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Learning Occluded Branch Depth Maps in Forest
Environments using RGB-D Images

Christian Geckeler, Emanuele Aucone, Yannick Schnider, Andri Simeon,
Jan-Philipp von Bassewitz, Yunying Zhu, and Stefano Mintchev

Abstract—Covering over a third of all terrestrial land area,
forests are crucial environments; as ecosystems, for farming, and
for human leisure. However, they are challenging to access for
environmental monitoring, for agricultural uses, and for search
and rescue applications. To enter, aerial robots need to fly through
dense vegetation, where foliage can be pushed aside, but occluded
branches pose critical obstacles. Therefore, we propose pixel-wise
depth regression of occluded branches using three different U-Net
inspired architectures. Given RGB-D input of trees with partially
occluded branches, the models estimate depth values of only
the wooden parts of the tree. A large photorealistic simulation
dataset comprising around 44K images of nine different tree
species is generated, on which the models are trained. Extensive
evaluation and analysis of the models on this dataset is shown.
To improve network generalization to real-world data, different
data augmentation and transformation techniques are performed.
The approaches are then also successfully demonstrated on real-
world data of broadleaf trees from Swiss temperate forests and a
tropical Masoala Rainforest. This work showcases the previously
unexplored task of frame-by-frame pixel-based occluded branch
depth reconstruction to facilitate robot traversal of forest envi-
ronments. All models, code, and data are available online. [1]1

Index Terms—Deep Learning for Visual Perception; Robotics
and Automation in Agriculture and Forestry; RGB-D Perception

I. INTRODUCTION

FORESTS represent an integral part of Earth’s biosphere,
covering over a third of all terrestrial land area [2],

supporting more than half of the world’s vertebrate species
[3] as well as providing essential ecosystem services and
climate regulation [4]. Additionally, 43% of all agricultural
land globally has at least 10% tree cover [5]. Dozens of meters
tall and often situated in remote locations, they are challenging
to access and survey.

These circumstances present a natural opportunity for au-
tonomous and highly agile micro aerial vehicles (MAVs),
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Fig. 1. (A) Simulation RGB tree image (left) and predicted depth point
cloud only for branches (right). (B) Predicted pixel-wise depth values only
for branches, on real images from trees from a Masoala Rainforest (colorbar
in meters).

which are beginning to demonstrate flight above and below
tree canopies in forests with sparse vegetation [6], [7]. MAVs
are also being utilized for environmental tasks such as sample
collection from above the treetops [8], or sensor placement
and environmental monitoring in the outermost canopy re-
gions [9]–[11].

Besides environmental monitoring, MAVs are also demon-
strating increased use in agriculture, such as for sensing and
detection in orchards [12], or fruit harvest [13], as well as for
search and rescue operations in forest environments [14].

The challenge of navigating through cluttered and dense
foliage remains a significant hurdle for MAVs, rendering
tree canopies largely inaccessible. Recent developments have
shown that since MAVs can push aside compliant obstacles
[15], twigs and leaves would pose little threat to MAVs with
shielded propellers [16], but colliding with thick branches and
the trunk might destabilize the drone and result in a fatal crash.
Therefore, a perception system to detect the wooden parts of
the tree - the branches and the trunk - is necessary. Partially
or fully occluded branches pose a major challenge, especially
in forest environments. This prevents the application of clas-
sic computer vision approaches based on shape, feature, or
color detection. Artificial neural networks have demonstrated
much promise in generative assistance for visual perception
in challenging environments, including Generative Adversarial
Networks (GANs) [17].

To address these challenges, this letter proposes a neural
network-based system to predict the pixel-wise depth values
only of the wooden parts of the tree (see Figure 1), given a
single RGB-D image (RGB and depth) of trees with partially
occluded branches. Utilizing a photorealistic simulator, a large
RGB-D dataset of different tree species with and without
leaves is generated. The synthetic data is then used to train U-

https://doi.org/10.3929/ethz-b-000634419
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Net inspired encoder-decoder networks. To improve network
generalization to real-world data, different data augmentation
and transformation techniques are performed. Finally, to val-
idate the approach, the feasibility of the outputs is shown on
real data from two discrete biomes.

