., Segment 1. Because
of the large initial stepsize and steep slope, in the first t0 iterations, Gradient Descent
increases the function value as large as ∆̃ = Ω

(
(8e)η2ℓ2/16∆

)
. Then the iterate xt0+1 jumps

to the top of a very flat valley, i.e., Segment 4, so that Gradient Descent decreases the
gradient as slowly as Ω(T−1/4).

Why do not we assume gradients to be bounded? The assumption on bounded gradients is
not satisfied even for the simple function f (x) = ℓx2/2. When training neural networks,
gradient explosion is often observed [Pascanu et al., 2013, Schmidhuber, 2015], which
directly suggests that this assumption is not satisfied or only satisfied with a numerically
large constant. In Proposition 7 in the appendix, we also provide a simple proof for the
convergence under the additional assumption of bounded gradient, i.e., ∥∇ f (x)∥ ≤ G for
all x, attaining a sample complexity of Õ(η2ℓ2G4σ2ϵ−4) without any information about
problem parameters. However, compared with Theorem 6.3.1 and 6.3.3, constant G hides
the exponential term. In Figure 6.1, we observe that the gradient bound along the trajectory
of non-adaptive stepsize can be much larger than that of adaptive stepsize even if starting
from the same initial point, so assuming bounded gradient will obscure the difference
between them.
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6.4 power of adaptive methods

In this subchapter, we focus on the convergence behaviors of adaptive methods, which
adjust their stepsizes based on the observed gradients. In particular, when arriving at a
point with a large gradient, adaptive methods automatically decrease their stepsizes to
counter the effect of possible gradient increase; to list a few, Normalized SGD [Hazan
et al., 2015], AdaGrad [Duchi et al., 2011], Adam [Kingma and Ba, 2015]. Since the analysis
for adaptive methods is usually on a case-by-case basis, we will examine three examples –
Normalized SGD, AMSGrad-norm, and AdaGrad-norm – to establish a universal observa-
tion that they avoid exponential dependency in ℓ without tuning. Although many existing
analyses rely on bounded gradients (and function values) or information on problem
parameters, we will abandon such assumptions as noted in the previous subchapter. We
focus on the norm instead of the coordinate-wise version of adaptive methods, which
means each coordinate adopts the same stepsize, because the norm version is usually
dimension-independent in the complexity, and is also widely used in both theory and
practice [Zhang, 2018, Ling et al., 2022, Li and Orabona, 2019, Leevy and Khoshgoftaar,
2020, Palfinger, 2022, Kavis et al., 2022b].

6.4.1 Family of Normalized SGD

Normalized (Stochastic) Gradient Descent [Nesterov, 1984, Hazan et al., 2015], referred
to as NGD and NSGD, is one of the simplest adaptive methods. It takes the stepsize in
(6.1) to be normalized by the norm of the current (stochastic) gradient:

ηt =
γt

∥g(xt; ξt)∥
,

where {γt}t≥0 is a sequence of positive learning rate. Cutkosky and Mehta [2020] and
Zhao et al. [2021] show that NSGD with γt = γ/

√
T can find an O(1/

√
T + σ)-stationary

point. In order to compare fairly with untuned SGD with decaying stepsize, we present a
modification with decaying γt = γ/

√
t + 1 in NSGD.

Proposition 5. Under Assumption 16 and 17, if we run NSGD with γt =
γ√
t+1

, then for any
γ > 0,

1
T

T−1

∑
t=0

E∥∇ f (xt)∥ ≤ 3
(

∆
γ
+ ℓγ log(T)

)
T−1/2 + 24σ.

NGD. In the deterministic setting, by Proposition 5, NGD converges to an ϵ-stationary
point with a complexity of Õ((γ−2 + γ2ℓ2)ϵ−2) for any γ > 0, which importantly does not
include any exponential term. Thus, even if the initial stepsize is not small enough, it does
not result in a catastrophic gradient explosion.
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NSGD. In the stochastic setting, Proposition 5 implies that NSGD can find an ϵ-stationary
point only when the noise variance is small enough, i.e., σ ≤ O(ϵ). This is not the
consequence of a loose analysis. Hazan et al. [2015] show that NSGD with constant γt ≡ γ

does not converge when the mini-batch size is smaller than Θ(ϵ−1) for a non-smooth
convex function. Here we provide a non-convergence result in the gradient norm with
a smooth objective for all uniformly bounded stepsizes. The intuition behind this is
illustrated in Figure 6.3 in the appendix, where Eξ g(x; ξ)/∥g(x; ξ)∥ can easily vanish or
be in the opposite direction of ∇ f (x) under some noises.

Theorem 6.4.1. Fixing ℓ > 0, σ > 0, ϵ > 0, ∆ > 0 and stepsize sequence {γt}∞
t=0 with

γt ≤ γmax that ϵ2 < min{σ2, 2ℓ∆, 2∆(σ− ϵ)/γmax}, there exists an ℓ-smooth convex function
f , initial point x0 with f (x0)−minx f (x) ≤ ∆ and zero-mean noises with σ2 variance such that
the output from NSGD satisfies E∥∇ f (xt)∥ ≥ ϵ for all t.

This theorem implies that fixing function class (ℓ, ∆, σ) and any sequence {γt}t uni-
formly upper bounded by γmax, NSGD cannot converge to an arbitrarily small ϵ. Specifi-
cally, the expected gradient norm will always stay larger than min{σ,

√
2ℓ∆, γ−1

max(−∆ +√
∆2 + 2∆γmaxσ)}. Most {γt}t used in practice is upper bounded, e.g., constant or de-

creasing sequences. The condition ϵ2 < 2ℓ∆ is necessary by noting that ∥∇ f (x0)∥2 ≤
2ℓ[ f (x0)−minx f (x)] ≤ 2ℓ∆. Considering γt = 1/

√
t + 1, when ∆ ≥ σ and

√
2ℓ∆ ≥ σ, it

matches with Proposition 5 where NSGD can only converge to a Θ(σ)-stationary point.
Since Sign-SGD and NSGD coincide in one-dimensional objectives, our non-convergent
example also applies to Sign-SGD. It sheds light on why increasing batch size improves
Normalized and Sign-SGD [Zhao et al., 2021, Kunstner et al., 2023]. However, they are
generally different in higher dimensions, as Karimireddy et al. [2019] show that sign-SGD
may not converge even with full-batch.

NSGD with momentum. While NSGD may not always converge, Cutkosky and Mehta
[2020] introduced NSGD with momentum (NSGD-M) presented in Algorithm 13 with
constant γt ≡ γ. We provide the following modification with diminishing γt that eliminates
the need to specify the total number of runs beforehand.

Proposition 6. Under Assumptions 16 and 17, if we run NSGD-M with αt =
√

2√
t+2

and
γt =

γ
(t+1)3/4 , then for any γ > 0,

1
T

T−1

∑
t=0

E∥∇ f (xt)∥ ≤ C
(

∆
γ
+ (σ + ℓγ) log(T)

)
T−

1
4 ,

where C > 0 is a numerical constant.

It implies that NSGD-M attains a complexity of Õ((γ−4 + γ4ℓ4)ϵ−4) for any γ >

0. Compared with Theorem 6.3.1 and 6.3.3, NSGD-M not only achieves near-optimal
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Algorithm 13 NSGD-M
1: Input: initial point x0, stepsize se-

quence {γt}, momentum sequence

{αt}, and initial momentum g0.

2: for t = 0, 1, 2, ... do

3: xt+1 = xt − γt
∥gt∥ gt

4: sample ξt+1

5: gt+1 = (1− αt)gt + αtg(xt+1; ξt+1)

6: end for

Algorithm 14 AMSGrad-norm
1: Input: initial point x0, momentum param-

eters 0 ≤ β1 < 1 and 0 ≤ β2 ≤ 1, stepsize
sequence {γt} and initial momentum m0
and v0 > 0.

2: v̂0 = v0
3: for t = 0, 1, 2, ... do
4: sample ξt
5: mt+1 = β1mt + (1− β1)g(xt; ξt)
6: v2

t+1 = β2v2
t + (1− β2)∥g(xt; ξt)∥2

7: v̂2
t+1 = max{v̂2

t , v2
t+1}

8: xt+1 = xt − γt√
v̂2

t+1
mt+1

9: end for

dependency in the target accuracy ϵ, but also shreds the exponential term when the
hyper-parameter is agnostic to smoothness constant.

