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a b s t r a c t

The specialization of left ventral occipitotemporal brain regions to automatically process

word forms develops with reading acquisition and is diminished in children with poor

reading skills (PR). Using a fast periodic visual oddball stimulation (FPVS) design during

electroencephalography (EEG), we examined the level of sensitivity and familiarity to word

form processing in ninety-two children in 2nd and 3rd grade with varying reading skills

(n ¼ 35 for PR, n ¼ 40 for typical reading skills; TR).

To test children's level of “sensitivity”, false font (FF) and consonant string (CS) oddballs

were embedded in base presentations of word (W) stimuli. “Familiarity” was examined by

presenting letter string oddballs with increasing familiarity (CS, pseudoword e PW, W) in

FF base stimuli.

Overall, our results revealed stronger left-hemispheric coarse sensitivity effects (“FF in

W” > “CS in W”) in TR than in PR in both topographic and oddball frequency analyses.

Further, children distinguished between orthographically legal and illegal (“W/PW in

FF” > “CS in FF”) but not yet between lexical and non-lexical (“W in FF” vs “PW in FF”) word

forms. Although both TR and PR exhibit visual sensitivity and can distinguish between

orthographically legal and illegal letter strings, they still struggle with nuanced lexical

distinctions. Moreover, the strength of sensitivity is linked to reading proficiency. Our work

adds to established knowledge in the field to characterize the relationship between print

tuning and reading skills and suggests differences in the developmental progress to

automatically process word forms.
8032 Zürich, Switzerland.
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effects can be detected even with tasks during which the

1. Introduction
Reading is a key communication skill in today's society and,

consequently, learning to read is a crucial educational objec-

tive. Children become familiar with letters and script in early

childhood due to their abundant presence in their everyday

environment. Systematic instruction of the orthographic code

and the link between spoken and written language usually

starts with the beginning of reading acquisition at school

enrollment. It is during this time that children's brains

become sensitive to the visual appearance of letters and their

combinations in words (Brem et al., 2010; Chyl et al., 2018;

Dehaene-Lambertz, Monzalvo, & Dehaene, 2018; Maurer,

Brem, Bucher, & Brandeis, 2005; Saygin et al., 2016). This

sensitivity of the visual system is an important prerequisite

for the efficient processing of written information. Coarse

sensitivity to print is reflected in a differential neural response

to processing letters and words in comparison to false font,

symbol strings, or checkerboards as seen in studies using

electroencephalography (EEG), magnetencephalography

(MEG), or functional magnetic resonance imaging (fMRI)

(Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier,

1999; Brem et al., 2010; Cao, Li, Zhao, Lin, & Weng, 2011; Chyl

et al., 2018; Maurer et al., 2006; Tong et al., 2016; Zhao et al.,

2012). Rudimentary letter knowledge in kindergarteners or

short graphemeephoneme training is sufficient for the

emergence of such an initial coarse print sensitivity, also

sometimes referred to as coarse neural tuning for print/

orthography or selectivity for letters (Coch & Meade, 2016;

Eberhard-Moscicka, Jost, Raith, & Maurer, 2015; Maurer,

Brandeis, & McCandliss, 2005; Wong, Gauthier, Woroch,

Debuse, & Curran, 2005), in alphabetic languages (Brem

et al., 2010; Cantlon, Pinel, Dehaene, & Pelphrey, 2011;

Centanni, King, Eddy, Whitfield-Gabrieli, & Gabrieli, 2017;

Dehaene-Lambertz et al., 2018; Karipidis et al., 2018; Maurer,

Blau, Yoncheva, & McCandliss, 2010; Maurer, Brem, et al.,

2005; McCandliss, Posner, & Givon, 1997; Pleisch et al., 2019;

Yamada et al., 2011). Similarly, in logographic scripts such as

Chinese, preschool children processed real characters differ-

ently from non-orthographic line- or radical combinations

after a 25-min visual identification or writing training (Zhao,

Zhao, Weng, & Li, 2018). With increasing practice and refine-

ment of reading skills, the recognition of familiar words be-

comes fast and automatic and the neural response to words

starts to differ from the response to nonwords or consonant

strings as indexed by familiarity/lexicality effects (Bruno,

Zumberge, Manis, Lu, & Goldman, 2008; Centanni et al.,

2017; Eberhard-Moscicka et al., 2015; Tong et al., 2016). This

distinction is sometimes referred to as fine neural tuning for

words or the use of a fine-grained orthographic code (Adams,

1979; Coch & Meade, 2016; Cohen et al., 2002; Grainger &

Holcomb, 2009; Maurer, Brandeis, et al., 2005; Zhao et al.,

2014). Importantly, sensitivity and familiarity/lexicality
stimuli are processed implicitly (Shtyrov, Goryainova, Tugin,

Ossadtchi, & Shestakova, 2013).

Moreover, the typical development of reading coincides

with a shift of neural responses to print to the left hemisphere

(Gaillard, Balsamo, Ibrahim, Sachs,&Xu, 2003; Kershner, 2020;

Maurer, Brem, et al., 2005; Maurer et al., 2010; McCandliss,

Cohen, & Dehaene, 2003; Spironelli & Angrilli, 2009; Ventura,

2014), which is thought to occur due to an integration of new

processes into the existing left-lateralized language network

(Maurer &McCandliss, 2007; Sacchi & Laszlo, 2016): According

to the Phonological Mapping Hypothesis, left-lateralized

phonological processing drives the left-lateralization of print

processing when graphemeephoneme correspondences are

trained (Maurer & McCandliss, 2007). Alternatively, the left-

hemispheric specialization may emerge due to pre-

established connections between frontal language and pos-

terior visual areas (Saygin et al., 2016; Stevens, Kravitz, Peng,

Tessler, & Martin, 2017).

Learning to read accurately and fluently does not come

easy to all individuals, however. Individuals with develop-

mental dyslexia (DYS) struggle to reach adequate reading

levels despite adequate instruction and intelligence (APA,

2013; D�emonet, Taylor, & Chaix, 2004; Lyon, Shaywitz, &

Shaywitz, 2003; WHO, 2022). While phonological impair-

ments are still considered a core deficit in DYS (Bonte &

Blomert, 2004; Meyler & Breznitz, 2005; Snowling, 1998), the

current view favors a multifactorial etiology rather than a

single unifying deficit for DYS (O'Brien & Yeatman, 2021; Zuk

et al., 2021). Accordingly, various studies have found differ-

ences in the neurobiology of visual word recognition in in-

dividuals with typical and poor reading skills across different

developmental stages. A region within the left ventral occi-

pitotemporal cortex (vOT) of the left hemisphere, the visual

word form area (VWFA), was found to be crucial to reading

(Cohen & Dehaene, 2004). In typically reading individuals, it

becomes more activated upon the visual presentation of

known orthographic stimuli (independent from variation in

size, font, or case) (Cohen et al., 2000; Dehaene et al., 2004;

McCandliss et al., 2003), compared to other visual stimuli (e.g.,

checkerboards, objects, or faces) (Centanni et al., 2017; Lerma-

Usabiaga, Carreiras, & Paz-Alonso, 2018) and to unfamiliar

letter- or letter-like stimuli (Brem et al., 2010; Bruno et al.,

2008; Lerma-Usabiaga et al., 2018). The region is thought to

have inherent properties (such as connections to the language

network or responsivity to visual shape features (Hannagan,

Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; Li,

Osher, Hansen, & Saygin, 2020; Saygin et al., 2016) that favor

its specialization to reading upon instruction (Dehaene-

Lambertz et al., 2018). Its further activity and connectivity

development coincides with behavioral literacy advancement

(Dehaene et al., 2010; Shaywitz et al., 2002). In experienced

readers, the vOT cortex follows an anatomically graded

posterior-anterior pattern of letter-, symbol-, and word
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sensitivity suggesting a hierarchical processing of print (Brem

et al., 2006; van der Mark et al., 2009; Vinckier et al., 2007).