The main contributions of this work are as follows:
• Generation of a dataset with around 44K RGB-D images

of nine different species of photorealistic simulated trees,
with and without leaves; transformed and augmented for
real-world domain adaptation (training and groundtruth,
datasets available online [1]).

• Training and extensive quantitative evaluation of three
different U-Net [18]-inspired architectures on the pre-
viously unexplored topic of predicting pixel-wise depth
of occluded tree structures from a single frame using
simulated data (code available online [1]).

• Qualitative evaluation of the networks on real-world data
from trees from Swiss temperate forests and a rainforest,
demonstrating the real-world utility of the approach (data
captures available online [1]).

II. RELATED WORKS

The depth estimation of occluded natural structures is
mostly unexplored. Recently, an offline heuristic-based ap-
proach for extracting occluded tree skeletons in orchards was
presented in [19]. First, visible branches are extracted via
RGB instance segmentation, which are then ”extended” in
the longitudinal branch direction, resulting in a 3D likeli-
hood map of potential branch locations. Using images from
multiple viewpoints, the final tree skeleton is then extracted
through consolidating the line segments, smoothing them, and
connecting them through minimum cost path search. While
this approach produces feasible results on simulated trees,
it requires parts of branches to be visible in the instance
segmentation step. This, along with the heuristic assumption
that branches grow straight, fundamentally limits the approach
to comparatively simple tree topologies with partially visible
branches. Indeed, the qualitative results on the real apple
orchard trees show that often branches are truncated due to
heavy foliage occlusion, or missed entirely.

While not dealing with occluded branches, in [20], a GAN
was used to predict probable grayscale masks of occluded
grapes. The networks were trained on masked grayscale im-
ages of manually exfoliated grapes which were then syn-
thetically occluded. This represents a comparatively simple
scenario since the occluded target grape clusters are identifi-
able in the images, and follow predictable grouping patterns.
In contrast, tree branches in the wild can be more densely
occluded, and branch locations cannot easily been inferred
based on leaf clustering patterns, since global visual cues about
the tree structure may not be available from short distances.

The less complex problem, since the output is a 2D mask,
of semantic segmentation on partially occluded branches is
covered in [21], where manually annotated RGB-D images
of apple trees were used to train a conditional GAN, a U-
Net, and a Convolutional Neural Network (CNN). The even
simpler case of semantic segmentation of tree-like vegetation

from RGB-D input, neglecting occlusions, is investigated in
[22]. In existing literature, most approaches are limited to
well-structured and visually similar situations, such as apple
trees or vineyards, and do not address dense occlusions from
variable camera angles with changing depth scales or out-of-
distribution species. Most importantly, all of these approaches
lack 3D depth information in the output, which is critical for
robot navigation.

When training networks to regress pixel-wise depth values
of occluded branches, inspiration can be taken from monocular
depth estimation. The problem of inferring depth information
from a single RGB image in a supervised setting can also
be seen as a pixel-wise regression problem. A CNN was first
used in [23] to approach this regression task, with different loss
functions proposed in the literature thereafter. While the L2-
loss represents a common loss function for regression, model-
specific loss functions were designed in [24], and [25] reports
better results using a deep fully convolutional residual network
and training on the reverse Huber loss.

