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Abstract

The optimal operation of transportation networks is often susceptible to unexpected disrup-
tions, such as traffic incidents and social events. Many established control strategies rely on
mathematical models that struggle to cope with real-world uncertainties, leading to a signifi-
cant decline in effectiveness when faced with substantial disruptions. While previous research
works have dedicated efforts to improving the robustness or resilience of transportation systems
against disruptions, this paper applies the cutting-edge concept of antifragility to better design
a traffic control strategy for urban road networks. Antifragility sets itself apart from robustness
and resilience as it represents a system’s ability to not only withstand stressors, shocks, and
volatility but also thrive and enhance performance in the presence of such adversarial events.
Hence, modern transportation systems call for solutions that are antifragile. In this work, we
propose a model-free deep Reinforcement Learning (RL) scheme to control a two-region urban
traffic perimeter network. The system exploits the learning capability of RL under disruptions
to achieve antifragility. By monitoring the change rate and curvature of the traffic state with
the RL framework, the proposed algorithm anticipates imminent disruptions. An additional
term is also integrated into the RL algorithm as redundancy to improve the performance under
disruption scenarios. When compared to a state-of-the-art model predictive control approach
and a state-of-the-art RL algorithm, our proposed method demonstrates two antifragility-related
properties: (a) gradual performance improvement under disruptions of constant magnitude; and
(b) increasingly superior performance under growing disruptions.

Keywords: Antifragility, Reinforcement Learning (RL), Perimeter control, Traffic disruptions,
Macroscopic Fundamental Diagram (MFD)

1. Introduction

Transportation networks serve as vital channels for the movement of people and goods. The
optimization of transportation systems has become a focal point for researchers, resulting in a
multitude of research endeavors and practical implementations in the field of Intelligent Trans-
portation Systems (ITS), as in Figueiredo et al. (2001); Haque et al. (2013). Given that various
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sorts of unexpected events, such as traffic accidents, social events, unfavorable weather con-
ditions, etc., often occur unexpectedly in real-world networks, examining the robustness and
resilience of the transportation system is crucial in the research of ITS (Ganin et al., 2019).

With the ever-growing population in the cities and urbanization, traffic systems have gained
both volume and complexity. According to the Federal Statistical Office of Switzerland, private
motorized road traffic experienced a steady increase of 54% between 1980 and 2019 (Federal Sta-
tistical Office, 2020). The rise in traffic volume can lead to an escalation of intensified congestion
and more traffic incidents (Chang and Xiang, 2003). Therefore, urban road networks need to
secure a decent level of service even when confronted by various disruptions of unforeseen mag-
nitudes. This also raises the question of whether the current levels of robustness and resilience
in transportation systems are sufficient to handle such challenges.

To address such issues, antifragility has shed light on a feasible solution and provides a
possible new evaluation criterium. First introduced in the bestseller Antifragile: Things that
Gain from Disorder by Nassim Nicholas Taleb in 2012, it has then been mathematically explained
in Taleb (2013); Taleb and Douady (2013), providing insights on designing systems that can
benefit from disruptions and perform better under growing volatility and randomness. Since
then, antifragility has gained significant interest from both the public and academia, particularly
in the field of risk engineering (Aven, 2015). The potential of antifragility can also be leveraged
within transportation systems to tackle the increasingly severe traffic problems and non-linear
dynamics that modern cities face today.

However, how to design antifragile transportation systems remains unexplored. One promis-
ing approach to induce antifragility is by using learning-based algorithms. With the rapid ad-
vancement of big data and sensor techniques, using Machine Learning (ML), particularly Rein-
forcement Learning (RL)-based methods has also become a trending practice in designing traffic
management and control strategies (Zhu et al., 2019; Haydari and Yılmaz, 2022). Through in-
teracting with a given environment, an RL agent enhances its decision-making ability over time
(Sutton and Barto, 2018). One advantage of RL over established controllers is that it allows
for more flexibility and competence in dealing with multivariate nonlinearities in complex envi-
ronments (Li, 2018; Mysore et al., 2021). RL agents can gradually adjust their decision-making
when deployed to an environment subject to variations, whereas established controllers, such
as PID controllers, may need intensive manual tuning of parameters. Also, additional informa-
tion can be fed to the RL agent with ease as a representation of the environment, regardless of
knowledge of the model dynamics. In contrast, structured model dynamics of the system are
often required when designing a controller (Bemporad, 2006). This feature of RL can also be
exploited to explore hidden information from the vast amount of data collected through various
sensors. As a result, modern traffic control systems have the potential to acquire knowledge from
traffic disruptions, respond preemptively with merely early signs, and exhibit increasingly better
performance as disruptions escalate.

The main goal of this paper is to design an RL algorithm to empower traffic control strategies,
i.e., perimeter control in this study, to be antifragile against volatility and randomness, which
are instantiated through disruptions with various magnitudes and onsets. First, we distinguish
the concept of antifragility as opposed to other more commonly used terms in the field of trans-
portation, namely robustness and resilience. Then we introduce how antifragility can be induced
by integrating derivatives (i.e., change rate and curvature of traffic state) and redundancy into
the state space and reward function of an RL algorithm. We simulate perimeter control in a
cordon-shaped urban road network, subject to demand and model disruptions. Based on the
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simulation results, we propose a quantitative approach to evaluate and compare the antifragility
property among different methods.

The key contributions of this work can be summarized as follows: This work is the first
to embrace the concept of antifragility in the context of the daily operation of transportation
systems. This study demonstrates the effectiveness of incorporating derivatives and redundancy
to handle system disruptions. Also, the proposed antifragile model-free RL-based algorithm
achieves better performance compared to both a model-based control strategy that requires a
priori knowledge and another state-of-the-art model-free RL-based method.

2. Literature review

This section provides a review of the relevant literature with three topics covered in this work.
First, a macroscopic traffic model and the control strategy applied in this paper are introduced,
which serve as the basis of model dynamics for the simulation environment. Following that,
since antifragility itself is a novel research topic and the link between RL and antifragility is yet
absent, we present state-of-the-art research on leveraging RL algorithms to induce robustness
and resilience of traffic control strategies. And eventually, based on the literature, we introduce
antifragility conceptually and how an antifragile system can be designed.