Converging functional and anatomical (structural connectiv-

ity and cytoarchitecture) evidence indicates the presence of at

least two distinct subregions displaying word-selectivity. The

posterior area beingmore involved in visual feature extraction

and the anterior part in linguistic processing and relay

(Caffarra, Karipidis, Yablonski, & Yeatman, 2021; Caffarra,

Lizarazu, Molinaro, & Carreiras, 2021; Lerma-Usabiaga et al.,

2018; White, Palmer, Boynton, & Yeatman, 2019). In in-

dividuals with poor reading skills, however, fMRI studies

showed diminished print-related activation of the VWFA and

a lack of the aforementioned posterioreanterior specializa-

tion pattern (Helenius, Tarkiainen, Cornelissen, Hansen, &

Salmelin, 1999; Olulade, Flowers, Napoliello, & Eden, 2015;

Paulesu et al., 2001; van der Mark et al., 2009; Wimmer &

Schurz, 2010). Moreover, poor reading skills have been asso-

ciated with decreased left-hemispheric occipitotemporal

activation for orthographic processing and overactivation of

the right hemisphere (Salmelin, Service, Kiesil€a, Uutela, &

Salonen, 1996; Shaywitz et al., 2002; Waldie, Haigh,

Badzakova-Trajkov, Buckley, & Kirk, 2013; Weiss, N�arai, &

Vidny�anszky, 2022), as well as changes in left-lateralized

structural connectivity (Niogi & McCandliss, 2006; Zhao

et al., 2023).

In event-related potential (ERP) studies using electroen-

cephalography (EEG), the visual word N1 ERP (often also

referred to as visual N170) reflects a correlate of VWFA acti-

vation, triggered by word- or letter-like stimuli (Allison,

McCarthy, Nobre, Puce, & Belger, 1994; Brem et al., 2009;

Maurer, Brem, et al., 2005; Tarkiainen, Helenius, Hansen,

Cornelissen, & Salmelin, 1999). In individuals with typical

reading skills, the N1 is stronger in response to letters or

words compared to symbol string stimuli. This print-sensitive

activation follows an inverted U-shaped trajectory across

reading development: weak to non-existent in pre-readers,

increased in beginning readers, and reduced again in expert

readers (Brem et al., 2013; Fraga-Gonz�alez et al., 2021, 2022;

Maurer et al., 2006; Yoncheva, Blau, Maurer, & McCandliss,

2010). As expertise increases, there is a transition from bilat-

eral or right lateralization of the N1 to left lateralization

(Maurer, Brem, et al., 2005; Tong et al., 2016; Uno, Kasai,& Seki,

2021). In children with DYS, this developmental progression

as traced by the N1 appears to be altered (exhibiting an

attenuated and less left-lateralized N1) (Araújo, Bram~ao,

Faı́sca, Petersson, & Reis, 2012; Maurer, Wu, Mo, Wang, &

Wang, 2020) or delayed (Fraga Gonz�alez, �Zari�c, Tijms, Bonte,

& Van der Molen, 2017; Maurer et al., 2011).

An alternative approach to the N1 ERP time-domain para-

digms involves applying frequency analysis to examine

automatic familiarity processing in the visual domain using a

fast periodic visual stimulation (FPVS) EEG paradigm (Lochy,

Van Belle, & Rossion, 2015). In this kind of task, a specific

stimulus type is presented at a certain periodic rate, which in

response induces neuronal activity at the same frequency.

Such periodically induced electrophysiological responses are

referred to as steady-state visual evoked potentials (SSVEPs)

(Montani, Chanoine, Stoianov, Grainger, & Ziegler, 2019). The

FPVS oddball task displays a rapid sequence of base items that

are periodically intermitted by oddball items. It thereby
probes the sensitivity to implicitly discriminate between two

classes of visual stimuli (Lochy et al., 2015) or even between

stimuli of the same category but differing in their frequency of

occurrence (De Rosa, Ktori, Vidal, Bottini, & Crepaldi, 2022).

Applying frequency analysis, the periodicity of base and

oddball stimulation (i.e., using different frequencies as iden-

tifiers for different stimulus categories; “frequency tagging”) is

exploited to test whether a neural response in relevant brain

regions can be observed at the base and the oddball frequency

bin in the EEG spectrum. While biological noise is scattered

across the EEG bandwidth, the activities of interest are

garnered at a single defined frequency each, rendering a high

signal-to-noise ratio (SNR) within only a few minutes of

stimulation time.

A seminal study in adults compared the visual presenta-

tion of W as oddballs with a frequency of 2 Hz embedded in

false fonts (FF), nonwords (NW), or pseudowords (PW) as bases

with a frequency of 10 Hz (Lochy et al., 2015). Left-lateralized

discrimination responses were reported for all contrasts. In

addition, responses were graded for similarity in that WinFF

showed the largest discrimination signal, WinPW the

weakest.

A recent study further examined oddball discrimination

responses in adult readers in terms of the functional and

temporal dynamics of response topographies (Wang et al.,

2021). They found two sources with temporally separable

time courses for WinFF contrasts (first left vOT, later dorsal

parietal), in line with leading models of word processing (e.g.

Long et al., 2020; Price & Devlin, 2011). However, they detected

different sources forWinPWandWinNW, suggesting different

underlying processes for word discrimination depending on

the base context (Wang et al., 2021). Moreover, a recent study

demonstrated that oddball responses have emerged across

various visual categories based on the frequency of occur-

rence of items within a given category. This finding indicates

implicit learning of statistical regularities in visual input

streams, as highlighted by De Rosa et al. (2022).

To study automatic visual oddball responses in children,

five-year-old pre-readers were studied using the contrasts

WinFF, PWinFF, and WinPW with a 6 Hz base and 1.2 Hz

oddball frequency (Lochy, Van Reybroeck, & Rossion, 2016).

The results showed left-lateralized occipitotemporal re-

sponses to W or PW oddballs as compared with a midline

occipital FF base response. In contrast to adults, however, the

five-year-olds did not show a discrimination response for the

WinPW contrast. These results suggest that pre-readers can

automatically detect a difference between familiar and unfa-

miliar character strings, but not between real words and

pseudowords. At odds with such previous findings, a recent

study found lexical and sublexical tuning already in 7-year-old

children, showing that the method of stimulation and anal-

ysis influences the detection threshold and that high-level

linguistic processing occurs earlier than previously assumed

(Wang et al., 2022).

In yet another FPVS study with first graders, W oddballs (in

FF bases) were processed bilaterally if initially learned by a

whole-word rote-learning approach (“globally taught words”)

in school. When, however, applying a phonics approach to

teach the childrenword reading,W and PWoddball stimuli (in

FF base) were processed predominantly in the left

https://doi.org/10.1016/j.cortex.2023.12.010
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hemisphere, which indicates graphemeephoneme decoding

(van de Walle de Ghelcke, Rossion, Schiltz, & Lochy, 2020b).

Additionally, this hemispheric distinction for different

teaching methods was modulated by reading skill: children

with poor reading skills processed globally taught wordsmore

bilaterally than PW or W taught with phonics, while those

with good reading skills activated the left hemisphere more

strongly for all letter string stimuli. Based on these findings,

the authors concluded that childrenwith typical reading skills

rely more on their automatized graphemeephoneme map-

pings even for globally taught words, while those with poor

reading skills applied the whole-word method. These results

support the previously reported progressive left-lateralization

with mastery of reading and specifically highlight the role of

graphemeephoneme conversion automaticity therein (e.g.,

Yoncheva et al., 2010). Moreover, they show that, indeed, the

FPVS can be used to compare the processing of different

oddball categories (e.g., different learning conditions) in

addition to the processing of the classic oddball-base

contrasts.

Here, we applied the FPVS oddball paradigm to investigate

the effects of reading skills on the automatic neural response

to sensitivity and familiarity contrast processing in second

and third-graders. Until now, only one study has applied the

FPVS paradigm to examine the differences between children

with poor and typical reading skills (van de Walle de Ghelcke

et al., 2020b). Reading deficiencies might impair automatic

lexical differentiation, especially for fine lexical contrasts. The

FPVS visual oddball design could highlight such differences

between individuals with poor and typical reading skills.

