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Abstract

Local features are the building block of most multi-view applications such as localization and
mapping, 3D reconstruction, and neural rendering, to obtain a highly accurate 3D geometry
of a scene. Thus, local features are expected to be accurate, but also to be efficient and
versatile to different tasks and conditions. This thesis explores some of the limitations of
modern local features and offers solutions, with a particular focus on accuracy and robustness.
It starts by reviewing a common issue of the widely used feature points: the trade-off between
generalization and discrimination capabilities. A light-weight solution is proposed to select
the most adapted invariance among several feature descriptors. Its hierarchical approach
offers fine-grained robustness, while remaining compatible with both handcrafted and learned
descriptors. In a second part, we tackle the challenges of the emerging line features and
demonstrate their benefits in multiple tasks. We first propose a joint neural network to detect
and describe line segments in images with high accuracy and robustness. Trained without
ground truth labels, our line features are also equipped with a mechanism to handle partial
occlusion. We then further improve the line detection with a hybrid approach combining
deep learning for its robustness, and handcrafted strategies for their high accuracy. In a
final part, we draw the conclusion that points and lines are complementary features and
that they should be used in combination. We thus propose a joint deep matcher of points
and lines, and show that leveraging the connectivity between all features is highly beneficial
for a robust matching. We finally demonstrate how the combination of points and lines
can be incorporated in a wide range of geometrical tasks and can boost their downstream
performance.
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Résumé

Les caractéristiques locales forment la pierre d’angle de la plupart des applications de vision
par ordinateur, telles que la localisation et cartographie visuelles, reconstruction 3D, et le
rendu neuronal, afin d’obtenir une représentation géométrique en 3D de haute précision. Ainsi,
les caractéristiques locales se doivent d’être précises, mais aussi d’être efficientes et polyvalentes
pour s’adapter à des tâches et conditions variées. Cette thèse explore certaines des limitations
des caractéristiques locales modernes et offre des solutions, avec un intérêt particulier pour
la précision et la robustesse. Elle commence par passer en revue un des problèmes notoires
des points caractéristiques : le compromis entre capacités de généralisation et de distinction.
Une solution peu onéreuse est proposée pour sélectionner l’invariance la plus adaptée parmi
plusieurs descripteurs de caractéristiques. Son approche hiérarchique offre une robustesse à
plusieurs niveaux, tout en restant compatible avec à la fois les descripteurs traditionnels et
neuronaux. Dans une deuxième partie, nous nous attaquons aux problématiques des lignes
caractéristiques, alors tout juste émergentes, et nous démontrons leurs avantages parmi
plusieurs applications. Nous proposons d’abord un réseau neuronal pour détecter et décrire
les segments de droite dans des images avec haute précision et robustesse. Supervisées sans
annotations, nos lignes caractéristiques sont aussi équipées d’un mécanisme pour gérer les
occlusions partielles. Nous améliorons ensuite la détection de lignes avec une approche hybride
combinant l’apprentissage profond pour sa robustesse, et des stratégies traditionnelles pour
leur haute précision. Dans la partie finale, nous concluons que les points et les lignes sont
des caractéristiques complémentaires et qu’elles devraient être utilisées conjointement. Nous
proposons donc un matcheur neuronal couplé pour les points et les lignes, et nous montrons que
l’exploitation de la connectivité entre toutes ces caractéristiques est extrêmement bénéfique
pour une association robuste entre images. Nous démontrons enfin comment le couplage des
points et des lignes peut être incorporé dans une vaste gamme d’applications géométriques et
peut stimuler leur performance finale.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Building Block of 3D Vision

Vision is the primary sensor in nature. In order to obtain a perception in 3 dimensions (3D),
evolution has equipped most species with two eyes, to create a small viewpoint variation
giving cues about the depth of the environment. Humans are no exception to this, and they
can even build an internal 3D representation of the world in their brain while moving and
observing the scene through novel views. But how do humans achieve that? A fundamental
insight is that they do associations between different views. They recognize objects and
shapes, realize that they have already seen them before, and then match these objects across
different views. Given these associations, it is then a simple geometrical problem (implicitly
solved in the brain) to recover the 3D structure of what is being seen.

Thus, humans excel at recognizing objects, especially when these are unique and can
be easily discriminated against other objects. Shapes, colors, and textures are the main
features used by humans to categorize such objects. All these visual characteristics can then
be described through language and communicated to other humans, to share a common
perception of the 3D world. Object-level associations help to understand where we are
approximately and to interpret what we are seeing, but to know our exact location, or to be
able to reconstruct the world with very fine details, higher precision is needed. In that case,
one can rely on smaller structures, such as contours of objects, salient edges, and unique
small patterns. These cues are both local and discriminative, meaning that they only require
a low-level understanding of the scene to detect them, but at the same time they are easy to
recognize. Among the simplest geometrical shapes to represent these patterns, are points
and straight lines.

This is what we call local features in the remaining of this thesis: small structures, such
as points and lines, which are well localized in the image - there is no uncertainty on their
position and they are stable across views - and with a discriminative local neighborhood -
they can be easily recognized from one view to another. Due to their simplicity and locality,
these features are easily detected by machines, and that is why most multi-view applications
of computer systems are relying on these local features as their primary building block.
Extracting local features from images is a long-standing task in computer vision, and the
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next chapter provides an overview of some of their applications.

1.1.2 Applications of Local Features

Similarly as for humans, machines and computers also rely heavily on vision sensors to
understand and interpret the world around them. While machines can also leverage depth
sensors to directly recover the 3D structure of the world, cameras are still cheaper and more
widely available. Therefore, many computer vision applications are leveraging multi-view
data to obtain a 3D perception of the world. For most of these applications, extracting and
matching local features are the very first steps to get access to multi-view information, as
illustrated in Figure 1.1. The next paragraphs describes a few of these applications.

When it comes to matching structures between images, an obvious task is the image
stitching and panorama creation. Whether the goal is to assemble several images together
to form a bigger picture, or to create an actual panorama from a collection of photographs,
local features are at the basis of the stitching process [Milgram, 1975, Brown and Lowe,
2003, Szeliski, 2004, Brown and Lowe, 2007, Barath et al., 2021]. After matching the features
between two images, a homography transform is usually computed to model the displacement
of each pixels from one image to the other. This assumes either a planar scene or a purely
rotational movement, which is the case for the generation of a panorama. Once the pixel-to-
pixel transform is known, it becomes easy to stitch the two images. The process can then be
generalized to more images to form a panorama.

Local features, and in particular lines, can also provide 3D information from a single
image only. This is made possible by the acquisition of vanishing points, the intersection
of the principal directions of parallel 3D lines, after projection into the image. In a typical
human-made environment, there are three such main directions, classically represented as x, y,
and z directions. This is called the Manhattan world assumption [Coughlan and Yuille, 1999].
Given lines in an image and its calibration, one can then associate each line to a vanishing
point, and recover the x, y, and z directions, thus yielding the orientation of the camera that
took the image [Bazin et al., 2012, Bazin and Pollefeys, 2012, Zhang et al., 2015, Li et al.,
2019, Pautrat et al., 2023b].

Another application where local features play a central role is for localization and mapping.
A typical use case is in robotics and Augmented Reality (AR) / Virtual Reality (VR) devices
that often first build a map of their environment, to be able to later relocalize into it. In the
mapping stage, also called Structure-from-Motion (SfM), local features are typically extracted
from a collection of images, matched, and then triangulated to lift them to 3D [Heinly et al.,
2015, Schonberger and Frahm, 2016]. The map thus consists of a cloud of 3D features. In a
later step, the robot or AR / VR device needs to find its position in the map, given its current
view. A coarse position is typically obtained through image retrieval techniques [Arandjelović
et al., 2016, Sarlin et al., 2019], and local features can be leveraged to re-rank the retrieved
images and to find the closest one [Noh et al., 2016, Cao et al., 2020]. Finally, a precise pose
is obtained by finding correspondences between the observed features in the current view and
the 3D features of the map [Quan and Lan, 1999, Lepetit et al., 2009].

The mapping and localization can also be performed simultaneously and in real time, and
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Detection Description Matching Applications

Figure 1.1: Local features extraction pipeline. Features are first detected in images, described
with a vector embedding, matched across images, and finally used in multi-view applications.

is referred as Simultaneous Localization and Mapping (SLAM) [Mur-Artal et al., 2015, Qin
et al., 2018]. This is especially useful for robots and devices such as drones. Given the
real time constraint and the fact that such devices have usually a low compute budget, the
extraction of local features must become very efficient. Binary features are then often used,
for their low storage and efficient run times [Calonder et al., 2010, Rublee et al., 2011]. Since
the data stream is sequential in these scenarios, the features can also be efficiently tracked
from one frame to another, avoiding expensive matching.

Furthermore, an SfM reconstruction based on local features does not only provide a map,
but it also returns the pose of the cameras that generated the initial set of images. These
poses can then be used by other applications requiring posed images, such as Multi-View
Stereo (MVS) [Furukawa and Ponce, 2010, Schönberger et al., 2016] and neural rendering [Park
et al., 2019, Mildenhall et al., 2020].

Last but not least, all the traditional tasks of computer vision mentioned earlier, SfM,
SLAM, MVS, and neural rendering, are used in a multitude of real-life applications: in
construction to get a digital model of a building, in the automatic inspection of infrastructures,
in home robotics, in autonomous driving, in cinema with the digitization of characters and
scenes, etc.

In conclusion, local features are at the basis of a wide range of computer vision applications.
Designing efficient, accurate, and robust features is thus essential and can have a large impact
in many domains.

1.1.3 Challenges of Local Features

Since local features are the basis of so many applications, they can be employed in a great
diversity of environments: indoors and outdoors, with illumination and seasonal changes, on
embedded platforms or in the cloud, etc. Thus, designing a generic feature extractor that can
work for as many tasks as possible is arduous. We list in the following some of the challenges
coming with the design of local features.

• Features must be as repeatable as possible, meaning that if a feature is detected in
an image, one wants to find it again in any other views of the same scene, possibly
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with different cameras and resolutions. Thus, the detector needs to be covariant to
distortions in the image, scale changes, and illumination changes for example. The
location of a feature in the image must also be as accurate as possible, so that its
position should not move more than a pixel between views for instance. This is a
requirement in geometrical tasks requiring high precision like localization and mapping.

• As mentioned above, the descriptor should be as discriminative and unique as possible.
Again, one must be able to match descriptors under large viewpoint and appearance
changes, including rotation, scale, illumination, and seasonal changes. Robustness to
wide-baseline matching and to these strong appearance variations is still a challenge
nowadays. On the other hand, being invariant to too many changes can be detrimental
(as we will see in Chapter 2), and the degree of invariance required may vary according
to the task.

• Detecting many features per image often helps in some applications, as it can pro-
vide denser reconstructions and more samples in the Random Sample Consensus
(RANSAC) [Fischler and Bolles, 1981a]. However, this makes it harder to distinguish
between close-by features and may cause matching errors. Furthermore, having too
many features becomes costly in large scenes. As the extraction of local features is
usually the initial step in many computer vision pipelines, the inference should also be
as fast and light-weight as possible.

• The definition of local features is sometimes ambiguous and can lead to spurious
detections. For example, one may want to extract all corners of an image as feature
points, but noise and small patterns in a texture can already contain a lot of corners,
which will certainly be unstable from one camera to another. Similarly, detecting any
number of line segments in an image, including noisy ones, will be detrimental to later
applications.

• Line features come with additional challenges. They have a longer extent in the image
and are thus less local, so require global context to extract them. Describing a single
point is local and easy, in comparison to summarizing the whole area around a line in a
single descriptor. Lines also suffer from unstable endpoints, which can often slightly
shift along the line direction, or a line can be broken down into smaller sub-segments.
While points are either visible or completely occluded, a line can also be partially
occluded, making it shorter or longer according to the viewing direction.

• Finally, some features are more fitted to some scenarios than others. For instance,
points can sometimes be scarce indoors where there is no texture, while lines may be
noisier in natural environments.

All these challenges are still prevalent in modern local features, and we will explore most
of them in the next chapters. Each time, we will strive to propose solutions to these issues
and we will support our contributions with a wide range of experiments and applications.
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1.2 Definition and Evolution of Local Features

We introduce in the following the main concepts and designs of local features that have
been developed in the past. Starting with point features (Section 1.2.1), we then introduce
line features (Section 1.2.2), before offering a glimpse on the benefits and applications of the
combination of both features (Section 1.2.3).

1.2.1 Point Features

1.2.1.1 Detection

Handcrafted detectors. The first step in local feature extraction is usually to detect
some specific shapes and to localize them in the image. The simplest form of point features
are corners, i.e. the intersection of two lines. Corners are indeed very stable across views,
well defined in space, and are very common in most images. The traditional approach first
computes the gradient of the image, by convolving it with specific filters such as the Sobel
filter [Sobel and Feldman, 1968]. The next step is to find local maxima in the image gradient.
A local maximum in one direction usually corresponds to a pixel on a line, and would be too
unstable to be a good keypoint. Thus, most methods are searching for maxima in multiple
directions, indicating that the pixel is on a corner [Moravec, 1977, Harris and Stephens,
1988, Shi and Tomasi, 1994, Rosten and Drummond, 2006].

But feature points are not limited to corners. Subsequent methods started detecting
blobs in images, adding the scale and rotation information to the features. Novel cues have
been added to the image gradient to achieve this: the Laplacian of Gaussian (LoG) by
computing the Laplacian of an image convolved with Gaussian kernels [Lindeberg, 1998], an
approximation of the LoG by computing a Difference of Gaussians (DoG) [Lowe, 2004], the
Determinant of the Hessian (DoH) [Bay et al., 2008], or by computing Maximally Stable
Extremal Regions (MSER) [Matas et al., 2002]. Some features are also robust to affine
transforms, such as the Harris affine detector and its improved version, the Hessian affine
region detector [Mikolajczyk and Schmid, 2002]. These features aim at detecting the same
regions of the image, even after the image has undergone an affine transform.
Learned detectors. While all these approaches can be considered as "handcrafted", as they
are based on specific image filters, the introduction of learning-based methods has ushered in a
resurgence of local features. Learned detectors indeed overcame one of the main limitations of
traditional detectors: the invariance to weather and lighting changes. Early works processed
patches taken from images and ran them through a learned regressor with the Temporally
Invariant Learned DEtector (TILDE) [Verdie et al., 2014] or later through a Convolutional
Neural Networks (CNN) with the Learned Invariant Feature Transform (LIFT) [Yi et al.,
2016].

After the democratization of CNNs, two trends emerged to extract local image features.
While both are processing the whole image in a single forward pass and outputting both
the point detections and description, they differ in the order of processing. In the detect-
and-describe approach, a joint backbone is used for both the detector and descriptor, and is
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split in two at the end. This allows to share most computations, and can create synergies
between the keypoints and their descriptors [DeTone et al., 2018, Revaud et al., 2019]. As
there are no obvious ground truth keypoints, the supervision of these methods is a challenge.
While SuperPoint [DeTone et al., 2018] used a self-supervised approach by first training a
network on a synthetic dataset and then generalized it to real images, following methods
minimized the reprojection error of keypoints between views as unsupervised signal [Revaud
et al., 2019, Christiansen et al., 2019, Tang et al., 2020, Zhao et al., 2021, Zhao et al.,
2023, Wang et al., 2023, Sun et al., 2023]. Other methods included handcrafted filters and
scale space images in the backbone [Barroso-Laguna et al., 2019] or supervised the network
with reinforcement learning [Tyszkiewicz et al., 2020]. The other approach corresponds to
the describe-then-detect framework: dense descriptors are first extracted from an image, then
a keypoint heatmap is inferred from it, by selecting the most salient pixels in descriptor
space. Introduced in D2-Net [Dusmanu et al., 2019], the concept has then been extended in
subsequent works [Luo et al., 2020, Tian et al., 2020, Wang et al., 2021].

In this thesis, we use off-the-shelf keypoints among the most famous ones: the Scale-
Invariant Feature Transform (SIFT) [Lowe, 2004] for handcrafted keypoints, and Super-
Point [DeTone et al., 2018] for learned ones.

1.2.1.2 Description and Matching

Handcrafted descriptors. In order to match keypoints across images, the traditional
approach is to first describe the surrounding region of the point, and to compare the descriptors
of all points, before finding the closest descriptor in the other image. Early works leveraged
a Histogram of Oriented Gradients (HOG) [William T. Freeman, 1994] to describe a patch
around a point. Classifying the gradient orientation and magnitude was later reused in
SIFT [Lowe, 2004], probably the most widely used local feature until now. Later works
improved the speed while achieving high performance, by maintaining the histograms more
efficient [Tola et al., 2010a], or by leveraging Haar wavelet responses [van Drongelen, 2007] in
the Speeded Up Robust Features (SURF) [Bay et al., 2008]. Handcrafted local descriptors
can be made even faster, with binary descriptors such as the Binary Robust Independent
Elementary Features (BRIEF) [Calonder et al., 2010] and its rotated version, the Oriented
FAST and Rotated BRIEF (ORB) [Rublee et al., 2011].
Learned descriptors. All the previous methods are describing a patch of the image
around each keypoint. Thus, the early deep descriptors naturally followed this scheme by
running a CNN on a small image patch to output the descriptor [Yi et al., 2016, Tian et al.,
2017, Mishchuk et al., 2017, Ono et al., 2018]. The patch is not restricted to square areas,
but can encode spatial transforms, such as affine [Mishkin et al., 2018] and polar [Ebel et al.,
2019] ones. The network is often optimized with a triplet loss using heuristics to extract
positive and negative patches [Han et al., 2015, Balntas et al., 2016a, Luo et al., 2018, Tian
et al., 2019], or by directly maximizing the average precision (AP) [He et al., 2018]. Sparse
features also give the possibility to leverage both the visual context of the image and the
spatial relationships between the keypoint locations [Luo et al., 2019].
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More recently, descriptors extracted densely by CNN architectures from full images have
shown both fast inference time and high performance on matching and retrieval tasks, and
can jointly detect a heatmap of keypoints [DeTone et al., 2018, Dusmanu et al., 2019, Revaud
et al., 2019]. The Repeatable and Reliable Detector and Descriptor (R2D2) [Revaud et al.,
2019] adds a reliability branch to the descriptor to keep track of the most informative locations
in the image. The supervision is often obtained from reprojecting keypoints from one image
to another through homographies [DeTone et al., 2018, Revaud et al., 2019] or using known
pose and depth [Dusmanu et al., 2019], but can also come from pose only [Wang et al.,
2020]. In the latest works, directly optimizing the negative log likelihood of the matching
probabilities has revealed to be high performing [Sarlin et al., 2020a, Zhao et al., 2023].
Matching. After extracting one descriptor per keypoint, the features are usually matched
by computing the nearest neighbors across images: the L2 distance of all descriptors from
one image to the ones of the other image is computed, and the closest point in descriptor
space is selected. Additional checks can further filter out the matches, such as the ratio
test [Lowe, 2004] or by only keeping mutually matched keypoints. Outlier matches can
also be filtered by handcrafted heuristics [Cavalli et al., 2020] or learned ones [Zhang et al.,
2019a]. More recently, a new trend has emerged, with the emergence of deep matchers.
SuperGlue [Sarlin et al., 2020a] was the first to propose taking points and their descriptors
as input, and to match them within a Graph Neural Network (GNN) to encode context
and allow communication between all features. Subsequent works proposed ways to make
the inference more efficient [Chen et al., 2021, Shi et al., 2022, Lindenberger et al., 2023].
Chapter 5 will offer another extension of this work to combine the matching of feature points
as well as lines.

1.2.2 Line Features

1.2.2.1 Detection

Handcrafted line detectors. Detecting line segments in images is traditionally performed
based on the image gradient. Early methods threshold the gradient magnitude to keep only
strong edges [Canny, 1986] and search for aligned sets of pixels sharing the same gradient angle.
The Line Segment Detector (LSD) [Von Gioi et al., 2008] grows line regions, fits a rectangle
to the resulting set of pixels, and finally extracts a line segment. EDLines [Akinlar and Topal,
2011] grows the line regions in one direction only, orthogonal to the image gradient. Several
extensions of these methods have been proposed, such as the multi-scale version of LSD,
MLSD [Salaün et al., 2016], and the Enhanced Line SEgment Drawing (ELSED) [Suárez et al.,
2022], a faster version of EDLines which avoids breaking lines in case of small discontinuities.
AG3Line [Zhang et al., 2021b] proposes to actively group the seed points and adds line
geometry constraints. Another approach consists in detecting full lines with the Hough
transform [Hough, 1962] in a first step, then finding segments within these lines [Elder et al.,
2020]. Since all these methods rely on low-level details of the image, they are highly accurate
and fast, but lack robustness to noise and low illumination.
Learned line detectors. Deep line detection was first introduced through the task of
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wireframe parsing, i.e. estimating the structural lines of a scene [Huang et al., 2018]. Several
approaches have been proposed to parameterize and represent the line segments, e.g., with
two endpoints [Zhou et al., 2019a], a middle point, direction and length [Dai et al., 2021],
attraction fields [Xue et al., 2019, Xue et al., 2020, Xue et al., 2022], center and offset to
the endpoints [Huang et al., 2020], graphs [Zhang et al., 2019b, Meng et al., 2020], and
transformers [Xu et al., 2021a]. Wireframes can be further improved through a Deep Hough
transform [Lin et al., 2020]. All these methods are trained on a single dataset, the Wireframe
dataset [Huang et al., 2018], and they are not necessarily suitable for other tasks such as
visual localization and SfM.

Generic deep line segment detectors have also been proposed, with a focus on efficiency [Dai
et al., 2021, Gu et al., 2022], and can improve visual localization with points and lines [Gao
et al., 2021]. However, these methods are again trained solely on the Wireframe dataset and
their predicted lines are biased towards structural lines and indoor scenes. The Efficient
Line Segment Detector and Descriptor (ELSD) [Zhang et al., 2021a] and the Learnable
Line Detector and Descriptor (L2D2) [Abdellali et al., 2021] both propose similar networks,
but ELSD is again trained on the Wireframe dataset, while L2D2 uses a novel process to
extract a line ground truth from Light Detection and Ranging (LiDAR) scans. Though these
approaches are a first step towards unsupervised line detection, they still lack accuracy, as
we will wee in the rest of the thesis.

1.2.2.2 Description and Matching

Handcrafted line descriptors. While early line descriptors are based on simple color
histograms [Bay et al., 2005], most handcrafted descriptors leverage the image gradient [Wang
et al., 2009b, Wang et al., 2009c]. The most common approach is thus to extract a line
support region around each line and to summarize gradient information in sub-regions [Wang
et al., 2009b, Wang et al., 2009c, Hirose and Saito, 2012, Zhang and Koch, 2013, Verhagen
et al., 2014]. The Line Band Descriptor (LBD) [Zhang and Koch, 2013] is the most famous
of them, but it still underperforms under large viewpoint and appearance changes.
Learned line descriptors. It is only recently that line description has been tackled
with deep learning. One approach is to extract a patch around the line and to compute
a low dimensional embedding optimized through a triplet loss, as in the Deep Line De-
scriptor (DLD) [Lange et al., 2019b] and its improved version, the Wavelet Line Descrip-
tor (WLD) [Lange et al., 2020]. On the other hand, a line descriptor can be considered
as a collection of point descriptors, following the idea of Liu et al. [Liu et al., 2010]. The
Learnable Line Descriptor (LLD) [Vakhitov and Lempitsky, 2019] thus samples and describes
multiple points along each line. Designed to be fast and to be used for SLAM, it is however
not invariant to rotations and its performance quickly degrades for large viewpoint changes.
One of the latest line descriptors was LineTR [Yoon and Kim, 2021], that enriches the line
descriptor through self attention layers within and across lines. As we will see in the following,
line descriptors are still suffering from multiple issues, to which we propose a few solutions in
this thesis.
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Line matching. For all the previously mentioned methods, the traditional approach for
matching is to compute the nearest neighboring line in descriptor space, similarly as for
feature points. Since descriptor-based matching for line segments is generally more difficult
than for points, several methods have complemented the descriptor matching with geometric
scene information [Li et al., 2016a]: global rotation between images [Zhang and Koch, 2013];
properties of pairs of matched lines like the angle between segments, intersection ratios or
projection ratios [Zhang and Koch, 2013, Wang et al., 2009a]; line-point invariants [Fan et al.,
2012a]; cross-ratio [Ramalingam et al., 2015a] or consistency with a fundamental matrix
estimated from points [Schmid and Zisserman, 1997a, Li et al., 2016c].

1.2.3 Combinations of Points and Lines

Points and lines are often used independently for different applications, but some methods
have tried combining them to improve the overall performance. Combinations of a line and
multiple points have for example been leveraged in matching to filter out wrong matches [Fan
et al., 2012a, Li et al., 2016c]. When connecting matched points by virtual lines, one can
then mine for additional point matches along the line to improve wide-baseline matching [Ra-
malingam et al., 2015a]. Lines can also be used in point-based reconstructions to reduce
the drift, thanks to their large extent [Holynski et al., 2020]. Starting from an existing 3D
point reconstruction, one can also triangulate lines and add them to the reconstruction, while
leveraging the points to solve singularities arising in line triangulation [Liu et al., 2023]. Points
and lines can also complement each other to refine the estimation of a camera pose [Gao
et al., 2021, Liu et al., 2023]. Finally, there has been a large collection of works exploring
SLAM based on points and lines [Zuo et al., 2017, Pumarola et al., 2017, Gomez-Ojeda et al.,
2019, Fu et al., 2020b, Lim et al., 2021, Zhou et al., 2022, Ren et al., 2022, Xu et al., 2023].
All these applications often require matching both points and lines, which is classically done
independently, and thus, inefficiently. We show in Chapter 5 how to combine points and lines
in the matching step already.

1.3 Contributions

As introduced in Section 1.1.3, local features come with multiple challenges. We chose to
focus in this thesis on the point and line features, as they are the most basic and versatile kinds
of local features. In the following chapters, we will explore some of the limitations of both
points and lines in more detail, then show how both types of local features can complement
each other to solve some of these issues. Here is a summary of the main contributions of the
thesis:

• We show that there is a trade-off between the invariance of feature descriptors to
viewpoint and appearance changes, and their power of discrimination. We propose to
overcome this issue by automatically evaluating the right amount of invariance necessary
for each task, and to select the most suited descriptor for the task in an online fashion.

9



• We propose the first joint network to detect and describe line segments in images. Our
method is self-supervised and does not require hand-labelled ground truth. We show
that our predicted lines are repeatable, accurate, and that their descriptor is robust to
partial occlusion.

• We introduce a hybrid method fusing handcrafted and learned approaches to improve
the accuracy of line detectors, while maintaining a strong robustness to appearance
changes. This new line detector can be trained by bootstrapping existing ones and is
sufficiently generic, accurate, and robust to be applied in a wide variety of tasks. We
also offer a tool to refine any existing lines and to significantly improve their localization
accuracy.

• Finally, we propose to jointly match points and lines in a single graph neural network.
By leveraging the connectivity between points, we improve the matching of points
in texture-less areas, while also strongly improving the performance of line matching
compared to previous approaches. We further demonstrate the power of combining
points and lines in multiple tasks, and show that these features are complementary and
can help each other.

Together with all these contributions, we released the open-source code and pre-trained
models for the benefit of the community. The material in this thesis builds upon and originates
from the following peer-reviewed publications:

• [Pautrat et al., 2020] Pautrat, R., Larsson, V., Oswald, M. R., and Pollefeys, M. (2020).
Online Invariance Selection for Local Feature Descriptors. In European Conference on
Computer Vision (ECCV).

• [Pautrat et al., 2021] Pautrat, R., Lin, J.-T., Larsson, V., Oswald, M. R., and Pollefeys,
M. (2021). SOLD2: Self-Supervised Occlusion-Aware Line Description and Detection.
In Computer Vision and Pattern Recognition (CVPR).

• [Pautrat et al., 2023a] Pautrat, R., Barath, D., Larsson, V., Oswald, M. R., and
Pollefeys, M. (2023). DeepLSD: Line Segment Detection and Refinement with Deep
Image Gradients. In Computer Vision and Pattern Recognition (CVPR).

• [Pautrat et al., 2023c] Pautrat, R., Suárez, I., Yu, Y., Pollefeys, M., and Larsson, V.
(2023). GlueStick: Robust Image Matching by Sticking Points and Lines Together. In
International Conference on Computer Vision (ICCV).

Moreover, the author of this thesis also contributed to the following peer-reviewed papers
in the course of the doctoral studies:

• [Liu et al., 2023] Liu, S., Yu, Y., Pautrat, R., Pollefeys, M., and Larsson, V. (2023).
3D Line Mapping Revisited. In Computer Vision and Pattern Recognition (CVPR).