To regress pixel-wise depth values based on RGB-D input,
the color and depth channels must be properly encoded. Al-
though the problem formulation is slightly different, previous
literature on semantic segmentation with RGB-D inputs offers
insights into RGB-D input encoding strategies. Additional
depth information for RGB images has shown to increase
segmentation performance [26]. However, it is challenging to
fuse the color and depth information in the encoder, due to
their different modalities. Naively concatenating the depth in-
formation as an additional channel to the RGB channels (early
fusion) usually results in worse performance on segmentation
tasks [27] than the following more evolved strategies. Late
fusion approaches treat color and depth data in isolation to
fuse their respective feature representations at a later stage
in the network [28]. Distinct processes extract the relevant
segmentation features from each modality separately, which
are later combined into a single representation. This fusion
can happen before the network decoder [29] or even at the
output layer [22]. In [30], the depth input is encoded as an
HHA image (horizontal disparity, height above the ground, and
the angle of the pixel’s local surface normal with the gravity
direction) and then concatenated with a segmentation mask
predicted by an RGB segmentation model. The resulting tensor
is then passed through a final network to refine the previously
predicted segmentation mask.

An alternative to the introduced late and early fusion
approaches is to fuse the two modalities at each decoding
step (decoder fusion). In [26] the authors show that fusing at
different decoding stages indeed improves segmentation per-
formance. In contrast, depth and RGB feature representations
are fused at each encoder stage in [29], [31] (encoder fusion).
This approach only requires a single decoder, which reduces
its computational complexity. The authors of [31] propose a
lightweight architecture called ESANet, following the encoder
fusion strategy.

The task of pixel-wise depth regression based on RGB-D
input has not been extensively investigated. However, for robot
navigation depth information is essential - the closer a branch
is, the more immediate the threat of a potential collision.
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Fig. 2. Network architectures: (A) TransUNet [34], and (B) ESANet [35].

Additionally, the information about occluded obstacles can be
utilized for obstacle avoidance and path planning.

III. METHODOLOGY

In this section, we describe the sensor choice, the network
architectures, the dataset generation, the training procedure,
and the domain adaptation techniques eventually used for
depth predictions based on real-world input data. This work
focuses on deciduous trees, since the problem is more chal-
lenging, with larger leaves presenting more opportunities for
occlusions. Additionally, the wooden part of the branches of
coniferous trees can be more easily inferred, since each needle
is directly attached to a branch, giving more information about
the location and shape of the branch.

A. Sensor Choice

Depth cameras present a mature, relatively cheap, and off-
the-shelf solution for acquiring color and depth information
from a scene. RGB-D input has also been demonstrated to
be sufficient for robot localization and navigation: below the
canopy, high speed learning-based end-to-end flights using
only depth images as input [32], as well as depth and LiDAR
input integrated into more traditional perception and mapping
pipelines [6], [7] have been demonstrated. While LiDAR
presents an increasingly popular choice of perception sensor
for aerial robots [7], [33], the size, weight, price, and large
minimum detection range make it ill-suited for small MAVs
used to explore the inside of close-range and dense forest
canopies. RGB-D sensors do not suffer from these drawbacks
and are therefore chosen for this work.

B. Network Architectures

All models presented in this section encode the pixel-wise
feature channels to a low dimensional manifold, then decode
the compressed information to obtain a pixel-wise output im-
age. To compare different models, a baseline model (Baseline)
was designed: an established U-Net style architecture [36]

performs binary segmentation which is in turn used to mask
the input depth data. The target segmentation mask has two
classes: tree skeleton pixels (wooden parts) and all remaining
pixels as the second class. The early fusion approach was
used to concatenate the normalized depth values to the RGB
color channels as input to the segmentation U-Net. The final
baseline model outputs depth maps containing values only for
pixels of the trunk or branches, either visible or occluded. This
approach requires intermediate processing steps and is unable
to deal with occlusions, nonetheless it presents a meaningful
baseline, without loss of generality.

Our first model (U-Net) is the U-Net architecture expanded
to perform regression, providing an end-to-end extension of
the baseline model, which is able to handle occlusions. While
the network encoder remains the same, using early fusion, the
logistic activation in the last decoding layer is removed and a
single output channel is used.