In this study, we aim to better understand the range of

sensitivity and familiarity during implicit visual processing in

emergent reading children in 2nd to 3rd grade with poor

versus typical reading skills. Tomeasure the implicit degree of

visual sensitivity to non-word oddballs, we inserted consonant

string or false font oddballs inW bases (coarse contrast FFinW

versus fine contrast CSinW;Wbase). In addition, we compared

W, PW, and CS oddballs appearing in FF bases (WinFF, PWinFF,

CSinFF), thus manipulating the coarse sensitivity contrast by

the degree of familiarity with character strings. This combi-

nation of FF-base conditionswith the target stimuli as oddballs

thus provided us with a gradient of familiarity (W ¼ familiar/

lexical, PW ¼ unfamiliar/non-lexical, but orthographically

legal; CS ¼ unfamiliar/non-lexical, orthographically illegal).

We expected discrimination responses at the oddball fre-

quency with an occipitotemporal and left-lateralized distri-

bution, as was observed in previous FPVS studies using print

stimuli (Lochy et al., 2015, 2016). Furthermore, we predicted

the oddball response to be graded for both oddball sensitivity

(FFinW > CSinW) and oddball familiarity (WinFF > PWinFF >
CSinFF) conditions because response amplitudes in previous

studies were stronger when oddball-base differences were

larger and expertise towards the stimuli was higher (Collins,

Robinson, & Behrmann, 2018; Montani et al., 2019; van de

Walle de Ghelcke, Rossion, Schiltz, & Lochy, 2020a). Further,

we hypothesized the overall responsemagnitudes to correlate

with children's reading scores (van de Walle de Ghelcke et al.,

2020a) and to be more pronounced in children with typical

than poor reading skills (group effect) (Lochy, Collette,
Schelstraete, Rossion, & Schiltz, 2019). Finally, greater left-

lateralized responses to orthographic deviants were ex-

pected in children with typical, but not poor reading skills,

since previous studies have shown delayed or diminished

lateralization of the OT in the latter group (Maurer, Brem,

et al., 2005; Maurer et al., 2007; Pleisch et al., 2019). To sum-

marize, our study aims to provide a more detailed insight into

the implicit visual processing of different word-like stimuli

with regard to print sensitivity and familiarity in early readers

with typically and poorly developing reading skills.
2. Materials and methods

We report all data exclusions, all inclusion/exclusion criteria,

whether inclusion/exclusion criteria were established prior to

data analysis, allmanipulations, and allmeasures in the study.

For sample size determination, see: https://osf.io/85fv7/.

2.1. Participants and group assignments

In total, 96 native German-speaking children in 2nd to 3rd

grade participated in a behavioral and an EEG session which

were part of a longitudinal study on the efficacy of a phonics

training for childrenwith poor reading skills. One child did not

complete the EEG task and the data of another three children

had to be excluded due to slightly different experimental

settings at the beginning of the study. The final sample of the

cross-sectional study consisted of 92 native German-speaking

children (M ¼ 8.80 y, SD ¼ .63 y).

All participants had nonverbal intelligence quotient (IQ)

scores >80 (as estimated by the non-verbal intelligence index

NIX subpart of the RIAS test; Hagmann-von Arx & Grob, 2014;

Reynolds & Kamphaus, 2003), normal or corrected to normal

visual acuity and reported no neurological or cognitive im-

pairments, with the exception of dyscalculia (5 parentally-

reported cases, 1 diagnosed by a specialist) and Attention

Deficit (Hyperactivity) Disorder (AD(H)D, 9 cases with diag-

nosis, of which 4 undermedication), which are known to often

be comorbid with DYS (Boada, Willcutt, & Pennington, 2012;

German�o, Gagliano, & Curatolo, 2010; Kronenberger & Dunn,

2003). For the individuals taking medication, intake was dis-

continued at least 24 h before each experimental session.

Parents gave written informed consent and children gave oral

assent. Children received vouchers and presents in return for

their participation. The project was approved by the local

ethics committee of the Canton of Zurich (No. BASECNo. 2018-

01261) and neighboring cantons in Switzerland. In- and

exclusion criteria were established prior to data collection.

Based on a set of reading tests that examined reading

comprehension (ELFE-II; Lenhard, Lenhard, & Schneider,

2018), word reading fluency (SLRT-II W; Moll & Landerl,

2014), and pseudoword decoding fluency (SLRT-II PW; Moll &

Landerl, 2014), the children were grouped into participants

with typical reading skills (TR: n ¼ 35, 18 female, 16 in 2nd

grade, 2 left-handed, 1 ambidextrous,M¼ 8.69 y, SD¼ .58 y, all

reading measures �25th perc.), and poor reading skills (PR:

n ¼ 40, 20 female, 16 in 2nd grade, 5 left-handed, M ¼ 8.87 y,

SD¼ .67 y, at least 1 readingmeasure <16th perc.&mean of all

https://osf.io/85fv7/
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reading measures <25th perc.). 17 children (6 female, 7 in 2nd

grade, 3 left-handed, M ¼ 8.86 y, SD ¼ .65 y) showed inter-

mediate reading skills (IR) and were thus excluded from group

analyses, but included for correlation analyses. Further de-

mographic and behavioral information pertaining to the

groups is presented in Table 1.

2.2. Cognitive assessments

Children each completed a battery of behavioral assessments.

Table 1 contains a more detailed overview and description of

the included tests. Percentile scores of the reading and

decoding fluency measures (SLRT-II W, SLRT-II PW), and

reading comprehension scores (ELFE II) were used to group

participants as PR or TR (see Table 2). The behavioral sessions

were held at the Department of Child and Adolescent Psy-

chiatry and Psychotherapy (KJPP) or (during the COVID-19

pandemic) via online video sessions and took about 3 h.

2.3. EEG task

The present work presents EEG data recorded during the

performance of an implicit oddball task denoted as Fast
Table 1 e Descriptive statistics showing sample characteristics a
pseudoword decoding: SLRT-II (Moll & Landerl, 2014); Reading c
reading fluency: SLS (2e9) (Wimmer & Mayringer, 2016); RAN: a
CBCL/4e18 subscore (Achenbach & Edelbrock, 1983; D€opfner, Be
2011); familial risk for DYS: ARHQ (Lefly & Pennington, 2000); IQ
Kamphaus, 2003), Spelling: Schreib.on orthography test (May, 2
(Dunn & Dunn, 2007).

1Used for group comparison. 2Used for correlation analyses. 3Average o

reading fluency. 4Raw scores: number of correct items (Letter-knowledg

second (RAN), and number of correct items read within 1 minute (SLRT-

ligence quotient (IQ) or reading quotient (RQ) score. 7Child Behavior Che

clinical range: t-values >69. 81missing case (TR N¼ 34, overall N¼ 74). 92 m

children (34.3 %), moderate (ARHQ range .3e.4) in 12 children (34.3 %),

children (23.5 %), moderate in 6 children (35.3 %) and high in 7 children

children (25.0 %) and high in 20 children (50 %). 122missing cases (N¼ 90); l

36 children (39.1 %). 132 missing cases (N ¼ 38). 142 missing cases (N ¼ 33
Periodic Visual Stimulation (FPVS). Participants were seated in

a ventilated, electromagnetically shielded, and sound-

attenuated EEG cabin and viewed the stimuli on a gray back-

ground on an LCD monitor with dimensions 60 � 35 cm2,

2560 � 1440 screen resolution, and 144 Hz refresh rate (at a

distance of 92 cm from the display). The font size of the

stimuli was twice the size of the fixation cross, and the mean

visual angle was 2.76� (s ¼ .033) horizontally and 1.32�

(s ¼ .020) vertically.

The task was implicit and required participants to fixate on

the centered cross and press a button in response to a rapid

transient change in its color (blue to red, 194 msec duration)

occurring at random intervals six times per block. The stimuli

appearing behind the cross were not explicitly attended.