• [Pautrat et al., 2023b] Pautrat, R., Liu, S., Hruby, P., Pollefeys, M., and Barath,
D. (2023). Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction. In International Conference on Computer Vision (ICCV).
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1.4 Outline

This thesis is structured in the following way. In a first part, Chapter 2 explores some of
the limitations of point features and introduces a method to overcome them. The second
part offers a view on the current state of line segment detection and description, explores its
limitations, and proposes solutions to these problems. On the one hand, Chapter 3 takes
inspiration from the recent progress in feature points learning and applies it to line segments
to jointly detect and describe lines in a single network. On the other hand, Chapter 4 goes
one step further to improve line detectors and to make them both accurate and robust to
image changes. In a third part, Chapter 5 combines both types of features into a single deep
matcher, and shows the benefits of such a joint approach. Lastly, Chapter 6 draws conclusions
about this work, discusses the complementary nature of points and lines in geometrical tasks,
and finally suggests future avenues of research in this topic.
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Part I

Limits of Fully Invariant Feature
Points
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Chapter 2

Online Invariance Selection for
Local Feature Descriptors

This chapter explores an important limitation of current local feature descriptors: the
trade-off between generalization and discriminative power. We show that too much invariance
yields less informative descriptors, and we propose to overcome this limitation with an
online selection of the most appropriate invariance, given the context. Our framework
consists in a joint learning of multiple local descriptors with different levels of invariance
and of meta descriptors encoding the regional variations of an image. The similarity of
these meta descriptors across images is used to select the right invariance when matching
the local descriptors. Our approach, named Local Invariance Selection at Runtime for
Descriptors (LISRD), enables descriptors to adapt to adverse changes in images, while
remaining discriminative when invariance is not required. We demonstrate that our method
can boost the performance of current descriptors and outperforms state-of-the-art descriptors
in several matching tasks, when evaluated on challenging datasets with day-night illumination
as well as viewpoint changes. This chapter builds upon the following publication: [Pautrat et al.,
2020], and the corresponding code is available at https: // github. com/ rpautrat/ LISRD .
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2.1 Motivation

In this chapter, we review existing local feature descriptors and show that they suffer
from a trade-off between their robustness to image changes, and their capacity to be highly
discriminative. Local descriptors are often designed to be invariant to as many transformations
as possible, in order to be able to generalize to unknown situations. A vision system relying
on feature points to perform autonomous driving is for instance expected to be robust to
adverse weather changes (such as sunny, overcast, rainy, foggy, and snowy days), lighting
changes (dawn, daylight, dusk, and night), as well as seasonal changes (e.g. from winter
to summer). While more invariance can be achieved by relying more on semantics or by
designing filters that are invariant under certain transforms, such techniques come with a loss
in discriminative power: it becomes harder to distinguish between two very similar patches of
an image. Typically, such a descriptor would gain robustness in case of adverse changes, but
would lose accuracy when it comes to repeated patterns or semantic classes (e.g. localizing
among several similar-looking buildings).

We propose to tackle this issue by automatically deciding at test time which invariance is
necessary for the given scenario, and to select the minimum amount of invariance required.
Thus, our system is able to automatically adapt to adverse conditions, while remaining highly
discriminative the rest of the time.

The rest of this chapter motivates the design of our method (Section 2.2), studies how
previous works have tried to gain invariance and to tackle the aforementioned challenge
(Section 2.3), introduces our proposed solution to it (Section 2.4), evaluates our method on a
wide diversity of benchmarks for local features (Section 2.5), and finally closes on a discussion
of this inherent limitation of feature points and of other existing limitations (Section 2.6).

2.2 Introduction

As previously described, sparse feature points are at the root of many computer vision
tasks: SfM, SLAM, image retrieval, tracking, etc. They offer a compact representation in
terms of memory storage and allow for efficient image matching, and are thus well suited for
large-scale applications [Heinly et al., 2015, Schonberger and Frahm, 2016, Schönberger et al.,
2017, Sattler et al., 2017]. These features should however be able to cope with real world
conditions such as day-night changes [Zhou et al., 2016], seasonal variations [Sattler et al.,
2018] and matching across large baselines [Tola et al., 2010b].

To be able to do matching in extreme scenarios, the successive feature detectors and
descriptors have become more and more invariant [Mikolajczyk et al., 2005]. The Harris
corner detector [Harris and Stephens, 1988] was already invariant to rotations, but not to
scale. The SIFT detector and descriptor [Lowe, 2004] was one of the first to achieve invariance
with respect to scale, rotation and uniform light changes. More recently, learned descriptors
have been able to encode invariance without handcrafting it. On the one hand, patch-based
descriptors can become invariant to transforms when estimating the shape of the patch [Yi
et al., 2016, Ono et al., 2018, Mishkin et al., 2018, Ebel et al., 2019]. On the other hand,
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recent dense descriptors leverage the power of large CNNs to become more general and
invariant. Most of them are trained on images with many variations in the training set,
either obtained through data augmentation [DeTone et al., 2018], with large databases of
challenging images [Dusmanu et al., 2019] or with style transfer [Revaud et al., 2019]. They
can also directly encode the invariance in the network itself [Liu et al., 2019]. The general
trend in descriptor learning is thus to capture as much invariance as possible.

While feature detectors should generally be invariant to be repeatable under different
scenarios [Zhou et al., 2016], the same is not necessarily true for descriptors [Wu et al.,
2008]. There is a direct trade-off for descriptors between generalization and discriminative
power. More invariance allows a better generalization, but produces descriptors that are less
informative. Figure 2.1 shows that the rotation variant descriptor Upright SIFT performs
better than its invariant counterpart SIFT when only small rotations are present in the data.
We argue that the best level of invariance depends on the situation. As a consequence, this
questions the recent trend of jointly learning detector and descriptor: they may have to be
dissociated if one does not want the descriptor to be as invariant as the detector.

In this chapter, we focus on learning descriptors only and propose to select at runtime
the right invariance given the context. Instead of learning a single generic descriptor, we
compute several descriptors with different levels of invariance. We then propose a method
to automatically select the most suitable invariance during matching. We achieve this by
leveraging the local descriptors to learn meta descriptors that can encode global information
about the variations present in the image. At matching time, the local descriptors distances
are weighted by the similarity of these meta descriptors to produce a single descriptor distance.
Matches based on this distance can then be filtered using standard heuristics such as ratio
test, mutual nearest neighbor, or learned matchers.

Overall, our method, named Local Invariance Selection at Runtime for Descriptors
(LISRD), brings flexibility and interpretability into the feature description. When some
image variations are known to be limited for a given application, one may directly use the
most discriminative descriptor among all our learned local descriptors. However, it is usually
hard to make such an assumption about the inter-image variations, and LISRD can instead
automatically select the best invariance independently for each local region. Hence we are
able to distinguish between different levels of variations within the same image (e.g. if half
of the image is in the shadow but not the other half) and we show that this can improve
the matching capabilities in comparison to using a single descriptor. The meta descriptors
formulation is also not restricted to our proposed learned local descriptors, but can be easily
generalized to most keypoint detectors and descriptors, as shown in Figure 2.1 where it is
applied to SIFT and Upright SIFT. Furthermore, the meta description only adds a small
overhead to the current pipelines of keypoint detection and description in terms of runtime and
memory consumption, which makes it suitable for real time applications. We can summarize
the contributions of this chapter as follows:

• We show how to learn several local descriptors with multiple variance properties
through a single network, in a similar spirit as in multi-task learning.
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Figure 2.1: Importance of invariance among descriptors. SIFT descriptors (left) perform
well on rotated images (top), but are outperformed by Upright SIFT descriptors (middle) when no
rotation is present (bottom). We propose a method (right) that automatically selects the proper
invariance during matching time.

• We propose a light-weight meta descriptor approach to automatically select the best
invariance of the local descriptors given the context.

• Our concept of meta descriptor and general approach of invariance selection can be
easily transferred to most feature point detectors and descriptors, which we
demonstrate for learned as well as traditional handcrafted descriptors.

2.3 Related Work

Learned local feature descriptors. Local features have evolved from handcrafted filters
to learned ones trained with deep learning. For an overview of recent methods, we refer the
reader to Section 1.2.1.
Invariance in feature descriptors. Selecting an online invariance for binary descriptors
is the core idea of the Binary Online Learned Descriptor (BOLD) [Balntas et al., 2015],
where a subset of the binary tests is chosen at runtime for each image patch to maximize
the invariance to small affine transformations. Similarly, the general trend of most recent
learned methods is to obtain descriptors as invariant as possible to any image variations.
LIFT [Yi et al., 2016] mimics SIFT to achieve rotation invariance by estimating the keypoints,
their orientation and finally their descriptor. Invariance to specific geometric changes can be
achieved through group convolutions [Cohen and Welling, 2016] by clustering the different
geometrical transformations into specific groups [Liu et al., 2019]. However, the usual strategy
is to incorporate as much diversity in the training data as possible. Illumination invariance can
for example be obtained by training on images with multiple lighting conditions [Kaliroff and
Gilboa, 2019]. Photometric and homographic data augmentations also increase robustness to
illumination and viewpoint changes [DeTone et al., 2018]. Similarly, R2D2 [Revaud et al.,
2019] improves the robustness to day-night changes by synthesizing night images with style
transfer and also to viewpoint changes by leveraging flow between close-by images [Revaud
et al., 2015]. Methods like D2-Net [Dusmanu et al., 2019] leverage a large database of images
with multiple conditions and non planar viewpoint changes thanks to SfM data [Li and Snavely,
2018]. In this work, we adopt a mixture of the previously mentioned methods, namely the
same synthesized night images as in [Revaud et al., 2019], homographic augmentation, and
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training on datasets with multiple illumination changes [Murmann et al., 2019].
Multi-task learning in description and matching tasks. Using a single network to
achieve multiple and related tasks in feature description and matching is not new. Jointly
learning the detector and descriptor [DeTone et al., 2018, Dusmanu et al., 2019, Revaud et al.,
2019] is already multi-task learning that makes the descriptors more discriminative at the
predicted keypoint locations. The Hierarchical Feature Network (HF-Net) [Sarlin et al., 2019]
unifies the detection of feature points, local and also global descriptors for image retrieval
using multi-task distillation with a teacher network. Methods such as SuperGlue [Sarlin et al.,
2020b] and ContextDesc [Luo et al., 2019] can leverage both visual and geometric context in
their descriptors in order to get a more consistent matching between images. UR2KID [Yang
et al., 2020] bypasses the need of keypoint supervision during training and directly optimizes
the descriptors jointly for local matching and image retrieval. In our approach, multiple
descriptors are also learned in parallel, but instead of differing in their scope, they differ in
their level of invariance. Furthermore, unlike previous hierarchical global-to-local approaches,
our method relies on local descriptors first and leverages global information only to refine the
local matching.

2.4 Method

Our approach to select the most relevant variance for local feature descriptors consists in
two steps. First, we design a network to learn several dense descriptors, each with a different
type of invariance (see Section 2.4.1). Second, we propose a strategy in Section 2.4.2 to
determine the best invariance to use when matching the local descriptors. Figure 2.2 provides
an overview of the full architecture.

2.4.1 Disentangling Invariance for Local Descriptors

Many properties of an image have an influence on descriptors, but disentangling all of
them would be intractable. We focus here on two factors known to have a large impact
on descriptors performance: rotation and illumination. Our framework can however be
generalized to other kinds of variations, for instance scaling. Since each of the two factors can
either be variant or invariant, there are four possible combinations of variance with respect to
illumination and rotation. We show in the following that the variant versions of descriptors
are more discriminative since they are more specialized, while the invariant ones are trading
the discriminative power for better generalization capabilities.
Network architecture. Our network is inspired by SuperPoint [DeTone et al., 2018],
with slight modifications. It takes RGB images as input, computes semi-dense features
with a shared backbone of convolutions and is then divided into 4 heads predicting a semi-
dense descriptor each, one per combination of variance, as shown in Figure 2.2. Since most
computations are redundant between the 4 local descriptors, the shared backbone reduces the
number of weights in the network and offers an inference time competitive with the current
learned descriptors.
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Figure 2.2: Overview of our network architecture. Our network computes four local dense
descriptors with diverse invariances and aggregates them through a Network for Vector of Locally
Aggregated Descriptors (NetVLAD) layer [Arandjelović et al., 2016] to obtain a regional description
of the variations of the image.

Dataset preparation. The training dataset is composed of triplets of images. The first
one, the anchor image IA, is taken from a large database of real images. The variant image
IV is a warped version of the anchor by a homography without rotation and with equal
illumination to train variant descriptors. Finally, the invariant image II used for invariant
descriptors is also related to the anchor by a homography, but its orientation and illumination
can differ from the anchor.

Training losses. The local descriptors are trained using variants of the margin triplet
ranking loss [Balntas et al., 2016b, Mishchuk et al., 2017], depending on whether the descriptor
should be invariant or not to the variations present in II . The dense descriptors are first
sampled on selected keypoints of the images, they are L2-normalized and the losses are
computed on the resulting set of feature descriptors. Since we focus on descriptors only, we
use SIFT keypoints during training to propagate the gradient in informative areas of the
image only. Any kind of keypoint can be used at inference time nonetheless, as demonstrated
in Section 2.5.5.

Formally, given two images Ia and Ib related by a homography H and n keypoints xa
1..n in

image Ia, we warp each point to image Ib using the homography: xb
1..n = H(xa

1..n). This yields
a set of n correspondences between the two images, where we can extract the descriptors from
each dense descriptor map: da

1..n and db
1..n. Let us define a generic triplet loss LT (Ia, Ib,dist)

between Ia and Ib, given a descriptor distance dist(xa,xb). The triplet loss first enforces a
correct correspondence (xa

i ,xb
i ) to be close in descriptor space through a positive distance

pi = dist(xa
i ,xb

i ) . (2.1)

Additionally, the triplet loss increases the negative distance ni between xa
i and the closest

point in Ib which is at least at a distance T from the correct match xb
i . This distance is

computed symmetrically across the two images and the minimum is kept:

ni = min(dist(xa
i ,xb

nb(i)), dist(xb
i ,xa

na(i))) , (2.2)
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with nb(i) = arg minj∈[1,n](dist(xa
i ,xb

j)) s.t. ||xa
i − xb

j ||2 > T , and similarly for na(i). Given a
margin M , the triplet margin loss is then defined as

LT (Ia, Ib,dist) = 1
n

n∑
i=1

max(M + p2
i − n2

i , 0) . (2.3)

In our case, the loss LI for invariant descriptors is an instance of this generic triplet loss
between the anchor image IA and the invariant image II , for the L2 descriptor distance:

LI = LT (IA, II , ||dA − dI ||2) . (2.4)

The loss LV for variant descriptors is based on the full triplet of images: IA, II and IV .
It enforces variant descriptors to be different between the anchor and the invariant image,
while preserving similarity between the anchor and the variant image. Its positive loss is the
distance in descriptor space of positive matches between IA and IV , and similarly for the
negative distance between IA and II :

LV = 1
n

n∑
i=1

max(fM + ||dA
i − dV

i ||22 − ||dA
i − dI

i ||22, 0) , (2.5)

where f is a factor controlling at which point the anchor and the invariant images are different.
For rotation changes, f = min(1, θI

θmax
), where θI is the absolute angle of rotation between

the anchor and the invariant image and θmax is a hyper-parameter representing the threshold
beyond which the two images should be considered different. This threshold ensures that only
large rotations are penalized by the loss. It is hard to quantify the difference in illumination
between two real images, so we set f = 1 when the illumination differs between the anchor
and invariant image.

When a descriptor d in the set D of descriptors is supposed to be invariant to all changes
(illumination and/or rotation) between IA and II , we use LI . Otherwise, LV is used. We
define LI/V (d) as the selected loss and the total loss for local descriptors as

Ll = 1
|D|

∑
d∈D

LI/V (d) . (2.6)

2.4.2 Online Selection of the Best Invariance

Given the local descriptors of the previous section, this section explores how to pick the
most relevant invariance when matching images. Since it would be costly to recompute and
compare the image variations for every pair of images to be matched, we propose to rely solely
on the information contained in the descriptors to perform the selection. A naive approach
would be to separately compute the similarity of the different local descriptors and to pick
the most similar ones. However, the invariance selection would gain by having more context
than the information of a single local descriptor and should be consistent with neighboring
descriptors. Therefore, we propose to extract regional descriptors from the local ones and to
use them to guide the invariance selection.
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The local descriptors are thus gathered in neighboring areas through a NetVLAD
layer [Arandjelović et al., 2016] to get a meta descriptor sharing the same kind of invariance
as the subset of local descriptors, but with more context than a single local descriptor. Thus,
having similar meta descriptors means sharing the same level of variations. The neighboring
areas are created by tiling the image into a c× c grid and computing a meta descriptor for
each tile. Hence, we get four meta descriptors per tile, which are then L2 normalized.

When matching the local descriptors of a tile, the four similarities between the meta
descriptors are computed with a scalar product and we can rank the four local descriptors
according to these similarities. Instead of making a hard choice by taking only the closest local
descriptor, we use a soft assignment. A softmax operation is applied to the four similarities,
to get four weights summing to one. These weights are then used to compute the distance
between the local descriptors as shown in Figure 2.3. More precisely, suppose that we want
to compute the distance in descriptor space between point xa in image Ia and point xb in
image Ib. Point xa is associated with 4 local descriptors da

1..4 and 4 meta descriptors ma
1..4

corresponding to the region where xa lies, and similarly for xb. Then the final descriptor
distance between xa and xb is

dist(xa,xb) =
4∑

i=1

exp ((ma
i )⊺ · mb

i )∑4
j=1 exp ((ma

j )⊺ · mb
j)

||da
i − db

i ||2 . (2.7)

Thus, the similarity of the meta descriptors acts as a weighting of the local descriptors
distances and can put a stronger emphasis on one specific variance when the corresponding
meta descriptors have a high similarity. Matching is then performed with this descriptor
distance, and can easily be refined with ratio test [Lowe, 2004] or mutual nearest neighbor.

Training loss. The 4 NetVLAD layers are trained with a weak supervision based on
another instance of the triplet loss LT between IA and II with the distance defined above:

Lm = LT (IA, II ,dist) . (2.8)

Thanks to this weak supervision, there is no need to explicitly supervise the meta descriptors,
which would require knowing the amount of rotation and illumination for every tile in the
image. The total loss of the network is finally a combination of the local and meta descriptors,
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Figure 2.3: The LISRD descriptor distance between two points is the sum of the four local
descriptors distances, weighted by the similarity of the meta descriptors.
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weighted by a factor λ:
L = Ll + λLm . (2.9)

2.4.3 Training Details

Datasets. To train descriptors with different levels of variance in terms of rotation and
illumination, datasets presenting all possible combinations of changes are needed. Control over
the amount of changes is also required in order to know which loss between LI and LV should
be used for each descriptor. We use in total four datasets to accomplish that. Illumination
variations are obtained through the multi illumination dataset in the wild [Murmann et al.,
2019] and the style transferred night images of the Aachen day dataset [Revaud et al., 2019].
Both offer pairs of images with fixed viewpoint and different illuminations. Images with fixed
illumination come from the Microsoft Common Objects in COntext (MS-COCO) dataset [Lin
et al., 2014] and the day flow images from the Aachen dataset [Revaud et al., 2019]. For all
datasets except the latter, the images are augmented with random homographies containing
translation, scaling, rotation and perspective distortion, similarly as in [DeTone et al., 2018].
For the day images of Aachen, the flow is used to create the correspondences and we consider
that these images contain only small rotations and no major illumination changes. Overall,
there is an equal distribution of images with and without illumination changes, and of rotated
and non rotated images.
Implementation details. We describe here the details of our architecture. The backbone
network, inspired by the VGG16 [Simonyan and Zisserman, 2014], is composed of successive
3 × 3 convolutional layers with channel size 64-64-64-64-128-128-256-256. Each conv layer is
followed by a Rectified Linear Unit (ReLU) activation and batch normalization. Every two
layers, a 2 × 2 average pooling with stride 2 is applied to reduce the spatial resolution by 2.
For an image of size H ×W × 3, the output feature map will have a size of H/8 ×W/8 × 256.
The local descriptor heads are all composed of the following operations: 3 × 3 conv of channel
size 256 - ReLU - Batch Norm - 1 × 1 conv of channel size 128. The final dimension of each
local descriptor is thus H/8×W/8×128, and each concatenated descriptor is 512-dimensional.
The semi-dense descriptors can then be bilinearly interpolated to the locations of any keypoint.
Note that in order to achieve a better robustness to scale changes, one can also detect the
keypoints and describe them at multiple image resolutions and aggregate the results in the
original image resolution, similarly as in [Dusmanu et al., 2019] and [Revaud et al., 2019].
The NetVLAD layers consists in 8 clusters of 128-dimensional descriptors, hence a meta
descriptor size of 1024. We used c× c = 3 × 3 tiles per image.

The network is trained on RGB images resized to 240 × 320 with the following hyper-
parameters: distance threshold T = 8, θmax = π

4 , margin M = 1, loss factor λ = 1. It
comprises roughly 3.7M parameters, which are optimized with the Adam solver [Kingma and
Ba, 2014] (learning rate = 0.001 and β = (0.9, 0.999)). In practice, the local descriptors are
pre-trained first and then fine-tuned by an end-to-end training with the meta descriptors. At
test time, a single forward pass on a GeForce RTX 2080 Ti with 480 × 640 images takes 6ms
on average.

23



2.5 Experimental Results

We present here experiments validating the relevance of our method. Section 2.5.2
highlights the importance of learning different invariances, validates the proposed approach
with an ablation study, and shows that LISRD can be extended to other descriptors such as
SIFT and Upright SIFT. LISRD is then compared to the state of the art on a benchmark
homography dataset (Section 2.5.3), on a challenging dataset with diverse conditions where
the presence or lack of invariance is essential (Section 2.5.4), with different keypoint detectors
(Section 2.5.5), across a full day (Section 2.5.6), and on a visual localization task in the real
world (Section 2.5.7).

2.5.1 Metrics

Since we want to compare the performance of the descriptors only, all the following metrics
are computed on SIFT keypoints if not stated otherwise. The metrics are computed on pairs
of images resized to 480 × 640 and related by a known homography. Resizing is performed by
upscaling/downscaling the images to have each edge greater or equal respectively to 480 and
640, and a central crop is applied to get the target resolution. We keep a maximum of 1000
points among the keypoints shared between the two views and matches are obtained after
mutual nearest neighbor filtering.
Homography estimation. We follow the procedure of [DeTone et al., 2018] to compute a
homography estimation score. Given a pair of images, RANSAC is used to fit a homography
between the clouds of matched keypoints. The score is obtained by warping the four corners
of the first image ĉ1...4 with the predicted homography and comparing their distance to the
same points c1...4 warped by the ground truth homography. The homography is considered
as correct when the average distance is below a threshold ϵ, which is set to 3 pixels in all
experiments: HEstim = 1

4
∑4

i=1 ||ĉi − ci||2 ≤ ϵ.
Precision. Precision (also known as mean matching accuracy) is the percentage of correct
matches over all the predicted matches [Dusmanu et al., 2019, Revaud et al., 2019]. We use
by default a threshold of 3 pixels to consider a match to be correct.
Recall. Recall is the ratio of correctly predicted matches over the total number of ground
truth matches, where a ground truth correspondence is the closest point within an error
threshold of 3 pixels. A predicted match with the second closest point but still within the
correct threshold is considered as incorrect.

2.5.2 Method Validation

Impact of the different invariances. One can check the validity of our approach by
comparing the 4 local descriptors. We use the HPatches dataset [Balntas et al., 2017], which
is standard in descriptor evaluation. It is composed of 116 sequences of 5 pairs of images,
with either viewpoint changes (given by a known homography) or illumination changes with
fixed viewpoint. Figure 2.4 shows the comparison between the 4 descriptors in terms of
precision. On viewpoint changes, the illumination variant descriptors are superior as the
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Figure 2.4: Precision on HPatches of the 4 local descriptors. Variant ones are better when
invariance is not needed (e.g. rotation for the illumination dataset).

lighting is fixed in these images and they are thus more discriminative. Since HPatches
contains few rotations, there is no significant difference in terms of rotation invariance and
being rotation variant brings a small advantage on average. The precision on illumination
changes shows that the best performing descriptors are the illumination invariant ones and
that being rotation variant helps since the viewpoint is fixed. Thus, there is no descriptor
outperforming the others in all cases, and our hypothesis that variant descriptors are more
discriminative than invariant ones is validated.

Ablation study. To confirm the benefit of our online selection of invariance and choice of
parameters, we compare LISRD on homography estimation on the HPatches dataset [Balntas
et al., 2017] with other selection methods of the local descriptors as well as with variants
of our approach (Table 2.1). Best of the 4 computes the metrics for the 4 local descriptors
separately and picks the best score. Greedy computes the pairwise distances of all points
for each local descriptor and greedily chooses the local descriptor with smallest distance for
each pair of points. Hard assignment selects the local descriptor that maximizes the meta
descriptor similarity, instead of choosing a soft assignment as in our proposed method. No
tiling and 5 × 5 tiles are variants of our method with no tiling or with 5 × 5 tiles for the meta
descriptors. Finally, Single desc is a descriptor trained with exactly the same architecture
as ours, but with the 4 local descriptors concatenated and trained with invariance in both
illumination and rotation.

On the full HPatches dataset, Best of the 4 corresponds to the descriptor invariant to
both illumination and rotation, as both changes are present. However, our selection method
can still leverage the other descriptors: for example an illumination variant descriptor for the
viewpoint part. The disparity between LISRD and Greedy and Hard assignment highlights
the added value of the meta descriptors, and shows that a soft assignment can better leverage
the 4 descriptors at the same time. Finally, the comparison with Single desc confirms our
hypothesis that disentangling the types of invariance is beneficial compared to learning a
single invariant descriptor with the same number of weights.

Generalization to other descriptors. LISRD can be easily generalized to other kinds of
descriptors, and not only to our proposed learned local descriptors. We demonstrate this by
applying our approach to the duo of local descriptors SIFT and Upright SIFT – SIFT without
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HEstim

Best of the 4 0.778
Greedy 0.774
Hard assignment 0.762
No tiling 0.752
5 × 5 tiles 0.773
Single desc 0.766
LISRD (ours) 0.784

Table 2.1: Ablation study of LISRD on the HPatches dataset [Balntas et al., 2017].

rotation invariance, as presented in Figure 2.1. Instead of having four local descriptors, there
are only two of them, one invariant to rotation and one variant, and similarly for the meta
descriptors. Our method is evaluated against SIFT and Upright SIFT on the viewpoint
part of HPatches. This dataset contains indeed sequences with no rotation, where Upright
SIFT performs better, and other sequences with strong rotations, where SIFT takes over.
Figure 2.5 shows that our method can effectively leverage both SIFT and Upright SIFT and
outperforms the two.
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Figure 2.5: Variants of SIFT vs. our method fusing them (LISRD-SIFT). Precision is
computed on HPatches viewpoint. Our method can leverage invariance to rotation only when necessary,
and thus outperforms the other baselines.

2.5.3 Descriptor Evaluation on HPatches

This section compares the performance of LISRD against state-of-the-art local descriptors
on the benchmark dataset HPatches [Balntas et al., 2017]. Since our approach requires
global context from full images, we cannot run it on the patch level dataset. We use the full
sequences of images instead, similarly as in [DeTone et al., 2018, Dusmanu et al., 2019, Revaud
et al., 2019]. We consider the following baselines: Root SIFT with the default Kornia1 imple-
mentation; HardNet [Mishchuk et al., 2017] (trained on the PS-dataset [Mitra et al., 2018]),
SOSNet [Tian et al., 2019] (trained on the Liberty dataset of UBC Phototour [Brown et al.,

1https://kornia.github.io/
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2010]), SuperPoint (SP) [DeTone et al., 2018], D2-Net [Dusmanu et al., 2019], R2D2 [Revaud
et al., 2019] and the Group Invariant Feature Transform (GIFT) [Liu et al., 2019]. We use
the authors implementation. Since we want to evaluate the descriptors only, SIFT keypoints
are detected in the images and for each method, we extract the local descriptors at these
locations. For Root SIFT, HardNet and SOSNet, we sample 32 × 32 patches at each SIFT
keypoint and rotate them according to the SIFT orientation. As we want to evaluate the
impact of rotation and illumination invariance only, we use single scale implementations for
all methods2. Our method could however be made scale invariant using similar multi-scale
approaches as in [Dusmanu et al., 2019, Revaud et al., 2019].

