
19
05

Al
be

rt
Ei
ns

te
in

Diss. ETH No. ?

Andisheh Amrollahi

Spectral Bias in
Supervised Learning

Diss. ETH No. 29670

Spectral Bias in
Supervised Learning

Andisheh Amrollahi

diss . eth no. 29670

S P E C T R A L B I A S I N S U P E RV I S E D L E A R N I N G

A dissertation submitted to attain the degree of

doctor of sciences

(Dr. sc. ETH Zurich)

presented by

andisheh amrollahi

M. sc. ETH Zurich

born on 31 March 1994

accepted on the recommendation of

Prof. Dr. Andreas Krause, examiner
Prof. Dr. Markus Püschel , co-examiner

Prof. Dr. Guy Van den Broeck , co-examiner

2023

Andisheh Amrollahi: Spectral Bias in Supervised Learning, © 2023

doi: 10.3929/ethz-b-000658791

andisheh amrollahi

S P E C T R A L B I A S I N S U P E RV I S E D
L E A R N I N G

To my parents,

A B S T R A C T

We build upon advances of the past few decades in supervised learning,
focusing on two successful model classes: ensembles of decision trees and
neural networks. These models exhibit a property called "spectral bias,"
where their learned functions can be represented using compact Fourier
(Walsh-Hadamard) representations. This property forms the foundation of
the thesis.

For neural networks, we know that despite their capacity to learn com-
plex functions, the algorithms used for training, such as stochastic gradient
descent, tend to result in simpler learned functions. The notion of simplicity
in this context is examined through the Walsh-Hadamard transform. Neu-
ral networks are found to learn lower-degree Fourier frequencies, which
correspond to functions with factorized forms. (Ensembles of) Decision
trees of depth d are exactly represented as sparse functions with degrees
up to d.

The thesis comprises three chapters:

• "A scalable Walsh-Hadamard regularizer to overcome the low-degree
spectral bias of neural networks" addresses the trade-off between
simplicity and complexity in neural networks. The low-degree spectral
bias can hinder learning complex functions, leading to sub-optimal
generalization. A scalable regularization approach is proposed to
mitigate this bias, improving generalization on various datasets.

• "Amortized SHAP values via function approximation" presents a
method to compute SHAP values, an interpretable AI feature-attribution
method. Compact Fourier representations of neural networks and de-
cision tree ensembles are used to efficiently compute SHAP values,
resulting in substantial speedups compared to existing methods.

• "Efficiently Learning Fourier Sparse Set Functions" introduces an
algorithm for efficiently computing the Fourier transform of black-box
functions with sparsity and low-degree assumptions. This algorithm
outperforms existing sparse Walsh-Hadamard transforms by utilizing
low-degree characteristics and novel hashing schemes. An extension
of this work further improves query efficiency.

vii

Overall, the thesis sets the stage for the exploration of spectral bias in
supervised learning models and provides three different chapters that
tackle different aspects of this phenomenon, presenting novel approaches
to address spectral bias in neural networks, compute SHAP values, and
efficiently compute Fourier transforms of sparse functions.

viii

Z U S A M M E N FA S S U N G

Wir bauen auf den Fortschritten der letzten Jahrzehnte im Bereich des
überwachten Lernens auf und konzentrieren uns auf zwei erfolgreiche
Modellklassen: Ensembles von Entscheidungsbäumen und neuronale Net-
ze. Diese Modelle weisen eine Eigenschaft auf, die als “spektrale Verzer-
rung” bezeichnet wird, d. h. ihre gelernten Funktionen lassen sich durch
kompakte Fourier-Repräsentationen (Walsh-Hadamard) darstellen. Diese
Eigenschaft bildet die Grundlage für diese Arbeit. Von neuronalen Netzen
wissen wir, dass trotz ihrer Fähigkeit, komplexe Funktionen zu erlernen,
die zum Training verwendeten Algorithmen, wie z. B. der stochastische
Gradientenabstieg, tendenziell zu einfacheren erlernten Funktionen führen.
Der Begriff der Einfachheit wird in diesem Zusammenhang anhand der
Walsh-Hadamard-Transformation untersucht. Es ist bekannt, dass neurona-
le Netze Fourier-Frequenzen niedrigeren Grades lernen, die Funktionen mit
faktorisierten Formen entsprechen. (Ensembles von) Entscheidungsbäumen
der Tiefe d werden exakt als spärliche Funktionen mit Graden bis zu d
dargestellt. Die Arbeit besteht aus drei Kapiteln:

• “Low degree spectral bias of neural networks” befasst sich mit dem
Kompromiss zwischen Einfachheit und Komplexität in neuronalen
Netzen. Die spektrale Verzerrung niedrigen Grades kann das Ler-
nen komplexer Funktionen behindern, was zu suboptimaler Gene-
ralisierung führt. Es wird ein skalierbarer Regularisierungsansatz
vorgeschlagen, um diese Verzerrung abzuschwächen und die Genera-
lisierung auf verschiedenen Datensätzen zu verbessern.

• “Utilizing the spectral bias to compute SHAP values” stellt eine Me-
thode zur Berechnung von SHAP-Werten vor, eine interpretierbare
KI-Merkmalszuweisungsmethode. Kompakte Fourier-Darstellungen
von neuronalen Netzen und Entscheidungsbaum-Ensembles werden
zur effizienten Berechnung von SHAP-Werten verwendet, was zu
einer erheblichen Beschleunigung der Berechnungen im Vergleich zu
bestehenden Methoden führt.

• ”Computing sparse and/or low-degree transforms” stellt einen Al-
gorithmus zur effizienten Berechnung der Fourier-Transformation
von Black-Box-Funktionen mit Sparsity- und Low-Degree-Annahmen

ix

vor. Dieser Algorithmus übertrifft bestehende dünn besetzte Walsh-
Hadamard-Transformationen, indem er Merkmale niedrigen Grades
und neuartige Hashing-Schemata nutzt. Eine Erweiterung dieser Ar-
beit verbessert die Abfrageeffizienz weiter.

Zusammenfassend legt die Arbeit den Grundstein für die Erforschung
der spektralen Verzerrung in überwachten Lernmodellen und gibt einen
Überblick über die drei Arbeiten, die sich mit verschiedenen Aspekten
dieses Phänomens befassen und neue Ansätze zur Berechnung von SHAP-
Werten, zur Bewältigung der spektralen Verzerrung in neuronalen Netzen
und zur effizienten Berechnung von Fourier-Transformationen dünnbesetzte
Funktionen vorstellen.

x

A C K N O W L E D G E M E N T S

I would like to thank my professor Andreas Krause for his supervision,
support, trust, and help throughout these years.

I would like to thank my collaborator Chris Wendler for all of his contri-
butions both in terms of technical content and being a good friend.

I would like to thank my close friends and colleagues Bhavya, Lenart,
Scott, Parnian, Max, and Pragnya for making the workplace that much
more friendly and fun.

I would like to thank my girlfriend Lena for her emotional support
throughout my whole PhD.

I would like to thank Rita, the group secretary for all her help during my
PhD.

Finally, I would like to thank my family and especially my parents,
without whom I would not even be here.

xi

C O N T E N T S

1 Introduction 1

1.1 Low-degree Spectral Bias of Neural Networks 2

1.2 Utilizing the Spectral bias to compute SHAP values 3

1.3 Computing the sparse and/or low-degree spectrum 3

1.4 Overview of publications 4

2 Background 7

2.1 Walsh Hadamard transforms 7

2.2 Spectral bias theory of neural networks 9

2.3 Spectral bias of ensembles of decision trees 10

3 Low-degree Spectral Bias of Neural Networks 13

3.1 Related work and details of our contributions 14

3.2 Notation 16

3.3 Low-degree spectral bias 17

3.3.1 Fourier spectrum evolution 17

3.4 Overcoming the spectral bias via regularization 19

3.4.1 HashWH 20

3.5 Experiments 24

3.5.1 Synthetic data 26

3.5.2 Real data 27

4 Utilizing the Spectral bias to compute SHAP values 31

4.1 Related work and details of our contributions 32

4.2 Background 34

4.2.1 Shapley values 34

4.2.2 Shapley values in the context of Machine learning 35

4.2.3 KernelShap 37

4.2.4 Efficient SHAP values in the context of coalitional
games 37

4.2.5 Many real-world black-box predictors have sparse
Fourier transforms 38

4.3 Computing SHAP values with Fourier representations of
functions 38

4.4 Experiments 41

5 Computing the sparse and/or low-degree spectrum 47

5.1 Related work and our details of our contributions 48

5.2 Problem Statement 51

xiii

xiv contents

5.3 Algorithm and Analysis 53

5.3.1 Low-degree frequency recovery 53

5.3.2 Signal reduction 57

5.3.3 Exact Fourier recovery 58

5.4 Experiments 60

5.4.1 Sample and time complexities as number of vertices
varies 61

5.4.2 Time complexities as number of edges varies 61

5.5 Frequency recovery primitives as linear
error-correcting codes 62

5.6 Experiments with linear error-correcting codes as frequency
recovery primitives 66

5.6.1 Empirical sampling complexity of the new frequency
recovery primitives 66

5.6.2 Learning a synthetic black-box function 67

5.6.3 Learning a black-box trained on a dataset 69

5.7 Relationship to non-orthogonal Fourier bases 70

6 Summary and future directions 75

a Appendix: Background section proofs 79

a.0.1 Proof of propositions 79

b Appendix: Walsh-Hadamard regularizer for the low-degree spec-
tral bias 81

b.1 Walsh-Hadamard transform matrix form 81

b.2 Algorithm Details 82

b.2.1 Proof of Equation 3.1 82

b.2.2 Collisions for HashWH 83

b.2.3 EN-S details 86

b.3 Datasets 90

b.4 Implementation technical details 91

b.5 Ablation study details 93

b.5.1 Ablation study setup 94

b.6 Extended experiment results 94

b.6.1 Fourier spectrum evolution 94

b.6.2 High-dimensional synthetic data 96

b.6.3 Real data 96

c Appendix: Amortized SHAP values via function approxima-
tion 109

c.1 Relevant work 109

c.1.1 Sparse and low degree Fourier transform algorithms 109

contents xv

c.2 Proofs 110

c.2.1 Proof of Lemma 4.3.1 110

c.2.2 Proof of Theorem 4.3.2 112

c.3 Datasets 113

c.4 Experiment Details 114

c.4.1 Black-box 114

c.4.2 White-box 115

Bibliography 117

N O TAT I O N

frequently used symbols

g : {0, 1}n → R Pseduo-boolean function of dimensionality n

F or {0, 1} Unique field containing two elements {0,1}

f frequency f ∈ {0, 1}n

deg(f) degree of frequency i.e. number of its non-zero ele-
ments

d degree of a pseudo-boolean function

k sparsity of a pseudo-boolean function

Ψ f Fourier basis function corresponding to frequency f
Ψ f (x) = (−1)⟨ f ,x⟩

xvi

1
I N T R O D U C T I O N

There have been great advances in the realm of supervised learning in
the past three decades. Most of these efforts have focused on providing
algorithms that produce more accurate models for a variety of different (su-
pervised) tasks. In this thesis, we study two classes of remarkably successful
models that work well on tabular data: (ensembles of) decision trees and
neural networks. The functions both these models represent after training,
have a property commonly referred to as a spectral bias. Namely, we can
exactly represent (in the case of ensembles of decision trees) or efficiently
approximate (in the case of neural networks) these models using compact
Fourier a.k.a Walsh-Hadamard representations. This fundamental fact is the
basis of this thesis. Before discussing our contributions, we make clear what
we mean by the spectral bias of decision tree models and neural networks.
Spectral bias of ensembles of neural networks:

We know that deep fully connected networks trained through (stochastic)
gradient descent represent functions that are “simple”. This, on the surface,
may seem in contrast to classical work on neural networks showing that
deep fully connected neural networks can approximate arbitrary (complex)
functions, more commonly known as the universal approximation theorem
[1, 2]. However as made formal by numerous works [3–7], even though
deep networks can learn arbitrary complex functions, the algorithm used
to train them, namely (stochastic) gradient descent, gives rise to a learned
function that is “simple”. This notion of simplicity is not agreed upon and
works such as [8–11] each introduces a different notion of “simplicity”.

One way to quantify this simplicity is through the Fourier (spectral)
domain. In discrete domains, with tabular datasets, where the input to the
neural network is a high dimensional zero-one vector Valle-Perez, Camargo
& Louis [10] and Yang & Salman [12] provide spectral bias results for
the function learned by the neural network. By viewing a fully connected
neural network as a function that maps zero-one vectors to real values, one
can expand this function in terms of the Fourier –a.k.a Walsh-Hadamard –
basis functions. Through analysis of the NTK gram matrix on the Boolean
cube, Yang & Salman [12] theoretically show that roughly speaking, neural
networks tend to learn lower-degree Fourier frequencies.

1

2 introduction

We clarify what the low-degree frequencies signify. The Walsh-Hadamard
basis functions have a natural ordering in terms of their complexity called
their degree. The degree specifies how many features each basis function
is dependent upon. For example, the zero-degree basis function is the
constant function and the degree-one basis functions are functions that
depend on exactly one feature. Therefore, when the neural network learns
lower-degree frequencies, it means that the function it represents admits
a simple factorized form. Namely, if the function is of low-degree d, then
it can be written as a summation of (Fourier basis) functions, where each
function depends on at most d variables.
Spectral bias of ensembles of decision trees:

We know that the function a decision tree of depth d represents is sparse,
k = O(4d)-sparse, that is it contains at most k = O(4d) non-zero Fourier
(Walsh-Hadamard) coefficients in its support [13–15]. A decision tree of
depth d contains frequencies of degree at most d. Extending this to en-
sembles of decision trees, if the ensemble consists of T different trees then
its Fourier transform is k = O(T4d)-sparse and contains frequencies with
degrees less or equal to its maximum depth.

In this thesis, I present three chapters. Here, I provide an overview of
what type of question each one of them addresses.

1.1 low-degree spectral bias of neural networks

The simplicity/spectral bias of neural networks is a double-edged sword.
On one hand, bias towards simpler functions can help the neural network
generalize better (on the test set) since it stops overfitting. On the other
hand, it can stop the network from learning a “complex enough” function
and hurt its generalization. This is essentially the bias-variance trade-off in
Machine Learning.

In this work, we show that the second case can indeed be true on some
datasets. That is the low-degree spectral bias of the neural network guides it
towards a function that is not complex enough. We empirically evaluate the
spectral bias of neural networks through various extensive experiments and
consolidate previous theoretical findings that neural networks tend to learn
lower degree frequencies. To remedy the spectral bias, we propose a new
scalable functional regularization scheme that aids the neural network in
learning higher degree frequencies. We extensively evaluate our regularizer
on synthetic datasets to gain insights into its behavior. Finally, we show

1.2 utilizing the spectral bias to compute shap values 3

significantly improved generalization on four different datasets compared
to standard neural networks and other relevant baselines.

1.2 utilizing the spectral bias to compute shap values

This chapter provides an application of what we can do using the compact
Fourier representations of supervised learning models such as a neural
network or an ensemble of decision trees. Namely, we use the represen-
tation to compute SHAP values. SHAP values – a.k.a. SHapley Additive
exPlanations – are a popular local feature-attribution method widely used
in interpretable and explainable AI. We propose a two-stage approach for
estimating SHAP values. As mentioned in the introduction we can extract
compact Fourier representations of both neural networks and ensembles of
decision trees. Given the representation, we use the Fourier representation
to exactly compute SHAP values. The second step is computationally very
cheap because firstly, the representation is compact and secondly, we prove
that there exists a closed-form expression for SHAP values for the Fourier
basis functions. Thirdly, the expression we derive effectively linearizes the
computation into a summation and is amenable to parallelization on mul-
tiple cores or a GPU. Since the function approximation (first step) is only
done once, it allows us to produce Shapley values in an amortized way. This
makes our algorithm orders of magnitudes faster than previous methods
such as KernelShap where each explained instance requires solving an
expensive optimization problem. We show speedups of 10-10000x compared
to relevant baseline methods for equal levels of accuracy.

1.3 computing the sparse and/or low-degree spectrum

Given access to the structure of an ensemble of trees model (white-box
access) one can compute its Fourier transform recursively. However, we can
not say the same about a neural network. If the input to the neural network
(the number of features) is n-dimensional, to compute its Walsh-Hadamard
(Fourier) transform one would need to evaluate the network on all 2n many
inputs.

In this work, we provide a new sparse Walsh-Hadamard transform
algorithm to compute the Fourier transform of any given black box function
given only query access to the function. More precisely, let h : {0, 1}n → R

be a black-box function, query access means that we can pick an arbitrary x
and query the value h(x). In this work, we provide algorithms that exploit

4 introduction

both the sparsity and low-degree assumptions on the black-box to efficiently
compute the Fourier transform. The algorithm is efficient in terms of both
query complexity and computational complexity.

The contributions of this algorithm are:

• It is the first sparse Walsh Hadamard transform algorithm to exploit
low-degreeness of the underlying function to achieve better computa-
tional and query complexity.

• It introduces new hashing schemes that allow it to overcome restrictive
randomness assumptions on the support that all previous sparse
Walsh-Hadamard transforms usually have [16–18]

In unpublished work, this work was later extended by making its frequency
recovery primitive even more query-efficient while trading off computa-
tional complexity. The key insight here was that one can view the frequency
recovery primitive of our proposed algorithm as a linear error-correcting
code problem. We include the unpublished theoretical and experimental
results in Sections 5.5 and 5.6.

1.4 overview of publications

In what follows is a list of my publications in chronological order with a
short explanation.

- Amrollahi, A. et al. Efficiently Learning Fourier Sparse Set Functions in
Advances in Neural Information Processing Systems 32 (Curran Associates, Inc.,
2019)

In this paper, I presented an algorithm for efficiently extracting Fourier
transforms from sparse and low-degree set functions, including neural
networks with zero-one inputs. It situates itself within the broader context of
learning sparse, low-degree set functions. The key contribution is an efficient
algorithm for learning functions with low-degree Fourier supports, offering
significant sample complexity and runtime advantages, and applicable to
sparse graphs, decision trees, and more, including a robust version with
strong approximation guarantees. Chapter 6 of the thesis is based on ideas
from this paper.

- Wendler, C. et al. Learning set functions that are sparse in non-orthogonal
Fourier bases in Proceedings of the AAAI Conference on Artificial Intelligence 35
(2021), 10283

This work introduces a new family of algorithms for learning Fourier-
sparse set functions in discrete machine learning applications for non-

1.4 overview of publications 5

orthogonal Fourier transforms. This paper is essentialy an extension of
the previous paper to non-orthogonal bases. Examples of functions that
are dense in the orthogonal Fourier basis but sparse in an non-orthogonal
basis are coverage functions or auction preference functions [20]. The algo-
rithms are demonstrated to be query-efficient and can be utilized real-world
scenarios like recommender systems and auctions.

- Valentin, R. et al. Instance-wise algorithm configuration with graph
neural networks. arXiv preprint arXiv:2202.04910 (2022)

Our submission for the ML4CO NeurIPS 2021 competition involved a
graph neural network trained on a dataset of SCIP solver performances,
significantly improving MILP solving efficiency and earning us third place
globally and first in the student category.

- Gorji, A., Amrollahi, A. & Krause, A. A scalable Walsh-Hadamard regu-
larizer to overcome the low-degree spectral bias of neural networks in The 39th
Conference on Uncertainty in Artificial Intelligence (2023)

This paper explores the spectral bias in neural networks with discrete
inputs, revealing a tendency to favor lower-degree frequencies in Fourier
transforms and how it negatively affects generalization. To counter this, a
new scalable regularization scheme is proposed, enhancing the network’s
ability to learn higher-degree frequencies and improve generalization, as
evidenced by extensive evaluations of synthetic and real-world datasets.
Chapter 3 of the thesis is based on ideas from this paper.

- Amrollahi, A., Gorji, A. & Krause, A. Amortized SHAP values via function
approximation in (2023)

In this chapter, we leverage the low-degree and sparsity properties of
neural networks and tree ensembles, for the efficient computation of SHAP
values, crucial for interpretable AI. We propose a novel two-stage approach
for estimating SHAP values in a model-agnostic, black-box setting, building
on insights from the earlier paper on the spectral biases of neural networks
and the nature of tree ensembles. Chapter 4 is based on ideas from this
paper.

2
B A C K G R O U N D

In this chapter, we first review Fourier a.k.a Walsh-Hadamard transforms,
and notions of degree and sparsity in the Walsh-Hadamard domain [24]. Next,
we review the notion of simplicity biases in neural networks and discuss
why they are spectrally biased toward low-degree and sparse function
functions. Finally, we do the same for ensembles of decision tree functions.

2.1 walsh hadamard transforms

Let g : {0, 1}n → R be a function mapping Boolean zero-one vectors to the
real numbers, also known as a “pseudo-Boolean” function. The family of
2n functions {Ψ f : {0, 1}n → R | f ∈ {0, 1}n} defined below consists of the
Fourier basis functions. This family forms a basis over the vector space of
all pseudo-Boolean functions:

Ψ f (x) =
1√
2n

(−1)⟨ f ,x⟩, f , x ∈ {0, 1}n

where ⟨ f , x⟩ = ∑i fixi. Here, f ∈ {0, 1}n is called the frequency of the basis
function. For any frequency f ∈ {0, 1}n we denote its degree by deg(f)
which is defined as the number of non-zero elements. For example, f1 =
[0, 0, 0, 0, 0] and f2 = [0, 0, 1, 0, 1] have degrees deg(f1) = 0 and deg(f2) = 2,
respectively. One can think of the degree as a measure of the complexity
of basis functions Ψ f (x). For example, Ψ0(x) is constant, and Ψei (x) where
ei is a standard basis vector (deg(ei) = 1) only depends on feature i of
the input. It is equal to +1 when feature i is zero and equal to −1 when
feature i is one. More generally, a degree d basis function depends on
exactly d input dimensions (features). These basis functions are orthonormal:

∑
x∈{0,1}n

Ψ f (x)Ψ f ′(x) =

0 f ̸= f ′

1 f = f ′
, f , f ′ ∈ {0, 1}n. Therefore, they form

a basis for the vector space of all pseudo-Boolean functions h : {0, 1}n → R.
Since the Fourier basis functions form a basis for the vector space of all

7

8 background

pseudo-Boolean functions, any function g : {0, 1}n → R can be written as a
unique linear combination of these basis functions:

g(x) =
1√
2n ∑

f∈{0,1}n
ĝ(f)(−1)⟨ f ,x⟩

The (unique) coefficients ĝ(f) are called the “Fourier coefficients” or “Fourier
amplitudes” and are computed as

ĝ(f) =
1√
2n ∑

x∈{0,1}n
g(x)(−1)⟨ f ,x⟩

. The Fourier spectrum of g is the vector consisting of all of its 2n Fourier
coefficients, which we denote by the bold symbol ĝ ∈ R2n

.
We define the support of g to be supp(g) = { f ∈ {0, 1}n|ĝ(f) ̸= 0}. We

say that a function g is k-sparse if at most k of the 2n Fourier coefficients ĝ(f)
are non-zero, i.e., ∥ĝ∥0 = |supp(g)| ≤ k. We say a function is degree d when
the frequencies f ∈ {0, 1}n corresponding to non-zero Fourier coefficients
are of degree less or equal to d i.e. ∀ f ∈ supp(g) it holds that deg(f) ≤ d.

By definition of the Fourier basis, a k-sparse degree d function can be
written as a summation of k (Fourier basis) functions, each one depending
on at most d input variables. The converse is also true:

Proposition 2.1.1. Assume g : {0, 1}n → R can be decomposed as follows:

g(x) =
p
∑

i=1
hi(xSi), Si ⊆ [n]. That is, each function gi : {0, 1}|Si | → R depends

on at most |Si| variables. Then, g is k = O(
p
∑

i=1
2|Si |)-sparse and of degree d =

max(|S1|, . . . , |Sp|). (Proof in Appendix A.0.1)

The sparsity k and degree d capture a notion of complexity for the under-
lying function. Intuitively speaking, the sparsity factor k puts a limit on the
number of functions in the decomposition, and the degree d puts a limit on
the order of interactions among the input variables.

One can see from Proposition 2.1.1, that modular functions, i.e., func-
tions that can be written as a sum of functions each depending on exactly
one variable, are k = O(n)-sparse and of degree d = 1. A slightly more
“complex” function capturing second-order interactions among the input
variables, i.e., a function that can be written as a sum where each term
depends on at most two variables is going to be k = O(n2)-sparse and of
degree d = 2. The following proposition generalizes this result.

2.2 spectral bias theory of neural networks 9

Proposition 2.1.2. Let, g : {0, 1}n → R be pseudo-Boolean function and let
d ∈N be some constant (w.r.t. n). If g is of degree d, then, it is k = O(nd)-sparse.
(Proof in Appendix A.0.1)

This proposition formally shows that limiting the order of interactions
among the input variables implies an upper bound on the sparsity.

2.2 spectral bias theory of neural networks

The function that a ReLU neural network represents at initialization can
be seen as a sample from a Gaussian Process [25] N(0, K) in the infinite
width limit [5, 26] (randomness is over the initialization of the weights and
biases). The kernel K of the GP is called the “Conjugate Kernel” [4, 26]
or the “nn-GP kernel” [4]. Let the kernel Gram matrix K be formed by
evaluating the kernel on the Boolean cube i.e. {0, 1}n and let K have the

following spectral decomposition: K =
2n

∑
i=1

λiuiu⊤i , where we assume that

the eigenvalues λ1 ≥ · · · ≥ λ2n are in decreasing order.
Let u f , f ∈ {0, 1}n be obtained by evaluating the Fourier basis function

Ψ f at the 2n possible inputs on {0, 1}n. Yang & Salman [12] show that u f
is a eigenvector for K. Moreover, they show (weak) spectral bias results in
terms of the degree of f . Namely, the eigenvalues corresponding to higher
degrees have smaller values 1. The result is weak as they do not provide a
rate as to which the eigenvalues decrease with increasing degrees.

Given the kernel, K, and viewing a randomly initialized neural network
function evaluated on the Boolean {0, 1}n as a sample from a GP one
can see the following: This sample, roughly speaking, looks like a linear
combination of the eigenvectors with the largest eigenvalues. This is because

a sample of the GP can be obtained as
2n

∑
i=1

λiwiui, wi ∼ N (0, 1). Combining

this with the spectral bias results implies that neural networks are low-
degree functions when randomly initialized.

Going beyond neural networks at initialization, numerous studies have in-
vestigated the behavior of fully connected neural networks trained through
(stochastic) gradient descent. These works show that in infinite-width neural
networks weights after training via (stochastic) gradient descent do not end
up too far from the initialization [7, 27–30], referred to as “lazy training” by

1 To be more precise, they show that the eigenvalues corresponding to even and odd de-
gree frequencies form decreasing sequences. That is, even and odd degrees are considered
separately.

10 background

Chizat, Oyallon & Bach [27]. Lee et al. [5, 6] show that training the last layer
of a randomly initialized neural network via full batch gradient descent
for an infinite amount of time corresponds to GP posterior inference with
the kernel K. Lee et al. [6] and Jacot, Gabriel & Hongler [7] proved that
when training all the layers of a neural network (not just the final layer), the
evolution can be described by a kernel called the “Neural Tangent Kernel”
and the trained network yields the mean prediction of GP N(0, KNTK) [12]
after an infinite amount of time. Lee et al. [6] empirically showed the results
carry over to the finite-width setting through extensive experiments. Yang &
Salman [31] again showed that the u f ∈ R2d

defined above are eigenvectors
of the NTK Gram matrix and spectral bias holds. We [22] validated these
theoretical findings through extensive experiments in finite-width neural
networks by showing that neural networks have “less tendency” to learn
high-degree frequencies.

The aforementioned literature shows that neural networks can be ap-
proximated by low-degree functions. By Proposition 2.1.2, they can be
approximated by sparse functions for a large enough sparsity factor k. Our
experiments in Section 3.5 provide further evidence that neural networks
trained on real-world datasets are approximated well with sparse (and
therefore compact) Fourier representations.

2.3 spectral bias of ensembles of decision trees

In our context, a decision tree is a rooted binary tree, where each non-leaf
node corresponds to one of n binary (zero-one) features, and each leaf node
has a real number assigned to it. We denote the function that a decision tree
represents by t : {0, 1}n → R. Let i ∈ [n] denote the feature corresponding
to the root, and let tleft : {0, 1}n−1 → R and tright : {0, 1}n−1 → R be the
left and right sub-trees, respectively. Then the tree can be represented as:

t(x) =
1 + (−1)⟨ei ,x⟩

2
tleft(x) +

1− (−1)⟨ei ,x⟩

2
tright(x) (2.1)

Hereby, tleft : {0, 1}n−1 → R and tright : {0, 1}n−1 → R are the left and right
sub-trees respectively.