Stimuli were presented usingNeurobs Presentation® software

(Version 20.1, www.neurobs.com).

The stimulation procedure was similar to previous FPVS

EEG studies on print processing (Lochy et al., 2015, 2016). Each

condition block commenced with a fixation cross presented

for 2 sec. Base stimuli were presented in a continuous

sequence at a rate of 6 Hz (one stimulus every 166.67 msec).

Oddballs deviating from the base category were inserted at a

rate of 1.2 Hz (i.e., every 5th item, 6 Hz/5). Fifty-five different
nd behavioral test scores. Tests: Word reading fluency and
omprehension: ELFE-II (Lenhard et al., 2018), Sentence
dapted from Mayer (2011); attention-deficit/hyperactivity:
rner, & Schmeck, 1994; Steinhausen & Winkler Metzke,
: RIAS (Hagmann-von Arx & Grob, 2014; Reynolds &
008, 2010; Valtin & Hofmann, 2009), Vocabulary: PPVT-4

f percentiles of reading comprehension and word and pseudoword

e, total number of letters ¼ 26), number of correct items named per

II). 5perc. ¼ percentile rank score, used for group assignment. 6Intel-

cklist. Normal range: t-values <65, subclinical range: t-values 65e69,

issing cases (N¼ 33). The familial risk level was low (ARHQ < .3) in 12

and high (ARHQ > .4) in 9 children (25.7 %). 10Familial risk low in 4

(41.2 %). 11Familial risk low in 10 children (25.0 %), moderate in 10

ow in 26 children (28.3 %),moderate in 28 children (30.4 %), and high in

). 152 missing cases (N ¼ 15). 166 missing cases (N ¼ 86).

http://www.neurobs.com
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Table 2 e Linear Regression with reading test scores (raw
scores) and baseline-subtracted amplitudes for the
different conditions over LOT. Sorted top-to-bottom by
highest R2 value. þ: survived Bonferroni multiple
comparison corrected p-value of .0033 (15 tests, i.e.,
threshold of .05/15); trend: .1/15 ¼ .0066.

Predictor Predicted R2 p-value Sample

Reading comprehension

(ELFE-II)

LOT PWinFF .141 <.001þ 87

LOT FFinW .144 <.001þ 88

LOT WinFF .095 .004 87

W reading fluency

(SLRT-II)

LOT FFinW .164 <.001þ 87

LOT PWinFF .087 .006 86

LOT CSinFF .057 .027 86

LOT WinFF .054 .031 86

PW reading fluency

(SLRT-II)

LOT FFinW .094 .004 88

LOT CSinFF .046 .045 87

LOT PWinFF .045 .049 87
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stimuli were thereby repeated five times in a randomized

order to achieve a total of 275 stimuli. Sinusoidal contrast

modulation of stimuli enabled smooth transitions between

the items. To avoid eye movements, a gradual fade-in (20

stimuli, 3.3 sec) and fade-out (15 stimuli, 2.5 sec) preceded and

followed the full contrast stimulation sequence (40 sec, 240

stimuli, 48 oddballs, 240*.167 sec¼ 40 sec). The duration of one

block was thus 240*.167 sec þ 2 sec þ 3.3 sec þ 2.5 sec ¼ 47.88

sec. Each condition block was presented twice, with short

breaks between each condition block and a longer break be-

tween the two parts. If the experimenter noted movement

during a condition block, the block was repeated at the end of

the sequence of blocks. The procedure and conditions are

illustrated in Fig. 1 and the Supplementary video.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.cortex.2023.12.010.
Fig. 1 e Experimental Paradigm. Above: Example base and oddba

shown. Randomized order of stimuli presented for about 48 sec

break in between. Below: Representation of the timeline of one
2.4. Materials

The task comprised four categories of stimuli: words (W),

pseudowords (PW), consonant strings (CS), and false font

strings (FF). Each stimulus was made up of four characters.

Categories were combined pairwise, one serving as the “base”,

and one as the “oddball”, to yield five different conditions:

consonant strings as oddballs embedded in word bases (CS in

W), false font in words (FF in W), words in false font (W in FF),

consonant strings in false font (CS in FF), and pseudowords in

false font (PW in FF). Fifty-five concrete, one-syllable German

words were selected from the ChildLex database (age range

6e8) (Schroeder, Würzner, Heister, Geyken & Kliegl, 2015) and

55 pseudowords were generated using WordGen (Duyck,

Desmet, Verbeke, & Brysbaert, 2004), matching them to the

words in bigram frequency (t108 ¼ .06, p ¼ .956) and ortho-

graphic neighborhood size (t108 ¼ .25, p ¼ .801). Alternating

betweenwords and pseudowords, vowels were systematically

replaced with consonants (i.e., always the same consonant

inserted for the same vowel) to obtain consonant strings

matched to the other categories. The false font was con-

structed based on the real font in the experiment (Swiss

school font “Steinschrift”) using FontCreator 11.5 (High-Logic,

Utrecht, Netherlands). For each letter, symbol elements were

shuffled and re-oriented while maintaining their size, num-

ber, and complexity. A balanced number of items from our

pool of words, pseudowords, and consonant strings were then

written in the false font script to build the false font strings.

2.5. EEG data acquisition and preprocessing

EEG data were recorded at a sampling rate of 1000 Hz using a

high-density 128-channel EEG system (Net Amps 400, EGI

HydroCelGeodesic Sensor Net). A DC filter and anti-aliasing
ll stimuli of the different conditions (grouped bymodel) are

non-stop. The task was divided into two equal parts with a

block.

https://doi.org/10.1016/j.cortex.2023.12.010
https://doi.org/10.1016/j.cortex.2023.12.010
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filter were applied and electrode Cz was used as the recording

reference, the electrode just posterior to Cz as the ground

(COM). Electrode impedances were kept below 50 kU.

Data were preprocessed in BrainVisionAnalyzer 2.1

(BrainProducts GmbH, Munich, Germany). First, data were

segmented to exclude blocks that had to be interrupted due to

movement and breaks in between sequences. The separate

EEG blocks of the same subject from the different conditions

were concatenated. A .1 Hz high-pass filter and a 50 Hz Notch

filter were then applied. Data were visually inspected and

manually marked for bad intervals (to exclude them from the

ICA decomposition). Noisy- or artifact-ridden channels were

then topographically interpolated (number of channels

interpolated per subject: M ¼ 4.15, SD ¼ 3.33, range ¼ 0e12).

Due to the purported high signal-to-noise ratio of the FPVS

analysismethod (Lochy et al., 2015, 2016), we includedmost of

the data. However, sequences that contained roughly more

than 25 % strong artifacts (greater than 150 mV) were rejected.

A repeated measures ANOVA showed no significant differ-

ences in the number of blocks for the different conditions

(F5.46, 398.21 ¼ .853, p ¼ .521), the two groups (F1, 73 ¼ 2.64,

p ¼ .108), or an interaction between the two (F5.46, 398.21 ¼ .625,

p ¼ .695). Data were then downsampled to 512 Hz and IC

components associated with ocular artifacts were removed by

performing an independent component analysis (ICA; number

of components removed: M ¼ 3.93, SD ¼ 2.09). We then re-

referenced to the common average. Finally, a low-pass zero-

phase-shift Butterworth filter (100 Hz, order 8) was applied to

remove residual artifacts. The 40 sec stimulation sequence

without fade-in and fade-out was extracted from the contin-

uous EEG by segmenting from 3333 msec to 43334 msec after

block onset. The different blocks' segments were averaged per

condition and individual in the time domain to diminish any

activity not phase-locked to the stimuli.

2.6. Frequency analysis

A Fast-Fourier Transform (FFT) was applied to convert the

data into the frequency domain. Amplitude spectra were

extracted (per single subject, group, and condition) for each

electrode and exported for further analyses using R

(RCoreTeam, 2021) in-house scripts. We selected literature-

based clusters of electrodes over the left (LOT: E050, E057,

E058, E059, E063, E064, E065, E066, E068, E069, E070, E073, E074)

and right occipitotemporal cortex (ROT: E082, E083, E084, E088,

E089, E090, E091, E094, E095, E096, E099, E100, E101: c.f. Supp.