The results are summarized in Table 2.2. Overall, LISRD ranks among the two best
methods in precision and recall. The possibility to leverage rotation variant descriptors on the
fixed pairs of the illumination part and to alternatively select the right level of lighting invari-
ance given the amount of illumination changes probably explains our superior performance
on the illumination part. Note the comparison with SuperPoint, whose architecture and
training procedure are very similar to LISRD, and where our method displays better results
in all metrics, thus showing the gain of our approach. The weaker results in homography
estimation can be explained by a limitation of our method. Since our meta descriptors have
a very coarse spatial resolution (3 × 3 grid), if one of them fails to pick the right invariance,
this will impact all the matches of its region. Thus, the correct matches predicted by LISRD
can in that case become very concentrated in a specific part of the image, which makes the
homography estimation with RANSAC less accurate. This issue could be avoided with a
finer tiling of the meta descriptors, but at the price of a reduced global context.

2.5.4 Evaluation in Challenging and Cross-Modal Situations

The HPatches dataset offers a fair benchmark, but is limited to only few rotations and
medium illumination changes. Our approach is designed to be used in a variety of scenarios
and with changing conditions, so that all our local descriptors can be leveraged. In order to
evaluate our method on such a versatile task, we designed a new benchmark dataset, based on
the Day-Night Image Matching (DNIM) dataset [Zhou et al., 2016]. This dataset is composed
of sequences of images of a fixed camera taking pictures at regular time intervals and across
day and night, with a total of 1722 images. For each sequence, the image with timestamp

Root SIFT HardNet SOSNet SP D2-Net R2D2 GIFT Ours

HP
Illum

HEstim 0.898 0.884 0.919 0.877 0.818 0.916 0.923 0.884
Precision 0.554 0.574 0.591 0.629 0.650 0.666 0.573 0.665
Recall 0.431 0.483 0.519 0.565 0.564 0.580 0.521 0.655

HP
View

HEstim 0.644 0.688 0.742 0.651 0.553 0.627 0.715 0.688
Precision 0.515 0.582 0.598 0.595 0.564 0.550 0.552 0.626
Recall 0.350 0.422 0.448 0.446 0.382 0.371 0.429 0.495

Table 2.2: Comparison to the state of the art on HPatches [Balntas et al., 2017].
Homography estimation, precision and recall are computed for error thresholds of 3 pixels. The best
score is in bold and the second best one is underlined.

2In the case of GIFT, which is both rotation and scale invariant, we sample images with scale 1 to make it
rotation invariant only.
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closest to noon is taken as day reference and the image closest to midnight as night reference.
We create two benchmarks, where the images of each sequence are paired with either the day
reference or the night one. We then synthetically warp the pairs with the same homography
sampling scheme as in [DeTone et al., 2018] with an equal distribution of homographies with
and without rotations. More details about this dataset, called the Rotated Day-Night Image
Matching (RDNIM) dataset, can be found in Appendix A.

Table 2.3 and Figure 2.6 show the evaluation with the state-of-the-art descriptors, using
SuperPoint keypoints. LISRD can adapt its invariance to illumination and rotations to
alternatively select the most relevant descriptor and it outperforms the other methods by a
large margin both in terms of precision and recall.

Root SIFT HardNet SOSNet SP D2-Net R2D2 GIFT Ours

Day
ref

HEstim 0.121 0.199 0.178 0.146 0.094 0.170 0.187 0.198
Precision 0.188 0.232 0.228 0.195 0.195 0.175 0.152 0.291
Recall 0.112 0.194 0.203 0.178 0.117 0.162 0.133 0.317

Night
ref

HEstim 0.141 0.262 0.211 0.182 0.145 0.196 0.241 0.262
Precision 0.238 0.366 0.297 0.264 0.259 0.237 0.236 0.371
Recall 0.164 0.323 0.269 0.255 0.182 0.216 0.209 0.384

Table 2.3: Evaluation on a use case where invariance selection matters. Homography
estimation, precision and recall are computed with SuperPoint keypoints on a dataset with day-night
changes and various levels of rotation. Selecting the relevant variant or invariant descriptors boosts
the precision and recall of our method compared to the previous state-of-the-art methods.
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Figure 2.6: Precision curves on the DNIM dataset [Zhou et al., 2016] augmented with
rotations. LISRD leverages its variant and more discriminative descriptors whenever possible and is
thus more accurate than the state-of-the-art descriptors for all pixel error thresholds.

2.5.5 Generalization to Different Keypoint Detectors

LISRD was trained using SIFT keypoints [Lowe, 2004], but it can be used at test time
with any other keypoints (KP). We demonstrate this by providing additional comparisons to
the state of the art on the RDNIM dataset, using SIFT, SuperPoint [DeTone et al., 2018] and
R2D2 [Revaud et al., 2019] keypoints. Table 2.4 presents the evaluation with homography
estimation, precision and recall for an error threshold of 3 pixels and Figure 2.7 shows the
precision curves at multiple error thresholds. Overall, LISRD is competitive with the state of
the art (HardNet and SOSNet) on SIFT keypoints and ranks first with learned keypoints
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on most metrics. Note the improved homography estimation score with learned keypoints,
probably because these keypoints are well spread across the image and the limitation of
LISRD mentioned in Section 2.5.3 is curtailed. Indeed, this limitation was due to RANSAC
producing bad estimates when the invariance selection failed in some regions and all the
matches became concentrated in a small area. This phenomenon is less likely to happen
when the keypoints are covering the whole image, and LISRD is thus able to get a more
accurate homography estimation. Note that for each keypoint, the associated descriptor is not
necessarily performing better, except for R2D2 that gets a slight improvement in precision
when evaluated on their own keypoints. This is due to the reliability map used during their
training, which makes their descriptors more discriminative at their keypoint locations.

As a feature direction of work, LISRD would benefit from learning its own keypoints
with an additional head. This single head would predict invariant keypoints trained on
images with multiple lightings and rotations and could be used with all descriptors - whether
they are variant or not. This would ensure a better correlation between the keypoints and
their descriptors and offer a faster prediction, instead of predicting separately keypoints and
descriptors as is currently the case.

Root
SIFT HardNet SOSNet SP D2-Net R2D2 GIFT LISRD

(Ours)

SIFT
KP

Day
ref

HEstim 0.166 0.170 0.215 0.084 0.057 0.121 0.145 0.127
Precision 0.220 0.200 0.232 0.150 0.144 0.140 0.126 0.226
Recall 0.113 0.155 0.197 0.114 0.081 0.107 0.108 0.212

Night
ref

HEstim 0.255 0.278 0.307 0.156 0.118 0.167 0.215 0.204
Precision 0.368 0.394 0.416 0.254 0.231 0.228 0.246 0.357
Recall 0.212 0.288 0.316 0.183 0.135 0.162 0.183 0.284

SP
KP

Day
ref

HEstim 0.121 0.199 0.178 0.146 0.094 0.170 0.187 0.198
Precision 0.188 0.232 0.228 0.195 0.195 0.175 0.152 0.291
Recall 0.112 0.194 0.203 0.178 0.117 0.162 0.133 0.317

Night
ref

HEstim 0.141 0.262 0.211 0.182 0.145 0.196 0.241 0.262
Precision 0.238 0.366 0.297 0.264 0.259 0.237 0.236 0.371
Recall 0.164 0.323 0.269 0.255 0.182 0.216 0.209 0.384

R2D2
KP

Day
ref

HEstim 0.107 0.187 0.181 0.140 0.093 0.135 0.157 0.193
Precision 0.162 0.201 0.192 0.166 0.171 0.210 0.118 0.237
Recall 0.093 0.167 0.172 0.168 0.101 0.076 0.102 0.290

Night
ref

HEstim 0.135 0.196 0.168 0.145 0.101 0.132 0.183 0.189
Precision 0.200 0.302 0.244 0.221 0.221 0.241 0.166 0.291
Recall 0.132 0.260 0.215 0.230 0.149 0.110 0.147 0.335

Table 2.4: Evaluation with SIFT [Lowe, 2004], SuperPoint (SP) [DeTone et al., 2018]
and R2D2 [Revaud et al., 2019] keypoints on the RDNIM dataset. Homography estimation,
precision and recall are computed for an error threshold of 3 pixels. LISRD is not restricted to the
SIFT keypoints that were used during its training, but can be generalized to any keypoints (KP). The
best score is in bold and the second best one is underlined.
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(a) SIFT keypoints.
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(b) SuperPoint keypoints.
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(c) R2D2 keypoints.

Figure 2.7: Precision curves with SIFT [Lowe, 2004], SuperPoint [DeTone et al., 2018]
and R2D2 [Revaud et al., 2019] keypoints on the RDNIM dataset. The discriminative
power of LISRD descriptors is not limited to SIFT keypoint locations, but also shows a high precision
compared to the state of the art on other keypoints.
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2.5.6 Evaluation Across a Full Day

The evaluation on the RDNIM dataset shows the global performance across a mix of
day-day and day-night, or night-night and night-day images. But it is also interesting to
study the performance at various times during the day. Figure 2.8 displays the precision and
recall curves on the RDNIM dataset along a full day. For every image in the second pair,
we extract the hour at which the picture was taken from the timestamp, and round it to
the closest integer. For each hour, the precision and recall are then computed and averaged
across all images corresponding to this time and these averaged numbers are then plotted
over the twenty-four hours of a day. We naturally get two peak curves, one centered at noon
for the pairs with the day reference and the other centered at midnight for the night reference.
LISRD is overall better than the other descriptors and, interestingly, the largest improvements
come from the time intervals with day-night illumination changes. Thus, LISRD leverages its
illumination variant and more discriminative descriptors when the timestamp of both images
of the pair are close, and it switches to the invariant and more general ones when the images
are taken at different times of the day.
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Figure 2.8: Precision and recall across the day. Precision and recall are computed on the
RDNIM dataset with SuperPoint keypoints and an error threshold of 3 pixels. They are averaged
for each hour of the day, based on the timestamp of the second image. The performance gradually
degrades when the timestamp of the second image moves away from the reference time (noon for
the day reference and midnight for the night reference). For close timestamps, LISRD leverages its
illumination variant descriptors, but switches to the invariant ones when the timestamps differ too
much. Thus, LISRD remains competitive with state-of-the-art descriptors for close timestamps and
outperforms them when significant illumination changes are present.
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2.5.7 Application to Localization in Challenging Conditions

A typical application of image matching including adverse conditions such as strong
illumination changes and wide baselines is the visual localization task. We evaluate our method
on the local feature challenge of the Conference on Vision and Pattern Recognition (CVPR)
2019 based on the Aachen Day-Night dataset [Sattler et al., 2018]. The goal is to localize
98 night time query images as accurately as possible, given 20 day images per query with
known camera pose. As the keypoint quality is essential in this task, we compare our
method with other descriptors for various types of keypoints: SIFT, SuperPoint and D2-Net
multi-scale (MS). The numbers for the baseline methods are taken from the benchmark on
the official website3. The results in Table 2.5 show that our method is not limited to SIFT
keypoints and can effectively improve the performance of local descriptors in challenging
conditions. Note in particular the improvement over SuperPoint, which shares a similar
architecture as ours.

Error
threshold

SIFT KP SuperPoint KP D2-Net KP

Up-Root SIFT Ours SuperPoint Ours D2-Net (MS) Ours (MS)

0.5m, 2◦ 54.1 72.4 73.5 78.6 67.3 73.5
1m, 5◦ 66.3 82.7 79.6 86.7 87.8 88.8
5m, 10◦ 75.5 94.9 88.8 98.0 100.0 99.0

Table 2.5: Visual localization performance on the Aachen Day-Night dataset [Sattler et al.,
2018]. We report the percentage of correctly localized queries for various distance and orientation
error thresholds for SIFT, SuperPoint and D2-Net MS. Our method shows a good generalization
when evaluated on different keypoints and can improve the original descriptor performance.

2.5.8 Qualitative Examples

We provide additional qualitative examples of matches based on SIFT keypoints and
LISRD descriptors. All matches are filtered with mutual nearest neighbor, followed by
a homography fitting with RANSAC [Fischler and Bolles, 1981a]. Figure 2.9 brings a
visualization of the invariance selection, with a different color for each kind of invariance that
was selected. Since the selection is in practice based on a soft weighting, we only show the
color of the learned descriptors that contributed the most in the matching decision. These
sample images show that in some situations, a single invariance is sufficient for the full image,
but in other cases multiple invariances can be leveraged within the same image, demonstrating
the need of tiled meta descriptors. This is for example useful when the overall illumination is
constant in a pair of images, but one part of an image (e.g. a building) is overexposed or in
the shadow.

Finally, Figure 2.10 displays a selection of matches in challenging scenarios, for example
with day-night and/or with strongly rotated images.

3https://www.visuallocalization.net/
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Rot var, illum var Rot invar, illum var Rot var, illum invar Rot invar, illum invar

Figure 2.9: Visualization of the selected invariance. Matches of SIFT keypoints with LISRD
descriptors are filtered with mutual nearest neighbor and RANSAC [Fischler and Bolles, 1981a]. Since
our method uses a soft weighting of the invariances, each color corresponds only to the invariance
that contributed the most to validate the match. First line: one type of invariance predominates in
the whole image. Second line: two invariances are relevant in the same image (on the left, rotation
invariance is needed, but the building in the top right corner is overexposed in both images and
illumination invariance is not needed in this area ; on the right, illumination invariance is needed, but
the image is upright on the left side, while the distortion creates a rotation on the central part and
rotation invariance becomes necessary). Third line: multiple different invariances can be leveraged in
the same image (on the left image, the right part of the image is mainly upright and with constant
illumination, while the house in the lower left corner is overexposed and rotated, hence the fully
invariant descriptor is selected ; on the right image, most of the selected descriptors are rotation
variant as the viewpoint is fixed, but the left pier of the bridge has a constant illumination while the
right pier has a different illumination and the illumination invariant descriptor predominates).

Figure 2.10: Matches in challenging situations. SIFT keypoints are detected, matched with
the LISRD descriptors, and mutual nearest neighbor and RANSAC [Fischler and Bolles, 1981a] are
used to filter out wrong matches. A single red color is used for all the inlier matches, regardless of
the chosen invariance. Matches based on LISRD descriptors are able to handle strong illumination
changes such as day-night, inter-image illumination variations in day-day and night-night pairs, and
small as well as strong rotations.
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2.6 Discussion

Summary. In this chapter, we showed through multiple experiments that local feature
descriptors are losing their discriminative power when they reach too much invariance. To
tackle this trade-off between invariance and discriminativeness, we presented a novel approach
to learn local feature descriptors able to adapt to multiple variations in images, while remaining
discriminative. We unified the learning of several local descriptors with multiple levels of
invariance and of meta descriptors leveraging regional context to guide the local descriptors
matching.

Limitations and future works. While restricted to illumination and rotation invariance,
our framework can be generalized to more variations, at the cost of an exponentially growing
number of descriptors, however. A future direction of work would be to reduce the amount of
redundancy between each descriptor by enforcing a stronger disentanglement separating each
factors of variation. Instead of relying on the similarity of descriptor embeddings to select the
right invariance, one could also explore the promising attention mechanisms instead. Finally,
since our approach is able to enforce different levels of invariance, one could add another
head to our network to predict invariant keypoints, while keeping discriminative descriptors.
This would potentially solve the current issue in joint learning of invariant detectors and
descriptors. Overall, this work is only a first step towards disentangled descriptors. Separating
the types of invariances paves the way to a full disentanglement of the factors of variations of
images and could lead to more flexible and interpretable local descriptors.

Closing remarks. The trade-off between invariance and discriminative power is only one
of the limitations of current local feature points. A severe drawback of points is also that 2D
points have no structure and lack relational information. Furthermore, feature points are
very scarce in texture-less areas, making applications fail in these scenarios. We propose in
the next chapters solutions to tackle these limiting issues.
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Part II

Line Features: a Promising
Alternative to Points
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Chapter 3

SOLD2: Self-supervised
Occlusion-aware Line Description

and Detection

While points are the de facto sparse representations in geometrical tasks, they can be
complemented by higher-order structures to tackle some of their limitations. In this chapter, we
show that line features represent a promising complement to points for multi-view tasks. Lines
are indeed well-defined by the image gradient, frequently appear even in poorly textured areas
and offer robust structural cues. Taking inspiration from the recent progress on point features,
we show how to handle the additional challenges brought by lines compared to points, and we
introduce the first joint detection and description of line segments in a single deep network.
Thanks to a self-supervised training, our method does not require any annotated line labels and
can therefore generalize to any dataset. Our detector offers repeatable and accurate localization
of line segments in images, departing from the wireframe parsing approach explored in previous
works. Leveraging the recent progresses in descriptor learning, our proposed line descriptor is
highly discriminative, while remaining robust to viewpoint changes and occlusions. We evaluate
our approach against previous line detection and description methods on several multi-view
datasets and display higher repeatability, localization accuracy and matching metrics. This
chapter builds upon the following publication: [Pautrat et al., 2021], and the corresponding
code is available at https: // github. com/ cvg/ SOLD2 .
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3.1 Motivation

The previous chapter explored a limitation of existing local feature points and how to
overcome it. However, feature points suffer from additional drawbacks, such as the lack of
structure and relational information, as well as their scarcity on texture-less surfaces. We
propose in this chapter to connect points and to form line segments in order to overcome
these additional challenges. Lines are often present in human-made environments, even in low-
textured areas. The connectivity of lines through their endpoints also offers a rich information
to better understand the 3D structure of a scene and to match images. Furthermore, the
large extent of lines in a scene helps to solve known issues of point-based applications, such
as drift in SLAM and distortions in the 3D reconstructions of SfM.

On the other hand, line features come with additional challenges, which will be listed
in the following section. Current line detectors and descriptors are also lagging behind the
state-of-the-art feature points both in terms of accuracy and matching ability. Besides, line
detection and description have so far been explored as two separate tasks, which is inefficient.
We thus propose to revisit the task of line segment detection and description in a single deep
network, and show how to handle current limitations of lines to make them suitable for vision
tasks.

This chapter starts with an introduction to the problem (Section 3.2), lists the previous
works for line detection, description and matching (Section 3.3), introduces our proposed
method (Section 3.4), evaluates it against existing line features (Section 3.5), and finally
discusses the results and studies the remaining limitations to solve (Section 3.6).

3.2 Introduction

As seen in the previous chapter, feature points are at the core of many computer vision
tasks, due to their compact and robust representation. Yet, the world is composed of higher-
level geometric structures which are semantically more meaningful than points. Among
these structures, lines can offer many benefits compared to points. Lines are widespread and
frequent in the world, especially in man-made environments, and are still present in poorly
textured areas. In contrast to points, they have a natural orientation, and a collection of
lines provide strong geometric clues about the structure of a scene [Weng et al., 1992, Taylor
and Kriegman, 1995, Holynski et al., 2020]. As such, lines represent good features for 3D
geometric tasks.

Previous methods detecting line segments in images often relied on image gradient
information and handcrafted filters [Von Gioi et al., 2008, Akinlar and Topal, 2011]. Recently,
deep learning has also enabled robust and real-time line detection [Huang et al., 2020].
Most learned line detectors are however tackling a closely related task: wireframe parsing,
which aims at inferring the structured layout of a scene based on line segments and their
connectivity [Huang et al., 2018, Zhou et al., 2019a, Xue et al., 2020, Zhou et al., 2019b].
These structures provide strong geometric cues, in particular for man-made environments.
Yet, these methods have not been optimized for repeatability across images, a vital feature
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for multi-view tasks, and their training requires ground truth lines that are cumbersome to
manually label [Huang et al., 2018].

The traditional way to match geometric structures across images is to use feature descrip-
tors. Yet, line descriptors face several challenges: line segments can be partially occluded,
their endpoints may not be well localized, the scale of the area to describe around each
line fluctuates a lot, and it can be severely deformed under perspective and distortion
changes [Schmid and Zisserman, 1997b]. Early line descriptors focused on extracting a
support region around each line and on computing gradient statistics on it [Wang et al.,
2009c, Zhang and Koch, 2013]. More recently, motivated by the success of learned point
descriptors [DeTone et al., 2018, Dusmanu et al., 2019, Revaud et al., 2019], a few deep line
descriptors have been proposed [Lange et al., 2019b, Vakhitov and Lempitsky, 2019, Lange
et al., 2020]. However, they are not designed to handle line occlusion and remain sensitive to
poorly localized endpoints.

In this chapter, we propose to jointly learn the detection and description of line segments.
To this end, we introduce a self-supervised network, inspired by the Line Convolutional Neural
Network (LCNN) [Zhou et al., 2019a] and SuperPoint [DeTone et al., 2018], that can be trained
on any image dataset without any labels. Pretrained on a synthetic dataset, our method is
then generalized to real images. Our line detection aims at maximizing the line repeatability
and at being as accurate as possible to allow its use in geometric estimation tasks. The
learned descriptor is designed to be robust to occlusions (as illustrated in Figure 3.1), while
remaining as discriminative as the current learned point descriptors. To do so, we introduce
a novel line matching based on dynamic programming and inspired by sequence alignment in
genetics [Needleman and Wunsch, 1970] and classical stereo matching [Dieny et al., 2011].
Thus, our Self-supervised Occlusion-aware Line Description and Detection (SOLD2) offers a
generic pipeline that aims at bridging the gap with the learned feature points. Overall, the
contributions of this chapter can be summarized as follows:
• We propose the first deep network for joint line segment detection and description.

• We show how to self-supervise our network for line detection, allowing training on any
dataset of real images.

• Our line matching procedure is robust to occlusion and achieves state-of-the-art
results on image matching tasks.

3.3 Related work

Line features Detecting edges and line segments in images is a long-standing quest in
computer vision, and has been revisited many times, including with deep learning in the
recent years. Describing lines in order to match them across frames has only been addressed
more recently, due to the multiple challenges accompanying lines. For a full overview of
previous line detectors and descriptors, we refer the reader to Section 1.2.2.
Joint detection and description of learned features. Jointly learned point detectors
and descriptors [Ono et al., 2018, DeTone et al., 2018, Revaud et al., 2019, Luo et al.,
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Figure 3.1: Line segment detection and matching. Our approach detects repeatable lines and
is able to match sub-segments to handle partial occlusions. On the right, lines of the same color are
matched together.

2020] propose to share computation between the keypoint detection and description to get
fast inference and better feature representations from multi-task learning. The describe-
then-detect trend first computes a dense descriptor map and then extracts the keypoints
location from it [Dusmanu et al., 2019, Luo et al., 2020, Yang et al., 2020, Tian et al.,
2020]. Supervision is provided by either pixel-wise correspondences from SfM [Dusmanu
et al., 2019, Luo et al., 2020], or from image level correspondences only [Yang et al., 2020].
HF-Net [Sarlin et al., 2019] unifies keypoint detection, local and global description through
a multi-task distillation with multiple teacher networks. Towards the fully unsupervised
spectrum, recent methods tightly couple the detector and descriptor learning to output
repeatable and reliable points [Christiansen et al., 2019, Revaud et al., 2019]. On the
other hand, Superpoint [DeTone et al., 2018] first learned the concept of interest points by
pretraining a corner detector on a synthetic dataset and later transferring it to real world
images. We adopt here a similar approach extended to line segments.

Line matching. Beyond simply comparing descriptor similarities, several works tried to
leverage higher-level structural cues to guide line matching [Li et al., 2016b]. One approach
considers the neighboring lines/points and finds similar patterns across images, for instance
through local clusters of lines [Wang et al., 2009a], intersections between lines [Kim and
Lee, 2010] or line-junction-line structures [Li et al., 2014, Li et al., 2016d]. However, these
methods cannot match isolated lines. Another direction is to find co-planar sets of lines and
points and to leverage line-point invariants as well as simple point matching to achieve line
matching [Lourakis et al., 1998, Fan et al., 2010, Fan et al., 2012b, Ramalingam et al., 2015b].
Finally, a last approach consists in matching points sampled along a line, using for example
intensity information and epipolar geometry [Schmid and Zisserman, 1997b] or simply point
descriptors [Vakhitov and Lempitsky, 2019]. Our work follows this direction but offers a
flexible matching of the points along the line, which handles occlusions.
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3.4 Method

We propose a unified network to perform line segment detection and description, allowing
to match lines across different images. We achieve self-supervision in two steps. Our detector
is first pretrained on a synthetic dataset with known ground truth. The full detector and
descriptor can then be trained by generating pseudo ground truth line segments on real images
using the pretrained model. We provide an overview of our training pipeline in Figure 3.2
and detail its parts in the following sections.

3.4.1 Problem Formulation

Line segments can be parameterized in many ways: with two endpoints; with a middle
point, a direction and a length; with a middle point and offsets for the endpoints; with an
attraction field; etc. In this work, we chose the line representation with two endpoints for
its simplicity and compatibility with our self-supervision process discussed in Section 3.4.4.
For an image I with spatial resolution h×w, we denote P = {pn}N

n=1 the set of all junctions
of I and L = {lm}M

m=1 the set of line segments. A line segment lm is defined by a pair of
endpoints (e1

m, e
2
m) ∈ P 2.

3.4.2 Junction and Line Heatmap Inference

Our network takes grayscale images as input, processes them through a shared backbone
encoder that is later divided into three different outputs. A junction map J predicts the
probability of each pixel to be a line endpoint, a line heatmap H provides the probability of
a pixel to be on a line, and a descriptor map D yields a pixel-wise local descriptor. We focus
here on the optimization of the first two branches, while the following sections describe their
combination to retrieve and match the line segments of an image.

We adopt a similar approach to SuperPoint’s keypoint decoder [DeTone et al., 2018]
for the junction branch, where the output is a coarse h

8 × w
8 × 65 feature map Jc. Each

65-dimensional vector corresponds to an 8 × 8 patch plus an extra “no junction" dustbin. We
define the ground truth junctions y ∈ {1, ..., 65}

h
8 × w

8 indicating the index of the true junction
position in each patch. A junction is randomly selected when several ground truth junctions
land in the same patch and a value of 65 means that there is no junction. The junction loss
is then a cross-entropy loss between Jc and y:

Ljunc = 64
h× w

h
8 , w

8∑
i,j=1

− log

 exp(Jc
ijyij

)∑65
k=1 exp(Jc

ijk)

 . (3.1)

At inference time, we perform a softmax on the channel dimension and discard the 65th
dimension, before resizing the junction map to get the final h× w grid.

The second branch outputs a line heatmap H at the image resolution h × w. Given a
binary ground truth HGT with a value of 1 for pixels on lines and 0 otherwise, the line
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Figure 3.2: Training pipeline overview. Left: Our detector network is first trained on a synthetic
dataset with known ground truth. Middle: A pseudo ground truth of line segments is then generated
on real images through homography adaptation. Right: Finally, the full model with descriptors is
trained on real images using the pseudo ground truth.

heatmap is optimized via a binary cross-entropy loss:

Lline = 1
h× w

h,w∑
i,j=1

−HGT
ij log(Hij) . (3.2)

3.4.3 Line Detection Module

After inferring the junction map J and line heatmap H, we threshold J to keep the
maximal detections and apply a Non-Maximum Suppression (NMS) to extract the segment
junctions P̂ . The line segment candidates set L̂cand is composed of every pair of junctions
in P̂ . Extracting the final line segment predictions L̂ based on H and L̂cand is non-trivial
as the activations along a segment defined by two endpoints may vary a lot across different
candidates. Our approach can be broken down into five parts: (1) line NMS, (2) regular
sampling between endpoints, (3) adaptive local-maximum search, (4) average score, and (5)
inlier ratio.
Line NMS: In some application requiring line matching, having multiple overlapping segments
may hinder the matching as the descriptor will have a harder job at discriminating close lines.
Therefore, an NMS mechanism is necessary for lines. Unlike point or bounding box NMS,
there is no well-established procedure for line NMS. Contrary to usual NMS methods which
are used as postprocessing steps, we implement our line NMS as a preprocessing step, which
actually speeds up the overall line segment detection as it removes some line candidates.
Starting from the initial line candidates set L̂cand consisting of all pairs of junctions, we
remove the line segments containing other junctions between their two endpoints. To identify
whether a junction lies on a line segment, we first project the junction on the line and check
if it falls within the segment boundaries. When it does, the junction is considered to be on
the line segment if it is at a distance of less than ξcs pixels from the line.
Regular sampling between endpoints: Instead of fetching all the rasterized pixels between the
two endpoints [Zhou et al., 2019b], we sample Ns uniformly spaced points (including the two
endpoints) along the line segment.
Adaptive local-maximum search: Using bilinear interpolation to fetch the heatmap values at
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the extracted points qk may discard some candidates due to the misalignment between the
endpoints and the heatmap, especially for long lines. To alleviate that, we search for the
local maximal heatmap activation hk around each sampled location qk within a radius r
proportional to the length of the line. Given a line segment l̂ = (ê1, ê2) from the candidate
set L̂ in an image of size h× w, the search radius r is defined as:

r = rmin + λ

∥∥∥ê1 − ê2
∥∥∥

√
h2 + w2 , (3.3)

where rmin =
√

2
2 is the minimum search radius and λ is a hyper-parameter to adjust the

linear dependency on the segment lengths. The rmin parameter can be kept constant across
different image resolutions, without performance degradation.
Average score: The average score is defined as the mean of all the sampled heatmap values:
yavg = 1

Ns

∑Ns
k=1 hk. Given a threshold ξavg, valid line segment candidates should satisfy

yavg ≥ ξavg.
Inlier ratio: To remove spurious detections with only a few high activations and holes along
the line, we also consider an inlier ratio yinlier = 1

Ns

∣∣{hk|hk ≥ ξavg, hk ∈ H}
∣∣. Given an inlier

ratio threshold ξinlier, we only keep candidates satisfying yinlier ≥ ξinlier.