Alleviating urban network congestion can be realized through various traffic control strategies.
Since Daganzo (2007) proved the existence of the Macroscopic Fundamental Diagram (MFD)
theoretically and Geroliminis and Daganzo (2008) demonstrated the presence of the MFD with
empirical data, the relationship between traffic flow and density has been established through the
aggregation of individual microscopic data points. This relationship has paved the way for the
development of control strategies on a macroscopic level, enabling more computationally feasible
real-time control strategies for large-scale networks (Knoop et al., 2012), such as perimeter control
(Keyvan-Ekbatani et al., 2012; Geroliminis et al., 2013; Kouvelas et al., 2017; Yang et al., 2017),
pricing (Zheng et al., 2012; Zheng and Geroliminis, 2016; Genser and Kouvelas, 2022) and route
guidance (Yildirimoglu et al., 2015; Fu et al., 2022).

Perimeter control is among the strategies that have attracted immense attention and research.
Real-world implementation as shown in Ambühl et al. (2018) also demonstrated its applicability
as an effective approach to regulating urban traffic. By refraining the incoming vehicles from
adjacent regions into a protected zone, the traffic density in the protected area remains below
the critical density, so a satisfactory level of service can be upheld (Keyvan-Ekbatani et al.,
2012). Geroliminis et al. (2013) proposed an optimal perimeter control method using Model
Predictive Control (MPC) and proved its effectiveness compared to a greedy controller in a
cordon-shaped network. One major issue with the previous works is the MFD heterogeneity.
To tackle this challenge, a substantial amount of effort has been made in investigating the
partitioning algorithms so that a well-defined MFD can be referred to for a certain sub-network
(Ambühl et al., 2019; Saedi et al., 2020). However, MFDs in the real world can hardly be well-
defined, as demonstrated in Ambühl et al. (2021) with loop detector data over a year. Wang
et al. (2015) and Ji et al. (2015) also showed that adverse weather conditions and traffic incidents
can alter the shape of the MFDs and even a recovery from the peak-hour congestion may lead
to a hysteresis (Gayah and Daganzo, 2011). These phenomena could potentially violate the
mathematical model that serves as the foundation for the established model-based perimeter
controllers.

To tackle the parameter uncertainties in the models caused by real-world disruptions, re-
cent years have also witnessed a growing trend towards utilizing non-parametric learning-based
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approaches in traffic control (Nguyen et al., 2018). Among different ML algorithms, RL has
been researched extensively in transportation operations, e.g., traffic light control (Wei et al.,
2019; Chen et al., 2020), dynamic pricing (Wang et al., 2022), delay management (Zhu et al.,
2021). Particularly for perimeter control, recent works from Ni and Cassidy (2019) and Zhou
and Gayah (2021) have illustrated the capability of RL algorithms to achieve similar or even
superior performance compared to the established control methods.

Before introducing antifragility, two associated terms robustness and resilience commonly
used in evaluating traffic control strategies and how they can be induced with RL are introduced.
As Tang et al. (2020) mentioned, these terms are sometimes used interchangeably in transporta-
tion research works. Therefore, we follow the principles proposed by Zhou et al. (2019), that
robustness is concerned with assessing a system’s capacity to preserve its initial state and re-
sist performance deterioration in the presence of uncertainty and disturbances, while resilience
stresses the ability and speed of a system to recover from major disruptions to the original state.
While researchers have endeavored to produce review articles in either the applications of RL
in transportation (Haydari and Yılmaz, 2022; Haghighat et al., 2020) or robustness/resilience
in transportation systems (Zhou et al., 2019; Tamvakis and Xenidis, 2012), a summarization
of using RL algorithms in transportation to achieve robust or resilient urban networks remains
absent. Here we briefly reviewed the existing studies that apply RL to regulate urban traffic that
have demonstrated the robustness or resilience of their proposed methods. By transferring the
knowledge of robust or resilient design, we can induce antifragility in our traffic control design
through similar approaches. Table 1 shows a selection of papers around perimeter control and
traffic signal control regulated with RL algorithms.

As can be seen, only two out of the ten papers are focused on the resilience of the RL-based
traffic control strategies and the studied scenarios are traffic demand uncertainties and MFD
errors (Zhou and Gayah, 2023) as well as lane closures (Korecki et al., 2023). When examining the
system’s robustness, the types of scenarios under consideration become more diverse, including
incidents (Aslani et al., 2018; Rodrigues and Azevedo, 2019), sensor failures (Wu et al., 2020).

Table 1 also summarizes the RL setups to demonstrate the property of being either robust
or resilient of each traffic control strategy. In these papers, some authors proved the superior ro-
bustness or resilience of their proposed methods directly through testing against the established
methods as benchmarks, whereas others induced such properties by adding specific terms (ital-
icized in Table 1) in the state space of the RL-algorithm. As a result, the algorithms are given
additional information, potentially empowering the algorithms to anticipate ongoing disruptions.
For instance, Rodrigues and Azevedo (2019) induced robustness by adding the elapsed time since
the last green signal for each phase, Tan et al. (2020) experimented with speed or pressure (resid-
ual queue) as an additional state representation in the state space of the RL algorithm, Chu et al.
(2020) supplemented the control policies of neighboring intersections as additional information
to the agents, and Zhou and Gayah (2023) used an extra binary congestion indicator in the state
space. The analysis of the state-of-the-art RL studies considers reversals or sudden changes in
the state-action-reward dynamics, which evokes unanticipated uncertainty. The problem in these
contexts is often to respond to unexpected results appropriately since they might indicate a shift
in the environment. In this case, exploration refers to the process of looking for new information
to improve the RL agent’s understanding of the traffic dynamics under disruptions, which would
then be used to identify better courses of action.

Ever since the concept of antifragility was proposed, it has become an increasingly popular
concept in many disciplines, such as economy (Manso et al., 2020), biology (Kim et al., 2020),
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medicine (Axenie et al., 2022), and robotics (Axenie and Saveriano, 2023). However, current
studies on antifragility in the field of engineering mostly pertain to post-disaster reconstruc-
tion efforts (Fang and Sansavini, 2017; Priyadarshini et al., 2022). Leveraging the potential of
antifragility for the daily operations and optimization of transportation systems is a new and
unexplored notion.