Fig. 1; Pleisch et al., 2019). Z-scores (amplitude at each fre-

quency minus the average of 20 surrounding bins divided by

the standard deviation of the 20 surrounding bins) were

computed on the grand average of the spectra per group,

condition, and electrode cluster. This was done to assess the

response significance at the oddball frequency and each har-

monic (multiples of 1.2 Hz, i.e., of the oddball frequency) and

thereby determine the number of harmonics to include in the

statistical models. Z-scores of 1.96 and above were considered

significant. Based on the highest number of consecutive har-

monics to exceed this threshold in any group, electrode

cluster, or condition, we selected an identical number of

harmonics across all groups (including the intermediate

group), electrode clusters (averaged before computing Z-
scores), and conditions included per statistical model (as

described in section ‘Statistical Analysis’). In total, we

included 5 harmonics (H1 to H5, i.e., multiples of 1.2 Hz up to

7.2 Hz, excluding base frequency) formodel “familiarity” and 3

harmonics (H1 to H3, i.e., multiples of 1.2 Hz up to 3.6 Hz) for

model “sensitivity”. For the quantification of the periodic

oddball response spread out across harmonics, we then

summed the baseline-subtracted amplitudes (i.e., the average

voltage amplitude of the 20 surrounding bins subtracted out)

at the oddball- and harmonic frequency bins (see e.g. Retter &

Rossion, 2016 for validation of procedure).

2.7. Statistical analysis

Two linear mixed models (LMM) with the sum of baseline-

subtracted amplitudes as the dependent variable were

defined and fitted in SPSS® (IBM-Corporation, 2020): i) “sensi-

tivity” and ii) “familiarity”. Both models had a random subject

intercept and the fixed factors group [poor/typical], hemi-

sphere [LOT, ROT], condition [i) sensitivity: FF/CS inW as base;

ii) familiarity:W/PW/CS embedded in FF as base]. Nonverbal IQ

and child behavior checklist (CBCL; Achenbach & Edelbrock,

1983; D€opfner et al., 1994; Steinhausen & Winkler Metzke,

2011) attention deficit/hyperactivity subscore t-values were

included as covariates due to differences between the groups

(see Table 1) and due to high comorbidity of reading- and

attentional difficulties (Boada et al., 2012; Kronenberger &

Dunn, 2003). Post-hoc pairwise comparisons were corrected

using Bonferroni. We report significant values (p � .05) and

statistical trends (p � .1) but restrict our discussion mainly to

significant values. To reduce bias by outliers and extreme

values, we iteratively removed normalized (z-score) residuals

that exceeded a threshold of ±3 (see e.g. Fraga-Gonz�alez et al.,

2021). In total, 6 data points out of 296 (2.02 % of the data) were

removed in model “sensitivity” and 11 out of 444 data points

(2.48 % of the data) were removed in model “familiarity”.

Linear regression was performed using R (R Core Team,

2021) to analyze the association between neural (baseline-

subtracted amplitudes per condition) and behavioral mea-

sures of interest (word- and pseudoword reading fluency and

text reading comprehension) over LOT (i.e., 15 contrasts were

tested). These tests were performed after the exclusion of

outliers (1.5 IQR criterion) to exclude spurious findings (see the

corresponding sample in the table).

Lastly, plots of scalp topographies of the sum of baseline-

subtracted amplitudes at each oddball harmonic (including

all oddball harmonics up to the pre-determined number

except the base, see description above), and t-maps between

conditions and groups were created in EEGlab (Delorme &

Makeig, 2004), a Matlab-based toolbox (R2020b, MathWorks,

Natick, MA). For the t-maps, we computed electrode-wise

pairwise comparisons of the baseline-subtracted oddball

amplitude sums: To measure conditions against each other,

we used paired two-sided t-tests, and to compare the PR and

TR groups, we used independent two-sided t-tests. Further,

we applied the R-based DuckDB (Raasveldt &Mühleisen, 2019)

to compute the subject-wise difference between condition-

pairs'mean sum of oddball harmonic amplitudes, which were

then compared between the groups using independent two-

sided electrode-wise t-tests.

https://doi.org/10.1016/j.cortex.2023.12.010
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3. Results

3.1. Oddball discrimination responses

3.1.1. Oddball response amplitudes by reading level
3.1.1.1. PRESENCE OF SIGNIFICANT Z-SCORES OF RESPONSES AT THE

ODDBALL FREQUENCY. To test for the presence of discrimination

responses in the different conditions, hemispheres, and

groups, z-scores at the oddball frequency and its harmonics

were examined. Discrimination responses (significant z-

scores at target oddball and harmonic frequencies) were

detected in both models in all conditions in at least one

hemisphere and one group except for CSinW (WinFF: H1eH4

in PR, H1eH5 in IR and TR; PWinFF: H1eH3 in PR, H1eH4 in IR

and TR; CSinFF: 0 in PR and IR, H1eH4 in TR; FFinW: H1eH3

for all groups). A maximum of three consecutive harmonics

for model i) “sensitivity” (1.2e3.6 Hz, excluding the base rate

at 6 Hz) and five consecutive harmonics (from 1.2 to 7.2 Hz,

excluding the base rate at 6 Hz) for model ii) “familiarity”

were thus found to be significant. More detailed information

on the number of consecutively significant harmonics per

group, electrode cluster, and condition can be found in Supp.

Tables 1 and 2. Additionally, the supplementary information

includes an exploratory inspection of the spread of ampli-

tudes across the harmonics (i.e., individually instead of

analyzing the sum of consecutively significant harmonics;

Supp. Fig. 2). Frequency spectra and topographical scalp

maps of the sum of amplitudes at oddball harmonics are

shown in Fig. 2.

3.1.1.2. TOPOGRAPHIC EVALUATION OF RESPONSE AMPLITUDES AT THE

ODDBALL FREQUENCY. To investigate our hypothesis regarding the

occipitotemporal and left-lateralized distribution of the

oddball discrimination responses, as well as the predicted

greater left-lateralization in TR than PR, we computed topo-

graphic maps and t-maps (Fig. 2). In TR, the sum of oddball

harmonics shows a clear left-lateralized occipitotemporal

topographical profile and responses are stronger for oddballs

that differ strongly from the base (FFinW > CSinW; sensitivity

model) and for more familiar oddballs (W > PW > CS in FF;

familiarity model). These effects appear reduced or inconsis-

tent (e.g., right-lateralization for FFinW) in PR.

T-maps for pairwise comparison of the sensitivity condi-

tions show significantly greater activity for FFinW than CSinW

in bilateral but right-lateralized occipitotemporal areas in PR,

and bilateral left-lateralized occipitotemporal and central re-

gions in TR. A comparison of the groups showed greater ac-

tivity in left occipitotemporal electrodes in TR than in PR. In

CSinW, a right-hemispheric occipitotemporal cluster of elec-

trodes was also observed to show a significant group differ-

ence (TR > PR).

T-maps for the familiarity conditions revealed significant

left-hemispheric occipitotemporal differences for both

WinFF � CSinFF and PWinFF � CSinFF in TR. On the other

hand, PR showed bilateral, less focalized posterior differ-

ences. In the group comparison per condition, TR showed

greater responses than PR over a left posterior, a central,

and a right-frontotemporal region in WinFF. In CSinFF, the

t-map suggests higher response amplitudes across the
(bilateral) posterior scalp for TR than PR. PWinFF showed no

notable differences between the groups. PR appear to have

displayed a greater difference in response amplitudes be-

tween the PWinFF and CSinFF conditions than TR over a

right-hemispheric occipital area. For the comparison of

WinFF with the other two conditions, TR showed greater

amplitude differences than PR over central (WinFF-PWinFF)

and over central and right fronto-temporal areas (WinFF-

CSinFF).