Thus, the Fourier transform of a decision tree can be computed recur-
sively [13, 32]. The degree of a decision tree function of depth d is d,
and if |supp(tleft)| = kleft and |supp(tright)| = kright, then |supp(t)| ≤
2(kleft + kright). As a result, a decision tree function is k-sparse, where
k = O(4d), although in some cases, when the decision tree is not balanced

2.3 spectral bias of ensembles of decision trees 11

or cancellations occur, the Fourier transform can be sparser, i.e., admit a
lower k, than the above upper bound on the sparsity suggests. This often
occurs, e.g., in the case of classification where labels (leaf values) are zero
and one. Nevertheless, in all cases k = O(4d), which is polynomial in the
size of the tree, since a tree of depth d contains at most 2d nodes.

Due to the linearity of the Fourier transform, the Fourier transform of
an ensemble of trees, such as those produced by the random forest, cat-boost
[33], and XGBoost [34] algorithms/libraries, can be computed by taking the
average of the Fourier transform of each tree. If the random forest model
has T trees, then its Fourier transform is k = O(T4d)-sparse and of degree
d equal to its maximum depth of the constituent trees.

3
L O W- D E G R E E S P E C T R A L B I A S O F N E U R A L N E T W O R K S

As mentioned before, this thesis is focused on exploring spectral biases
(in the Walsh-Hadamard sense) of two classes of important supervised
machine learning models: neural networks and ensembles of trees. While
the spectral bias of ensembles of trees is a fairly well-known fact [13, 14],
the spectral bias of functions a neural network represents is a relatively new
concept and has not been explored as much. This chapter exactly addresses
this.

We empirically explore the spectral bias of fully connected neural net-
works. More precisely, we focus on the case of neural networks with discrete
(zero-one) inputs through the lens of their Fourier (Walsh-Hadamard) trans-
forms, where the notion of bias can be captured through the degree of the
Fourier coefficients.

As mentioned earlier, the spectral bias may seem contradictory to the fact
that deep and wide enough neural nets can learn arbitrary functions [35].
The key point here is that, since these models are trained through gradient
descent, they exhibit this bias.

In this chapter we do the following:

• We empirically show that neural networks tend to learn lower-degree
frequencies.

• We show how this spectral bias towards simpler features can in fact
hurt the neural network’s generalization on real-world datasets.

• To remedy this we propose a new scalable functional regularization
scheme that aids the neural network to learn higher degree frequen-
cies. Our regularizer also helps avoid erroneous identification of
low-degree frequencies, which further improves generalization.

• We extensively evaluate our regularizer on synthetic datasets to gain
insights into its behavior.

• We show significantly improved generalization on four different
datasets compared to standard neural networks and other relevant
baselines.

13

14 low-degree spectral bias of neural networks

Point 1 of the above, namely our empirical results that show neural
networks learn low-degree functions, consolidates previous theoret-
ical results [31] with very extensive experiments. They also lay the
foundation of our next chapter which is one example application of
how one can utilize the spectral bias for the down-stream task related
to interpretability.

3.1 related work and details of our contributions

Classical work on neural networks shows that deep fully connected
neural networks have the capacity to approximate arbitrary functions
[1, 2]. However, in practice, neural networks trained through (stochas-
tic) gradient descent have a “simplicity” bias. This notion of simplicity
is not agreed upon and works such as [8–11] each introduce a different
notion of “simplicity”.

As mentioned in the background Chapter 2, the simplicity bias can
also be studied by considering the function the neural net represents
(function space view) and modeling it as Gaussian processes (GP)[25].
Lee et al. [5] and Daniely, Frostig & Singer [26] show that a wide,
randomly initialized, neural network in function space is a sample
from a GP with a kernel called the “Conjugate Kernel” [36]. Moreover,
the evolution of gradient descent on a randomly initialized neural
network can be described through the “Neural Tangent Kernel” Lee
et al. [6] and Jacot, Gabriel & Hongler [7]. These works open up the
road for analyzing the simplicity bias of neural nets in terms of a
spectral bias in Fourier space. Rahaman et al. [37] show empirically that
neural networks tend to learn sinusoids of lower frequencies earlier
on in the training phase compared to those of higher frequencies.
Through the GP perspective introduced by Lee et al. [6] and Jacot,
Gabriel & Hongler [7], among others, Ronen et al. [38] and Basri et al.
[39] were able to prove these empirical findings. These results focus
on continuous domains and mainly emphasize the case where the
input and output are both one-dimensional.

Here, we focus on discrete domains where the input is a high di-
mensional zero-one vector and we analyze the function learned by
the neural network in terms of the amount of interactions among
its inputs in a quantitative manner. Valle-Perez, Camargo & Louis
[10] and Yang & Salman [12] provide spectral bias results for this set-

3.1 related work and details of our contributions 15

ting. By viewing a fully connected neural network as a function that
maps zero-one vectors to real values, one can expand this function
in terms of the Fourier –a.k.a Walsh-Hadamard – basis functions. The
Walsh-Hadamard basis functions have a natural ordering in terms of
their complexity called their degree. The degree specifies how many
features each basis function is dependent upon. For example, the zero-
degree basis function is the constant function and the degree-one basis
functions are functions that depend on exactly one feature. Through
analysis of the NTK gram matrix on the Boolean cube, Yang & Salman
[12] theoretically show that, roughly speaking, neural networks learn
the lower degree basis functions earlier in training.

This tendency to prioritize simpler functions in neural networks has
been suggested as a cardinal reason for their remarkable generaliza-
tion ability despite their over-parameterized nature [8, 11, 40, 41].
However, much less attention has been given to the case where the
simplicity bias can hurt generalization [42, 43]. Tancik et al. [42] show
how transforming the features with random Fourier features embed-
ding helps the neural network overcome its spectral bias and achieve
better performance in a variety of tasks. They were able to explain, in
a unified way, many empirical findings in computer vision research
such as sinusoidal positional embeddings through the lens of overcom-
ing the spectral bias. In the same spirit as these works, we show that
the spectral bias towards low-degree functions can hurt generalization
and how to remedy this through our proposed regularizer.

In more recent lines of work, regularization schemes have been pro-
posed to directly impose priors on the function the neural network rep-
resents [44–46]. This is in contrast to other methods such as dropout,
batch normalization, or other methods that regularize the weight
space. In this work, we also regularize neural networks in function
space by imposing sparsity constraints on their Walsh-Hadamard
transform. Closest to ours is the work of Aghazadeh et al. [47]. In-
spired by studies showing that biological landscapes are sparse and
contain high-degree frequencies [48–52], they propose a functional
regularizer to enforce sparsity in the Fourier domain and report im-
provements in generalization scores.

Our contributions:

– We analyze the spectral behavior of a simple MLP during training
through extensive experiments. We show that the standard (unreg-
ularized) network not only is unable to learn (more complex) high-

16 low-degree spectral bias of neural networks

degree frequencies but it also starts learning erroneous low-degree
frequencies and hence overfitting on this part of the spectrum.

– We propose a novel regularizer – HashWH (Hashed Walsh Hadamard)
– to remedy the aforementioned phenomenon. The regularizer acts
as a “sparsifier” on the Fourier (Walsh-Hadamard) basis. In the
most extreme cases, it reduces to simply imposing an L1-norm on
the Fourier transform of the neural network. Since computing the
exact Fourier transform of the neural net is intractable, our regu-
larizer hashes the Fourier coefficients to buckets and imposes an L1

norm on the buckets. By controlling the number of hash buckets,
it offers a smooth trade-off between computational complexity and
the quality of regularization.

– We empirically show that HashWH aids the neural network in
avoiding erroneous low-degree frequencies and also learning rel-
evant high-degree frequencies. The regularizer guides the training
procedure to allocate more energy to the high-frequency part of
the spectrum when needed and allocate less energy to the lower
frequencies when they are not present in the dataset.

– We show on real-world datasets that, contrary to popular belief of
simplicity biases for neural networks, fitting a low degree function
does not imply better generalization. Rather, what is more impor-
tant, is keeping the higher amplitude coefficients regardless of their
degree. We use our regularizer on four real-world datasets and
provide state of the art results in terms of R2 score compared to
standard neural networks and other baseline ML models, especially
for the low-data regime.

3.2 notation

The Fourier spectrum of a pseudo-boolean function g (as defined in
Chapter 2) is the vector consisting of all of its 2n Fourier coefficients,
which we denote by the bold symbol ĝ ∈ R2n

. Assume X ∈ {0, 1}2n×n

to be the matrix of an enumeration over all possible n-dimensional
binary sequences ({0, 1}n), and g(X) ∈ R2n

to be the vector of g eval-
uated on the rows of X. We can compute the Fourier spectrum using
the Walsh-Hadamard transform as ĝ = 1√

2n Hng(X), where Hn ∈
{±1}2n×2n

is the orthogonal Hadamard matrix (see Appendix B.1).

3.3 low-degree spectral bias 17

3.3 low-degree spectral bias

In this section, we conduct experiments on synthetically generated
datasets to show neural networks’ spectral bias and their preference to-
ward learning lower-degree functions over higher-degree ones. Firstly,
we show that the neural network is not able to pick up the high-degree
frequency components. Secondly, it can learn erroneous lower-degree
frequency components. To address these issues, in Section 3.4, we
introduce our regularization scheme called HashWH (Hashed Walsh
Hadamard) and demonstrate how it can remedy both problems.

3.3.1 Fourier spectrum evolution

We analyze the evolution of the function learned by neural networks
during training. We train a neural network on a dataset arising from a
synthetically generated sparse function with a low-dimensional input
domain. Since the input is low-dimensional it allows us to calculate
the Fourier spectrum of the network (exactly) at the end of each epoch.

Setup. Let g∗ : {0, 1}10 → R be a synthetic function with five frequen-
cies in its support with degrees 1 to 5 i.e.

supp(g∗) = { f1, f2, f3, f4, f5}, deg(fi) = i

, all having equal Fourier amplitudes of ĝ∗(fi) = 1. Each fi is sampled
uniformly at random from all possible frequencies of degree i. The
training set is formed by drawing uniform samples from the Boolean
cube x ∼ U{0,1}10 and evaluating g∗(x).

We draw five such target functions g∗ (with random support frequen-
cies). For each draw of the target function, we create five different
datasets all with 200 training points, and sampled uniformly from
the input domain but with different random seeds. We then train a
standard five-layer fully connected neural network using five different
random seeds for the randomness in the training procedure (such as
initialization weights and SGD). We aggregate the results over the 125
experiments by averaging. We experiment with the same setting with
three other training set sizes. Results with training set size other than
200 and further setup details are reported in Appendices B.6.1 and
B.4, respectively.

18 low-degree spectral bias of neural networks

1 2 3 4 5

100
200
300
400

standard

1 2 3 4 5

FullWH (intractable)

1 2 3 4 5

EN-S

1 2 3 4 5

HashWH (b=5)

1 2 3 4 5

HashWH (b=7)

1 2 3 4 5

HashWH (b=8)

1.0

0.5

0.0

0.5

1.0

Ep
oc

h

Frequency degree

(a) Target support

(b) Whole Fourier spectrum

Figure 3.1: Evolution of the Fourier spectrum during training. Standard is the
unregularized neural network. FullWH imposes L1-norm regulariza-
tion on the exact Fourier spectrum and is intractable. EN-S alternates
between computing a sparse Fourier approximation (computation-
ally very expensive) and regularization. HashWH (ours) imposes
L1 regularization on the hashed spectrum. Figure (a) is limited to
the target support. The standard neural network is unable to learn
higher degree frequencies. Our regularizer fixes this. Figure (b) is
on the whole spectrum. The standard neural network picks up er-
roneous low-degree frequencies while not being able to learn the
higher-degree frequencies. Our regularizer fixes both problems.

Results. We first inspect the evolution of the learned Fourier spectrum
over different epochs and limited to the target support (supp(g∗)).
Figure 3.1a shows the learned amplitudes for frequencies in the tar-
get support at each training epoch. Aligned with the literature on
simplicity bias [10, 12], we observe that neural networks learn the
low-degree frequencies earlier in the epochs. Moreover, we can see
in the left-most figure in Figure 3.1a that despite eventually learn-
ing low-degree frequencies, the standard network is unable to learn
high-degree frequencies.

3.4 overcoming the spectral bias via regularization 19

Next, we expand the investigation to the whole Fourier spectrum
instead of just focusing on the support frequencies. The first row
of Figure 3.1b shows the evolution of the Fourier spectrum during
training and compares it to the spectrum of the target function on the
bottom row. We average the spectrum linked to one of the five target
synthetic functions (over the randomness of the dataset sampling and
training procedure) and report the other four in Appendix B.6.1. We
observe that in addition to the network not being able to learn the
high-degree frequencies, the standard network is prone to learning
incorrect low-degree frequencies as well.

3.4 overcoming the spectral bias via regularization

Now, we introduce our regularization scheme HashWH (Hashed
Walsh-Hadamard). Our regularizer is essentially a “sparsifier” in the
Fourier domain. That is, it guides the neural network to have a sparse
Fourier spectrum. We empirically show later how sparsifying the
Fourier spectrum can both stop the network from learning erroneous
low-degree frequencies and aid it in learning the higher-degree ones,
hence remedying the two aforementioned problems.

Assume Lnet is the loss function that a standard neural network
minimizes, e.g., the MSE loss in the above case. We modify it by
adding a regularization term λLsparsity. Hence the total loss is given
by: L = Lnet + λLsparsity.

The most intuitive choice is Lsparsity = ∥ĝN∥0, where ĝN is the Fourier
spectrum of the neural network function gN : {0, 1}n → R. Since the
L0-penalty’s derivative is zero almost everywhere, one can use its tight-
est convex relaxation, the L1-norm, which is also sparsity-inducing,
as a surrogate loss. Aghazadeh et al. [47] use this idea and name it
as Epistatic-Net or “EN” regularization: LEN := Lnet + λ∥ĝN∥1. In
this work, we call this regularization FullWH (Full Walsh Hadamard
transform).

FullWH requires the evaluation of the network output on all 2n possi-
ble inputs at each iteration of back-prop. Therefore, the computational
complexity grows exponentially with the number of dimensions n,
making it computationally intractable for n > 20 in all settings of
practical importance.

20 low-degree spectral bias of neural networks

Aghazadeh et al. [47] also suggest a more scalable version of FullWH,
called “EN-S”, which roughly speaking, alternates between computing
the sparse approximate Fourier transform of the network at the end of
each epoch and doing normal back-prop, as opposed to the exact com-
putation of the exact Fourier spectrum when back-propagating the
gradients. In our experiments, we show EN-S can be computationally
expensive because the sparse Fourier approximation primitive can be
time-consuming. For a comprehensive comparison see Appendix B.2.3.
Later, we show that empirically, it is also less effective in overcoming
the spectral bias as measured by achievable final generalization error.

3.4.1 HashWH

We avoid the exponentially complex burden of computing the exact
Fourier spectrum of the network by employing a hashing technique to
approximate the regularization term λ∥ĝN∥1. Let g : {0, 1}n → R be
a pseudo-boolean function. We define the lower dimensional function
uœ : {0, 1}b → R, where b ≪ n, by sub-sampling g on its domain:

uœ(x̃) ≜
√

2n

2b g(œx̃), x̃ ∈ {0, 1}b where œ ∈ {0, 1}n×b is some matrix
which we call the hashing matrix. The matrix-vector multiplication σx̃is
taken modulo 2. uσ is defined by sub-sampling g on all the points ly-
ing on the (at most) b-dimensional subspace spanned by the columns
of the hashing matrix σ. The special property of sub-sampling the
input space from this subspace is in the arising Fourier transform of
uσ which we will explain next.

The Fourier transform of uœ can be derived as (see Appendix B.2.1):

ûœ(f̃) = ∑
f∈{0,1}n : œ⊤ f= f̃

ĝ(f), f̃ ∈ {0, 1}b (3.1)

One can view ûœ(f̃) as a “bucket” containing the sum of all Fourier
coefficients ĝ(f̃) that are “hashed” (mapped) into it by the linear
hashing function h(f) = σ⊤ f . There are 2b such buckets and each
bucket contains frequencies lying in the kernel (null space) of the
hashing map plus some shift.

In practice, we let œ ∼ U{0,1}n×b be a uniformly sampled hash matrix

that is re-sampled after each iteration of back-prop. Let Xb ∈ {0, 1}2b×b

be a matrix containing as rows the enumeration over all points on the

3.4 overcoming the spectral bias via regularization 21

Boolean cube {0, 1}b. Our regularization term approximates (3.4) and
is given by:

LHashWH ≜ Lnet + λ∥HbgN(XbœT)∥1 = Lnet + λ∥ûœ∥1

That is, instead of imposing the L1-norm directly on the whole spec-
trum, this procedure imposes the norm on the “bucketed” (or parti-
tioned) spectrum where each bucket (partition) contains sums of coeffi-
cients mapped to it. The larger b is the more partitions we have and the
finer-grained the sparsity-inducing procedure is. Therefore, the qual-
ity of the approximation can be controlled by the choice of b. Larger
b allows for a finer-grained regularization but, of course, comes at a
higher computational cost because a Walsh-Hadamard transform is
computed for a higher dimensional sub-sampled function u. Note that
b = n corresponds to hashing to 2n buckets. As long as the hashing ma-
trix is invertible, this precisely is the case of FullWH regularization.

The problem with the above procedure arises when, for example, two
“important” frequencies f1 and f2 are hashed into the same bucket,
i.e., œ⊤ f1 = œ⊤ f2, an event which we call a “collision”. This can be
problematic when the absolute values |ĝ(f1)| and |ĝ(f2)| are large
(hence they are important frequencies) but their sum can cancel out
due to differing signs. In this case, the hashing procedure can zero
out the sum of these coefficients. We can reduce the probability of a
collision by increasing the number of buckets, i.e., increasing b [53].

In Appendix B.2.2 we show that the expected number of collisions C

is given by: E[C] = (k−1)2

2b which decreases linearly with the number
of buckets 2b. Furthermore, we can upper bound the probability p
that a given important frequency fi collides with any other of the k− 1
important frequencies in one round of hashing. Since we are indepen-
dently sampling a new hashing matrix œ at each round of back-prop,
the number of collisions of a given frequency over the different rounds
has a binomial distribution. In Appendix B.2.2 we show that picking
b ≥ log2(

k−1
ϵ), ϵ > 0 guarantees that collision of a given frequency

happens approx. an ϵ-fraction of the T rounds, and not much more.

Fourier spectrum evolution of different regularization methods. We
analyze the effect of regularizing the network with various Fourier
sparsity regularizers in the setting of the previous section. Our reg-
ularizers of interest are FullWH, EN-S with m = 5 (2m is the number
of buckets their sparse Fourier approximation algorithm hashes into),
and HashWH with b ∈ {5, 7, 8}.

22 low-degree spectral bias of neural networks

Returning to Figure 3.1a, we see that despite the inability of the
standard neural network in picking up the high-degree frequencies,
all sparsity-inducing regularization methods display the capacity for
learning them. FullWH is capable of perfectly learning the entire tar-
get support. It can also be seen that increasing the size of the hashing
matrix in HashWH (ours) boosts the learning of high-degree frequen-
cies. Furthermore, Figure 3.1b shows that in addition to the better
performance of the sparsity-inducing methods in learning the target
support, they are also better at filtering out non-relevant low-degree
frequencies.

We define a notion of approximation error which is basically the
normalized energy of the error in the learned Fourier spectrum on an
arbitrary subset of frequencies.

Metric 3.4.1 (Spectral Approximation Error (SAE)). Let gN : {0, 1}n →
R be an approximation of the target function g∗ : {0, 1}n → R. Consider a
subset of frequencies S ⊆ {0, 1}n, and assume ĝNS and ĝ∗S to be the vector
of Fourier coefficients of frequencies in S, for gN and g∗ respectively. As a
measure of the distance between gN and g on the subset of frequencies S, we

define Spectral Approximation Error as: SAE =
∥ĝNS−ĝ∗S∥2

2
∥ĝ∗S∥2

2

Figure 3.2 shows the SAE of the trained network using different reg-
ularization methods over epochs, for both when S is target support as
well as when S = {0, 1}n (whole Fourier spectrum). The standard net-
work displays a significantly higher (worse) SAE on the whole Fourier
spectrum compared to the target support, while Walsh-Hadamard reg-
ularizers exhibit consistent performance across both. This shows the
importance of enforcing the neural network to have zero Fourier coef-
ficients on the non-target frequencies. Moreover, we can see HashWH
(ours) leads to a reduction in SAE that can be smoothly controlled by
the size of its hashing matrix.

To gain more insight, we split the frequencies into subsets S consisting
of frequencies with the same degree. We visualize the evolution of
SAE and also the Fourier energy of the network defined as ∥ĝNS∥2

2
in Figure 3.3. Firstly, the energy of high-degree frequencies is essen-
tially zero for the standard neural network when compared to the
low-degree frequencies, which further substantiates the claim that
standard neural network training does not learn any high-degree fre-
quencies. We can see that our HashWH regularization scheme helps
the neural network learn higher degree frequencies as there is more

3.4 overcoming the spectral bias via regularization 23

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r

Target support
HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intractable)
standard

0 100 200 300
Epoch

Whole Fourier spectrum

Figure 3.2: Evolution of the spectral approximation error (SAE) during training.
The left plot limits the error to the target support, while the right
one considers the whole Fourier spectrum. For the standard neural
network, the SAE is considerably worse on the full spectrum which
shows the importance of eliminating the erroneous frequencies that
are not in the support of the target function. We also see the graceful
scaling of SAE of HashWH (ours) with the hashing matrix size.

energy in the high degree components. Secondly, looking at the lower
degrees 2 and 3 we can see that the standard neural network reduces
the SAE up to some point but then starts overfitting. Looking at the
energy plot one can attribute the overfitting to picking up irrelevant
degree 2 and 3 frequencies. We see that the regularization scheme
helps prevent the neural net from overfitting on the low-degree fre-
quencies and their SAE reduces roughly monotonously. We observe
that HashWH (ours) with a big enough hashing matrix size exhibits
the best performance among tractable methods in terms of SAE on
all degrees. Finally, we can see HashWH is distributing the energy to
where it should be for this dataset: less in the low-degree and more
in the high-degree frequencies.

Finally, it is worth noting that our regularizer makes the neural net-
work behave more like a decision tree. It is well known that ensembles
of decision tree models have a sparse and low-degree Fourier trans-
form [14]. Namely, let g : {0, 1}n → R be a function that can be repre-
sented as an ensemble of T trees each of depth at most d. Then g is k =
O(T · 4d)-sparse and of degree at most d. Importantly, their spectrum
is exactly sparse and unlike standard neural networks, which seem to

24 low-degree spectral bias of neural networks

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r degree=1 degree=2 degree=3 degree=4 degree=5

0 100 200
0.0

0.5

1.0

1.5

En
er

gy

0 100 200 0 100 200 0 100 200 0 100 200

HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intr.)
standard

Epoch

Figure 3.3: Evolution of the Spectral Approximation Error (SAE) and energy of
the network during training, split by frequency degree. Firstly, in a
standard neural network, the energy of high-degree frequencies is
essentially zero compared to low-degree frequencies. Secondly, for
low degrees (2 and 3) the energy continues to increase while the
SAE exhibits overfitting behavior. This implies the neural network
starts learning erroneous low-degree frequencies after some epochs.
Our regularizer prevents overfitting in lower degrees and enforces
higher energy on higher-degree frequencies. Regularized networks
show lower energies for lower degrees and higher energy for higher
degrees when compared to the standard neural network.

“fill up” the spectrum on the low-degree end, i.e., learn irrelevant low-
degree coefficients, decision trees avoid this. Decision trees are well-
known to be effective on discrete/tabular data [54], and our regular-
izer prunes the spectrum of the neural network so it behaves similarly.

3.5 experiments

In this section, we first evaluate our regularization method on higher
dimensional input spaces (larger n) on synthetically generated datasets.
In this setting, FullWH is not applicable due to its exponential run-
time in n. In addition, we allow varying training set sizes to showcase
the efficacy of the regularizer in improving generalization at vary-
ing levels in terms of the number of training points in the dataset
and especially in the low-data sample regime. Next, we move on to
four real-world datasets. We first show the efficacy of our proposed
regularizer hashWH on real-world datasets in terms of achieving

3.5 experiments 25

better generalization errors, especially in the low-data sample regimes.
Finally, using an ablation study, we experimentally confirm that the
low-degree bias does not result in lower generalization error.

1 2 3 4 5 6 7 8
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n = 25

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5
n = 50

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5
n = 100

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

Te
st

 R
2

Sample Size Multiplier c (Train size)

(a) Generalization comparison

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(b) Runtime comparison

Figure 3.4: (a) Generalization performance on learning a synthetic function g∗ :
{0, 1}n → R with train set size: c · 25n (b) Best achievable test R2

(I) at end of each epoch (II) up to a certain time (seconds). (III)
Shows the early stopped R2 score vs. time (seconds). We provide
significant improvements across all training sizes over EN-S and
standard neural networks, while also showing an order of magnitude
speed-up compared to EN-S.

26 low-degree spectral bias of neural networks

3.5.1 Synthetic data

Setup. Again, we consider a synthetic pseudo-boolean target func-
tion g∗ : {0, 1}n → R, which has 25 frequencies in its support
|supp(g∗)| = 25, with the degree of maximum five, i.e., ∀ f ∈ supp(g∗) :
deg(f) ≤ 5. To draw a g∗, we sample each of its support frequencies fi
by first uniformly sampling its degree d ∼ U{1,2,3,4,5}, based on which
we then sample fi ∼ { f ∈ {0, 1}n|deg(f) = d} and its corresponding
amplitude uniformly ĝ∗(fi) ∼ U[−1,1].

We draw g∗ as above for different input dimensions n ∈ {25, 50, 100}.
We pick points uniformly at random from the input domain {0, 1}n

and evaluate g∗ to generate datasets of various sizes: we generate
five independently sampled datasets of size c · 25n, for different mul-
tipliers c ∈ {1, .., 8} (40 datasets for each g∗). We train a 5-layer
fully-connected neural network on each dataset using five different
random seeds to account for the randomness in the training procedure.
Therefore, for each g∗ and dataset size, we train and average over 25

models to capture variance arising from the dataset generation, and
also the training procedure.

Results. Figure 3.4a shows the generalization performance of different
methods in terms of their R2 score on a hold-out dataset (details of
dataset splits in Appendix B.4) for different dataset sizes. Our regu-
larization method, HashWH, outperforms the standard network and
EN-S in all possible combinations of input dimension, and dataset
size. Here, EN-S does not show any significant improvements over
the standard neural network, while HashWH (ours) improves gen-
eralization by a large margin. Moreover, its performance is tunable
via the hashing matrix size b.

To stress the computational scalability of HashWH (ours), Figure
3.4b shows the achievable R2-score by the number of training epochs
and training time for different methods, when n = 50 and c = 5 (see
Appendix B.6.2 for other settings). The trade-off between the training
time and generalization can be directly controlled with the choice of
the hashing size b. More importantly, comparing HashWH with EN-S,
we see that for any given R2 we have runtimes that are orders of magni-
tude smaller. This is primarily due to the very time-consuming approx-
imation of the Fourier transform of the network at each epoch in EN-S.

3.5 experiments 27

3.5.2 Real data

Next, we assess the performance of our regularization method on four
different real-world datasets of varying nature and dimensionality.
For baselines, we include not only standard neural networks and EN-
S regularization, but also other popular machine learning methods
that work well on discrete data, such as ensembles of trees. Three of
our datasets are related to protein landscapes [52, 55, 56] which are
identical to the ones used by the proposers of EN-S [47], and one is
a GPU-tuning [57] dataset. See Appendix B.3 for dataset details.

Results. Figure 3.5a displays the generalization performance of dif-
ferent models in learning the four datasets mentioned, using training
sets of small sizes. For each given dataset size we randomly sample
the original dataset with five different random seeds to account for the
randomness of the dataset sub-sampling. Next, we fit five models with
different random seeds to account for the randomness of the training
procedure. One standard deviation error bars and averages are plotted
accordingly over the 25 runs. It can be seen that our regularization
method significantly outperforms the standard neural network as well
as popular baseline methods on nearly all datasets and dataset sizes.
The margin, however, is somewhat smaller than on the synthetic exper-
iments in some cases. This may be partially explained by the distribu-
tion of energy in a real dataset (Figure 3.5c), compared to the uniform
distribution of energy over different degrees in our synthetic setting.