3.4.4 Self-Supervised Learning Pipeline

Inspired by the success of SuperPoint [DeTone et al., 2018], we extend their homography
adaptation to the case of line segments. Let fjunc and fheat represent the forward pass of our
network to compute the junction map and the line heatmap. We start by aggregating the
junction and heatmap predictions using a set of Nh homographies (Hi)Nh

i=1:

Ĵ(I; fjunc) = 1
Nh

Nh∑
i=1

H−1
i

(
fjunc(Hi(I))

)
, (3.4)

Ĥ(I; fheat) = 1
Nh

Nh∑
i=1

H−1
i

(
fheat(Hi(I))

)
. (3.5)

We then apply the line detection module to the aggregated maps Ĵ and Ĥ to obtain the
predicted line segments L̂, which are then used as ground truth for the next training round.
Figure 3.2 provides an overview of the pipeline. Similar to Superpoint, this process can be
iteratively applied to improve the label quality. However, we found that a single round of
adaptation already provides sufficiently good labels.

3.4.5 Line Description

Describing lines in images is a problem inherently more difficult than describing feature
points. A line can be partially occluded, its endpoints are not always repeatable across views,
and the appearance of a line can significantly differ under viewpoint changes. To tackle these
challenges, we depart from the classical description of a patch centered on the line [Lange
et al., 2019b, Lange et al., 2020], that is not robust to occlusions and endpoints shortening.
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Motivated by the success of learned point descriptors, we formulate our line descriptor as a
sequence of point descriptors sampled along the line. Given a good coverage of the points
along the line, even if part of the line is occluded, the points on the non-occluded part will
store enough line details and can still be matched.

The descriptor head of our network outputs a descriptor map D ∈ R
h
4 × w

4 ×128 and is
optimized through the classical point-based triplet loss [Balntas et al., 2016b, Mishchuk et al.,
2017] used in other dense descriptors [Dusmanu et al., 2019]. Given a pair of images I1 and I2

and matching lines in both images, we regularly sample points along each line and extract the
corresponding descriptors (Di

1)n
i=1 and (Di

2)n
i=1 from the descriptor maps, where n is total

number of points in an image. The triplet loss minimizes the descriptor distance of matching
points and maximizes the one of non-matching points. The positive distance is defined as

pi = ||Di
1 − Di

2||2 . (3.6)

The negative distance is computed between a point and its hardest negative example in batch:

ni = min
(

||Di
1 − Dh2(i)

2 ||2, ||Dh1(i)
1 − Di

2||2
)
, (3.7)

where h1(i) = arg mink∈[1,n] ||Dk
1 − Di

2|| such that the points i and k are at a distance of at
least T pixels and are not part of the same line, and similarly for h2(i). The triplet loss with
margin M is then defined as

Ldesc = 1
n

n∑
i=1

max(0,M + pi − ni) . (3.8)

3.4.6 Multi-Task Learning

Detecting and describing lines are independent tasks with different homoscedastic aleatoric
uncertainties and their respective losses can have different orders of magnitude. Thus, we
adopt the multi-task learning proposed by Kendall et al. [Kendall et al., 2018] with a dynamic
weighting of the losses, where the weights wjunc, wline and wdesc are optimized during
training [Kendall and Cipolla, 2017, Sarlin et al., 2019]. The total loss becomes:

Ltotal = e−wjuncLjunc + e−wlineLline

+ e−wdescLdesc + wjunc + wline + wdesc .
(3.9)

3.4.7 Line Matching

At inference time, two line segments are compared based on their respective collection of
point descriptors sampled along each line. However, some of the points might be occluded
or, due to perspective changes, the length of a line can vary and the sampled points may
be misaligned. The ordering of the points matched along the line should nevertheless be
constant, i.e. the line descriptor is an ordered sequence of descriptors, not just a set. To
solve this sequence assignment problem, we take inspiration from nucleotide alignment in
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bioinformatics [Needleman and Wunsch, 1970] and pixel alignment along scanlines in stereo
vision [Dieny et al., 2011]. We thus propose to find the optimal point assignment through the
dynamic programming algorithm originally introduced by Needleman and Wunsch [Needleman
and Wunsch, 1970].

When matching two sequences of points, each point can be either matched to another
one or skipped. The score attributed to a match of two points depends on the similarity
of their descriptors (i.e. their dot product), so that a higher similarity gives a higher score.
Skipping a point is penalized by a gap score, which has to be adjusted so that it is preferable
to match points with high similarity but to skip the ones with low similarity. The total score
of a line match is then the sum of all skip and match operations of the line points. The
Needleman-Wunsch (NW) algorithm returns the optimal matching sequence maximizing this
total score. This is achieved with dynamic programming by filling a matrix of scores row by
row, as depicted in Figure 3.3. Given a sequence of m points along a line l, m′ points along
l′, and the associated descriptors D and D′, this score matrix S is an (m + 1) × (m′ + 1)
grid where S(i, j) contains the optimal score for matching the first i points of l with the first
j points of l′. The grid is initialized by the gap score in the first row and column, and is
sequentially filled row by row, using the scores stored in the left, top and top-left cells:

S(i, j) = max
(
S(i− 1, j) + gap,S(i, j − 1) + gap,

S(i− 1, j − 1) + DiT D′j
)
.

(3.10)

Once the matrix is filled, we select the highest score in the grid and use it as a match
score for the candidate pair of lines. Each line of the first image is then matched to the line
in the second image with the maximum match score. Note that starting from the highest
scoring cell of the grid, one can backtrack in the grid to determine which points were actually
matched. The NW algorithm is thus actually able to match sub-segments of the full line,
which is essential when a line is partially occluded.

3.4.8 Implementation Details

Network implementation. To have a fair comparison with most wireframe parsing
methods [Zhou et al., 2019a, Xue et al., 2020, Lin et al., 2020], we use the same stacked
hourglass network [Newell et al., 2016] for our backbone. Given an image with resolution
h×w, the output of the backbone encoder is a h

4 × w
4 × 256 feature map. The three heads of

the network are implemented as follows:
Junction branch: It is composed of a 3×3 convolution with stride 2 and 256 channels, followed
by a 1 × 1 convolution with stride 1 and 65 channels, leading to the h

8 × w
8 × 65 junction map.

Heatmap branch: To keep a light network and avoid artifacts from transposed convolutions, we
perform two consecutive subpixel shuffles [Shi et al., 2016] blocks to perform a ×4 upsampling.
More precisely, we use two 3 × 3 conv layers of output channel sizes 256 and 64, each of them
followed by batch normalization, ReLU activation and a ×2 subpixel shuffle for upsampling.
A final 1 × 1 convolution with output channel 1 and sigmoid activation is then used to get
the final line heatmap of resolution h× w.
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Figure 3.3: Computation of a line match score. The optimal path selected by the Needleman-
Wunsch algorithm is shown in green for matches and blue for skipping a point, using here a gap score
of zero.

Descriptor branch: The backbone encoding is processed by two consecutive convolutions
of kernels 3 × 3 and 1 × 1, and output channels 256 and 128, to produce a h

4 × w
4 × 128

feature descriptor map. This semi-dense map can be later bilinearly interpolated at any point
location. The triplet loss is optimized with a margin M = 1 and a minimal distance to the
hardest negative of T = 8 pixels.

We use ReLU activations after each convolution and optimize the network with the Adam
solver [Kingma and Ba, 2014] with a learning rate of 0.0005. Images are resized to a 512 × 512
resolution and converted to grayscale during training.

Line parameters. We use a junction threshold of 1
65 , a heatmap threshold ξavg = 0.25, an

inlier threshold ξinlier = 0.75, an NMS threshold ξcs = 3 pixels, λ = 3 pixels in the adaptive
local-maximum search, extract Ns = 64 samples along each line to compute the heatmap
and inlier scores, and we use Nh = 100 homographies for the homography adaptation. The
optimal line parameters were selected by a grid search on the validation set.
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Figure 3.4: Image examples from the synthetic dataset. First row: rendered images. Second
row: images with estimated junctions and line segment labels.

Matching details. The line descriptor is computed by regularly sampling up to 5 points
along each line segment, but keeping a minimum distance of 8 pixels between each point.
Since the ordering of the points might be reversed from one image to the other, we run the
matching twice with one point-set flipped. A gap score of 0.1 empirically yields the best
results during the NW matching. To speed up the line matching, we pre-filter the set of line
candidates with a simple heuristic. Given the descriptor of the 5 points sampled on a line of
I1 to be matched, we compute the similarity with their nearest neighbor in each line of I2,
and average these scores for each line. This yields a rough estimate of the line match score,
and we keep the top 10 best lines as candidates for the NW matching. Finally, we retain at
matching time only the pairs that are mutually matched.
Training dataset. Our synthetic dataset consists of rendered 2D shapes including triangles,
lines, rectangles, and stripes, similarly as in Superpoint [DeTone et al., 2018] (see Figure 3.4).
We label the corners of these shapes as junctions and edges as line segments. Gaussian
noise, salt and pepper noise, and random shades are added to the rendered images as
data augmentation. We follow the same process as in SuperPoint [DeTone et al., 2018]
to generate the random homographies. They are generated as a composition of simple
transformations with pre-defined ranges: scaling (normal distribution N (1., 0.1)), translation
(uniform distribution within the image boundaries), rotation (uniformly in [−90◦,+90◦]), and
perspective transform. We generate 20, 000 training samples and 400 testing samples.

For the training with real images, we use the Wireframe dataset [Huang et al., 2018], for
a fair comparison with the current state of the art also trained on these images. We follow
the split policy in LCNN [Zhou et al., 2019a]: 5, 000 images for training and 462 images for
testing, but only use the images and ignore the ground truth lines provided by the dataset.

3.5 Experiments

3.5.1 Line Segment Detection Evaluation

To evaluate our line segment detection, we use the test split of the Wireframe dataset [Huang
et al., 2018] and the YorkUrban dataset [Denis et al., 2008], which contains 102 outdoor
images. For both datasets, we generate a fixed set of random homographies and warp each
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image to get a pair of matching images.

Line segment distance metrics. A line distance metric needs to be defined to evaluate
the accuracy of a line detection. We use the two following metrics:
Structural distance (ds): The structural distance of two line segments l1 and l2 is defined as:

ds(l1, l2) = min(
∥∥∥e1

1 − e1
2

∥∥∥
2

+
∥∥∥e2

1 − e2
2

∥∥∥
2
,∥∥∥e1

1 − e2
2

∥∥∥
2

+
∥∥∥e2

1 − e1
2

∥∥∥
2
) ,

(3.11)

where (e1
1, e

2
1) and (e1

2, e
2
2) are the endpoints of l1 and l2 respectively. Contrary to the

formulation of recent wireframe parsing works [Zhou et al., 2019a, Xue et al., 2020], we do
not use square norms to make it directly interpretable in terms of endpoints distance.
Orthogonal distance (dorth): The orthogonal distance of two line segments l1 and l2 is defined
as the average of two asymmetrical distances da:

da(li, lj) =
∥∥∥e1

j − pli(e1
j )
∥∥∥

2
+
∥∥∥e2

j − pli(e2
j )
∥∥∥

2
, (3.12)

dorth(l1, l2) = da(l1, l2) + da(l2, l1)
2 , (3.13)

where plj (.) denotes the orthogonal projection on line lj . When searching the nearest line
segment with this distance, we ignore the line segments with an overlap below 0.5. This
definition allows line segments corresponding to the same 3D line but with different line
lengths to be considered as close, which can be useful in localization tasks [Micusik and
Wildenauer, 2014].

Line segment detection metrics. Since the main objective of our line segment detection
method is to extract repeatable and reliable line segments from images, evaluating it on the
manually labeled lines of the Wireframe dataset [Huang et al., 2018] is not suitable. We
thus instead adapt the detector metrics proposed for SuperPoint [DeTone et al., 2018] to
line segments using pairs of images: the repeatability and localization error. Both of these
metrics are computed using pairs of images I1 and I2, where I2 is a warped version of I1

under a homography H. Each image is associated with a set of line segments L1 = {l1m}M1
m=1

and L2 = {l2m}M2
m=1, and d refers to one of the two line distances ds or dorth.

Repeatability: The repeatability measures how often a line can be re-detected in different
views. It is the average percentage of lines in the first image that have a matching line when
reprojected in the second image. Two lines are considered to be matched when their distance
is lower than a threshold ϵ. This metric is computed symmetrically across the two images
and averaged. We define it as:

∀l ∈ L1,CL2(l) =

1 if(minl2j ∈L2 d(l, l2j )) ≤ ϵ,

0 otherwise ,
(3.14)

Rep-ϵ =
∑M1

i=1 CL2(l1i ) +
∑M2

j=1 CL1(l2j )
M1 +M2

. (3.15)
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Localization error: The localization error with tolerance ϵ is the average line distance between
a line and its re-detection in the second image, only considering the matched lines.:

LE-ϵ =
∑

j∈Corr minl1i ∈L1 d(l1i , l2j )
|Corr|

, (3.16)

Corr = {j | CL1(l2j ) = 1, l2j ∈ L2} , (3.17)

where |·| measures the cardinality of a set.
Evaluation on the Wireframe and YorkUrban datasets. We compare in Tables 3.1
and 3.2 our line segment detection method with 5 baselines including the handcrafted
Line Segment Detector (LSD) [Von Gioi et al., 2008], wireframe parsing methods such as
LCNN [Zhou et al., 2019a], the Holistically Attracted Wireframe Parsing (HAWP) [Xue
et al., 2020], the Tri-Point Line Segment Detector (TP-LSD) [Huang et al., 2020], and Deep
Hough-transform Line Priors (DeepHough) [Lin et al., 2020]. LSD is used with a minimum
segment length of 15 pixels. For LCNN, HAWP, and DeepHough, we chose thresholds (0.98,
0.97, and 0.9 respectively) on the line scores to maximize their performances. We show two
TP-LSD variants: HG using the same HourGlass backbone [Newell et al., 2016] as the other
wireframe parsing baselines and our method, and TP512 that uses a ResNet34 [He et al.,
2016] backbone.

Overall, our method achieves the best performance in terms of repeatability and local-
ization error on both datasets. We also include our method with Non-Maximum Suppres-
sion (NMS), which removes the segments having other junctions between the two endpoints
to avoid overlapping segments in the predictions L̂. Without overlapping segments, the
performance slightly decreases but we get fewer segments and faster inference speed.

ds dorth Time ↓ # lines
/ imageRep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓

LSD 0.358 2.079 0.707 0.825 0.026 228
LCNN @0.98 0.434 2.589 0.570 1.725 0.120 76
HAWP @0.97 0.451 2.625 0.537 1.738 0.035 47
DeepHough @0.9 0.419 2.576 0.618 1.720 0.289 135
TP-LSD HG 0.358 3.220 0.647 2.212 0.038 72
TP-LSD TP512 0.563 2.467 0.746 1.450 0.097 81
Ours w/ NMS 0.557 1.995 0.801 1.119 0.042 116
Ours 0.616 2.019 0.914 0.816 0.074 447

Table 3.1: Line detection evaluation on the Wireframe dataset [Huang et al., 2018].
We compare repeatability and localization error for an error threshold of 5 pixels in structural
and orthogonal distances. Our approach provides the most repeatable and accurate line detections
compared to the other baselines.
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ds dorth Time ↓ # lines
/ imageRep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓

LSD 0.357 2.116 0.704 0.876 0.031 359
LCNN @0.98 0.318 2.662 0.449 1.784 0.206 103
HAWP @0.97 0.295 2.566 0.368 1.757 0.045 59
DeepHough @0.9 0.315 2.695 0.535 1.751 0.519 206
TP-LSD HG 0.233 3.357 0.524 2.395 0.038 113
TP-LSD TP512 0.433 2.612 0.633 1.555 0.099 125
Ours w/ NMS 0.528 1.902 0.787 1.107 0.064 222
Ours 0.582 1.932 0.913 0.713 0.093 1085

Table 3.2: Line detection evaluation on the YorkUrban dataset [Denis et al., 2008].
We compare repeatability and localization error for an error threshold of 5 pixels in structural
and orthogonal distances. Our approach provides the most repeatable and accurate line detections
compared to the other baselines.

3.5.2 Line Segment Description Evaluation

Line descriptor metrics. Our line descriptor is evaluated on several matching metrics,
both on hand-labeled line segments and on detected line segments (LSD or our predicted
lines). When using ground truth lines, there is an exact one-to-one line correspondence.
For predicted lines, ground truth matches are computed with a threshold ϵ similarly as for
the detector metrics. When depth is available, the lines are projected to 3D and directly
compared in 3D space. Only lines with a valid reprojection in the other image are considered.
Accuracy: Percentage of correctly matched lines given a set of ground truth line matches.
Receiver Operating Characteristic (ROC) curve: Given a set of matching lines, we compute
the SIFT [Lowe, 2004] descriptor of each endpoint, average the SIFT distances between each
pair of lines, and use the second nearest neighboring line as negative match. The ROC curve
is then the True Positive Rate (TPR) plotted against the False Positive Rate (FPR). The
curve is obtained by varying the descriptor similarity threshold defining a positive match.
Precision: Ratio of true positive matches over the total number of predicted matches.
Recall: Ratio of true positive matches over the total number of ground truth matches.
Descriptor evaluation on ground truth lines. Our first experiment aims at evaluating
our approach on a perfect set of lines with a one-to-one matching. We thus use the Wireframe
test set with its ground truth lines. We compare our line matcher against 3 competing
baselines: the handcrafted LBD [Zhang and Koch, 2013], the LLD [Vakhitov and Lempitsky,
2019] and the WLD [Lange et al., 2020], an improved version of the DLD [Lange et al., 2019b].
The results are shown in Figure 3.5.

Since LLD was trained on consecutive video frames with nearly no rotation between the
images, it is not rotation invariant, hence its poor performance on the rotated images of
our dataset. WLD showed that they were able to surpass the handcrafted LBD, and our
descriptor gets a slight improvement over WLD by 5%.
Robustness to occlusion experiment. In real-world applications, the detected lines
across multiple views are rarely exactly the same, and some may be partially occluded or
with different endpoints. To evaluate the robustness of our descriptor to these challenges, we
modify the Wireframe test set to include artificial occluders. We overlay ellipses with random
parameters and synthetic textures on the warped image of each pair, until at most s% of
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LBD 0.610
LLD 0.265
WLD 0.933
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Figure 3.5: Descriptor evaluation on the Wireframe dataset [Huang et al., 2018] with
ground truth lines. Matching the exact same lines yields a very high score for WLD and our
method.

the lines are covered. We also shorten the line segments accordingly, so that each line stops
at the occluders boundary. We compare line matches for various values of s and show the
results in Figure 3.6.

While all methods show a decrease in performance with a larger occlusion, SOLD2
outperforms the other baselines by a large margin for all degrees of occlusion. Note the
significant drop for the learned baseline WLD, which operates on line patches and is thus
severely affected by occlusions. This experiment thus validates the robustness of our method
to occlusion and unstable line endpoints.

Descriptor evaluation on predicted lines. To assess the performance of our proposed
line description and matching, we also compute the matching metrics on predicted line
segments instead of using hand-labeled lines. We perform two sets of experiments, on the
Wireframe test set and on the ETH3D [Schöps et al., 2017] images which offer real world
camera motions and can contain more challenging viewpoint changes than homographic
warps.

The ETH3D dataset [Schöps et al., 2017] is composed of 13 scenes taken in indoor as well
as outdoor environments. Each image comes with the corresponding camera intrinsics and
depth map, and a 3D model of each scene built with Colmap [Schönberger and Frahm, 2016]
is provided as well. We use the undistorted image downsampled by a factor of 8 to run the
line detection and description and we select all pairs of images that share at least 500 covisible
3D points in the provided 3D models. We then use the depth maps and camera intrinsics to
reproject the lines in 3D and compute the descriptor metrics in 3D space. While the depth
maps have been obtained from a high-precision laser scanner, they contain some holes, in
particular close to depth discontinuities. Since these discontinuities are actually where lines
are often located, we inpaint the depth in all of the invalid areas at up to 10 pixels from
a valid depth pixel. We used the Non-Local Spatial Propagation Network (NLSPN) [Park
et al., 2020], the current state of the art in deep depth inpainting guided with RGB images.

In both experiments, we run the LSD detector and compute all the line descriptor methods
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Figure 3.6: Robustness to occlusion. Left: When evaluated on the Wireframe dataset with
ground truth lines and random occluders, our method shows a higher robustness to occlusion compared
to other methods. Right: Example of matches in the presence of occluders.

Wireframe ETH3D

Lines Desc Precision ↑ Recall ↑ Precision ↑ Recall ↑

LSD

LBD 0.496 0.597 0.132 0.376
LLD 0.123 0.116 0.085 0.230
WLD 0.528 0.804 0.127 0.398
SOLD2 (Ours) 0.591 0.889 0.159 0.525

Ours SOLD2 (Ours) 0.882 0.688 0.196 0.538
Ours w/ NMS SOLD2 (Ours) 0.777 0.949 0.190 0.688

Table 3.3: Matching precision and recall using LSD [Von Gioi et al., 2008] and our lines.
We use a threshold of 5 pixels in structural distance for the Wireframe [Huang et al., 2018] images
and of 5cm for the ETH3D [Schöps et al., 2017] images to define the ground truth matches.

on them and also compare it with our full line prediction and description. Table 3.3 and
Figure 3.7 evaluate the precision and recall of all methods.

Whether it is on synthetically warped images, or with real camera changes, SOLD2
outperforms all the descriptor baselines both in terms of matching precision and recall
when compared on LSD lines. Using our own lines also improves the metrics, but the best
performance is achieved when we apply a line NMS to remove overlapping segments. Having
no overlap makes it indeed easier for the descriptor to discriminate the closest matching line.
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Figure 3.7: Precision-Recall curves on predicted lines. Our descriptor outperforms the other
baselines when compared on LSD lines and the best performance is achieved for our full approach
with our lines and descriptors.

3.5.3 Application: Homography Estimation

To validate the real-world applications of our method, we used the line segment detections
and descriptors to match segments across pairs of images of the Wireframe dataset [Huang
et al., 2018] related by a homography and estimate the homography with RANSAC [Fischler
and Bolles, 1981b]. We sample minimal sets of 4 lines to fit a homography and run up to
1, 000, 000 iterations with the Locally Optimized RANSAC (LO-RANSAC) [Lebeda et al.,
2012] implementation of Sattler et al.1. The reprojection error is computed with the orthogonal
line distance. We compute the accuracy of the homography estimation similarly as in
SuperPoint [DeTone et al., 2018] by warping the four corners of the image with the estimated
homography, warping them back to the initial image with the ground truth homography and
computing the reprojection error of the corners. We consider the estimated homography to
be correct if the average reprojection error is less than 3 pixels. The results are listed in
Table 3.4.

Homography estimation

Lines Desc Accuracy ↑ # inliers Reproj. error ↓

LSD

LBD 0.781 80 0.791
LLD 0.201 21 0.927
WLD 0.920 116 0.868
Ours 0.948 116 0.863

Ours Ours 0.935 200 0.780

SuperPoint 0.582 173 0.996

Table 3.4: Evaluation results of homography estimation. The homography between images of
the Wireframe dataset [Huang et al., 2018] is estimated from line matches using RANSAC. We use a
threshold of 5 pixels in orthogonal line distance to consider a match to be an inlier.

1https://github.com/tsattler/RansacLib
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When compared on LSD line [Von Gioi et al., 2008], our descriptors provide the highest
accuracy among all baselines, and our full pipeline achieves a similar performance. When
using our lines, we use a similar refinement of the junctions as in LSD [Von Gioi et al., 2008]:
we sample small perturbations of the endpoints by a quarter of a pixel and keep the perturbed
endpoints maximizing the line average score. Similarly to feature point methods [DeTone
et al., 2018, Dusmanu et al., 2019], this experiment shows that learned features are still on
par or slightly worse than handcrafted detections in terms of localization error.

We also add to the comparison the results of homography estimation for a learned feature
point detector and descriptor, SuperPoint [DeTone et al., 2018]. The point-based approach
performs significantly worse than our method, due to the numerous textureless scenes and
repeated structures present in the Wireframe dataset. We also found that SuperPoint is
not robust to rotations above 45 degrees, while our line descriptor can leverage its ordered
sequence of descriptors to achieve a better invariance to rotation.

3.5.4 Ablation Study

To validate the design choices of our approach, we perform an ablation study on the
descriptor. SIFT endpoints computes a SIFT descriptor [Lowe, 2004] for both endpoints using
the line direction as keypoint orientation, and averages the endpoints descriptor distance
of each line candidate pair to get the line match scores. Average descriptor computes a
line descriptor by averaging the descriptors of all the points sampled along each line. NN
average computes the descriptor similarity of each line point with its nearest neighbor in the
other line and averages all the similarities to get a line match score. D2-Net sampling and
ASLFeat sampling refer to our proposed matching method where the points are sampled along
the lines according to the saliency score introduced in D2-Net [Dusmanu et al., 2019] and
ASLFeat [Luo et al., 2020], respectively. Finally, we test our method with various numbers of
points sampled along each line. Table 3.5 compares the accuracy of all these methods on the
Wireframe dataset with ground truth lines both with and without occluders.

Results show that simply matching the line endpoints with a point descriptor such as
SIFT is quickly limited and confirm the necessity of having a specific descriptor for lines.
The small drop in matching accuracy for Average descriptor and NN average highlights the

Matching accuracy ↑

GT lines GT lines
Method w/ occlusion

SIFT endpoints 0.532 0.403
Average descriptor 0.944 0.754
Nearest Neighbor (NN) average 0.972 0.803
D2-Net sampling 0.969 0.825
ASLFeat sampling 0.963 0.812
Ours (3 samples) 0.979 0.813
Ours (5 samples) 0.978 0.846
Ours (10 samples) 0.972 0.836

Table 3.5: Ablation study on the Wireframe [Huang et al., 2018] dataset. We compare to
various line matching and sampling methods along each line. Ground Truth (GT) lines are used, both
without occlusion and with up to 50% occlusion.
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importance of keeping ordered points in NW matching. Surprisingly, smarter selections of
points along each line such as D2-Net and ASLFeat sampling perform slightly worse than a
regular sampling of points. Finally, there is a trade-off on the number of samples along each
line: the NW algorithm loses its benefit when used with few points and the line descriptor
becomes less robust to occlusions. On the other hand, many points along the line may
produce descriptors that are too close from each other, which makes it harder to correctly
discriminate between them. We found that 5 samples is a good trade-off overall, as was also
the case for LLD [Vakhitov and Lempitsky, 2019].

3.5.5 Additional Insights

Multi-task learning. The tasks of detecting lines, their junctions, and describing them
are diverse, and we assume them to have a different homoscedastic aleatoric uncertainty.
Additionally, they can have different orders of magnitude and their relative values are changing
during training, in particular when the descriptor branch is added to the pre-trained detector
network. Therefore, we chose to use the multi-task loss introduced by Kendall et al. [Kendall
et al., 2018] and successfully used in other geometrical tasks [Kendall and Cipolla, 2017, Sarlin
et al., 2019], to automatically adjust the weights of the losses during training.

The final weights of Equation (8) gracefully converged towards the inverse of each loss,
such that the value of each loss multiplied by its weight is around 1. The final weight values
are the following: e−wjunc = 7.2, e−wline = 16.3 and e−wdesc = 8.2. To show the effectiveness
of the dynamic weighting, we tried two variants: (1) all loss weights are 1, and (2) we used the
final values from the dynamic weighting as static loss weights. In the first case, the detection
and description results are worse by at least 10% and 5.5%, respectively. In the second case,
the detection and description results are worse by at least 6.7% and 76.2%, respectively.

