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A B S T R A C T

Magnesium (Mg) has immense potential to replace aluminum and steel in
certain lightweight structural applications in numerous industries. However,
the material suffers from significant drawbacks, notably a low ductility at
ambient temperatures and poor thermal hardening. The main goal of this
thesis is to understand and model thermal effects on the microstructure of
the material and the corresponding response of Mg in an efficient manner
in a push toward an integrated, computational framework in a bid to
accelerate the material design process for Mg. We further divide this broad
goal into two aspects; first, to investigate the material’s plastic behavior at
elevated temperatures and find potential solutions to existing drawbacks,
and second, to accelerate the process of designing novel Mg-based materials
with enhanced properties by numerical means, within the framework of an
integrated computational material-by-design approach.

Improving the understanding of Mg’s microstructure development at
elevated temperatures is imperative to alleviate the material’s key draw-
backs. We develop a novel, efficient crystal plasticity model seamlessly
integrating the behavior on the temperature range from 25-250

◦C. Modeling
Mg across this range is challenging and must account for the experimen-
tally reported competition between compressive twins and pyramidal slip
and the thermally introduced changes to the microstructure. Only a few
temperature-aware models for pure Mg and Mg alloys currently exist and
most either disregard compressive twins entirely or suffer from efficiency or
calibration issues. Additionally, experimental evidence on the activity of the
deformation modes has remained inconclusive. The presented model is thus
meticulously calibrated with single-crystal experimental data to predict
single- and polycrystal stress–strain responses accurately. By comparing two
implementations of the model – with and without the compressive twins –
we showcase their impact on the microstructure and texture evolution. Re-
sults highlight a transition in deformation modes from compressive twins at
low temperatures to pyramidal II slip at elevated temperatures, confirming
that the temperature dependence of pure Mg is primarily governed by
non-basal slip.

The second part of the thesis is concerned with addressing the com-
putational bottleneck of existing high-fidelity material models. We thus
develop a neural network-based surrogate for the temperature-dependent
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material model to reduce the overall computation time of simulations. The
surrogate seamlessly maps the deformation and temperature history un-
dergone by the material to its stress response, thus providing relief from
explicitly computing plastic updates. This direct approach to mapping the
temperature-dependent constitutive response of a highly anisotropic mate-
rial poses a formidable challenge to data-driven methods in general and
cannot be fulfilled in a satisfactory manner by existing recurrent network
architectures. We, therefore, apply a novel architecture, based on recurrent
neural operators, and learn the constitutive response of the material with
great accuracy. The presented architecture outperforms state-of-the-art re-
current network architectures in terms of accuracy and training time and
provides a self-consistent formulation that provides a time-step indepen-
dent implementation of the surrogate model. The recurrent neural operator
further shows the capability to generalize its predictions for varying tem-
perature and strain paths with short stints of transfer learning. In addition,
it was possible to identify a minimal number of state variables for the
recurrent neural operator of the same order of magnitude as the underly-
ing model, indicating the physical interpretability of the neural network’s
state space. Ultimately, the surrogate model was applied at the mesoscale
for multiscale simulations of Mg with commercial FE software, leading to
unprecedentedly quick computations of truly multiscale simulations.

Finally, as an outlook on ongoing and future work, we present an ap-
proach following the material-by-design paradigm to improve Mg’s strength
via thermomechanical hardening. Experimental work on binary Mg-Aluminium
alloys suggests that this type of processing leads to the formation of nano-
precipitates in a process called deformation-induced precipitation. This
leads to a high number-density of small precipitates that effectively oppose
basal dislocation motion whilst also promoting pyramidal ⟨c + a⟩ disloca-
tion climb, thus resulting in increased mobility on the pyramidal planes
and reduced anisotropy and improved hardening on the basal planes. We
perform full-field simulations of textured, polycrystalline Mg and investi-
gate the distribution of key drivers of deformation-induced precipitation in
the sample, and suggest a formulation of a fully-coupled thermomechanical
hardening and precipitation framework.
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Z U S A M M E N FA S S U N G

Magnesium (Mg) hat ein immenses Potenzial, um Aluminium und Stahl in
zahlreichen Industrien als strukturelles Material für Leichtgewichtsanwen-
dungen zu ersetzen. Allerdings leidet das Material unter signifikanten Nach-
teilen, insbesondere einer geringen Duktilität bei Umgebungstemperaturen
sowie einer schlechten Verfestigung beim herkömmlichen (thermischen)
Verfestigugsprozess. Das Ziel dieser Dissertation ist es die relevanten ther-
mischen Plastizitätsprozesse in Magnesium zu identifizieren und effizient
zu modellieren, mit dem Ziel näher an einen integrierten, rechnergestütz-
ten Entwicklugsprozess zu kommen. Wir unterteilen dieses weit gefasste
Ziel weiter in zwei unterkatergorien. Erstens ist das Ziel, das plastische
Verhalten des Materials bei erhöhten Temperaturen zu untersuchen und
potenzielle Lösungen für die bestehenden Nachteile zu finden. Zweitens
soll der Prozess der Entwicklung neuartiger Mg-basierter Materialien mit
verbesserten Eigenschaften durch numerische Methoden im Rahmen ei-
nes integrierten rechnergestützten Materialdesign-Ansatzes beschleunigt
werden. Dazu werden höchsteffiziente Rechen- und Simulationsmethoden
benötigt, welche es zu entwickeln gilt.

Die Verbesserung unseres Verständnisses der Mikrostrukturbildung in
Mg bei erhöhten Temperaturen ist entscheidend, um die Hauptnachteile
des Materials zu mildern. Wir entwickeln ein neuartiges, effizientes Kristall-
plastizitätsmodell, welches nahtlos das Verhalten im Temperaturbereich von
25-250

◦C beschreibt, um die Mechanismen der plastischen Verformung in
diesem Temperaturbereich besser zu verstehen. Die Modellierung von Mg
in diesem Bereich ist anspruchsvoll und muss die experimentell beobachtete
Kompetition zwischen kompressiver Zwillingsbildungen und pyramidalem
Gleiten, sowie die thermisch induzierten Veränderungen der Mikrostruktur
berücksichtigen. Derzeit existieren nur wenige solche temperaturabhängige
Modelle für reines Mg und Mg-Legierungen, von denen die meisten die
kompressive Zwillingsbildung entweder vollständig außer Acht lassen oder
Effizienz- oder Kalibrierungsprobleme aufweisen. Darüber hinaus bleiben
experimentelle Beweise für die Aktivität der Verformungsmodi uneindeutig.
Das vorgestellte Modell wird daher sorgfältig mit experimentellen Daten
an Einzelkristallen kalibriert, um die Spannungs-Dehnungs-Reaktionen
sowie die Mikrostrukturevolution von Einzel- und Polykristallen präzise
vorherzusagen. Durch den Vergleich von zwei Implementierungen des
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Modells - mit und ohne die kompressive Zwillingsbildung - zeigen wir
deren Auswirkungen auf die Mikrostruktur und die Texturentwicklung
auf. Die Ergebnisse verdeutlichen einen Übergang der Verformungsmodi
von kompressiven Zwillingsbildungen bei niedrigen Temperaturen zu py-
ramidalen II-Gleiten bei erhöhten Temperaturen und bestätigen, dass die
Temperaturabhängigkeit von reinem Mg hauptsächlich durch nicht-basales
Gleiten gesteuert wird.