To highlight the importance of higher degree frequencies, we compute
the exact Fourier spectrum of the Entacmaea dataset (which is possi-
ble, since all possible input combinations are evaluated in the dataset).
Figure 3.5c shows the energy of 100 frequencies with the highest
amplitude (out of 8192 total frequencies) categorized into varying
degrees. This shows that the energy of the higher degree frequencies
3 and 4 is comparable to frequencies of degree 1. However, as we
showed in the previous section, the standard neural network may not
be able to pick up the higher degree frequencies due to its simplicity
bias (while also learning erroneous low-degree frequencies).

We also study the relationship between the low-degree spectral bias
and generalization in Figure 3.5d. The study is conducted on the two
datasets “Entacmaea” and “SGEMM”. We first fit a sparse Fourier
function to our training data (see Appendix B.5). We then start delet-
ing coefficients once according to their degree (highest to lowest and

28 low-degree spectral bias of neural networks

ties are broken randomly) and in another setting according to their
amplitude (lowest to highest). To assess generalization, we evaluate
the R2 of the resulting function on a hold-out (test) dataset. This study
shows that among functions of equal complexity (in terms of size
of support), functions that keep the higher amplitude frequencies as
opposed to ones that keep the low-degree ones exhibit better gener-
alization. This might seem evident according to Parseval’s identity,
which states that time energy and Fourier energy of a function are
equal. However, because the dataset distribution is not necessarily
uniform, there is no reason for this to hold in practice. Furthermore,
it shows the importance of our regularization scheme: deviating from
low-degree functions and instead aiding the neural network to learn
higher amplitude coefficients regardless of the degree.

Conclusion We showed through extensive experiments how neural
networks tend to not learn high-degree frequencies and overfit in
the low-degree part of the spectrum. We proposed a computationally
efficient regularizer that aids the network in not overfitting in the low-
degree frequencies and also picking up the high-degree frequencies.
Finally, we exhibited significant improvements in terms of R2 score
on four real-world datasets compared to various popular models in
the low-data regime.

3.5 experiments 29

40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

Entacmaea (n = 13)

40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

SGEMM (n = 40)

200400600800
1000

1200
1400

1600
1800

2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6
GB1 (n = 80)

200400600800
1000

1200
1400

1600
1800

2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6
avGFP (n = 236)

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

Te
st

 R
2

Train size

(a) Performance on learning real datasets

200 400 600 800
1000

1200
1400

1600
1800

2000

Train size

10 2

100

102

Tr
ai

ni
ng

 ti
m

e
(s

)

Runtimes for GB1 (n=80)

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

(b) Runtimes for GB1

En
er

gy
1

14.2%

2 76.2%

3
6.1% 43.0% 50.5%

(c) Energy distribution over
degrees in Entacmaea

20 40 60 80
0.6

0.7

0.8

0.9

Te
st

 R
2

Entacmaea

Lower amplitudes
removed
Higher degrees
removed

20 40 60 80

SGEMM

Percentage of frequencies removed

(d) Ablation studies

Figure 3.5: (a) Generalization performance of standard and regularized neural
networks and benchmark ML models on four real datasets. (b) Train-
ing times of different models on the GB1 dataset (c) Results of an
ablation study on the potential effect of simplicity bias in the general-
ization error. This figure shows picking higher amplitude coefficients
results in better generalization compared to picking the lower de-
gree terms (d) Distribution of the energy over degree-based sets of
frequencies in Entacmaea’s top 100 Fourier coefficients. This shows
high-degree components constitute a non-negligible portion of the
energy of the function.

4
U T I L I Z I N G
T H E S P E C T R A L B I A S T O C O M P U T E S H A P VA L U E S

In the previous Chapter 3 we saw how the function represented by
a fully connected neural network, after being trained by gradient
descent, is low-degree and therefore also sparse. We also saw in the
Background Chapter 2 how ensembles of trees are also both sparse
and low-degree.

As opposed to the previous chapter where we "fixed" this bias for
neural networks to allow for better generalization, here we use it to
our advantage. We discuss an application of how we can utilize the
bias for a very important downstream task of computing SHAP values
– a.k.a. SHapley Additive exPlanations.

SHAP values are a popular local feature-attribution method widely
used in interpretable and explainable AI. Efficiently computing them
is challenging, especially in the model-agnostic (black-box) setting,
where one only has query access to the model. This subsumes neural
networks as a special case as well.

Building on the previous two chapters we propose a two-stage ap-
proach for estimating SHAP values for the black-box setting:

– Our algorithm’s first step harnesses results from the previous two
chapters that showed that many real-world black-box predictors
have a spectral bias that allows us to either exactly represent (in
the case of ensembles of decision trees), or efficiently approximate
them (in the case of neural networks) using a compact Fourier
representation. Exploiting this insight, given query access to a
black-box function, we utilize a sparse Fourier approximation al-
gorithm to efficiently extract its compact Fourier approximation.

– In the second step, we use the Fourier representation to exactly
compute SHAP values. The second step is computationally very
cheap because firstly, the representation is compact and secondly,
we prove that there exists a closed-form expression for SHAP
values for the Fourier basis functions.

31

32 utilizing the spectral bias to compute shap values

– The expression we derive effectively “linearizes” the computa-
tion into a simple summation and is amenable to parallelization
on multiple cores or a GPU.

– Since the function approximation (first step) is only done once,
it allows us to produce Shapley values in an amortized way. This
makes our algorithm orders of magnitudes faster than previous
methods such as KernelShap where each explained instance
requires solving an expensive optimization problem.

– We show speedups of 10-10000x compared to relevant baseline
methods for equal levels of accuracy.

4.1 related work and details of our contributions

Interpretability of machine learning models is paramount, especially
in high-stakes applications in areas such as medicine, fraud detection,
or credit scoring. This is crucial to the extent that in Europe, the
General Data Protection Regulation (GDPR) mandates the legal right
to an explanation of algorithmic decisions [58]. Say we are given a
predictor/model h : X n → R which maps an input (data) instance
x∗ ∈ X n to a prediction h(x∗). Instance-wise a.k.a. local feature attribu-
tion methods assign “importances” to each of the features x∗i ∈ X of
the instance x∗ which quantify how influential that feature was in the
model predicting the value h(x∗).

A widely used method for deriving attributions (importances) is the
notion of SHapley Additive exPlanations, commonly referred to simply
as SHAP values. Originally, the notion of Shapley values was intro-
duced in the seminal work of Shapley [59] in the context of cooperative
game theory. The Shapley value is a mathematically well-founded
and “fair” way of distributing a reward among all the members of a
group playing a cooperative game and it is computed based on the
rewards that would be received for all possible coalitions. The Shap-
ley value is the unique way of distributing the reward that satisfies
several reasonable mathematical properties that capture a notion of
fairness [59]. In the context of machine learning and statistics, the
players become features, the reward is the prediction of the predictor
h and the SHAP value is the “contribution” or “influence” of that
feature on the prediction. Shapley values are widely used due to their
mathematical soundness and desirable properties [60–66] [67].

4.1 related work and details of our contributions 33

Despite their prevalence, the computation of SHAP values is challeng-
ing, since it involves an exponential sum (considering the importance
of a feature in the context of all possible “coalitions” of other features).
Therefore, approximating them and speeding up the computation has
received attention in a variety of settings. SHAP value computation
can easily dominate the computation time of industry-level machine
learning solutions on datasets with millions or more entries [68]. Yang
[68] point out that industrial applications sometimes require hundreds
of millions of samples to be explained. Examples include feed ranking,
ads targeting, and subscription propensity models. In these modeling
pipelines, spending tens of hours in model interpretation becomes a
significant bottleneck [68] and one usually needs to resort to multiple
cores and parallel computing.

Significant work has gone into speeding up the computation of SHAP
values for a variety of settings. In the white-box setting, full access to
the model is assumed. For the white-box tree-model setting, Yang
[68] and Bifet, Read, Xu, et al. [69] provide theoretical and practical
computational speedups to the classic TreeShap [66]. For the case
of neural network white-box setting DeepLift Shrikumar, Greenside
& Kundaje [70] provides a way of approximating SHAP values by
assuming we have access to the activation of the neurons. FastShap

Jethani et al. [71], introduces a method for estimating Shapley values
in a single forward pass using an end-to-end learned explainer model
for the task of classification (not regression).

As opposed to the white-box setting, in the model-agnostic a.k.a black-
box setting, we only have query access to the model. Here, our only
means of access to the predictor is that we can pick an arbitrary
x ∈ X n and query the predictor for its value h(x). The usual ap-
proach here is to approximate the exponential sum of the SHAP value
computations using stochastic sampling [65, 72, 73]. In this setting,
Covert & Lee [72] and Mitchell et al. [73] provide sampling meth-
ods that require fewer queries to the black-box compared to vanilla
KernelShap [65] for equal approximation accuracy. Our algorithm
FourierShap falls into the query-access black-box setting.

However, we take a different approach. We are guided by the key
insight that many models used in practice have a “spectral bias”.
Valle-Perez, Camargo & Louis [10] and Yang & Salman [31] provably
and experimentally show that fully connected neural networks with
binary (zero-one) inputs learn low-degree – and therefore sparse –

34 utilizing the spectral bias to compute shap values

functions in a basis called the Walsh-Hadamard a.k.a Fourier basis. It
is well known that the Walsh-Hadamard transform (WHT) of an en-
semble of T trees of depth d is also of degree at most d and moreover,
k = O(T4d)-sparse [13, 32].

Our contributions: Guided by the aforementioned insights, we pro-
vide an algorithm to compute SHAP values in the model-agnostic a.k.a
black-box setting, using the Fourier representation of the model. We
first approximate the black-box function by taking its sparse Fourier
transform. We theoretically justify, and show through extensive ex-
periments, that for many real-world models such as fully connected
neural networks and (ensembles of) trees this representation is accu-
rate. Subsequently, we prove that SHAP values for a single Fourier
basis function admit a closed-form expression not involving an ex-
ponential summation. Therefore, using the Fourier representation
we overcome the exponential sum and can utilize compute power
effectively to compute SHAP values. Furthermore, the closed-form
expression we derive effectively “linearizes” the computation into
a simple summation and is amenable to parallelization on multiple
cores or a GPU. The Fourier approximation step is only done once,
therefore FourierShap amortizes the cost of computing explanations
for many inputs. Subsequently, SHAP computations using the Fourier
approximation are extremely fast compared to other black-box ap-
proximation methods such as KernelShap and other variations of
it which all involve a computationally expensive optimization. We
show speedups of 10-10000x compared to KernelShap [65] and Lin-
RegShap [72]. We also show a 10-100x speedup over DeepLift [70],
a white-box algorithm for neural networks, even though we only
assume query access (black-box setting).

4.2 background

This section reviews the notion of SHAP values, and sparse and
low-degree Fourier transforms.

4.2.1 Shapley values

In game theory, a cooperative game is a function v : 2n → R that maps a
subset (coalition) S ⊆ N of a group of players N = {1, . . . , n} to their
total reward (when they cooperate). If all the players cooperate they
win a total reward of value v(N) and the main question is how they
would distribute this reward among themselves. Shapley [59] resolved

4.2 background 35

this problem by a deriving a unique value based on “fairness axioms”
proposed in his seminal work [59]. The Shapley value of player i ∈ N is:

ϕi(v) =
1
n ∑

S⊆N\{i}

v(S ∪ {i})− v(S)
(n−1
|S|)

(4.1)

Intuitively, one can view the term v(S ∪ {i})− v(S) as the marginal
contribution of player i when they are added to the coalition S. This
marginal value is weighted according to the number of permutations
the leading |S| players and trailing n− |S| − 1 players can form.

In the machine learning context, we have a predictor h : X n → R

mapping an n-dimensional feature vector to a value. In this context,
the players become features xi ∈ X and the reward is the prediction of
the predictor h and the Shapley value is the “contribution” or “influ-
ence” of the i’th feature on the prediction. We define v(S) accordingly
to capture this notion [65]:

v(S) = ExN\S∼p(xN\S))
[h(x∗S, xN\S)],

where x∗ ∈ X n is the instance we are explaining. This definition im-
plicitly captures the way we handle the missing features (feature not
present in the coalition): we integrate the missing features concerning
the marginal distribution p(xN\S)). In practice, the marginalization
is performed with an empirical distribution by taking a subset of the
training data as background dataset.

The choice of which distribution to average the missing features from
has been discussed thoroughly in the relevant literature. As mentioned
before, in this work, we focus on the SHAP values as defined in Ker-
nelShap introduced by Lundberg & Lee [65] and Lundberg et al. [66]
also know as “Interventional” [74, 75] or “Baseline” [76] SHAP, where
the missing features are integrated out from the marginal distribution
p(xN\S), as opposed to the conditional distribution p(xN\S|xS). In the
next section we provide a comprehensive overview of the literature
discussing these two notions and their conceptual differences.

4.2.2 Shapley values in the context of Machine learning

In the context of ML, many works have derived a different notion of
Shapley value depending on what they mean by data distribution,

36 utilizing the spectral bias to compute shap values

deleted features, etc. We refer the reader to the survey by Janzing,
Minorics & Bloebaum [74] and Sundararajan & Najmi [76] for a com-
prehensive overview. In this work we focus on the notion of SHAP
introduced by Lundberg & Lee [65] and Lundberg et al. [66] also
known as “Interventional” [74, 75] or “Baseline” SHAP [76] where the
missing features are integrated out from the marginal distribution as
opposed to the conditional distribution see Section 4.2.1. As pointed
out by Janzing, Minorics & Bloebaum [74] there are two main ways
to define the SHAP value “interventional” and “observational” SHAP.
These are referred to by Sundararajan & Najmi [76] as “baseline” and
“conditional” SHAP respectively.

As pointed out by Janzing, Minorics & Bloebaum [74] the difference be-
tween these definitions can be better viewed with the lens of causality
[77]. Roughly speaking “observational” SHAP tells us about how influ-
ential a feature is to the prediction of the predictor if it goes from the
state of being unobserved to observed. “Interventional” SHAP is causal
and tells us how influential a feature is if we were to reach in (through
a process called an intervention) and change that feature in order to
change the prediction. Put into the context of credit scores and loan
approvals, “observational” SHAP will provide us with important fea-
tures which are “observed” by the predictor and hence are influential
in predicting if a particular loan request will be rejected or approved.
Interventional SHAP would tell us which feature we could change or
“intervene” in order to change the outcome of the loan request.

The original (ML) SHAP paper [65] proposes “observational” SHAP
as the correct notion of SHAP. Van den Broeck et al. [75] and Are-
nas et al. [78] provide intractability results for observational SHAP
in a variety of simple distributional assumptions on the data and
simple predictors f . This has lead to many attempts to approximate
observational SHAP values [66, 67, 72, 76, 79]. It is interesting to note
that the version of “Kernel”-SHAP in Lundberg & Lee [65] is also an
approximation for observational SHAP values that ends up coinciding
precisely with interventional SHAP values, which explains a lot of
the confusion in the community. Janzing, Minorics & Bloebaum [74]
boldly claims that researchers should stop the pursuit of approxima-
tions to “observation” SHAP values as it lacks certain properties, for
example, sensitivity i.e. the SHAP value of a feature can be non-zero
while the predictor f has no dependence on that feature. This phe-
nomenon happens because when features are correlated, the presence

4.2 background 37

of a feature can provide information about other features that the
predictor does depend on. This does not happen in interventional
SHAP. Finally, Chen et al. [80] argues that both SHAP definitions
are worthy of pursuit. They emphasize that the interventional frame-
work provides explanations that are more “true to the data”, and the
observational approach’s explanations are more “true to the model”.

4.2.3 KernelShap

Since we will be using the well-known KernelShap [65] and its vari-
ant LinRegShap [72] as a baseline we briefly review their method
here. Lundberg & Lee [65] propose the “least squares characterization”
of SHAP values. They prove that SHAP values are the solution to the
following minimization problem:

β∗0, . . . , β∗n ≜ arg min
β0,...,βn

∑
0<|S|<n

n− 1
(n
|S|)|S|(n− |S|)

(
β0 + ∑

i∈S
βi − v(S)

)

s.t. : β0 = v({}), β0 +
n

∑
i=1

βi = v(N)

Then ϕi(v) = β∗i .

However, the above optimization still involves an exponential sum.
Therefore, Lundberg & Lee [65] propose to sample subsets S uniformly
at random. Covert & Lee [72] and Mitchell et al. [73] provide better
ways of sampling and solving the optimization to get approxima-
tions with lower variances and biases. Nevertheless, all these methods
require solving a least squares minimization subject to constraints
for each explained instance x∗ and, therefore, are computationally
expensive.

4.2.4 Efficient SHAP values in the context of coalitional games

Finally, we would like to note that the connection between SHAP val-
ues and Walsh-Hadamard transforms was initially made by Wendler
[81] in the context of a coalitional game. More concretely let v : 2n →
R as in Section 4.2.1. Moreover, assume this function is k-sparse in the
Fourier basis. Then, Wendler [81] shows how one can compute the

38 utilizing the spectral bias to compute shap values

SHAP values as defined in Equation (4.1), with a summation over k
summands. Wendler [81] overcomes the exponential sum in (4.1) by
expressing the function v in the k-sparse Fourier basis. However, no
formal proof is provided as to why the exponential summation admits
a closed form. Moreover, the results are not extended to the case of
the SHAP values in the ML context as described in Section 4.2.1.

Our algorithm is inspired by his idea. We provide combinatorial
proofs for why a summation similar to this work admits a closed
form. Moreover, we explain this in the context of Interventional SHAP
values in Machine learning to make the results comparable with other
relevant baselines such as KernelSHAP.

4.2.5 Many real-world black-box predictors have sparse Fourier transforms

In the Background Chapter 2, we discussed the sparsity of the Fourier
transforms of ensembles of trees and why neural networks can be
approximated by a sparse Fourier representation because of their spec-
tral bias. This shows both these classes of functions can be compactly
represented in the Fourier basis. The results here will become useful
in the next section, where we present our main contribution on how
we can leverage this compact representation, to precisely compute
SHAP values cheaply.

4.3 computing shap values with fourier representations

of functions

In the previous section, we saw that many real-world models trained
on tabular/discrete data can be exactly represented (in the case of
ensembles of decision trees), or efficiently approximated (in the case
of neural networks) using a compact (sparse) Fourier representation.
We saw neural networks have a tendency to learn approximately
low-degree, and hence by Proposition 2.1.2 sparse, functions. This has
been attributed in numerous works to the reason why they generalize
well and do not overfit despite their over-parameterized nature [8, 10,
11, 31, 40, 82, 83]. We also saw that (ensembles) of decision trees, by
nature, have sparse Fourier representations [13, 32]. More generally, as
made formal in Proposition 2.1.1 and the remarks after, any “simple”
function that can be written as a summation of a “few” functions each

4.3 computing shap values with fourier representations of functions 39

depending on a “few” of the input variables is sparse and low-degree
in the Fourier domain.

We propose the following method to approximate SHAP values for
black-box functions. In the first step, given query access to a black-
box function, we utilize a sparse Fourier approximation algorithm
such as [84–86] to efficiently extract its sparse and hence compactly
represented Fourier approximation. See Appendix C.1.1 for a more
detailed explanation. Next, in our second step presented here, we use
the Fourier representation to exactly compute SHAP values.

Let h : {0, 1}n → R be some predictor which we assume to be k-sparse
with n binary input features. Let N = {1, . . . , n} be the set of features
and let x∗ ∈ {0, 1}n be the instance we are explaining. As outlined in
Equation (4.1), SHAP values are obtained from the following equation:

ϕh
i = ∑

S⊆N\{i}

|S|!(n− |S| − 1)!
M!

(vh(S ∪ {i})− vh(S)), ∀i ∈ [n]

where vh(S) is the average prediction when one only knows x∗S. The
average is taken over the (background) dataset D = {(x, y)i} [65].
More precisely:

vh(S) ≜
1
|D| ∑

(x,y)∈D
h(x∗S, xN\S)

The above equations show the SHAP values are linear with respect
to the prediction function h. Therefore we proceed by computing
the Shapley values for a single Fourier basis function Ψ f (x) = (−1)⟨ f ,x⟩, f ∈
{0, 1}n.

ϕ
Ψ f
i =

1
|D| ∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

·

∑
(x,y)∈D

(
(−1)⟨ f ,x∗S∪{i}⊕xN\S∪{i}⟩ − (−1)⟨ f ,x∗S⊕xN\S⟩

) (4.2)

The ⊕ operator concatenates two vectors along the same axis.

This expression still has an exponential (in n) sum, since we are sum-
ming over all subsets S. As a main contribution, we find a closed-form
analytic expression for the inner summation using a combinatorial
argument. This results in the following key Lemma:

40 utilizing the spectral bias to compute shap values

Lemma 4.3.1. Let Ψ f (x) = (−1)⟨ f ,x⟩ be the Fourier basis function for
some f ∈ {0, 1}n. Then the SHAP value of the Fourier basis function Ψ f
with respect to the background dataset D is given as:

ϕ
Ψ f
i =

2 fi
|D| ∑

(x,y)∈D
1xi ̸=x∗i

(−1)⟨ f ,x⟩ (|A|+ 1) mod 2
|A|+ 1

(4.3)

where A ≜ {j ∈ N|xj ̸= x∗j , j ̸= i, f j = 1}. (Proof in Appendix C.2.1)

Finally, by the linearity of SHAP values w.r.t. the explained function
h, and by utilizing Lemma 4.3.1 we arrive at the final expression for
SHAP values of h. We present this closed-form expression alongside
its computational complexity in our main Theorem:

Theorem 4.3.2. Let h : {0, 1}n → R be a k-sparse pseudo-boolean function
with Fourier frequencies f 1, . . . , f k ∈ supp(h) and amplitudes ĥ(f), ∀ f ∈
supp(f). Let D be a background dataset of size |D|. Then, Equation (4.4) pro-
vides a precise expression for the SHAP value vector ϕh = (ϕh

1 , . . . , ϕh
n). One

can compute this vector with Θ(n · |D| · k) flops (floating point operations).

ϕh
i =

2
|D| ∑

f∈supp(h)
ĥ(f) · fi ∑

(x,y)∈D
1xi ̸=x∗i

(−1)⟨ f ,x⟩ (|A|+ 1) mod 2
|A|+ 1

(4.4)
where A is the same as in Lemma 4.3.1. (Proof in Appendix C.2.2)

Theorem 4.3.2 gives us a computationally efficient way to go from
a Fourier representation of a function h to SHAP values. The SHAP
values from this equation are exact, i.e., as long as the Fourier repre-
sentation is exact, the SHAP values are also precise values. This is in
contrast to KernelSHAP, where the SHAP values are approximated
using stochastic sampling and one needs to check for convergence to
make sure the approximation is accurate. The approximation in our
method is constrained to the first step: computing the (approximate)
sparse Fourier representation of the black-box.

Most importantly, the sum in Equation 4.4 is tractable. This is because
we overcome the exponential sum involved in Equation (4.1) by an-
alytically computing the sum, with a combinatorial argument, for
a single Fourier basis function. The theorem shows the number of
flops that are required to compute SHAP values in Theorem 4.3.2 to
be asymptotically equal to Θ(n · |D| · k). We note that the |D| and k
factors in the asymptotic computational complexity arise from the two
summations present in Equation 4.4. Through this expression, we are

4.4 experiments 41

able to “linearize” the computation of SHAP values to a summation
over the Fourier coefficients and background dataset. This allows us to
maximally utilize the parallelization on multiple cores and/or GPUs
to speed up the computation significantly. Therefore, in the presence
of multiple cores or a GPU, we can get a speedup equal to the level of
parallelization, as each core or worker can compute one part of this
summation.

We implement our algorithm called FourierShap using JAX [87],
which allows for fast vectorized operations on GPUs. Each term
inside the summations of Equation (4.4) can be implemented with
simple vector operations. Furthermore, summations over the k differ-
ent frequencies in the support of h and also background data points
can both be efficiently implemented and parallelized using this library
using its vmap operator. We perform all upcoming experiments on
a single GPU. Nevertheless, we believe faster computation can also be
achieved by crafting dedicated code designed to efficiently compute
Equation 4.4 on GPU.

Finally, we note that the function approximation (first step) is only
done once, i.e., we compute the sparse Fourier approximation of the
black-box only once. This is typically the most expensive part of the
computation. For any new query to be explained, we resort to an
efficient implementation of Equation (4.4). As our experiments will
show, this yields orders of magnitudes faster computation than pre-
vious methods such as KernelShap where, as mentioned before in
Section 4.2, each explained instance requires solving an expensive
optimization problem.

4.4 experiments

We assess the performance of our algorithm, FourierSHAP, on four
different real-world datasets of varying nature and dimensionality.
Three of our datasets are related to protein fitness landscapes [52, 55,
56] and are referred to as “Entacmaea”, “GB1”, and “avGFP” respec-
tively. The fourth dataset is a GPU-tuning [57] dataset referred to as
“SGEMM”. The features of these datasets are binary (zero-one) and/or
categorical with standard one-hot encodings. See Appendix C.3 for
dataset details.

For the Entacmaea and SGEMM datasets, we train fully connected
neural networks with 3 hidden layers containing 300 neurons each.

42 utilizing the spectral bias to compute shap values

For GB1 we train ensembles of trees models of varying depths us-
ing the random forest algorithm and for avGFP we train again, en-
sembles of trees models of varying depths using the cat-boost algo-
rithm/library[33].

Black-box setting. The first step of the FourierSHAP algorithm is
computing a sparse Fourier approximation of the black-box model.
We use a GPU implementation of a sparse Walsh-Hadamard Trans-
form (sparse WHT) a.k.a Fourier transform algorithm [85] for each of
the four trained models. The algorithm accepts a sparsity parameter k
which is the sparsity of the computed Fourier representation. Higher
sparsity parameter k results in a better function approximation but the
sparse-WHT runtime increase linearly in k as well. In Figure 4.1 we
plot the accuracy of the Fourier function approximation as measured
by the R2-score for different values of k (which result in different run-
times). The R2 score is computed over a dataset formed by randomly
sampling the Boolean cube {0, 1}n.

10.0 12.5 15.0 17.5
Fourier transform runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ur

ie
r a

pp
ro

xi
m

at
io

n
ac

cu
ra

cy
 R

2

Neural Network on Entacmaea

50 100 150 200
Fourier transform runtime (s)

Neural Network on SGEMM

50 100 150 200
Fourier transform runtime (s)

Random forest on GB1

depth=3
depth=4
depth=5
depth=6
depth=7
depth=8
depth=9
depth=10

100 200 300 400 500
Fourier transform runtime (s)

Catboost on Entacmaea

depth=3
depth=4
depth=5
depth=6
depth=7
depth=8

Figure 4.1: Step 1 of FourierShap: Accuracy of the Fourier transform (in terms
of approximating the black-box function) vs. runtime of the sparse
Fourier algorithm. The accuracy is evaluated by R2 score and compar-
ing the outputs of the black-box and the Fourier representation on a
uniformly generated random dataset on the Boolean cube {0, 1}n. For
a fixed level of accuracy, higher depth trees require a higher number
of Fourier coefficients k therefore a higher runtime. For the case of
trees, we eventually are able to reach a perfect approximation since
the underlying function is truly sparse.

The second step of FourierSHAP utilizes the Fourier approximation
to compute SHAP values using Equation (4.4). We implement this
step on a GPU using the JAX [87] library. For each model to be ex-
plained, we choose four different values for the number of background
samples and four different values for the number of query points

4.4 experiments 43

to be explained, resulting in a total of 16 runs of FourierSHAP for
each model. Error bars capture these variations. We take the values
produced by KernelSHAP to be the ground truth. Therefore, we
compute the R2 values of Shapley values computed by FourierSHAP
(ours) method vs KernelSHAP as a measure of accuracy. For our
method, a higher sparsity k for the Fourier representation results in
a more accurate function approximation therefore higher R2 values
for the SHAP value quality. On the other hand, a higher k results
in a slower runtime as Equation (4.4) is a sum over the k different
frequencies. In Figure 4.2 we plot this trade-off.

We compare against the following baselines in Figure 4.2. The first
is LinRegShap, a variance-reduced version of KernelSHAP [72]. We
found that although this algorithm requires fewer queries from the
black-box, it takes orders of magnitudes longer to run compared
to ours. Secondly, for the neural network models, we also compare
against a state-of-the-art white-box method – DeepLift [70]. This al-
gorithm, requires access to the neural network’s activations in all
layers. In comparison, we achieve a 10-100x speedup while being both
more accurate and only assuming query access to the neural net (true
black-box setting).