Similarly, the second model (TransUNet) [34] is based on
the U-Net architecture with the addition of transformer layers
bridging the encoder and decoder module for enhanced feature
extraction with global context. The architecture can be seen in
Figure 2A. Firstly, a feature extractor in the form of the first
four layers of a pre-trained U-Net is utilized. Then, a patch
and positional embedding, followed by 12 transformer layers,
refine the previously obtained features. Finally, the decoder
tightly follows the implementation of the U-Net adjusted
for regression. The TransUNet also exploits the early fusion
approach for the RGB-D input.

In contrast to all the previous models, this last model
(ESANet) utilizes the late fusion approach for incorporating
the depth information. A simplified diagram of the model is
shown in Figure 2B. The ESANet is based on an RGB-D
semantic segmentation architecture [31], which fuses color
and depth at different stages of the encoder. The decoder is
modified for depth estimation by enforcing a single output
channel with sigmoid activation function, which scales to the
minimum and maximum depth (0m and 10m).

C. Data Generation

Generating a real-world dataset for model training is in-
feasible, since exactly the same RGB and depth image of
the scene with and without leaves is required. Manually
removing foliage disturbs the branches and alters their resting
position due to the changed weight distribution. Waiting for
seasonal abscission also results in changes and movement of
the branches due to the tree growing and changing over such a
long time span. Similarly, manually annotating and removing
leaves from the 3D depth data is not feasible, since the depth
would have to be estimated for each occluded pixel, which
would be as challenging as the actual task.

Therefore, a photo-realistic simulator is used to generate
the data (Figure 3-IA, -IB), which greatly simplifies the data
collection process since foliage can easily be removed from
the tree model without any changes to branch position. Data
generation was semi-automated, with grids of 9 to 13 trees
of seven species (Elm, Maple, Amur Cork, Black Alder,
London Plane, Weeping Beech, and American Sycamore)
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Fig. 3. RGB (A-I) and depth (B-I) data obtained in the Unreal Engine
simulation, and real RGB (A-II) and depth (B-II) data captured with the Intel
Realsense D435 depth sensor. Colorbar on the right shows depth scale in
meters.

randomly and procedurally generated using SpeedTree® [37].
To generate images, the tree models were loaded into Unreal
Engine 4 [38], where the UnrealCV plugin [39] was used
to simulate an RGB-D sensor for automated data collection.
For more realistic sensor emulation, for instance the Intel
Realsense D435 series, simulated sensor noise was added [40]
and the depth was cut off at ten meters. A separate ground-
truth level was created where the foliage had been removed
from the trees.

Five different helical trajectories, orbiting each tree to
simulate drone flight, were used to capture image data from
different views - 500 images were captured per tree. Several
additional processing steps are executed to more accurately
emulate the reduced quality of a real depth camera, see
Section III-E for details.

D. Training

The simulated dataset is evenly divided into training, val-
idation, and test sets across tree species, with eight to nine
trees from each species for training (30K images), two trees
for validating, and two trees for testing (7K images each).
The validation and test set comprise images from previously
unseen trees, although different trees of the same species are
present in the training data. Additionally, two different species;
Walnut and Shagbark Hickory, were held out entirely during
training to evaluate the generalization abilities of the proposed
network architectures.

MSE =
1

mn

m∑
i=1

n∑
j=1

(pij − tij)
2 (1)

m number of rows in image
n number of columns in image
pij predicted depth value at pixel
tij ground truth depth value at pixel

Several loss functions were evaluated for network training.
They can be grouped into loss functions for binary segmenta-

tion (including cross entropy, dice loss, focal loss, and Tversky
loss), and loss functions for regression (including mean square
error (MSE) as in Equation 1, root mean square error (RMSE),
logarithmic RMSE (LogRMSE), smooth L1 loss (SmL1), and
adaptive smooth L1 loss (AdSmL1)).