Der zweite Teil der Arbeit befasst sich mit möglichkeiten zur Bewältigung
des rechnerischen Engpasses bestehender Materialmodelle und Simulations-
techniken. Wir entwickeln ein neuronales Netzwerk-basiertes Ersatzmodell
für das temperaturabhängige Kristallplastizitätsmodell, um die Gesamt-
berechnungszeit der Simulationen zu reduzieren. Das Ersatzmodell bildet
nahtlos die Verformungs- und Temperaturhistorie des Materials auf seine
Spannungsreaktion ab und bietet somit eine Alternative zur expliziten
Berechnung plastischer Updates. Dieser direkte Ansatz zur Abbildung des
temperaturabhängigen konstitutiven Verhaltens eines hochanisotropen Ma-
terials stellt eine enorme Herausforderung für datenbasierte Methoden dar
und kann durch bestehende Netzwerkarchitekturen noch nicht gänzlich
erfüllt werden. Daher wenden wir eine neuartige Architektur, basierend auf
wiederkehrenden neuronalen Operatoren, an und bilden die konstitutive
Antwort des Materials mit hoher Genauigkeit ab. Die vorgestellte Archi-
tektur übertrifft bestehende Netzwerkarchitekturen in Bezug auf die Ge-
nauigkeit und Trainingszeit und bietet eine selbstkonsistente Formulierung,
die eine quasi zeitschrittunabhängige Implementierung des Ersatzmodells
ermöglicht. Unser neuronaler Operator zeigt zudem die Fähigkeit, seine
Vorhersagen für unterschiedliche Temperatur- und Dehnungspfade mit
kurzen Phasen des Transferlernens zu verallgemeinern. Darüber hinaus
war es möglich, eine minimale Anzahl von Zustandsvariablen für den
wiederkehrenden neuronalen Operator in derselben Größenordnung wie
das zugrunde liegende Plastizitätsmodell zu identifizieren, was auf die
physikalische Interpretierbarkeit des Zustandsraums des neuronalen Netz-
werks hinweist. Letztendlich wurde das Ersatzmodell auf der Mesoskala
für Multiskalen-Simulationen von Mg mit kommerzieller FE-Software an-
gewendet, was zu beispiellosen Beschleinigungen der Berechnungen von
Multiskalen-Simulationen führte.

Abschließend präsentieren wir als Ausblick auf laufende und zukünftige
Arbeiten einen Ansatz, der dem Material-by-Design-Paradigma folgt, um
die Festigkeit von Mg durch thermomechanische Verfestigung zu verbessern.
Experimentelle Arbeiten an binären Mg-Aluminium-Legierungen legen
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nahe, dass diese Art der Verarbeitung zur Bildung von Nano-Ausfällungen
in einem Prozess der Verformingsinduzierten Ausfällung. Dies führt zu
einer hohen Dichte kleiner Seigerungen, die effektiv der Gleitbewegung
von basalen Versetzungen entgegenwirken, gleichzeitig jedoch den Ver-
setzungsaufstieg pyramidaler ⟨c + a⟩-Versetzungen fördern, was zu einer
erhöhten Beweglichkeit auf den pyramidalen Ebenen, einer reduzierten
Anisotropie und einer verbesserten Verfestigung auf den Basalebene führt.
Wir führen Simulationen von texturiertem, polykristallinem Mg durch und
untersuchen die Verteilung der Haupttreiber der Verfomungsinduzierten
Ausfällung im Material und schlagen eine Formulierung eines vollständig
gekoppelten thermomechanischen Verfestigungs- und Ausfällungsmodells
vor.
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I N T R O D U C T I O N A N D M O T I VAT I O N

1.1 motivation for the use of mg alloys

Mg is a lightweight and abundant metallic material that offers exceptional
strength-to-weight ratios, comparable to aluminum (Al) and titanium (Ti).
This makes it a promising candidate for lightweight structural applications
[2, 27]. The use of lightweight materials has garnered attention as a means
to reduce vehicle energy consumption, with potential fuel savings of ap-
proximately 0.38 L per 100 kilometers, for every 100 kg of weight reduction
(equivalent to 9g CO2 per 100 km) [27, 28]. Thanks to recent improvements,
the production of Mg also requires lower energy consumption compared
to Al, thus addressing one of the largest critical points for widespread
use. It therefore constitutes one of the most promising candidates for a
green transition in the transportation sector. This trend is evidenced by the
amount of work produced around Mg in recent years [29]. Today, cast Mg
alloys already find relatively broad usage [30], such as in engine casings and
gearboxes, where high temperature and corrosion resistance are required.
To this end, a number of alloys have been developed specifically for the
automotive industry, e.g. the AS (Mg-Al-Si), AE (Mg-Al-RE), AJ (Mg-Al-Sr),
and QE (Mg-Y-RE) series developed in part by Volkswagen, Norsk Hydro
and BMW for their improved creep properties [30].

In addition to the automotive industry, Mg alloys have potential appli-
cations in aircraft fuselage frames and lightweight applications in bicycles,
railroad, and aerospace, due to the immense weight reduction possibilities,
as well as in bio-absorbable implants due to their excellent bio-compatibility
[27, 31–33]. Additionally, there is a growing interest in utilizing Mg alloys
for protective materials, such as body or vehicle armor, and as protective
shields in rocketry, where extreme material performance is required [34–
37]. Many of these applications, however, require improved performance
compared to their cast counterparts. The ductility, strength, and toughness
of the materials must be improved for these applications[38].

Hence, sheets, extruded profiles, and forged parts are investigated as
they have advantages compared to cast parts in their ability to provide
better mechanical properties and thin-walled, long structures for structural
applications [30]. Today, however, these parts are only in limited use.This
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2 introduction and motivation

stems from a number of radical drawbacks of the Mg alloys. First, a rela-
tively small number of alloys is available for structural applications. These
applications require different properties from the alloys designed for cast-
ings, such as an increased ductility for plastic forming, improved strength
and toughness for structural parts, and improved spall strength, in more
extreme environments of application. The most widely used alloys for
sheet, forged, and extruded applications are the AZ (Mg-Al-Zn) series, with
prominent representatives being the AZ31 and AZ91 alloys. This series of
alloys, however, suffers from a few important drawbacks.

First, they exhibit poor thermal hardening (strengthening due to thermal
treatment), leading to relatively low strength in comparison with Al-based
materials[1, 39], as shown in Figure 1.1. The poor thermal aging of the AZ
series was also recently investigated by Cepeda-Jiménez, Castillo-Rodrıguez,
and Pérez-Prado [39]. It is tied to the crystallography of the material,
as well as the exhibited precipitate types of the Mg-Al phase that cause
poor hardening behavior on certain deformation modes [1, 2, 39–43]. Rare-
earth alloys fare much better in this regard, however, the cost of these
materials as well as the scarcity of the solutes render their widespread
use complicated. This is why non-rare-earth alternatives are sought [44].
The obvious approach is to look for the existing material series, e.g. the A
(Mg-Al), Z(Mg-Zn), and AZ series. These materials already fulfill some of
the criteria required, however, they suffer from certain drawbacks when
it comes to formability during plastic deformation and hardening of the
material.

Second, the AZ series (and most Mg alloys in general) also show poor
forming capabilities at room temperature. The reasons are linked to their
pronounced plastic anisotropy, a phenomenon rooted in the atomic crystal
structure of the material, whose plastic behavior is the result of the collective
activation of a variety of slip and twin mechanisms. A limited number
of suitable plastic deformation modes is available and thus restricts the
material’s ability to accommodate plastic deformation at room temperature
[45–47]. This leads to overall poor and highly directional ductility.

Many other materials are strongly anisotropic in single crystal form, such
as Ti or Zr, however, for a number of reasons, Mg is more challenging
to process. For one, during many forming processes, such as rolling or
extrusion, Mg alloys tend to form a strong texture, see Figure 1.2 (a), thus
leading to an accentuated polycrystalline anisotropy. Another reason lies in
the microstructural details pertaining to each material’s crystal structure
which will be discussed in chapter 2.
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Figure 1.1: Aging strength of select Mg-based alloys compared to Al-based alloys.
Reproduced from [1]. Courtesy of Suhas E.P.