In Taleb (2012), in which the concept of antifragility was first introduced, two different
levels of antifragility have been indicated: proto-antifragility and antifragility. To differentiate
these two terms more clearly, we rename the latter as progressive antifragility. In contrast to
robustness or resilience, proto-antifragility describes systems that can improve performance from
experiencing disruptions, within a certain magnitude. A very illustrated example can be the
biological process of hormesis. In this sense, proto-antifragility resembles adaptiveness, research
works such as Fang and Sansavini (2017) are related to proto-antifragility of infrastructure under
hazardous events. The higher level of antifragility, i.e., the progressive antifragility, lays emphasis
on the concave response of the system regarding an increasing magnitude of disruptions. Its
antonym, fragility, refers to systems that suffer from exponentially growing loss when faced with
linearly increasing disruptions (Taleb and Douady, 2013), which is characterized by convexity and
can be mathematically formulated with Jensen’s inequality E[g(X)] ≥ g(E[X]). On the contrary,
the nonlinear relationship between external stressors and responses for antifragile systems is
concave with E[g(X)] ≤ g(E[X]). A system exhibiting proto-antifragility is not necessarily
progressive antifragile at the same time.

Researchers have also proposed methods to incentive antifragile property of a system by em-
phasizing the derivatives to capture the temporal evolution patterns of the system dynamics,
i.e., how fast the system state deviates towards a possible black swan event, and the curvature of
this deviation (Taleb and Douady, 2013; Taleb and West, 2023; Axenie et al., 2022). With this
additional information, the system can anticipate ongoing disruptions and be more responsive to
drastic changes. Similar to the function of redundancy in resilience (Tan et al., 2019; Kamalah-
madi et al., 2022), redundancy can also be added in the system to induce antifragility de Bruijn
et al. (2020); Johnson and Gheorghe (2013); Munoz et al. (2022). Other feasible approaches also
include time-scale separation and attractor dynamics (Axenie et al., 2022; Axenie, 2022).

3. Problem Formulation

This paper studies the problem of perimeter control between two homogeneous regions. A
cordon-shaped urban network is investigated as in Geroliminis et al. (2013); Zhou and Gayah
(2021), with the inner region representing a city center, as shown in Figure 1(a). Traffic demand
for an Origin-Destination (OD) pair from region i to region j at time t is denoted as qij(t). The
inner and outer regions have different MFDs due to the difference in capacity to accommodate
vehicles in the road networks within the city center and the surrounding region, defined as
Gi(ni(t)) as illustrated in Figure 1(b). Given the total number of vehicles with presence in region
i at time t, denoted as ni(t), the total trip completion rate for this region i, denoted as Mi(t),
can be determined using the corresponding MFD, which comprises both the intraregional trip
completion, i.e., Mii(t) and the interregional transfer flow, i.e., Mij(t) (i ̸= j) with i, j ∈ {1, 2}.
In order to protect both regions from being overflown by possible high traffic demand, the
percentage of the transfer flow allowed to go across the region perimeter at time t is regulated
by two perimeter controllers denoted as uij(t) (i ̸= j). A list of all notations used in this
paper, including the notations used in defining the RL algorithm and the antifragile terms, is
summarized in Table 2.
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(a) The cordon-shaped urban network (b) MFDs for the inner and outer regions.

Figure 1: The network structure and the related MFDs.

Eq. 1 describes the change rate of the intraregional vehicle accumulation of region i. It
is the sum of intraregional traffic demand in this region, denoted as qii(t), together with the
perimeter control regulated transfer flow from region j to region i, defined as uji(t) ·Mji(t), then
deducted by the trip completion within region i, denoted as Mii(t). Likewise, the change rate of
interregional traffic accumulation, as in Eq. 2 shows, is the difference between the interregional
traffic demand, denoted as qij(t), and the regulated transfer flow uij(t) ·Mij(t):

dnii(t)

dt
= qii(t) + uji(t) ·Mji(t)−Mii(t) (1)

dnij(t)

dt
= qij(t)− uij(t) ·Mij(t), (i ̸= j) (2)

The total trip completion, i.e., Mi(t) for region i at time t is calculated based on the trip
accumulation and the related MFD, defined as Gi(ni(t)), and is the sum of the intraregional trip
completion, i.e., Mii(t), in Eq. 3 and the interregional transfer flow, i.e., Mij(t) (i ̸= j), in Eq. 4:

Mii(t) =
nii(t)

ni(t)
·Gi(ni(t)) (3)

Mij(t) =
nij(t)

ni(t)
·Gi(ni(t)), (i ̸= j) (4)

ni(t) =
∑
j=1,2

nij(t) (5)

The objective function is to maximize the throughput of this cordon-shaped network, which
is the sum of the intraregional trip completion in both regions.

J = max
uij(t)

∫ tend

0

∑
i=1,2

Mii(t)dt (6)

subject to the following boundary conditions:
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Table 2: List of notations

Symbol Meaning

1. General notations in problem formulation

t Time

∆t Time step

tend Total simulation time

nij(t) Vehicle accumulation with OD from region i to j at time t

ni(t) Vehicle accumulation in region i at time t

uij(t) Perimeter control variables regulating flow from region i to j at time t

qij(t) Traffic demand with OD pair i and j at time t

Gi(ni(t)) Sum of trip completion and transfer flow in region i at time t

Mij(t) Trip completion with OD from region i to j (i ̸= j) at time t

ni,cap(t) Maximal number of vehicles (jam accumulation) in region i at time t

ni,crit(t) Vehicle accumulation with highest completion rate in region i at time t

J Objective function

2. Notations in reinforcement learning

S State space, the whole set of states the RL agent can transition to

st st ∈ S, the observable state in simulation at time t

A Action space, the whole set of actions the RL agent can act out

at at ∈ A, the action taken in simulation at time t

R The reward function for the RL agent

rt rt = R(st, at), the received reward with state st and action at at time t

γ Discount factor to favor rewards in the near future

Q(s(t), a(t)) Expected long-term return for taking action a(t) in state s(t) at time t

θµ Weight parameter of the deep neural network for the actor network

θQ Weight parameter of the deep neural network for the critic network

yi Expected long-term return calculated with the target critic network

L The loss of the critic network

ρβ All possible trajectories of st

I The objective function for the actor-network

3. Notations for the additional antifragile terms applied in reinforcement learning

ϵ(t) Additional reward term in RL based on derivatives and redundancy

ωh The weight of first derivative in the additional reward term ϵ(t)

ω∆h The weight of second derivative in the additional reward term ϵ(t)

αi(t) Binary variable determining the term to be reward/penalty

hi(t) The first derivative of traffic state at time t

∆hi(t) The second derivative of traffic state at time t
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nij(t) ≥ 0 (7)

ni(t) ≤ ni,cap (8)

umin ≤ uij(t) ≤ umax (9)

Intraregional and interregional vehicle accumulation, i.e., nii(t) and nij(t) are non-negative
values, and ni,cap is the maximal possible number of vehicles accumulated in the region i. At this
vehicle accumulation, a gridlock will occur in the network. umin and umax represent the lower and
upper limit for the perimeter control variable uij(t) for both directions and such applications are
in line with Geroliminis et al. (2013); Zhou and Gayah (2021). These bounds are due to the fact
that perimeter control is normally implemented through signalization. While umax accounts for
the lost time caused by the interchange between the red and green phases, umin is necessitated
since an indefinite long red light is rare in real-world cases.