White-box setting – ensemble of trees. While our main focus is on the
black-box setting, FourierSHAP can also be utilized for the computa-
tion of SHAP values for (ensembles of) trees models in the white-box
setting, where full access to the tree’s structure is available. In this
setting, the exact sparse Fourier representation of an ensemble of trees
can be efficiently computed (the first step of FourierSHAP) using
Equation 2.1. With the exact Fourier representation at hand, SHAP
values can be efficiently and exactly computed using Equation (4.4), the
second step of FourierSHAP.

We compute SHAP values for random forests fitted on the Entacmaea
dataset. We compare the runtime of our algorithm, FourierSHAP,
to TreeSHAP [66], which is the most commonly employed algorithm
for the exact computation of SHAP values for tree-based models,
and FastTreeSHAP [68], a fast implementation of TreeSHAP. To the
best of our knowledge, these are the fastest available frameworks for
computation of the “interventional” SHAP values. Table 4.1 illustrates
the performance improvement achieved by our algorithm on the En-
tacmaea dataset. Note that the SHAP values computed by all methods
are precise and identical to the values produced by TreeSHAP which

44 utilizing the spectral bias to compute shap values

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SHAP values accuracy R2

100

101

102

103

104

Sp
ee

du
p

ov
er

 K
er

ne
lS

HA
P

Neural Network on Entacmaea
KernelSHAP
FourierSHAP (ours)
DeepLift(whitebox)
LinRegSHAP

0.2 0.4 0.6 0.8 1.0
SHAP values accuracy R2

100

101

102

103

104

Sp
ee

du
p

ov
er

 K
er

ne
lS

HA
P

Neural Network on SGEMM

KernelSHAP
FourierSHAP (ours)
DeepLift(whitebox)
LinRegSHAP

0.75 0.80 0.85 0.90 0.95 1.00
SHAP values accuracy R2

100

101

102

103

104

Sp
ee

du
p

ov
er

 K
er

ne
lS

HA
P

Random forest on GB1

KernelSHAP
FourierSHAP | depth=3
FourierSHAP | depth=4
FourierSHAP | depth=5
FourierSHAP | depth=6
FourierSHAP | depth=7
FourierSHAP | depth=8
FourierSHAP | depth=9
LinRegSHAP | depth=3

0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
SHAP values accuracy R2

10 1

100

101

102

103

104

105

Sp
ee

du
p

ov
er

 K
er

ne
lS

HA
P

Catboost on avGFP

KernelSHAP
FourierSHAP | depth=3
FourierSHAP | depth=4
FourierSHAP | depth=5
FourierSHAP | depth=6
FourierSHAP | depth=7
FourierSHAP | depth=8
LinRegSHAP | depth=3

Figure 4.2: Speedup vs. Accuracy. Speedup of different algorithms is reported
as a multiple compared to the runtime of KernelShap. Accuracy
is quantified by the R2-score using KernelShap SHAP values as
ground truth. DeepLift is a white-box algorithm for neural networks.
LinRegShap is black-box algorithm and a variance-reduced version
of KernelShap. FourierShap is ours. We are 10-10000x faster than
KernelShap and LinRegSHap on all dataset/model variations. More
notably, we outperform DeepLift (a white-box algorithm) in the neural
network model setting even though we assume only query access
(black-box setting) to the neural network.

is to be expected since we are using the exact Fourier representation
of random forests for FourierSHAP. While the speedup decreases
for trees with larger depth, FourierSHAP offers a consistent improve-
ment over the state-of-the-art with no loss of accuracy even in the
white-box setting.

4.4 experiments 45

Maximum Depth
Model

accuracy R2
FourierSHAP

Speedup
FastTreeSHAP

Speedup

3 0.80 21.03± 0.55 0.96± 0.06

4 0.86 13.82± 0.24 1.01± 0.02

5 0.91 10.44± 0.22 1.04± 0.02

6 0.94 5.81± 0.14 1.03± 0.01

7 0.96 2.71± 0.04 1.03± 0.00

8 0.97 1.94± 0.02 1.02± 0.00

Table 4.1: Speedup of FourierSHAP and FastTreeSHAP over TreeSHAP on
random forests of multiple depths in the white-box setting. We measure
the speedup for five independent runs of each model and report the
standard deviation as the error. We achieve a significant speedup over
both in all settings.

conclusions

We illustrated in theory and practice how many black-box functions
can be represented or efficiently approximated by a compact Fourier
representation. We proved that SHAP values of Fourier basis func-
tions admit a closed form expression, and therefore, we can compute
SHAP values efficiently using the compact Fourier representation.
Moreover, this closed form expression is amenable to parallelization.
These two factors helped us in gaining speedups of 10-10000x over
baseline methods for the computation of SHAP values.

5
C O M P U T I N G
T H E S PA R S E A N D / O R L O W- D E G R E E S P E C T R U M

We discussed in Chapter 3 how neural networks have a low-degree
and therefore sparse Fourier transform. In Chapter 4 we discussed
how one can utilize this compact representation to compute SHAP
values faster. However, we did not discuss an algorithm to extract this
sparse and low-degree Fourier representation. This chapter addresses
this missing link.

In this chapter, we provide an algorithm that can utilize the sparsity
and/or low degree to efficiently extract Fourier transforms. The al-
gorithm works on any black-box function g : {0, 1}n → R with query
access. Therefore we frame this chapter in the more general frame-
work of learning set functions that are sparse and low-degree. The
reader can keep in mind that a neural network with zero-one inputs
represents a set function that has these two desirable properties.

In the more general case, learning set functions arise in other applica-
tions ranging from sketching graphs to black-box optimization with
discrete parameters. We consider the problem of efficiently learning
set functions that are defined over a ground set of size n and that are
sparse (say k-sparse) in the Fourier domain. This is a wide class, that
includes graph and hypergraph cut functions, decision trees, neural
networks, and more.

Our central contribution is the first algorithm that allows learning
functions whose Fourier support only contains low degree (say degree
d = o(n)) polynomials using O(kd log n) sample complexity and run-
time O(kn log2 k log n log d). This implies that sparse graphs with k
edges can, for the first time, be learned from O(k log n) observations of
cut values and in linear time in the number of vertices. Our algorithm
can also efficiently learn (sums of) decision trees of small depth.

The algorithm exploits techniques from the sparse Fourier transform
literature and is easily implementable. Lastly, we also develop an effi-
cient robust version of our algorithm and prove ℓ2/ℓ2 approximation
guarantees without any statistical assumptions on the noise.

47

48 computing the sparse and/or low-degree spectrum

5.1 related work and our details of our contributions

Consider a set function g : {0, 1}n → R. Set functions that arise in ap-
plications often exhibit structure, which can be effectively captured in
the Fourier (also called Walsh-Hadamard) basis. One commonly stud-
ied structure for set functions is Fourier sparsity [88]. A k-Fourier-sparse
set function contains no more than k non-zero Fourier coefficients. A
natural example for k-Fourier-sparse set functions are cut functions of
graphs with k edges or evaluations of a decision tree of depth d [13,
20, 32, 89]. The cut function of a graph only contains polynomials of
degree at most two in the Fourier basis and in the general case, the
cut function of a hypergraph of degree d only contains polynomials of
degree at most d in the Fourier basis [89]. Intuitively this means that
these set functions can be written as sums of terms where each term
depends on at most d elements in the ground set. Also, a decision
tree of depth d only contains polynomials of degree at most d in the
Fourier basis [32] [13]. Learning such functions has recently found
applications in neural network hyper-parameter optimization [90].
Therefore, the family of Fourier sparse set functions whose Fourier
support only contains low-degree terms is a natural and important
class of functions to consider.

related work One approach for learning Fourier sparse func-
tions uses Compressive Sensing (CS) methods [89]. Suppose we
know that the Fourier transform of our function ĝ is k-sparse i.e.
|supp(ĝ)| ≤ k, and supp(ĝ) ⊆ P for some known set P of size p.
In [89] it is shown that recovery of ĝ is possible (with high probability)
by observing the value of x on O(k log4 p) subsets chosen indepen-
dently and uniformly at random. They utilize results from [91, 92]
which prove that picking O(k log4 p) rows of the Walsh-Hadamard
matrix independently and uniformly at random results in a matrix sat-
isfying the RIP which is required for recovery. For the case of graphs
p = (n

2) = O(n2) and one can essentially learn the underlying graph
with O(k log4 n) samples. In fact, this result can be further improved,
and O(k log2 k log n) samples suffice [93]. Computationally, for the
CS approach, one may use matching pursuit which takes Ω(kp) time
and thus results in a runtime of Ω(knd) for k Fourier sparse func-
tions of order d. This equals Ω(kn2) for graphs, where d = 2. In [19,
89], proximal methods are used to optimize the Lagrangian form of

5.1 related work and our details of our contributions 49

the ℓ1 norm minimization problem. Optimization is performed on p
variables which results in Ω(n2) runtime for graphs and Ω(nd) time
for the general order d sparse recovery case. Hence, these algorithms
scale exponentially with d and have at least quadratic dependence on n
even in the simple case of learning graph cut functions.

There is another line of work on this problem in the sparse Fourier
transform literature. [16] provides a non-robust version of the sparse
Walsh Hadamard Transform (WHT). This algorithm makes restrictive
assumptions on the signal, namely that the k non-zero Fourier coeffi-
cients are chosen uniformly at random from the Fourier domain. This
is a strong assumption that does not hold for the case of cut functions
or decision trees. This work is extended in [93] to a robust sparse
WHT called SPRIGHT. In addition to the random uniform support as-
sumption, [93] further presumes that the Fourier coefficients are finite-
valued and the noise is Gaussian. Furthermore, all existing sparse
WHT algorithms are unable to exploit low-degree Fourier structures.

our results We build on techniques from the sparse Fourier
transform literature [88, 94, 95] and develop an algorithm to compute
the Walsh-Hadamard transform (WHT) of a k-Fourier-sparse function
whose Fourier support is constrained to low degree frequencies (low
degree polynomials). For recovering frequencies with low degree,
we utilize ideas that are related to compressive sensing over finite
fields [96]. We show that if the frequencies present in the support of ĝ
are of low-degree then there exists an algorithm that computes WHT
in O(kn log2 k log n log d) time using O(kd log n) samples. As opposed
to [16], we avoid distributional assumptions on the support using
hashing schemes. Our approach is the first one to achieve the sampling
complexity of O(kd log n). Moreover, its running time scales linearly
in n and there is no exponential dependence on d. For the important
special case of graphs, where d = 2, our sampling complexity is near
optimally O(k log n) and our runtime is O(kn log2 k log n) which is
strictly better than CS methods which take at least quadratic time in
n. This allows us to learn sparse graphs which have in the range of
800 vertices in ≈ 2 seconds whereas the previous methods [89] were
constrained to the range of 100 for similar runtimes.

For the case where ĝ is not exactly k-sparse, we provide novel robust
algorithms that recover the k dominant Fourier coefficients with prov-
able ℓ2/ℓ2 approximation guarantees. We provide a robust algorithm

50 computing the sparse and/or low-degree spectrum

using appropriate hashing schemes and novel analysis. We further
develop a robust recovery algorithm that uses O(kd log n log(d log n))
samples and runs in time:

O
(

nk log3 k + nk log2 k log n log(d log n) log d
)

.

comparison to other results As discussed before, there are
two primary methodologies address the problem at hand: Compres-
sive Sensing and L1 minimization and Sparse Fast Fourier Transform
(FFT).

– Compressive Sensing and L1 minimization: Given that the
Fourier basis is orthogonal, it is feasible to construct a mea-
surement matrix using Fourier basis functions as columns. By
selecting specific rows from this matrix at random we preserve
RIP properties, and therefore we can recover the sparse Fourier
representation.

– Sparse FFT: The methodology underpinning Sparse FFT involves
hashing Fourier coefficients into bins and subsequently retriev-
ing those coefficients isolated within individual bins. Our study
primarily adopts this approach.

The Sparse FFT method’s salient advantage is its logarithmic runtime
in the number of basis functions. In contrast, the L1 minimization ap-
proach sees a linear runtime scaling. For instance, to capture order d
interactions, O((n

d)) basis functions would be required, which implies
that the runtime would scale exponentially with d.

As for sampling (query) complexities, the gold standard is provided
by Compressive Sensing methods. Sparse FFT, however, does not
capitalize on the low-degree assumptions at all.

The Compressive Sensing method doesn’t presuppose anything about
the Fourier spectrum’s support, whereas Sparse FFT operates under
the assumption that Fourier frequencies are randomly and indepen-
dently chosen.

Our methods retains the Sparse FFT algorithm’s computational effi-
ciency, which scales logarithmically in number of basis functions.

Our primary contribution lies in enhancing the sampling complexity,
making it comparable to Compressive Sensing methods. This enhance-
ment is realized through a novel frequency detection primitive, which

5.2 problem statement 51

fully utilizes the low-degree assumption. This method incorporates
concepts from Compressive Sensing over finite fields, thereby amal-
gamating the strengths of both techniques in terms of runtime and
sampling complexities.

Furthermore, we’ve mitigated randomness assumptions by integrating
novel hashing schemes.

Compressive
sensing

Sparse WH Ours

Runtime Õ(knd) Õ(kn2) Õ(kn)

Sampling com-
plexity

Õ(kd) Õ(kn) Õ(kd)

Assumptions None Randomness of
support

None

5.2 problem statement

Here we define the problem of learning set functions. Consider a set
function that maps subsets of a ground set V ≜ {1, . . . , n} = [n] of
size n to real numbers, g : 2V → R. We assume oracle access to this
function, that is, we can observe the function value g(A) for any sub-
set A that we desire. The goal is to learn the function, that is to be able
to evaluate it for all subsets B ⊆ V. A problem that has received con-
siderable interest is learning cut functions of sparse (in terms of edges)
graphs [89]. Given a weighted undirected graph G = (V, E, w), the
cut function associated to G is defined as g(A) = ∑s∈A,t∈V\A w(s, t),
for every A ⊆ V.

Note that we can equivalently represent each subset A ⊆ V by a
vector x ∈ Fn

2 which is the indicator of set A. Here F2 = {0, 1} de-
notes the finite field with 2 elements. Hence the set function can be
viewed as g : Fn

2 → R. We denote the Walsh-Hadamard transform of
g : Fn

2 → R by ĝ : Fn
2 → R. It is defined as:

ĝ(f) =
1√
N

∑
x∈Fn

2

g(x) · (−1)⟨ f ,x⟩ , f ∈ Fn
2 .

The inner product ⟨ f , x⟩ throughout the thesis is performed modulo 2.

52 computing the sparse and/or low-degree spectrum

The Fourier transform of the graph cut function ĝ is the following,

ĝ(f) =


1
2 ∑s,t∈V w(s, t) if f = (0, . . . , 0)

−w(s, t)/2 if fs = ft = 1 and fi = 0 ∀i ̸= s, t

0 otherwise

.

It is clear that the Fourier support of the cut function for graph G
contains only |E|+ 1 nonzero elements (and hence it is sparse). Fur-
thermore, the nonzero Fourier coefficients correspond to frequencies
with hamming weights at most 2.

One of the classes of set functions that we consider is that of exactly
low-degree Fourier sparse functions. Under this model, we address
the following problem:

Input: oracle access to g : Fn
2 → R

such that ∥ĝ∥0 ≤ k and | f | ≤ d for all f ∈ support(ĝ)

Output: nonzero coefficients of ĝ and their corresponding frequencies
(5.1)

where | f | denotes the Hamming weight of f .

We also consider the robust version of problem (5.1) where we only
have access to noisy measurements of the input set function. We make
no assumption about the noise, which can be chosen adversarially.
Equivalently one can think of a general set function whose spectrum
is well approximated by a low-degree sparse function which we refer
to as head. Head of ĝ is just the top k Fourier coefficients ĝ(f) such
that the frequency has low Hamming weight | f | ≤ d. We refer to the
noise spectrum as tail.

Definition 5.2.1 (Head and Tail norm). For all integers n, d, and k we
define the head of ĝ : Fn

2 → R as,

ĝhead := arg min
y:Fn

2→R

∥y∥0≤k
|j|≤d for all j∈supp(y)

∥ĝ− y∥2.

The tail norm of ĝ is defined as, Err(ĝ, k, d) := ∥ĝ− ĝhead∥2
2.

Since the set function to be learned is only approximately in the low-
degree Fourier sparse model, it makes sense to consider the approxi-

5.3 algorithm and analysis 53

mate version of problem (5.1). We use the well known ℓ2/ℓ2 approxima-
tion to formally define the robust version of problem (5.1) as follows,

Input: oracle access to g : Fn
2 → R

Output: function χ̂ : Fn
2 → R

such that ∥χ̂− ĝ∥2
2 ≤ (1 + δ)Err(ĝ, k, d),

| f | ≤ d for all f ∈ support(χ̂)

(5.2)

Note that no assumptions are made about the function g and it can
be any general set function.

5.3 algorithm and analysis

In this section, we present our algorithm and analysis. We use tech-
niques from the sparse FFT literature [88, 94, 95]. Our main technical
novelty is a new primitive for estimating a low-degree frequency, i.e.,
| f | ≤ d, efficiently using an optimal number of samples O(d log n)
given in Section 5.3.1. This primitive relies heavily on the fact that
a low-degree frequency is constrained on a subset of size (n

d) as op-
posed to the whole universe of size 2n. We show that problem (5.1)
can be solved quickly and using a few samples from the function x
by proving the following theorem,

Theorem 5.3.1. For any integers n, k, and d, the procedure ExactSHT
solves problem (5.1) with probability 9/10. Moreover, the runtime of this
algorithm is O

(
kn log2 k log n log d

)
and the sample complexity of this

procedure is O (kd log n).

5.3.1 Low-degree frequency recovery

In this section we provide a novel method for recovering a frequency
f ∈ Fn

2 with bounded Hamming weight | f | ≤ d, from measurements
⟨mi, f ⟩ i ∈ [s] for some s = O(d log n). The goal of this section is to de-
sign a measurement matrix M ∈ Fs×n

2 with small s, such that for any
f ∈ Fn

2 with | f | ≤ d the following system of constraints, with constant
probability, has a unique solution j = f and has an efficient solver,

j ∈ Fn
2 such that

Mj = M f

|j| ≤ d
.

54 computing the sparse and/or low-degree spectrum

To design an efficient solver for the above problem with optimal s, we
first need an optimal algorithm for recovering frequencies with weight
one | f | ≤ 1. In this case, we can locate the index of the nonzero coor-
dinate of f optimally via binary search using O(log n) measurements
and runtime.

Definition 5.3.2 (Binary search vectors). For any integer n, the en-

semble of vectors {vl}⌈log2 n⌉
l=0 ⊆ Fn

2 corresponding to binary search on n
elements is defined as follows. Let v0 = {1}n (the all ones vector). For every

l ∈ {1, · · · , ⌈log2 n⌉} and every j ∈ [n], vl
j =

⌊
(j mod 2l)

2l−1

⌋
.

Lemma 5.3.3. There exists a set of measurements {mi}s
i=1 for s = ⌈log2 n⌉+

1 together with an algorithm such that for every f ∈ Fn
2 with | f | ≤ 1 the

algorithm can recover f from the measurements ⟨ f , mi⟩ in time O(log2 n).

To recover a frequency f with Hamming weight d, we hash the coor-
dinates of f randomly into O(d) buckets. In expectation, a constant
fraction of nonzero elements of f get isolated in buckets, and hence the
problem reduces to the weight one recovery. We know how to solve
this using binary search as shown in Lemma 5.3.3 in time O(log n)
and with sample complexity O(log n). We recover a constant fraction
of the nonzero indices of f and then we subtract those from f and
recurse on the residual. The pseudocode of the recovery procedure
is presented in Algorithm 1.

Lemma 5.3.4. For any integers n and d , any power of two integer
D ≥ 128d, and any frequency f ∈ Fn

2 with | f | ≤ d, the procedure Recov-
erFrequency given in Algorithm 1 outputs f with probability at least 7/8,
if we have access to the following,

1. For every r = 0, 1, · · · , log4 D, a hash function hr : [n] → [D/2r]
which is an instance from a pairwise independent hash family.

2. For every l = 0, 1, · · · , ⌈log2 n⌉ and every r = 0, 1, · · · , log4 D, the
measurements ϕl

r(i) that are equal to ϕl
r(i) = ∑j∈h−1

r (i) f j · vl
j for every

i ∈ [D/2r].

Moreover, the runtime of this procedure is O(D log D log n) and the number
of measurements is O(D log n).

Proof. The proof is by induction on the iteration number r = 0, 1, · · · , T.
We denote by Er the event | f − f̃ (r)| ≤ d

4r , that is the sparsity goes
down by a factor of 4 in every iteration up to rth iteration. The induc-
tive hypothesis is Pr[Er+1|Er] ≥ 1− 1

16·2r .

5.3 algorithm and analysis 55

Algorithm 1 RecoverFrequency
input: power of two integer D, hash functions hr : [n]→ [D/2r] for every
r ∈ {0, 1, · · · , log4 D}, measurement vectors ϕl

r ∈ FD/2r

2 for every
l = 0, 1, · · · ⌈log2 n⌉ and every r = 0, 1, · · · , log4 D.
output: recovered frequency f̃ .

1: {vl}⌈log2 n⌉
l=0 ← binary search vectors on n elements (Definition 5.3.2),

T ← log4 D, f̃ (0) ← {0}n

2: for r = 0 to T do
3: w← {0}n.
4: for i = 1 to D/2r do
5: if ϕ0

r (i)−∑j∈h−1
r (i) f̃ (r)j · v

0
j = 1 then

6: index ← {0}⌈log2 n⌉, a ⌈log2 n⌉ bits pointer.
7: for l = 1 to ⌈log2 n⌉ do

8: if ϕl
r(i)−∑j∈h−1

r (i) f̃ (r)j · v
l
j = 1 then

9: [index]l ← 1, set lth bit of index to 1.
10: end if
11: end for
12: w(index)← 1, set the coordinate of w positioned at index to

1.
13: end if
14: end for
15: f̃ (r+1) ← f̃ (r) + w.
16: end for
17: return f̃ (T+1).

56 computing the sparse and/or low-degree spectrum

Conditioning on Er we have that | f − f̃ (r)| ≤ d
4r . For every i ∈ [D/2r]

and every l ∈ {0, 1, · · · , ⌈log2 n⌉} it follows from the definition of ϕl
r

that,
ϕl

r(i)− ∑
j∈h−1

r (i)

f̃ (r)j · v
l
j = ∑

j∈h−1
r (i)

(
f j − f̃ (r)j

)
· vl

j.

Let us denote by S the support of vector f − f̃ (r), namely let S =

supp
(

f − f̃ (r)
)

.

From the pairwise independence of the hash function hr the following
holds for every a ∈ S,

Pr[hr(a) ∈ hr(S \ {a})] ≤ 2r · |S|
D
≤ 2r · 1

128 · 4r ≤
1

128 · 2r .

This shows that for every a ∈ S, with probability 1− 1
128·2r , the bucket

hr(a) contains no other element of S. Because the vector f − f̃ (r) re-
stricted to the elements in bucket h−1

r (hr(a)) has Hamming weight
one, for every a ∈ S,

Pr
[∣∣∣∣(f − f̃ (r−1)

)
h−1

r (hr(a))

∣∣∣∣ = 1
]
≥ 1− 1

128 · 2r .

If the above condition holds, then it is possible to find the index of the
nonzero element via binary search as in Lemma 5.3.3. The for loop in
line 7 of Algorithm 1 implements this. Therefore with probability 1−

1
16·2r by Markov’s inequality a 1− 1/8 fraction of the support elements,
S, gets recovered correctly and at most 1/8 fraction of elements remain
unrecovered and possibly result in false positive. Since the algorithm
recovers at most one element per bucket, the total number of falsely
recovered indices is no more than the number of non-isolated buckets
which is at most 1/8 · |S|. Therefore with probability 1− 1

16·2r , the
residual at the end of rth iteration has sparsity 1/8 · |S|+ 1/8 · |S| =
1/4 · |S|, i.e.

∣∣∣ f − f̃ (r+1)
∣∣∣ ≤ |S|4 ≤ d

4r+1 . This proves the inductive step.

It follows from the event ET for T = log4 D that f̃ (T) = f , where f̃ (T)

is the output of Algorithm 1. The inductive hypothesis along with
union bound implies that Pr

[
ĒT
]
≤ ∑T

r=1 Pr
[
Ēr|Er−1

]
+ Pr

[
Ē0
]
≤

∑T
r=0

1
16·2r ≤ 1/8.

runtime : The algorithm has three nested loops and the total num-
ber of repetitions of all loops together is O(D log n). The recovered

5.3 algorithm and analysis 57

frequency f̃ (r) always has at most O(D) nonzero entries therefore the
time to calculate ∑j∈h−1

r (i) f̃ (r−1)
j · vl

j for a fixed r and a fixed l and all
i ∈ [D/2r] is O(D). Therefore the total runtime is O(D log D log n).

number of measurements : The number of measurements is
the total size of the measurement vectors ϕl

r which is O(D log n).

5.3.2 Signal reduction

We now develop the main tool for estimating the frequencies of a
sparse signal, namely the Hash2Bins primitive. If we hash the frequen-
cies of a k-sparse signal into O(k) buckets, we expect most buckets to
contain at most one of the elements of the support of our signal. The
next definition shows how we compute the hashing of a signal in the
time domain.

Definition 5.3.5. For every n, b ∈N, every a ∈ Fn
2 , and every σ ∈ Fn×b

2
and every x : Fn

2 → R, we define the hashing of ĝ as ua
σ : Fb

2 → R, where

ua
σ(t) =

√
2n

2b · xσt+a, for every t ∈ Fb
2.

We denote by B ≜ 2b the number of buckets of the hash function. In
the next claim, we show that the Fourier transform of ua

σ corresponds
to hashing ĝ into B buckets.

Claim 5.3.6. For every j ∈ Fb
2, ûa

σ(j) = ∑ f∈Fn
2 :σ⊤ f=j ĝ f · (−1)⟨a, f ⟩.

Let h(f) ≜ σ⊤ f . For every j ∈ Fb
2, ûa

σ is the sum of ĝ f · (−1)⟨a, f ⟩ for all
frequencies f ∈ Fn

2 such that h(f) = j, hence h(f) can be thought of
as the bucket that f is hashed into. If the matrix σ is chosen uniformly
at random then the hash function h(·) is pairwise independent.

Claim 5.3.7. For any n, b ∈N, if the hash function h : Fn
2 → Fb

2 is defined
as h(·) = σ⊤(·), where σ ∈ Fn×b

2 is a random matrix whose entries are
distributed independently and uniformly at random on F2, then for any
f ̸= f ′ ∈ Fn

2 it holds that Pr[h(f) = h(f ′)] = 1
B , where the probability is

over picking n · b random bits of σ.

The Hash2Bins primitive computes the Fourier coefficients of the
residue signal that are hashed to each of the buckets. We denote by χ̂
the estimate of ĝ in each iteration. As we will see in Section 5.3.3, the
recovery algorithm is iterative in the sense that we iterate over ĝ− χ̂

58 computing the sparse and/or low-degree spectrum

Algorithm 2 Hash2Bins

input: signal x ∈ R2n
, signal χ̂ ∈ R2n

, integer b, binary matrix σ ∈ Fn×b
2 ,

shift vector a ∈ Fn
2 .

output: hashed signal ûa
σ.

1: Compute ûa
σ = FHT

(√
2n

2b · xσ(·)+a

)
. ▷ FHT is the fast Hadamard

transform algorithm
2: ûa

σ(j)← ûa
σ(j)−∑ f∈Fn

2 :σ⊤ f=j χ̂ f · (−1)⟨a, f ⟩ for every j ∈ Fb
2.

3: return ûa
σ.

(the residue) whose sparsity is guaranteed to decrease by a constant
factor in each step.

Claim 5.3.8. For any signal x, χ̂ : Fn
2 → R, integer b, matrix σ ∈ Fn×b

2 ,
and vector a ∈ Fn

2 the procedure Hash2Bins(x, χ̂, b, σ, a) given in Al-
gorithm 2 computes the following using O(B) samples from x in time
O(Bn log B + ∥χ̂∥0 · n log B)

ûa
σ(j) = ∑

f∈Fn
2 :σ⊤ f=j

(x̂− χ) f · (−1)⟨a, f ⟩.