These properties render sheet forming of rolled Mg a problematic task.
One way of mitigating the issue lies in creating a very fine-grained material,
as shown in [48], however, this requires additional processing steps before-
hand, increasing the cost of production. Further, the process of creating
ultra-fine-grained Mg is not applicable to arbitrary shapes and sizes, thus
limiting this approach. Another approach consists of exploiting temperature
as a process parameter. With increasing temperature, the material exhibits
much more ductile behavior [9, 19, 45, 49–51], rendering sheet forming at
elevated temperatures more reliable, see Figure 1.2 (b). Hence, heated tools
and hot primary material are often required for processing Mg-based prod-
ucts, thus increasing the production cost and representing added difficulty
in processing. The reasons and mechanisms for this increased ductility,
however, are still debated and we still lack understanding of these processes
[5, 52–56].

The goal of further effort now consists of addressing these drawbacks
and designing materials with improved properties, facilitating processing
at room temperature, and improving the hardening effect of AZ alloys.
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Figure 1.2: (a) (0002) pole figures measured from the surface and the center of a
hot-rolled sheet of pure Mg. (b) Sheet specimens after Erichsen tests at
room temperature and 150

◦C. From [2], reproduced with permission
from SNCSC.

Extensive research has been conducted in the field of processing technology
and material design, modeling, and industrial applications, all aiming to
efficiently improve material performance [29]. These approaches encompass
various strategies such as grain refinement [48, 57], thermomechanical
processing [1, 58, 59] and texture weakening [60, 61]. The micro addition
of alloying elements has the potential to be a highly effective approach in
enhancing the mechanical properties of the material. Further, it was found
that solutes contribute to improved ductility, and recent studies suggest
that the hardening issues pertaining to the Mg-Al precipitate phase could
be solved via thermomechanical processing and the targeted formation of
small precipitates [1, 40, 62, 63]. This calls for a thorough investigation of
the thermomechanical interplay of mechanisms in Mg.
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1.2 recent challenges in mg-based material design

One of the primary challenges in designing Mg alloys is the complex
interplay of mechanisms across multiple scales in the formation of the
microstructure that governs material behavior. It is influenced dramatically
by the presence of different deformation modes, recrystallization, as well
as the formation of precipitates, and the presence of solutes [2]. This is a
non-exhaustive list, so we refer the interested reader to specific literature
available on the topic [1, 40, 49, 51, 58, 64, 65]. In addition, processing
conditions play a large role in the formation of the microstructure and
the resulting properties, examples including the strain rate, processing
temperature, loading paths, degree of deformation, directional loading,
and subsequent heat treatment, each of which can influence the texture,
grain size, and size distribution of underlying precipitates. A complicating
matter is that the influence of many of these processes is also not yet fully
deciphered [44] and large gaps remain in our understanding of the interplay
of these mechanisms. Therefore, a number of topics were identified by Pérez-
Prado et al. [44] that are of notable interest in future investigations for the
design of Mg alloys.

First, the texture development in Mg alloys in the presence of solutes,
precipitates, and under the influence of strain rate, temperature, and recrys-
tallization requires further investigation [44]. It has been observed that the
presence of solutes, especially rare earths, lead to a weakening of the rolled
texture poles [46, 66]. Additionally, the occurrence of static or dynamic
recrystallization can result in a more diffuse texture due to randomization
in the newly formed grains, thus improving the formability of sheets and
wrought parts [44]. Experimental and numerical investigations have been
conducted to understand texture formation in Mg alloys. However, the
identification of temperature and recrystallization effects is challenging due
to the mutual interplay of these factors and their interaction with disloca-
tions and precipitates in the material [44, 49]. While modeling approaches
can provide insights, most existing models are polycrystal-based plasticity
models, sometimes relying on empirical understanding and suffering from
challenges in calibration. Furthermore, the formulation of material models
for Mg is complicated by the fact that deformation mechanisms in Mg vary
over a wide temperature range, and their concurrent behavior and effects
on texture are not fully understood. Exploiting high- and low-temperature
material effects for material design remains challenging due to insufficient
experimental data and the scarcity of temperature-aware models.
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Second, the ductility and fracture mechanisms in Mg alloys continue to
present perplexing questions. An intriguing anomaly in Mg, in contrast to
materials like Al and steel, is that the ductility increases with reduced grain
sizes [67] instead of deteriorating. It has been observed that super-formable
Mg can be achieved in the presence of high degrees of recrystallization
throughout the material, leading to extremely small grain sizes [48]. The
improved ductility is primarily attributed to the suppression of the twin
deformation mode, which is often considered a contributor to low ductility,
below a certain grain size. Further studies indicate that recrystallization
occurring inside twins has a beneficial effect on the ductility of the material
[50]. However, there is conflicting evidence, with some observations sug-
gesting rapid fracture despite recrystallization [19]. The complexity of the
recrystallization mechanisms in Mg, occurring under different conditions,
likely contributes to this confusion. Existing models aiming to capture
recrystallization often rely on strong empirical assumptions and overlook
certain recrystallization pathways [68, 69], or struggle to incorporate the
temperature effects [59].

Third, temperature exerts a significant influence on Mg, both in sin-
gle crystals and polycrystals. Stress levels decrease, and the ductility of
Mg rapidly increases with rising temperature, as illustrated in Figure 1.3.
These effects are often accompanied by recrystallization above a certain
temperature. However, distinguishing and identifying the specific contri-
butions of thermal softening and recrystallization can be challenging. The
underlying thermal mechanisms responsible for the improved ductility at
elevated temperatures are not yet fully understood, and multiple factors
could potentially contribute to this behavior.

Further, a significant challenge in the hardening of Mg alloys lies in
their relatively poor thermal aging behavior. Studies have revealed that the
relatively large-spaced particles formed in the AZ alloy series are ineffec-
tive in strengthening the material [39]. However, recent investigations by
Eswarappa Prameela et al. [1] suggest that smaller, finely scattered precipi-
tates could hold the key to improving the hardening of Mg-Al(-Zn) alloys.
Achieving such a microstructure with finely dispersed precipitates may be
facilitated by thermo-mechanical aging, which involves the deformation-
induced formation of precipitates at multiple temperatures. Nevertheless,
the understanding of precipitation behavior in Mg alloys, particularly in
the presence of deformation, remains limited, as calibrated models specific
to this application and sufficient experimental data are currently lacking.
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Figure 1.3: Engineering stress–strain curves of polycrystalline sheets of pure Mg
in the temperature range 77 to 523 K, adapted from [2, 3], reproduced
with permission from SNCSC.

Lastly, Pérez-Prado et al. [44] highlighted the emergence of advanced
computational techniques as a significant area of interest for Mg alloys.
The use of computational methods has already resulted in notable ad-
vancements and insights into the interaction of solutes with dislocations,
hardening mechanisms, the interaction of precipitates with deformation
modes, and the formation of twins [4, 62, 63, 70–72]. Further research em-
ploying increasingly accurate models and computer-aided experimental
methods holds the potential to illuminate remaining questions concerning
the behavior of Mg at various length scales. Additionally, computational
methods are being increasingly utilized in materials design.

In conclusion, it is evident that the precise nature of thermal effects on
plasticity in Mg remains a topic of ongoing discussion and thermal effects
strongly affect all of the aforementioned mechanisms, such as precipitation,
recrystallization, fracture, and even the microstructure evolution. As such,
they warrant further investigation and are at the core of this Thesis’ work.
For a detailed discussion, see Chapters 2 and 3. In addition, the development
of high-efficiency modeling methodologies play an important role in the
development and the exploration of novel potential Mg-based materials.
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1.3 towards an integrated material-by-design paradigm for

mg-based materials

Owing to the large appeal of Mg as a lightweight material, a number of re-
search institutes across the U.S. and Europe formed a consortium, called the
Center for Materials in Extreme Dynamic Environments, CMEDE, to further
the understanding and development of Mg-based materials. CMEDE, which
operated from 2012 to 2022 under the auspices of the Hopkins Extreme
Materials Institute (HEMI) at Johns Hopkins University, was a collaborative
initiative involving renowned academic institutions, national laboratories,
the U.S. Army Research Laboratories, and industry partners. The primary
objective of CMEDE was to advance the development of materials capable
of withstanding dynamic loads and impacts, addressing critical needs in
the field of materials science and engineering. During its operation, exten-
sive investigations were carried out on Mg, which showed great promise
as a model material. CMEDE fostered a strong collaboration between ex-
perimentalists and numerical scientists to study material mechanisms at
different length- and time scales. This multidisciplinary approach facilitated
the joint exploration of numerous outstanding questions and the present
thesis was part of CMEDE’s larger effort towards developing an integrated
computational material design (ICMD) framework for Mg design.