In contrast to the control-based strategies, for the RL-based algorithms, following the idea
of redundancy, an additional term ϵ(t) is added into the objective function JRL, referred to as
reward rt ∈ R in the context of RL, leading to:

JRL = max
uij(t)

∫ tend

0

[
∑
i=1,2

Mii(t) + ϵ(t)]dt (10)

The term ϵ(t) aims to build up a proper redundancy so that the proposed RL algorithm
does not reward the agent for targeting the exact critical accumulation point. A comprehensive
explanation of the term ϵ(t) for the reward in RL will be provided in the following Section 4.3.

4. Methodology

This section gives a brief explanation of how MPC and RL are applied in this paper, and how
we design an antifragility perimeter control strategy based on the derivatives and redundancy in
detail.

4.1. MPC with average history disruption

MPC is an established control method with wide applications in engineering to regulate
dynamic systems (Qin and Badgwell, 2003), and is used as one of the benchmark methods in
this work. First applied in Geroliminis et al. (2013), MPC has been proven to be an effective and
robust method to regulate perimeter control in comparison to a greedy controller. For details
of the implementation of MPC in general practice or under the context of perimeter control,
we refer the readers to Darby and Nikolaou (2012) and Geroliminis et al. (2013). The applied
MPC toolkit in this paper is introduced in Lucia et al. (2017), which uses the CasADi framework
(Andersson et al., 2019) and the NLP solver IPOPT (Wächter and Biegler, 2006).

The drawback associated with MPC lies in its presumption of ample a priori knowledge,
which includes traffic demand at each time step. However, such data is rarely accessible in
practical real-world scenarios. Although traffic forecasting Vlahogianni et al. (2014) may serve
as a substitute for traffic demand, the prediction accuracy is not always guaranteed with all sorts
of disruptions in the real world. To make the MPC less sensitive to disruptions, in our study,
the benchmark MPC algorithm averages all the historical profiles, including both normal and
disruption profiles, and uses this aggregated profile as part of the simulation environment.
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4.2. RL algorithm

In RL algorithms, an agent or multiple agents interact with a preset environment and improve
the performance of decision-making, defined as action at in an action space A, based on the
observable state st in the state space S and the reward, defined as rt = R(st, at), where R is
the reward function. The improvement of decision-making is commonly realized through a deep
neural network as a function approximator. The RL algorithm applied in this work is Deep
Deterministic Policy Gradient (DDPG) as proposed in Lillicrap et al. (2015). By applying an
actor-critic scheme, DDPG can manage a continuous action space instead of only choosing from
a limited set of discrete values as in the Deep Q-Network (DQN) algorithm (Mnih et al., 2013),
which are commonly applied as Table 1 shows. Also, Zhou and Gayah (2021) has demonstrated
that an RL algorithm with continuous action space can achieve better performance compared to
discrete action space. The DDPG algorithm can be divided into two main components, namely
the actor and the critic, which are updated at each step through policy gradient and Q-value,
respectively. The scheme of the DDPG algorithm applied in this paper is schematically illustrated
in Figure 2.

The state st ∈ S is defined distinctively according to different methods applied in this work.
Our proposed method consists of three terms, the vehicle accumulation regarding the OD pair
nij(t), the change rate of vehicle accumulation at each time step dnij(t) (first derivative) as well
as the second derivative d2nij,t. In Zhou and Gayah (2021), a state st defined as [nij(t), qij(t)] is
adopted. However, since traffic demand in the real world is hardly measurable, qij(t) would be an
unobservable state for the agent. The action at ∈ A is defined the same as the control variables
uij(t). For the reward rt, while Zhou and Gayah (2021) uses merely the completion rate, in our
proposed method, the reward is defined with an additional ϵ(t) term, as Eq. 10 shows.

The actor-network is represented by µ(·) and it determines the best action at, which is the
percentage of vehicles that are allowed to travel across the periphery, based on the current state
st and the weight parameters at a certain time step t:

The nature of the best action at was also explored in the previous work of Axenie (2022),
where in the framework of variable structure control, the authors demonstrate the need for a
discontinuous signal. The critic network, denoted by Q(·), takes the responsibility to evaluate
whether a specific state-action pair at a certain time step yields the maximal possible discounted
future reward Q(st, at). A common technique used in DDPG is to create a target actor network
µ′(·) and a target critic networkQ′(·), which are a copy of the original actor and critic network but
updated posteriorly to stabilize the training process and prevent overfitting (Zhang et al., 2021).
The target maximal discounted future reward for the target critic network can be calculated as
in Eq. 11.

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) (11)

Similar to DQN, the critic network can be updated by calculating the temporal difference
between the predicted reward and the target reward and minimizing the loss for a mini-batch N
sampled from the replay buffer:

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (12)

Afterward, the actor network can be updated with sampled deterministic policy gradient
(Silver et al., 2014):
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Figure 2: DDPG scheme

I = Est∼ρβ [r(s, µ(s|θµ))|s=st ] (13)

∇θµI = Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ] (14)

∇θµI ≈ 1

N

∑
t

∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|st (15)

When training the agent, we add disruptions into the simulation environment starting from a
certain training episode, in the form of surging traffic demand or MFD disruption. These various
forms of volatility ought to optimally elicit various learning and decision-making processes. The
RL agent would include the results of their prior choices to create and update their weight
parameters in a situation with high outcome volatility, and being capable of generating and
updating expectations after sensing a change in a high-volatility environment.

4.3. Antifragility and the antifragile terms in RL

In our work, following the same idea of modifying the state space S as in the research works in
Tabel 1, we add additional terms based on derivatives (Taleb and Douady, 2013) and redundancy
(de Bruijn et al., 2020), in both the state space S and the reward function R of the RL algorithm.