5.3.3 Exact Fourier recovery

In this section, we present our algorithm for solving the exact low-
degree Fourier sparse problem defined in (5.1) and prove Theorem
5.3.1. Let S ≜ supp(ĝ). Problem (5.1) assumes that |S| ≤ k and also
for every f ∈ S, | f | ≤ d. The recovery algorithm hashes the frequen-
cies into B = 2b buckets using Algorithm 2. Every frequency in the
support f ∈ S is recoverable, with constant probability, if no other
frequency from the support collides with it in the hashed signal. The
collision event is formally defined below,

Definition 5.3.9 (Collision). For any frequency f ∈ Fn
2 and every sparse

signal ĝ with support S = supp(ĝ), the collision event Ecoll(f) correspond-
ing to the hash function h(f) = σ⊤ f holds iff h(f) ∈ h(S \ { f }).
Claim 5.3.10 (Probability of collision). For every f ∈ Fn

2 , if the hash
function h : Fn

2 → Fb
2 is defined as h(·) = σ⊤(·), where σ ∈ Fn×b

2 is a
random matrix whose entries are distributed independently and uniformly at

5.3 algorithm and analysis 59

random on F2 then Pr[Ecoll(f)] ≤ k
B (see Definition 5.3.9). The probability

is over the randomness of matrix σ.

If the hash function h(·) = σ⊤(·) is such that the collision event
Ecoll(f) does not occur for a frequency f , then it follows from Claim
5.3.6 and Definition 5.3.9 that for every a ∈ Fn

2 ,

ûa
σ(h(f)) = ĝ(f) · (−1)⟨a, f ⟩.

Therefore, under this condition, the problem reduces to d-sparse re-
covery. If a = {0}n then, ûa

σ(h(f)) = ĝ(f). Hence for any m ∈ Fn
2 ,

one can learn the inner product ⟨m, f ⟩ by comparing the sign of
ûm

σ (h(f)) = ĝ(f) · (−1)⟨m, f ⟩ and ûa
σ(h(f)). If the signs are the same

then (−1)⟨m, f ⟩ = 1 meaning that ⟨m, f ⟩ = 0 and if the signs are
different then ⟨m, f ⟩ = 1. In Section 5.3.1 we gave an algorithm for
learning a low-degree frequency | f | ≤ d from measurements of the
form ⟨m, f ⟩. So putting these together gives the inner subroutine for
our sparse fast Hadamard transform, which performs one round of
hashing, presented in Algorithm 3.

Lemma 5.3.11. For all integers b and d, every signals x, χ̂ ∈ R2n
such that

|ξ| ≤ d for every ξ ∈ supp(x̂− χ), and any parameter p > 0, Algorithm 3
outputs a signal χ̂′ ∈ R2n

such that |supp(χ̂′)| ≤ |supp(x̂− χ)| and also
for every frequency f ∈ supp(x̂− χ), if the collision event Ecoll(f) does not
happen then,

Pr
[
χ̂′f = (x̂− χ) f

]
≥ 1− p.

Moreover the sample complexity of this procedure is O(Bd log n log 1
p) and

also its time complexity is

O
(

B log B(n + d log n log
1
p
) + nB log n log d log

1
p
+ ∥χ̂∥0 · n

(log B + log n log d log
1
p
)

Lemma 5.3.12. For any parameter p > 0, all integers k, d, and b ≥
log2(k/p), every signal x, χ̂ ∈ R2n

such that ∥x̂− χ∥0 ≤ k and |ξ| ≤ d
for every ξ ∈ supp(x̂− χ), the output of SHTInner(x, χ̂, p, b, d), χ̂′ sat-
isfies the following with probability at least 1− 32p,

∥ĝ− χ̂− χ̂′∥0 ≤ k/8.

60 computing the sparse and/or low-degree spectrum

Our sparse Hadamard transform algorithm iteratively calls the prim-
itive SHTInner to reduce the sparsity of the residual signal by a
constant factor in every iteration. Hence, it terminates in O(log k)
iterations. See Algorithm 4.

Proof. Theorem 5.3.1 The proof is by induction. We denote by Er the
event corresponding to ∥ĝ− w(r)∥0 ≤ k

8r . The inductive hypothesis
is Pr[Er|Er−1] ≥ 1− 16p(r). Conditioned on Er−1 we have that ∥ĝ−
w(r−1)∥0 ≤ k

8r−1 . The number of buckets in iteration r of the algorithm
is B(r) = 2br ≥ 64k

4r−1·q . Hence, it follows from Lemma 5.3.12, that with

probability 1− 32p(r), ∥ĝ−w(r)∥0 ≤ k
8r . This proves the inductive step.

runtime and sample complexity : In iteration r ∈ [⌈log8 k⌉],
the size of the bucket B(r) = 2b(r) = 64k

q·4r and the error probability

p(r) = q
32·2r . Moreover at most ∑r B(r) elements are added to χ̂, hence

we can assume that ∥χ̂∥0 ≤ 128k
q . From Lemma 5.3.11 it follows that

the total runtime is O
(

kn log2 k log n log d
)

.

The sample complexity of iteration r is O
(

kd
2r log n log 2r

)
hence the

total sample complexity is dominated by the sample complexity of
the first iteration which is equal to O (kd log n).

5.4 experiments

We test our ExactSHT algorithm for graph sketching on a real-world
data set. We utilize the autonomous systems dataset from the SNAP
data collection.1 In order to compare our methods with [89] we re-
produce their experimental setup. The dataset consists of 9 snapshots
of an autonomous system in Oregon on 9 different dates. The goal
is to detect which edges are added and removed when comparing
the system on two different dates. As a pre-processing step, we find
the common vertices that exist on all dates and look at the induced
subgraphs on these vertices. We take the symmetric differences (over
the edges) of dates 7 and 9. Results for other date combinations can be
found in the supplementary material. This results in a sparse graph

1 snap.stanford.edu/data/

5.4 experiments 61

(sparse in the number of edges). Recall that the running time of our al-
gorithm is O(kn log2 k log n log d) which reduces to O(nk log2 k log n)
for the case of cut functions where d = 2.

5.4.1 Sample and time complexities as number of vertices varies

In the first experiment depicted in Figure 5.1b we order the vertices of
the graph by their degree and look at the induced subgraph on the n
largest vertices in terms of degree where n varies. For each n we pick
e = 50 edges uniformly at random. The goal is to learn the underly-
ing graph by observing the values of cuts. We choose parameters of
our algorithm such that the probability of success is at least 0.9. The
parameters tuned in our algorithm to reach this error probability are
the initial number of buckets the frequencies are hashed to and the
ratio at which they reduce in each iteration. We plot running times as
n varies. We compare our algorithm with that of [89] which utilizes
a CS approach. We fine-tune their algorithm by tuning the sampling
complexity. Both algorithms are run in a way such that each sample
(each observation of a cut value) takes the same time. As one can see
our algorithm scales linearly with n (up to log factors) whereas the CS
approach scales quadratically. Our algorithm continues to work in a
reasonable amount of time for vertex sizes as much as 900 in under
2 seconds. Error bars depict standard deviations.

In Table 5.2 we include both sampling complexities (number of ob-
served cuts) and running times as n varies. Our sampling complexity
is equal to O(k log n). In practice, they perform around a constant
factor of 10 worse than the compressive sensing method, which is
not provably optimal (see Section 5.1) but performs well in practice.
In terms of computational cost, however, the CS approach quickly
becomes intractable, taking large amounts of time on instance sizes
around 200 and larger [89]. Asterisks in Table 5.2 refer to experiments
that have taken too long to be feasible to run.

5.4.2 Time complexities as number of edges varies

Here we fix the number of vertices to n = 100 and consider the
induced subgraph on these vertices. We randomly pick e edges to in-
clude in the graph. We plot computational complexities. Our running

62 computing the sparse and/or low-degree spectrum

time provably scales linearly in the number of edges as can be seen
in Figure 5.1a.

(a) Avg. time vs. no. edges (b) Avg. time vs. no. vertices

5.5 frequency recovery primitives as linear

error-correcting codes

In Section 5.3.1 and Algorithm 1, we described a novel hashing-
based frequency recovery primitive. In this section, we show, that the
frequency recovery primitive, when viewed in the correct light, can
be reduced to a widely studied problem in the theory of linear error-
correcting codes. Therefore one can use the rich theory behind linear
codes to design optimal measurement (shift) vectors in terms of query
complexity. Moreover the resulting frequency recovery primitives
are more reliable and easy to tune yielding an overall algorithm
that runs in a robust and reliable fashion. We propose two new
sets of measurement vectors – based on Reed-Solomon codes and
Random codes respectively. We provide a theoretical analysis, and
show through extensive experiments in Section 5.6.1 that indeed, these
measurement vectors yield improved query complexities. We continue
with a brief introduction to the theory of error correcting codes.

In coding theory, we want to transmit one of 2g messages s ∈ F
g
2

over a noisy channel. We embed these message vectors s into a higher
dimensional vector space Fn

2 , where n > g and call it ŝ. These em-
beddings are chosen such that they have some minimum pairwise
hamming distance of say 2d + 1. This allows for error detection in
case at most 2d of these bits are corrupted and for recovery when at
most d bits become corrupted by the medium of transfer. One such

5.5 frequency recovery primitives as linearerror-correcting codes 63

No. of vertices
CS method Our method

Runtime Samples Runtime Samples

70 1.14 767 0.85 6428

90 1.88 812 0.92 6490

110 3.00 850 0.82 6491

130 4.31 880 1.01 7549

150 5.34 905 1.16 7942

170 6.13 927 1.22 7942

190 7.36 947 1.18 7271

210 8.24 965 1.28 7271

230 ∗ ∗ 1.38 7942

250 ∗ ∗ 1.38 7271

300 ∗ ∗ 1.66 8051

400 ∗ ∗ 2.06 8794

500 ∗ ∗ 2.42 8794

600 ∗ ∗ 3.10 9646

700 ∗ ∗ 3.35 9646

800 ∗ ∗ 3.60 9646

Table 5.2: Sampling and computational complexity

64 computing the sparse and/or low-degree spectrum

embedding is the class of “linear” codes where the embeddings form
a g-dimensional subspace of Fn

2 and therefore, can be described as a
multiplication with a (full-rank) matrix G ∈ F

n×g
2 :

ŝ = Gs, s ∈ F
g
2

The columns of G form a basis for the embedding subspace and the
matrix G is called the “generating matrix”. To this matrix, we can
assign a “parity check” matrix A ∈ Fn×m

2 , where g+m = n. By design,
the column space of the “parity check” matrix is the orthogonal
complement to the generating matrix’s columns space (the embedding
subspace). Therefore, for any valid code ŝ = Gs, it holds that A⊤ ŝ = 0.
Moreover, if the code-word ŝ is corrupted by some error vector f ∈ Fn

2 ,
i.e., if the code-word ŝ is sent and ŝ + f is received, it holds that:

y = A⊤(ŝ + f) = A⊤ f

and the vector y is called the “syndrome vector”. The problem of recov-
ering s given the syndrome vector y under conditions that deg(f) ≤ d,
is well studied in coding theory and is broadly known as “syndrome
decoding”. Crucially, a side-effect of finding s is that we also find f ,
which is exactly what is needed in the “frequency detection” primitive
described in Section 5.3.1.

More precisely, our main insight is that we can use the columns of
A ∈ Fn×m

2 , denoted by a1, . . . , am ∈ Fn
2 as measurement (shift) vec-

tors of the frequency recovery primitive introduced in Section 5.3.1.
Syndrome decoders are guaranteed to recover “error” vectors f ∈ Fn

2
of degree at most d given the syndrome vector y = A⊤ f ∈ Fm

2 . In
other words, given the measurement vector a.k.a syndrome vector y
and measurement matrix A ∈ Fn×m

2 , we can use any syndrome decod-
ing algorithm, out of the box, to find the error vector f of degree at
most d that satisifes y = A⊤ f . These “error vectors” are nothing but
the “frequency vectors” that we wanted to recover in the frequency
recovery primitives.

One set of measurement vectors, that come with syndrome decoders,
are called the Reed-Solomon error detecting codes [97] and the following
Proposition from Das & Vishwanath [98] characterizes its guarantees
(Corollary 3.2 in the mentioned paper):

Proposition 5.5.1 (Reed Solomon measurements). There exist m =
2d⌈log2 n + 1⌉ measurement vectors a1, . . . , am ∈ Fn

2 such that for any fre-

5.5 frequency recovery primitives as linearerror-correcting codes 65

quency f ∈ Fn
2 of degree at most d, if one has the value of the linear measure-

ments ⟨ f , ai⟩ ∈ F2 then one can recover f using O(nd⌈log2 n⌉) operations.

Another set of measurement vectors are the so called random codes.
Here, we pick the measurement vectors ai ∈ Fn

2 independently and
uniformly at random. We will see later that random codes exhibit
query complexity that is lower than Reed-Solomon codes. However
they come at the cost of worst case exponential decoding times. We
note that there has been significant work on this matter [99–102]. In
this work, we take a different approach and cast the decoding prob-
lem as ILPs (Integer Linear Programs) and use a modern standard
solver SCIP [103, 104] to solve these instances. We are able to go to
fairly high dimensions that are not accessible with CS approaches. We
elaborate on this further in Section 5.6.1.

We characterize the theoretical achievable bounds for random codes
from Theorem 8 of Guruswami [105]. The mentioned source describes
how random linear codes can recover error vectors efficiently (in
terms of number of measurements). In fact, they are asymptotically
optimal and the number of measurements needed matches that of
a lower bound called the “Gilbert-Varshamov” bound. We set q = 2
and δ = 2d+1

n and use h2 for the binary entropy function.

Proposition 5.5.2 (Random measurements). Let a1, . . . , am ∈ Fn
2 be cho-

sen uniformly at random. Assume 4d+ 2 < n and let 0 < ϵ < 1− h2(
2d+1

n)

be chosen arbitrarily and let m = n⌈h2(
2d+1

n) + ϵ⌉. Then, for sufficiently
large n, with probability 1− e−Ω(n), if one has the value of the linear measure-
ments ⟨ f , ai⟩ ∈ F2, one can uniquely recover all f ∈ Fn

2 of degree at most d .

It remains to show that Propositions 5.5.1 and 5.5.2 imply (analogs
of) Lemma 5.3.4. Regarding Proposition 5.5.1, the recovery is with
probability one for any frequency f that is of degree at most d, since
the algorithm contains no randomness. Therefore, the guarantees
in this proposition are strictly stronger than those of Lemma 5.3.4 .
Proposition 5.5.2 is also strictly stronger than Lemma 5.3.4 as it uni-
formly guarantees that with high probability, recovery is guaranteed
over all possible f ∈ Fn

2 of degree at most d.

66 computing the sparse and/or low-degree spectrum

5.6 experiments with linear error-correcting codes as

frequency recovery primitives

Firstly, we quantify the performance of our newly proposed frequency
recovery primitives based on random and Reed Solomon codes. Next, we
quantify the improvements in the overall end to end HSFT algorithm
on a synthetic black-box function and finally on a black-box model
trained on data.

5.6.1 Empirical sampling complexity of the new frequency recovery prim-
itives

We design experiments to quantify the query complexity of the two
new proposed frequency recovery primitives based on Reed Solomon
and Random codes proposed in Propositions 5.5.1 and 5.5.2 respec-
tively. We compare their query complexity to that of prior work, which
we call binning. The following describes the procedure carried out for
each frequency detection primitive.

Random codes: we first generate measurement vectors a1, . . . , am ∈ Fn
2

uniformly at random for a fixed m ∈N. Next, we generate a frequency
f ∈ Fn

2 of degree at most d uniformly at random. We use the measure-
ment vectors a1, . . . , am as rows in the observation matrix A⊤ ∈ Fm×n

2 .
We compute the measurement vector y = A⊤ f . Next, we form an
integer linear program that finds a vector f̂ that satisfies y = A⊤ f̂
and deg(f̂) ≤ d. We use an integer program solver, SCIP [103], with
the default settings, to find such a feasible solution. For any fixed
m we repeat this procedure 10 times and compute the probability of
success, where the randomness is over the 10 different instantiations
of f and observation matrices A.

Binning We generate measurement vectors a1, . . . , am ∈ Fn
2 accord-

ing to the proposed method and for a fixed set of hyper-parameters.
Remember from Section 5.6.1, that this algorithm has three tunable
hyper-parameters and each such setting gives rise to a random num-
ber of measurements m. For each such set of measurement vectors we
generate 100 different frequencies f ∈ Fn

2 of degree d uniformly at ran-
dom. We run the algorithm to recover the each frequency and compute
its probability of success where the randomness is over the 100 differ-

5.6 experiments with linear error-correcting codes as frequency recovery primitives 67

ent instantiations of the frequencies. We repeat this whole procedure
many times for different settings of three different hyper-parameters.

Reed Solomon Note that Reed-Solomon has no tunable hyper-parameters
and succeeds with probability one.

Lower-bound This is a trivial combinatorial lower bound on the num-
ber of measurements, below which, one can not recover the frequency

with probability one. It is computed as log2(
d
∑

i=0
(n

i)).

We plot the probability of success vs. number of measurements in
Figure 5.2a for n = 192 and d = 5 for all three primitives. We do the
same in Figure 5.2b for the Reed Solomon and binning primitives for
n = 6144 and d = 10. Figures 5.2c 5.2d 5.2e show the respective run-
times it takes to recover exactly one frequency in each of the proposed
methods. When compared to binning, both the Reed-Solomon and
random primitives achieve higher probabilities of success for the same
number of measurements. We can see that random measurements
have a phase transition very close to the combinatorial lower bound.
Runtimes for Reed Solomon and binning are comparable. As expected,
the runtime for the random measurements is an order of magnitude
slower. Although slower, recovery comes with the advantage of fewer
measurements needed. Therefore random measurements remain rel-
evant when querying the black-box function is very slow and hence
the runtime is dominated by these timely queries.

5.6.2 Learning a synthetic black-box function

We construct a synthetic black-box function h : Fn
2 → R, where

n = 500, by picking k = 30 frequencies f1, . . . , f30 ∈ F500
2 of degree at

most d uniformly at random. We assign to each a frequency fi, an am-
plitude ĥ(fi) chosen uniformly are random in the interval [−100, 100].
The function is queried uniformly at random and we minimize the
Lagrangian formulation of the sparse recovery problem, using prox-
imal methods [89]. However, even for the case of depth d = 2, the
algorithm fails to complete within 24 hours.

Next, we consider the HSFT algorithms with the newly proposed
frequency recovery primitives. We run the algorithms end to end for
varying values of C (specifies the number of buckets we hash into)
and different settings of hyper-parameters for each of the frequency

68 computing the sparse and/or low-degree spectrum

(a) (b)

(c) (d) (e)

Figure 5.2: (a) Probability of success of the three different frequency recovery
primitives given number of measurements for the case of n = 192,
d = 5 (b) Probability of success of Reed Solomon vs. binning given
number of measurements in much higher dimensions n = 6144, d =
10 (c) Median runtime of Reed Solomon and binning for recovering
a single frequency n = 192, d = 5 (d) Median runtime of random
for recovering a single frequency n = 192, d = 5 (e) Median runtime
of Reed Solomon and binning for recovering a single frequency n =
6144, d = 10.

recovery primitives. In Figure 5.3d we plot the query complexity and
the normalized error of the retrieved Fourier transform defined as:

normalized error ≜
∑ f∈Fn

2
(ĥest(f)− ĥ(f))2

∑ f∈Fn
2

ĥ(f)2
=

∑t∈Fn
2
(hest(t)− h(t))2

∑t∈Fn
2

h(t)2

(5.3)
for the value of degree d = 3. Here, ĥest(f) is the Fourier trans-
form returned by the algorithm and ĥ(f) is equal to the true Fourier
transform. We can see that random measurements is able to nearly
perfectly recover the function with less than 1000 measurements. The
best result for binning is with 2700 measurements with a normalized

5.6 experiments with linear error-correcting codes as frequency recovery primitives 69

error that is still higher than that of random measurements. Although
Reed-Solomon does not necessarily outperform binning in all cases,
we can see that it is far more reliable and in almost all cases it out-
performs binning in terms of normalized error for a given number of
measurements.

5.6.3 Learning a black-box trained on a dataset

We now utilize our proposed algorithm for the task of learning a
black-box function trained on a real-world dataset. We train a Ran-
dom Forest model, as our black-box, on the “superconduct” 2 dataset.
This dataset has 81 features which are all continuous. Each feature
is binned into 16 buckets according to its quantiles, and encoded as
a 4-bit binary number. The resulting model is treated as a black-box
h : Fn

2 → R with n = 4× 81 = 324. The random forest model is
trained with 20 trees for a variety of depths d and its R2 score is plot-
ted in Figure 5.3a. This figure portrays the importance of depth, and
hence the degree of the Fourier transform for models that perform
well on this dataset.

We first consider the approach of Stobbe & Krause [89] and try to use
find the Fourier transform using Compressive Sensing methods. The
black-box is queried uniformly at random and we minimize the La-
grangian formulation of the sparse recovery problem, using proximal
methods. However, even for the case of depth d = 2 the algorithm
fails to converge within 24 hours. As mentioned before, since there
is θ(nd) basis functions, CS methods run in times that are exponential
with respect to the depth and have rarely been applied to dimensions
where n is greater or equal to 100, even for the simple case of d = 2.
In order to portray this exponential dependence, we utilize feature
importance to extract the top n = 40 features of the random forest
model and we retrain the model on these 40 features. We run the
proposed CS method and plot the runtime for a variety of depths and
plot the runtime on a logarithmic scale in Figure 5.3b.

Next, we consider the HSFT algorithms with the newly proposed
frequency recovery primitives. We run the algorithms end to end. In
Figures 5.3c and 5.3e, we plot the query complexity and the normal-
ized error of the retrieved Fourier transform defined as defined in

2 https://archive.ics.uci.edu/ml/datasets/superconductivty+data

https://archive.ics.uci.edu/ml/datasets/superconductivty+data

70 computing the sparse and/or low-degree spectrum

Equation (5.3). Where ĥ(f) is the Fourier transform returned by the
algorithm and ĥest(f) is equal to the true Fourier transform which can
be computed since one has access to the trees in the random forest.
We can see again that Reed-Solomon and random outperform binning
in almost all cases in terms of query complexity.

(a) (b) (c)

(d) (e)

Figure 5.3: (a) R2 scores of the random forest model increase with depth (b) Run-
time of CS methods is exponential with respect to depth (c) Normal-
ized error vs. number of measurements for the end to end algorithm
on a random forest black-box function of depth 3 (d) Normalized
error vs. number of measurements for the end to end algorithm on
a synthetic black-box function of degree 3 (e) Normalized error vs.
number of measurements for the end to end algorithm on a random
forest black-box function of depth 6

5.7 relationship to non-orthogonal fourier bases

So far we have covered computational/query-efficient algorithms for
computing the Walsh-Hadamard transform. In light of extensions of

5.7 relationship to non-orthogonal fourier bases 71

the Fourier basis in signal processing literature [20] we extended the
exact version of our algorithm to three new Fourier bases introduced
by Püschel [20] in our work [19].

To give a sense of why other Fourier bases might be important we
introduce one of the three new bases: the coverage function basis.
Before that, we define coverage functions. Let {E1, E2, . . . , En} be a
collection of subsets of some ground set [k] ≜ {1, . . . , k} i.e. Ei ⊆ [k]
let g : 2[n] → R, be a set function defined as follows:

g(S) =

∣∣∣∣∣⋃
i∈S

Ei

∣∣∣∣∣ : S ⊆ [n]

One can think of the subsets Ei as covering sets and the function
g saying how many elements of the ground set the union of these
subsets covers. Furthermore, one can assign weights wi, i ∈ [k] to each
of the items in the ground set [k] and define g as follows:

g(S) = ∑
i∈⋃i∈S Ei

wi

This is the so-called "generalized coverage function" so long as the
weights are non-negative. We show in [19] that such a function (even
for negative weights) is k-sparse in the coverage function basis but
dense in the Walsh-Hadamard basis. Namely, we show that it can
2n non-zero Walsh-Hadamard coefficients. We use similar ideas pre-
sented in this chapter to compute the non-zero Coverage function
Fourier coefficients with O(nk) queries and Õ(nk) computational
complexity given query access to g.

72 computing the sparse and/or low-degree spectrum

Algorithm 3 SHTInner

input: signal x ∈ R2n
, signal χ̂ ∈ R2n

, failure probability p, integer b,
integer d.
output: recovered signal χ̂′.

1: Let {vl}⌈log2 n⌉
l=0 be binary search vectors on n elements (Definition 5.3.2).

2: D ← smallest power of two integer s.t. D ≥ 128d, R← ⌈2 log2(1/p)⌉.
3: For every r ∈ {0, 1, · · · , log4 D} and every s ∈ [R], let hs

r : [n]→ [D/2r]
be an independent copy of a pairwise independent hash function.

4: For every r ∈ {0, 1, · · · , log4 D}, every s ∈ [R], and every j ∈ [D/2r] let
wj

r,s ∈ Fn
2 be the binary indicator vector of the set hs

r(j)−1.
5: For every s ∈ [R], every r ∈ {0, 1, · · · , log4 D} and every l ∈
{0, 1, · · · , ⌈log2 n⌉} and every j ∈ [D/2r], add wj

r,s · vl to set As.
6: Let σ ∈ Fn×b

2 be a random matrix. Each entry is independent and
uniform on F2.

7: For every a ∈ ∪s∈[R]As compute ûa
σ = Hash2Bins(x, χ̂, b, σ, a).

8: for j = 1 to B do
9: Let L be an empty multi-set.

10: for s ∈ [R] do
11: for every r ∈ {0, · · · , log4 D}, every i ∈ [D/2r], and every l ∈
{0, · · · , ⌈log2 n⌉} do

12: if ûc
σ(j) ̸= 0, where c = {0}n then

13: if ûc
σ(j) and û

wi
r,s ·vl

σ (j) have same sign then ϕl
r(i) ← 0.

else ϕl
r(i)← 1.

14: end if
15: end for

16: f̃ ← RecoverFrequency

(
D, {hs

r}
log2 D
r=0 ,

{
{ϕl

r}
log4 D
r=0

}⌈log2 n⌉

l=0

)
.

17: Append f̃ to multi-set L.
18: end for
19: f ← majority(L)
20: χ̂′f ← ûc(j), where c = {0}n.
21: end for
22: return χ̂′.

5.7 relationship to non-orthogonal fourier bases 73

Algorithm 4 ExactSHT

input: signal x ∈ R2n
, failure probability q, sparsity k, integer d.

output: estimate χ̂ ∈ R2n
.

1: p(1) ← q/32, b(1) ← ⌈log2
64k

q ⌉, w(0) ← {0}2n
, T ← ⌈log8 k⌉.

2: for r = 1 to T do
3: χ̃← SHTInner(x, w(r−1), p(r), b(r), d)
4: w(r) ← w(r−1) + χ̃.
5: p(r+1) ← p(r)/2, b(r+1) ← b(r) − 2.
6: end for
7: χ̂← w(T).
8: return χ̂.

6
S U M M A RY A N D F U T U R E D I R E C T I O N S

In conclusion, in this thesis, we delved into the "spectral bias" ob-
served in supervised learning models, particularly neural networks
and decision tree ensembles. We have showed that neural networks,
despite their capacity to learn arbitrary functions, lean towards sim-
pler functions when trained with methods like stochastic gradient
descent. This simplicity is observed through the Walsh-Hadamard
transform. More formally, we introduced notions of sparsity and low-
degreeness to define what we mean by simplicity for both neural
networks and also trees.

The work then presented three main contributions all centered around
the notions of low-degreeness and sparsity:

– In this chapter we showed that the simplicity bias of a neu-
ral network, more precisely the low-degreeness of its spectrum,
can hurt its generalization capabilities. This was shown through
extensive synthetic experiments and the notions of Spectral Ap-
proximation Error and also on real-world tabular datasets. We
introduced a computationally efficient spectral regularization
method for addressing this problem bias in neural networks.

– We introduced a faster way to compute interventional SHAP
values using compact Fourier representations. This was based on
the fact that many models such as ensembles of trees and also
deep neural networks have spectral biases. The main point of
this chapter was that the computation of SHAP values admits a
closed-form expression, avoiding an exponential sum when the
predictor function is expressed as a sparse Fourier representation.

– We provided an improved algorithm for computing the Fourier
transform given query access to the black-box function. The main
advantage of the algorithm we offered was its ability to exploit
low-degree assumptions on the black-box. Again, as mentioned
above, this assumption holds for black boxes where the func-
tion is a tree or a neural network and more: such as graph cut
functions discussed in the chapter.

75

76 summary and future directions

Here are a few open problems worth addressing.

– From Chapter 3 we are missing a more theoretical analysis of
a sparsifying L1-norm. To begin with we can start with the L1
regularizer applied to the full spectrum of the neural network, as
opposed to the computationally friendly down-sampled one we
present as a fix in that chapter. Results in compressive sensing
provide analytical bounds on how many queries/samples are
needed to recover a truly sparse function in some orthogonal
basis - such as the Walsh Hadamard basis [93]. One could think
of analyzing the function a neural network represents during
training, in function space, and through the NTK kernel. The-
oretically analyzing how adding a simple L1 regularizer of the
whole spectrum would be a first step. It is worth noting that
the Walsh-Hadamard basis functions are the eigenvectors of the
NTK matrix [12].