The roots of this framework can be traced back to Olson [73], albeit it
was then called integrated computational material engineering (ICME). The
underlying concept is straightforward. While design paradigms and tools
exist at higher levels, such as for the design of individual parts, assemblies,
and final products, similar options are lacking at lower scales. Typically,
material selection is made without explicit consideration of downstream
design choices, constraining the design process. The goal of ICME is to
provide design tools at the continuum, meso, and microscales, enabling
the creation and design of materials with specific criteria tailored to final
applications.

Although advances in materials are continually being made, they are not
focused on specific design tasks but rather follow a general material design
approach. This is due to the conventional bottom-up methodology em-
ployed in material design. This deductive approach involves characterizing
material properties based on microstructure, composition, and process-
ing. However, it is a slow, relatively expensive, and sometimes ineffective
process. The material design procedure typically encompasses defining
requirements, selecting a suitable material, and undertaking critical ma-
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terial processing steps involving mechanical and thermal methods (see
inner circle in Figure 1.4). Researchers optimize processing aspects, such as
mechanical processing routes, heat treatment, and hardening techniques,
based on scientific intuition, modeling efforts, and prior experiences with
other materials. The resulting microstructure is then evaluated, as it signifi-
cantly influences the final material properties. Factors such as grain size,
twins, precipitate size and distribution, voids, and inclusions need to be
taken into account to fully comprehend the material behavior. In the case
of alloys, the type and composition may also impact the processing steps,
necessitating a modified approach. Overall, the material design process is
complex and iterative, requiring a comprehensive understanding of the
material’s properties and behavior.

Figure 1.4: Depiction of the conventional and inverse design of Mg alloys, cour-
tesy of Suhas E.P.
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On the other hand, the ICME (or ICMD) approach represents a top-down
methodology that involves the inductive design of materials [73]. Unlike the
deductive pathway, where material properties and behavior are observed
in hindsight, the ICMD approach aims to utilize highly performing com-
putational models to identify the optimal structures, processing pathways,
and event types required to achieve specific desired properties in the final
product. However, this inversion of the traditional design process poses
significant challenges.

The successful implementation of ICME relies on a comprehensive un-
derstanding of the intricate interplay among thermal, chemical, and me-
chanical factors across all length scales. These effects must be accurately
and efficiently modeled to guide the processing and design of materials.
Therefore, the computational aspect plays a crucial role in ICME. Predictive
models need to capture the behavior, interplay, and effects of different
material compositions and processing routes based on underlying mecha-
nisms. Achieving accuracy in these models is particularly important when
considering the small scales at which ICME operates [74].

It is important to note that ICME differs from conventional multiscale
modeling approaches in that the primary goal is the efficient exploration of
the design space, rather than solely focusing on accuracy or understanding
the material itself. However, accuracy remains a crucial aspect, especially at
the small scales where ICME is applied.

Furthermore, the feasibility of the model inversion process is of utmost
importance. It involves both physical and computational constraints. On
one hand, the combinations of composition, processing, and microstructure
must align with the real behavior of materials. On the other hand, the
inversion process needs to be feasible within an acceptable time frame,
considering the available computational resources. The successful imple-
mentation of this inversion process presents a formidable challenge. Two
potential approaches can be considered: an iterative numerical approach or
a data-driven approach. In both cases, the objective is to expedite the devel-
opment and discovery of novel materials, surpassing the pace of traditional
experimentation.

For a successful implementation of an inverse design approach, an it-
erative route is followed. This necessitates highly efficient and adaptable
models that accurately represent key mechanisms and perform compu-
tations with precision within limited time frames. The challenge extends
across multiple scales, each requiring appropriate modeling techniques.
While a seamless bottom-up scaling approach would be ideal, it often
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exceeds computational resources. Moreover, scale-bridging processes intro-
duce potential errors and uncertainties that cannot be quantified, affecting
the accuracy of predictions [74]. Therefore, a combination of models, suited
to their respective scales, is advantageous. However, many of these models
are developed for specific purposes, posing constraints. Empirical contin-
uum models, for example, are tailored for specific applications and have
limited validity for deviations in the microstructure. In a material design
framework, continuum-scale models must adequately account for influ-
ential factors such as deformation physics, texture, microstructure, and
temperature, which significantly impact material behavior. Incorporating
lower-scale effects is challenging, and the accuracy of models without a
foundation in underlying physics is questionable. Reduced models offer a
better trade-off between approximation quality and computational cost, but
their accuracy may be compromised due to simplifications. Crystal plastic-
ity (CP) models, while providing insights into physical behavior and texture
development, often rely on simplifying assumptions about the interaction of
different deformation modes. The treatment of lower-scale phenomena such
as slip-precipitate interaction is typically simplified. Despite the availability
of more accurate models for investigating specific material behaviors, their
integration into an inverse design framework becomes questionable due to
computational demands.

High-quality data for material design is often scarce and available in non-
standardized formats, posing challenges in the creation of comprehensive
databases. While more researchers are publishing their data, it remains a
limited resource, especially experimental data, which is often limited to a
few investigations per study. Therefore, obtaining a complete dataset often
requires combining data from multiple studies. The absence of extensive
databases has been recognized as a limiting factor for the development of
data-driven methods [74].

The question arises whether the ICME approach is bound to fail due to
insurmountable computational challenges, lack of data, and the perpetual
trade-off between accuracy and efficiency.

The answer is, luckily, no, as solutions emerge from the field of machine
learning and data-driven modeling. Although comprehensive databases
for directly inferring material properties from processing routes and mi-
crostructures are currently limited, data-driven methods have proven highly
useful in overcoming computational bottlenecks encountered in conven-
tional modeling techniques.
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Two main strategies are followed. The first strategy involves accelerating
the computation of high-fidelity models by incorporating neural networks
into the models themselves, addressing issues related to small temporal res-
olutions or computationally intensive simulations. For example, Ibragimova
et al. [13] employed this strategy to accelerate CP modeling of an FCC ma-
terial. However, the performance of these models relies on the quality and
breadth of the training data and cannot extrapolate beyond it. The second
strategy involves surrogate modeling, where machine learning models fully
learn the characteristics of a physical model, providing a more efficient yet
accurate representation of the physical constitutive model. This approach
has been demonstrated by Bonatti, Berisha, and Mohr [75], Bonatti and
Mohr [76], and Yuan et al. [77] for surrogate modeling and by Mozaffar et al.
[78] and Bhattacharya et al. [79] for learning the homogenized behavior of
materials. Remarkably, significant progress has been made, enabling the
modeling of complex physical material behavior with high accuracy using
various approaches such as Bayesian models, recurrent neural nets (RNNs)
[80], and artificial neural nets (ANN) [13]. Surrogate models have exhib-
ited exceptional performance in certain domains, such as predicting the
texture evolution of polycrystalline materials [81] or designing the stiffness
of spinodoid metamaterials [82]. Although these examples demonstrate the
feasibility of the inversion process, they still lack the elements necessary for
a prime example of ICMD, such as complex materials and microstructural
and lower-level information. Some neural network architectures still face
drawbacks including lengthy and challenging training processes, large data
requirements, and resolution dependence, limiting their applicability for
bridging timescales in an ICME context [83].

Therefore, as a second topic of high interest, the investigation of data-
driven methods capabilities to aid in achieving an ICMD framework was
identified.