6.4.2 AMSGrad-norm

AMSGrad was introduced by Reddi et al. [2019] to fix the possible non-convergence
issue of Adam. Notably, current analyses of AMSGrad in the stochastic setting show
a convergence rate of Õ(1/T1/4), but they rely on the assumption of bounded stochastic
gradients [Chen et al., 2019, Zhou et al., 2018], which is much stronger than assumptions
used for SGD analysis. Here, we examine the simpler norm version of AMSGrad, presented
in Algorithm 14. We prove that without assuming bounded stochastic gradients, AMSGrad-
norm with default γt = γ/

√
t + 1 may converge at an arbitrarily slow polynomial rate.

In fact, this holds even if the true gradients are bounded. We believe this result is of
independent interest.

Theorem 6.4.2. For any ℓ > 0, ∆ > 0, σ > 0 and T > 1, there exists a ℓ-smooth function
f : R2 → R2, x0 with f (x0) − infx f (x) ≤ ∆ and noise distribution P with variance upper
bounded by σ2, such that if we run AMSGrad-norm with 0 ≤ β1 ≤ 1, 0 ≤ β2 < 1 and γt =

γ√
t+1

,

we have with probability 1
2 , it holds that

min
t∈{0,1,...,T−1}

∥∇ f (xt)∥ ≥
√√√√√√

∆

16 max

{
1/ℓ,

γ
√

2Γ(1− ζ
2 )

σ(e( 1
ζ−1))

ζ
2 (1−ζ)

√
1−β2

(T1−ζ − ζ)

}

for any 1
2 < ζ < 1, where Γ(·) denotes the Gamma function.
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The intuition behind this theroem is that since AMSGrad utilizes the maximum norm
of past stochastic gradients with momentum in the denominator of stepsizes, some noise
distributions enable this maximum norm to increase polynomially, making the stepsizes
too small. However, we can still explore its benefit in the deterministic setting. Whether it
converges without assuming bounded gradients, to the best of our knowledge, is unknown.
Here, for simplicity, we consider AMSGrad-norm without momentum, i.e., β1 = β2 = 0.

Theorem 6.4.3. Under Assumption 16, if we run AMSGrad-norm with γt =
γ√
t+1

, v0 > 0 and
β1 = β2 = 0 in the deterministic setting, then for any γ > 0 and 0 < α < 1,

1
T

T−1

∑
t=0
∥∇ f (xt)∥ ≤





T−
1
4

√
2∆ max{v0,

√
2ℓ∆}γ−1, when v0 < γℓ,

T−
1
2 γ2ℓ2v−2

0 + T−
1
4

√
2γ(M + ∆)max{γℓ,

√
2ℓ(M + ∆)}, when v0 ≥ γℓ,

where M = ℓγ2
(

1 + log
(
ℓγ
v0

))
.

The theorem implies that AMSGrad-norm achieves a complexity of Õ((ℓ4γ4 + ℓ2 +

ℓ3γ2 + ℓγ−2)ϵ−4) with the default γt = Θ(t−1/2) [Reddi et al., 2019, Chen et al., 2019, Guo
et al., 2021a]. Compared with untuned Gradient Descent, it gets rid of the exponential
dependency. In the proof, we show that before the first iteration τ when stepsize ηt reduces
to 1/ℓ, the accumulated gradient norms ∑τ−1

t=0 ∥∇ f (xt)∥2 are upper bounded polynomially,
which is in striking contrast with SGD in Theorem 6.3.3. We further provide theoretical
guarantees for more general schemes γ

(t+1)α with 0 < α < 1 in Theorem 6.5.6 in the
appendix. We also derive matching lower bounds in Theorem 6.5.9 for any 0 < α < 1, and
justify that AMSGrad may fail to converge with constant γt ≡ γ (i.e., α = 0) if the problem
parameter is unknown.

6.4.3 AdaGrad-norm

AdaGrad chooses its stepsize to be inversely proportional to the element-wise accumu-
lated past gradients [Duchi et al., 2011, McMahan and Streeter, 2010]. Its norm-version,
AdaGrad-norm (presented in Algorithm 15) [Streeter and McMahan, 2010, Ward et al.,
2020], picks stepsize in (6.1) to be

ηt =
η√

v2
0 + ∑t

k=0 ∥g(xk; ξk)∥2
,

where v0 > 0. Very recently, AdaGrad is proven to converge in nonconvex optimiza-
tion without the assumption on bounded gradients or tuning η [Faw et al., 2022, Yang
et al., 2022a]. Because NeAda-AdaGrad (Algorithm 11) reduces to AdaGrad-norm for
minimization problems, the following result is a direct corollary of Theorem 5.3.1.
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Algorithm 15 AdaGrad-norm
1: Input: initial point x0, v0 > 0 and η > 0
2: for t = 0, 1, 2, ... do
3: sample ξt

4: v2
t+1 = v2

t + ∥g(xk; ξk)∥2

5: xt+1 = xt − η√
v2

t+1
g(xt; ξt)

6: end for

Corollary 6.4.4. Under Assumptions 16 and 17, if we run AdaGrad-norm, then for any η > 0
and v0 > 0,

1
T

T−1

∑
t=0

E∥∇ f (xt)∥ ≤
2A√

T
+

√
v0A√

T
+

2
√

Aσ

T
1
4

,

where A = Õ
(

∆
η + σ + ℓη

)
.

Proof. Define a function f̃ : Rd ×R → R such that f̃ (x, y) = f (x)− ℓ
2 y2. Since the f̃ is

ℓ-smooth and ℓ-strongly concave about y, the condition number is defined to be κ = 1.
Applying AdaGrad-norm to f is equivalent to applying NeAda-AdaGrad (Algorithm
11) to f̃ with yt ≡ 0. For every x, we know y∗(x) ≜ argmaxy f̃ (x, y) = 0. Then E ≜

∑T−1
t=0

ℓ2∥yt−y∗(xt)∥2

2v0
= 0. Plugging in κ = 1, E = 0 and batchsize M = 1 to Theorem 5.3.1,

we reach the conclusion.

The above result implies a complexity of Õ
(
(η−2 + σ2 + η2ℓ2)

(
ϵ−2 + σ2ϵ−4)). Notably,

if η can be chosen to be 1/
√
ℓ, it achieves the optimal complexity in both ℓ and ϵ up

to logarithmic terms like well-tuned SGD [Arjevani et al., 2022]. Even if η is agnostic to
ℓ, AdaGrad-norm does not suffer from the exponential term present in untuned SGD.
One of the intuitions in the deterministic setting, similar to the AMSGrad-norm, is that
the accumulated squared gradient norm before the first iteration with stepsize smaller
than 1/ℓ will be upper bounded by a polynomial term (see Theorem 3.2 in [Li, 2022]).
Another benefit of AdaGrad over other methods is to achieve optimal convergence rates
simultaneously in deterministic and stochastic settings with the same hyper-parameters.
This is sometimes referred to as “noise adaptivity", which is out of the scope of this paper.
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6.5 appendix

6.5.1 Results Summary

Algorithms
Upper bound;
deterministic

Lower bound;
deterministic

Upper bound;
stochastic

Lower bound;
stochastic

SGD (Eq. 6.1)
ηt =

η
(t+1)α

Õ
(
(4e2α)

(ηℓ)1/α

(1−α)∧α ϵ
−2

(1−α)∧α

)

α ∈ (0, 1) [Thm. 6.3.1, 6.5.1]

Ω
(
(8e)η2ℓ2/8ϵ−4

)

α = 1/2 [Thm. 6.3.3]
Õ
(
(4e2α)

(ηℓ)1/α

(1−α)∧α ϵ
−2

(1−α)∧α

)

α ∈ (0, 1) [Thm. 6.3.1, 6.5.1]

Ω
(
(8e)η2ℓ2/8ϵ−4

)

α = 1/2 [Thm. 6.3.3]

NSGD (Alg. 16)
ηt =

γt
∥g(xt ;ξt)∥

Õ
(
ϵ−2), γt =

γ√
t+1

[Cutkosky and Mehta, 2020] & [Prop. 5]

Ω
(
ϵ−2)

[Carmon et al., 2020]
N/A due to
lower bound

Nonconvergent
∀ bounded {γt} [Thm. 6.4.1]

NSGD-M (Alg. 13)
ηt =

γ
(t+1)α∥gt∥

Õ
(
ϵ−2), α = 1/2

[Cutkosky and Mehta, 2020] & [Prop. 5]

Ω
(
ϵ−2)

[Carmon et al., 2020]
Õ
(
ϵ−4), α = 3/4

[Cutkosky and Mehta, 2020] & [Prop. 13]

Ω
(
ϵ−4)

[Arjevani et al., 2022]

AMSGrad-norm (Alg. 14)