– We can think of improving on the regularization method pro-
posed in Chapter 3. Even though this regularizer is exponentially
faster than regularizing the whole spectrum, it is still compu-
tationally burdensome compared to training a simple neural
network without regularization. A central idea used in Tancik
et al. [42] is transforming the input space using a transformation
that helps the neural network learn higher frequency features.
There, they use a random Fourier Features [106] as the trans-
formation. An extension of a feature transformation to higher
dimensions, more specifically one to address one-hot encodings
is missing. Note that this approach avoids adding a regularizer
during training making the training much faster.

– The focus of the thesis was spectral biases of fully connected
neural networks and ensembles of trees. One can explore these
biases for classes of models more complicated than that. More-
over, nearly all results were for discrete 0, 1 inputs. One could
extend these results to continuous inputs/features. Finally, our
focus was mainly on the Walsh-Hadamard basis. One could ex-
plore the simplicity biases through lenses other than the Fourier
spectrum. For example, regularizing the network through the
Haar filter basis.

– The Fourier transform is a "global" transform: it depends on
the function values of the entirety of its input domain. Neural
network functions tend to have meaningful values on the data

summary and future directions 77

distribution and can be random outside of the data distribu-
tion. This is an empirically known fact used for outlier detection
and analytically analyzed using the NTK. The regularizer we
provided in Chapter 3 is, therefore, not suitable for higher dimen-
sions. Since in higher dimensions, we need a lot of samples to
make sure the whole neural network function is sparse. However,
what we care about is the sparsity on the data distribution. We
need a regularizer that regularizes the neural network function
only on the data distribution.

– In Chapter 4 we showed how to compute interventional SHAP
values very fast. One can try to extend this notion to observational
SHAP values. Even though the definition of conditional distribu-
tion in the observational SHAP values work is not clear [76], the
SHAP community seems to have accepted that at least for the
case of ensembles of trees, "the conditional distribution produced
by the tree" (see [76]) is a good notion of conditional distribution.
It seems like a viable path to explore how one can do the tree
conditional distribution using a sparse Fourier representation
and if that translates to a faster way of computing SHAP values.

– In Chapter 2 we discussed the fact that a tree has a sparse and
low-degree Fourier representation. One can think of the same
question but the other way around. Namely, say that we have a
sparse Fourier representation. We know that the class of functions
that admit a sparse Fourier transform is strictly more general
than trees [14]. The question is can we provide an algorithm
that gives us the most "compact" tree with that sparse repre-
sentation? Here "compact" means minimal in terms of number
of nodes/depth. We attempted this question before and were
able to provide results for the case of trees with leaves whose
labels are sampled from some continuous distribution. There we
proved that from the Fourier representation of the tree, we can
recover a tree that has number of nodes and depth at most equal
to the original tree. However, we were not able to extend it to
more complicated scenarios.

A
A P P E N D I X : B A C K G R O U N D S E C T I O N P R O O F S

Before we start with the proofs we review the Fourier analysis and syn-
thesis equations. As we mentioned in the Background Section 4.2, the
Fourier representation of the pseudo-boolean function h : {0, 1}n → R

is the unique expansion of h as follows:

h(x) =
1√
2n ∑

f∈{0,1}n
ĥ(f)(−1)⟨ f ,x⟩

This is the so-called Fourier “synthesis” equation.

The Fourier coefficients ĥ(f) are computed by the Fourier “analysis”
equation:

ĥ(f) =
1√
2n ∑

x∈{0,1}n
h(x)(−1)⟨ f ,x⟩ (A.1)

a.0.1 Proof of propositions

We can now prove Proposition 2.1.1:

Proposition 2.1.1. Assume g : {0, 1}n → R can be decomposed as follows:

g(x) =
p
∑

i=1
hi(xSi), Si ⊆ [n]. That is, each function gi : {0, 1}|Si | → R

depends on at most |Si| variables. Then, g is k = O(
p
∑

i=1
2|Si |)-sparse and of

degree d = max(|S1|, . . . , |Sp|). (Proof in Appendix A.0.1)

Proof. Let g : {0, 1}n → R be a function dependent on exactly
d variables xi1 , . . . , xid , where i1, . . . , id ∈ [n] are distinct indices.
We show that for any frequency f ∈ {0, 1}n, if f j = 1 for some

79

80 appendix : background section proofs

j /∈ S ≜ {i1, . . . , id}, then, ĝ(f) = 0. From the Fourier analysis Equa-
tion (A.1) we have:

ĝ(f) =
1√
2n ∑

x∈{0,1}n
g(x)(−1)⟨ f ,x⟩ = ∑

xi :i∈S
∑

xj :j∈[n]\S
g(x)(−1)⟨ f ,xS⟩(−1)⟨ f ,x[n]\S⟩

(i)
= ∑

xi :i∈S
g(x)(−1)⟨ f ,xS⟩ ∑

xj :j∈[n]\S
(−1)⟨ f ,x[n]\S⟩

(ii)
= ∑

xi :i∈S
g(x)(−1)⟨ f ,xS⟩ · 0 = 0

Where Equation (i) holds because g is only dependent on the variables
in S and Equation (ii) holds by checking the inner sum has an equal
number of 1 and −1 added together.

The proof of the proposition follows by the linearity of the Fourier
transform.

Moving on to Proposition 2.1.2:

Proposition 2.1.2. Let, g : {0, 1}n → R be pseudo-Boolean function
and let d ∈ N be some constant (w.r.t. n). If g is of degree d, then, it is
k = O(nd)-sparse. (Proof in Appendix A.0.1)

Proof. We simply note that the number of frequencies f ∈ {0, 1}n of

degree at most d is equal to
d
∑

i=0
(n

i). This sum is O(nd) for d constant

w.r.t n.

B
A P P E N D I X : WA L S H - H A D A M A R D R E G U L A R I Z E R
F O R T H E L O W- D E G R E E S P E C T R A L B I A S

b.1 walsh-hadamard transform matrix form

The Fourier analysis equation is given by:

ĝ(f) =
1√
2n ∑

x∈{0,1}n
g(x)(−1)⟨ f ,x⟩

Since this transform is linear, it can be represented by matrix multipli-
cation. Let X ∈ {0, 1}2n×n be a matrix that has the enumeration over all
possible n-dimensional binary sequences ({0, 1}n) in some arbitrary
but fixed order as its rows. Assume g(X) ∈ R2n

to be the vector of g
evaluated on the rows of X. We can compute the Fourier spectrum as:

ĝ =
1√
2n

Hng(X)

where Hn ∈ {±1}2n×2n
is an orthogonal matrix given as follows. Each

row of Hn corresponds to some fixed frequency f ∈ {0, 1}n and the
elements of that row are given by (−1)⟨ f ,x⟩, ∀x ∈ {0, 1}n, where the
ordering of the x is the same as the fixed order used in the rows of
X. The ordering of the rows in Hn, i.e. the ordering of the frequen-
cies considered, is arbitrary and determines the order of the Fourier
coefficients in the Fourier spectrum ĝ.

It is common to define the Hadamard matrix Hn ∈ {±1}2n×2n
through

the following recursion:

Hn = H2 ⊗Hn−1,

where H2 :=

[
1 1

1 −1

]
, and ⊗ is the Kronecker product. We use this

in our implementation. This definition corresponds to the ordering
similar to n-bit binary numbers (e.g., [0, 0, 0], [0, 0, 1], [0, 1, 0], ..., [1, 1, 1]
for n = 3) for both frequencies and time (input domain).

81

82 appendix : walsh-hadamard regularizer for the low-degree spectral bias

Computing the Fourier spectrum of a network using a matrix multipli-
cation lets us utilize a GPU and efficiently compute the transform, and
its gradient and conveniently apply the back-propagation algorithm.

b.2 algorithm details

Let g : {0, 1}n → R be a pseudo-boolean function with Fourier trans-
form ĝ. In the context of our work, this pseudo-boolean function is the
neural network function. One can sort the Fourier coefficient of g ac-
cording to magnitude, from biggest to smallest, and consider the top k
biggest coefficients as the most important coefficients. This is because
they capture the most energy in the Fourier domain and by Parseval’s
identity also in the time (original input) domain. It is important to us
that these k coefficients ĝ(f1), . . . , ĝ(fk) are not hashed into the same
bucket. Say for example two large coefficients ĝ(fi), ĝ(f j), i ̸= j end
up in the same bucket, an event which we call a collision. If they have
different signs, their sum can form a cancellation and the L1 norm will
enforce their sum to be zero. This entails an approximation error in
the neural network: Our goal is to sparsify the Fourier spectrum of the
neural network and “zero out” the non-important (small-magnitude)
coefficients, not to impose wrong constraints on the important (large
magnitude) coefficients.

With this in mind, we first prove our hashing result Equation 3.1.
Next, we provide guarantees on how increasing the hashing bucket
size reduces collisions. Furthermore, we show how independently
sampling the hashing matrix over different rounds guarantees that
each coefficient does not collide too often. Ideas presented there can
also be found in [15, 53]. We finally review EN-S and showcase the
superiority and scalability of our method in terms of computation.

b.2.1 Proof of Equation 3.1

Let

uœ(x̃) =

√
2n

2b g(œx̃), ∀x̃ ∈ {0, 1}b

B.2 algorithm details 83

We can compute its Fourier transform ûœ(f̃) as:

ûœ(f̃) =
1√
2b ∑

x̃∈{0,1}b

uœ(x̃)(−1)⟨ f̃ ,x̃⟩

=
1√
2b ∑

x̃∈{0,1}b

√
2n

2b g(œx̃)(−1)⟨ f̃ ,x̃⟩

=

√
2n

2b ∑
x̃∈{0,1}b

g(œx̃)(−1)⟨ f̃ ,x̃⟩ (B.1)

Inserting the Fourier expansion of g into Equation (B.1) we have:

ûœ(f̃) =
1
2b ∑

x̃∈{0,1}b

(−1)⟨ f̃ ,x̃⟩ ∑
f∈{0,1}n

ĝ(f)(−1)⟨ f ,œx̃⟩

=
1
2b ∑

x̃∈{0,1}b
∑

f∈{0,1}n
ĝ(f)(−1)⟨œ

⊤ f ,x̃⟩(−1)⟨ f̃ ,x̃⟩

=
1
2b ∑

f∈{0,1}n
ĝ(f) ∑

x̃∈{0,1}b

(−1)⟨œ
⊤ f+ f̃ ,x̃⟩

The second summation is always zero unless œ⊤ f + f̃ = 0, i.e.,
œ⊤ f = f̃ , in which case the summation is equal to 2b. Therefore:

ûœ(f) = ∑
f̃∈{0,1}n : œT f̃= f

ĝ(f)

b.2.2 Collisions for HashWH

We first review the notion of pairwise independent families of hash
functions introduced by [35]. We compute the expectation of the
number of collisions for this family of hash functions. We then show
that uniformly sampling σ ∈ {0, 1}n×b in our hashing procedure (in
HashWH) gives rise to a pairwise independent hashing scheme.

Definition B.2.1 (Pairwise independent hashing). Let H ⊆ {h|h ∈
{0, 1}n → {0, 1}b} be a family of hash functions. Each hash function
maps n-dimensional inputs x ∈ {0, 1}n into a b-dimensional buckets
u = h(f) ∈ {0, 1}b and is picked uniformly at random from H. We
call this family pairwise independent if for any distinct pair of inputs
f1 ̸= f2 ∈ {0, 1}n and an arbitrary pair of buckets u1, u2 ∈ {0, 1}b:

84 appendix : walsh-hadamard regularizer for the low-degree spectral bias

1. P(h(f1) = u1) =
1
2b

2. P((h(f1) = u1) ∧ (h(f2) = u2)) =
1

22b

(randomness is over the sampling of the hash function from H)

Assume S = { f1, ..., fk} ⊆ {0, 1}n is a set of k arbitrary elements
to be hashed using the hash function h ∈ {0, 1}n → {0, 1}b which
is sampled from a pairwise independent hashing family. Let cij be
an indicator random variable for the collision of fi, f j, i ̸= j, i.e.,

cij =

1 h(fi) = h(f j)

0 h(fi) ̸= h(f j)
, for i ̸= j ∈ [k].

Lemma B.2.2. The expectation of the total number of collisions C =

∑i ̸=j∈[k] cij in a pairwise independent hashing scheme is given by: E[C] =
(k−1)2

2b .

Proof.

E[C] = ∑
i ̸=j∈[k]

E[cij]

= ∑
i ̸=j∈[k]

∑
u∈{0,1}b

P((h(fi) = u) ∧ (h(f j) = u))

=
(k− 1)2

2b ,

where we have applied the linearity of expectation.

The next Lemma shows that the hashing scheme of HashWH intro-
duced in Section 3.4.1 is also a pairwise independent hashing scheme.
However, there is one small caveat: the hash function always maps
0 ∈ {0, 1}n to 0 ∈ {0, 1}b which violates property 1 of the pairwise
independence Definition B.2.1. If we remove 0 from the domain then
it becomes a pairwise independent hashing scheme.

Lemma B.2.3. The hash function used in the hashing procedure of our
method HashWH, i.e., h(.) = œ⊤(.) where œ ∼ U{0,1}n×b is a hashing
matrix whose elements are sampled independently and uniformly at random
(with probability 1

2) from {0, 1}, is pairwise independent if we exclude f = 0
from the domain.

Proof. Note that for any input f ∈ {0, 1}n, f ̸= 0, its hash œ⊤ f is
a linear combination of columns of œ⊤, where f determines the
columns. We denote ith column of œ⊤ by œ⊤•i. Let f be non-zero in

B.2 algorithm details 85

t ≥ 1 positions (bits) {i1, ..., it} ⊆ [n]. The value of h(f) is equal to the
summation of the columns of œ⊤ that corresponds to those t positions:
œ⊤•i1 , · · · , œ⊤•it . Let u ∈ {0, 1}b be an arbitrary bucket. The probability
the sum of the columns equals u is 1

2b as all sums are equally likely i.e.

P(h(x) = u) =
1
2b

Let f1, f2 ̸= 0, f1 ̸= f2 ∈ {0, 1}n be a pair of distinct non-zero in-
puts. Since f1 and f2 differ in at least one position (bit), h(f1) and
h(f2) are independent random variables. Therefore, for any arbitrary
u1, u2 ∈ {0, 1}b

P(h(f1) = u1 ∧ h(f2) = u2)

=P(h(f1) = u1)P(h(f2) = u2) =
1

22b

Lemmas B.2.2 and B.2.3 imply that the expected total number of col-
lisions C in hashing frequencies of the top k coefficients of g in our

hashing scheme is also equal to: E[C] = (k−1)2

2b . Our guarantee shows
that the number of collisions goes down linearly in the number of
buckets 2b.

Finally, let f1 be an important frequency i.e. one with a large mag-
nitude |ĝ(f1)|. By independently sampling a new hashing matrix œ
at each round of back-prop, we avoid always hashing this frequency
into the same bucket as some other important frequency. By a union
bound on the pairwise independence property, the probability that
a frequency f1 collides with any other frequency f2, . . . , fk is upper
bounded by k−1

2b . Therefore, over T rounds of back-prop the number
of times this frequency collides follows a binomial distribution with
p ≤ k−1

2b (k−1
2b < 1 for a large enough b). We denote the number of

times frequency f1 collides over the T rounds as C f1 . The expected
number of collisions is µ ≜ Tp which goes down linearly in the
number of buckets. With a Chernoff bound we can say that roughly
speaking, the number of collisions we expect can not be too much
larger than a fraction p of the T rounds.

By a Chernoff’s bound we have:

P(C f1 ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ

86 appendix : walsh-hadamard regularizer for the low-degree spectral bias

where µ = Tp as mentioned before

For examples setting δ = 1

P(C f1 ≥ 2µ) ≤ e−
µ
3

As T → ∞ this probability goes to zero. This means that the proba-
bility that the number of times the frequency collides during the T
rounds to not be more than a fraction (1 + δ)p = 2p of the time is, for
all practical purposes, essentially zero. Building on this intuition, we
can see that for any fixed 0 < ϵ < 1, setting b = log2(

k−1
ϵ) guarantees

that collision of a given frequency happens on average a fraction ϵ of
the T rounds and not much more.

b.2.3 EN-S details

To avoid computing the exact Fourier spectrum of the network at
each back-propagation iteration in FullWH, [47] suggest an iterative
regularization technique to enforce sparsity in the Fourier spectrum
of the network called EN-S.

We first briefly describe the Alternating Direction Method of Mul-
tipliers [107] (ADMM) which is an algorithm that is used to solve
convex optimization problems. This algorithm is used to derive EN-S.
Finally, we discuss EN-S itself and highlight the advantages of using
our method HashWH over it.

admm . Consider the following separable optimization objective:

min
x∈Rn ,z∈Rm

f (x) + g(z)

subject to Ax + Bz = c,

where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and f ∈ Rm → R and
g ∈ Rn → R are arbitrary convex functions The augmented La-
grangian of this objective is formed as:

Lρ(x, z, fl) = f (x) + g(z) + fl⊤(Ax + Bz− c)

+
ρ

2
∥Ax + Bz− c∥2

2,

where fl ∈ Rp are the dual variables.

B.2 algorithm details 87

Alternating Direction Method of Multipliers [107], or in short ADMM,
optimizes the augmented Lagrangian by alternatively minimizing it
over the two variables x and z and applying a dual variable update:

xk+1 = argmin
x∈Rn

Lρ(x, zk, flk) (x-minimization)

zk+1 = argmin
z∈Rm

Lρ(xk+1, z, flk) (z-minimization)

flk+1 = flk + ρ(Axk+1 + Bzk+1 − c) (dual var. update)

In a slightly different formulation of ADMM, known as scaled-dual
ADMM, the dual variable can be scaled which results in a similar
optimization scheme:

xk+1 = argmin
x∈Rn

f (x) +
ρ

2
∥Ax + Bzk − c + flk∥2

2

zk+1 = argmin
z∈Rm

g(z) +
ρ

2
∥Axk+1 + Bz− c + flk∥2

2

flk+1 = flk + Axk+1 + Bzk+1 − c (B.2)

Using ADMM, one can decouple the joint optimization of two separa-
ble groups of parameters into two alternating separate optimizations
for each individual group.

en-s . To apply ADMM, [47] reformulate the FullWH loss, by in-
troducing a new variable z and adding a constraint such that it is
equal to the Fourier spectrum:

LEN−S = Lnet + λ∥z∥1

subject to: z = ĝ` = Hng`(X)

, where gθ is the neural network parameterized by θ, Hn ∈ {0, 1}2n×2n

is the Hadamard matrix, and X ∈ {0, 1}2n×n is the matrix of the
enumeration over all points on the Boolean cube {0, 1}n.

88 appendix : walsh-hadamard regularizer for the low-degree spectral bias

They use the scaled-dual ADMM (B.2) followed by a few further ad-
justments to reach the following alternating scheme for optimization
of LEN−S:

θk+1 = argmin
θ

Lnet +
ρ

2
∥g`(XT)−HTzk + flk∥2

2

zk+1 = argmin
z

λ∥z∥0 +
ρ

2
∥gθk+1(XT)−HTz + flk∥2

2

flk+1 = flk + gθk+1(XT)−HTzk+1, (B.3)

where XT ∈ {0, 1}O(2mn)×n is the input enumeration matrix X ∈
{0, 1}2n×n sub-sampled at O(2mn) rows, HT ∈ {0, 1}O(2mn)×n is the
Hadamard matrix Hn ∈ {0, 1}2n×2n

subsampled at similar O(2mn)
rows, and fl ∈ RO(2mn) is the dual variable. We will introduce the
hash size parameter m momentarily.

Using the optimization scheme (B.3), they decouple the optimization
of LEN−S into two separate alternating optimizations: 1) minimizing
Lnet by fixing z and optimizing network parameters using SGD for an
epoch (θ-minimization), 2) fixing θ and computing a sparse Fourier
spectrum approximation of the network at the end of each epoch and
updating the dual variable (z-minimization).

To approximate the sparse Fourier spectrum of the network at z-
minimization step, they use the “SPRIGHT” algorithm [18]. SPRIGHT
requires O(2mn) samples from the network to approximate its Fourier
spectrum and runs with the complexity of O(2mn3), where m is the
hash size used in the algorithm (the equivalent of b in our setting). In
EN-S optimization scheme (B.3), these O(2mn) inputs are denoted by
the matrix XT ∈ {0, 1}O(2mn)×n, and are fixed during the whole opti-
mization process. This requires the computation of the network output
on these O(2mn) inputs at each back-prop iteration in θ-minimization,
as well as at the end of each epoch to run SPRIGHT in z-minimization.

en-s vs . hashwh . The hashing done in our method, HashWH,
is basically the first step of many (if not all) sparse Walsh-Hadamard
transform approximation methods [15, 16, 18, 84], including SPRIGHT
[18] that is used in EN-S. In the task of sparse Fourier spectrum ap-
proximation, further, extra steps are done to infer the exact frequencies
of the support and their associated Fourier coefficients. These steps are
usually computationally expensive. Here, since we are only interested

B.2 algorithm details 89

in the L1-norm of the Fourier spectrum of the network and are not
necessarily interested in retrieving the exact frequencies in its support,
we found the idea of approximating it with the L1-norm of the Fourier
spectrum of our hash function compelling. This is the core idea behind
HashWH which lets us stick to the FullWH formulation using a scal-
able approximation of the L1-norm of the network’s Fourier spectrum.

From the mere computational cost perspective, EN-S requires a rather
expensive sparse Fourier spectrum approximation of the network at
the end of each epoch. We realized, one bottleneck of their algorithm
was the evaluation of the neural network on the required time samples
of their sparse Fourier approximation algorithm. We re-implemented
this part on a GPU to make it substantially faster. Still, we empirically
observe that more than half of the run time of each EN-S epoch is
spent on the Fourier transform approximation. Furthermore, in EN-S,
the network output needs to be computed for Ω(2mn) samples at each
back-prop iteration.

On the contrary, in HashWH, the network Fourier transform approxi-
mation is not needed anymore. We only compute the network output
on precisely 2b samples at each round of back-propagation to compute
the Fourier spectrum of our sub-sampled neural network. Remember
that our b is roughly equivalent to their m. Since the very first step
in their sparse Fourier approximation step is a hashing step into 2m

buckets.

Let us compare our method with EN-S more concretely. For the sake
of simplicity, we ignore the network sparse Fourier approximation
step (z-minimization) that happens at the end of each epoch for EN-S
and assume their computational complexity is only dominated by
the Ω(2mn) evaluations made during back-prop. In order to use the
same number of samples as EN-S, we can set our hashing size to
b = m + log(n) + c, where c is a constant which we found in practice
to be at least c ≥ 3. In the case of our avGFP experiment, this would
be for instance b ≥ 18 in HashWH for EN-S with m = 7. There,
we outperformed EN-S using b ∈ {7, 10, 13, 16} in terms of R2-score.
Note that even with b = 18 we are still at least two times faster than
EN-S as we do not go the extra mile of approximating the Fourier
spectrum of the network at each epoch.

90 appendix : walsh-hadamard regularizer for the low-degree spectral bias

b.3 datasets

We list all the datasets used in the real dataset Section 3.5.2.

entacmaea quadricolor fluorescent protein. (entac-
maea) [52] study the fluorescence brightness of all 213 distinct
variants of the Entacmaea quadricolor fluorescent protein, mutated at
13 different sites. They examine the goodness of fit (R2-score) when
only using a limited set of frequencies of the highest amplitude. They
report that only 1% of the frequencies are enough to describe data
with a high goodness of fit (R2 = 0.96), among which multiple high-
degree frequencies exist.

gpu kernel performance (sgemm). [57] measures the run-
ning time of a matrix product using a parameterizable SGEMM GPU
kernel, configured with different parameter combinations. The input
has 14 categorical features that we one-hot encode into 40-dimensional
binary vectors.

immunoglobulin-binding domain of protein g (gb1). [56]
study the “fitness” of variants of protein GB1, that are mutated
at four different sites. Fitness, in this work, is a quantitative mea-
sure of the stability and functionality of a protein variant. Given
the 20 possible amino acids at each site, they report the fitness for
204 = 160, 000 possible variants, which we represent with one-hot
encoded 80-dimensional binary vectors. In a noise reduction step, they
included 149, 361 data points as is and replaced the rest with imputed
fitness values. We use the former, the untouched portion, for our study.

green fluorescent protein from aequorea victoria (avgfp).
[55] estimate the fluorescence brightness of random mutations over
the green fluorescent protein sequence of Aequorea victoria (avGFP)
at 236 amino acid sites. We transform the data into the boolean space
of the absence or presence of a mutation at each amino acid site
by averaging the brightness for the mutations with similar binary
representations. This converts the original 54, 024 distinct amino acid
mutations into 49, 089 236-dimensional binary data points.

B.4 implementation technical details 91

b.4 implementation technical details

neural network architecture and training We used a
5-layer fully connected neural network including both weights and
biases and LeakyReLu as activations in all settings. For training, we
used MSE loss as the loss of the network in all settings. We always
initialized the networks with Xavier uniform distribution. We fixed
5 random seeds in order to make sure the initialization was the same
over different settings. The Adam optimizer with a learning rate of
0.01 was used for training all models. We always used a single Nvidia
GeForce RTX 3090 to train each model to be able to fairly compare
the runtime of different methods. We did not utilize other regulariza-
tion techniques such as Batch Normalization or Dropout to limit our
studies to analyze the mere effect of Fourier spectrum sparsification.
We use networks of different widths in different experiments which
we detail in the following:

– Fourier spectrum evolution: The architecture of the network is
10× 100× 100× 10× 1.

– High-dimensional synthetic data: For each n ∈ {25, 50, 100}, the
architecture of the network is n× 2n× 2n× n× 1.

– Real data: Assuming n to be the dimensionality of the input space,
we used the network architecture of n× 10n× 10n× n× 1 for all
the experiments except avGFP. For avGFP with n = 236, we had
to down-size the network to n× n× n× n× 1 to be able to run
EN-S on GPU as it requires a significant amount of samples to
compute the Fourier transform at each epoch in this dimension
scale.

data splits In the Fourier spectrum evolution experiment, where
we do not report R2 of the predictions, we split the data into training
and validation sets (used for hyperparameter tuning). For the rest of
the experiments, we split the data into three splits training, validation,
and test sets. We use the validation set for the hyperparameter tuning
(mainly the regularizer multiplier λ and details to be explained later)
and early stopping. We stop each training after 10 consecutive epochs
without any improvements over the best validation loss achieved and
use the epoch with the lowest loss for testing the model. All the R2s
reported are the performance of the model on the (hold-out) test set.

92 appendix : walsh-hadamard regularizer for the low-degree spectral bias

For each experiment, we used different training dataset sizes that are
explicitly mentioned in the main body of the thesis. Here we list the
validation and test dataset sizes:

– Fourier spectrum evolution: Given that n = 10 and the Boolean
cube is of size 2n = 1024, we always use the whole data and
split it into training and validation sets. For example, for the
training set of size 200, we use the rest of the 824 data points as
the validation set.

– High-dimensional synthetic data: For each training set, we use vali-
dation and test sets of five times the size of the training set. That
is, for a training set of size c · 25n, both of our validation and test
sets are of size c · 125n.

– Real data: After taking out the training points from the dataset,
we split the remaining points into two sets of equal sizes one for
validation and one for test.

hyper-parameter tuning . In all experiments, we hand-picked
candidates for important hyper-parameters of each method studied
and tested every combination of them, and picked the version with
the best performance on the validation set. This includes testing differ-
ent λ ∈ {0.0001, 0.001, 0.01, 0.1} for HashWH, λ ∈ {0.01, 0.1, 1} and
ρ ∈ {0.001, 0.01, 0.1} for EN-S, and λ ∈ {0.01, 0.1, 1} for FullWH.
Furthermore, we also used the following hyper-parameters for the
individual experiments:

– Fourier spectrum evolution: We used b ∈ {5, 7, 8} for HashWH
and m = 5 for the EN-S. We did not tune b for HashWH as we
reported all the results in order to show the graceful dependence
with increasing the hashing matrix size.

– High-dimensional synthetic data: We used b ∈ {7, 10, 13} for HashWH
and m = 7 for the EN-S. We did not tune b for HashWH as we
reported each individually.