1.4 scope of the present thesis

This thesis and the research conducted herein were part of the Mg research
team in collaboration with scientists from CMEDE across the United States.
The design of Mg alloys in a multiscale setting presents numerous exciting
research possibilities. Addressing them all is, sadly, beyond the scope of this
thesis, interested readers are referred to CMEDE’s website and publications
for an overview of their achievements.
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Our work concentrates on two critical aspects. First, the thermomechan-
ical behavior of Mg, which significantly influences the texture evolution,
recrystallization, and ductility of the material, still lacks comprehensive
understanding. Temperature has a profound impact on processing and
interacts with smaller-scale phenomena like precipitation and solute seg-
regation, which are crucial for addressing challenges in Mg alloys. While
a detailed numerical investigation of recrystallization in Mg lies beyond
the scope of this thesis, existing research on the topic [49, 68, 69, 84] has
been limited by the absence of rigorously developed thermomechanically
coupled models. Strain-induced precipitation, another thermal process that
can significantly harden the material, also requires further attention in
Mg [1, 42]. The presence of solute elements and precipitation adds to the
problem’s complexity and may introduce ambiguity, hence we here focus
on pure Mg and discuss important aspects pertaining to solutes and al-
loys on occasion. Additionally, the precise role of various micromechanical
mechanisms in enhancing or reducing the ductility of Mg and its alloys
remains unclear. Hence, the primary focus of this thesis is to develop an
efficient and accurate temperature-aware model for pure Mg, aiming to
gain more insights into these thermomechanical aspects of plasticity.

The second part of the thesis centers on enhancing the efficiency of
modeling techniques, with a specific focus on their seamless integration
into multiscale models, particularly the ICMD (Integrated Computational
Materials Design) framework. To accomplish this objective, we address
various computational bottlenecks present in physical models, including
stability constraints, challenges in bridging different scales, limitations in
parallelization, and the need for accurate parameter calibration. Our aim
is to develop an efficient data-driven model that exhibits high computa-
tional efficiency, easy parallelization, stability, and robustness. Due to the
unavailability of extensive datasets suitable for our purposes, we create the
necessary training data using our novel thermomechanical model, intro-
duced in chapter 3. This data is subsequently utilized to train our model.
This approach empowers us to explore larger parameter spaces and tackle
more complex systems, ultimately leading to an improved understanding
and predictive capability of material behavior. This application also requires
utter efficiency of our primary developed model. By achieving greater com-
putational efficiency and overcoming modeling challenges, our research
aims to advance the incorporation of data-driven techniques into multiscale
modeling paradigms, facilitating more accurate and insightful predictions
in materials science.
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The subsequent sections of this thesis are organized as follows. In chapter
2, we offer a comprehensive overview of the mechanics in Mg and tradi-
tional modeling methodologies. This chapter serves to justify the selection
of our physical model and elucidates fundamental concepts relevant to
our research. In chapter 3, we introduce the physical model and perform a
rigorous assessment of its quality and accuracy. Moving forward, chapter 4

is dedicated to the introduction and evaluation of the data-driven model.
Here, we delve into the details of the data-driven approach and thoroughly
evaluate its performance and capabilities. Lastly, chapter 5 brings the thesis
to a conclusion, summarizing the research conducted and assessing the
progress and advancements achieved throughout this work. This conclud-
ing chapter provides a comprehensive analysis of the contributions made
and outlines potential avenues for future research in this domain.
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B A C K G R O U N D

chapter overview

Our pursuit of developing high-efficiency and accurate models demands
a profound understanding of both the physical and numerical aspects
crucial for these models’ development. In this chapter, we present a compre-
hensive overview of these essential aspects, alongside the state-of-the-art
data-driven methodologies pertinent to our research. The structure of this
chapter is organized as follows. We commence by delving into the mul-
tiscale nature of material design and modeling, elucidating the intricate
interactions and dependencies that arise at different scales (Section 2.1).
Subsequently, we explore the mechanical and physical processes in detail,
starting from the crystallographic structure of Mg and extending to the
intricate role of defects and their connection to plastic deformation (Section
2.2). To accomplish this, we draw insights from numerous cutting-edge
experimental and numerical investigations, aiming to gain a comprehensive
grasp of the underlying mechanisms. In Section 2.3, we embark on a review
of existing modeling techniques, considering various scales and weighing
the merits and drawbacks of different approaches. Moreover, we critically
evaluate the viability of scale-bridging techniques, notably homogenization,
seeking the most suitable methodology for achieving our overarching objec-
tives. Finally, we delve into the realm of data-driven methods in Section 2.4,
where we survey the available tools and techniques for accelerating multi-
scale modeling of Mg, particularly with a focus on their application within
the ICMD framework. Having established a solid foundation of knowledge
from these various aspects, we then formulate our modeling approach and
identify the tools and methods to be employed in our subsequent applica-
tions. This strategic formulation sets the stage for the implementation and
realization of our research objectives.

2.1 multiscale description of materials

Let us now dive into the complex and exciting world of Mg. The behavior
of many engineering materials, and thus Mg, is influenced by a multitude

15
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of factors operating at different length- and time scales. Elastic and plastic
mechanical properties, chemical or thermal properties, all trace their origins
back to the lower scales of the material but are effectively characterized
by macroscopic or effective properties. In this chapter, we delve into the
diverse range of multi-scale effects, spanning from the continuum scale
at the upper end down to the atomic length scale at the lower end of the
spectrum. It becomes evident that many of the macroscopic properties
exhibited by materials can be traced back to their underlying lower-scale
phenomena. Therefore, it is prudent to consider (at least some of) these
effects when modeling materials, as they play a pivotal role in determining
the material’s overall behavior.

We commence by gaining a comprehensive understanding of the different
length scales involved in material modeling and the specific setting and
scales, applicable to our model. At the highest level, we encounter the
continuum scale, which represents the observable length scale spanning
from a few millimeters (in small mechanical parts, encountered in watches
or medical devices) to multiple kilometers (in cases such as geological
applications). This scale typically exhibits a certain level of homogeneity,
making it a homogenized representation of the material. Even at this scale,
however, interesting phenomena, especially directional material behavior,
can occur.

Upon observing materials under a microscope, however, the seemingly
homogeneous structure unravels, revealing an array of lower-level structures
with diverse shapes, sizes, orientations, and properties. These structures
are referred to as grains in metals, fibers in woods or polymers, or cells in
tissues. They exist on a length scale known as the mesoscale. The mesoscale
ranges from a few to several hundred micrometers, depending on the
material (see Figure 2.1). For the purposes of this thesis, our focus primarily
lies on metals, and as a result, we will exclusively discuss grains and related
concepts, although some of these notions possess broader applicability.

At the mesoscale, materials exhibit a complex structure composed of
multiple grains. This plays a crucial role in the mesoscopic description.
Multiple grains collectively form polycrystals, a concept that is extensively
discussed in this thesis.

Polycrystals are structures made from numerous single crystals, at least
some dozen to hundreds of micrometers in size, but can be much larger,
technically, depending on the grain size and the macroscopic sample size.
They consist of numerous single grains (crystals) that typically vary in
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cm, mÅ, nm
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Microscale

Nanoscale
Atomic scale

Figure 2.1: Relevant length scales for Mg material-by-design frameworks, from
the atomic to the continuum scale. On the macroscale, a hot-rolling
simulation is schematically depicted, courtesy of Suhas E.P. At the
mesoscale we show a representative volume element of multiple
grains simulated with our self-developed full-field methods. The
microscale shows the propagation of twin needles across a grain
boundary, adapted from [4] with permission from Elsevier, whilst the
nanoscale shows a micrograph of precipitates in alloy A9, courtesy of
Suhas E.P. Finally, the depiction at the atomic scale is that of solute
atoms embedded in a matrix, courtesy of P. Yi.

size from approximately 1 to 100 micrometers, although nano-crystalline
materials also hold significance, particularly in Mg [48].