55



Visualization of line detection and matches. We provide some visualizations of the line
matching in Figure 3.8 and of the line segment detection results in Figure 3.9. Figure 3.10
also offers a comparison of line matches with point matches in challenging images with low
texture, and repeated structures. Our method is able to match enough lines to obtain an
accurate pose estimation, while point-based methods such as SuperPoint [DeTone et al., 2018]
fail in such scenarios.
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Figure 3.8: Qualitative results of line segment matching. We display line segment matches
on the ETH3D dataset [Schöps et al., 2017] with correct matches, wrong matches and unmatched
lines. Only lines shared between the two views are shown. Our full pipeline is compared to three line
descriptor baselines computed on LSD lines [Von Gioi et al., 2008]: LBD [Zhang and Koch, 2013],
LLD [Vakhitov and Lempitsky, 2019] and WLD [Lange et al., 2020].
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Figure 3.9: Qualitative results of line segment detections. We show examples of line detections
on the Wireframe dataset [Huang et al., 2018] for the following methods: LCNN [Zhou et al., 2019a],
HAWP [Xue et al., 2020], DeepHough [Lin et al., 2020], LSD [Von Gioi et al., 2008], TP-LSD [Huang
et al., 2020] and ours.
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SuperPoint Ours

Figure 3.10: Benefits of lines compared to feature points. We compare our method with point
matching from SuperPoint [DeTone et al., 2018] on challenging images of the Wireframe dataset [Huang
et al., 2018] with correct and wrong matches. We use a distance threshold of 5 pixels to determine if a
match is correct, using the orthogonal line distance in the case of lines. Lines can be matched even in
the presence of textureless areas, as well as repeated and symmetrical structures.
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3.6 Discussion

Summary. We presented the first deep learning pipeline for joint detection and description
of line segments in images. Thanks to a self-supervised training scheme, our method can be
applied to most image datasets, in contrast with the current learned line detectors limited to
hand-labeled wireframe images. Our descriptor and matching procedure addresses common
issues in line description by handling partial occlusions and poorly localized line endpoints,
while benefiting from the discriminative power of deep feature descriptors. By evaluating our
method on a range of indoor and outdoor datasets, we demonstrate an improved repeatability,
localization accuracy and matching performance compared to previous baselines.

Limitations and future works. While our line segment predictions are designed to be
generic, further work is needed to tune them for specific applications. For instance, line-based
localization may prefer short and stable lines, while 3D reconstruction and wireframe parsing
may favor longer lines to get a better estimate of the dimensions of the scene. Thanks to our
flexible line segment definition, a tuning of the line parameters allows to steer the output
segments in one direction or another.
Learning the endpoint position with a network also suffers from the same issue as with
feature points, namely a lack of localization accuracy compared to handcrafted methods.
Furthermore, the multi-stage training pipeline proposed in this chapter can be cumbersome
and could be simplified in the future. We propose in the next chapter another approach to
deep line detection to mitigate these challenges.
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Chapter 4

DeepLSD: Line Segment Detection
and Refinement with Deep Image

Gradients

Deep line detectors can inherit the benefits of learned feature points with self-supervision,
higher robustness to image changes, and repeatability, but they also inherit their limitations
at the same time: poor localization of the predicted endpoints, heavy training pipelines, and a
bias towards wireframe lines. Yet, traditional line detectors based on the image gradient were
generic, extremely fast, and very accurate, in spite of a lack of robustness in noisy images
and challenging conditions. We propose in this chapter to combine traditional and learned ap-
proaches to get the best of both worlds: an accurate and robust line detector that can be trained
in the wild without ground truth lines. Our new Deep Line Segment Detector (DeepLSD)
processes images with a deep network to generate a line attraction field, before converting it to
a surrogate image gradient magnitude and angle, which is then fed to any existing handcrafted
line detector. Additionally, we propose a new optimization tool to refine line segments based
on the attraction field and vanishing points. This refinement improves the accuracy of current
deep detectors by a large margin. We demonstrate the performance of our method on low-level
line detection metrics, as well as on several downstream tasks using multiple challenging
datasets. This chapter originates from the following publication: [Pautrat et al., 2023a], and
the corresponding code is available at https: // github. com/ cvg/ DeepLSD .
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4.1 Motivation

The previous chapter showed that line features can benefit from the recent advances in
deep local feature points, through a self-supervised training process, an increased repeatability,
and a higher robustness to image changes. Adding line segments to the existing point-based
pipelines can then mitigate the lack of structure of feature points and improve the robustness
of these pipelines in texture-less areas. However, these benefits brought by lines are hindered
by the other drawbacks of feature points: poor localization of the keypoints predicted by
deep networks, and cumbersome training pipelines making it hard to apply these new line
detectors to new datasets.

In this chapter, we propose to revisit the task of line segment detection in images after
learning the lessons of the previous chapters and of previous line detectors. On the one hand,
traditional line detectors based on the image gradient are extremely fast and accurate, but
lack robustness in noisy images and challenging conditions. On the other hand, their learned
counterparts are more repeatable and can handle challenging images, but at the cost of a
lower accuracy and a bias towards wireframe lines. We propose here to fuse traditional and
learned approaches into a single pipeline to combine the advantages of both approaches. Our
method first processes an input image by a deep network supervised by bootstrapping existing
line detectors, and then leverage handcrafted line detectors to obtain the line segments. The
first step ensures a high robustness to noise, while the second one retains the accuracy of
gradient-based detectors. Furthermore, we show that the intermediate output of this first step
can be used to refine our predicted lines or any existing line segments with an energy-based
optimization. Our final predicted lines are both generic, highly accurate, and robust to image
changes, making them suitable for any geometrical tasks. We demonstrate in the following
state-of-the-art results for a wide range of applications, such as homography estimation, 3D
line reconstruction, point-line visual localization, and vanishing point estimation.

The rest of this chapter consists in an introduction to the problem (Section 4.2), a brief
review of similar works (Section 4.3), a description of our new method (Section 4.4), its
evaluation against previous line detectors (Section 4.5), and finally a conclusion about the
current state of the field of line detection (Section 4.6).

4.2 Introduction

Line segments are ubiquitous in human-made environments and encode the underlying
scene structure in a compact way. As such, line features have been used in multiple vision
tasks: 3D reconstruction and Structure-from-Motion (SfM) [Hofer et al., 2017, Micusik
and Wildenauer, 2017, Mateus et al., 2022, Liu et al., 2023], Simultaneous Localization
and Mapping [Gomez-Ojeda et al., 2019, Pumarola et al., 2017, Lange et al., 2019a, Fu
et al., 2020a, Zuo et al., 2017], visual localization [Gao et al., 2021], tracking [Quan et al.,
2021], vanishing point estimation [Tardif, 2009], etc. Thanks to their spatial extent and
presence even in texture-less areas, they offer a good complement to feature points [Gao
et al., 2021, Gomez-Ojeda et al., 2019, Pumarola et al., 2017].
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All these applications require a robust and accurate detector to extract line features from
images. Traditionally, line segments are extracted from the image gradient using handcrafted
heuristics, such as in the Line Segment Detector (LSD) [Von Gioi et al., 2008]. These methods
are fast and very accurate since they rely on low-level details of the image. However, they can
suffer from a lack of robustness in challenging conditions such as in low illumination, where
the image gradient is noisy. They also miss global knowledge from the scene and will detect
any set of pixels with the same gradient orientation, including uninteresting and noisy lines.

Recently, deep networks offer new possibilities to tackle these drawbacks. This resurgence
of line detection methods was initiated by the deep wireframe methods aiming at inferring the
line structure of indoor scenes [Huang et al., 2018, Zhou et al., 2019a, Xue et al., 2019, Xue
et al., 2020, Lin et al., 2020]. Since then, more generic deep line segment detectors have been
proposed [Huang et al., 2020, Li et al., 2021, Dai et al., 2021, Gu et al., 2022, Teplyakov
et al., 2022], including joint line detectors and descriptors [Pautrat et al., 2021, Zhang et al.,
2021a, Abdellali et al., 2021]. These methods can, in theory, be trained on challenging images
and, thus, gain robustness where classical methods fail. As they require a large receptive
field to be able to handle the extent of line segments in an image, they can also encode some
image context and can distinguish between noisy and relevant lines. On the other hand,
most of these methods are fully supervised and there exists currently only a single dataset
with ground truth lines, the Wireframe dataset [Huang et al., 2018]. Initially designed for
wireframe parsing, this dataset is biased towards structural lines and is limited to indoor
scenes. Therefore, it is not a suitable training set for generic line detectors, as illustrated in
Figure 4.1. Additionally, similarly as with feature points [Sarlin et al., 2021, Lindenberger
et al., 2021], current deep detectors are lacking accuracy and are still outperformed by
handcrafted methods on easy images. The exact localization of line endpoints is often hard to
obtain, as lines can be fragmented and suffer from partial occlusion. Many applications using
lines consequently consider infinite lines and ignore the endpoints [Micusik and Wildenauer,
2017].

Based on this assessment, we propose in this chapter to keep the best of both worlds: use
deep learning to process the image and discard unnecessary details, then use handcrafted
methods to detect the line segments. We thus retain the benefits of deep learning, namely, to
abstract the image and gain more robustness to illumination and noise, while at the same
time retaining the accuracy of classical methods. We achieve this goal by following the tracks
of two previous methods that used a dual representation of line segments with attraction
fields [Xue et al., 2019, Xue et al., 2020]. The latter are continuous representations that are
well-suited for deep learning, and we show how to leverage them as input to the traditional
line detectors. Contrary to these two previous methods, we do not rely on ground truth lines
to train our line attraction field, but propose instead to bootstrap existing methods to create
a high-quality pseudo ground truth. Thus, our network can be trained on any dataset and be
specialized towards specific applications, which we show in our experiments.

We additionally propose a novel optimization procedure to refine the detected line segments.
This refinement is based on the attraction field output by the proposed network, as well as
on vanishing points, optimized together with the segments. Not only can this optimization

63



LSD [Von Gioi et al., 2008] HAWP [Xue et al., 2020]

Line distance field Ours

Figure 4.1: Line detection in the wild. Top row: on challenging images, handcrafted methods
such as LSD [Von Gioi et al., 2008] suffer from noisy image gradients, while current learned methods
like HAWP [Xue et al., 2020] were trained on wireframe images and generalize poorly. Bottom row:
we combine deep learning to regress a line attraction field and a handcrafted detector to get both
accurate and robust lines.

be used to effectively improve the accuracy of our prediction, but it can also be applied to
other deep line detectors.
In summary, we propose the following contributions:
• We propose a method bootstrapping current detectors to create ground truth

line attraction fields on any image.

• We introduce an optimization procedure that can simultaneously refine line segments
and vanishing points. This optimization can be used as a stand-alone refinement to
improve the accuracy of any existing deep line detector.

• We set a new record in several downstream tasks requiring line segments by combining
the robustness of deep learning approaches with the precision of handcrafted
methods in a single pipeline.

4.3 Related Work

Handcrafted and learned line detectors. Line detectors in the literature have evolved
from handcrafted heuristics based on the image gradient, to deep predictors. An overview of
such previous works is available in Section 1.2.2.
Attraction Fields. This chapter proposes to combine deep learning methods with classical
line extractors. The key component for this is to use a dual representation of lines through an
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attraction field. This representation was first introduced by Xue et al. [Xue et al., 2019] for
the wireframe task, and later improved with HAWP [Xue et al., 2020, Xue et al., 2022]. They
represent the set of discrete lines of an image with a continuous 2D vector field, suitable for
deep networks. We adopt a similar approach, with small modifications to make the prediction
more accurate. While not exactly an attraction field, Teplyakov et al. [Teplyakov et al.,
2022] also proposed to predict a line mask and line angle field with a network, then used
LSD [Von Gioi et al., 2008] to get line segments. Our method obtains better accuracy by
predicting a distance field instead of a simple binary mask. Attraction fields have also been
leveraged for keypoint detection [Huang et al., 2021], where 2D vectors are voting for the
closest keypoint in the image. These detections-by-voting offer a convenient way to represent
discrete quantities through continuous ones, and are also a key aspect of our approach when
it comes to generating a reliable ground truth for line detection.
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Figure 4.2: Overview of the method. (1) We generate ground truth line Distance Field (DF)
and Angle Field (AF) by bootstrapping LSD [Von Gioi et al., 2008]. (2) A deep network is trained to
predict the DF/AF, which is then converted to a surrogate image gradient. (3) Line segments are
extracted with LSD and (4) refined based on the DF/AF.

4.4 Hybrid Line Detector

We demonstrate how to combine the robustness of deep networks together with the
accuracy of handcrafted line detectors. We train a deep network to predict a line attraction
field, convert it to a surrogate image gradient, and feed it to a handcrafted line detector to
obtain the segments. Finally, an optimization based on the attraction field is used to refine
the lines, as depicted in Figure 4.2.

4.4.1 Line Attraction Field

Representing line segments through an attraction field was first proposed by Xue et
al. [Xue et al., 2019]. They initially proposed to regress a 2D vector field for each pixel of an
image, indicating the relative position of the closest point on a line. This approach allows to
represent discrete quantities (the line segments) as a smooth 2-channel image well suited for
deep learning. In [Xue et al., 2020], the authors enriched the attraction field by adding two
angles pointing at the endpoints of the closest line. Recovering the original segments from
the attraction field is then straightforward.

However, this representation is not optimal to obtain accurate line segments, as illustrated
in Figure 4.3. Directly predicting the position of the endpoints as done in HAWP [Xue
et al., 2020] requires a larger receptive field to be able to get information from far-away
endpoints, so that the network will focus on higher-level details instead of low-level ones.
Additionally, deep networks are still struggling to yield accurate keypoint detections [Sarlin
et al., 2021, Lindenberger et al., 2021], which holds even more for line endpoints, which are
notoriously noisy and unstable. On the contrary, handcrafted methods such as LSD [Von Gioi
et al., 2008] are very low-level and gradually grow a line, so that endpoints are recovered only
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(a) AFM (b) HAWP (c) Distance field (d) Angle field

Figure 4.3: Attraction field parametrizations. (a) Parametrizing with 2D vectors may produce
noisy angles for small vector norms. (b) Adding offsets to the endpoints requires long-range information
and is not robust to noisy endpoints. We propose to decouple the distance field (c) and line orientation
field (d).

at the end of the region growing process. In this work, we propose to restrict our network to
a smaller receptive field and to let the traditional heuristics determine the endpoints.

We adopt a similar attraction field representation as HAWP [Xue et al., 2020] but without
the additional two angles pointing at endpoints, yielding only a line distance field (DF) and
a line angle field (AF). For every pixel in these two images, the line distance field D gives
the distance from the current pixel to the closest point on a line, and the line angle field A
returns the orientation of the closest line. These two quantities can be easily obtained from
the 2D offset field (x,y) ∈ RH×W × RH×W pointing at the closest point on a line, where
(H,W ) are the dimension of the image:

D =
√

x2 + y2, A = arctan y
x + π/2 mod π . (4.1)

We define here the line angle modulo π so that a pixel above or below a line would have the
same angle. Adopting this parametrization has the advantage of separating the norm from
the angle of the 2D offset. Traditional detectors are leveraging the image gradient magnitude
and angle, so we adopt a similar representation. Furthermore, both quantities are continuous
close to line segments, and the line angle is even constant close enough to a line.

4.4.2 Ground Truth Generation

To learn the attraction field, a ground truth is needed. Both the Attraction Field
Map (AFM) [Xue et al., 2019] and HAWP [Xue et al., 2020] are supervised with the ground
truth lines of the Wireframe dataset [Huang et al., 2018]. We explore a novel method to acquire
our ground truth, by bootstrapping previous line detectors. Inspired by SuperPoint [DeTone
et al., 2018] and SOLD2 [Pautrat et al., 2021], we propose to generate the ground truth
attraction field through homography adaptation. Given a single input image I, we warp it
with N random homographies Hi, detect line segments in all the warped images Ii using any
existing line detector, and then warp back the segments into I to get a set Li of lines. We
use LSD [Von Gioi et al., 2008] to extract lines as it is currently among the most accurate
existing line detector. The next step is to aggregate all the detections together, however,
aggregating discrete quantities such as lines is non trivial. In our previous chapter introducing
SOLD2 [Pautrat et al., 2021], we proposed to aggregate the endpoints and line heatmaps,
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and recover the segments afterwards. Instead, we propose here to convert the sets of lines Li

into a distance field Di and angle field Ai, and to aggregate them by taking the median value
of each pixel (u, v) across all images: D(u, v) = mediani∈[1,N ]Di(u, v)

A(u, v) = mediani∈[1,N ]Ai(u, v)
. (4.2)

By taking the median, we remove the noisy lines that were detected in only a few images, as
shown in Figure 4.4.

Input image Distance field Angle field

Figure 4.4: Pseudo GT visualization. Given an input image, we generate a line distance and
angle fields (color coded [Baker et al., 2007]) and use them to supervise a deep network. Noisy lines,
such as the ones in the bush at the bottom, are averaged out and ignored.

4.4.3 Learning the Line Attraction Field

To regress our line distance and angle fields, we leverage a UNet-like neural network
architecture [Ronneberger et al., 2015]. The input image of size (H,W ) is processed by several
convolutional layers and gradually downsampled up to a factor of 8 through 3 successive
average pooling operations. The features are then upscaled back to the original resolution
through another series of convolutional layers and bilinear interpolation. The resulting deep
features are then split into two branches, one outputting the distance field D̂ ∈ RH×W and
the other one the angle field Â ∈ RH×W . Figure 4.5 provides an overview of the network.

While all convolutions are followed by ReLU [Agarap, 2018] and Batch Normalization [Ioffe
and Szegedy, 2015], the last two outputs have different activations. The angle field is obtained
through a sigmoid activation and is multiplied by π to get an angle within ]0, π[. Since the
distance field can get very small values close to lines, where we also want the highest accuracy,
we adopt a special normalization. The distance field branch ends with a ReLU activation
and outputs a normalized distance field D̂n ∈ (R+)H×W . The final distance field is obtained
through the following denormalization:

D̂ = r · e−D̂n , (4.3)

where r is a parameter in pixels that defines a region around each line. Since handcrafted
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Figure 4.5: Network architecture. We use a standard UNet [Ronneberger et al., 2015] architecture
to predict the distance and angle fields.

methods mainly need gradient information close to line segments, we supervise our network
only on pixels at a distance of less than r pixels from a line. By selecting a small value for r,
large portions of the image may not have any supervision, including areas where the pseudo
ground truth was not able to detect real lines, e.g. lines with small contrast. Enforcing
these lines to be in the background during training, i.e. with high distance field, provides
a detrimental training signal and decreases the recall of the prediction. On the contrary,
with our loose supervision, these low contrast lines are not penalized during training and our
trained model can detect them, thus yielding a more complete prediction than the ground
truth.

We compute the training loss by comparing with a normalized version of the ground
truth: Dn = − log

(
D
r

)
. Note that since we only supervise pixels with a distance field below

r, D
r ∈ [0, 1] and so Dn ∈ R+. We compute the total loss as the sum of the losses for the

distance field and the angular field:

L = LD + LA , (4.4)

where LD is an L1 loss between the normalized distance fields and LA is an L2 angular loss
that takes the circularity of the angles into account for the given predicted and ground truth
angle fields Â,A ∈ [0, π]H×W :

LD = ||D̂n − Dn||1 ,

LA = min(||Â − A||2, ||π − |Â − A|||2) .
(4.5)
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4.4.4 Extracting Line Segments

Since handcrafted detectors are based on the image gradient, we propose to convert our
distance and angle fields into a surrogate image gradient magnitude M and angle θ: M = r − D̂

θ = Â − π
2

. (4.6)

Our predicted angle follows the directions of the lines and is perpendicular to the image
gradient, so we rotate it by π

2 . The maximal magnitude of a pixel on a line is r.
An important difference between the approaches of AFM and LSD is the gradient orienta-

tion. For an edge separating a dark from a bright area, LSD keeps track of the dark-to-bright
gradient direction, while AFM does not. This becomes important when several parallel lines
occur next to each other in a dark-bright-dark or bright-dark-bright pattern, as illustrated in
Figure 4.6.

(a) A double edge

(b) HAWP [Xue et al., 2020] (c) Ours

Figure 4.6: Distinguishing double edges. (a) An example of a bright-dark-bright edge and the
oriented angle field. (b) Wireframe methods treat it as a single line. (c) We detect it as two lines for
better accuracy.

For better accuracy and scale-invariance, we advocate to detect these double edges and
make our predicted angle oriented, based on the sign of the image gradient angle θI :

θo =

 θ if d(θ, θI) < d(θ − π, θI)
θ − π otherwise

, (4.7)
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where d(·, ·) is a circular distance between two angles. Now equipped with an oriented angle
θo and magnitude M, we can directly apply any existing classical line segment detector.
Unless stated otherwise, we always use the LSD [Von Gioi et al., 2008] approach in the
following, due to its high accuracy. In summary, the purpose of the deep net is to suppress
image noise and detect low-contrast lines, while the line segments are accurately extracted by
LSD afterwards.

We also add a filtering step, leveraging the DF and AF. We sample nf points along each
line, and compute the fraction p of samples whose distance function is below ηDF and angle is
close enough to the line orientation with tolerance ηθ. Only the segments with enough inliers
are kept.

4.4.5 Line Segment Refinement with Optimization

To make lines even more accurate, we propose an optimization step to refine them by
leveraging the predicted DF and AF. This refinement can also be used to enhance the lines
of any other detector, and we show in Section 4.5.5 how it can make current deep detectors
much more precise.

While lines are detected independently, they usually appear in highly structured configu-
rations in the image. In particular, lines that are parallel in 3D will share vanishing points.
We propose to integrate this as soft constraints into our refinement, effectively reducing the
degrees of freedom.

We first compute a set of Vanishing Points (VPs) associated with the predicted line
segments, using the multi-model fitting algorithm Progressive-X [Barath and Matas, 2019].
We use a strict inlier threshold to be sure to associate only relevant lines to a VP. The
optimization is then performed independently for each line and is a weighted unconstrained
least square minimization of three different costs:

C = λACA + λDCD + λV CV . (4.8)

Given a set P of nopt points uniformly sampled along a line segment l, we denote each point
by pi, the orientation angle of the line as θl, and the VP associated with the line as vl. We
use the following three costs:

CA = 1
nopt

∑
pi∈P

(
1 −

(
cos(Â(pi) − θl)

))
,

CD = 1
nopt

∑
pi∈P

D̂(pi) , CV = dVP(l,vl) ,
(4.9)

where dVP is a distance measure between a line and a VP. We adopt the perpendicular
distance of the line endpoints, projected onto the infinite line passing through the center of
the line and the VP, as in [Tardif, 2009]. These objectives are thus minimizing the difference
between the sampled angle Â(pi) and the line orientation angle, minimizing the average
distance field value over the line, and minimizing the distance between the line and its VP.
In case the closest VP is farther away from the line than a threshold tVP, we drop the VP
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constraint as it would push the line towards a wrong VP. To avoid lines drifting or collapsing
to a single point, we keep the length of the line fixed, and we only optimize the lines over
two degrees of freedom: the orientation angle of the line θl, and a translation of the middle
point in the perpendicular direction of the line.

Since the VPs are already computed, we can even optimize the VPs as well, as a by-
product of our approach. Jointly optimizing lines and VPs empirically led to inferior results,
mainly because some lines require more refinement than others, so that a global refinement
performs worse than independently optimizing the lines. We alternate, instead, between
refining the lines and refining the VPs, for a fixed number of iterations k. The VP refinement
is performed through a least square minimization of the distance dVP between the VP and
all associated lines, and the line-VP association is recomputed after each iteration.

4.4.6 Implementation Details

We train two versions of our network, one indoors on the Wireframe dataset [Huang et al.,
2018], but without using the ground truth lines, and one outdoors on MegaDepth [Li and
Snavely, 2018]. Given the large size of MegaDepth, we keep 150 scenes for training and 17 for
validation, and only sample 50 images from each scene. We use the Adam optimizer [Kingma
and Ba, 2014] and an initial learning rate of 1e−3, which is divided by 10 each time the
validation loss reaches a plateau. The training takes roughly 12 hours on a single NVIDIA
RTX 2080 GPU. For the line detection, we set the line region r to 5 pixels and ignore
magnitudes in M below 3 when applying LSD. We use nf = 50 samples in the filtering step,
ηDF = 1.5, ηθ = π

9 and accept lines with more than 50% inliers. The parameters for VP
estimation are tuned for each method on a validation set, but the usual threshold tV P ranges
from 1 to 2 pixels. The optimization weights are empirically chosen as λD = 1, λA = 1, and
λV = 0.2. We adopt nopt = 10 samples, perform a fixed set of k = 5 alternating iterations,
and optimize with Ceres [Agarwal and Mierle, 2012].

72



4.5 Experiments

To evaluate the performance of our method, we once again cannot use labeled lines as the
existing ones are usually biased towards wireframes. We are more interested in evaluating
the potential to use these lines for downstream applications, such as homography estimation,
3D line reconstruction, and visual localization.

4.5.1 Evaluation on Low-Level Metrics

We first evaluate our line detection on two challenging datasets to test the robustness of
the methods. First, the HPatches dataset [Balntas et al., 2017], consisting of 580 pairs of
images with ground truth homographies relating them and varying illumination and viewpoint
changes. Second, the RDNIM dataset [Pautrat et al., 2020] (see Appendix A), also with
image pairs related by a homography and with challenging day-night variations. We use the
night reference in our experiments to get more challenging pairs.

Similarly as in the previous chapter, we assess the repeatability and localization error
metrics. For both metrics, we compute a one-to-one matching of the detected line segments
between the two images of a pair using the ground truth homography. For each match,
one can then compute the distance between the line in the reference image and the line
of the warped image reprojected into the reference frame. We consider two line distance
measures: the structural distance evaluating the average distance between the endpoints,
and the orthogonal distance measuring the average distance of each endpoint of one line to
their orthogonal projection to the other line. Repeatability (Rep) measures the ratio of lines
whose match has an error below 3 pixels, and the Localization Error (LE) returns the average
distance of the 50 most accurate matches.

We also compute a homography estimation score, similarly as in [DeTone et al., 2018].
We first match line segments between the two images, using the Line Band Descriptor
(LBD) [Zhang and Koch, 2013]. To estimate the homography, we sample minimal sets of 4
line matches and run LO-RANSAC [Lebeda et al., 2012] for up to 1M iterations, using the
orthogonal line distance as reprojection error.

We compare in Tables 4.1 and 4.2 our method to two classical detectors: LSD [Von Gioi
et al., 2008] and the ELSED [Suárez et al., 2022]; the best methods using attraction fields:
HAWP [Xue et al., 2020], its recent update HAWPv3 trained in a self-supervised way [Xue
et al., 2022], and the Line Segment Detector Network (LSDNet) [Teplyakov et al., 2022]:
a similar approach as ours combining LSD and a deep network; and two generic deep line
detectors: TP-LSD [Huang et al., 2020] and SOLD2 [Pautrat et al., 2021]. We use the
implementation of the authors with the biggest model available and default parameters,
except for HAWP where we use a threshold of 0.9, as it was not detecting enough lines
otherwise. HAWPv3 was trained on ImageNet [Deng et al., 2009]. For LSD, we use the
implementation of Rafael Grompone1 instead of the OpenCV one as it gets much better
results. Our method is given without the final optimization in the following, unless otherwise
specified.

1http://www.ipol.im/pub/art/2012/gjmr-lsd/
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Traditional Learned Hybrid

LSD ELSED HAWP HAWPv3 TP-LSD SOLD2 LSDNet DeepLSD

Struct Rep ↑ 0.314 0.240 0.330 0.272 0.413 0.308 0.108 0.367
LE ↓ 1.309 1.551 2.019 2.132 1.500 1.741 2.860 1.235

Orth Rep ↑ 0.468 0.465 0.337 0.309 0.444 0.395 0.200 0.485
LE ↓ 0.793 0.845 1.905 1.937 1.305 1.362 2.285 0.818

H estimation ↑ 0.697 0.617 0.260 0.231 0.388 0.421 0.316 0.705

# lines / img 492.6 425.4 53.6 82.0 88.6 122.9 172.1 486.2
Time [ms] ↓ 104 10 61 51 179 334 48 271

Table 4.1: Line detection evaluation on the HPatches dataset [Balntas et al., 2017]. We
compare the Repeatability (Rep) and Localization Error (LE) in structural and orthogonal distances,
together with homography estimation. We get the best score on homography estimation and a good
trade-off between classical and learned methods for the all metrics. The best score is in bold and the
second best is underlined.