3.1.1.3. LINEAR MIXED MODEL ANALYSES. Two linear mixed model

(LMM) analyses i) “sensitivity” and ii) “familiarity” were

performed on the summed baseline-subtracted amplitudes

of the specified number of significant harmonics (see Sec-

tion 2.6. Statistical analysis for description). We used these

models to test differences in the level of sensitivity

(FFinW > CSinW) and familiarity with (WinFF > PWinFF >
CSinFF) the oddball stimulus, depending on the hemisphere

and reading group. In the “sensitivity” model (Fig. 3), there

was a significant main effect of condition (F1, 211.96 ¼ 158.53,

p < .001), indicating stronger oddball amplitudes for FFinW

than CSinW. Furthermore, a hemisphere effect (F1,

212.03 ¼ 6.27, p ¼ .013) revealed increased responses over

LOT compared with ROT. In addition, there was a group

main effect (F1, 69.72 ¼ 4.26, p ¼ .043), generally showing

greater oddball response amplitudes for TR as compared

with PR. Main effects were qualified by a condition-hemi-

sphere-group interaction (F1, 213.73 ¼ 5.07, p ¼ .025). Ampli-

tudes in response to FFinW were stronger over LOT than

ROT in TR, but not PR (t213.77 ¼ 3.19, pBonferroni ¼ .002).

Correspondingly, oddball responses to FFinW were stronger

over LOT for TR than PR (t258.76 ¼ 3.58, pBonferroni < .001).

Lastly, there was a trend for a main effect of the CBCL

attention-deficit/hyperactivity covariate (F1, 68.65 ¼ 3.63,

p ¼ .061). No further trends or significant effects were

found.

In the “familiarity” model (Fig. 4), we found main effects of

condition (F2, 347.68 ¼ 7.09, p < .001), hemisphere (F1, 346.86 ¼ 31.89,

p < .001), and a trend for group (F1, 66.85¼ 3.19, p¼ .079). Overall,

post-hoc pairwise comparisons of conditions showed oddball

discrimination amplitudes to be significantly stronger for both

WinFF and PWinFF than CSinFF (t348.63 ¼ 3.57, pBonferroni < .001

and t346.74 ¼ 2.77, pBonferroni ¼ .017, respectively). The main ef-

fect of hemisphere pointed to stronger oddball amplitudes

over LOT than ROT. Finally, we found a trend for a three-way

interaction of condition-hemisphere-group (F2, 346.85 ¼ 2.78,

p ¼ .063). Post-hoc contrasts revealed that familiarity effects

were only present over LOT for TR (PWinFF > CSinFF:

t346.11 ¼ 2.52, pBonferroni ¼ .037), and only over ROT for PR

(PWinFF > CSinFF: t346.11 ¼ 2.56, pBonferroni ¼ .033;

CSinFF > WinFF: t347.08 ¼ 2.61, pBonferroni ¼ .030): Further hemi-

spheric differences included increased responses to CSinFF

over LOT compared with ROT (t346.61 ¼ 2.21, pBonferroni ¼ .028),

for PR and a trend for the same effect in WinFF (t346.11 ¼ 1.76,

pBonferroni ¼ .079). Further non-significant values or trends were

found for TR versus PRwith regards to CSinFF amplitudes over

ROT (t228.35 ¼ 1.95, pBonferroni ¼ .052), but not LOT (t227.99 ¼ 1.59,

pBonferroni ¼ .112). BothWinFF (t347.93 ¼ 2.05, pBonferroni < .042) and

PWinFF elicited enhanced amplitudes over LOT than over ROT

in TR only (t346.11 ¼ 4.99, pBonferroni < .001). PWinFF response
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Fig. 2 e Left panel (Sensitivity model): Baseline-subtracted amplitude frequency spectra of the “sensitivity” conditions for

typical and poor readers in left (LOT) and right (ROT) occipitotemporal electrode clusters. The figure shows frequency spectra

and topographies of the sum of baseline subtracted amplitudes across the relevant harmonics (i.e., average amplitude over

3 harmonics) for TR (above) and PR (below). Oddball harmonics that reached significance according to Z-scores >1.96 are

marked by a red asterisk in the frequency spectra. Below the topographies, t-maps display the group-wise comparison of

topographical scalpmaps across conditions (t-tests). Panel B shows the condition-wise comparison of groups (row 1, TR-PR),

and the comparison of pairwise condition-differences across the groups (“double-difference”, rows 2e3). For the t-maps, red

and blue denote significantly greater and lower sums of harmonic amplitudes (respectively) in TR than PR. Activity in OT

regions was observed only for FFinW and showed diverging lateralization in the groups. Right panel (Familiarity model):

Same as left panel for “familiarity” conditions. Responses are stronger in the left hemisphere, in TR, and for more familiar

oddball stimuli.
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Fig. 3 e “Sensitivity” Linear Mixed Model Results. Mean normalized amplitudes for the different groups, conditions, and

hemispheres are shown. A significant three-way interaction between these factors was found. Stars represent significant

differences as determined by linear mixed model post-hoc pairwise comparisons: p ≤ .001***, p ≤ .01**, p ≤ .05*.

CS ¼ consonant strings, W ¼ words, FF ¼ false fonts; TR ¼ children with typical reading skills, PR ¼ children with poor

reading skills, LOT ¼ left occipitotemporal electrode cluster, ROT ¼ right occipitotemporal electrode cluster.
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magnitudes over LOT (t230.75 ¼ 2.49, pBonferroni ¼ .014), but not

ROT (t225.61 ¼ .63, pBonferroni ¼ .532) were also increased in TR

compared to PR. No further significant effects or trends were

found.
Fig. 4 e “Familiarity”model. Mean normalized amplitudes for th

A trend for a three-way interaction of these factors was found.

mixed model post-hoc pairwise comparisons of this interaction

strings, PW ¼ pseudowords, W ¼ words, FF ¼ false fonts. TR ¼
reading skills, LOT ¼ left occipitotemporal electrode cluster, RO
Models including participants with intermediate reading

skills are shown in Supp. Fig. 3 (sensitivity) and Supp. Fig. 4

(familiarity) and largely support the results of the main

analyses.
e different groups, conditions, and hemispheres are shown.

Asterisks represent differences as determined by linear

: p < .001***, p < .01**, p < .05*, p < .1 þ. CS ¼ consonant

children with typical reading skills, PR ¼ children with poor

T ¼ right occipitotemporal electrode cluster.
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3.1.2. Brainebehavior associations
We computed brain-behavior correlations to clarify whether

the response magnitudes of oddball responses are related to

children's reading skills. Here, we found a significant associ-

ation between word reading fluency and FFinW oddball re-

sponses and between reading comprehensionwith FFinWand

PWinFF oddball responses (shown in more detail in Table 2

and Fig. 5; only tested for LOT, not ROT, see Methods). These

associations indicate that oddball response magnitudes over

LOT increase with reading skills. Further trends for brain-

behavior associations that did not survive multiple compari-

son corrections can be found in Table 2.
4. Discussion

We applied an oddball paradigm to examine potential differ-

ences between children with typical and poor reading skills in

their ability to implicitly discriminate between orthographic

lexical, orthographic non-lexical, and non-orthographic

stimuli in a fast-paced visual presentation. First, we used

orthographic versus non-orthographic (CS, FF) oddballs in W

bases to test fine (CSinW) versus coarse (FFinW) sensitivity,

i.e., the presence and level of neural discrimination responses

to print in children. In addition, we were interested in the

strength of responses in TR versus PR to oddball items along a

gradient of orthographic familiarity and legality (oddballs

W > PW > CS) embedded in a sequence of unfamiliar FF base
Fig. 5 e Brain-behavior association plots of significant linear reg

and baseline-subtracted mean amplitudes for the different con

shaded area around the fitted line shows the 95 % confidence i

distribution of the behavioral and neural data values.
items. Our results show consistent oddball effects for coarse

tuning to print (coarse sensitivity; FFinW) in children in

2nde3rd grade and indicate that the strength and lateraliza-

tion of the coarse tuning responses depend on reading skills.

Importantly, linear regression models indicated that the

strength of the coarse sensitivity over LOT is positively asso-

ciatedwith the reading skills of the children. The effects of the

level of familiarity with word forms were less pronounced.