Polycrystals are typically specified via two primary aspects: the grain size
and the underlying texture. The texture refers to the distribution of crystal-
lographic orientations within polycrystals. When a majority of grains align
in one or multiple distinct directions, we say that the polycrystal exhibits a
strong texture. In contrast, when grains are oriented more randomly, the
texture is diffuse.

Understanding grain orientations may initially seem like a daunting task,
but it can be easily described by the crystallographic directions of each
unit cell. In the hcp system under investigation, the main directions are
represented by the ⟨c⟩ direction, which corresponds to the height of the
unit cell, and the three linearly dependent ⟨a⟩ directions lying in the basal
plane (see Figure 2.2(a)). The orientation of grains is typically described
via a rotation matrix, using the Bunge convention that involves three Euler
angles. However, alternative representations such as quaternions may be
used, depending on the specific field and application.
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Texture representation, on the other hand, often employs a pole figure, a
concept that maps a 3D orientation onto a 2D space using a stereographic
projection (see Figure 2.2(b)). A stereographic representation maps the
intersection of a chosen direction (a representative crystal axis) with the
equator plane of the unit-sphere, whereby the crystal axis conventionally
originates at the south pole of the sphere. The crystal axis (in our example
this is the c−axis) is rotated via the rotation matrix obtained from the Euler
angles. Each grain inside a polycrystal is thus mapped to a 2D surface,
where the texture is quantified using an orientation density function (ODF).
Its value at a given point describes the probability of finding grains that
intersect the equatorial plane at this place. This provides a clear graphical
and mathematical representation of the strength of the texture.

Finally, the other main descriptor of polycrystals is the grain size which
has several implications on the material behavior due to hardening mecha-
nisms associated with the grain size and size effects, as discussed in Section
2.2.6.

Figure 2.2: Main crystal axes in the hcp system are shown in (a), with the basal
plane represented in blue. Only two independent a−directions are
shown, a3 can be constructed by a linear combination of a1 and a2.
A schematic representation of a stereographic projection is shown in
(b).

Upon further magnification of the material, we reach the microscale and
the view changes again, namely to single grains. Each grain represents a
periodic arrangement of atoms on a lattice, with a given lattice structure.
In metals, the most common lattice structures include face-centered cubic
(fcc), body-centered cubic (bcc), hexagonal closest packed (hcp), and some
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(a) (b) (c)

Figure 2.3: Lattice defects in metals. (a) represents a perfect lattice, (b) shows
point defects such as large and small interstitial atoms, a lattice
vacancy and a substitutional atom. (c) shows a line defect known as
edge dislocation.

mono- and triclinic lattices. However, it is important to note that the atomic
arrangement within grains is rarely perfect. Advanced microscopy tech-
niques such as transmission electron microscopy (TEM) allow us to observe
various defects within the grains, including precipitates, and dislocations.
Precipitates are relatively large aggregations of an alloy phase that form
their own lattice structures, and they exist on the microscale. Dislocations
on the other hand are faults in the stacking order of the material and occur
naturally upon solidification, as well as during loading, in pure or alloyed
material. They play a crucial role in plastic deformation and are discussed
in more detail in Section 2.2. Further, defects, such as inclusions, solutes,
and vacancies, exist on this scale.

These defects are typically classified into different dimensions: 0-D point
defects, 1-D line defects, and 2-D surface lattice defects. Point defects
include vacancies (missing lattice atoms), small and large interstitial atoms
(atoms of different types located between lattice sites), and small and
large substitutional atoms (atoms of different types replacing lattice atoms).
Figure 2.3(b) and (c) illustrate examples of point and line defects within an
otherwise perfect lattice.

On an even finer level, individual atoms are resolved. The atoms are ar-
ranged in a grid, held in place by the interatomic interaction forces, derived
from the energy potential. The latter governs the strength of the lattice as
well as all of the physical properties associated with the material. During
elastic deformation, the atoms are stretched away from their equilibrium
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positions r∗ a stretched position relast, thus increasing the energy of the
material. If released, the atoms would return to their equilibrium positions.

2.1.1 Lower-Scale Effects on Plasticity

In contrast to elastic deformation, plastic deformation in materials involves
the irreversible displacement of atoms or entire atomic planes to neighbor-
ing equilibrium positions, leading to lasting deformation and an increase
in energy within the material. The presence of defects within the mate-
rial significantly affects the energy landscape, thereby influencing the ease
or hindrance of plastic deformation. In the case of point defects, such as
an interstitial atom, the lattice atoms in the vicinity of the defect experi-
ence compression, resulting in a higher energy state that impedes atom
movement. Conversely, in the presence of a vacancy, the lattice atoms are
spaced further apart, facilitating the movement of atoms into the vacant po-
sition and leading to a lower energy state. Figure 2.3 illustrates a schematic
representation of these point defects.

Similarly, line defects such as inserted dislocations increase the energy
in the surrounding lattice but also reduce the energy barrier for plastic
deformation. However, it is more challenging to visually showcase their
impact on the energy landscape. Additionally, the presence of multiple
dislocations affects one another and increases the resistance to plastic flow.
A detailed discussion of these aspects, particularly related to hardening, is
provided in Section 2.2.6.

At the atomic scale, additional factors come into play, such as the thermal
motion of atoms and the interaction forces between lattice atoms. For
example, an increase in temperature enhances the mobility of atoms and
facilitating plastic flow. Consequently, the constitutive behavior observed
in materials encompasses a wide range of scales, spanning from a few
Angstroms at the lower end to meters at the continuum level.

In an ideal scenario, a model would seamlessly integrate the effects of all
scales to provide a macroscopic representation of the material. However,
dealing with such a broad range of scales poses numerous challenges for
modeling, and unfortunately, achieving this is practically infeasible. The
computation of all interactions between atoms, even in a relatively small
cube of 1 cm3, would surpass the capacities of most supercomputers due
to the immense complexity of the algorithms and the extended time scales
associated with the smallest resolutions. Consequently, attempting to model
systems as complex as airplanes or cars with such an approach would



2.2 mechanical processes during plastic deformation in mg 21

be impractical. Instead, researchers often make simplifying assumptions
to derive descriptions of the material at higher length scales, allowing
for computationally feasible representations. This represents an important
factor for consideration in the choice of modeling methodology in the
present thesis.

2.2 mechanical processes during plastic deformation in mg

Before delving into the modeling approach, it is essential to provide a
comprehensive understanding of the material behavior of Mg, including its
deformation modes, micromechanics, and associated mechanisms. While
this chapter offers a broad overview, more detailed discussions on specific
topics will be presented in subsequent chapters or can be found in extensive
reviews by Eswarappa Prameela et al. [1], Nie, Shin, and Zeng [2], Kecskes
et al. [58], and Huang and Logé [85].

Mg-based materials exhibit several distinctive phenomena. They display
pronounced plastic anisotropy, meaning that the material exhibits direc-
tional plastic behavior. In Mg, this results in certain directions exhibiting a
somewhat brittle response with little ductility, while others show weaker,
more ductile behavior [86–88]. This phenomenon is observable at the level
of a single crystal as well as at the mesoscopic and macroscopic levels [2,
8, 18, 19, 21, 86, 89, 90]. Additionally, tension-compression asymmetry is
observed in single crystals of pure Mg [91], as well as in Mg alloys. Further,
this behavior extends to polycrystals, as shown in Figure 2.4 (a). This is
especially the case when the texture is pronounced [92, 93], and in a much
weaker manner, the phenomenon occurs in as-cast alloys, exhibiting more
diffuse textures [94]. Consequently, the pronounced anisotropy and tension-
compression asymmetry occur for polycrystals forming strong textures
such as pure Mg and AZ series [2, 5, 8, 9, 95]. This is particularly the case
for Mg alloys subjected to cold and hot rolling, and extrusion [2, 5, 96],
see e.g. results for rolled Mg alloy AZ31 in 2.4(a). The propensity of Mg
to form strong textures, as well as the anisotropic material response, stem
from underlying deformation mechanisms and must be accounted for in
our model.