For the state space S, we replace qij using the first and second derivatives of the vehicle
accumulation dnij(t) and d2nij(t). With this additional information, the RL agent is aware of a
possible demand surge of MFD disruption and d2nij(t) can reflect the curvature of such changes.
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For the reward function R, the trip completion at each time step acts as the main component
of our proposed method. The term ϵ(t) in the objective function JRL in Equation (10) acts
as an additional term to build up redundancy in the system. Similar to the creation of the
additional term in the state space, we create redundancy also through the calculation of the
derivates, but instead of the derivatives of the vehicle accumulation, we calculate the derivatives
of the traffic state. This creates a one-to-one correspondence between the derivatives of the
vehicle accumulation and the derivatives of the traffic state. To explain this antifragile term
in the reward, we summarize ϵ(t) as the sum of two terms, with H(t) being an overall term
representing the first derivative of the traffic state and ∆H(t) representing the second derivative:

ϵ(t) = H(t) + ∆H(t) (16)

Here, H(t) and ∆H(t) can be expanded as:

H(t) =
∑
i=1,2

Hi(t) = ωh

∑
i=1,2

f(ni(t), ni,crit, ni,cap) · αi(t) · hi(t) (17)

∆H(t) =
∑
i=1,2

∆Hi(t) = ω∆h

∑
i=1,2

f(ni(t), ni,crit, ni,cap) ·∆hi(t) (18)

hi(t) and ∆hi(t) are the first and second numerical derivatives of the traffic states on the
MFD, hi(t) is defined as the difference of trip completion over vehicle accumulation at the end
of a time step versus at the beginning of the same time step, as in Eq. 19 shows, and the second
derivative ∆hi(t) is calculated as the difference between the first derivatives of two consecutive
time steps, as in Eq. 20 shows:

hi(t) =
Mi(t) − Mi(t− 1)

ni(t) − ni(t− 1)
(19)

∆hi (t) = hi (t)− hi (t− 1) (20)

Since in the RL algorithms implemented in this paper, all variables involved in the deep
neural network should be normalized to facilitate the training process, meaning the exact values
of the derivatives are not of importance, ωh and ω∆h are introduced as the weight constants for
the first and second derivatives to regulate their impact on the reward side R.

The binary variable αi(t) was designed in the first derivative to reward the agent when moving
towards the desired direction on the MFD. For instance, the derivative of any data point in the
congested zone of the MFD is negative. In this case, when the vehicle accumulation is still
getting larger, a penalty will be applied. However, if the vehicle accumulation is decreasing
through perimeter control, this binary αi(t) variable will turn it into a reward. For the second
derivative, an additional binary variable is not necessary since the two consecutive first derivatives
are able to determine whether ∆hi(t) is either positive or negative.

αi(t) =

{
1, if ni(t) ≥ ni(t− 1),

−1, otherwise.
(21)

The term f(ni(t), ni,crit, ni,cap) is a reduction factor to constrain the impact of the ϵ(t) term
when the accumulation is either on a very lower level (empty network) or on a very higher
level (gridlock). The area near the critical accumulation is where the ϵ(t) term should have the
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greatest impact. Here we use a modified trigonometric function to realize this purpose. It should
be noted that other functions, such as normal distribution, are also valid for achieving the same
purpose.

f(ni(t), ni,crit, ni,cap) =



1 + cos
(
− π ·

ni,crit − ni(t)

ni,crit

)
2

, if ni(t) ≥ ni,crit,

1 + cos
(
− π ·

ni(t)− ni,crit

ni,cap − ni,crit

)
2

, otherwise.

(22)

After considering all the modifiers above, we show H(t) and ∆H(t) using a single MFD as
an example in Figure 3 and 4. The first derivative H(t), in Figure 3(a), rewards the agent
more when it’s moving towards the critical accumulation to maximize its trip completion rate.
However, when the number of vehicles approaches the critical accumulation, this term drops
significantly and becomes a penalty when it exceeds the critical point. Since the first derivative
H(t) is a complementary term in addition to the trip completion in the reward function, we
showcase the influence of this term on the MFD after normalization in Figure 3. With increasing
weight coefficient ωh, the critical accumulation of the modified MFD becomes marginally smaller
compared to the original MFD, and the reward that the RL agent can receive also decreases faster
after the accumulation exceeds the critical accumulation. Although the trip completion still
follows the original MFD in the simulation environment, The agent learns to get more rewards
following the modified MFD. In this way, redundant overcompensation has been established
to prevent accumulation from exceeding the critical accumulation when disruption takes place
unexpectedly.

An interesting note is that estimation uncertainty, also known as second-order uncertainty,
is another factor that affects disruptions that take place unexpectedly. This is in fact the im-
precision of the learner’s current beliefs about the environment, and what the antifragile terms
capture. This amount reduces with sampling if beliefs are acquired by learning as opposed to
instruction (e.g. anticipation through redundant overcompensation). When estimating uncer-
tainty is substantial, unlikely samples could partly be attributed to the agent’s false assumptions
about the environment’s structure rather than a change in that structure (e.g. around critical
accumulation).

The second derivative ∆H(t) is shown in Figure 4. The x-axis is the vehicle accumulation,
same as in Figure 3(a), while the y-axis represents how fast the traffic state is changing on the
MFD. The faster it increases to reach the critical accumulation, the greater the penalty will be
applied to the RL agent. This observation is consistent with the redundant overcompensation and
time-scale separation principles formalized in Taleb and Douady (2013) and practically applied
in Axenie (2022) and Axenie and Saveriano (2023). On the contrary, if the vehicle accumulation
decelerates, a reward will be applied. Similar to H(t), this complementary term ∆H(t) is also
dependent on the normalization factor ω∆h.

With H(t) and ∆H(t), the agent learns to be conservative when regulating the perimeter
control variables when the accumulation is about to reach critical, in case disruptions take
place. Therefore, as can be concluded, although H(t) and ∆H(t) apply the same concept of
the derivative as the dnij(t) and d2nij in the state space S, the purpose of H(t) and ∆H(t) is
preserving redundancy in the system instead of feeding additional information to the agent. This
behavior is consistent with the locally discontinuous shape of the action signals uij(t) applied to

13



(a) H for the first derivative hi(t). (b) ∆H for the second derivative ∆hi(t).

Figure 3: Illustration of the term H(t) and its effect on the MFD

Figure 4: Illustration of the term ∆H(t)

the cordon network, as suggested by the control theoretic study of Axenie (2022).

5. Experiment application

This section introduces the environment setup of the simulation and the evaluation procedure.
We investigate a total number of three perimeter control strategies in addition to a no-control
scenario, based on 2 different scenarios, i.e., under constant or incremental disruptions for testing
proto-antifragility and progressive antifragility respectively:

• No control
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• MPC modified from (Geroliminis et al., 2013), averaging all history profiles including dis-
ruption as a new demand or MFD profile.