ηt =
γ

(t+1)α
√

v̂2
t+1

Õ
(

ϵ−2/(1−α)
)

, α ∈ (0, 1)

[Thm. 6.4.3, 6.5.6]

Ω
(

ϵ−2/(1−α)
)

, α ∈ (0, 1)

Nonconvergent, α = 0
[Thm. 6.5.9]

N/A due to
lower bound

Ω
(

ϵ−2/(1−ζ)
)

, α = 1/2

∀ζ ∈ (0.5, 1) [Thm. 6.4.2]

AdaGrad-norm (Alg. 15)
ηt =

η√
v2

0+∑t
k=0 ∥g(xk ;ξk)∥2

Õ
(
ϵ−2)

[Yang et al., 2022a] & [Prop. 6.4.4]
Ω
(
ϵ−2)

[Carmon et al., 2020]
Õ
(
ϵ−4)

[Yang et al., 2022a] & [Prop. 6.4.4]
Ω
(
ϵ−4)

[Arjevani et al., 2022]

Table 6.2: Comparisons of complexities to find an ϵ-stationary point, i.e., E∥∇ f (x)∥ ≤ ϵ, between
SGD, NSGD, NSGD-M, AMSGrad-norm and AdaGrad-norm. We only assume f
is ℓ-smooth, and unbiased stochastic gradients have bounded variance σ2. Hyper-
parameters (e.g., γ and η) are arbitrary and untuned. In this table, Õ and Ω hide
polynomial terms in problem parameters and hyper-parameters, and Õ also hides all
logarithmic terms. We use ηt to denote the effective stepsize at iteration t.

In this work, we study stochastic gradient methods for minimizing smooth functions in
the parameter-agnostic regime. Firstly, we show SGD with polynomially decaying stepsize
1/
√

t is able to converge with the order-optimal rate, with and without bounded gradients
(Proposition 7 and Theorem 6.3.1). Its limitation lies in an unavoidable exponential term in
ℓ2 when we do not assume bounded gradients (Theorem 6.3.3). We demonstrate that several
existing adaptive methods do not suffer from the exponential dependency, such as NGD,
AdaGrad, AMSGrad-norm in the deterministic setting (Proposition 5 and Theorem 6.4.3),
and NSGD-M, AdaGrad in the stochastic setting (Proposition 6 and Proposition 6.4.4).
However, it does not mean adaptive methods are always better than SGD. We provide
a non-convergence result for NSGD (Theorem 6.4.1) and a slow convergence result for
AMSGrad-norm (Thoerem 6.4.2) in the stochastic case. We believe our results shed light
on explaining commonly observed large gradients during training and provide a better
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theoretical understanding of the convergence behaviors of adaptive methods in the regime
with unbounded stochastic gradients.

6.5.2 Proofs for SGD in Chapter 6.3

A. Upper Bounds for SGD

We provide an extended theorem of Theorem 6.3.1 and include more general decaying
stepsizes ηt = η/(t + 1)α with 0 < α < 1.

Theorem 6.5.1. Under Assumptions 16 and 17, if we run SGD with stepsize ηt = η/(t + 1)α

where η > 0 and 1/2 ≤ α < 1, then with η ≤ 1/ℓ,

E

[
1
T

T−1

∑
t=0
∥∇ f (xt)∥2

]
≤





2
η
√

T

(
∆ +

ℓσ2η2

2
(1 + log T)

)
, when α = 1/2,

2
ηT1−α

(
∆ +

ℓσ2η2

2 (1− 21−2α)

)
, when 1/2 < α < 1,

2
ηTα

(
∆

T1−2α
+

ℓσ2η2

2 (1− 2α)

)
, when 0 < α < 1/2;

with η > 1/ℓ,

E

[
1
T

T−1

∑
t=0
∥∇ f (xt)∥2

]
≤





√
2 (4e)τ

η
√

πτT

[
1 + ℓη

(
1 + 2

√
τ
)] (

∆ +
ℓσ2η2

2
(1 + log T)

)
,

when α = 1/2,

2 (4e2α)τ

η(2πτ)α T1−α

[
1 + ℓη

(
1 +

τ1−α

1− α

)](
∆ +

ℓσ2η2

2 (1− 21−2α)

)
,

when 1/2 < α < 1,

2 (4e2α)τ

η(2πτ)α Tα

[
1 + ℓη

(
1 +

τ1−α

1− α

)](
∆

T1−2α
+

ℓσ2η2

2 (1− 2α)

)
,

when 0 < α < 1/2,

where τ = ⌈(ηℓ)1/α − 1⌉.

Proof. By ℓ-smoothness of f (·),

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
ℓ

2
∥xt+1 − xt∥2

= f (xt)− ηt⟨∇ f (xt), g(xt; ξt)⟩+
ℓη2

t
2
∥g(xt; ξt)∥2

Taking expectation,

E f (xt+1) ≤ E f (xt)− ηtE∥∇ f (xt)∥2 +
ℓη2

t
2

E∥∇ f (xt)∥2 +
ℓη2

t
2

σ2
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≤ E f (xt)−
(

ηt −
ℓη2

t
2

)
E∥∇ f (xt)∥2 +

ℓη2
t

2
σ2 (6.2)

We note that ηt − ℓη2
t

2 ≥
ηt
2 when ηt ≤ 1

ℓ , i.e., t ≥ (ηℓ)1/α − 1. Define τ = ⌈(ηℓ)1/α − 1⌉.
Therefore, for all t < τ,

E f (xt+1) ≤ E f (xt) +
ℓη2

t
2

E∥∇ f (xt)∥2 +
ℓη2

t
2

σ2. (6.3)

For all t ≥ τ, we have

E f (xt+1) ≤ E f (xt)−
ηt

2
E∥∇ f (xt)∥2 +

ℓη2
t

2
σ2. (6.4)

Summing from t = τ to T − 1, we have
T−1

∑
t=τ

ηt

2
E∥∇ f (xt)∥2 ≤ E f (xτ)−E f (xT) +

T−1

∑
t=τ

ℓη2
t

2
σ2 (6.5)

Now we want to bound E f (xτ)− f (xT) ≤ E f (xτ)− f ∗, where f ∗ ≜ minx∈Rd f (x). From
(6.3),

E f (xt+1)− f ∗ ≤ E f (xt)− f ∗ +
ℓη2

t
2

E∥∇ f (xt)∥2 +
ℓη2

t
2

σ2

≤ (1 + ℓ2η2
t )[E f (xt)− f ∗] +

ℓη2
t

2
σ2,

where in the second inequality we use ∥∇ f (x)∥2 ≤ 2ℓ[ f (x)− f ∗]. When τ = 0, f (xτ)−
f (xT) ≤ ∆; when τ ≥ 1, recursing the inequality above, for j ≤ τ,

E f (xj)− f ∗ ≤ ∆

(
j−1

∏
t=0

1 + ℓ2η2
t

)
+

j−2

∑
k=0

(
j−1

∏
t=k+1

1 + ℓ2η2
t

)
ℓη2

k
2

σ2 +
ℓη2

j−1

2
σ2

≤
(

j−1

∏
t=0

1 + ℓ2η2
t

)(
∆ +

j−1

∑
t=0

ℓη2
t

2
σ2

)

≤
(

τ−1

∏
t=0

1 + ℓ2η2
t

)(
∆ +

τ−1

∑
t=0

ℓη2
t

2
σ2

)
. (6.6)

Also, with ∥∇ f (x)∥2 ≤ 2ℓ[ f (x)− f ∗], if τ ≥ 1,
τ−1

∑
t=0

ηt

2
E∥∇ f (xt)∥2 ≤

τ−1

∑
t=0

ηtℓE ( f (xt)− f ∗)

≤ ℓ

(
τ−1

∑
t=0

ηt

)(
τ−1

∏
t=0

1 + ℓ2η2
t

)(
∆ +

τ−1

∑
t=0

ℓη2
t

2
σ2

)
,

where in the second inequality we use (6.6) . Combining with (6.5) and (6.6), if τ ≥ 1
T−1

∑
t=0

ηt

2
E∥∇ f (xt)∥2 ≤

(
τ−1

∏
t=0

1 + ℓ2η2
t

)(
∆ +

τ−1

∑
t=0

ℓη2
t

2
σ2

)
+

T−1

∑
t=0

ℓη2
t

2
σ2
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+ ℓ

(
τ−1

∑
t=0

ηt

)(
τ−1

∏
t=0

1 + ℓ2η2
t

)(
∆ +

τ−1

∑
t=0

ℓη2
t

2
σ2

)
.