The following evaluation metrics as proposed and defined
in [23] are used to compare the performance: MSE (Eq. 1),
RMSE, LogRMSE, absolute relative error (AbsRelErr), and
squared relative error (SqRelErr).

The baseline segmentation network features 31M parame-
ters (see Table II and was trained using a two dimensional
cross entropy loss function. For the regression U-Net and its
transformer variant TransUNet, the MSE loss function was
utilized during training to approximate the ground truth depth
mask. Due to the added transformer layers, the number of
trainable weights for the TransUNet is increased by a factor
of 2.86 compared to the baseline model, totaling 89M. The
backbone of the ESANet is a segmentation U-Net encoder
which was pre-trained on the NYUv2 dataset [41]. In addition
to the final output layer, the model is supervised at each
decoder module: 1x1 convolutions compute lower-resolution
depth maps which are compared to down-sampled ground truth
depth maps via MSE. The model features 47M parameters,
which is a 50% increase with regard to the baseline model.

All networks were implemented in PyTorch and trained on
NVIDIA Titan X GPUs with 12GB of RAM. The batch size
was maxed out to run two jobs in parallel on a single GPU
node. Training was performed using the Adam optimizer [42]
with MSE loss for 20 epochs. To prevent model overfitting,
the epochs with the lowest error on the validation set were
chosen (10 epochs for the baseline, 20 epochs for the U-Net,
16 for the TransUNet, and 19 epochs for the ESANet).

E. Domain Adaptation

The difference between simulated and real data poses a
major challenge when feeding the models with real-world data
captured by a physical RGB-D sensor. Figure 3 showcases
this data disparity, which is generally caused by depth qual-
ity, lighting changes, camera noise, and interspecific (across
species) as well as intraspecific (within species) variability.

To aid in the Sim-to-Real transfer, a series of transforma-
tions and augmentations are applied. Real-world depth images
captured with an Intel RealSense device typically have larger
regions of pixels in which the depth values show only little
variation when compared to the simulation data. To model
this, the simulation depth values are rounded to eight discrete
values in the range [0m, 10m]. Additionally, real depth images
are much less detailed, resulting in leaves and branches being
nearly indistinguishable. To emulate this, Gaussian blur trans-
forms are applied before and after discretization. To promote
invariance towards varying lighting conditions and different
color shades, a ColorJitter transform was applied as well.
Finally, for input decorrelation and further data augmentation,
the input tensor was randomly cropped to 20-100% of the
original image size, and randomly horizontally flipped with
50% probability.
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IV. EXPERIMENTAL RESULTS

A numerical comparison of the different models on several
simulated datasets is performed, including the two held-out
tree species Walnut and Shagbark Hickory. We also conducted
evaluation only on the wooden parts of the tree (skeleton)
to remove the bias from predicting background pixels. The
networks are evaluated with respect to several different met-
rics, and compared regarding model size and inference time.
Finally, qualitative results on real-world data demonstrate the
viability of the approaches in predicting pixel-wise depth of
real trees.

A. Simulation Data Results

Table I shows the RMSE in meters for the models from
Section III-B on different simulated datasets. The first row per
model reports the metric value whereas the second corresponds
to the percentage improvement over the baseline model. Lower
RMSE values and larger negative percentages denote better
performance, the best model per dataset is in bold.

TABLE I
RMSE IN METERS FOR DIFFERENT SIMULATED DATASETS

Model Test Whole Test Skel. Shagbark Skel. Walnut Skel.