• State-of-the-art RL-based method proposed by (Zhou and Gayah, 2021) as baseline:
State st: vehicle accumulation and traffic demand [nij(t), qij(t)]
Reward rt: trip completion in both regions [

∑
i=1,2Mii(t)]

• The proposed RL-based antifragile method:
State st: vehicle accumulation and its derivatives [nij(t), dnij(t), d

2nij(t)]
Reward rt: trip completion and the ϵ(t) redundancy term [

∑
i=1,2Mii(t) + ϵ(t)]

5.1. Simulation environment parametrization

As introduced in Section 3, we simulate a cordon-shaped urban network with inner and outer
regions with different MFDs. Some minor modifications have been adapted in the congested zone
of the MFD to ensure the derivative of the MFD is continuous. The MFD of the outer region is
largely in line with the observations in Yokohama (Geroliminis and Daganzo, 2008). Other critical
indicators, e.g., critical accumulation and maximal trip completion, remain unchanged. The non-
identical MFDs reflect the fact that the area of the periphery is much larger than the city center,
and thus the maximal accumulation would be significantly higher. The traffic demand under no
disruption is approximated based on Geroliminis and Daganzo (2008). Instead of a trapezoidal
demand profile, the chosen profile is in the shape of a normal distribution in accordance with
Mazloumi et al. (2010) to describe the peak hour traffic flow. The total simulation duration
tend is 2 hours with each time step ∆t as 60 seconds, and the second hour has significantly
fewer vehicles so that the network would be able to clear the vehicles accumulated in the first
hour. Other notable constraints and initializations include the lower and upper bounds for the
perimeter control variable uij ∈ [0.1, 0.9] (Geroliminis et al., 2013) and an initial accumulation
in the network nij,0 = [600, 1300, 300, 2400].

We simulate two different disruption scenarios in our work, namely surging traffic demand
and MFD disruption due to adversarial events. Also, as introduced in Section 2, antifragility can
be defined in two different levels, i.e., proto-antifragility and progressive antifragility. Therefore,
we consider two different disruption profiles regarding each level of antifragility, as shown in
Figure 5.

First, to validate proto-antifragility under surging demand, after the agent has been trained
for the first 50 episodes with a base demand profile, as shown in Figure 6(a), we introduce a
new demand profile with disruption, which characterizes a surging demand within a short period
from the outer region into the inner region, as shown in Figure 6(b). The new environment
lasts for another 50 episodes with a constant magnitude of 2,500 vehicles following normal dis-
tribution. On the other side, to test progressive antifragility, instead of a constant magnitude
of disruption, an incremental disruption is applied for another 50 episodes following the training
with 50 episodes of the based demand profile. The magnitude of disruption grows linearly from
0 to 5,000 vehicles, which is twice the number of vehicles in the constant disruption. Both the
RL-based methods are trained 15 times and the average is calculated as their learning curves.

Some adversarial events will exert a negative effect on the MFD, leading to a worse roadside
performance. However, since these events may take place in different forms, weather, accidents,
blockage, etc., little research effort has been made to unveil the exact correlation between each
type of event and the change of the MFD. Hence, we simulate three possible MFD disruption pro-
files and assume these profiles can account for the majority of the possible negative consequences.
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Figure 5: Illustration of simulation scenarios

(a) Base demand profile (b) Demand profile under disruption

Figure 6: Demand profile with or without surging demand

The first profile is a decrease of the free flow speed without critical and maximal accumulation
dropping, as shown in Figure 7(a) representing the MFD of the inner region. This can be caused
by unfavorable weather, such as slippery and icy roads or low visibility. The second profile,
Figure 7(b), is a decrease of critical density without a reduction of the free flow speed. For
example, road maintenance work on an arterial road can significantly reduce the serviceability
of this region. The last profile is based on Ambühl et al. (2020), in which a parameter λ is de-
fined as the infrastructure potential to quantify the decrease of flow values due to infrastructure,
between-vehicle interactions, etc. Networks in the real world can have a λ around 0.03 − 0.07
and a greater λ indicates the infrastructure is less efficiently utilized. Since this method is based
on the method of cuts (Daganzo and Geroliminis, 2008) instead of a polynomial function, the
shape of the MFD for this profile is marginally different from the other two MFDs.

For the first two profiles, while proto-antifragility is validated with a 12.5% drop of the
maximal flow, progressive antifragility is tested against an increasing value of drop from 0% to
25%. For the third MFD profile, a constant λ of 0.095 is applied to test the proto-antifragility,
and the λ increases from 0.07 to 0.12 to represent the growing magnitude of disruption as the
simulation environment for exhibiting progressive antifragility. Interestingly, these three profiles
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also represent three different patterns of how the critical accumulation evolves with the drop of
flow values, i.e., constant, decreasing, and increasing critical vehicle accumulation.

(a) Decrease of free flow speed (b) Decrease of maximal traffic flow

(c) Decrease of infrastructure potential

Figure 7: MFD change due to adversarial events

5.2. Performance evaluation

Although the reward defined in the RL algorithm is based on trip completion, to better
showcase antifragility, the main performance indicator being evaluated here is the Total Time
Spent (TTS), which is calculated by adding up the number of vehicles within the network at
each second of the simulation. The main reason for choosing TTS over completion is that
completion is lower bounded with increasing magnitude of disruption by the number of vehicles
that finished their trips before the disruption, meaning we may observe a concave trip completion
with increasing disruptions at first but then it becomes approximately constant. This makes the
manifestation of antifragility difficult since the performance curve could be partially concave
and partially convex. However, by using TTS as the performance indicator, we circumvent this
problem since TTS still grows linearly with increasing disruptions even under extreme cases
instead of being lower-bounded. Therefore, the full convexity or concavity of the performance
curve can be maintained and we can roughly approximate the simulation results with a second-
degree polynomial.
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As urban road networks are always subject to capacity constraints, fully antifragile traffic
control strategies may be impossible to design. Therefore, we normalize all the other perimeter
control strategies over the RL baseline method to study the relative antifragility. To quantify the
progressive antifragility of different methods, we calculate the skewness of the TTS distribution.
A negative value of skewness indicates the distribution has a longer or fatter left tail and thus a
higher degree of concavity in the function.

6. Results

This section presents the simulation results of the four methods, i.e., no-control, MPC, base-
line RL-based method, and our proposed antifragile RL-based method under the two scenarios
to show the property of proto-antifragility and progressive antifragility, respectively.