We note that
τ−1

∏
t=0

(
1 + ℓ2η2

t
)
=

τ−1

∏
t=0

(
1 +

ℓ2η2

(t + 1)2α

)
=

∏τ−1
t=0

(
ℓ2η2 + (t + 1)2α

)

(τ!)2α
≤
(
ℓ2η2 + τ2α

)τ

(τ!)2α

≤
(
2ℓ2η2)τ

(τ!)2α
≤ (2ℓ2η2)τ

[√
2πτ

(
τ
e

)τ exp ( 1
12τ+1 )

]2α

≤ 1
(2πτ)α

(
2ℓ2η2e2α

τ2α

)τ

≤ 1
(2πτ)α

(
4e2α

)τ
,

where in the third inequality we use Stirling’s approximation. Therefore,
T−1

∑
t=0

ηt

2
E∥∇ f (xt)∥2 ≤ 1

(2πτ)α

(
4e2α

)τ

[
1 + ℓ

(
τ−1

∑
t=0

ηt

)](
∆ +

T−1

∑
t=0

ℓη2
t

2
σ2

)
.

Plugging in ηt = η/(t + 1)α, when α = 1/2,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤
√

2T
η
√

πτ
(4e)τ

[
1 + ℓη

(
1 + 2

√
τ
)] (

∆ +
ℓσ2η2

2
(1 + log T)

)
;

when 1/2 < α < 1,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤ 2 Tα

η(2πτ)α
(4e2α)τ

[
1 + ℓη

(
1 +

τ1−α

1− α

)](
∆ +

ℓσ2η2

2 (1− 21−2α)

)
.

when 0 < α < 1/2,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤ 2 Tα

η(2πτ)α
(4e2α)τ

[
1 + ℓη

(
1 +

τ1−α

1− α

)](
∆ +

ℓσ2η2T1−2α

2 (1− 2α)

)
;

If τ = 0, from (6.5),
T−1

∑
t=0

ηt

2
E∥∇ f (xt)∥2 ≤ ∆ +

T−1

∑
t=0

ℓη2
t

2
σ2,

Plugging in ηt, when α = 1/2,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤ 2
√

T
η

(
∆ +

ℓσ2η2

2
(1 + log T)

)
;

when 1/2 < α < 1,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤ 2Tα

η

(
∆ +

ℓσ2η2

2 (1− 21−2α)

)
.

when 0 < α < 1/2,
T−1

∑
t=0

E∥∇ f (xt)∥2 ≤ 2Tα

η

(
∆ +

ℓσ2η2T1−2α

2 (1− 2α)

)
.
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Remark 6.5.2. When we run SGD with stepsize ηt = η/(t + 1)α, where 1/2 < α < 1, Theorem

6.5.1 implies a complexity of O
(
(4e2α)

(ηℓ)1/α

1−α (ηℓ)
1

α(1−α) · ϵ −2
1−α

)
in the large initial stepsize regime

η > 1/ℓ. Compared with the case α = 1/2, when α is larger, the convergence rate in T is slower,
but it also comes with a smaller exponent, i.e., (ηℓ)1/α. This is because α = 1/2 leads to the best
convergence rate in T [Drori and Shamir, 2020], while the faster decaying stepsize α > 1/2 will
reach the desirable stepsize 1/ℓ earlier so that it accumulates less gradient norms before τ. For
0 < α < 1/2, however, it comes with both a larger exponent and a slower convergence rate.

Proposition 7 (with bounded gradient). Under Assumption 16, 17 and additionally assuming
that the gradient norm is upper bounded by G, i.e., ∥∇ f (x)∥ ≤ G for all x ∈ Rd, if we run SGD
with stepsize ηt = η/

√
t + 1 with η > 0, then

E

[
1
T

T−1

∑
t=0
∥∇ f (xt)∥2

]
≤ 1√

T

(
∆
η
+

ℓη
(
G2 + σ2)

2
log T

)
.

Proof. By the smoothness of f (·), we have

f (xt+1) ≤ f (xt)− ηt⟨∇F(xt; ξt),∇ f (xt)⟩+
ℓη2

t
2
∥∇F(xt; ξt)∥2.

Taking expectation and summing from t = 0 to T − 1,

E

[
T−1

∑
t=0

ηt∥∇ f (xt)∥2

]
≤ f (x0)− f (xT) +

ℓ

2

T−1

∑
t=0

η2
t E
[
∥∇F(xt; ξt)∥2

]

≤ ∆ +
ℓ

2

T−1

∑
t=0

η2
t E
[
∥∇F(xt; ξt)∥2

]

≤ ∆ +
ℓ

2

T−1

∑
t=0

η2
t

(
∥∇ f (xt)∥2 + E

[
∥∇F(xt; ξt)− f (xt)∥2

])

≤ ∆ +
ℓ

2

T−1

∑
t=0

η2
t
(
G2 + σ2) .

Let ηt = η/
√

t + 1,

η√
T

E

[
T−1

∑
t=0
∥∇ f (xt)∥2

]
≤ E

[
T−1

∑
t=0

η√
t + 1

∥∇ f (xt)∥2

]
≤ ∆ +

ℓ
(
G2 + σ2)

2

T−1

∑
t=0

η2

t + 1
,

≤ ∆ +
ℓη2 (G2 + σ2)

2
log T.

B. Lower Bound for SGD

proof for theorem 6 .3 .3
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Proof. We construct the hard instance with 4 segments of quadratic functions. The function
is symmetric about x = 0, and we will define it on x ≤ 0 as below. We illustrate it in Figure
6.2.
Segment 1. We define f (x) = ℓ

2 x2. We pick x0 such that f (x0)− f ∗ = ∆, i.e., x0 =
√

2∆
ℓ . We

define t0 to be the first iteration that ηt0 =
η√

t0+1 ≥
4
ℓ , i.e., t0 =

⌊
η2ℓ2

16 − 1
⌋

. With the update

rule xt+1 = xt − ηℓ√
t+1

xt =
(

1− ηℓ√
t+1

)
xt, we have for t ≤ t0

|xt|2 =

[
t

∏
k=1

(
ηℓ√

k
− 1
)]2

|x0|2 ≥
t

∏
k=1

η2ℓ2

2k
|x0|2

=
(η2ℓ2/2)t

(t)!
|x0|2 >

(η2ℓ2/2)t
√

2πt(t/e)te1/12t
|x0|2 ≥

1
3
√

t
(8e)t|x0|2,

where in the inequality we use
(

ηℓ√
k
− 1
)2
≥ η2ℓ2

2k with k ≤ t0, in the second inequality we

use Stirling’s approximation, and in the last inequality we use t ≤ η2ℓ2/16. We note that

|xt0 |2 ≥
1

3
√

t0
(8e)t0 |x0|2 ≥

4
3ηℓ

(8e)η2ℓ2/16−2|x0|2.

Without loss of generality, we assume xt0 > 0. Segment 1 is define on the domain {x :
|x| ≤ xt0}.

Segment 2. This segment is the mirror of Segment 1. On domain {x : xt0 ≤ x ≤ 2xt0}, we
define f (x) = − ℓ

2 (x− 2xt0)
2 + ℓx2

t0
.

Segment 3. We note that

xt0+1 = xt0 − ηt0ℓxt0 =

(
1− ηℓ√

t0 + 1

)
xt0 ≤ −3xt0 ,

where the inequality is from the definition of t0, and

∆̃ ≜
ℓx2

t0

2
≥ 2

3η
(8e)η2ℓ2/16−2|x0|2 =

4
3ηℓ

(8e)η2ℓ2/16−2∆.

We construct a quadratic function such that: it passes (−2xt0 , ℓx2
t0
) with gradient 0; the

gradient at x = xt0+1 is
√

∆̃
2
√

max{1/ℓ,∑T−1
t=t0+1 ηt}

. This quadratic function is uniquely defined to

be

f (x) = −
√

∆̃ (x + 2xt0)
2

4(−2xt0 − xt0+1)
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

+ ℓx2
t0

.

It can be verified that this function is ℓ-smooth: as xt0+1 ≤ −3xt0 ,
√

1
2ℓx2

t0

2(−2xt0 − xt0+1)
≤
√
ℓ⇐⇒

√
∆̃

2(−2xt0 − xt0+1)
√
ℓ
≤ ℓ
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=⇒
√

∆̃

2(−2xt0 − xt0+1)
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

≤ ℓ.

The function is defined on the domain {x : xt0+1 ≤ x ≤ −2xt0}.