Traditional Learned Hybrid

LSD ELSED HAWP HAWPv3 TP-LSD SOLD2 LSDNet DeepLSD

Struct Rep ↑ 0.283 0.209 0.284 0.320 0.344 0.307 0.047 0.285
LE ↓ 2.039 2.303 2.206 1.939 1.779 1.879 3.331 1.733

Orth Rep ↑ 0.403 0.392 0.284 0.354 0.377 0.386 0.130 0.394
LE ↓ 1.369 1.248 2.215 1.704 1.625 1.449 2.752 1.098

H estimation ↑ 0.468 0.200 0.006 0.026 0.030 0.182 0.027 0.591

# lines / img 191.4 112.0 31.6 23.8 24.1 138.2 109.1 400.0
Time [ms] ↓ 34 3 42 47 75 199 44 96

Table 4.2: Line detection evaluation on the RDNIM dataset [Pautrat et al., 2020]. We
compare the Repeatability (Rep) and Localization Error (LE) in structural and orthogonal distances,
together with homography estimation. We get the best score on homography estimation and a good
trade-off between classical and learned methods for the all metrics. The best score is in bold and the
second best is underlined.
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From the results, the learned methods, led by TP-LSD [Huang et al., 2020], offer good
repeatability, but suffer from a low localization error and inaccurate homography estimation.
Handcrafted methods and our method are much more accurate, due to the fact that they do
not directly regress the endpoints, but gradually grow the line segments using very low-level
details. DeepLSD displays the best improvement over LSD when the changes become the
most challenging, i.e. on RDNIM with strong day-night changes. It can significantly improve
the localization error and homography estimation score. In spite of having a similar approach
as ours, LSDNet [Teplyakov et al., 2022] performs poorly for multiple reasons: they lose
accuracy by rescaling images to a fixed low resolution, their line mask is less precise than
our distance field, and their training is limited to the Wireframe dataset, while ours can
be trained on more diverse images. Overall, our method offers the best trade-off between
handcrafted and learned methods and consistently ranks first in the downstream task of
homography estimation.

4.5.2 3D Line Reconstruction

The aim of this work is to provide general-purpose lines and as such, the lines generated
by DeepLSD should be suitable for 3D reconstruction. We leverage Line3D++ [Hofer et al.,
2017] that takes a collection of images with known poses and the associated 2D line segments,
and outputs a 3D reconstruction of lines. We propose to compare our method with a few
baselines on the first 4 scenes of the Hypersim dataset [Roberts et al., 2021]. This synthetic
- but highly realistic - dataset has the advantage of offering a ground truth mesh and 3D
model, making it suitable for a quantitative evaluation. Given the ground truth mesh of the
scene, we can compute the recall and precision of the 3D lines. Recall is the length in meters
of all the portions of lines that are within 5 millimeters from the mesh. High values mean
that many lines have been reconstructed. Precision is the percentage of predicted lines that
are within 5 millimeters from the mesh. High values indicate that most of the predicted lines
are on a real 3D surface.

The results can be seen in Table 4.3. DeepLSD obtains the best recall overall, and second
best precision. While TP-LSD [Huang et al., 2020] ranks first in precision, it is able to
recover very few lines, as shows its average recall, which is 71% smaller than the one of
DeepLSD. Note that DeepLSD is able to reconstruct more lines and with a higher precision
than LSD [Von Gioi et al., 2008], the detector that is the most commonly used for line
reconstruction [Hofer et al., 2017].

ai_001_001 ai_001_002 ai_001_003 ai_001_004 Average

R P R P R P R P R P

LSD 183.6 95.8 61.8 95.3 385.0 88.9 225.3 91.5 213.9 92.9
SOLD2 109.9 94.7 89.3 92.8 62.0 89.0 58.6 89.1 80.0 91.4
HAWPv3 15.8 79.9 15.6 81.0 24.4 68.4 18.5 77.3 18.6 76.7
TP-LSD 68.8 95.3 38.9 94.7 50.7 98.2 102.7 94.3 65.3 95.6
DeepLSD 204.8 96.5 89.5 98.1 378.8 88.0 231.1 91.9 226.1 93.6

Table 4.3: Line 3D reconstruction evaluation. We reconstruct lines in 3D with Line3D++ [Hofer
et al., 2017] and evaluate the line length recall in m (R ↑) and precision (P ↑) on the first 4 scenes of
Hypersim [Roberts et al., 2021].
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We show in Figure 4.7 a qualitative comparison of the 3D line reconstructions of our
lines and some baselines for the first 4 scenes of the Hypersim dataset [Roberts et al., 2021].
TP-LSD [Huang et al., 2020] can reconstruct fewer lines as it is trained on wireframe lines
only and cannot recover subtle details of the scene. While LSD [Von Gioi et al., 2008] is
usually the traditional detector being used for 3D reconstruction [Hofer et al., 2017], the
reconstructions produced by DeepLSD are overall more complete and the lines are cleaner
compared to the LSD reconstruction. In addition, LSD has a tendency to break segments
on higher resolution images, while DeepLSD will detect longer and cleaner lines. Thus, it is
easy to merge all lines of a track into a long 3D line for DeepLSD, while LSD will generate a
collection of dissociated small segments along the 3D line.

4.5.3 Visual Localization

The 7Scenes dataset [Shotton et al., 2013] is a well-known RGB-D dataset for visual
localization, displaying 7 indoor scenes with GT poses and depth. While most scenes are
already saturated for point-based localization, the Stairs scene remains very challenging
for feature points. Due to the lack of texture and repeated patterns of the stairs, current
point-based methods are still struggling on this scene [Brachmann and Rother, 2022]. We
thus propose to evaluate our method and previous works on this particular scene, by following
the pipeline of hloc [Sarlin et al., 2019, Sarlin, 2020], enriched with line features. As points
remain important features, we still detect SuperPoint features [DeTone et al., 2018] and
match them with SuperGlue [Sarlin et al., 2020a]. We detect lines with different detectors,
and match them between database and query images with the SOLD2 descriptor [Pautrat
et al., 2021]. Since depth is available on 7Scenes, we can directly back-project lines in 3D and
do not rely on line mapping. In practice, we sample points along each line, un-project them
to 3D, and re-fit a line in 3D to these un-projected points. We use the solvers of [Kukelova
et al., 2016, Zhou et al., 2018, Larsson, 2020] to generate poses from a minimal set of 3
features (3 points, 2 points and 1 line, 1 point and 2 lines, or 3 lines), then combine them in
a hybrid RANSAC implementation [Sattler et al., 2019, Camposeco et al., 2018] to robustly
recover the query camera poses. We report the median translation and rotation error, as well
as the percentage of successfully recovered poses under various thresholds. This evaluation
was implemented with the visual localization pipeline of LIMAP [Liu et al., 2023].

Figure 4.8 shows that DeepLSD obtains the best performance on the challenging scene
Stairs. One can highlight the large boost of performance brought by line features compared
to using points only. Lines are indeed still present and well localized in indoor environments
such as in this scene, and can be matched even when in low-textured scenes. We also provide
the results on the full 7Scenes dataset [Shotton et al., 2013] in Table 4.4. Though most scenes
are already saturated, DeepLSD remains the best method overall.
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ai_001_001

LSD SOLD2 TP-LSD DeepLSD

ai_001_002

LSD SOLD2 TP-LSD DeepLSD

ai_001_003

LSD SOLD2 TP-LSD DeepLSD

ai_001_004

LSD SOLD2 TP-LSD DeepLSD

Figure 4.7: Line 3D reconstruction on Hypersim [Roberts et al., 2021]. We leverage the
line 3D mapping software Line3D++ [Hofer et al., 2017] on the first 4 scenes of Hypersim [Roberts
et al., 2021]. DeepLSD produces more complete and accurate reconstructions than all baselines.
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Figure 4.8: Visual localization on 7Scenes stairs [Shotton et al., 2013]. We evaluate the
median translation and rotation errors (cm / deg), the pose accuracy at a 5 cm / 5 deg threshold, and
plot the pose accuracy curve for various thresholds.

4.5.4 Vanishing Point Estimation

Another common application for line segments is the Vanishing Point (VP) estimation
task. Given the line segments extracted by all the baselines and our method, we apply
multi-model fitting with Progressive-X [Barath and Matas, 2019] to find an unconstrained
number of (not necessarily orthogonal) VPs. A minimal set of 2 lines provides a VP candidate,
and its consistency with the other lines is evaluated under the dVP metric [Tardif, 2009].
This distance is computed as the average orthogonal distance between the endpoints of a line
segment and the infinite line going from the VP to the midpoint of the segment. Based on
the inlier lines, we do a weighted least squares of the distance of all inliers to the VP, using
the line length as weight. We tune the parameters of the model fitting algorithm for each
method on a validation set.

We consider two benchmarks for vanishing point estimation. YorkUrbanDB [Denis et al.,
2008] pictures 102 images (51 for validation and 51 for test) of urban scenes. It offers 2 or 3
ground truth VPs per image, ground truth lines, and the association between VPs and lines.
Additionally, we consider the extended set of VPs proposed in YUD+ [Kluger et al., 2020],
which labels up to 8 VPs per image. The second dataset is adapted from the NYU Depth
dataset V2 [Nathan Silberman and Fergus, 2012] by [Kluger et al., 2020], consisting of 1449
images (we keep the last 49 for parameter tuning), each labelled with 1 to 8 VPs.

We consider three metrics. VP consistency counts the percentage of ground truth lines
that are within a given threshold of the predicted VPs [Tardif, 2009]. Each set of ground
truth lines is associated to a single predicted VP and each VP can be associated with at
most one set of lines. We only show this metric for YorkUrbanDB as NYU does not have
manually labelled lines. VP error measures how precise the estimated VPs are in 3D. It is
the angular error between the directions in 3D of the ground truth VPs and the predicted
ones. We perform again a 1:1 matching to optimally assign the predicted VPs to the ground
truth ones. For each experiment, we run the VP detection algorithm 20 times and report
the median results. AUC represents the Area Under the Curve (AUC) of the recall curve of
the VPs, as described in [Kluger et al., 2020]. We show the average AUC and its standard
deviation over 5 runs.
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Figure 4.9: VP consistency on the York Urban dataset [Denis et al., 2008]. DeepLSD
ranks first on the 1 pixel threshold of VP consistency, meaning that it leads to the largest number of
highly accurate VPs.

Results are shown in Figure 4.9 and Table 4.5. The wireframe methods TP-LSD [Huang
et al., 2020] and HAWP [Xue et al., 2020] are particularly good for vanishing point estimation,
as they only detect structural lines, which are usually the only relevant ones for VP estimation.
However, when evaluated on the more challenging and non-Manhattan scenes of NYU-VP,
the handcrafted line detectors provide the best accuracy since they can detect all types of
lines. Our proposed DeepLSD outperforms all baselines in terms of VP error and AUC, and
obtains the most consistent lines with the GT VPs at small thresholds in Figure 4.9.

YUD+ NYU-VP

VP error ↓ AUC ↑ VP error ↓ AUC ↑

LSD 2.05 82.9 (5.3) 3.29 68.6 (6.3)
ELSED 1.88 81.9 (6.0) 3.24 68.3 (6.6)
HAWP 1.76 84.2 (4.2) 3.35 68.0 (5.7)
TP-LSD 1.73 85.1 (5.0) 3.35 68.0 (4.5)
SOLD2 2.59 75.4 (6.4) 4.46 56.9 (7.6)
DeepLSD 1.63 85.6 (3.6) 3.24 69.1 (6.2)

Table 4.5: VP estimation on York Urban [Denis et al., 2008] and NYU-VP [Nathan Sil-
berman and Fergus, 2012, Kluger et al., 2020]. We compare DeepLSD with other baselines in
terms of median VP error and average recall AUC (and standard deviation). DeepLSD obtains the
best performance overall.

4.5.5 Impact of the Line Refinement

We evaluate applying our proposed line refinement as a post-processing step for several
learned detection methods. Classical detectors are usually already accurate enough, so that
our refinement would not enhance them much. For each method, we compare the raw lines
with the lines and VPs optimized by our line optimization. Table 4.6 shows results of line
detectors on the 462 images of the test set of the Wireframe dataset [Huang et al., 2018].
The second image is obtained using a synthetic homographic warp of the first image. We use
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Struct Orth H
estim

# lines
/ img

Time
[ms] ↓Rep ↑ LE ↓ Rep ↑ LE ↓

HAWP
Baseline 0.253 1.34 0.253 1.43 0.701

95.2
40

Opt w/o VP 0.300 1.293 0.399 1.067 0.864 142
Opt w/ VP 0.318 1.245 0.431 0.967 0.892 300

TP-LSD
Baseline 0.273 1.379 0.342 1.269 0.658

90.8
46

Opt w/o VP 0.314 1.326 0.470 0.949 0.898 145
Opt w/ VP 0.331 1.277 0.512 0.861 0.913 297

SOLD2
Baseline 0.197 1.277 0.333 0.894 0.848

166.7
297

Opt w/o VP 0.172 1.388 0.339 0.814 0.935 426
Opt w/ VP 0.185 1.330 0.368 0.753 0.920 697

DeepLSD
Baseline 0.318 0.941 0.489 0.574 0.991

168.8
68

Opt w/o VP 0.314 0.938 0.482 0.575 0.994 154
Opt w/ VP 0.319 0.927 0.501 0.544 0.981 542

Table 4.6: Line refinement on the Wireframe dataset [Huang et al., 2018]. We use an
error threshold of 1 pixel for the repeatability metrics. The refinement can significantly improve the
localization error and homography score of inaccurate methods.

the Wireframe dataset as it has a lot of well-defined vanishing points, which can be leveraged
during the optimization. We include results for our proposed optimization with and without
the VP constraint to show the increased accuracy with VPs. As we want to highlight the
gain in accuracy, we compute repeatability with an error threshold of only 1 pixel.

Results show that the refinement can significantly improve all metrics evaluating the
accuracy of the lines, i.e. the localization error and homography estimation. This is
particularly true for HAWP [Xue et al., 2020] and TP-LSD [Huang et al., 2020], with
a decrease in localization error with orthogonal distance of up to 32% for both, and an
improvement of homography score of 27% and 39%. The benefits brought by the refinement
are lower for our method, as its raw predicted lines are already sub-pixel accurate and the
optimization is limited by the resolution of the DF and AF. Nonetheless, it can slightly
improve most metrics. A limitation of this refinement is the execution time, which grows
linearly with the number of lines, and requires running two networks.

We additionally study the effect of refinement on the VP estimation task in Figure 4.10.
We show again the difference in VP consistency on the YorkUrbanDB dataset [Denis et al.,
2008] and VP error on YUD+ [Kluger et al., 2020], with the optimization objective including
VPs. Except for HAWP, all methods benefit from the refinement, showing that our refinement
can improve the lines as much as their associated VPs.

4.5.6 Ablation Studies

Alternative methods. We validate our design choices on the HPatches dataset [Balntas
et al., 2017] with low-level detector metrics. We compare our proposed approach with the
same model detecting single edges instead of double ones, our network trained without the
DF normalization, and a version of the HAWP [Xue et al., 2020] backbone re-trained on our
line GT on the MegaDepth dataset [Li and Snavely, 2018]. Our line GT refers here to the
lines obtained by running LSD on our GT distance and angle field. The results of Table 4.7
emphasize the importance of each component. Note that re-training HAWP [Xue et al., 2020]
on our lines yields poor results due to the high number of GT lines, and the fact that generic

81



1 2 3 4 5 6 7 8
Error threshold (in px)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
VP

 c
on

sis
te

nc
y 

(in
 %

)

SOLD2
TP-LSD
HAWP
Ours

SOLD2 - Opt
TP-LSD - Opt
HAWP - Opt
Ours - Opt

VP error ↓

HAWP 1.76
HAWP - Opt 1.78

TP-LSD 1.73
TP-LSD - Opt 1.59

SOLD2 2.59
SOLD2 - Opt 2.28

DeepLSD 1.63
DeepLSD - Opt 1.59

Figure 4.10: Effect of the line refinement on VP estimation on YorkUrbanDB [Denis
et al., 2008, Kluger et al., 2020]. The line optimization improves the VP consistency and error of
most deep methods.

lines have often noisy endpoints, so that predicting an angle to the two endpoints is noisy as
well. Figure 4.11 shows two examples of lines detected by the original HAWP, the re-trained
version using our GT lines, and DeepLSD.

Struct Orth H
estim

# lines
/ imgRep ↑ LE ↓ Rep ↑ LE ↓

Single edge 0.241 2.121 0.328 1.686 0.434 130.8
No DF normalization 0.344 1.343 0.475 0.879 0.674 439.6
HAWP with our lines 0.209 2.138 0.239 1.840 0.245 98.0
DeepLSD (Ours) 0.367 1.235 0.485 0.818 0.705 486.2

Table 4.7: Ablation study on the HPatches dataset [Balntas et al., 2017]. We compare
DeepLSD to alternatives detecting single edges, without DF normalization and with HAWP re-trained
on our line GT.

HAWP [Xue et al., 2020] Re-trained HAWP DeepLSD

Figure 4.11: Re-training the HAWP detector [Xue et al., 2020] with the proposed pseudo
ground truth lines. It yields unsatisfactory lines compared to the DeepLSD approach, mainly
because HAWP is not suited to predict high densities of line segments.
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LSD ELSED

Traditional DeepLSD Traditional DeepELSED

H
Pa

tc
he

s

Struct Rep ↑ 0.314 0.367 0.240 0.263
LE ↓ 1.309 1.235 1.551 1.585

Orth Rep ↑ 0.468 0.485 0.465 0.478
LE ↓ 0.793 0.818 0.845 0.839

H estimation ↑ 0.697 0.705 0.617 0.624

# lines / img 492.6 486.2 425.4 419.4
Time [ms] ↓ 104 271 10 144

R
D

N
IM

Struct Rep ↑ 0.283 0.285 0.209 0.230
LE ↓ 2.039 1.733 2.303 2.258

Orth Rep ↑ 0.403 0.394 0.392 0.407
LE ↓ 1.369 1.098 1.248 1.361

H estimation ↑ 0.468 0.591 0.200 0.221

# lines / img 191.4 400.0 112.0 162
Time [ms] ↓ 34 96 3 88

Table 4.8: Generalization to other traditional detectors. Our method is not limited to
LSD [Von Gioi et al., 2008], but can also be applied to the ELSED [Suárez et al., 2022] line detector
for example. We show the comparison between our approach and the original detectors on the
HPatches [Balntas et al., 2017] and RDNIM [Pautrat et al., 2020] datasets. Results are given without
the final line refinement.

Generalization to other traditional detectors. While DeepLSD is using LSD [Von Gioi
et al., 2008] as its base line detector, our approach can be applied to any other traditional
detector leveraging the image gradient. We show here the results of our method using
ELSED [Suárez et al., 2022] as base detector (coined DeepELSED) and compare it to the
original ELSED in Table 4.8. We give the results for the raw lines without any refinement on
low-level line detection metrics on the HPatches [Balntas et al., 2017] and RDNIM [Pautrat
et al., 2020] datasets. For both traditional detectors LSD and ELSED, our deep version can
improve most metrics, thanks to the additional robustness brought by the learned processing
of the image.

4.5.7 Visualizations

We provide a visual comparison of our method and the other baselines for line detection
in Figure 4.12. We first show line detection examples from the YorkUrbanDB dataset [Denis
et al., 2008], picturing indoor and outdoor urban scenes. DeepLSD offers more complete
and accurate lines than its competitors. We also compare our method to the other line
detectors on some images of the Day-Night Image Matching dataset [Zhou et al., 2016], where
DeepLSD provides more lines than the other baselines in challenging scenarios such as night
time, over-exposition and low image quality.
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HAWP TP-LSD SOLD2 LSD DeepLSD

Figure 4.12: Visual comparison of line detectors. First five rows: the lines of DeepLSD
(here, without line refinement) are more complete and accurate in urban scenarios (images from the
YorkUrbanDB dataset [Denis et al., 2008]). Last three rows: when employed in challenging scenarios
such as by night, over-exposition and low image quality, DeepLSD can detect more relevant lines than
the other baselines (images from the Day-Night Image Matching (DNIM) dataset [Zhou et al., 2016]).
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4.5.8 Limitations

Even though DeepLSD can produce repeatable and accurate lines by taking advantage of
the benefits of both traditional and learned methods, it still suffers from a few limitations:

• The current approach of running a deep network, followed by handcrafted heuristics
and line optimization is not fully differentiable. Making the full pipeline differentiable
would mean making LSD differentiable, which is unclear how to do it. An end-to-end
pipeline would certainly provide better training signals to the deep network processing
the image.

• The generation of the pseudo ground truth lines is still limited by the performance of
LSD [Von Gioi et al., 2008]. If a line is almost never detected by LSD during homography
adaptation, it will most likely not be detected in the ground truth attraction field.
Similarly, a noisy but repeatable line will be kept in the pseudo ground truth. One way
to overcome this issue could be to leverage the trained DeepLSD to re-generate a new
pseudo ground truth with less noise, as was done in SuperPoint [DeTone et al., 2018].

• In spite of our efforts to make the pseudo ground truth as clean as possible, there is
always a trade-off between detecting all low-contrast lines and avoiding to detect noisy
lines in the background. For example, DeepLSD misses some good lines at the bottom
right of the image in the 5th row of Figure 4.12 and is also detecting some noisy lines
in the sky of the image in the 7th row. We can influence this trade-off in two ways.
First, by tuning the aggregation of the attraction field when generating the ground
truth. We currently take the median value of the distance and angle fields, but one
could also take a given percentile, to allow more or less outlier values. Second, one can
enforce more or less constraints to the distance field for background areas. Enforcing
a high distance field for pixels far away from the ground truth lines will reduce the
number of noisy lines in the background, but will also ignore the lines with low contrast.
The parameters proposed in this paper are the ones visually yielding the best trade-off
between the two.

• Though the input image is processed through a deep network, there is still no proper
semantic understanding of the detected lines, so that DeepLSD will detect any kind of
lines. Depending on the application, one could imagine adding some semantic filtering
in the ground truth generation to keep only a specific kind of lines (e.g. avoiding lines
in the sky or on dynamic objects such as humans).

• The proposed line refinement is for now rather slow, especially when it is applied to other
deep line detectors, as it requires running two networks. However, we believe that it is
still valuable for applications that can run offline and that require high precision, such
as for 3D reconstruction. Our current implementation can also certainly be optimized,
and our network compressed to run on embedded devices, without sacrificing too much
performance.
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4.6 Discussion

Summary. We presented in this chapter a hybrid line segment detector combining the
robustness of deep learning and the accuracy of handcrafted detectors, using a learned
surrogate image gradient as intermediate representation. Without the requirement of ground
truth lines, our method can be trained on any dataset and is suitable for most geometrical
tasks including line segments. Finally, we proposed a line refinement able to improve the
accuracy of our method and to bridge the gap in line localization between deep line detectors
and handcrafted ones. We believe that our general-purpose lines will open new possibilities
to use line segments in the wild.

Limitations and future works. Line segment detection can now be performed in an
accurate and robust way, thanks to DeepLSD. However, this method is not perfect, and
the previous section lists some of the limitations and paths to explore to further improve
our approach. In particular, DeepLSD offers generic lines, that are designed to be suitable
for as many applications as possible, but some tasks may require specific types of lines (e.g.
wireframes, no texture lines, etc). Thus, processing the ground truth to only keep the relevant
lines may be necessary.

While the use of lines in the wild is now possible, matching lines across frames remains a
challenge. The previous chapter explored the issues related to line matching and proposed a
first solution, but the current line matchers remain nevertheless inferior to the point matchers.
Additionally, we saw in this chapter that points are still necessary to complement lines, for
example in visual localization (Section 4.5.3), and in 3D reconstruction, where points can
solve some of the degenerated configurations for line triangulation [Liu et al., 2023]. Therefore,
we propose in the next chapter to combine point and line features in a single matcher, and
we show how these combined features can significantly improve geometrical tasks.
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Part III

Combining Point and Line Features
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Chapter 5

GlueStick: Robust Image Matching
by Sticking Points and Lines

Together

While complementary to each other, point and line features are traditionally detected
and matched independently. Yet, processing them together is more efficient and unlocks
some synergies improving the overall performance. This chapter introduces a new matching
paradigm, where points, lines, and their descriptors are unified into a single wireframe
structure. We propose GlueStick, a deep matching Graph Neural Network (GNN) that takes two
wireframes from different images and leverages the connectivity information between nodes to
better glue them together. In addition to the increased efficiency brought by the joint matching,
we also demonstrate a large boost of performance when leveraging the complementary nature of
these two features in a single architecture. We show that our matching strategy outperforms the
state-of-the-art approaches independently matching line segments and points for a wide variety
of datasets and tasks. The content of this chapter stems from the publication [Pautrat et al.,
2023c], and the code for GlueStick is available at https: // github. com/ cvg/ GlueStick .
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5.1 Motivation

As described in the previous two chapters, line segments are powerful features comple-
mentary to points. They offer structural cues, robust to drastic viewpoint and illumination
changes, and can be present even in texture-less areas. However, describing and matching
them is more challenging compared to points due to partial occlusions, lack of texture, or
repetitiveness. Furthermore, points and lines are classically detected, described, and matched
through a multitude of different algorithms, making the existing point-line pipelines inefficient
and redundant. Both features indeed share similar characteristics, which could be acquired
simultaneously.

In this chapter, we revisit the task of feature matching by jointly matching points and
lines in a single network. In addition to being more efficient, this allows the matching network
to reason about the inter-connectivity between points and lines, and to leverage additional
information compared to previous matchers. On the one hand, connecting points with lines
brings more structure and connectivity information to the point matching task. On the
other hand, the latter can in turn guide the line matching to disambiguate the challenging
cases where line descriptors are struggling because of partial occlusion or homogeneous areas.
Furthermore, both features appear in different scenarios, such as richly textured areas for
points, and low textured surfaces for lines, so that their combination can be applied to any
given situation. We show in the following that points and lines can be combined in most
tasks, such as homography and pose estimation, image stitching, and 3D reconstruction, and
that their combination brings a new state of the art in local feature matching.

This chapter is structured as follows: it starts with an introduction to the topic (Sec-
tion 5.2), reminds the reader with previous work related to it (Section 5.3), introduces our
novel point-line matcher (Section 5.4), tests it against previous point and line matchers
(Section 5.5), and finally closes with a discussion about what remains to be done (Section 5.6).

5.2 Introduction

As seen in the previous chapters, line segments are high-level geometric structures useful
in a wide range of computer vision tasks such as SLAM [Gomez-Ojeda et al., 2019, Zuo et al.,
2017, Pumarola et al., 2017], pose estimation [Xu et al., 2017], construction monitoring [Kropp
et al., 2018, Asadi et al., 2019], and 3D reconstruction [Hofer et al., 2017, Zeng et al.,
2020, Zhou et al., 2019b]. Lines are ubiquitous in structured scenes and offer stronger
constraints than feature points. In particular, lines shine in low-textured scenes where
point-based approaches struggle.

However, compared to keypoints, line segments are often poorly localized in the image and
suffer from lower repeatability. Line segments are also more challenging to describe since they
can cover a large spatial extent in the image and suffer from occlusions and perspective effects
due to viewpoint changes. Furthermore, lines often appear as part of repetitive structures in
human-made environments, making classical descriptor-based matching fail. For this reason,
typical matching heuristics such as mutual nearest neighbor and Lowe’s ratio test [Lowe,
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2004] are often less effective for lines.
Recently, deep learning has ushered in a new paradigm for feature point matching using

a Graph Neural Network (GNN) [Sarlin et al., 2020a, Sun et al., 2021]. This new approach
bypasses the need for matching heuristics or even outlier removal techniques, thanks to the
high precision of the predicted matches [Sarlin et al., 2020a]. A key component to achieve this
is to leverage the positional encoding of keypoints directly in the network and to let it combine
visual features with geometric information [Sarlin et al., 2020a, Sun et al., 2021, Truong et al.,
2021, Jiang et al., 2021]. Letting the GNN reason with all features simultaneously brings in
additional context and can disambiguate repetitive structures, as shown in Figure 5.1.