6.1. Proto-antifragility

Systems with the property of proto-antifragility can learn from past adverse events and an-
ticipate possible ongoing disruptions of similar magnitudes to enhance future performance. To
validate this property, we apply disruptions with constant magnitude after training the agent
with the base demand profile for a certain number of episodes.

6.1.1. Surging traffic demand

Unlike the no-control and MPC approaches, RL-based methods are subject to performance
variations over simulation episodes. Therefore, in Figure 8, besides the performance curves of
the no-control and MPC approaches, we also show the learning curves of the baseline RL method
and our proposed antifragile RL method. The curves are averaged from 15 simulations, while
the shadowed area indicates the standard deviation of the simulation results. After conducting
50 episodes of training together with testing under disruptions, the performance of different
algorithms under no disruptions is then again validated. Hence, an addition of 2 testing phases
was implemented under and under no disruption, using the weight parameters of the neural
networks obtained from the last training episode.

It can be noticed that two significant phenomena occurred during the initial 50 episodes with
the base demand. First, the proposed antifragile method can achieve better performance with less
TTS when there is no disruption in the network. While the baseline method has almost converged
after 50 episodes, the proposed antifragile method seems to be capable of further improving the
performance with more training episodes. The reason for not continuing the training process
until the convergence of both methods is to avoid overtraining the non-disruption-related weight
parameters as well as the underfitting of the disruption-related parameters. In addition, the
shadowed area of our proposed method represents a less significant performance variation of
about 6.0% less compared to the baseline method, based on the averaged performance between
episodes 30 and 50. This indicates that the proposed antifragile method exhibits comparably
higher training stability.

After disruption with constant magnitude is introduced into the network. The performance
of the two RL-based methods has first changed drastically. Then, while the proposed method
has an obvious tendency to reduce TTS over the following 50 episodes, the baseline method
shows little sign of improving performance. Also, the training stability of the proposed method
becomes increasingly stable over episodes as the width of the shadowed area gets smaller.

While the results of testing under disruption follow the same pattern as the last episode of the
training process, however, when the simulation environment reverts to the previous no-disruption

18



Figure 8: Performance curves under constant disruptions

condition, the performance of different methods behaves differently. Since our modified MPC
averages demand history, after experiencing episodes with disruptions, performance deterioration
of 1.3% can be observed when there is no disruption. A similar pattern can be observed for the
baseline RL method. Not only is the TTS 1.5% higher in this testing episode compared to the
training episode 50, but the performance variation is also significantly larger. On the contrary,
our proposed antifragile RL method can both maintain excellent performance and achieve smaller
variation.

We normalize all the other methods over the result of the baseline RL-based method averaged
from the 15 simulations, as shown in Figure 9. The performance improvement of both MPC and
the proposed antifragile methods can be observed. Since we average all the past experiences of the
demand profile, including disruptions for MPC, it is capable of performing better under the same
disrupted scenario, and even marginally better than the proposed antifragile method. Therefore,
MPC can, to some extent, demonstrate the property of proto-antifragility. While maintaining
roughly similar performance compared to the baseline method at the beginning of the scenario
switch, and thus better performance than MPC, the proposed method gains capability in dealing
with disruptions when experiencing more and more disruptions of the same magnitude, and
reaches a reduction of 4.9% of TTS in the final episode compared to the baseline RL method.
This also demonstrates the property of proto-antifragility.

6.1.2. MFD disruption

Here we showcase the performance of different methods under the influence of three MFD
disruption scenarios, as illustrated in Figure 5, namely decrease of free flow speed, decrease of
max accumulation, and decrease of infrastructure potential, and these three scenarios correspond
to the MFD profiles in Figure 7. After 50 episodes of training without disruption, we introduce
a constant magnitude of disruption into the simulation environment, in the form of an MFD
capacity drop, for another 50 episodes. Figure 10 shows the simulation results of the three MFD
disruptions. The comparison between these three MFD disruption settings first shows that, for
the baseline RL method, the difficulty in adjusting to new MFD profiles is different. While Figure
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Figure 9: Performance difference normalized over the baseline method under constant disruptions

10(b) with decreasing maximal traffic flow demonstrates that the baseline RL method gradually
adapts to the new profile, Figure 10(c) shows little sign of the baseline method learning from dis-
ruptions. Figure 10(a) exhibits the adaptation to a certain degree between the other disruption
profiles. It is speculated that since the shape of MFD remains unchanged in Figure 10(b), this
creates a less deviated scenario for the RL agent to learn, whereas the change of the MFD profile
is the greatest in Figure 10(c) as the critical accumulation also increases during such disruptions.
That being said, the learning curves from the proposed antifragile method demonstrate notice-
able performance improvement in all three MFD disruption scenarios, indicating its property of
proto-antifragility. Also, the standard deviation indicated by the shadowed area of the proposed
antifragile method is also significantly smaller compared to the baseline method in Figure 10(a)
and 10(c).

6.2. Progressive antifragility

Progressive antifragility describes a system that exhibits a nonlinear response to a linearly
increasing magnitude of volatility. In terms of TTS, since an increase in the traffic density or
vehicle accumulation within the network will result in a decrease in the vehicle speed or trip
completion rate, and inevitably increase the TTS, a concave response between TTS and vehicle
accumulation can indicate a progressive antifragile system.

6.2.1. Surging traffic demand

The four studied methods are tested in an environment with linearly increasing traffic demand
for 50 episodes after being trained with the same base demand as in the previous scenario for
50 episodes. Furthermore, another testing phase of 20 episodes is carried out following the same
demand increment and the demand magnitude of the last training episode. Figure 11 shows the
TTS of different methods under incremental disruptions in both training and testing phases. It
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(a) Decrease of free flow speed (b) Decrease of maximal traffic flow

(c) Decrease of infrastructure potential

Figure 10: MFD change due to adversarial events

should be noted that Figure 11(a) and Figure 11(b) do not share the same y-axis and the result
of the no-control approach is not presented in 11(b) due to its exceedingly high value.