Segment 4. For convenience, we define w = f (xt0+1). We can verify that w ≥ ∆̃: as 1√
t0
< 4

ηℓ ,

− 2xt0 −
(

1− ηℓ√
t0 + 1

)
xt0 ≤ 4

√
xt0

2
⇐⇒ −2xt0 − xt0+1

4
≤
√

xt0

2

=⇒ −2xt0 − xt0+1

4
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

≤
√

1
2
ℓx2

t0
⇐⇒

√
∆̃ (xt0+1 + 2xt0)

2

4(−2xt0 − xt0+1)
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

≤ ∆̃.

So we conclude w ≥ ∆̃. Now we construct a quadratic function similar to that in Proposition

1 of [Drori and Shamir, 2020]: it passes (xt0+1, w) with gradient
√

∆̃
2
√

max{1/ℓ,∑T−1
t=t0+1 ηt}

; the

minimum is at x = xt0+1 −
√

∆̃ max{1/ℓ, ∑T−1
t=t0+1 ηt}. This quadratic function is defined to

be

f (x) =

(
x− xt0+1 +

√
∆̃ max{1/ℓ, ∑T−1

t=t0+1 ηt}
)2

4 max{1/ℓ, ∑T−1
t=t0+1 ηt}

+ w− ∆̃
4

on the domain {x : x ≤ xt0+1}. It is obvious that f (x) ≥ 0 and is ℓ-smooth. Following the
same reasoning of Proposition 1 in [Drori and Shamir, 2020], also presented as Lemma
6.5.3 in the appendix for completeness, we can conclude for all t : t0 + 1 ≤ t ≤ T,

|∇ f (xt)| ≥
√

∆̃

4
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

≥ 1
4

√
∆̃ min

{√
ℓ, (2η)−1/2T−1/4

}
,

where in the second inequality we use ∑T−1
t=t0+1 ηt = ∑T−1

t=t0+1
η√
t+1
≤ 2ηT1/2.

The following lemma is used in the proof of Theorem 6.3.3. It is a straightforward modi-
fication of Proposition 1 in [Drori and Shamir, 2020]. We present it here for completeness.

Lemma 6.5.3. Under the same setting and notations as the proof of Theorem 6.3.3, if we run
gradient descent with stepsize {ηt}T−1

t=t0+1 starting from point xt0+1 on function

f (x) =

(
x− xt0+1 +

√
∆̃ max{1/ℓ, ∑T−1

t=t0+1 ηt}
)2

4 max{1/ℓ, ∑T−1
t=t0+1 ηt}

+ w− ∆̃
4

,

then for all t : t0 + 1 ≤ t ≤ T,

|∇ f (xt)| ≥
√

∆̃

4
√

max{1/ℓ, ∑T−1
t=t0+1 ηt}

.
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Proof. From the update of gradient descent, we have

xt+1 = xt − ηt ·
xt − xt0+1 +

√
∆̃ max{1/ℓ, ∑T−1

t=t0+1 ηt}
2 max{1/ℓ, ∑T−1

t=t0+1 ηt}
,

which leads to

xt+1 − xt0+1 +

√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt}

=

(
1− ηt

2 max{1/ℓ, ∑T−1
t=t0+1 ηt}

)
xt − xt0+1 +

√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt}

 .

Recursing this, for j ≤ T

xj − xt0+1 +

√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt}

=
j−1

∏
k=t0+1

(
1− ηk

2 max{1/ℓ, ∑T−1
t=t0+1 ηt}

)
xt0+1 − xt0+1 +

√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt}



≥ exp

(
log

1
2
·

j−1

∑
k=t0+1

ηk

2 max{1/ℓ, ∑T−1
t=t0+1 ηt}

)√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt}

≥ 1
2

√√√√∆̃ max{1/ℓ,
T−1

∑
t=t0+1

ηt},

where in the second inequality, we use 1− z/2 ≥ exp(log 1
2 · z) for 0 ≤ z ≤ 1. This directly

implies what we want to prove by computing ∇ f (xj).

6.5.3 Proofs for NSGD Family in Chapter 6.4

Algorithm 16 Normalized Stochastic Gradient Descent (NSGD)
1: Input: initial point x0

2: for t = 0, 1, 2, ... do
3: sample ξt and set learning rate γt

4: xt+1 = xt − γt
∥g(xt;ξt)∥ g(xt; ξt)

5: end for
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normalization

(a) example 1

normalization

(b) example 2

Figure 6.3: The expected update of NSGD can vanish (example 1) or be in the opposite direction
(example 2) of the true gradient. The solid black arrow represents the true gradient
and the dashed arrows are the possible stochastic gradients (with equal possibilities).
The solid blue arrow is the expected direction of NSGD update.

proof for theorem 6 .4 .1

Proof. Let us pick f (x) = L
2 x2 with ϵ2

2∆ < L ≤ ℓ and L < σ−ϵ
γmax

. Then we pick x0 such that
ϵ
L < x0 <

√
2∆
L , which implies that ∥∇ f (x0)∥ > ϵ and f (x0)−minx f ≤ ∆. Now we define

D = {x : −w ≤ x ≤ w} with ϵ
L + γmax < w < σ

L . For x ∈ D, we have ∥∇ f (x)∥ ≤ σ and
we construct the noisy gradients: with δ > 1

g(x; ξ) = (1 + δ)∇ f (x) w.p.
1
2

, and g(x; ξ) = (1− δ)∇ f (x) w.p.
1
2

.

It is obvious that ∇ f (x) = E[g(x; ξ)] and the variance at this point E∥∇ f (x)− g(x; ξ)∥2 =

δ2∥∇ f (x)∥2 ≤ σ2 with δ sufficiently close to 1. With the update rule, we note that
xt+1 = xt − γt w.p. 1/2 and xt+1 = xt + γt w.p. 1/2, and therefore

Eξt [∥∇ f (xt+1)|xt ∈ D∥] = 1
2
[L∥xt − γt∥+ L∥xt + γt∥] ≥ L∥xt∥ = ∥∇ f (xt)∥.

For x /∈ D, we have ∥x∥ > ϵ/L + γmax, and we assume there is no noise in the gradients.
Therefore, if xt /∈ D, we know that after one step of update ∥xt+1∥ > ϵ/L, which implies
∥∇ f (xt+1)∥ > ϵ. Combining two cases that xt ∈ D and xt /∈ D, we know that E∥∇ f (xt)∥ >
ϵ for all t.

proof of proposition 5

Proof. Denote et = g(xt; ξt)−∇ f (xt). By Lemma 2 in [Cutkosky and Mehta, 2020],

f (xt+1)− f (xt) ≤ −
γt

3
∥∇ f (xt)∥+

8γt

3
∥et||+

ℓγ2
t

2
.
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Telescoping from t = 0 to T − 1,

γ

3T1/2

T−1

∑
t=0
∥∇ f (xt)∥ ≤

1
3

T−1

∑
t=0

γt∥∇ f (xt)∥ ≤ ∆ +
8
3

T−1

∑
t=0

γt∥et∥+
T−1

∑
t=0

ℓγ2
t

2
,

Taking expectation, rearranging and using E [∥et∥] ≤
(
E
[
∥et∥2])1/2 ≤ σ, we derive

T−1

∑
t=0

E [∥∇ f (xt)∥] ≤ 3T1/2

[
∆
γ
+

8σ

3

T−1

∑
t=0

1
(t + 1)1/2 +

ℓγ

2

T−1

∑
t=0

1
t + 1

]

≤ 3T1/2
[

∆
γ
+ 8σT1/2 + ℓγ log(T)

]
.

proof for proposition 6

Proof. We define êt = gt −∇ f (xt). By Lemma 2 in [Cutkosky and Mehta, 2020], for any
γt > 0

f (xt+1)− f (xt) ≤ −
γt

3
∥∇ f (xt)∥+

8γt

3
∥êt||+

ℓγ2
t

2
. (6.7)

Telescoping from t = 0 to T − 1,

γ

3T3/4

T−1

∑
t=0
∥∇ f (xt)∥ ≤

1
3

T−1

∑
t=0

γt∥∇ f (xt)∥ ≤ ∆ +
8
3

T−1

∑
t=0

γt∥êt||+
T−1

∑
t=0

ℓγ2
t

2
,

By taking expectation on both sides, rearranging and controlling the variance term using
Lemma 6.5.4, we derive

T−1

∑
t=0

E [∥∇ f (xt)∥] ≤ 3T3/4

[
∆
γ
+

8
3γ

T−1

∑
t=0

γtE [∥êt||] +
ℓγ

2

T−1

∑
t=0

(t + 1)−3/2

]

≤ 3T3/4
[

∆
γ
+

8
3
(C1σ + C2ℓγ) log(T) +

2ℓγ

T1/2

]

≤ CT3/4
[

∆
γ
+ (σ + ℓγ) log(T)

]
.