Baseline 0.502 2.411 2.881 2.930
- - - -

U-Net 0.359 1.129 1.293 1.226
(-28%) (-53%) (-55%) (-58%)

TransUNet 0.356 1.117 1.308 1.179
(-29%) (-54%) (-55%) (-60%)

ESANet 0.403 1.159 1.270 1.174
(-20%) (-52%) (-56%) (-60%)

The first column (Test Whole) in Table I reports the results
on the whole images of the test dataset. Since background
pixels may be a large proportion of the total image, models
performing well only in predicting the background cut-off
depth can potentially yield a very low RMSE on the entire
image. As the primary interest lies in the depth prediction of
the actual tree skeleton, the models were additionally evaluated
only on the subset of pixels representing the wooden parts of
the trees. The second column (Test Skel.) reports the RMSE
on the union of pixels containing non-background predictions
with pixels of the tree skeleton. The last two columns (Shag-
bark Skel. and Walnut Skel.) list the evaluation results on the
skeletons of the two unseen tree species, Shagbark Hickory
and Walnut respectively.

Overall, all three models outperform the baseline algorithm
by 29% up to 60% in terms of MSE as shown in Table I.
However, the transformer extension of the U-Net (TransUNet)
yields the best scores compared to the regression U-Net and
the ESANet on the entire images as well as on the pixels of
the tree skeleton.

Evaluating the models on only the tree skeleton exhibits
even bigger improvements. As reported in the second column
of Table I, all models reveal positive relative changes rang-
ing from 52% (ESANet) to 54% (TransUNet) compared to
the baseline. The overall improvements on the tree skeleton
confirm the effectiveness of the models regarding the depth

Fig. 4. Simulation inputs and outputs from the test dataset. Input RGB image
(A), input depth image (B), with the target ground truth depth mask (C) and
predicted depth masks of TransUNet (D). Tree species are Elm (I), Amur
Cork (II), Black Alder (III), London Plane (IV), Weeping Beech (V), and
American Sycamore (VI). Bottom colorbar denotes depth scale in meters.

prediction of wooden structure in contrast to the mere depth
prediction of background pixels. As the segmentation of the
baseline algorithm is binary, most pixels of the background are
predicted exactly, while the predictions of the other models
might deviate from the exact background value set by the
sensor cut-off distance.

To test the generalization ability of the models, two tree
species, namely Shagbark Hickory and Walnut, were left aside.
The third and fourth column of Table I show that the ESANet
is able to generalize best to the unseen species Shagbark
Hickory and Walnut, respectively. Nevertheless, also the errors
for the remaining models are of the same order of magnitude as
for the test dataset, demonstrating that all three models are able
to cope remarkably well with out-of-distribution data. For all
of the models the RMSE skeleton loss increases by maximally
10% for the out-of-distribution tree type Walnut.

Figure 4 visualizes RGB and depth input data from sim-
ulated images of different trees, with the target ground truth
depth map and the model prediction of the best performing
TransUNet. While the depth predictions of sparse trees appear
very sharp, occluded branches due to foliage lead to blur-
rier depth maps. Nonetheless, the model is able to recover
branch locations which are not easily inferable for humans or
heuristic-based algorithms. The supplementary video contains
a panning side-view of the resulting point-cloud from the depth
maps.
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TABLE II
COMPARISONS OF MODEL SIZE AND COMPLEXITY

Model Baseline U-Net TransUNet ESANet
GFLOPs ↓ 256.7 256.7 204.7 50.5
Parameters (M) ↓ 31.04 31.04 88.92 46.91
Inference Time (s) ↓ 0.341 0.309 0.336 0.279

TABLE III
RESULTS U-NET ON TREE SKELETON FOR DIFFERENT LOSS FUNCTIONS

Loss MSE RMSE LogRMSE AbsRelErr SqRelErr

MSE 0.011 0.106 0.140 0.084 0.017
- - - - -

SmL1 0.013 0.112 0.148 0.087 0.019
(+11%) (+6%) (+6%) (+4%) (+13%)

AdSmL1 0.030 0.173 0.228 0.153 0.050
(+167%) (+63%) (+63%) (+81%) (+189%)

MSEmCE 0.012 0.109 0.145 0.089 0.019
(+7%) (+3%) (+4%) (+5%) (+8%)

B. Network Comparison

Since onboard computational hardware on a UAV is re-
stricted, the evaluation times of the network forward pass
are of great interest. To estimate the model-specific inference
times, the execution time of the forward pass on the test dataset
for each model was measured when predicting a single image
frame, repeated 15 times. The evaluation times were measured
on server-mounted Nvidia Titan X GPUs. While this differs
from onboard hardware performance, the relative difference
between the networks will remain comparable. To measure
time complexity, GFLOPs (Giga Floating-Point Operations per
second), the number of multiply-accumulates to compute the
model prediction on a single image, are exploited.