Oddball effects distinguished between orthographically legal

and illegal items (W/PW vs CS) but not yet between lexical and

non-lexical (W vs PW) word forms. Altogether, effects of fa-

miliarity tended to differ between groups and hemispheres,

with TR showing familiarity effects mainly over the left

hemisphere, while such effects were observed over the right

hemisphere in PR. These main findings will be discussed in

more detail in the next sections.

4.1. Oddball discrimination conditions reveal coarse but
no fine sensitivity to print

In agreement with previous reports (Lochy et al., 2016), we

found oddball responses to the familiarity conditions in all

groups. This suggests that orthographic stimuli triggered

brain activity that was distinct from the state evoked by false

fonts. The participants were thus able to automatically

discriminate between letter-containing items and a false

script (WinFF, PWinFF, CSinFF) and therefore show coarse

sensitivity to print, as we expected for children of this age
ression outcomes between reading test scores (raw scores)

ditions in the left hemispheric electrode cluster (LOT). The

nterval. Boxplots to the side of both axes visualize the
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(Lochy et al., 2016; Maurer et al., 2006; van deWalle de Ghelcke

et al., 2020a). Similarly, significant oddball responses to

FFinW, but not to CSinW conditions suggest that coarse print

sensitivity has already emerged in all participants, while fine

discrimination of words from other letter strings (i.e., famil-

iarity) is not yet detectablewith a fast implicit processing task.

Previous studies have reported conflicting findings

regarding fine discrimination in young children. In FPVS

literature, for example, no PW versusW distinctionwas found

in children (Lochy et al., 2016; van de Walle de Ghelcke et al.,

2020a, 2020b; children in these studies were 5e7 years old

and French-speaking). Although PWare orthographically legal

while CS are not, both PW and CS are orthographic stimuli,

and thus both difficult to discriminate from words for early

readers. In support of this, a study described 7e14-year-old

children's VWFA print “sensitivity” as full-fledged, yet the

“specificity” towards letters andwords as immature (Centanni

et al., 2017). It thus appears that the fundamental skill set for

reading is obtained early on in learning (Aghababian & Nazir,

2000, p. 123), but that it takes more time to specialize in word

processing (Brem et al., 2006; Coch & Meade, 2016, p. 115) and

to become quicker at gathering information from print

(Aghababian & Nazir, 2000, p. 123). However, a very recent

study found evidence for lexical and sublexical processing in

children at early reading stages (kindergarten to second grade)

(Wang et al., 2022). The study used an adapted SSVEP task

design (alternating between two stimulus types and doing so

at a slower pace than previous studies) and reliable compo-

nent analysis. They compared coarse print tuning, lexical

processing, and sublexical orthographic processing using W

versus FF, W versus PW, and PW versus nonword (unpro-

nounceable letter combinations with lower orthographic

neighborhood and bigram frequencies than PW) contrasts.

The authors interpret these methodical modifications to the

FPVS as the defining features enabling higher signal detection.

In other words, it might be that a lexical discrimination effect

in children emerges only at slower presentation rates and

more sensitive analysis methods. Further studies are needed

to replicate these results and provide more clarity as to the

discrepancies between studies.

4.2. Strong coarse sensitivity and emerging familiarity
discrimination in children with typical reading skills over
the left hemisphere

In our sensitivity model, we found significantly greater

oddball responses in TR than in PR, and this group difference

was especially pronounced over the left hemisphere. Dimin-

ished left occipitotemporal coarse print sensitivity in PR is in

line with previous studies using classical ERP designs

(Eberhard-Moscicka et al., 2015; Maurer et al., 2007; Pleisch

et al., 2019) or FPVS (van de Walle de Ghelcke et al., 2020b),

although one previous report did not find differences between

reading groups for coarse, but only for lexical and sublexical

processing (Wang et al., 2022). The familiarity model sup-

ported the results of the sensitivitymodel in that the degree of

discrimination along a gradient of familiar versus unfamiliar

and orthographically legal versus illegal character strings

tended to differ according to reading skills and hemisphere.

Previous literature has described the preferential activity of
vOT to familiar print to become predominantly left-lateralized

with reading acquisition (Brem et al., 2006; McCandliss et al.,

2003; Rossion, Joyce, Cottrell, & Tarr, 2003; Seghier & Price,

2011; Zhao et al., 2012). In our study, we found electrodes

over LOT to generally activate more strongly to the oddballs

than those over ROT.

In TR, the discrimination response amplitudes to ortho-

graphically legal word forms (WinFF and PWinFF) were

significantly higher than those to illegal ones (CSinFF) over

LOT in the differential t-maps for the contrasts between

WinFF-CSinFF and PWinFF-CSinFF, respectively. There was,

however, no significant difference for the WinFF-PWinFF t-

map contrast. This indicates that TR already differentiate

between legal (W, PW) and illegal (CS) orthographic oddballs

presented amidst FF base, but not yet between familiar and

unfamiliar word form oddballs (PW and W) amidst FF base

over the left-hemispheric vOT (Panda et al., 2022). PR also

show significant differences in the t-map comparison of

conditions, but the significant electrode locations were more

bilateral, covering large parts of the ventral occipital and

posterior temporal sites. Notably, the group-hemisphere-

condition three-way interaction over LOT and ROT did not

reach significance in the “familiarity” LMM. This may be

explained by the selection of the a priori defined electrode

clusters covering large parts of the occipito-temporal and

inferior parietal cortex. Previous studies have reported greater

activation of the vOT/VWFA, with a left hemisphere bias, the

more frequent or familiar the letter combinations of word-

fragments were, or the more word-like the stimuli (Vinckier

et al., 2007). Therefore, our results suggest that W and PW

are processed as more familiar and as more distinguishable

from FF than CS by TR, while in PR this lateralization appears

less clear.

The results are thus largely in line with our expectations

based on previous studies. Although to our knowledge, there

is no previous FPVS study comparing W and CS, previous

studies have tested the fine contrast of W and PW. For

instance, W embedded in PW (WinPW) did not yield a sig-

nificant discrimination response (Lochy et al., 2016; van de

Walle de Ghelcke et al., 2020a) and WinFF versus PWinFF

did not differ significantly in children (Lochy et al., 2016; van

de Walle de Ghelcke et al., 2020a, 2020b). In adults, WinPW

differences indicating lexical differentiation of orthographi-

cally legal strings could previously be observed in FPVS par-

adigms (Lochy et al., 2015), albeit not consistently (Barnes,

Petit, Badcock, Whyte, & Woolgar, 2021). It is important to

emphasize that the children in the aforementioned studies

were pre-schoolers or first- and atmost second-graders in the

first trimester, thus beginning readers. In more classical vi-

sual ERP paradigms, evidence on fine-tuning in young chil-

dren remains mixed: some studies found no significant N1

ERP difference betweenWand CS (Posner&McCandliss, 1999)

or PW andW (Eberhard-Moscicka et al., 2015) in 4- and 7-year-

old children, or even older children (9e13 years (Araújo et al.,

2012); 8e12 yrs (Kast, Elmer, Jancke, &Meyer, 2010). However,

children with high reading skills may show such fine-tuning

between orthographically legal and illegal strings already at

an early age (7 yrs) (Zhao et al., 2014). The children in our

study were at amore advanced reading stage (2nde3rd grade)

and were learning to read an orthographically rather
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https://doi.org/10.1016/j.cortex.2023.12.010


c o r t e x 1 7 2 ( 2 0 2 4 ) 1 8 5e2 0 3 197
transparent alphabetic language (German). Our finding of an

emerging fine sensitivity for orthographically legal versus

illegal strings (PWinFF versus CSinFF) in our typically reading

children thus supports the rapid and critical changes occur-

ring during the early school years, paralleling the develop-

ment of sight word reading (Maurer et al., 2011; Wang et al.,

2022).