Lemma 6.5.4. Under the setting of Theorem 6, there exist numerical constants C1, C2 > 0 such
that for all t ≥ 1,

E [∥êt∥] ≤ C1σα
1/2
t + C2ℓγtα

−1
t ,

T−1

∑
t=0

γtE [∥êt∥] ≤
(
C1σγ + C2ℓγ2) log(T),

where êt = gt −∇ f (xt).
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Proof. Define et = g(xt; ξt)−∇ f (xt), St = ∇ f (xt)−∇ f (xt+1). Then

êt+1 = gt+1 −∇ f (xt+1)

= (1− αt)gt + αtg(xt+1; ξt+1)−∇ f (xt+1)

= (1− αt)êt + αtϵt+1 + (1− αt)St.

Unrolling the recursion from t = T − 1 to t = 0, we have

êT =

(
T−1

∏
t=0

(1− αt)

)
ê0 +

T−1

∑
t=0

αtet+1

T−1

∏
τ=t+1

(1− ατ) +
T−1

∑
t=0

(1− αt)St

T−1

∏
τ=t+1

(1− ατ) .(6.8)

Define the σ-field Ft := σ({x0, ξ0, . . . , ξt−1}). Notice that for any t2 > t1 ≥ 0 we have

E [⟨et1 , et2⟩] = E [E [⟨et1 , et2⟩|Ft2 ]] = E [⟨et1 , E [et2 |Ft2 ]⟩] = 0. (6.9)

Then taking norm, applying expectation on both sides of (6.8) and using E [∥ê0∥] ≤ σ, we
have

E [∥êT∥] ≤
(

T−1

∏
t=0

(1− αt)

)
σ + E

[∥∥∥∥∥
T−1

∑
t=0

αtet+1

T−1

∏
τ=t+1

(1− ατ)

∥∥∥∥∥

]

+E

[∥∥∥∥∥
T−1

∑
t=0

(1− αt)St

T−1

∏
τ=t+1

(1− ατ)

∥∥∥∥∥

]

≤
(

T−1

∏
t=0

(1− αt)

)
σ +


E



∥∥∥∥∥

T−1

∑
t=0

αtet+1

T−1

∏
τ=t+1

(1− ατ)

∥∥∥∥∥

2





1/2

+
T−1

∑
t=0

(1− αt)E [∥St∥]
T−1

∏
τ=t+1

(1− ατ)

≤
(

T−1

∏
t=0

(1− αt)

)
σ +

(
T−1

∑
t=0

α2
t E
[
∥et+1∥2

] T−1

∏
τ=t+1

(1− ατ)
2

)1/2

+ℓ
T−1

∑
t=0

(1− αt)γt

T−1

∏
τ=t+1

(1− ατ)

≤
(

T−1

∏
t=0

(1− αt)

)
σ +

(
T−1

∑
t=0

α2
t

T−1

∏
τ=t+1

(1− ατ)

)1/2

σ +

(
T−1

∑
t=0

γt

T−1

∏
τ=t+1

(1− ατ)

)
ℓ ,

where the first inequality holds by Jensen’s inequality applied to x 7→ x2, the second
inequality follows by (6.9) and the bound ∥St∥ ≤ ℓ∥xt+1 − xt∥ = ℓγt. The last step is due
to bounded variance E [∥ϵ̂0∥] ≤ σ and αt ≤ 1.

By the choice of momentum sequence, we have α0 = 1 and the first term is zero. By
Lemma 6.5.5, there exist numerical constants C1, C2 > 0 such that

(
T−1

∑
t=0

α2
t

T−1

∏
τ=t+1

(1− ατ)

)1/2

≤ C1α
1/2
T ,

(
T−1

∑
t=0

γt

T−1

∏
τ=t+1

(1− ατ)

)
≤ C2γTα−1

T .
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Therefore, for all T ≥ 1, we have

E [∥êT∥] ≤ C1σα
1/2
T + C2ℓγTα−1

T .

T−1

∑
t=0

γtE [∥êt∥] ≤ C1σ
T−1

∑
t=0

γtα
1/2
t + C2ℓ

T−1

∑
t=0

γ2
t α−1

t

≤ C1σγ
T−1

∑
t=0

(t + 1)−3/4(t + 1)−1/4 + C2ℓγ2
T−1

∑
t=0

(t + 1)−3/2(t + 1)1/2

≤
(
C1σγ + C2ℓγ2) log(T).

Lemma 6.5.5 (Lemma 15 in [Fatkhullin et al., 2023]). Let q ∈ [0, 1), p ≥ 0, γ0 > 0 and let
ηt =

( 2
t+2

)q, γt = γ0
( 1

t+1

)p for every integer t. Then for any integers t and T ≥ 1, it holds
T−1

∑
t=0

γt

T−1

∏
τ=t+1

(1− ητ) ≤ Cγtη
−1
T ,

where C := 2p−q(1− q)−1t0 exp
(

2q(1− q)t1−q
0

)
+ 22p+1−q(1− q)−2 and

t0 := max
{(

p
(1−q)2q

) 1
1−q

, 2
(

p−q
(1−q)2

)} 1
1−q

.

6.5.4 Proofs for AMSGrad-Norm in Chapter 6.4

The following is an extended version of Theorem 6.4.3 including γt = γ
(t+1)α with

0 < α < 1.

Theorem 6.5.6. Under Assumption 16, if we run AMSGrad-norm with γt =
γ

(t+1)α , v0 > 0 and
β1 = β2 = 0 in the deterministic setting, then for any γ > 0 and 0 < α < 1, if v0 < γℓ

1
T

T−1

∑
t=0
∥∇ f (xt)∥2 ≤ 2∆

γT1−α
max{v0,

√
2ℓ∆},

if v0 ≥ γℓ

1
T

T−1

∑
t=0
∥∇ f (xt)∥2 ≤

(
ℓγ
v0

) 1
α

γ2ℓ2

T
+

2(M + ∆)
γT1−α

max{γℓ,
√

2ℓ(M + ∆)},
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where

M =





ℓγ2
(

1 + log
(
ℓγ

v0

))
, when α = 1/2,

ℓγ2

2 (1− 21−2α)
, when 1/2 < α < 1,

γ(ℓγ)
1
α−1

2(1− 2α)v
1
α−2
0

, when 0 < α < 1/2.

Proof. The effective stepsize of AMSGrad-norm contains a maximum over all gradient
norms in the denominator. As it is desirable to find a lower bound for the effective stepsize,
we begin by bounding the gradient norms.

Let τ be the first iteration where the effective stepsize is less or equal to 1/ℓ, i.e.,
ητ−1 > 1/ℓ and ητ ≤ 1/ℓ. First, we assume τ ≥ 1, i.e., v0 < γℓ. The time stamp τ itself is
naturally bounded by

ητ−1 =
γ

ταvτ
>

1
ℓ

=⇒ τ <

(
ℓγ

vτ

) 1
α

≤
(
ℓγ

v0

) 1
α

.

We have
τ−1

∑
t=0
∥∇ f (xt)∥2 ≤ τγ2ℓ2 ≤

(
ℓγ

v0

) 1
α

γ2ℓ2. (6.10)

By ℓ-smoothness of f (·),

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
ℓ

2
∥xt+1 − xt∥2

= f (xt)− ηt∥∇ f (xt)∥2 +
ℓη2

t
2
∥∇ f (xt)∥2 (6.11)

≤ f (xt) +
ℓη2

t
2
∥∇ f (xt)∥2.

Therefore,

f (xτ)− f (x0) ≤
ℓ

2

τ−1

∑
t=0

η2
t ∥∇ f (xt)∥2 =

ℓ

2

τ−1

∑
t=0

γ2
t

v2
t+1
∥∇ f (xt)∥2 ≤ ℓ

2

τ−1

∑
t=0

γ2
t

≤





ℓγ2

2
(1 + log τ), when α = 1/2,

ℓγ2

2 (1− 21−2α)
, when 1/2 < α < 1,

ℓγ2τ1−2α

2(1− 2α)
, when 0 < α < 1/2.

We denote the right-hand side as M. Also from (6.11) and definition of τ, we know that
f (xt) ≤ f (xτ) for t ≥ τ and therefore, for all t ≥ τ,

f (xt)− f ∗ = f (xτ)− f (x0) + f (x0)− f ∗ ≤ M + ∆,
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which implies
∥∇ f (xt)∥2 ≤ 2ℓ( f (xt)− f ∗) ≤ 2ℓ(M + ∆).