Table II shows the results of the 15 evaluations on the
test set comprising 7K images. One can observe that the
ESANet performs significantly better in GFLOPs, with an
80% decrease from baseline and U-Net. The space complexity,
represented by the number of parameters (in millions), are
roughly the same for all models (31M to 47M), except the
TransUNet (89M) which has more than double the number of
parameters due to the additional transformer layers. The last
row reports the inference times in seconds for 15 frames. The
fastest forward pass is achieved by the ESANet, in accordance
with the GFLOPs analysis of the first row. Note that the base-
line inference time includes the additional temporal overhead
of masking the input sensor depth against the output binary
segmentation, to create a depth map for comparison against
the other regression networks.

C. Ablation Study
For computational reasons, all ablation studies were per-

formed on a reduced dataset containing 18K training samples
and 4K samples in the validation and test split each.

To determine suitable training loss functions, the U-Net
architecture was trained as a representative model on the
following loss functions: MSE loss (Eq. 1, a smooth version
of the L1 loss called SmL1 (comparable with the Huber loss),
an adaptive version of the aforementioned SmL1 loss called
AdSmL1 (optimizes the threshold for switching between the

TABLE IV
RESULTS U-NET ON TREE SKELETON FOR DIFFERENT MODEL INPUTS

Input MSE RMSE LogRMSE AbsRelErr SqRelErr

RGB-D 0.011 0.106 0.140 0.084 0.017
- - - - -

RGB 0.021 0.146 0.196 0.126 0.029
(+90%) (+38%) (+40%) (+49%) (+66%)

D 0.014 0.119 0.159 0.103 0.023
(+25%) (+12%) (+13%) (+22%) (+31%)

L2 to the L1 loss), and a mixture of MSE and cross entropy
MSEmCE (MSE for pixel-wise depth regression and cross
entropy for segmentation of the binary masked ground truth
and prediction). Table III presents the branch specific metrics
(see Section III-D) after training the U-Net model for 20
epochs with the different losses. For clearer comparisons
between the losses, the outputs are first normalized to be
between 0 and 1 from initial outputs in the range of 0 to
10m. The percentages beneath the absolute loss values are
with respect to the MSE loss in the first row.

For all metrics considered in the study, training on MSE
yields better results than any other loss function on the tree
skeleton. Since the predictions on the wooden parts of the
trees are the primary interest, MSE was opted for as the loss
function for training the final architectures.

To determine the importance of the contribution of the color
and depth input respectively, the performance of the U-Net
architecture trained on RGB-D images was compared with U-
Nets trained on RGB images or depth (D) input only. The
branch specific metrics of the U-Net model trained for 20
epochs on the different inputs is presented in Table IV.

Fig. 5. Handpicked example output on a real-world images. (A) Input RGB
image, (B) input depth images, (C) colormap for depth scale in meters, and
predicted network outputs (D) without domain transfer augmentation and (E)
with domain transfer augmentation: (I) Baseline, (II) U-Net, (III) TransUNet,
(IV) ESANet.