Further, Mg single and polycrystals exhibit a phase transformation under
certain loading conditions, called twinning. Twinning is a process of local
reorientation of the atomic lattice and induces a significant change in the
material properties for compression along the rolling direction (RD) and
transverse direction (TD) of the underlying samples. The behavior is shown
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(a)

(b)

(c)

Figure 2.4: (a) Stress-strain curves of AZ31B rolled sheet data loaded under
compression and tension along the three main directions. (b) and (c)
show the resulting texture after compression in the rolling direction
and the transverse direction, respectively. Adapted from [5] with
permission from Elsevier.

clearly in Figure 2.4(a), for the TD and RD cases under compression. At
around 4.5 − 5% true plastic strain the hardening rate of the TD and RD
samples rapidly increases, linked with the reorientation in the crystals due
to twinning – a phenomenon that we discuss in more detail later in this
Section. This behavior renders modeling the material more challenging,
as the mechanism has to be efficiently integrated into the constitutive
description. Further, the change of orientation of the lattice has to be
accounted for, which depends on the loading direction, as shown in Figure
2.4(b,c), where the polycrystals were loaded along the rolling and transverse
directions, respectively and yield a different final texture.

In the remainder of this Section, we provide an overview of the essential
underlying mechanical processes in Mg that lead to these phenomena. We
begin by introducing the crystallographic structure of Mg that leads to
many of the observed behaviors in Mg, followed by a description of the
mechanics of plastic deformation in Mg and polycrystalline behavior, slip
and twinning. Next, we explore the characterization of single-crystalline
behavior at ambient temperatures, followed by the thermal behavior of Mg
and the polycrystalline characteristics. Finally, we introduce a number of
relevant hardening mechanisms.
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2.2.1 Crystallography and Stacking Faults in Mg

The hcp structure in Mg is at the core of the numerous peculiarities of the
material. It has a closest-packed plane in (0001) and close-packed directions
of {112̄0}1 and normally follows an A, B, A, B, · · · , A, B stacking sequence
with hexagonal unit cells as shown in Figure 2.5. The atoms of the A layers
are shown in blue, whereas the ones belonging to the B layers are shown in
yellow. In addition, the main close packed planes and directions are shown
in 2.5 (a), with the normals and directions being shown in Miller indices.
Further, the main directions, a and c of the unit cell are shown. Due to
its hexagonal structure, Mg shows symmetries around the c−axis, leading
to three linearly dependent a directions in the basal plane. We only show
two here, as there are only two independent ones, a notion that becomes
important later in our discussion of plastic deformation modes in Mg. In
Figure 2.5 (b), the most common twin planes are shown.

During plastic deformation, perfect and imperfect dislocations occur.
Perfect dislocations have Burgers vectors in the basal plane along ⟨a⟩, the
plane perpendicular to it along ⟨c⟩, or as a sum of the two ⟨c + a⟩, whereas
imperfect dislocations occur on the basal plane with either a Shockley
partial-type Burgers vector, a Burgers vector perpendicular to the basal
plane, or a combination of the two [2]. These dislocations, among other
systems, lead to the formation and propagation of stacking faults. The
stacking faults are bounded by partial dislocations at each end, and the
stacking fault energy (SFE) is given by

WSFE =
Gb2

4πd
, (2.1)

where G is the shear modulus, b is the Burgers vector of the partial dislo-
cations and d is the distance between the two partial dislocations. In the
following we discuss the different types of stacking faults that exist in Mg,
before giving a more in-depth overview of the types of plastic mechanisms
leading to Mg’s peculiar plastic behavior.

There are numerous types of stacking faults in Mg, including the four
primary ones – the intrinsic faults I1 and I2, the extrinsic fault E, and
the twin-like fault T2 [97]. The I1 fault is produced by removing a basal
plane and shearing the remaining planes. It changes the stacking order of
close-packed planes and can be formed through dissociation of a perfect
dislocation or vacancy condensation, resulting in two sessile Frank partial

1 denoted in Miller indices
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Figure 2.5: Hexagonal closest-packed unit cell with corresponding closest packed
planes allowing for dislocation movement.The planes best suited for
dislocation movement are shown in (a), while the planes best suited
for twin-like stacking faults are shown in (b). Adapted from Nie, Shin,
and Zeng [2], reproduced with permission from SNCSC.

dislocations at each end [2]. Further, solute atoms may accumulate in I1
faults, but there are few experimental studies verifying this [2]. Most rely on
computational models with one solute atom. For commonly used elements
in Mg alloys, Al, Mn, Zr, Y, Nd, Ce, La, and Ca, solute segregation in I1
faults lowers the SFE, suggesting that their presence may cause more I1
stacking faults. The effect in ternary or higher-order alloys has not been
studied. The validity of these data has not been verified by experiments.
While some solutes seem to not affect the slip in I1, others are thought to
increase or decrease the SFE [2]. A representation of the stacking faults is
shown in Figure 2.6.

The I2 fault is formed by shearing the hexagonal lattice by 1/3{101̄0} or
by dissociating a perfect ⟨a⟩ dislocation with a Shockley partial dislocation
on the basal plane. I2 faults are generated by the precipitation of a plate-
shaped particle or the formation of steps of single-layer height on twin
boundaries. Further, the energy of the stacking fault is affected by the
presence of solutes in solid solutions of some binary Mg alloys [2]. However,
there is a lack of data for ternary and higher-order Mg solid solutions, and
caution is needed when characterizing stacking faults using conventional
TEM. The SFE of I2 faults is about twice that of I1 faults in pure Mg [70].

The extrinsic fault E is formed by inserting a C plane into the hexagonal
stacking sequence, or the dissociation of a dislocation. It is bounded by
Frank partial dislocations. The stacking order of the close-packed planes
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Figure 2.6: I1, I2 and E stacking faults in hcp crystal lattice.

outside this segment is different from that associated with an I2 fault. The
SFE of this fault is roughly three times that of the I1 fault in pure Mg [70].

The T2 fault can arise from an I2 fault or solute segregation [98]. It results
from displacing atomic columns by a partial dislocation (1/3 {011̄0}) in
an A or B plane, altering the stacking sequence. This creates a twin-like
arrangement of close-packed planes with respect to the fault plane. The
energy of the T2 fault in pure Mg is 41-43 mJ m−2, which is higher than the
I1 and I2, faults but lower than the E fault.

Finally, stacking faults out of the basal plane have also been reported
along the prismatic I {101̄0}, prismatic II {112̄0}, pyramidal I {101̄1} and
pyramidal II {112̄2} planes [99–101], despite a lack of experimental vali-
dation [2]. Stacking faults on pyramidal planes (SFpyI and SFpyII) have
been observed in molecular dynamics simulations, and their values for
pure Mg are 164 and 168 mJm−2, respectively. These values decrease with
increasing solute concentration, such as Y [2] and Al [102], but the impact
of many other solutes is yet unknown. One approach to improving the
ductility of Mg alloys thus lies in solute-assisted dislocation climbing via
cross-slip, especially with rare-earth solutes. The presence of pyramidal
stacking faults in microstructures can be readily detected by modern TEM
or STEM techniques, however, it is yet to be fully determined whether the
reduction of energy barriers to the pyramidal cross-slip is the primary cause
of improved ductility in some Mg alloys.

For crystals to accommodate plastic deformation, in general, 5 indepen-
dent deformation mechanisms must be present. This is called the Taylor
(or Von Mises) flow criterion after Taylor and Floyd [103] and Von Mises
[104]. The stacking faults and their associated energy in a material, however,
deeply affect this criterion. The SFE is a key determinant for the types of
deformation activity of the material. High SFE materials tend to deform by
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Figure 2.7: Dissociation of a perfect dislocation into two partial dislocations in
(a) and propagation of a screw dislocation via cross-slip onto another
plane exemplified for an fcc crystal in (b).

edge dislocations and screw dislocations that may cross-slip. This reduces
the number of necessary independent deformation modes to 4 in high SFE
materials, typically enhancing ductility [105, 106]. Contrarily, in low SFE
materials, cross-slip is inhibited and dislocations tend to dissociate, this
process is schematically shown in Figure 2.7 (a). Thus, low SFE materials
form T2 stacking faults that are bounded by partial dislocations. Since they
cannot cross-slip, the number of deformation modes required remains at
least 5. Mg has low and high energy stacking faults, meaning it falls into a
realm in between the extremes. This has deep-reaching implications for its
plastic deformation mechanisms.