Therefore, we can bound for all t ≥ 0,

vt ≤ max{γℓ,
√

2ℓ(M + ∆)}.
For t ≥ τ, by (6.11)

f (xt+1)− f (xt) ≤ −
ηt

2
∥∇ f (xt)∥2.

By telescoping from t = τ to T − 1, we get

2 ( f (xτ)− f (xT)) ≥
T−1

∑
t=τ

ηt∥∇ f (xt)∥2

=
T−1

∑
t=τ

γ

(t + 1)αvt+1
∥∇ f (xt)∥2

≥
T−1

∑
t=τ

γ

Tαvt+1
∥∇ f (xt)∥2

≥
T−1

∑
t=τ

γ

Tα max{γℓ,
√

2ℓ(M + ∆)}
∥∇ f (xt)∥2.

Then we have
T−1

∑
t=τ

∥∇ f (xt)∥2 ≤ 2
γ
( f (xτ)− f (xT)) Tα max{γℓ,

√
2ℓ(M + ∆)}

≤ 2
γ
( f (xτ)− f (x∗)) Tα max{γℓ,

√
2ℓ(M + ∆)}

≤ 2(M + ∆)
γ

Tα max{γℓ,
√

2ℓ(M + ∆)}.

Combining with (6.10), we obtain

T−1

∑
t=0
∥∇ f (xt)∥2 ≤

(
ℓγ

v0

) 1
α

γ2ℓ2 +
2(M + ∆)Tα

γ
max{γℓ,

√
2ℓ(M + ∆)}.

When τ = 0, we have

2 ( f (x0)− f (xT)) ≥
T−1

∑
t=0

γ

Tαvt+1
∥∇ f (xt)∥2 ≥

T−1

∑
t=τ

γ

Tα max{v0,
√

2ℓ∆}
∥∇ f (xt)∥2,

which implies
T−1

∑
t=0
∥∇ f (xt)∥2 ≤ 2∆Tα

γ
max{v0,

√
2ℓ∆}.

Remark 6.5.7. For any 0 < α < 1, if we compare simplified AMSGrad with γt =
γ

(t+1)α to SGD
with ηt =

η
(t+1)α in the deterministic case (setting σ = 0 in Theorem 6.5.1), we observe that they
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achieve the same convergence rate. However, the complexity of simplified AMSGrad only includes
polynomial term in γ and ℓ, while that of SGD includes an exponential term in (ηℓ)1/α.

In the following, we will first provide the lower bounds for scalar version of AMSGrad
(referred to as AMSGrad-norm) with each α ∈ (0, 1) and discuss why it may fail with
α = 0 when problem parameters are unknown, which means that it can not achieve the
optimal complexity O(ϵ−2) in the deterministic setting. Second, we show that it also fails to
achieve the optimal convergence rate in the stochastic setting when stochastic gradients are
unbounded. To make the results more general, we consider the standard scalar AMSGrad
with momentum hyper-parameters β1 and β2, which is presented in Algorithm 14.

Before proceeding to our results, we present a lemma which is handy for conducing
lower bounds for SGD-like algorithms with momentum (see Algorithm 17). As long as an
upper bound is known for stepsize ηt, we can derive a lower bound similar to Proposition 1

in [Drori and Shamir, 2020].

Algorithm 17 General SGD with Momentum
1: Input: initial point x0, momentum parameters 0 ≤ β1 < 1 and initial moment m0.
2: for t = 0, 1, 2, ... do
3: sample ξt
4: mt+1 = β1mt + (1− β1)g(xt; ξt)
5: obtain stepsize ηt > 0
6: xt+1 = xt − ηtmt+1
7: end for

Lemma 6.5.8. For any ℓ > 0, ∆ > 0 and T > 1, there exists a ℓ-smooth function f : R→ R, and
x0 with f (x0)− infx f (x) ≤ ∆, such that if we run Algorithm 17 with deterministic gradients
and ηt ≤ η̃t for t = 0, 1, 2, ..., T − 1, then we have

min
t∈{0,1,...,T−1}

|∇ f (xt)| ≥
√

∆
16 max{1/ℓ, ∑T−1

t=0 η̃t}
.

Proof. We construct a quadratic function similar to Proposition 1 in [Drori and Shamir,
2020]. The following function is considered:

f (x) =
x2

4 max
{

1/ℓ, ∑T−1
t=0 η̃t

} .
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Without loss of generality, we assume the initial moment m0 is non-positive, and we set
the initial point x0 as

x0 =

√√√√∆ max

{
1/ℓ,

T−1

∑
t=0

η̃t

}
.

Otherwise if the initial moment is set to be positive, then we let x0 be negative and follow
the same reasoning.

Since x0 is positive, the first gradient direction would be positive, i.e., ∇ f (x0) > 0. Let
τ be the first iteration such that mτ > 0. By the update rule and definition of τ, it is
obvious that xt ≥ x0 for t ≤ τ − 1. If T ≤ τ, it trivially holds that ∇ f (xt) ≥ ∇ f (x0) for all
0 ≤ t ≤ T− 1. Otherwise, we have mτ = β1mτ−1 + (1− β1)∇ f (xτ−1) ≤ (1− β1)∇ f (xτ−1).
That is to say, the gradient estimation mτ used in the τ-th step has the correct direction
but its magnitude is no larger than the actual gradient. Starting from the τ-th iteration, xt

will monotonically move left towards the solution. Note that since our stepsize is small
enough, i.e.,

ηt ≤ η̃t < 2 max

{
1/ℓ,

T−1

∑
t=0

η̃t

}
,

the updates will remain positive, i.e., xt > 0 for t ≥ τ. By the update rule, we note that
xt+1 ≤ xt for t ≥ τ, and therefore ∇ f (xt+1) < ∇ f (xt). We can conclude that for any t ≥ τ,
we have mt ≤ ∇ f (xτ−1). Then for t ≥ τ − 1 we have

xt = xτ−1 −
t−1

∑
k=τ−1

ηtmt+1

≥ xτ−1 −
t−1

∑
k=τ−1

η̃t∇ f (xτ−1)

= xτ−1 −
t−1

∑
k=τ−1

η̃t

2 max
{

1/ℓ, ∑T−1
t=0 η̃t

} xτ−1

≥ 1
2

xτ−1

≥ 1
2

x0.

Then we conclude by

|∇ f (xt)| =
xt

2 max
{

1/ℓ, ∑T−1
t=0 η̃t

} ≥ x0

4 max
{

1/ℓ, ∑T−1
t=0 η̃t

} =

√
∆

16 max{1/ℓ, ∑T−1
t=0 η̃t}

.

Now we proceed to provide the lower bound for deterministic case.
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Theorem 6.5.9. For any ℓ > 0, ∆ > 0 and T > 1, there exists a ℓ-smooth function f : R→ R

and x0 with f (x0)− infx f (x) ≤ ∆, such that if we run Algorithm 14 with deterministic gradients,
0 < v0 ≤ ℓγ

2 , and γt =
γ

(t+1)α with γ ≤ 4∆
v0

, we have (1) if 0 < α < 1, for any 0 ≤ β1 < 1 and
0 ≤ β2 ≤ 1, we have

min
t∈{0,1,...,T−1}

|∇ f (xt)| ≥
√

∆
16 max{1/ℓ, γ

(1−α)v0
T1−α} ,

and (2) if α = 0, for β1 = 0 and any 0 ≤ β2 ≤ 1, we have

min
t∈{0,1,...,T−1}

|∇ f (xt)| ≥ v0.

Remark 6.5.10. From the theorem, we can conclude that the optimal convergence rate 1√
T

for
∥∇ f (xt)∥ is infeasible for AMSGrad with polynomially decreasing stepsize. When α = 0, a similar
result can be obtained for the case β1 ≥ 0, β2 = 0 and small enough v0.

Proof. For α > 0, we have

ηt =
γ

(t + 1)α
√

v̂2
t+1

≤ γ

(t + 1)αv0
.

Let η̃t =
γ

(t+1)αv0
and then we have

T−1

∑
t=0

η̃t =
T−1

∑
t=0

γ

(t + 1)αv0
≤ γ

(1− α)v0
T1−α.

Applying Lemma 6.5.8 directly gives us the desired result.
For α = 0, we consider function

f (x) =
v0

γ
x2.

Note that since v0 ≤ ℓγ
2 , the function is ℓ-smooth. Let

x0 =
γ

2
,

which satisfies the condition that f (x0) ≤ ∆. Then after one update

v2
1 = β2v2

0 + (1− β2)∥∇ f (x0)∥2 = v2
0

x1 = x0 −
γ√
v2

1

∇ f (x0) = −
γ

2
= −x0.