– Real data: We used b ∈ {7, 10, 13} for HashWH and m = 7 for
EN-S in the Entacmaea, SGEMM, and GB1 experiments. Fur-
thermore, for avGFP, we also considered b = 16 for HashWH.
Unlike the synthetic experiments, where we reported results
for each b individually, we treated b as a hyper-parameter in
real data experiments. For Lasso, we tested different L1 norm
coefficients of λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1}. For Random

B.5 ablation study details 93

Forest, we tested different numbers of estimators nestimators ∈
{100, 200, 500, 1000}, and different maximum depths of estima-
tors maxdepth ∈ {5, 10, 15} for Entacmaea experiments and maxdepth ∈
{10, 20, 30, 40, 50} for the rest of experiments. We tested the exact
same hyper-parameter candidates we considered for Random
Forest in our XGBoost models.

Like common practice, we always picked the hyper-parameter com-
bination resulting in the minimum loss on the validation set, and
reported the model’s performance on the test (hold-out) dataset.

code repositories . All the implementations for the methods as
well as the experiments are publicly accessible through:

https://github.com/agorji/WHRegularizer.

For EN-S and FullWH regularizers, we used the implementation
shared by [47]1. We applied minor changes so to compute samples
needed for the Fourier transform approximation in EN-S on GPU,
making it run faster and fairer to compare our method with.

We used the python implementation of scikit-learn2 for our Lasso
and Random Forest experiments. We also used the XGBoost3 python
library for our XGBoost experiments.

b.5 ablation study details

To study the effect of the low-degree simplicity bias on generalization
on the real-data distribution, we conduct an ablation study by fitting
a sparse Fourier transform to two of our datasets. To this end, we fit
Random Forest models on Entecamaa and SGEMM datasets, such that
they achieve test R2 of nearly 1 on an independent test set not used
in the training. Then, we compute the exact sparse Fourier transform
of each Random Forest model, which essentially results in a sparse
Fourier function that has been fitted to the training dataset. In our
ablation study, finally, we remove frequencies based on two distinct
regimes of lower-amplitudes-first and higher-degrees-first and show
that the former harms the generalization more. This is against the
assumption of simplicity bias being always helpful.

1 https://github.com/amirmohan/epistatic-net
2 https://scikit-learn.org
3 https://xgboost.readthedocs.io

https://github.com/agorji/WHRegularizer

94 appendix : walsh-hadamard regularizer for the low-degree spectral bias

In the next two subsections, we provide the details on how to compute
the exact sparse Fourier transform of a Random Forest model as well
as finer details of the study setup.

b.5.1 Ablation study setup

For the Entacmae dataset, we used a training set of size 5, 000 and a
test set of size 2, 000, for which we trained a Random Forest model
with 100 trees with maximum depths of 7. For the SGEMM dataset,
we used a training set of size 100, 000 and a test set of size 5, 000,
for which we trained a Random Forest model with 100 trees with a
maximum depth of 10.

b.6 extended experiment results

Here, we report the extended experiment results containing variations
not reported in the main body of the thesis.

b.6.1 Fourier spectrum evolution

We randomly generated five synthetic target functions g∗ ∈ {0, 1}10

of degree d = 5, each having a single frequency of each degree in
its support (the randomness is over the choice of support). We cre-
ate a dataset by randomly sampling the Boolean cube. Figure B.1
shows the evolution of the Fourier spectrum of the learned neural
network function for different methods over training on datasets of
multiple sizes (100, 200, 300, 400) limited to the target support. This is
the extended version of Figure 3.1a, where we only reported results
for the train size of 200. We observe that, quite unsurprisingly, each
method shows better performance when trained on a larger training
set in terms of converging at earlier epochs and also converging to the
true Fourier amplitude it is supposed to. It can also be observed that
the Fourier-sparsity-inducing (regularized) methods are always better
than the standard neural network in picking up the higher-degree
frequencies, regardless of the training size.

Figure B.2 goes a step further and shows the evolution of the full
Fourier spectrum (not just the target frequencies) over the course of

B.6 extended experiment results 95

training. Here, unlike the previous isolated setting where we were
able to aggregate the results from different target functions (because
of always having a single frequency of each degree in the support),
we have to separate the results for each target function g∗ ∈ {0, 1}10,
as each has a unique set of frequencies in its support. In Figure 3.1a,
we reported the results for one version of the target function g∗ and
Figure B.2 shows the Fourier spectrum evolution for the other four.
We observe that in addition to the spotted inability of the standard
neural network in learning higher-degree frequencies, it seems to start
picking up erroneous low-degree frequencies as well.

To quantitatively validate our findings, in Figure B.4, we show the
evolution of Spectral Approximation Error (SAE) during training on
both target support and the whole Fourier spectrum. This is an ex-
tended version of Figure 3.2, where we report the results for the train
size of 200. Here we also include results when using training datasets
of three other train sizes {100, 300, 400}. We observe that even though
the standard neural network exhibits comparable performance to
HashWH on the target support when the training dataset size is 100
and 400, it is always underperforming HashWH when broadening
our view to the whole Fourier spectrum, regardless of the train size
and the hashing size.

From a more fine-grained perspective, in Figure B.3, we categorize the
frequencies into subsets of the same degree and show the evolution
of SAE and energy on each individual degree. This is an extended
version of Figure 3.3, where we reported the results for the training
dataset size of 200. Firstly, we observe that using more data aids the
standard neural network to eventually put more energy on higher-
degree frequencies. But it is still incapable of appropriately learning
higher-degree frequencies. Fourier-sparsity inducing methods, in-
cluding ours, show significantly higher energy in the higher degrees.
Secondly, No matter the train size, we note that the SAE on low-degree
frequencies first decreases and then increases and the standard neural
network starts to overfit. This validates our previous conclusion that
the standard neural network learns erroneous low-degree frequencies.
Our regularizer prevents overfitting in lower degrees. Its performance
of which can be scaled using the hashing size parameter b.

96 appendix : walsh-hadamard regularizer for the low-degree spectral bias

b.6.2 High-dimensional synthetic data

Figure B.5 shows the generalization performance of different methods
in learning a synthetic degree d = 5 function g∗ ∈ {0, 1}n → R, for
n ∈ {25, 50, 100}, using train sets of different sizes (c · 25n, c ∈ [8]).
For each n we sample three different draws of g∗. This is the extended
version of Figure 3.4a, where we only reported the results for the first
draw of g∗ for each input dimension n. Our regularization method,
HashWH, outperforms the standard network and EN-S in all pos-
sible combinations of input dimension and dataset sizes, regardless
of the draw of g∗. We observe that increasing b in HashWH, i.e. in-
creasing the number of hashing buckets, almost always improves the
generalization performance. EN-S, on the other hand, does not show
significant superiority over the standard neural network rather than
marginally outperforming it in a few cases when n = 25. This does
not match its performance in the previous section and conveys that
it is not able to perform well when increasing the input dimension,
i.e., having more features in the data.

To both showcase the computational scalability of our method, HashWH,
and compare it to EN-S, we show the achievable performance by the
number of training epochs and training time in Figures B.6 to B.8, for
all train set sizes and input dimensions individually and limited to the
first draw of g∗ for each input dimension. This is the extended version
of Figure 3.4b where we only reported it for n = 50 and the sample
size multiplier c = 5. We consistently see that the trade-off between the
generalization performance and the training time can be directly con-
trolled in HashWH using the parameter b. Furthermore, HashWH is
able to always exhibit a significantly better generalization performance
in remarkably less time, in all versions of b tested. This emphasizes the
advantage of our method in not directly computing the approximate
Fourier spectrum of the network, which resulted in this gap with
EN-S in the run time, that increases as the input dimension n grows.

b.6.3 Real data

Figure B.9 shows the generalization performance and the training
time of different methods, including relevant machine learning bench-
marks, in learning four real datasets. It is the extended version of

B.6 extended experiment results 97

Figure 3.5, where we only reported the generalization performance
and not the training time. The training time for neural nets is consid-
ered to be the time until overfitting occurs i.e. we do early stopping.
In addition to superior generalization performance of our method,
HashWH, in most settings, again, we see that it is able to achieve it
in significantly less time than EN-S. Lasso is the fastest among the
methods but usually shows poor generalization performance.

98 appendix : walsh-hadamard regularizer for the low-degree spectral bias

1 2 3 4 5

100
200
300
400

standard

1 2 3 4 5

FullWH (intractable)

1 2 3 4 5

EN-S

1 2 3 4 5

HashWH (b=5)

1 2 3 4 5

HashWH (b=7)

1 2 3 4 5

HashWH (b=8)

1.0

0.5

0.0

0.5

1.0

Ep
oc

h

Frequency degree

(a) Train size = 100

1 2 3 4 5

100
200
300
400

standard

1 2 3 4 5

FullWH (intractable)

1 2 3 4 5

EN-S

1 2 3 4 5

HashWH (b=5)

1 2 3 4 5

HashWH (b=7)

1 2 3 4 5

HashWH (b=8)

1.0

0.5

0.0

0.5

1.0

Ep
oc

h

Frequency degree

(b) Train size = 200

1 2 3 4 5

100
200
300
400

standard

1 2 3 4 5

FullWH (intractable)

1 2 3 4 5

EN-S

1 2 3 4 5

HashWH (b=5)

1 2 3 4 5

HashWH (b=7)

1 2 3 4 5

HashWH (b=8)

1.0

0.5

0.0

0.5

1.0

Ep
oc

h

Frequency degree

(c) Train size = 300

1 2 3 4 5

100
200
300
400

standard

1 2 3 4 5

FullWH (intractable)

1 2 3 4 5

EN-S

1 2 3 4 5

HashWH (b=5)

1 2 3 4 5

HashWH (b=7)

1 2 3 4 5

HashWH (b=8)

1.0

0.5

0.0

0.5

1.0

Ep
oc

h

Frequency degree

(d) Train size = 400

Figure B.1: Evolution of the Fourier spectrum during training limited to the target
support, using training sets of different sizes. All synthetic functions
have single frequencies of each degree in their support that are all
given the amplitude of 1. This is an extended version of Figure 3.1a,
where we only reported the results for the train set size 200. It can be
observed that the Fourier-sparsity-inducing (regularized) methods
are always better than the standard neural network in picking up
the higher-degree frequencies, regardless of the training size. Each
method shows better performance when trained on a larger training
set in terms of converging at earlier epochs and also converging to
the true Fourier amplitude it is supposed to.

B.6 extended experiment results 99

Figure B.2: Evolution of the Fourier spectrum in learning a synthetic function
g∗ ∈ {0, 1}10 of degree 5 during training, categorized by frequency
degree. All synthetic functions used have single frequencies of each
degree in their support that are all given the amplitude of 1. We
reported the results for one draw of g∗ in Figure 3.1b and the four
others here, for the training dataset size of 200. In addition to the
incapability of the standard neural network in learning high-degree
frequencies, they tend to consistently pick up wrong low-degree fre-
quencies. Both of the problems are remedied through our regularizer.

100 appendix : walsh-hadamard regularizer for the low-degree spectral bias

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r degree=1 degree=2 degree=3 degree=4 degree=5

0 100 200
0.0

0.5

1.0

1.5

En
er

gy

0 100 200 0 100 200 0 100 200 0 100 200

HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intr.)
standard

Epoch

(a) Train size = 100

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r degree=1 degree=2 degree=3 degree=4 degree=5

0 100 200
0.0

0.5

1.0

1.5

En
er

gy

0 100 200 0 100 200 0 100 200 0 100 200

HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intr.)
standard

Epoch

(b) Train size = 200

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r degree=1 degree=2 degree=3 degree=4 degree=5

0 100 200
0.0

0.5

1.0

1.5

En
er

gy

0 100 200 0 100 200 0 100 200 0 100 200

HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intr.)
standard

Epoch

(c) Train size = 300

Figure B.3: Evolution of the Spectral Approximation Error (SAE) and energy
of the network during training, categorized by frequency degree
(continued in the next page).

B.6 extended experiment results 101

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r degree=1 degree=2 degree=3 degree=4 degree=5

0 100 200
0.0

0.5

1.0

1.5

En
er

gy

0 100 200 0 100 200 0 100 200 0 100 200

HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intr.)
standard

Epoch

(d) Train size = 400

Figure B.3: Evolution of the Spectral Approximation Error (SAE) and energy of
the network during training, categorized by frequency degree. This
is an extended version of Figure 3.3, where we only reported results
for training dataset size 200. Firstly, in a standard neural network,
the energy is mostly put on low-degree frequencies as compared
to the high-degree frequencies. The energy slightly shifts towards
high-degree frequencies when increasing the training dataset size.
Our regularizer facilitates the learning of higher degrees in all cases.
Secondly, over the lower-degree and regardless of the train size, the
standard neural network’s energy continues to increase while the
SAE first decreases then reverts and increases. This shows that the
standard neural network emphasizes energy on erroneous low-degree
frequencies and overfits. Our regularizer prevents overfitting in lower
degrees.

102 appendix : walsh-hadamard regularizer for the low-degree spectral bias

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r

Target support
HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intractable)
standard

0 100 200 300
Epoch

Whole Fourier spectrum

(a) Train size = 100

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r

Target support
HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intractable)
standard

0 100 200 300
Epoch

Whole Fourier spectrum

(b) Train size = 200

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r

Target support
HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intractable)
standard

0 100 200 300
Epoch

Whole Fourier spectrum

(c) Train size = 300

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ec

tra
l A

pp
ro

xi
m

at
io

n
Er

ro
r

Target support
HashWH (b=8)
HashWH (b=7)
HashWH (b=5)
EN-S
FullWH (intractable)
standard

0 100 200 300
Epoch

Whole Fourier spectrum

(d) Train size = 400

Figure B.4: Evolution of the spectral approximation error (SAE) during training.
The left plot limits the error to the target support, while the right one
considers the whole Fourier spectrum. This is an extended version
of Figure 3.2, where we only reported results for train size 200. The
standard neural network is able to achieve a lower (better) (train size
100) or somewhat similar (train size 400) SAE on the target support
compared to our method. However, our method always achieves
lower SAE on the whole Fourier spectrum, regardless of b used. This
shows how our regularisation method is effective in preventing the
network from learning the wrong frequencies that are not in the
support.

B.6 extended experiment results 103

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(a) n = 50, first draw of g∗

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(b) n = 50, second draw of g∗

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(c) n = 50, third draw of g∗

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(d) n = 100, first draw of g∗

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.1

0.2

0.3

0.4

0.5

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(e) n = 100, second draw of g∗

1 2 3 4 5 6 7 8
Sample Size Multiplier c

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Te
st

 R
2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

(f) n = 100, third draw of g∗

Figure B.5: Generalization performance R2 on a hold-out test set, in learning a
synthetic degree 5 function g∗ ∈ {0, 1}n for n ∈ {25, 50, 100}, using
datasets of size c · 25n. We report the results of the first draws of g∗

for each input dimension in Figure 3.4a and the extended version
for all three draws of g∗ of different dimensions here. Our method,
HashWH, always outperforms the standard neural network and EN-S.
We are capable of significantly increasing the outperformance margin
by increasing b. EN-S, however, does not show improvement over
the standard network in most cases which indicates its diminishing
effectiveness as the size of the input dimension grows, i.e., the number
of features increases.

104 appendix : walsh-hadamard regularizer for the low-degree spectral bias

0 50 100
Epoch

0.0

0.1

0.2

0.3

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(a) n = 25, c = 1

0 100 200
Epoch

0.1

0.2

0.3

0.4

0.5

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(b) n = 25, c = 2

0 100 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(c) n = 25, c = 3

0 100 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(d) n = 25, c = 4

0 100 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(e) n = 25, c = 5

0 100 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(f) n = 25, c = 6

0 100 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(g) n = 25, c = 7

0 100 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101

Training time (s)
100 101

Training time (s)

Be
st

 T
es

t R
2

(h) n = 25, c = 8

Figure B.6: Best achievable generalization performance R2 up to a certain epoch
or training time (seconds), in learning a synthetic degree 5 function
g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended
version of Figure 3.4b, where we reported similar plots for n = 50
and c = 5. Here we report the results for the first draw of g∗ with
n = 25. Our method, HashWH, always outperforms EN-S R2 score in
significantly less time. HashWH can also be scaled by the choice of
b to achieve better generalization performance at th price of higher
training times.

B.6 extended experiment results 105

0 50 100
Epoch

0.0

0.1

0.2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(a) n = 50, c = 1

0 25 50 75
Epoch

0.0

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(b) n = 50, c = 2

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(c) n = 50, c = 3

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(d) n = 50, c = 4

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(e) n = 50, c = 5

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(f) n = 50, c = 6

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(g) n = 50, c = 7

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(h) n = 50, c = 8

Figure B.7: Best achievable generalization performance R2 up to a certain epoch
or training time (seconds), in learning a synthetic degree 5 function
g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended
version of Figure 3.4b, where we reported similar plots for n = 50
and c = 5. Here we report the results for the first draw of g∗ with
n = 50. Our method, HashWH, always outperforms EN-S R2 score
in significantly less time. HashWH can also be scaled by the choice
of b to achieve better generalization performance athe price of higher
training times.

106 appendix : walsh-hadamard regularizer for the low-degree spectral bias

0 50 100
Epoch

0.0

0.1

0.2

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(a) n = 100, c = 1

0 25 50 75
Epoch

0.0

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(b) n = 100, c = 2

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(c) n = 100, c = 3

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(d) n = 100, c = 4

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(e) n = 100, c = 5

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(f) n = 100, c = 6

0 20 40 60
Epoch

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(g) n = 100, c = 7

0 25 50 75
Epoch

0.1

0.2

0.3

0.4

HashWH (b=13)
HashWH (b=10)
HashWH (b=7)
EN-S
standard

100 101 102

Training time (s)
100 101 102

Training time (s)

Be
st

 T
es

t R
2

(h) n = 100, c = 8

Figure B.8: Best achievable generalization performance R2 up to a certain epoch
or training time (seconds), in learning a synthetic degree 5 function
g∗ ∈ {0, 1}n, using datasets of size c · 25n. This figure is an extended
version of Figure 3.4b, where we reported similar plots for n = 50
and c = 5. Here we report the results for the first draw of g∗ with
n = 100. Our method, HashWH, always outperforms EN-S R2 score
in significantly less time. HashWH can also be scaled by the choice of
b to achieve better generalization performance at the price of higher
training times.

B.6 extended experiment results 107

40 60 80 100 120 140 160 180 200
Train size

0.0

0.2

0.4

0.6

0.8
Te

st
 R

2

Generalization Performance

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

40 60 80 100 120 140 160 180 200
Train size

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 ti
m

e
(s

)

Runtimes

(a) Entacmaea (n=13)

40 60 80 100 120 140 160 180 200
Train size

0.0

0.2

0.4

0.6

0.8

Te
st

 R
2

Generalization Performance

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

40 60 80 100 120 140 160 180 200
Train size

10 3

10 2

10 1

100

101
Tr

ai
ni

ng
 ti

m
e

(s
)

Runtimes

(b) SGEMM (n=40)

200 400 600 800
1000

1200
1400

1600
1800

2000

Train size

0.0

0.2

0.4

0.6

Te
st

 R
2

Generalization Performance

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

200 400 600 800
1000

1200
1400

1600
1800

2000

Train size

10 2

100

102

Tr
ai

ni
ng

 ti
m

e
(s

)

Runtimes

(c) GB1 (n=80)

200 400 600 800
1000

1200
1400

1600
1800

2000

Train size

0.0

0.2

0.4

0.6

Te
st

 R
2

Generalization Performance

HashWH (Ours)
EN-S
standard
XGBoost
Random Forest
Lasso

200 400 600 800
1000

1200
1400

1600
1800

2000

Train size

10 2

100

102

Tr
ai

ni
ng

 ti
m

e
(s

)

Runtimes

(d) avGFP (n=236)

Figure B.9: Generalization performance of standard/regularized neural networks
and benchmark ML models on four real datasets. This figure is an
extended version of Figure 3.5. It also includes the training times
(logarithmically scaled in the plot). Our method is able to achieve the
best test R2s while always training significantly faster than EN-S.

C
A P P E N D I X : A M O RT I Z E D
S H A P VA L U E S V I A F U N C T I O N A P P R O X I M AT I O N

c.1 relevant work

c.1.1 Sparse and low degree Fourier transform algorithms

We now discuss algorithms that efficiently approximate general black-
box predictors by a Fourier sparse representation. Let h : {0, 1}n → R

be a any function. We assume we have query access to h. That is,
we can arbitrarily pick x ∈ {0, 1}n and query h for its value h(x).
Without any further assumptions, computing the Fourier transform
requires us to query exponentially, to be precise 2n, many queries: one
for every x ∈ {0, 1}n. Furthermore, classical Fast Fourier Transform
(FTT) algorithms are known to take at least Ω(2n log(2n)) time.

Under the additional assumption that h is k-sparse, works such as [16,
32, 84–86, 108] provide algorithms that obtain the Fourier transform
more efficiently. In particular, [85] provide algorithms with query com-
plexity O(nk) and time complexity O(nk log k) time. Assuming further
that the function is of degree d = o(n), the query complexity reduces
to O(kd log n), with run time still polynomial in n, k, d. Crucially, even
if the function h is not k-sparse, Algorithm RobustSWHT of [85] yields
the best k-sparse approximation in the ℓ2 − ℓ2 sense. More precisely,
let us denote by hk : {0, 1}n → the function that is formed by only
keeping the top k non-zero Fourier coefficients of h and setting the rest
to zero. Then the algorithm returns a O(k)-sparse function g such that:

∑
f∈{0,1}n

(ĝ(f)− ĥ(f))2 ≤ C(1 + ϵ) min
all k-sparse g

∑
f∈{0,1}n

(ĝ(f)− ĥk(f))2,

where C is a universal constant. By Parseval’s identity, the same holds
if the summations were over the time (input) domain instead of the
frequency domain.

109

110 appendix : amortized shap values via function approximation

c.2 proofs

c.2.1 Proof of Lemma 4.3.1

Proof. We start from Equation (4.2):

ϕ
Ψ f
i = ∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

· 1
|D|

∑
(x,y)∈D

(
(−1)⟨ f ,x∗S∪{i}⊕xN\S∪{i}⟩ − (−1)⟨ f ,x∗S⊕xN\S⟩

)
=

1
|D| ∑

(x,y)∈D
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(−1)⟨ f−i ,x∗S⊕xN\S∪{i}⟩
(
(−1) fix∗i − (−1) fixi

)
One can see by checking for different values of xi, x∗i , fi ∈ {0, 1} that
(−1) fix∗i − (−1) fixi = 2 fi(xi − x∗i). To determine (−1)⟨ f−i ,x∗S⊕xN\S∪{i}⟩,
we partition N \ {i} into two subsets A ≜ {j ∈ N|xj ̸= x∗j , j ̸= i, f j =

1} and B ≜ N \ A ∪ {i}. Doing this, we can factor out (−1)⟨ f−i ,x−i⟩

and determine the rest of the sign based on the number of indices in
S where x and x∗ disagree and fi = 1. This is equal to |A ∩ S|:

ϕ
Ψ f
i =

2 fi
|D| ∑

(x,y)∈D
(xi− x∗i)(−1)⟨ f−i ,x−i⟩ ∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(−1)|A∩S|

A and B partition N \ {i}, therefore we split the inner sum as follows:

ϕ
Ψ f
i =

2 fi
n ∑

(x,y)∈D
(xi − x∗i)(−1)⟨ f−i ,x−i⟩

∑
B̃⊆B

∑
Ã⊆A

(|Ã|+ |B̃|)!(n− (|Ã|+ |B̃|)− 1)!
n!

(−1)|Ã|

Since the inner expression only depends on the cardinalities of Ã
and B̃ we can recast the inner sum to be over numbers instead of

C.2 proofs 111

subsets by counting the number of times each cardinality appears in
the summation:

ϕ
Ψ f
i =

2 fi
|D| ∑

(x,y)∈D
(xi − x∗i)(−1)⟨ f−i ,x−i⟩ (C.1)

n−|A|−1

∑
b=0

|A|

∑
a=0

(
n− |A| − 1

b

)(
|A|
a

)
(a + b)!(n− a− b− 1)!

n!
(−1)a

=
2 fi
|D| ∑

(x,y)∈D
(xi − x∗i)(−1)⟨ f−i ,x−i⟩

|A|

∑
a=0

(−1)a
n−|A|−1

∑
b=0

(|A|a)(n−|A|−1
b)

n(n−1
a+b)

(C.2)

Now we find a closed-form expression for the innermost summation
in the above Equation, which is a summation over b where a is fixed:

n−|A|−1

∑
b=0

(|A|a)(n−|A|−1
b)

n(n−1
a+b)

(i)
=

n−|A|−1

∑
b=0

(|A|a)(n−|A|−1
b)

n
(n−1
|A|)

(a+b
a)(n−a−b−1

|A|−a)
(|A|a)(n−|A|−1

b)

=
1

n(n−1
|A|)

n−|A|−1

∑
b=0

(
a + b

a

)(
n− a− b− 1
|A| − a

)
(ii)
=

1

n(n−1
|A|)

(
n

|A|+ 1

)
=

1
|A|+ 1

(C.3)

In Equation (i), we use the following identity (n−1
a+b)(

a+b
a)(n−a−b−1

|A|−a) =

(n−1
|A|)(

|A|
a)(n−|A|−1

b) which can be checked algebraically by the reader
by simply writing down each binomial term as factorials and doing
the cancellations.

In Equation (ii), we use the following identity ∑
n−|A|−1
b=0 (a+b

a)(n−a−b−1
|A|−a) =

(n
|A|+1) which holds because of the following double-counting argu-

ment. We want to pick |A|+ 1 items out of n items numbered 1, . . . , n.
Say we pick |A|+ 1 items and order them according to their num-
ber. We condition on the (a + 1)th chosen item (after ordering). The
(a + 1)th chosen item’s number can be equal to (a + b + 1), where b
ranges from 0 to n− |A| − 1. Choosing the preceding a and trailing
|A| − a items can be done in (a+b

a)(n−a−b−1
|A|−a) ways.

112 appendix : amortized shap values via function approximation

Based on Equation (C.3), we see that the innermost summation in
Equation (C.1) is only dependent on |A|. Thus, we rewrite Equa-
tion (C.1) as follows:

ϕ
Ψ f
i =

2 fi
|D| ∑

(x,y)∈D
(xi − x∗i)(−1)⟨ f−i ,x−i⟩ (|A|+ 1) mod 2

|A|+ 1

By absorbing the sign of (xi − x∗i) into the (−1)⟨ f−i ,x−i⟩ term we arrive
at Equation (4.3):

ϕ
Ψ f
i =

2 fi
|D| ∑

(x,y)∈D
1xi ̸=x∗i

(−1)⟨ f ,x⟩ (|A|+ 1) mod 2
|A|+ 1

c.2.2 Proof of Theorem 4.3.2

Proof. Proof of Equation(4.4) simply follows from the fact that SHAP
values are linear w.r.t. the explained function. Regarding the compu-
tational complexity we restate Equation(4.4)

ϕh
i =

2
n ∑

f∈supp(h)
ĥ(f) · fi ∑

(x,y)∈D
1xi ̸=x∗i

(−1)⟨ f ,x⟩ (|A|+ 1) mod 2
|A|+ 1

where A ≜ {j ∈ N|xj ̸= x∗j , j ̸= i, f j = 1}.
We first do a pre-processing step for amortizing the cost of computing
|A|: we compute Ã ≜ {j ∈ N|xj ̸= x∗j , f j = 1} which takes Θ(|D|n)
flops.

We assume we are computing the whole vector Φh = (Φh
1, . . . , Φh

n),
that is we are compute SHAP values for all i ∈ [n] at the same time.
Going back to the inner summation above, computing A (and |A|)
for different values of i ∈ [n] is Θ(n) if we utilize the pre-computed
Ã. The inner product ⟨ f , x⟩ is not dependent on i and is Θ(n) flops.
Computing 1xi ̸=x∗i

for different values of i ∈ [n] is Θ(n). Therefore,
the inner expression of the summand takes Θ(n) flops for a fixed
data-point x ∈ D and f ∈ supp(h).