Even though recent advances leveraged similar ideas to enrich line descriptors [Yoon
and Kim, 2021], directly transferring this GNN approach to line matching is not trivial.
The large extent of lines and their lack of repeatability make it hard to find a good feature
representation for them. In this paper, we take inspiration from SuperGlue [Sarlin et al.,
2020a] and introduce GlueStick, to jointly match keypoints and line segments. Our goal is to
leverage their complementary nature in the matching process. By processing them together
in a single GNN, the network can learn to resolve ambiguous line matches by considering
nearby distinctive keypoints, and vice versa. We propose to leverage the connectivity between
points and lines via a unified wireframe structure, effectively replacing previous handcrafted
heuristics for line matching [Schmid and Zisserman, 1997a, Zhang and Koch, 2013, Li et al.,
2016c] by a data-driven approach.

Our network takes as input sparse keypoints, lines, and their descriptors extracted from
an image pair, and outputs a set of locally discriminative descriptors enriched with the
context from all features in both images, before establishing the final matches. Inside the
network, keypoints and line endpoints are represented as nodes of a wireframe. The network is
composed of self-attention layers between nodes, cross-attention layers exchanging information
across the two images, and a new line message passing module enabling communication
between neighboring nodes of the wireframe. After the GNN, points and lines are split into
two separate matching matrices and a dual-softmax is used to find the final assignment of
the features. Overall, our contributions are as follows:
• We replace heuristic geometric strategies for line matching with a data-driven approach,

by jointly matching points and lines within a single network.

• We offer a novel architecture exploiting the local connectivity of the features within
an image.

• We experimentally show large improvements of our method over previous state-of-the-art
point and line matchers on a wide range of datasets and tasks.

91



(a
)

Su
pe

rG
lu

e
(b

)
O

ur
s

(c
)

Li
ne

T
R

(d
)

O
ur

s

Figure 5.1: Joint matching of points and lines. Matching feature points often fails in textureless
areas (a), while current line matching methods struggle with large viewpoint changes (c). We propose
GlueStick, a network jointly matching points and lines. While none of the methods were trained on
the rotations of (a)(b), line matches can guide GlueStick while SuperGlue [Sarlin et al., 2020a] fails,
and vice-versa in (d), where points can complement the line matching. For clarity reasons, we show
here only the correct matches.
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5.3 Related Work

Line detection and description. We refer the reader to Section 1.2.2 for an overview of
the existing line features.
Combination of points and lines. Section 1.2.3 reviews the existing applications
combining point and line features.
Matching with transformers. SuperGlue [Sarlin et al., 2020a] uses a GNN to process
keypoints and their descriptors from two input images, adding a positional encoding to better
disambiguate repetitive patterns. Several variations of this method have been proposed later,
with higher efficiency [Chen et al., 2021, Shi et al., 2022, Lindenberger et al., 2023] and
with dense predictions [Sun et al., 2021, Truong et al., 2021, Jiang et al., 2021, Wang et al.,
2022, Chen et al., 2022, Edstedt et al., 2023].

[Ma et al., 2021] combine a CNN and a GNN to match line segments, but without feature
points. In the GNN, each line is represented with a single node, and the assignation is solved
using a single Sinkhorn matrix. LineTR [Yoon and Kim, 2021] proposes to use attention
inside points sampled for each line to deal with the line scale changes and occlusions. The
Hybrid Descriptor for Points and Lines (HDPL) [Guo et al., 2021] mixes points and lines in
the same GNN, each line being represented with a single node in the GNN. They only use a
single Sinkhorn matrix, allowing point-line assignments.

In contrast to these methods, we model each line segment endpoint as a separate node in
the GNN. The endpoints are, in most cases, consistent with the underlying epipolar geometry,
allowing the network to leverage both points and lines to disambiguate the matching. In our
ablation study, we show that matching points and line endpoints together already greatly
improves the matching performance.
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Figure 5.2: Overview of GlueStick. Keypoints, dense descriptors, and lines are extracted from
two images, and unified into two wireframes (front-end). We then enrich the features of the nodes of
both wireframes via self, line, and cross-attention inside a Graph Neural Network (GNN). Finally,
points and lines are matched separately via two dual-softmax modules.

5.4 GlueStick: a Joint Point-Line Matcher

In this section, we show how to combine points and lines within the same network. The
motivation for this is that each feature can leverage cues from the neighbouring features
to improve the matching performance. For example, a line using the surrounding points
or vice-versa. Furthermore, the network can automatically discover combinations of points
and lines that are useful for matching, instead of heuristically mining them as in previous
works [Li et al., 2016c]. Our architecture, displayed in Figure 5.2, consists in three blocks:

1. Front-End: We extract points, lines, and their descriptors with common feature
detectors, then combine them into a single wireframe (Sec. 5.4.1).

2. GNN: The goal of this block, described in Sec. 5.4.2, is to combine the visual and spatial
information of each feature, and to allow interaction between all features, regardless of
their original receptive field. The output is a set of updated descriptors, enriched by
the knowledge of relevant features within and across images, as well as within nodes
connected by a line segment.

3. Dual-Softmax: The final assignation is solved separately for points and lines, using
two independent dual-softmax modules [Rocco et al., 2018, Sun et al., 2021], as detailed
in Sec. 5.4.3.

5.4.1 From Points and Lines to Wireframes

The input to our GNN is a set of points, their associated local descriptors, and a
connectivity matrix indicating which points are connected by a line. The first step is to
establish this connectivity and build the wireframe graph.

We use SuperPoint (SP) [DeTone et al., 2018] to predict keypoints and a dense descriptor
map, and we detect segments with the general-purpose LSD [Von Gioi et al., 2008] detector.
Keypoints located close to line endpoints are redundant, so we remove SP keypoints that are
within a small distance d to existing line endpoints.

Furthermore, line segments generated by generic detectors such as LSD are usually
disconnected. To give more structure to the input and to explicitly encourage the network
to reason in terms of line connectivity, we merge close-by endpoints, again with a distance
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threshold d. This process lifts the unstructured line cloud into an interconnected wireframe.
After this step, each keypoint and line endpoint is represented as a node in the wireframe,
with different connectivities for each node: 0 for an isolated keypoint, 2 for a corner, etc. We
then interpolate the dense SP feature map at the node locations to equip them with a visual
descriptor. Note that this endpoint merging is modifying the position of the endpoints but
not the number of lines. For downstream tasks requiring high precision, we use the original
position of the endpoints, to keep the sub-pixel accuracy of the original detector.

5.4.2 Attention-based Graph Neural Network

A key part of our method is the GNN, which aggregates visual and spatial information to
predict a set of enriched feature descriptors, that are used to establish the final matches via
descriptor similarity. Within the network, each node (either a keypoint, or a line endpoint) is
associated with an initial descriptor that is based on the visual appearance as well as the
position in the image.

Let A and B be a pair of images. For each image, the inputs of the network are: a set of
nodes p, with coordinates (xp, yp), confidence score sp and visual descriptors dvis ∈ RD; and
a set of line segments l defined as a pair of nodes (xp, yp) and (x′

p, y′
p), and with a line score

sl. This line score can be any value returned by the line detector indicating the quality of the
line, or simply the length of the line to put more emphasis on longer lines. The node score sp

is either coming from the keypoint detector, or is equal to sl when it is a line endpoint.
Positional and Directional Encoding. The first step is to encode the spatial information
of each feature. To this end, we learn two Positional Encoder (PEp and PEe) with Multi-Layer
Perceptron (MLP) that generate a spatial descriptor dp for each node and an edge-descriptor
de for each line segment originating from this node. A node with connectivity 3 will for
instance get assigned one dp and 3 de (one for each outgoing line segment). The edge-
positional encoding takes as additional information the offset to the other endpoint of its line
segment, allowing it to have access to the angle and length of the line segment:

dp = PEp([xp, yp, sp]⊤) ,

de = PEe([xp, yp, x
′
p − xp, y

′
p − yp, sl]⊤) .

(5.1)

The spatial-descriptor dp is used to initialize the node features, while the edge-descriptors de

are used in the line message passing (see below).
Network Architecture. Our GNN is a complete graph with three types of undirected
edges (See Figure 5.3). Self-attention edges Eself, connect nodes of one image with all the
nodes of the same image. Line edges Eline, connect nodes that are endpoints of the same line.
Cross attention edges Ecross, connect nodes of one image to the other image nodes.

A node i is initially assigned a feature descriptor fusing its spatial and visual information:
(0)xi = dp

i + dvis
i . This node descriptor is then iteratively enriched and refined with the

context of all the other descriptors in L iterations of Self, Line, and Cross layers. Finally,
the features of each node are linearly projected to obtain the output features. The next
paragraphs detail each type of layer.
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Figure 5.3: Graph Neural Network (GNN) architecture. Node features of the wireframe are
enriched via several communication layers. Our Line Message Passing (LMP) exchanges information
between neighboring nodes that are connected together.

Self and Cross Layers. Eself and Ecross edges are similarly defined as in [Sarlin et al., 2020a].
The m-th feature update is defined by a residual message passing:

(m+1)xi = (m)xi + ψm

([
(m)xi||am((m)xi; E)

])
, (5.2)

where || denotes concatenation, the function ψm is modeled with an MLP, and am((m)xi; E)
is the Multi-Head Attention mechanism from [Vaswani et al., 2017] applied to the set of edges
E :

am(xi; E) =
∑

j:(i,j)∈E
softmaxj

(
q⊤

i kj√
D

)
vj , (5.3)

where the keys kj , queries qi, and values vj are computed as linear projections of the node
features xi and xj . In self-attention layers, kj and vj will come from the same image, whereas
in cross-attention they will come from the other image. Self-attention allows the network to
leverage the context of the full image, and to resolve repetitive structures. Cross-attention
moves corresponding features closer in descriptor space and can search for similar node
structures in the other image to fully leverage spatial information.

Line Message Passing. We describe here our novel LMP transferring information across
the line edges Eline. By connecting line segments in a wireframe structure, we allow the i-th
node to leverage the local edge connectivity to the set Ni of neighboring nodes, and to look
for the same type of connectivities in the other image. This mechanism is enabled by the
m-th LMP update which aggregates the information contained in the two endpoint features
(m)xi and (m)xj and the corresponding endpoint positional encoding de

j :

(m+1)xi = (m)xi +
∑

j∈Ni

ϕm([(m)xi||(m)xj ||de
j ])

|Ni|
, (5.4)

where ϕm denotes again an MLP and |Ni| is the number of neighbors of node i. We use here
a simple average across all neighbors. An attention mechanism could also have been applied,
but we empirically found that it only increased the complexity of the model, for no gain in
performance.
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5.4.3 Dual-Softmax for Points and Lines

Recent works [Rocco et al., 2018, Sun et al., 2021] show that dual-softmax approach
obtains similar or better results than the usual Sinkhorn algorithm [Sinkhorn and Knopp,
1967, Sarlin et al., 2020a], being also more efficient. We observed similar behaviour in our
experiments and opted for the dual-softmax assignment. GlueStick provides both point
and line matches in a single forward pass. We match nodes and lines separately through
two independent dual-softmax assignments. On the one hand, all nodes (keypoints and
line endpoints) are matched against each other using the final features output by the GNN:
fA
i ∈ RD for node i in image A and fB

j ∈ RD for node j in image B. Each element of the
assignment matrix Sp is formed by:

Sp
ij = (fA

i )⊤fB
j . (5.5)

We add a dustbin row and column at the end of Sp, filled with a learnable parameter
representing the threshold below which a node is considered unmatched, as [Sarlin et al.,
2020a] also does. We then apply softmax on all rows and all columns, and compute their
geometric mean:

Sp
final =

√
softmaxrow(Sp) ⊙ softmaxcol(Sp) . (5.6)

Where ⊙ means the element-wise product. Given this final assignation matrix, we keep the
mutual nearest neighbors that have a matching score above a given threshold η.

On the other hand, lines are matched in a similar way, except that each line is represented
by its two endpoints features fs ∈ RD and fe ∈ RD. To make the matching agnostic of the
endpoint ordering, we take the maximum of the two configurations in the line assignation
matrix (see Figure 5.4):

Sl
ij = max

( (
fA
s

)⊤
fB
s +

(
fA
e

)⊤
fB
e ,(

fA
s

)⊤
fB
e +

(
fA
e

)⊤
fB
s

)
.

(5.7)

Finally, we get Sl
final by applying the dual-softmax of Eq. 5.6 and match lines with mutual

nearest neighbors.

5.4.4 Ground Truth Generation

A challenging task in line matching is to generate high-quality labels handling line
fragmentation, assignation, and partial visibility. To obtain the Ground Truth (GT) point
matches Mp, we use the same methodology as in [Sarlin et al., 2020a]. In a nutshell, we
leverage camera poses and depth to re-project keypoints from one image to another, and we
add a new match whenever a re-projection falls within a small neighborhood of an existing
keypoint.

For lines, we also leverage depth, but with a more complex setup. Let images A and B

contain M and N line segments indexed by A := {1, . . . ,M} and B := {1, . . . , N}. We will
denote the generated GT line matches Ml = {(i, j)} ⊂ A × B. For each segment lAi detected
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Figure 5.4: Line matching with order-agnostic endpoints. We consider the maximum score
assignment between the two possible configurations of endpoint matching.

on image A, we sample K points
[
xA

i,1, . . . ,xA
i,K

]
along it. A point is considered invalid if it

has either no depth or its projection xB
i in the other image has no depth. A point is also

considered non-valid if it is occluded. We detect these cases by comparing the depth d(Xi) of
the unprojection Xi in 3D of point xA

i with its expected depth dB in image B:

Occluded = |d(Xi) − dB|
dB

> Tocclusion , (5.8)

where Tocclusion defines the tolerance threshold of depth variations. Segments with more than
50% of invalid points are labeled as IGNORE and will not affect the loss function.

Next, we generate a closeness matrix CB ∈ NM×N keeping track of how many sampled
points of line i in A are reprojected close to a line j in B:

CB
i,j =

K∑
k=1

1

(
valid(xB

i,k) ∧ d⊥
(
xB

i,k, lBj
)
< Tdist

)
, (5.9)

where 1(·) is the indicator function and d⊥(·, ·) the perpendicular point-line distance. Tdist

is a distance threshold in pixels that controls how demanding the GT is. CA is defined
analogously, and thus, we can define a cost matrix C with a minimum overlap threshold
Toverl:

Ci,j =

∞, if CA
i,j < Toverl ∨ CB

j,i < Toverl

−CA
i,jCB

j,i, otherwise .
(5.10)

Last, we solve the assignation problem defined by C with the Hungarian algorithm [Kuhn,
1955]. The resulting assignations (i, j) ∈ Ml are the MATCHED features, whereas all the valid
entries I ⊆ A and J ⊆ B that were not assigned are labeled as UNMATCHED.
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5.4.5 Loss Function

A classical approach for descriptor learning is to apply the triplet-ranking-loss [Balntas
et al., 2016c, Suárez et al., 2021] with hard negative mining [Mishchuk et al., 2017]. However,
repetitive structures are often present along lines, which may produce detrimental hard
negatives. We resort instead to minimizing the negative log-likelihood of point and line
assignments Sp

final and Sl
final:

L = NLL(Sp
final,Mp) + NLL(Sl

final,Ml)
2 , (5.11)

where for an assignment matrix A and GT matches M:

NLL(A,M) = −
∑

(i,j)∈M
log Ai,j (5.12)

−
∑
i∈I

log Ai,N+1 −
∑
j∈J

log AM+1,j .

5.5 Experiments

We pre-train our model on pairs of images synthetically warped by a homography, using
the one million distractor images of [Radenović et al., 2018], increasing the difficulty of
the homographies gradually and speeding up convergence. We then fine-tune the model on
MegaDepth [Li and Snavely, 2018] that contains 195 scenes of outdoor landmarks. We select
image pairs with a minimum overlap of 10% of 3D points and resize each to 640 × 640 px.
The wireframe threshold d to merge nodes is set to 3 pixels, and the parameters to generate
the GT are: Tocclusion = 0.1, Tdist = 5, and Toverl = 0.2. Our GNN contains 9 blocks of
[self-attention, line message passing, cross-attention], and the matching threshold is set to
η = 0.2. Features inside the network have size D = 256. We optimize our network using
Adam with learning rate 10−4 for the homography pre-training and 10−5 for MegaDepth. To
limit computational cost during training, we set a maximum number of 1000 keypoints and
250 line segments per image. Training takes 10 days on 2 NVIDIA RTX2080 GPUs.

5.5.1 Baselines

In the following, we compare GlueStick with several state-of-the-art line matchers: the
handcrafted LBD1 [Zhang and Koch, 2013], the self-supervised SOLD2 [Pautrat et al.,
2021], the transformer-based LineTR [Yoon and Kim, 2021], and the L2D2 [Abdellali et al.,
2021] descriptors. SOLD2 uses its own detector since it is integrated with the descriptor.
For all the other methods we use LSD [Von Gioi et al., 2008]. We also compare to the
Point-Line Localization (PL-Loc) [Yoon and Kim, 2021], the point-line matcher combining
SuperPoint [DeTone et al., 2018] and LineTR [Yoon and Kim, 2021]. Whenever possible, we
also compare to two additional point-based matchers: ClusterGNN2 [Shi et al., 2022] and the
Local Feature Transformer (LoFTR) [Sun et al., 2021].

1We use the authors’ code instead of the binary version from OpenCV.
2We reuse the numbers of the paper as the code is not publicly available.
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P L W LMP AP (↑)

SG + Endpts ✓ ✓ 54.5
SG + W ✓ ✓ ✓ 67.6
SG + LMP ✓ ✓ ✓ 69.9
GlueStick-L ✓ ✓ ✓ 64.0
GlueStick ✓ ✓ ✓ ✓ 72.6

(a) Ablation study
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(b) Comparison to the state of the art.

Figure 5.5: Ablation study and comparison to the State of the Art (SOTA) on the
ETH3D dataset [Schöps et al., 2017]. We compute the line matching precision-recall curves
and Average Precision (AP), displayed in the legend. (a) We compare several variations of our
method using points (P), lines (L), wireframe connectivity (W), and Line Message Passing (LMP).
(b) GlueStick surpasses all SOTA line matchers.

5.5.2 Ablation Study

Line segments are especially challenging to match in 3D due to occlusions, background
changes, or partial visibility. We advocate for a proper evaluation of line matching covering
these scenarios. Our ablation study is thus led on the ETH3D [Schöps et al., 2017] dataset,
an indoor-outdoor dataset of multiple scenes with GT LiDAR depth, and poses. We use
the 13 scenes of the training set of the high-resolution multi-view images (downsampled by
a factor of 8), and sample all pairs of images with at least 500 GT keypoints in common,
similarly as in [Pautrat et al., 2021]. We apply the same methodology as in Sec. 5.4.4 to
compute the GT line matches. Given this GT, we can compute the precision-recall curve of
the line matching by ordering lines by decreasing matching score.

We compare several variations of our method in Figure 5.5a. SG + Endpts refers to
the pre-trained outdoor model of SuperGlue (SG) [Sarlin et al., 2020a] to match the line
endpoints, and use our proposed line association of Sec. 5.4.3 agnostic to the ordering of
endpoints. SG + W is similar, but with our proposed wireframe preprocessing connecting
line segments together. SG + LMP represents a SuperGlue backbone with the addition of our
Line Message Passing, but no wireframe preprocessing. Finally, GlueStick-L is our proposed
model without keypoints and matching lines only. The AP shows that both the wireframe
pre-processing and LMP bring a large boost of performance on the SuperGlue baseline. Their
combination - our proposed model GlueStick - obtains the highest performance. GlueStick-L
loses performance, but remains competitive, showing that the line matching is not relying
only on points.

5.5.3 Line Matching Evaluation on ETH3D

We compare our method with previous state-of-the-art line matchers on the ETH3D
dataset [Schöps et al., 2017], and show the blatant superiority of GlueStick in Figure 5.5b.
It recovers almost 80% of the GT line matches, whereas the best previous methods do
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not manage to reach 50% of recall. At equivalent recalls, it outperforms the previous best
method, LineTR, by more than 15% in precision, and is almost doubling the AP. This
major improvement is due to the possibility of leveraging points in the matching, and to
the rich signal provided by the wireframe structure. Note that GlueStick without points (in
Figure 5.5a), is still significantly better than other pure line matchers. It obtains good results
thanks to the inclusion of a graph matching strategy combining appearance similarities and
geometric consistencies. Despite having powerful descriptors, L2D2 and SOLD2 obtain worse
results, because they neither use scene points nor geometric consistency between matches.

In terms of run time, GlueStick is also competitive. It runs in 258 ms on average on the
images of ETH3D (around 775×515 pixels), which is similar to the timing of SuperGlue of
235 ms. Other line matchers are slower: 419 ms for SOLD2 and 304 ms for LineTR.

5.5.4 Homography Estimation

We evaluate in the following our method on the task of homography estimation. While
HPatches [Balntas et al., 2017] is the most popular dataset, it is now very saturated [Sarlin
et al., 2020a, Sun et al., 2021], and contains few structural lines that would be necessary
to properly estimate a homography. Thus, lines do not help much to improve the current
performance obtained by point methods. We nevertheless show in Section 5.5.4.1 that
GlueStick ranks first among all considered methods on HPatches. To obtain more contrasted
results, we also implement two meaningful experiments evaluating the homography estimation
task in real-world scenarios: relative pose from planar surfaces (Sec. 5.5.4.2), and relative
pose with pure rotations (Sec. 5.5.4.3).

5.5.4.1 Homography Estimation on HPatches

HPatches [Balntas et al., 2017] is one of the most frequently used datasets to evaluate
image matching. It contains 108 sequences where the scene contains only one dominant
plane, with 6 images per sequence. Each sequence has either illumination or viewpoint
changes. Similarly as in [Sarlin et al., 2020a], we compute a homography from point and/or
line correspondences and RANSAC, and compute the Area Under the Curve (AUC) of the
reprojection error of the four image corners. We report the results for thresholds 3 / 5 / 10
pixels. We also compute the precision and recall of the Ground Truth (GT) matches obtained
by the GT homography.

We report the results in Table 5.1. HPatches is clearly saturated and the precision/recall
metrics are already very high for point-based methods. Note the strong performance of
GlueStick on line matching, with an increase by nearly 10% in precision compared to the
previous state of the art. Regarding point-based methods and homography scores, GlueStick
obtains a very similar performance as the previous point matchers SuperGlue [Sarlin et al.,
2020a] and LoFTR [Sun et al., 2021], and ranks first (with a very small margin) in terms of
homography estimation. In addition to the fact that HPatches is saturated, it contains also
very few structural lines that could have been useful to refine the homography fitting. Thus,
the improvement brought by line segments is not significant here.
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AUC ↑ Points ↑ Lines ↑

3px 5px 10px P R P R

L

L2D2 43.73 55.98 69.39 - - 55.55 38.76
SOLD2 26.60 36.41 48.82 - - 80.57 77.43
LineTR 42.90 55.74 69.26 - - 78.78 58.74
LBD 46.82 59.13 71.82 - - 82.73 56.38
GlueStick-L 46.61 61.45 76.32 - - 90.27 76.69

P
SuperGlue 66.21 77.77 88.05 98.85 97.44 - -
LoFTR 66.15 75.28 84.54 97.60 99.38 - -
GlueStick-P 65.88 77.41 87.72 98.85 97.08 - -

P+L PL-Loc 60.03 71.44 83.08 90.80 77.60 80.33 50.35
GlueStick-PL 66.88 78.14 88.12 98.00 94.86 89.54 80.44

Table 5.1: Homography estimation on HPatches [Balntas et al., 2017]. We report the Area
Under the Curve (AUC) of the cumulative error curve generated by the re-projection error of the four
image corners at different thresholds (3px, 5px, 10px), as well as the precision (P) and recall (R) of
the matches.

5.5.4.2 Dominant Plane on ScanNet

ScanNet [Dai et al., 2017] is a large-scale RGB-D indoor dataset with GT camera poses,
which pictures some hard cases for feature points with low texture, and where lines are
expected to provide better constraints. We use the same test set of 1500 images as in [Sarlin
et al., 2020a], where the overlap between image pairs is computed from GT poses and depth.
For each image pair, we match them with different state-of-the-art point, line, and point-line
matchers. We then use a hybrid RANSAC [Sattler et al., 2019, Camposeco et al., 2018]
to estimate a homography from these feature correspondences. This is a common way to
initialize SLAM systems [Mur-Artal et al., 2015]. Since the GT homography is not known,
we rely on the GT relative pose to evaluate the quality of the retrieved homography, as
was done in previous works [Baráth et al., 2023]. The relative pose corresponding to the
predicted homography can be extracted using [Malis and Vargas, 2007]. We report the
pose error, computed as the maximum of the angular error in translation and rotation [Yi
et al., 2018, Brachmann and Rother, 2019, Sarlin et al., 2020a], as well as the corresponding
pose AUC at error thresholds 10 / 20 / 30 degrees error. Note that this evaluation is valid
regardless of the plane selected by each method to estimate the homography: all planes lead
to the same relative pose.

The results are shown in Tab. 5.2. It can be seen first that GlueStick matching points
only obtains better results than SuperGlue. This shows that our re-trained network is able
to match and even outperform SuperGlue network for keypoint matching. Secondly, when
matching lines only, GlueStick significantly exceeds the previous state of the art for line
matching. This demonstrates that leveraging context from neighboring lines and being aware
of their interconnection is highly beneficial. Finally, we obtain the best results overall when
combining points and lines. The network can leverage both kinds of features and may rely
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Pose error ↓ Pose AUC ↑

Points
SuperGlue (SG) 18.1 15.6 / 29.8 / 39.4
LoFTR 16.8 15.8 / 30.9 / 41.4
GlueStick 15.7 17.4 / 32.8 / 42.9

Lines

LBD 49.2 3.7 / 8.2 / 13.4
SOLD2 55.6 4.9 / 10.8 / 16.1
LineTR 51.6 4.5 / 11.0 / 16.8
L2D2 60.0 2.8 / 6.5 / 10.5
SG + Endpts (no KP) 36.0 7.1 / 15.0 / 22.2
GlueStick 27.6 9.4 / 20.0 / 28.6

Points
+ Lines

PL-Loc 26.2 12.2 / 24.1 / 32.2
SG + Endpts 17.1 17.5 / 31.8 / 41.2
GlueStick 14.1 19.3 / 35.4 / 46.0

Table 5.2: Homography estimation on ScanNet [Dai et al., 2017]. We first estimate a
homography based on point-only, line-only or points+lines matches, then decompose it into the
corresponding relative pose. We report the median pose error in degrees, as well as the AUC at 10◦ /
20◦ / 30◦ error.

more on the accurate points on well-textured images, while using lines in scenarios with
scarce points.

This experiment is meant to evaluate the quality of homographies retrieved from points,
lines or points+lines features. However, there exists better methods to obtain a relative pose
between images from points only. For the sake of completeness, we also report here the results
that would be obtained with the 5-point algorithm to obtain the essential matrix [Nistér,
2003], later decomposed as a relative pose. Table 5.3 demonstrates that the quality of relative
poses retrieved through essential matrices is much higher than with homographies - as could
be expected. GlueStick remains nevertheless the top performing method among all baselines.
Note that we use here the outdoor models for all methods, for fairness reasons as GlueStick
was only trained on outdoor data.

Pose error ↓ Pose AUC ↑

Pose from H
SuperGlue 18.1 15.6 / 29.8 / 39.4
LoFTR 16.8 15.8 / 30.9 / 41.4
GlueStick 14.1 19.3 / 35.4 / 46.0

Pose from E
SuperGlue 8.6 30.5 / 46.0 / 54.1
LoFTR 11.7 23.6 / 39.6 / 48.4
GlueStick 8.4 30.9 / 46.8 / 55.1

Table 5.3: Using essential matrices instead of homographies on ScanNet [Dai et al., 2017].
While our experiment on ScanNet is meant to evaluate homographies, we display here the results that
would be obtained when using essential matrices to get a relative pose, instead of homographies. We
report the median pose error in degrees, as well as the AUC at 10◦ / 20◦ / 30◦ error. Essential matrices
are naturally more robust and obtain better results when evaluated on relative pose estimation.

5.5.4.3 Pure Rotations on SUN360

We also evaluate our method in estimating pure camera rotations, which are the corner-
stone of some applications such as image stitching, or visual-guided sensor fusion. We use the
SUN360 [Xiao et al., 2012] dataset containing 360º images. From each original 360º image,
we crop 10 pairs of perspective images (640×480 pixels) with a field-of-view of 80º. Pairs
are randomly sampled with an angular difference in range ± [50◦, 70◦] for yaw and ± [0◦, 30◦]
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for pitch. We first extract the local feature matches, then we estimate a rotation using a
hybrid RANSAC [Sattler et al., 2019, Camposeco et al., 2018]. We evaluate the angular error
between the predicted and GT relative rotations.