Under this scenario, the TTS of the no-control approach grows sharply, doubling the difference
between the last and the first episode under the incremental disruption of the other methods. The
performance deviation of the proposed method is relatively low compared to the baseline method
under the disruptions scenario. However, the performance deviation of both methods grows with
the increase in the magnitude of disruption. The deviation of the baseline method is significantly
larger compared to the proposed antifragile method in the last simulation episodes. Although
the performance of MPC under the constant disruptions scenario is marginally better than the
proposed antifragile method, the performance falls behind the other 2 RL-based methods, as the
magnitude of the disruption remains low and grows linearly after the first 50 episodes. Therefore,
when averaging the past demand experiences with increasing disruptions, MPC cannot gain
sufficient knowledge of the upcoming magnitude of the disruptions. In the testing phase, it can
be observed that the performance deviation of the baseline RL method is significantly larger
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(a) Training for 50 episodes (b) Testing for 20 episodes

Figure 11: Performance curves under incremental disruptions

compared to the proposed antifragile RL method. Since in the testing phase, the agents’ weight
parameters are no longer subject to updates as typically observed during the training phase in
RL, the performance curves of both RL-based methods appear to be linear.

Since the performance differences between the baseline Zhou and Gayah (2021) and the other
methods are hard to observe in this figure, we need to normalize the performance of all the other
methods over the baseline methods. Before the normalization process, to better showcase the
nonlinear response and compare the concavity or convexity of different methods, the performance
deviation in the learning curves of the RL-based methods needs to be minimized. As part of the
process, we utilize second-degree polynomials to approximate the performance curves of different
methods. After obtaining the polynomial coefficients through fitting, we reconstruct the data
points accordingly, with which the normalization process can be implemented, and the results
are shown in Figure 12.

One advantage of using a polar coordinate system instead of Cartesian coordinates is its ability
to accentuate performance differences, particularly when there is a high level of disruption. While
both the no-control approach and MPC exhibit a positive increase in performance compared to
the baseline method, the proposed antifragile approach stands out as the only one maintaining
a negative difference, with its absolute value becoming even larger once the disruption exceeds
approximately 4,000 vehicles. It is important to note that the curvature of the plot in polar
coordinates does not necessarily imply that the data points for a specific method follow a concave
or convex distribution due to the inherent characteristics of polar coordinates. However, it is
evident that the curve representing the proposed method initially approaches the baseline curve,
demonstrating, for instance, a performance difference of -0.5% when the disruption shows roughly
3200 additional vehicles. Subsequently, it diverges and reaches -0.5% again with around 5000
vehicles. This behavior indicates that the proposed method exhibits relative concavity when
compared to the baseline method, highlighting its progressive antifragility.

Furthermore, for a quantitative comparison of progressive antifragility across various methods,
we compute the skewness of each distribution and present the results in Table 3. All three
methods exhibit negative skewness values, implying a form of relative progressive antifragility
compared to the baseline method. Among them, the no-control approach displays the least
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Figure 12: Performance difference normalized over the baseline method under incremental disruptions

degree of relative antifragility, while our proposed antifragile method has demonstrated the most
substantial antifragility property, as evidenced by the highest absolute skewness value in its
distribution.

Table 3: Normalized skewness over baseline method under incremental traffic demand

Methods Skewness

No control -0.326
MPC -0.753
Antifragile RL-based method -1.106

6.2.2. MFD disruption

Figure 13 shows the learning curves of the four methods and the performance difference
normalized over the baseline method under different MFD disruptions. In general, the perfor-
mance quantified by TTS shows that our proposed method has a superior performance. More
significantly, the skewness of the performance difference curves under all three types of MFD
disruptions, as in Table 4 summarized, are negative, showcasing the property of our proposed
method being progressively antifragile. In the scenario with the decrease of the critical accumu-
lation, the skewness has reached a value of −0.991, demonstrating the most relative antifragile
property of our proposed method compared to the baseline method.

7. Conclusion

This research work introduces the concept of antifragility by comparing it with two other
terms robustness and resilience, which are commonly used in transportation and traffic control
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(a) Under decreasing free flow speed (b) Performance difference

(c) Under decreasing critical flow (d) Performance difference

(e) Under infrastructure potential loss (f) Performance difference

Figure 13: Performance curves under incremental disruptions
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Table 4: Normalized skewness over baseline method under growing MFD disruptions

MFD disruption Skewness

Decrease of the free flow speed -0.795
Decrease of the critical accumulation -0.991
Decrease of the infrastructure capacity -0.392

strategies. Through a literature review on using RL algorithms in traffic control to realize a
robust or resilient design, whether and how such properties can be induced in RL is investigated.
Following the same idea, we manage to induce antifragility in perimeter control by modifying the
state space and reward function based on a state-of-the-art RL-based perimeter control method.
We incorporate the change rate and curvature of the traffic states in the state space to leverage the
potential of such derivatives to feed more information to the RL algorithm. Also, a redundant
overcompensation term in the reward function has been carefully composed to empower the
system to be more antifragile to disruptions.

We conducted a comprehensive comparison between our proposed antifragile RL-based perime-
ter control approach and three other methods: no-control, MPC, and the state-of-the-art RL-
based method as a baseline. This comparison was carried out on two different levels, disruptions
with constant and incremental magnitude, for validating proto-antifragility and progressive an-
tifragility, respectively. Proto-antifragility describes a system that learns from past experience
and increases performance while progressive antifragility depicts a nonlinear response to linearly
growing disruption. We investigated two different types of disruptions, namely surging traffic
demand and MFD disruptions. The results from the study clearly demonstrated the effectiveness
and antifragility of our proposed method, for both proto-antifragility and progressive antifragility.
Furthermore, we put forward a novel method for quantification by comparing the skewness of the
distribution. Our proposed antifragile method exhibits the greatest negative skewness among the
methods examined, indicating its relative progressive antifragility property against disruptions.

In conclusion, this study is the first of its kind to pioneer the application of the antifragility
concept in enhancing the daily operation of engineering systems to improve performance during
unforeseen disruptions using a learning-based algorithm. It introduces a new possibility for
evaluating system operation under disruptive conditions. Moreover, the concept can be extended
not only to other traffic control strategies like traffic signal control and pricing but also to various
engineering disciplines and industries, broadening its potential impact.

8. CRediT authorship contribution statement

Linghang Sun: Conceptualization, Investigation, Methodology, Visualization, Writing – orig-
inal draft. Michail A. Makridis: Conceptualization, Methodology, Supervision, Writing - review
& editing. Alexander Genser: Methodology, Visualization, Writing - review & editing. Cris-
tian Axenie: Project administration, Resources, Writing - review & editing. Margherita Grossi:
Project administration, Resources, Writing - review & editing. Anastasios Kouvelas: Supervi-
sion, Writing - review & editing.

25



9. Declaration of Competing Interest

This research was kindly funded by the Huawei Munich Research Center under the frame-
work of the Antigones project, with one of our co-authors being employed at the said company.
Otherwise, the authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
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