Computing the inner sum for any fixed frequency f ∈ supp(h) is
Θ(n|D|), because we are summing over |D| vectors each of size n

C.3 datasets 113

(the vector which holds SHAP value for each i ∈ [n]). Moving on to
the outer sum each evaluation of the inner sum is Θ(n|D|) and it
results in a vector of size n (one element for each SHAP value). The
multiplication of ĥ(f) · fi is Θ(n). Therefore the cost of the inner sum
dominates i.e. Θ(n|D|). Since we are summing over the whole support
the total number of flops is: Θ(n|D|k) where k = |supp(h)|.

c.3 datasets

We list all the datasets used in the Experiments Section 4.4.

entacmaea quadricolor fluorescent protein. (entac-
maea) [52] study the fluorescence brightness of all 213 distinct
variants of the Entacmaea quadricolor fluorescent protein, mutated
at 13 different sites.

gpu kernel performance (sgemm). [57] measures the run-
ning time of a matrix product using a parameterizable SGEMM GPU
kernel, configured with different parameter combinations. The in-
put has 14 categorical features. After one-hot encoding the dataset is
40-dimensional.

immunoglobulin-binding domain of protein g (gb1). [56]
study the “fitness” of variants of protein GB1, that are mutated
at four different sites. Fitness, in this work, is a quantitative mea-
sure of the stability and functionality of a protein variant. Given
the 20 possible amino acids at each site, they report the fitness for
204 = 160, 000 possible variants, which we represent with one-hot
encoded 80-dimensional binary vectors.

green fluorescent protein from aequorea victoria (avgfp).
[55] estimate the fluorescence brightness of random mutations over
the green fluorescent protein sequence of Aequorea victoria (avGFP)
at 236 amino acid sites. We transform the amino acid features into
binary features indicating the absence or presence of a mutation at
each amino acid site. This converts the original 54, 024 distinct amino
acid sequences of length 236 into 49, 089 236-dimensional binary data
points.

114 appendix : amortized shap values via function approximation

c.4 experiment details

All experiment code will be open-sourced once the double-blind re-
view process is over. We have access to one NVIDIA GeForce GTX
1080 Ti GPU.

For the Entacmaea and SGEMM datasets, we train fully connected
neural networks with 3 hidden layers containing 300 neurons each.
The network is trained using the means-squared loss and ADAM
optimizer with a learning rate of 0.01. For GB1 we train ensembles
of trees models of varying depths using the random forest algorithm
using the sklearn library [109]. For avGFP we train again, ensembles
of trees models with 10 trees of varying depths using the cat-boost
algorithm/library[33]. All other setting are set to the default in both
cases. Model accuracy for different depths are plotted in Figure C.1.

Figure C.1: Model accuracy of tree models evaluated on the test set for different
depths

c.4.1 Black-box

Regarding the first step of the FourierSHAP algorithm which is
computing a sparse Fourier approximation of the black-box model.
We use a GPU implementation, written by ourselves using the JAX
library, of a sparse Walsh-Hadamard Transform (sparse WHT) a.k.a
Fourier transform algorithm [85] for each of the four trained models.

Regarding the second step of FourierSHAP which utilizes the Fourier
approximation to compute SHAP values using Equation (4.4). We
again implement this step on a GPU using the JAX [87] library. For

C.4 experiment details 115

each model to be explained, we choose four different values for the
number of background samples and four different values for the
number of query points to be explained, resulting in a total of 16 runs
of FourierSHAP for each model. Error bars capture these variations.
The set of values used for number of background samples and number
of query points for different models is as follows:

entacmaea , sgemm , and gb1 : Number of background samples:
{10, 20, 30, 40}, Number of query points: {10, 20, 30, 40}.

avgfp : Number of background samples: {10, 20, 30, 40}, Number
of query points: {1, 2, 3, 4}.
For KernelShap, we use the standard library provided by the writers
of the paper [65] 1 with its default settings. KernelShap is written in C
and is to our knowledge the fastest implementation of this algorithm.

LinRegShap, is a variance-reduced version of KernelSHAP [72]. We
again use the implementation of the original writers 2. Their implem-
ntation includes automatic detection of the convergence of stochastic
sampling which is meant to speed up the algorithm by taking less
samples from the black box

For DeepLift we again we use the library of Lundberg & Lee [65] 3

with default settings. In this setting the neural network is passed to the
algorithm on a GPU to make sure this algorithm is as fast as possible.

c.4.2 White-box

We fit random forests of depths ranging from 3 to 8 with 50 estimators
on 90% of the Entacmaea dataset, and use the rest of the data to
measure the model accuracy R2 (reported in Table 4.1). For each
model, we compute SHAP values using three methods of TreeSHAP 4,
FastTreeSHAP 5, and our FastFourierSHAP in five independant
runs, and report the average speedup as well as the standard deviation

1 https://github.com/slundberg/shap
2 https://github.com/iancovert/shapley-regression
3 https://github.com/slundberg/shap
4 https://github.com/slundberg/shap
5 https://github.com/linkedin/FastTreeSHAP

116 appendix : amortized shap values via function approximation

in Table 4.1. We always use 100 datapoints as the background data, and
100 datapoints as the query inputs to compute the SHAP values for.

B I B L I O G R A P H Y

1. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedfor-
ward networks are universal approximators. Neural networks 2,
359 (1989).

2. Cybenko, G. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems 2, 303 (1989).

3. Domingos, P. Every model learned by gradient descent is ap-
proximately a kernel machine. arXiv preprint arXiv:2012.00152
(2020).

4. Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. &
Sohl-Dickstein, J. Deep neural networks as gaussian processes.
arXiv preprint arXiv:1711.00165 (2017).

5. Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. &
Sohl-Dickstein, J. Deep Neural Networks as Gaussian Processes in
International Conference on Learning Representations (2018).

6. Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J. & Pennington, J. Wide neural networks of any
depth evolve as linear models under gradient descent. Advances
in neural information processing systems 32 (2019).

7. Jacot, A., Gabriel, F. & Hongler, C. Neural Tangent Kernel: Conver-
gence and Generalization in Neural Networks in Advances in Neural
Information Processing Systems 31 (Curran Associates, Inc., 2018).

8. Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio, E.,
Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A., Bengio,
Y. & Lacoste-Julien, S. A Closer Look at Memorization in Deep
Networks in Proceedings of the 34th International Conference on
Machine Learning ISSN: 2640-3498 (PMLR, 2017), 233.

9. Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman, B. L.,
Zhang, F. & Barak, B. SGD on neural networks learns functions
of increasing complexity in Proceedings of the 33rd International
Conference on Neural Information Processing Systems (2019), 3496.

117

118 bibliography

10. Valle-Perez, G., Camargo, C. Q. & Louis, A. A. Deep learning gen-
eralizes because the parameter-function map is biased towards simple
functions in International Conference on Learning Representations
(2019).

11. Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B., Yang, T.,
Barak, B. & Zhang, H. SGD on Neural Networks Learns Func-
tions of Increasing Complexity in Advances in Neural Information
Processing Systems 32 (Curran Associates, Inc., 2019).

12. Yang, G. & Salman, H. A Fine-Grained Spectral Perspective on
Neural Networks arXiv:1907.10599 [cs, stat]. 2020.

13. Mansour, Y. Learning Boolean functions via the Fourier transform in
Theoretical advances in neural computation and learning (Springer,
1994), 391.

14. Kushilevitz, E. & Mansour, Y. Learning decision trees using the
Fourier spectrum in Proceedings of the twenty-third annual ACM
symposium on Theory of computing (1991), 455.

15. Amrollahi, A., Zandieh, A., Kapralov, M. & Krause, A. Effi-
ciently Learning Fourier Sparse Set Functions in Advances in Neural
Information Processing Systems 32 (Curran Associates, Inc., 2019).

16. Scheibler, R., Haghighatshoar, S. & Vetterli, M. A fast Hadamard
transform for signals with sublinear sparsity in the transform
domain. IEEE Transactions on Information Theory 61, 2115 (2015).

17. Li, X. & Ramchandran, K. An Active Learning Framework using
Sparse-Graph Codes for Sparse Polynomials and Graph Sketching
in Advances in Neural Information Processing Systems 28 (Curran
Associates, Inc., 2015).

18. Li, X., Bradley, J. K., Pawar, S. & Ramchandran, K. SPRIGHT: A
Fast and Robust Framework for Sparse Walsh-Hadamard Transform
arXiv:1508.06336 [cs, math]. 2015.

19. Wendler, C., Amrollahi, A., Seifert, B., Krause, A. & Püschel, M.
Learning set functions that are sparse in non-orthogonal Fourier bases
in Proceedings of the AAAI Conference on Artificial Intelligence 35
(2021), 10283.

20. Püschel, M. A Discrete Signal Processing Framework for Set Func-
tions in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2018), 4359.

bibliography 119

21. Valentin, R., Ferrari, C., Scheurer, J., Amrollahi, A., Wendler, C.
& Paulus, M. B. Instance-wise algorithm configuration with
graph neural networks. arXiv preprint arXiv:2202.04910 (2022).

22. Gorji, A., Amrollahi, A. & Krause, A. A scalable Walsh-Hadamard
regularizer to overcome the low-degree spectral bias of neural net-
works in The 39th Conference on Uncertainty in Artificial Intelligence
(2023).

23. Amrollahi, A., Gorji, A. & Krause, A. Amortized SHAP values
via function approximation in (2023).

24. O’Donnell, R. Analysis of boolean functions (Cambridge Univer-
sity Press, 2014).

25. Rasmussen, C. E. Gaussian processes in machine learning in
Summer school on machine learning (2004), 63.

26. Daniely, A., Frostig, R. & Singer, Y. Toward deeper understand-
ing of neural networks: The power of initialization and a dual
view on expressivity. Advances in neural information processing
systems 29 (2016).

27. Chizat, L., Oyallon, E. & Bach, F. On lazy training in differen-
tiable programming. Advances in Neural Information Processing
Systems 32 (2019).

28. Du, S. S., Zhai, X., Poczos, B. & Singh, A. Gradient Descent Prov-
ably Optimizes Over-parameterized Neural Networks in International
Conference on Learning Representations (2019).

29. Allen-Zhu, Z., Li, Y. & Song, Z. A convergence theory for deep
learning via over-parameterization in International Conference on
Machine Learning (2019), 242.

30. Allen-Zhu, Z., Li, Y. & Song, Z. On the convergence rate of train-
ing recurrent neural networks. Advances in neural information
processing systems 32 (2019).

31. Yang, G. & Salman, H. A fine-grained spectral perspective on
neural networks. arXiv preprint arXiv:1907.10599 (2019).

32. Kushilevitz, E. & Mansour, Y. Learning decision trees using the
Fourier spectrum. SIAM Journal on Computing 22, 1331 (1993).

33. Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient
boosting with categorical features support. arXiv preprint
arXiv:1810.11363 (2018).

120 bibliography

34. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining (2016), 785.

35. Carter, J. L. & Wegman, M. N. Universal classes of hash func-
tions. Journal of computer and system sciences 18, 143 (1979).

36. Daniely, A. SGD learns the conjugate kernel class of the network.
Advances in Neural Information Processing Systems 30 (2017).

37. Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Ham-
precht, F., Bengio, Y. & Courville, A. On the Spectral Bias of
Neural Networks in Proceedings of the 36th International Conference
on Machine Learning ISSN: 2640-3498 (PMLR, 2019), 5301.

38. Ronen, B., Jacobs, D., Kasten, Y. & Kritchman, S. The Conver-
gence Rate of Neural Networks for Learned Functions of Different
Frequencies in Advances in Neural Information Processing Systems
32 (Curran Associates, Inc., 2019).

39. Basri, R., Galun, M., Geifman, A., Jacobs, D., Kasten, Y. & Kritch-
man, S. Frequency bias in neural networks for input of non-uniform
density in International Conference on Machine Learning (2020), 685.

40. Neyshabur, B., Bhojanapalli, S., McAllester, D. & Srebro, N.
Exploring Generalization in Deep Learning arXiv:1706.08947 [cs].
2017.

41. Poggio, T., Kawaguchi, K., Liao, Q., Miranda, B., Rosasco, L.,
Boix, X., Hidary, J. & Mhaskar, H. Theory of Deep Learning III:
explaining the non-overfitting puzzle arXiv:1801.00173 [cs]. 2018.

42. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S.,
Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. & Ng, R.
Fourier features let networks learn high frequency functions
in low dimensional domains. Advances in Neural Information
Processing Systems 33, 7537 (2020).

43. Shah, H., Tamuly, K., Raghunathan, A., Jain, P. & Netrapalli, P.
The Pitfalls of Simplicity Bias in Neural Networks in Advances in
Neural Information Processing Systems 33 (Curran Associates, Inc.,
2020), 9573.

44. Benjamin, A., Rolnick, D. & Kording, K. Measuring and regu-
larizing networks in function space in International Conference on
Learning Representations (2019).

bibliography 121

45. Sun, S., Zhang, G., Shi, J. & Grosse, R. Functional Variational
Bayesian Neural Networks in International Conference on Learning
Representations (2019).

46. Wang, Z., Ren, T., Zhu, J. & Zhang, B. Function Space Particle Op-
timization for Bayesian Neural Networks in International Conference
on Learning Representations (2019).

47. Aghazadeh, A., Nisonoff, H., Ocal, O., Brookes, D. H., Huang,
Y., Koyluoglu, O. O., Listgarten, J. & Ramchandran, K. Epistatic
Net allows the sparse spectral regularization of deep neural
networks for inferring fitness functions. Nature Communications
12. Number: 1 Publisher: Nature Publishing Group, 5225 (2021).

48. Sailer, Z. R. & Harms, M. J. Detecting High-Order Epistasis in
Nonlinear Genotype-Phenotype Maps. Genetics 205, 1079 (2017).

49. Yang, G., Anderson, D. W., Baier, F., Dohmen, E., Hong, N., Carr,
P. D., Kamerlin, S. C. L., Jackson, C. J., Bornberg-Bauer, E. &
Tokuriki, N. Higher-order epistasis shapes the fitness landscape
of a xenobiotic-degrading enzyme. Nature Chemical Biology 15.
Number: 11 Publisher: Nature Publishing Group, 1120 (2019).

50. Brookes, D. H., Aghazadeh, A. & Listgarten, J. On the sparsity
of fitness functions and implications for learning. eng. Proceed-
ings of the National Academy of Sciences of the United States of
America 119, e2109649118 (2022).

51. Ballal, A., Laurendon, C., Salmon, M., Vardakou, M., Cheema, J.,
Defernez, M., O’Maille, P. E. & Morozov, A. V. Sparse Epistatic
Patterns in the Evolution of Terpene Synthases. Molecular
Biology and Evolution 37, 1907 (2020).

52. Poelwijk, F. J., Socolich, M. & Ranganathan, R. Learning the
pattern of epistasis linking genotype and phenotype in a pro-
tein. Nature Communications 10. Number: 1 Publisher: Nature
Publishing Group, 4213 (2019).

53. Alon, N., Dietzfelbinger, M., Miltersen, P. B., Petrank, E. &
Tardos, G. Linear hash functions. Journal of the ACM (JACM) 46,
667 (1999).

54. Arik, S. Ö. & Pfister, T. Tabnet: Attentive interpretable tabular learn-
ing in Proceedings of the AAAI Conference on Artificial Intelligence
35 (2021), 6679.

122 bibliography

55. Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova, D. R.,
Mishin, A. S., Sharonov, G. V., Ivankov, D. N., Bozhanova, N. G.,
Baranov, M. S., Soylemez, O., Bogatyreva, N. S., Vlasov, P. K.,
Egorov, E. S., Logacheva, M. D., Kondrashov, A. S., Chudakov,
D. M., Putintseva, E. V., Mamedov, I. Z., Tawfik, D. S., Lukyanov,
K. A. & Kondrashov, F. A. Local fitness landscape of the green
fluorescent protein. Nature 533. Number: 7603 Publisher: Nature
Publishing Group, 397 (2016).

56. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun,
R. Adaptation in protein fitness landscapes is facilitated by
indirect paths. eLife 5 (ed Neher, R. A.) Publisher: eLife Sciences
Publications, Ltd, e16965 (2016).

57. Nugteren, C. & Codreanu, V. CLTune: A Generic Auto-Tuner for
OpenCL Kernels in 2015 IEEE 9th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (2015), 195.

58. Voigt, P. & Von dem Bussche, A. The eu general data protection
regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer
International Publishing 10, 10 (2017).

59. Shapley, L. S. A Value for N-Person Games (RAND Corporation,
Santa Monica, CA, 1952).

60. Gromping, U. Estimators of relative importance in linear regres-
sion based on variance decomposition. The American Statistician
61, 139 (2007).

61. Štrumbelj, E., Kononenko, I. & Šikonja, M. R. Explaining in-
stance classifications with interactions of subsets of feature
values. Data & Knowledge Engineering 68, 886 (2009).

62. Owen, A. B. Sobol indices and Shapley value. SIAM/ASA Journal
on Uncertainty Quantification 2, 245 (2014).

63. Datta, A., Sen, S. & Zick, Y. Algorithmic transparency via quanti-
tative input influence: Theory and experiments with learning systems
in 2016 IEEE symposium on security and privacy (SP) (2016), 598.

64. Owen, A. B. & Prieur, C. On Shapley value for measuring im-
portance of dependent inputs. SIAM/ASA Journal on Uncertainty
Quantification 5, 986 (2017).

65. Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting
Model Predictions in Advances in Neural Information Processing
Systems 30 (2017).

bibliography 123

66. Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M.,
Nair, B., Katz, R., Himmelfarb, J., Bansal, N. & Lee, S.-I. From
local explanations to global understanding with explainable AI
for trees. Nature machine intelligence 2, 56 (2020).

67. Aas, K., Jullum, M. & Løland, A. Explaining individual predic-
tions when features are dependent: More accurate approxima-
tions to Shapley values. Artificial Intelligence 298, 103502 (2021).

68. Yang, J. Fast treeshap: Accelerating shap value computation for
trees. arXiv preprint arXiv:2109.09847 (2021).

69. Bifet, A., Read, J., Xu, C., et al. Linear tree shap. Advances in
Neural Information Processing Systems 35, 25818 (2022).

70. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important
features through propagating activation differences in International
conference on machine learning (2017), 3145.

71. Jethani, N., Sudarshan, M., Covert, I. C., Lee, S.-I. & Ranganath,
R. FastSHAP: Real-Time Shapley Value Estimation in International
Conference on Learning Representations (2021).

72. Covert, I. & Lee, S.-I. Improving kernelshap: Practical shap-
ley value estimation via linear regression. arXiv preprint
arXiv:2012.01536 (2020).

73. Mitchell, R., Cooper, J., Frank, E. & Holmes, G. Sampling
Permutations for Shapley Value Estimation. Journal of Machine
Learning Research 23, 1 (2022).

74. Janzing, D., Minorics, L. & Bloebaum, P. Feature relevance quan-
tification in explainable AI: A causal problem in Proceedings of the
Twenty Third International Conference on Artificial Intelligence and
Statistics (eds Chiappa, S. & Calandra, R.) 108 (PMLR, 2020),
2907.

75. Van den Broeck, G., Lykov, A., Schleich, M. & Suciu, D. On
the tractability of SHAP explanations in Proceedings of the 35th
Conference on Artificial Intelligence (AAAI) (2021).

76. Sundararajan, M. & Najmi, A. The many Shapley values for model
explanation in International conference on machine learning (2020),
9269.

77. Pearl, J. Causality (Cambridge university press, 2009).

124 bibliography

78. Arenas, M., Barceló, P., Bertossi, L. & Monet, M. The tractability
of SHAP-score-based explanations for classification over determin-
istic and decomposable boolean circuits in Proceedings of the AAAI
Conference on Artificial Intelligence 35 (2021), 6670.

79. Kwon, Y., Rivas, M. A. & Zou, J. Efficient computation and anal-
ysis of distributional Shapley values in International Conference on
Artificial Intelligence and Statistics (2021), 793.

80. Chen, H., Janizek, J. D., Lundberg, S. & Lee, S.-I. True to the
Model or True to the Data? arXiv preprint arXiv:2006.16234
(2020).

81. Wendler, C. Machine learning on non-euclidean domains: powersets,
lattices, posets PhD thesis (ETH Zurich, 2023).

82. Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal, P. & Isola,
P. The Low-Rank Simplicity Bias in Deep Networks arXiv:2103.10427

[cs]. 2022.

83. Durvasula, K. & Liter, A. There is a simplicity bias when
generalising from ambiguous data. Phonology 37. Publisher:
Cambridge University Press, 177 (2020).

84. Li, X. & Ramchandran, K. An active learning framework using
sparse-graph codes for sparse polynomials and graph sketching.
Advances in Neural Information Processing Systems 28 (2015).

85. Amrollahi, A., Zandieh, A., Kapralov, M. & Krause, A. Effi-
ciently learning fourier sparse set functions in Advances in Neural
Information Processing Systems (2019), 15120.

86. Li, X., Bradley, J. K., Pawar, S. & Ramchandran, K. SPRIGHT:
A fast and robust framework for sparse Walsh-Hadamard
transform. arXiv preprint arXiv:1508.06336 (2015).

87. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S. & Zhang, Q. JAX: composable trans-
formations of Python+NumPy programs version 0.3.13. 2018.

88. Goldreich, O. & Levin, L. A. A hard-core predicate for all one-way
functions in Proceedings of the twenty-first annual ACM symposium
on Theory of computing (1989), 25.

89. Stobbe, P. & Krause, A. Learning Fourier Sparse Set Functions in
Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics ISSN: 1938-7228 (PMLR, 2012), 1125.

bibliography 125

90. Hazan, E., Klivans, A. & Yuan, Y. Hyperparameter optimiza-
tion: a spectral approach in International Conference on Learning
Representations (2018).

91. Rudelson, M. & Vershynin, R. On sparse reconstruction from
Fourier and Gaussian measurements. Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences 61, 1025 (2008).

92. Vershynin, R. Introduction to the non-asymptotic analysis of
random matrices. arXiv e-prints, arXiv:1011.3027 (2010).

93. Haviv, I. & Regev, O. in Geometric Aspects of Functional Analysis
163 (Springer, 2017).

94. Hassanieh, H., Indyk, P., Katabi, D. & Price, E. Nearly optimal
sparse fourier transform in Proceedings of the forty-fourth annual
ACM symposium on Theory of computing (2012), 563.

95. Indyk, P., Kapralov, M. & Price, E. (Nearly) sample-optimal
sparse Fourier transform in Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms (2014), 480.

96. Das, A. K. & Vishwanath, S. On finite alphabet compressive sensing
in 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (2013), 5890.

97. Reed, I. S. & Solomon, G. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics
8, 300 (1960).

98. Das, A. K. & Vishwanath, S. On finite alphabet compressive sensing
in 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (2013), 5890.

99. May, A., Meurer, A. & Thomae, E. Decoding random linear codes in
\tilde {\mathcal {O}}(2ˆ{0.054 n}) in International Conference on
the Theory and Application of Cryptology and Information Security
(2011), 107.

100. Leon, J. S. A probabilistic algorithm for computing minimum
weights of large error-correcting codes. IEEE Transactions on
Information Theory 34, 1354 (1988).

101. Stern, J. A method for finding codewords of small weight in Interna-
tional Colloquium on Coding Theory and Applications (1988), 106.

126 bibliography

102. Bernstein, D. J., Lange, T. & Peters, C. Smaller decoding exponents:
ball-collision decoding in Annual Cryptology Conference (2011), 743.

103. Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A.,
Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gam-
rath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K.,
Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M.,
Maher, S. J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y.,
Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner,
P., Weninger, D. & Witzig, J. The SCIP Optimization Suite 8.0
Technical Report (Optimization Online, 2021).

104. Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A.,
Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gam-
rath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K.,
Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M.,
Maher, S. J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y.,
Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner,
P., Weninger, D. & Witzig, J. The SCIP Optimization Suite 8.0
ZIB-Report 21-41 (Zuse Institute Berlin, 2021).

105. Guruswami, V. Lecture notes for 15-859V, Introduction to Coding
Theory, Spring 2010 at CMU, Notes 2, Gilbert Varshamov bound
2010.

106. Rahimi, A. & Recht, B. Random features for large-scale kernel
machines. Advances in neural information processing systems 20
(2007).

107. Boyd, S. P. Distributed optimization and statistical learning via the
alternating direction method of multipliers (Now Publishers Inc,
Hanover, MA, 2011).

108. Cheraghchi, M. & Indyk, P. Nearly optimal deterministic algo-
rithm for sparse Walsh-Hadamard transform. ACM Transactions
on Algorithms (TALG) 13, 1 (2017).

109. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M. & Duchesnay, E. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12, 2825 (2011).

C U R R I C U L U M V I TA E

personal data

Name Andisheh Amrollahi
Date of Birth March 31, 1994

Place of Birth Tehran, Iran
Citizen of Iran

education

2012 – 2017 Sharif University,
Tehran, Iran
Final degree: Bachelor in Electrical Engineering, Mi-
nor in Computer Engineering

2017 – 2019 ETH Zurich
Switzerland
Final degree: Master degree in Computer science

2019– 2023 ETH Zurich
Switzerland
Final degree: PhD in Computer science

127

P U B L I C AT I O N S

Conference contributions:

1. Amrollahi, A., Zandieh, A., Kapralov, M. & Krause, A. Effi-
ciently learning fourier sparse set functions in Advances in Neural
Information Processing Systems (2019), 15120.

2. Gorji, A., Amrollahi, A. & Krause, A. A scalable Walsh-Hadamard
regularizer to overcome the low-degree spectral bias of neural net-
works in The 39th Conference on Uncertainty in Artificial Intelligence
(2023).

3. Amrollahi, A., Gorji, A. & Krause, A. Amortized SHAP values via
function approximation in Advances in Neural Information Process-
ing Systems (under review) (2023).

4. Wendler, C., Amrollahi, A., Seifert, B., Krause, A. & Püschel, M.
Learning set functions that are sparse in non-orthogonal Fourier bases
in Proceedings of the AAAI Conference on Artificial Intelligence 35
(2021), 10283.

Other contributions:

5. Valentin, R., Ferrari, C., Scheurer, J., Amrollahi, A., Wendler,
C. & Paulus, M. B. Instance-wise algorithm configuration with
graph neural networks. arXiv preprint arXiv:2202.04910 (2022).

129

19
05

A
lb
er
t
E
in
st
ei
n

Albert Einstein

Eine neue Bestimmung der
Moleküldimensionen

Diss. ETH No. ?

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Notation
	1 Introduction
	1.1 Low-degree Spectral Bias of Neural Networks
	1.2 Utilizing the Spectral bias to compute SHAP values
	1.3 Computing the sparse and/or low-degree spectrum
	1.4 Overview of publications

	2 Background
	2.1 Walsh Hadamard transforms
	2.2 Spectral bias theory of neural networks
	2.3 Spectral bias of ensembles of decision trees

	3 Low-degree Spectral Bias of Neural Networks
	3.1 Related work and details of our contributions
	3.2 Notation
	3.3 Low-degree spectral bias
	3.3.1 Fourier spectrum evolution

	3.4 Overcoming the spectral bias via regularization
	3.4.1 HashWH

	3.5 Experiments
	3.5.1 Synthetic data
	3.5.2 Real data

	4 Utilizing the Spectral bias to compute SHAP values
	4.1 Related work and details of our contributions
	4.2 Background
	4.2.1 Shapley values
	4.2.2 Shapley values in the context of Machine learning
	4.2.3 KernelShap
	4.2.4 Efficient SHAP values in the context of coalitional games
	4.2.5 Many real-world black-box predictors have sparse Fourier transforms

	4.3 Computing SHAP values with Fourier representations of functions
	4.4 Experiments

	5 Computing the sparse and/or low-degree spectrum
	5.1 Related work and our details of our contributions
	5.2 Problem Statement
	5.3 Algorithm and Analysis
	5.3.1 Low-degree frequency recovery
	5.3.2 Signal reduction
	5.3.3 Exact Fourier recovery

	5.4 Experiments
	5.4.1 Sample and time complexities as number of vertices varies
	5.4.2 Time complexities as number of edges varies

	5.5 Frequency recovery primitives as linear error-correcting codes
	5.6 Experiments with linear error-correcting codes as frequency recovery primitives
	5.6.1 Empirical sampling complexity of the new frequency recovery primitives
	5.6.2 Learning a synthetic black-box function
	5.6.3 Learning a black-box trained on a dataset

	5.7 Relationship to non-orthogonal Fourier bases

	6 Summary and future directions
	A Appendix: Background section proofs
	A.0.1 Proof of propositions

	B Appendix: Walsh-Hadamard regularizer for the low-degree spectral bias
	B.1 Walsh-Hadamard transform matrix form
	B.2 Algorithm Details
	B.2.1 Proof of Equation 3.1
	B.2.2 Collisions for HashWH
	B.2.3 EN-S details

	B.3 Datasets
	B.4 Implementation technical details
	B.5 Ablation study details
	B.5.1 Ablation study setup

	B.6 Extended experiment results
	B.6.1 Fourier spectrum evolution
	B.6.2 High-dimensional synthetic data
	B.6.3 Real data

	C Appendix: Amortized SHAP values via function approximation
	C.1 Relevant work
	C.1.1 Sparse and low degree Fourier transform algorithms

	C.2 Proofs
	C.2.1 Proof of Lemma 4.3.1
	C.2.2 Proof of Theorem 4.3.2

	C.3 Datasets
	C.4 Experiment Details
	C.4.1 Black-box
	C.4.2 White-box

	 Bibliography
	Curriculum Vitae
	Publications