To be more precise, images are cropped from the panorama images of SUN360 [Xiao et al.,
2012] and projected with a calibration matrix K ∈ R3×3. The relation between both images
is defined by:

xB = KRK−1xA , (5.13)

where R ∈ SO(3) is the rotation matrix between the cameras. Thus, we can calibrate the
features detected on each image, multiplying them by K−1. This way, we only have to
robustly estimate the 3 Degrees-of-Freedom (DoF) of the rotation.

Point features are sampled uniformly, and lines are sampled proportionally to the square
root of their length to give priority to larger lines. The probability of choosing one type of
feature is proportional to its number of matches. For example, if a pair has 60 point matches
and 40 line matches, the probability of choosing a point is 60% and 40% for lines.

The minimal solver randomly chooses 2 feature matches (point-point, point-line, or line-
line) and estimates the rotation based on them. This can be seen as aligning 2 sets of 3D
vectors. Homogeneous points are already 3D vectors going from the camera center to the
plane Z = 1. To get a vector from a line segment with homogeneous endpoints xs and xe

we use its line-plane normal n = xs × xe. To make the method invariant to the order of
the endpoints, we force the normals of the segments to have a positive dot product. This
simple heuristic works as long as the sought rotation is less than 180◦. Therefore, we can
obtain a 3D vector from any of the types of features. For two (or more) correspondences,
the optimal rotation can then be found with Singular Value Decomposition (SVD) using the
Kabsch algorithm [Kabsch, 1976].

In Figure 5.6, GlueStick-PL (with points and lines) obtains the best results because lines
help to match pairs where there is not enough texture. Specifically, long lines can be detected
very precisely, thus contributing to an accurate estimation. Point-based methods (SG and
GlueStick-P) obtain already 3 points less of AUC. PL-Loc [Yoon and Kim, 2021] is ranked
fourth because it effectively uses points and lines, though independently and without spatial
reasoning for point matches.

We also provide a more extensive table of results in Table 5.4, as well as visual examples
of the point and line matches obtained by GlueStick, and the resulting image stitching output
in Figure 5.7.
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PL-Loc (AUC: 0.859)

SG (AUC: 0.860)

GlueStick-P (AUC: 0.860)

GlueStick-L (AUC: 0.701)

GlueStick-PL (AUC: 0.890)

Figure 5.6: Camera rotation estimation in SUN360 [Xiao et al., 2012]. We show the
cumulative angular error for all pairs of images. We report the AUC up to an error threshold of 0.5◦.

Rotation error ↓ AUC ↑

Avg Med 0.25º 0.5º 1º 2º 5º 10º

LineTR 60.37 10.80 0.239 0.307 0.366 0.414 0.455 0.474
LBD 19.57 0.054 0.593 0.681 0.736 0.768 0.790 0.799
SOLD2 23.74 0.308 0.232 0.384 0.515 0.609 0.682 0.713
L2D2 18.31 0.056 0.578 0.667 0.725 0.765 0.795 0.808
GlueStick-L 8.79 0.070 0.579 0.701 0.780 0.830 0.869 0.885

SG 0.135 0.052 0.730 0.860 0.929 0.964 0.985 0.992
GlueStick-P 0.230 0.052 0.729 0.860 0.928 0.963 0.984 0.991

PL-Loc 0.338 0.050 0.733 0.859 0.927 0.961 0.982 0.989
GlueStick-PL 0.327 0.039 0.789 0.890 0.943 0.970 0.986 0.991

Table 5.4: Pure rotation estimation on SUN360 [Xiao et al., 2012]. We estimate a rotation
based on point-only, line-only, or points+lines matches. We report the average and median rotation
error in degrees, as well as the AUC at 0.25 / 0.5 / 1 / 2 / 5 / 10 degrees error.

5.5.5 Visual Localization

We introduce here the downstream task of localizing a query image, given the known poses
of database images. We follow the hloc pipeline [Sarlin et al., 2019, Sarlin, 2020], and integrate
line features and our own matcher in the existing code. We use NetVLAD [Arandjelović
et al., 2016] for image retrieval, detect SuperPoint [DeTone et al., 2018] feature points and
LSD [Von Gioi et al., 2008] lines, and match these features with either SuperGlue [Sarlin
et al., 2020a] + a line matcher, or with GlueStick. We use the GT depth to back-project lines
in 3D: points are sampled along each line, un-projected to 3D, and a 3D line is fit to these
un-projected points. We use the solvers of [Kukelova et al., 2016, Zhou et al., 2018, Larsson,
2020] to generate poses from a minimal set of 3 features (3 points, 2 points and 1 line,
1 point and 2 lines, or 3 lines), then combine them in a hybrid RANSAC [Sattler et al.,
2019, Camposeco et al., 2018] to recover the query camera poses.
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(a) Point matches (b) Line matches (c) Image stitching results

Figure 5.7: Examples of GlueStick matches on image pairs of SUN360 [Xiao et al., 2012].
We provide the point and line matches, as well as the stitching of the two images using the resulting
matches.

Datasets. We compare our method to other baselines on two datasets. The 7Scenes
dataset [Shotton et al., 2013] is an RGB-D dataset displaying 7 indoor scenes with GT
poses and depth. It is however limited in scale, and most scenes are already saturated for
point-based localization. One scene remains extremely challenging for feature points: the
Stairs scene, as illustrated in Figure 5.8. Due to the lack of texture and repeated steps of
the stairs, current point-based methods are still struggling on this scene [Brachmann and
Rother, 2022]. We report median translation and rotation error, as well as the percentage of
successfully recovered poses under a 5 cm / 5◦ threshold. InLoc [Wijmans and Furukawa,
2017, Taira et al., 2018] is a large-scale indoor dataset with GT poses and depth, with two
test scenes: DUC1 and DUC2. It is challenging for point-based methods due to images with
low texture and large viewpoint changes. We report the pose AUC at 0.25m / 0.5m / 1m
and 10◦.
Results. The results can be found in Tab. 5.5. GlueStick-P is able to surpass SuperGlue,
confirming the strong matching performance of isolated keypoints already. In particular,
GlueStick obtains an improvement of 44% in pose accuracy over SuperGlue on Stairs. Adding
line features significantly improves the performance for Stairs and brings a small improvement
on InLoc as well. This demonstrates the importance of lines in texture-less areas and with
repeated structures. Combining points and lines in a single network allows GlueStick to
reason about neighboring features and can thus beat the other methods that match points
and lines independently.

For completeness, we also provide the evaluation on the full 7Scenes dataset [Shotton
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Figure 5.8: Correct matches on 7Scenes Stairs [Shotton et al., 2013]. Lines can guide the
point matching in very challenging scenarios with low texture and repeated patterns.

7Scenes Stairs InLoc

T / R err. Acc. DUC 1 DUC 2

P

SuperGlue 4.7 / 1.25 53.4 48.5 / 68.2 / 80.3 53.4 / 75.6 / 82.4
ClusterGNN - - 47.5 / 69.7 / 79.8 53.4 / 77.1 / 84.7
LoFTR 4.4 / 0.95 53.9 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
GlueStick 4.4 / 1.21 55.4 49.0 / 70.2 / 84.3 55.0 / 83.2 / 87.0

P+L

SOLD2 3.2 / 0.83 75.8 44.9 / 69.7 / 79.8 54.2 / 75.6 / 80.2
LineTR 3.7 / 1.02 66.6 46.0 / 67.2 / 76.3 53.4 / 77.1 / 80.9
L2D2 4.1 / 1.15 55.8 46.5 / 68.7 / 80.3 51.9 / 75.6 / 79.4
SG + Endpts 3.1 / 0.81 75.6 45.5 / 71.2 / 81.8 45.5 / 71.2 / 81.8
GlueStick 2.9 / 0.79 79.7 47.5 / 73.7 / 85.9 57.3 / 83.2 / 87.0

Table 5.5: Visual localization on 7Scenes [Shotton et al., 2013] and InLoc [Taira et al.,
2018]. We report the median translation (cm), rotation error (deg), and pose accuracy at a 5 cm / 5◦

threshold for the scene Stairs of 7Scenes, and the pose AUC at 0.25m / 0.5m / 1m and 10◦ error for
InLoc. GlueStick ranks first both for points-only (P) and point-line (P+L) results.

et al., 2013] in Table 5.6. As mentioned earlier, the dataset is already largely saturated for
point-based methods. Adding line segments into the pipeline can improve the results only
in a few scenes such as Fire, Office and mostly on Stairs. While all methods obtain close
results on such a saturated dataset, GlueStick is slightly ahead of the baselines, and largely
outperforms them on the most challenging scene, Stairs.

5.5.6 Additional Insights

In this section, we give extra insights and motivate our design choices.
Generalization to other line detectors. In all our training and experiments, we used
the Line Segment Detector (LSD) [Von Gioi et al., 2008] to extract line segments. For a
certain application, such as indoor wireframe parsing [Huang et al., 2018], learned methods
largely overtake classic ones [Dai et al., 2021, Xu et al., 2021b, Xue et al., 2020]. However,
learned methods struggle to generalize this power to other contexts, tasks, or types of images.
For this reason, we have chosen LSD as the generic method to train GlueStick. Furthermore,
we believe that our line pre-processing, turning an unordered set of lines into a connected
graph, is beneficial to make the endpoints more repeatable across views, thus potentially
making LSD more repeatable.

However, it is important for GlueStick to generalize and perform well with other line
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Figure 5.9: Additional ablation study on the ETH3D dataset [Schöps et al., 2017]. We
report the precision-recall curve of the line matching, as well as Average Precision (AP) in the legend.
Our final GlueStick model running with LSD [Von Gioi et al., 2008] lines is compared to its pre-trained
version on homographies (GlueStick - H ), and the final model using SOLD2 lines [Pautrat et al., 2021]
(GlueStick - SOLD2 lines).

segment detectors. In Figure 5.9 we run GlueStick using either LSD or SOLD2 [Pautrat et al.,
2021] lines, and we evaluate the precision-recall of both methods on the ETH3D dataset [Schöps
et al., 2017]. It can be seen from the precision-recall curves that 1) our GlueStick model
trained on LSD lines is able to generalize to other lines such as SOLD2 [Pautrat et al., 2021],
and 2) the performance is slightly better with LSD lines. This is reasonable, since GlueStick
was already trained on these lines.
Effect of the fine-tuning. Again in Figure 5.9, we compare our final GlueStick model
with its pre-trained version on homographies, GlueStick - H. The plot shows that pre-training
on homographies is already sufficient to get very high performance on ETH3D - better than
the previous state-of-the-art line matchers. Fine-tuning on MegaDepth [Li and Snavely, 2018]
with real viewpoint changes can however further improve the robustness of our matcher, as
demonstrated by the stronger performance of the final model.
Dependence on point matches. When jointly matching two kinds of features, one caveat
is often that one type of feature takes the lead and the other relies mainly on the first one.
While we know from SuperGlue [Sarlin et al., 2020a] that point-only matching is already
very strong on its own, we show here that our architecture is very robust to the absence of
keypoints and that line-only matching is still possible. We ran an evaluation of the precision,
recall, and AP of the line matching on 1000 validation images of our homography dataset
(images taken from the 1M distractor images of [Radenović et al., 2018]), and tested different
maximum numbers of keypoints per image. The results showed in Figure 5.10, highlight
that our line matching is extremely robust to the lack of keypoints. The precision remains
indeed constant, and the recall and AP are decreasing by at most 5% when switching from
1000 keypoints to no keypoints. Thus, this study confirms that our matcher can be used in
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Figure 5.10: Analysis of the dependence on keypoints. We run GlueStick on 1000 image pairs
warped by a homography (taken from the 1M distractor images of [Radenović et al., 2018]), with
varying numbers of keypoints, and report the precision, recall and AP of the line matching. GlueStick
robustly matches lines even when few or no keypoints are present.

texture-less areas where no keypoints are present, and is still able to match lines with high
accuracy.
Impact of the line length. While we adopted a line representation based on the endpoints,
one may wonder whether GlueStick can handle very long lines, and how it performs with
respect to the line length. We studied this on the ETH3D [Schöps et al., 2017] by categorising
lines into three categories of length (in pixels): Short ([0, 50)), Medium ([50, 150)), and Long
([150,+∞)). The results are shown in Figure 5.11. It can be seen that the best performance
is obtained for long lines, showing that GlueStick is still able to match lines even without
context in the middle of the line. This result is due to the fact that long lines are more stable
across views, while short ones are often noisy and not very repeatable.
Robustness to small image overlaps. The image overlap and scale changes between
images can play a large role in matching. To study the effect of image overlap on GlueStick,
we revisited our line matching experiment on the ETH3D dataset [Schöps et al., 2017] and
separated the pairs of images into three categories of image overlap: Small ([0, 0.33)), Medium
([0.33, 0.66)), and Large ([0.66, 1]). Overlap is defined as the proportion of pixels falling into
the other image after reprojection. It is computed symmetrically between the two images,
and the minimum of the two values is kept. Results are available in Figure 5.12. While
the performance naturally decreases with smaller overlaps, GlueStick maintains a strong
performance on such hard cases.
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Figure 5.11: Analysis of the impact of line length. We run GlueStick on the ETH3D
dataset [Schöps et al., 2017] and evaluate separately the matching of Short, Medium, and Long lines.
The best performance is obtained for long lines, as they are more stable than short ones. GlueStick
can thus match long lines even with an endpoint representation.
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Figure 5.12: Analysis of the impact of the image overlap. We run GlueStick on the ETH3D
dataset [Schöps et al., 2017] and classify image pairs into three categories: Small, Medium, and Large
overlap. While the performance of GlueStick decreases with smaller overlaps, it is able to maintain a
high performance for all kinds of overlaps.
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5.5.7 Qualitative Examples

5.5.7.1 Feature Matches

Figure 5.13 displays some examples of line matching on the ETH3D dataset [Schöps et al.,
2017]. We plot in green the correct matches and in red the incorrect ones. Thanks to its
spatial reasoning in the GNN and context-awareness, GlueStick is consistently matching
more lines and with a higher precision than previous works. This is in particular true for
scenes with repeated structures, such as the one in the right column, where the descriptors
of SOLD2[Pautrat et al., 2021] and L2D2[Abdellali et al., 2021] do not have context from
neighboring lines, and can only match a few lines.

5.5.7.2 Visualization of the Camera Pose Estimation

We visualize the reprojection of points and lines on the scene Stairs of the 7Scenes
dataset [Shotton et al., 2013] in Figure 5.14. We plot in green the points and lines that
were originally detected in 2D, and re-project in red the corresponding 3D features using the
estimated camera pose. The reprojections of GlueStick are almost perfectly aligned compared
to the ones of hloc [Sarlin et al., 2019, Sarlin, 2020], highlighting the quality of the poses
retrieved by our method.

5.5.7.3 Failure Cases and Limitations

While jointly matching keypoints and lines in the same matching network helps disam-
biguating many challenging scenarios, GlueStick may still underperform in some scenarios.
We list in the following some limitations of our method, and report some failure cases.
Limitations. Currently, the main performance bottleneck of GlueStick lies in the line
segment detection. Even though combining our DeepLSD [Pautrat et al., 2023a] with
GlueStick can provide the best performance in point-line applications [Liu et al., 2023], the
issues of lines mentioned in previous chapters are still valid. Partially occluded lines are
for example a potential issue for GlueStick, as it represents lines with their two endpoints.
However, we observed a surprisingly good robustness of GlueStick to partially occluded
lines, probably thanks to the neighboring points and lines that are not occluded. Note
that it is also possible to equip GlueStick with a similar mechanism as in SOLD2 [Pautrat
et al., 2021], by sampling several points along the line segments, and matching them with
the Needleman-Wunsch algorithm. We tried this option and observed a small increase in
performance (notably in areas with occluded lines), but at the cost of higher running time.
Therefore, we did not incorporate this feature in our final method.

Another issue is that points and lines are still detected with different methods for now.
Thus, three networks / algorithms need to be run to detect and describe keypoints, detect
lines, and finally match them. Jointly detecting and describing points and lines would be an
interesting future direction of research. Furthermore, the extraction of discrete features such
as points and lines is usually non-differentiable, such that one cannot get a fully differentiable
pipeline going from the feature extraction to their matching. Enabling such end-to-end

112



LB
D

SO
LD

2
Li

ne
T

R
L2

D
2

G
lu

eS
tic

k

Figure 5.13: Line matches examples on ETH3D [Schöps et al., 2017]. We display correct
line matches in green and incorrect ones in red for several state-of-the-art line matchers.
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hloc GlueStick

Figure 5.14: Camera pose estimation visualizations. We compare the originally detected
keypoints and lines (in green) with the re-projected points and lines using the estimated camera
pose (in red), for hloc [Sarlin et al., 2019, Sarlin, 2020] with SuperPoint [DeTone et al., 2018] +
SuperGlue [Sarlin et al., 2020a] and our method. The reprojections of GlueStick align almost perfectly
with the 2D detections, showing a high quality estimated pose.

training could potentially make features better specialized for matching.
Finally, our current supervision requires ground truth correspondences of points and lines

across images (usually obtained through reprojection with depth and camera poses). Other
supervision signals such as epipolar constraints and using two-view geometry would be an
interesting direction of improvement in the future.
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Failure cases. We display in Figure 5.15 a few examples of scenarios where GlueStick may
still fail or underperform. First, in scenes with repeated patterns, GlueStick is able to find a
consistent matching, but can be displaced by one pattern if there is no additional hint to
disambiguate the transform between the two images. This is for example the case on 7Scenes
Stairs [Shotton et al., 2013], when the camera is only seeing several steps, and it is unclear
which step should be matching with which one in the other image.

Secondly, GlueStick has not been trained for large rotations beyond 45◦ and often fails in
these scenarios. The pre-training with homographies was done with rotations lower than 45◦,
and real viewpoint changes are rarely with such rotations. Nonetheless, a simple fix is to
rotate one of the two images by 0◦, 90◦, 180◦ and 270◦, match it with the other image, and
keep the best matching among the four.

Finally, a challenging scenario happens when the images have low texture in combination
with symmetric structures. The former makes visual descriptors less reliable, while the latter
makes it harder to disambiguate matches from the spatial context. The performance is then
degraded in such situations. Having access to sequential data and feature tracking may help
solving such cases.

5.5.7.4 Attention visualization

We display the attention for some nodes in Figure 5.16. This visualization is obtained by
taking the attention matrix at various cross layers, averaging it across all heads, and taking
the top 20 activated nodes. Green lines are used for nodes with connectivity greater than
0 (i.e. line endpoints), and cyan for nodes that are isolated keypoints. It can be seen from
the left column that keypoint attention is leveraging the line structure to look for the right
points along the line. In the right column, we can see that line endpoints can benefit from
both keypoint and line endpoint attention. The attention is initially looking broadly at the
image, before gradually focusing on the corresponding node in the other image. Thus, both
points and line endpoints can complement each other to disambiguate the matching process.
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(a) Repeated patterns: GlueStick finds consistent line matches,
but displaced by one step.

(b) GlueStick is not trained on large rotations.

(c) The lack of texture / symmetric structures make
visual descriptors / spatial descriptors less reliable.

Figure 5.15: Failure cases. We display correct line matches in green and wrong ones in red.
GlueStick may still fail or underperform in some situations, such as (a) perfectly repeated patterns
that are hard to disambiguate, (b) large rotation (e.g. > 45◦), and (c) lack of texture and symmetric
structures.
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Attention from a keypoint Attention from a line endpoint

Cross layer 2

Cross layer 4

Cross layer 6

Cross layer 8

Point matches Line matches

Figure 5.16: Cross attention visualization. We plot in the first column the attention from a
keypoint and in the right column the attention of a line endpoint, for various layers in the Graph
Neural Network. We compute here the average attention across all heads and keep the top 20 activated
nodes. More opaque lines means higher attention, green matches are connected to a line endpoint in
the second image, and cyan matches are connected to an isolated keypoint. The last row pictures the
final matches.
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5.6 Discussion

Summary. Matching points across two views and matching line segments are traditionally
treated as two separate independent problems. In this chapter, we challenge this paradigm and
present GlueStick, a learned matcher that jointly establishes correspondences between points
and lines. By processing both types of features together, the network is able to propagate
strong matches of either type to neighboring features that might have less discriminative
appearance.

In our experiments, we show an improved matching performance across the board, for
both points and lines. In particular for line matching, GlueStick provides a significant leap
forward compared to the current descriptor-based state of the art. The key insight of this
chapter is that line segments do not appear randomly scattered in the image, but rather form
connected structures. This connectivity is explicitly encoded and exploited in our network
architecture. Finally, we show that the improved matches we obtain directly translate to
better results in downstream tasks such as homography and camera pose estimation.

Future works. As described in Section 5.5.7.3, the performance of GlueStick is still
hindered by the inherent challenges coming with line segments. We believe nevertheless that
the combination of DeepLSD and GlueStick is currently the best approach to mitigate these
issues and to leverage line segments in practical applications. The next promising step would
be to enrich GlueStick with additional constraints, such as epipolar constraints, and enforcing
more consistency between the point and line matches. Finally, this chapter highlights the
added value of matching point and line features in the same network. The next logical step
to make the whole point-line pipeline more efficient, would be to detect and describe points
and lines simultaneously as well.
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Part IV

Conclusions
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Chapter 6

Conclusions

6.1 Summary

In the course of this thesis, we explored some of the challenges of modern local features
and offered solutions to handle them. Starting from point features, we moved on with line
features and saw how they could benefit from similar techniques as points, but also require
special processing to overcome their specific limitations. Finally, we brought both types of
features into a single pipeline and showed how their combination could outperform their
independent use. We summarize in the following the main conclusions of this work:

• Chapter 2 drew up the fact that feature descriptors suffer from an inherent trade-off
between their discriminative power and their robustness to image changes. We thus
advocate that local descriptors should not always seek the highest level of invariance
to viewpoint and appearance changes, but should instead select in advance the right
amount of invariance, based on the task at hand. Therefore, we proposed LISRD, a
method to choose among several descriptors which one has the most adapted invariance
to each situation in an online fashion. Our proposed solution offers a soft selection
of the best descriptor, is suitable for both handcrafted and learned descriptors, and
benefits from a coarse-to-fine mechanism through the use of meta descriptors.

• In Chapter 3, we transferred some of the successes of point features to the field of line
features. We thus proposed to jointly learn the tasks of line segment detection and
description in a single network, and demonstrated how to train such a network in a
self-supervised way and to get rid of the bias of previous learned methods towards
wireframe lines. We also put an emphasis on the repeatability of lines across different
views, and improved the robustness of line descriptors to appearance changes and
partial occlusion.

• In spite of the advances made by the previous chapter, we established in Chapter 4 that
learned line detectors were still less accurate than their handcrafted counterparts. We
thus proposed DeepLSD, a hybrid approach to fuse the robustness of deep learning with
the accuracy of traditional methods. While deep learning is well-suited to pre-process
the images to extract relevant details and to remove noise, handcrafted heuristics and
classical optimization are still valid to extract the exact location of line segments.
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Thanks to these new generic, robust, and highly accurate lines, we showed that line
features could be employed in a wide range of scenarios.

• Finally, we came to the conclusion that points and lines are complementary features,
and that they perform best when used together. We thus designed GlueStick, a graph
neural network to jointly match points and lines across images. Not only is GlueStick
surpassing the previous state of the art in terms of performance, but it is also more
efficient compared to matching the features independently and avoids previous heuristic
geometric strategies based on point-line structures. The key insight was that lines are
usually connected to each other and form a wireframe, which is an essential pattern
that was overlooked in previous approaches.

In summary, we showed that, even with the advent of deep learning, modern local features
still suffer from some limitations. The perfect generic method working for all tasks and
conditions is still beyond our reach, due to several trade-offs, to which we strived to bring
solutions. First, local descriptors must balance their invariance and discriminability, and we
proposed LISRD to ensemble multiple descriptors and overcome this. Second, while deep
detectors are outperforming handcrafted ones in terms of robustness to appearance changes,
they are still sometimes lagging behind the latter in terms of accuracy. We thus introduced
DeepLSD as a hybrid method keeping the best of both worlds. Lastly, different features are
relevant to specific environments: lines shine in indoor scenarios where points are scarce
because of lack of texture, while points predominate in natural environments. Our solution is
to leverage both features in parallel and to let them complement each other, as demonstrated
with GlueStick.

Overall, points and lines share several similarities, as they can be defined with high
intensity image gradients, and they share common description mechanisms. Thus, extracting
and processing them simultaneously does not only improve the performance of downstream
tasks, but it is also more efficient. With this thesis, we would like to encourage researchers to
explore in the future additional ways to combine and to create synergies between point and
line features.

6.2 Future Work

While this thesis brings solutions to several issues in local features, there remains promising
areas of improvement. As highlighted in Chapter 5 and in the previous section, matching points
and lines together simplifies the pipeline requiring both features. But since these features
also share a lot of similarities, it would also make sense to extract them simultaneously.
Currently, point-line applications are typically using a different method for each of the
detection, description, and matching tasks of each features, resulting in up to 6 algorithms.
Unifying everything in a single network would significantly simplify and speed up the process.
Some tasks can in particular be shared to make it even more efficient. One could imagine
detecting keypoints, connecting some of them to form line segments, predicting a single joint
dense descriptor, and matching all the features with GlueStick.
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Some of the methods proposed in this thesis are also not end-to-end, and may thus be
sub-optimal. This is the case in DeepLSD, where the extraction of segments with LSD and
the final refinement are not differentiable. Similarly for GlueStick, the input features and their
descriptors are trained separately from the GNN, while training the whole pipeline together
could potentially yield descriptors that are directly compatible with the GNN. Overall, more
end-to-end frameworks would not only make the predictions more optimal, but they would
also allow directly fine-tuning the models to specific tasks.

Finally, we chose to study points and lines in this thesis, as they are the simplest structures
available. But one could also explore higher-level shapes, such as planes, or discriminative
local surfaces. Moving to higher dimensions has multiple advantages, as it makes the detection
task closer to semantic segmentation and may better generalize across scenes, it is more
scalable, and it can simplify 3D reconstruction pipelines by directly producing meshes. While
these mid-level features may be less accurate than local ones, one may consider using both
mid-level and local ones in a coarse-to-fine fashion, or leveraging recent works such as scene
coordinates that can obtain very accurate localizations with dense surfaces.

6.3 Outlook

Overall, this thesis is only a small leap forward for the world of local features, but we
hope that the open-source tools developed during this work will prove to be useful in real-life
scenarios. Whether it is an autonomous car leveraging LISRD to robustly adapt to adverse
weather changes, an app building on top of SOLD2 and DeepLSD to provide automated
reconstructions of your flat, or the highly accurate localization brought by GlueStick to
provide the most comfortable AR experience, we encourage the community to adopt these
tools to develop innovative solutions.
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Appendices A

The Rotated Day-Night Image
Matching Dataset

This appendix provides additional details about our proposed Rotated Day-Night Image
Matching (RDNIM) dataset. It offers a benchmark for local feature matching methods in the
presence of illumination and rotation changes.

The Day-Night Image Matching (DNIM) dataset [Zhou et al., 2016] was originally released
to evaluate the impact of day-night changes on local features matching. It consists of 1722
images grouped in 17 sequences of a fixed webcam taking pictures at regular time spans over
48h. In order to obtain pairs of images to match, a day and a night references are chosen
for each sequence: the image with timestamp closest to noon is selected as day reference
and similarly for the timestamp closest to midnight for the night reference. We then pair
all the images in a sequence both with the corresponding day and night references, thus
resulting in two benchmark datasets of 1722 pairs of images each. One dataset matches
day references to all the DNIM images and is composed of day-day and day-night pairs,
while the other dataset matches the night references to the DNIM images and displays
night-night and night-day pairs. To simultaneously evaluate the robustness of our method
to rotation and its discriminative power for non rotated images, we also warp the second
image of each pair (i.e. the non reference image of the pair) with homographies. Similarly as
in [DeTone et al., 2018], these homographies are generated by combining random translations,
rotations, scalings, and perspective distortions, with an equal distribution of rotated and non
rotated images. Thus, we call this augmented dataset RDNIM, for Rotated DNIM. Examples
of the RDNIM image pairs are available in Figure A.1. The images and homographies
used in this benchmark are accessible at https://www.polybox.ethz.ch/index.php/s/

P89YkZyOfdhmdPN/download to let other researchers compare with their own methods.
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Supplementary Figure. A.1: Sample images of the DNIM [Zhou et al., 2016] dataset
augmented with rotations. All combinations among day-day, day-night and night-night pairs are
available. Homographies are generated with random translations, rotations, scalings and perspective
distortions, and images with and without rotation are equally distributed. When matching the images,
the black artifacts created by the homography warping are masked out and ignored.
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