In comparison to regular RGB color cameras, the additional
depth information can provide vital information on the 3D
structure of the tree, improving network performance. Discard-
ing the depth channel decreases performance by 38% (RMSE)
up to 90% (MSE). On the other hand, dropping the three
color channels leads to performance decreases of only 12%
(RMSE) up to 31% (SqRelErr). Hence, the depth input alone
is already sufficient to produce results close to the predictions
based on RGB-D input images. We assume this to be due to



GECKELER et al.: LEARNING OCCLUDED BRANCH DEPTH MAPS IN FOREST ENVIRONMENTS USING RGB-D IMAGES 7

Fig. 6. Qualitative real-world data of the ESANet on trees from Swiss temperate forests (A-C) and trees from a masoala rainforest (D-F). The network
receives RGB (I) and depth (II) as input and computes the pixel-wise depth of the occluded branches (III). Colorbar on the right shows depth scale in meters.

the very accurate input depth images obtained in simulation,
which contain most of the relevant information in high detail.
As real depth sensors are not able to capture such high quality
frames, the importance of RGB input images is expected to
increase for real-world applications.

D. Real-World Data

We provide a preliminary, qualitative, demonstration on real
vegetation to demonstrate the feasibility of the approach on
real-world data. To capture real-world data, images were taken
with an Intel RealSense D435 depth sensor at a resolution of
640x480 pixels. Figure 5 shows predictions for all models,
trained on simulated data with and without domain transfer
data augmentation. This clearly shows the importance of
domain adaptation, considering that all models improve when
using the augmented rather than the raw simulated data for
the network training. While also true for the baseline, it still
struggles with occlusions and predicts discontinuous branches
(see Figure 5E-I). Visually, the ESANet (VI) appears to be
the most robust to the domain change, as its predictions are
smoother and less noisy. This could be due to depth and
color inputs being encoded separately, which detaches the two
different modalities. The above strategy can be helpful since
the depth data changes quite drastically for the real-world
samples in contrast to the color information.

Results of the ESANet, trained on the augmented simulation
dataset, on tree images from Swiss temperate forests and the
Masoala Rainforest are shown in Figure 6. The supplementary
video contains a panning side-view of the resulting point-
cloud of Figures 5, 6. Overall, the results show that it is
possible to generalize to real-world samples and to predict
feasible leafless depth maps of trees given RGB-D data, even
under very significant changes in the domain from simulated
training.

V. CONCLUSION

This letter demonstrates prediction of pixel-wise depth maps
of partially occluded tree structures, given RGB-D input im-
ages. The networks are trained and evaluated on an extensive

simulation dataset, with data post-processing performed to aid
with domain adaptation on real-world data. When qualitatively
evaluated on real-world images of trees from Swiss temperate
forests and trees from the Masoala Rainforest at Zoo Zurich,
the networks produce visually meaningful output depth maps.
While predicting feasible outputs regarding the location of
branches, the networks still struggle with input data that is
very different from the training data.

Given that the models currently perform better on synthetic
rather than real data, future work will focus on improving
the real-world performance. One possible approach is using a
more diverse dataset, such as including images from a wider
range of distances, more varied tree species, increasing tree
density to better reflect the natural clustering of trees, or
incorporating unsupervised domain adaption techniques [43].
To further improve depth predictions, one might potentially
explore alternative loss functions such as topological losses
[44] to impose constraints on the structural meaningfulness
of the output. Additionally, the solution can be made more
robust by reading sequential frames and outputting continuous
segmentations, thus reducing dependence on lighting irregular-
ities in singular frames and smoothing discontinuities between
captures.

Since the envisioned use-case is UAV navigation in forest
environments with dense vegetation, a natural next step would
be to deploy the trained models on a drone in an online sce-
nario to investigate the feasibility of using such architectures
for path planning and obstacle avoidance. Assuming accurate
output, this approach could then also be used to generate 3D
models of occluded tree skeletons, by capturing images from
around the tree. Considering the limited on-board computing
hardware, optimizing performance and making the networks
more lightweight should also be investigated. Potential appli-
cations of the system include collision avoidance in precision
agriculture by detecting occluded branches for harvesting,
pruning, or sensing, as well as robot navigation for search and
rescue in dense forest environments, or for sensor placement
and environmental monitoring.
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