4.3. Altered hemispheric patterns in PR may indicate
developmental delay or compensatory strategies

Although PR showed significantly stronger discrimination

amplitudes to FFinW than CSinW both in the left and right

hemisphere, the responses were weaker than in TR and

showed no significant lateralization. Topographic plots

even indicate a more right-hemispheric occipito-temporal

activation for FFinW in PR.

For the familiarity model, the t-map comparison of pair-

wise condition differences between groups also showed an

increased difference between PWinFF and CSinFF over the

right occipitotemporal scalp in PR compared to TR. However,

in the linear mixed models, we did not find a significant dif-

ference in the processing of PWinFF and CSinFF, but only

found trend-level evidence for greater activity to W and PW

than to CS oddballs in FF over the right hemisphere of PR.

The reduced and more right-lateralized activation for and

differentiation between oddballs could either reflect a delayed

development (Maurer et al., 2011) or beginning compensa-

tional processes in children with poor reading skills. Indeed,

different developmental trajectories of print processing in PR

have previously been referred to in literature (Maurer et al.,

2011). The lateralization, indicative of print specialization,

develops only with intensive training and over time

(Eberhard-Moscicka et al., 2015; Maurer, Brem, et al., 2005; van

Setten, Maurits, & Maassen, 2019). Several studies report

discrepant laterality findings in children. For example, Kast

et al. (2010) report missing lateralization in 8- to 12-year-old

readers and attribute it to incomplete maturation or reading

expertise. Similarly, Spironelli and Angrilli (2009) found

greater visual N1 right-lateralization in 10-year-olds. Before

reading instruction at school, visual familiarity with print and

higher letter knowledge was reflected in a right-lateralized

N170 (Maurer, Brem, et al., 2005; Maurer et al., 2006). Simi-

larly, in an artificial script training study with adults,

emerging N170 responses to the trained script were more

pronounced over the right rather than the left hemisphere

after a 20-min training phase (Maurer et al., 2010). Thus the

right hemisphere seems more involved in the beginning

stages of reading acquisition before the typical left hemi-

spheric dominance develops (Maurer et al., 2010; Seghier &

Price, 2011). Further longitudinal research will be necessary

to clarify whether such an activation pattern in the ROTmight

precede the fine-scaling in the LOT, indicative of a develop-

mental delay in PR.

Another interpretation could be compensatory activity

specific to PR. In fMRI studies (Borghesani et al., 2021;

Centanni et al., 2019), researchers found a missing word tun-

ing effect (W > FF) and a hypoactivation to letters and FF in

poor compared to TR in the left hemisphere (Ozernov-Palchik

& Gaab, 2016). Furthermore, greater functional connectivity
among right-hemispheric brain areas has been observed for

groupswithmore severe reading problems (Panda et al., 2022).

Right hemispheric activation in PR has been reported as a

mechanism to compensate for the left-hemispheric hypo-

activation (D�emonet et al., 2004; Pugh et al., 2000; Shaywitz

et al., 1998; Turker, 2018; Waldie et al., 2013). Compensatory

refinement of the ROT may be driven by more pictorial, rote-

learned representations of stimuli, given the evidence for

greater involvement of the right vOT in deep orthographies

and the visual appraisal of familiar objects, drawings, and

symbols that are not linked to phonology (Lochy et al., 2016;

Maurer, Brandeis, et al., 2005; Mei et al., 2013; van de Walle de

Ghelcke et al., 2020a).

In summary, the discrepant lateralization patterns be-

tween the groups are likely to arise from delayed reading

development or compensatory strategies in PR. However,

further data sampling time points would be required to attri-

bute our findings to persistent developmental differences or

delayed development.

4.4. Limitations and outlook

There are several aspects of the current paradigm that may

have impacted our results. One of them is the stimulation

frequency. A recent report explored two frequency variations

(2 Hz oddball, 10 Hz base vs 3 Hz oddball, 6 Hz base) for WinFF

contrasts (Wang et al., 2021, 2022). The two variations elicited

a similar pattern of responses, although amplitudes were

larger for the slower presentation rates. Further studies

should investigate the impact of such stimulation differences

in more detail and in different age groups.

Further, the paradigm we used was implicit. The attention

was therefore not specifically directed to the stimuli, which

could affect the engagement of the reading system. Specif-

ically, higher-level reading processes might be engaged to a

greater degree when there is an overt reading-related task

requirement in contrast to an implicit task (Maurer et al., 2006;

Okumura, Kasai, & Murohashi, 2015; Wang et al., 2021;

Yoncheva et al., 2010). Future studies should thus compare

implicit and explicit approaches to study this effect of task

design.

It is important to note that the present analyses are

complex, including three fixed factors and two covariates. A

design with many variables could potentially limit our

power, despite the large sample of children. However, these

variables were important to test our hypotheses relating to

group, condition, and lateralization differences and to ac-

count for possible confounding effects. We included

nonverbal IQ and the attention-deficit/hyperactivity sub-

score as covariates to account for potential differences

related to IQ and attention. This consideration is further

justified by the high comorbidity of reading impairments

and ADHD (Boada et al., 2012). In the supplementary mate-

rial (section S5), we also provide an overview of the results

of the same models without the covariates. Future studies

will be critical to corroborate the present results and

conclusions.

An additional factor warranting consideration is statisti-

cal regularity. A recent study by De Rosa et al. (2022) noted

that participants exhibited an oddball discrimination
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response not only to stimuli differing in category but also to

those differing merely in frequency of occurrence within the

study. To provide children with well-matched, highly

familiar words, our study also involved repeating stimuli.

Importantly, this repetition was consistent across all stim-

ulus categories (W, PW, CS, FF) and all conditions. Moreover,

the order of stimulus presentation was randomized, thus

controlling for differences in the frequency of repetitions

between oddball and base items in each condition and for

possible ensuing statistical regularity effects. Consequently,

potential statistical responses, if present, would blend into

low-frequency background noise, ensuring that our findings

remain uncompromised.

For future studies, a longitudinal developmental approach

would be of interest. van deWalle de Ghelcke et al. (2020a) did

a 1-year follow-up of beginning readers in 1st grade and found

an increase in the response strength to letter strings (W or PW)

embedded in FF. They also show topographical changes

characterized by a transition of peak amplitude from a pos-

terior occipito-medial electrode to a more lateral position (O1

to P7). Their result aligns with descriptions in literature of

more posterior VWFA activation in children (Lochy et al., 2016;

Olulade et al., 2015) and more lateral letter string responses in

adults (Lochy et al., 2015). Follow-ups across longer time

scales or cross-sectional studies across a broader age range

with multiple testing time points could capture shifts across

reading development and compare to studies using more

classical ERP paradigms and focusing on the N1 (Fraga-

Gonz�alez et al., 2021). Moreover, the effects of reading abili-

ties should be further surveyed within such a longitudinal

framework.
5. Conclusion

The present study assessed visual print processing in 2nd-

and 3rd-grade PR and TR. The analyses focused on discrimi-

natory responses to oddball stimulus processing over the

occipito-temporal cortex. Our contrasts represented dis-

criminations of oddballs along the levels of familiarity (W

vs PW vs CS embedded in FF) and orthographic sensitivity (FF

vs CS in W). Our results suggest that both TR and PR show

coarse visual sensitivity to print. However, the level of this

sensitivity response depended on children's reading skills

and was less pronounced in PR. Children also showed a basic

level of familiarity as reflected in the discrimination of

orthographically legal and illegal letter strings (W/PW vs CS

oddballs), but the more subtle lexicality distinction is still

lacking, possibly due to the developmental stage or the rapid

visual presentation design. Finally, the differences in the

oddball response levels between TR and PR for the conditions

and hemispheres may reflect differences in learning and

developmental progress between the groups or alternative

strategies in PR. The results extend our insights on automatic

visual print processing and the influence of reading skills

therein. By comparing oddball-base pairs of differing sensi-

tivity (coarse vs fine) and of incrementally increasing famil-

iarity (non-lexical and orthographically illegal, non-lexical

but legal, orthographically legal and lexical), it delivers more
resolved information about the development of sensitivity

versus familiarity in early readers.
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