If we continue this calculation, we find that the iterates will oscillate between γ
2 and −γ

2

forever, which finishes the proof.

proof for theorem 6 .4 .2
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Proof. We consider a two-dimensional function f : R2 → R2, for x = (x1, x2)⊤ ∈ R2,

f (x) = F(x1),

where its function value only depends on the first dimension and we will define F : R→ R

later. The gradient at x is ∇ f (x) = (∇F(x1), 0)⊤. We add the noise only to the second
dimension, i.e., g(x; ξ) = (∇F(x1), ξ). For any t ≥ 0, the probability density function of
the noise as

pξt(x) =





1
sζ

( x
s

)−1− 2
ζ e−(

x
s )
− 2

ζ
, x ≥ 0;

1
sζ

(−x
s

)−1− 2
ζ e−(

−x
s )
− 2

ζ
, x < 0,

where s = σ√
Γ(1− ζ

2 )
. Note that the distribution is symmetric and E [ξt] = 0. Also, we

note that |ξt| follows the Fréchet distribution [De Gusmao et al., 2011] with cumulative
distribution function

Pr(|ξt| ≤ x) = e−(
x
s )
− 2

ζ
,

and

Var [ξt] = E
[
|ξt|2

]
− (E [ξt])

2

= s2Γ
(

1− ζ

2

)
− (E [ξt])

2

≤ s2Γ
(

1− ζ

2

)

≤ σ2,

where we used the exact second moment for Fréchet distribution.
Next, we will show that ξ̃t := max0≤k≤t{|ξk|} ≥ Ω

(
1

(t+1)ζ−1/2

)
with probability 1

2 . We

know that ξ̃t also follows Fréchet distribution with CDF

Pr(ξ̃t ≤ x) = exp


−

(
x

s · (t + 1)
ζ
2

)− 2
ζ


 .

Then for constant C > 0,

Pr(ξ̃t ≤ C · (t + 1)ζ− 1
2 ) = exp


−

(
C · (t + 1)ζ− 1

2

s · (t + 1)
ζ
2

)− 2
ζ




= exp

(
−
(

C
s

) 2
ζ

(t + 1)
1
ζ−1

)

≤ 1
4(t + 1)2 ,
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where the last inequality is by selecting C =
s(e( 1

ζ−1))
ζ
2

√
2

and using exp
(
− 2m+1

em · tm
)
≤ 1

4t2

for any t > 0 and 0 < m < 1. Then using union bound, we have

Pr(ξ̃t > C · (t + 1)ζ− 1
2 for 0 ≤ t ≤ T − 1) ≥ 1−

T−1

∑
t=0

1
4(t + 1)2 ≥

1
2

.

Now we have shown that with some probability, the noise is large enough. We can use
this property to provide an upper bound η̃t for the stepsize as follow

ηt =
γ√

t + 1
√

ṽt+1

=
γ√

t + 1
√

max0≤k≤t{β2vk + (1− β2)∥g(xk; ξk)∥2}
≤ γ√

t + 1
√

max0≤k≤t{(1− β2)∥g(xk; ξk)∥2}
≤ γ√

t + 1
√

max0≤k≤t{(1− β2)∥ξk∥2}
=

γ√
t + 1

√
(1− β2)ξ̃t

≤ γ

C(t + 1)ζ
√
(1− β2)

≜ η̃t,

This implies
T−1

∑
t=0

η̃t ≤
γ

(1− ζ)C
√
(1− β2)

(
T1−ζ − ζ

)
.

We observe that the update with AMSGrad-norm in function f corresponds to applying
general SGD with momentum (Algorithm 17) to function F with stepsize ηt. Therefore,
we can pick a hard instance F according to Lemma 6.5.8, and by noting that ∥∇ f (x)∥ =
|∇F(x1)| we reach our conclusion.

Remark 6.5.11. As we see above, the function F in the proof is constructed by Lemma 6.5.8. We
note that even assuming the gradients of f to be bounded, i.e., ∥∇ f (x)∥ ≤ K for all x, will not
prevent the slow convergence in Theorem 6.4.2. This is because in the proof of Lemma 6.5.8 all
iterates stay between [0, xτ−1] (e.g., τ = 1 if m0 = 0), so we can construct any Lipschitz function
outside of this segment.





7
S U M M A RY A N D F U T U R E D I R E C T I O N S

Good questions outrank easy answers.
— Paul Samuelson

In this chapter, we summarize the key contributions of this work and explore possible
future research directions.

This thesis provides a comprehensive exploration of challenges and advancements
in minimax optimization, particularly focusing on imbalance, NC-NC problems, and
adaptivity. In the first chapter, a Catalyst framework is introduced, inspired by proximal
point methods, to address unbalanced regimes in minimax optimization. The following
two chapters shed light on the NC-NC regimes, where particular emphasis is given to the
behavior of the Alternating Gradient Descent Ascent (AGDA) algorithm, its convergence
under different scenarios. The fourth chapter shifts focus to the NC-SC setting, introducing
NeAda, a novel nested adaptive framework designed to make conventional Gradient
Descent Ascent combined tuning-free with adaptive schemes. In the closing chapter, the
advantages of adaptive methods, particularly in relation to Stochastic Gradient Descent,
are analyzed in the setting when problem parameters are unknown. The thesis, as a whole,
offers insightful strategies and analyses that push the boundaries of current understanding
in minimax optimization and adaptive methods.

7.1 future directions

7.1.1 Unbalanced Minimax Problems

In Chapter 2, we introduce a universal framework for tackling unbalanced minimax
problems, aiming to bridge the gap between lower and upper bounds in these scenarios.
However, several intriguing questions remain unanswered. Firstly, in the context of the
NC-SC setting, it would be compelling to explore if the complexity’s dependence on n for
finite-sum NC-SC minimax optimization can be further refined. Secondly, the absence of
lower bounds for the NC-C setting leaves us uncertain about the potential for enhancing
the current state-of-the-art upper bounds. Lastly, devising a universally near-optimal single-
loop algorithm that encompasses all these unbalanced scenarios presents an interesting
challenge.

197
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7.1.2 Nonconvex-Nonconcave Minimax Optimization

While Daskalakis et al. [2021] highlight the challenges associated with identifying or
finding certain types of stationary and local solutions for smooth and Lipschitz nonconvex-
nonconcave minimax problems, it remains an open question whether there are alternative
meaningful notions that can be achieved more efficiently. In Chapters 3 and 4, we introduce
efficient algorithms aimed at finding global solutions or stationary points for two specific
subclasses of nonconvex-nonconcave problems: the two-sided PL and NC-PL problems.
Another intriguing avenue of exploration is determining the lower complexity bounds for
these two categories.

7.1.3 Adaptive Methods for Minimax Optimization

In Chapter 5, the proposed algorithm, NeAda, is analyzed when the function is strongly-
convex w.r.t. the dual variable. For practical applications, such as Generative Adversarial
Networks [Goodfellow et al., 2014], it might be overly optimistic to assume that the dual
variable exhibits such desirable properties. A potential direction for future research would
be to move beyond this assumption to the NC-C setting or nonconcave structures such as
PL condition. Furthermore, eliminating the assumption of bounded (stochastic) gradients
for the dual variable is another important future direction. As highlighted in Chapter 6,
adaptive methods possess a strict advantage over SGD in the absence of this assumption.
Achieving this for NC-SC problems with our NeAda algorithm framework would hinge
on the development of parameter-agnostic stochastic algorithms for strongly concave
maximization problem — a known open challenge [Orvieto et al., 2022].

7.1.4 Adaptive Methods for Problems

In Chapter 6, we analyze the benefit of adaptive methods over SGD when the stepsize is
independent of problem parameters and the objective function is not necessarily Lipschitz.
There are several potential future extensions. Firstly, it is interesting to understand whether
similar benefits of adaptive methods persist for the high probability convergence guaran-
tees and extend to other adaptive optimizers. Secondly, we emphasize the significance of
eliminating the assumption of bounded gradients for more adaptive algorithms. Such an
assumption can hide the dependence on ℓ and obscure the advantage over SGD. Thirdly,
based on our negative results concerning AMSGrad-norm, further exploration of the
convergence properties of AMSGrad and its variants becomes interesting. This exploration
could involve scenarios where true function gradients are unbounded, but additional
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assumptions can be made regarding the noise distribution. Lastly, understanding the
impact of adaptive algorithms on the optimization of possibly non-smooth nonconvex
objectives, which frequently arise in the training of modern machine learning models, is
another intriguing avenue for future research.
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