2.2.2 Slip and Twin Systems in Mg

Let us now dive deeper into plastic deformation mechanisms in Mg. During
plastic deformation, irreversible displacement is accumulated in the form
of dislocations on slip systems, as well as the reorientation inherent to
twinning that leads to shear on twin systems. Each of those systems consists
of a slip (or twin) direction, as well as a normal, describing the plane
on which deformation occurs. We show the main slip and twin systems
exhibited in Mg in Figure 2.5.

Edge dislocations are the consequence of the movement of a half-plane
along a given slip direction on a slip plane by a given amount |b|, cor-
responding to the length of Burger’s vector, whereas screw dislocations
move perpendicular to the Burger’s vector of the dislocation. The length of
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Figure 2.8: Schematic depiction of the Schmid law.

Burger’s vectors for different slip systems varies. For basal and prismatic
slip, the length is 3.2 Å, whereas for pyramidal systems it is 6.1 Å. For twins,
typically a distinct amount of shear is associated with the accumulation of
deformation, depending on the type of twin system.

This movement incurs different energy barriers. Propagation of a dislo-
cation along a system occurs when these energy barriers are overcome. In
a microscopic description of plastic deformation, usually, stress measures
are used to describe the barriers associated with plastic deformation. The
minimum stress required along the slip direction for a given Burgers vector
of the dislocation to initiate slip is called the critical resolved shear stress
(CRSS), τCRSS, and is directly linked to the energy of the stacking faults
created in the process.

For a given applied Cauchy stress, σ, the resolved shear stress (RSS), τRSS,
on a slip plane and direction is determined by the angles α and β, which
represent the angle between the stress axis and the slip (or twin) direction,
and the plane normal, respectively. A graphical representation is given in
Figure 2.8. It is often assumed that all slip and twin systems follow the
Schmid law for activation. For slip to occur, the RSS must be equal to or
greater than the CRSS of the system.
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τRSS on a slip plane and direction, is given as

τRSS = σ cos(α) cos(β), (2.2)

where the expression cos(α) cos(β) is called the Schmid factor, and the
law (2.2) is called the Schmid law, whereas σ is the stress applied to the
material. Although this is still debated for the case of certain twin systems,
for the remainder of this thesis we assume that the Schmid law holds for
the evolution of all plastic deformation modes.

2.2.2.1 Slip

Let us begin our discussion with slip activity. The hcp crystal structure
allows for a large number of readily activated slip modes that allow for
basal plane deformation, indicated by the ⟨a⟩ direction. Of these, basal slip
is the prime deformation mode, due to its low CRSS value, and accounts
for a large portion of the overall slip activity, which has been confirmed
experimentally [3, 8, 9, 19] as well as numerically [5, 107, 108]. It leads
to line dislocation movement in the basal plane and is associated with
stacking fault I1. It does, however, only provide the grains with two indi-
vidual slip systems, an insufficient amount to allow them to deform freely
while accounting for the deformation of neighboring grains (in polycrystals)
and to fulfill the Taylor (or von Mises) flow criterion [103, 104]. Therefore,
non-basal slip on either the prismatic or pyramidal systems is necessary to
accommodate these types of deformation, where possible. These deforma-
tion modes, however, exhibit much higher CRSS values, as shown in Figure
2.9. Their activity is also discussed in Kelley and Hosford [8], Chapuis and
Driver [9], and Yoshinaga and Horiuchi [17].

In contrast, only a limited number of deformation modes exist to accom-
modate deformation in the direction of the c−axis. Those modes comprise
the Pyramidal I & II ⟨c + a⟩ slip, as well as the tensile {101̄2} and the
compressive {101̄1} twin systems, whose discussion we postpone for now.
It is widely believed that slip deformation along this direction is mainly
attributed to the pyramidal II systems [3, 8, 9, 18, 19, 25, 108, 109], despite
some recent studies by Kweon and Raja [54] and Xie et al. [110] suggesting
the pyramidal I ⟨c + a⟩ system, plays a crucial role in slip behavior. This
latter variant is, however, difficult to trace experimentally and therefore
often assumed to play a minor role.

Pyramidal II slip, despite its relatively large CRSS value, is comparatively
often observed, due to its occurrence along one of the ideal dislocation
directions in the system [2, 17, 25]. Further, pyramidal II dislocations have
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Figure 2.9: Evolution of the CRSS values of distinct slip systems with temperature
are shown for pure Mg in (a) and after the addition of 1 wt% of Al
solute in (b). Reprinted from [2] with permission from SNCSC.

the potential to exhibit cross-slip, a phenomenon that reduces the required
number of deformation modes. However, recent studies have shown that
the ⟨c + a⟩ edge dislocations involved in pyramidal II slip tend to dissociate
into immobile structures [7, 21, 53, 111]. They are typically observed in
conjunction with ⟨c⟩ and ⟨a⟩ dislocations [7, 112], leading to significant
cross-hardening. Moreover, the ⟨c + a⟩ edge dislocations were found to be
inherently unstable, leading to limited mobility. Consequently, the immo-
bilization of these dislocations results in a rapidly hardening stress-strain
response, leading to brittle failure in Mg crystals [8].

Experimental results reported by Kelley and Hosford [8] and Wonsiewicz
and Backofen [19] show the extent of the anisotropy for Mg single and
polycrystals. We discuss these results in more detail in Section 2.2.3. The
Taylor flow requirement is slightly relaxed in polycrystalline media, where
it was found that only four slip modes are necessary, since internal stresses
at grain boundaries may cause local allocation of deformation in localized
twins[7, 113]. This explains the weakened anisotropic response in poly-
crystalline Mg. For single crystals, however, no such option exists. Hence,
despite the much larger CRSS values, the non-basal slip systems are com-
monly observed at room temperature, especially on microscopic scales[8,
17, 25, 114].

In alloys, the presence of solute atoms has been shown to facilitate cross-
slip and the presence of pyramidal slip in the system, thereby increasing
the ductility [2, 63, 115, 116]. Hence, alloying can serve as a remedy against
brittle failure. For instance, in AZ31 alloy, the ⟨c + a⟩ dislocations do not
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Figure 2.10: Schematic depiction of a twin in an hcp material following
A, B, . . . , A stacking sequence. The twin planes (mirror planes) are
indicated in red. The M and T labels denote the matrix and twin
phase, respectively. We show the reorientation of a basal slip system
with normal nb to its new configuration with n∗

b during a twinning
event.

dissociate [117]. Alternatively, elevated temperatures facilitate dislocation
climbing, leading to increased ductility [118], which is often utilized during
processing and is one of the focus points of the present thesis. We discuss
this topic later in this chapter. At room temperature, however, the material
resorts to another deformation mode, twinning.

2.2.2.2 Twins

Twinning is a process under which the material reorients parts of its lattice
along a given twin plane, such as to form a reoriented phase inside the
grain. The mirroring of the twin leads to a rotation in the underlying slip
systems, leading to a reoriented slip system, exemplified for a basal system
in Figure 2.10. This phenomenon typically occurs when it is energetically
more favorable to undergo this reorientation process rather than undergo
slip. This process leads to major changes in the microstructure and plays a
crucial role in defining a material’s constitutive behavior.

Twins are not unique to Mg but are observed in many materials. A
comprehensive study was carried out by Yoo [7], comparing twinning in
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Figure 2.11: Electron back scattered diffraction (EBSD) scans of (a) Mg strained
to 3% in-plane compression at room temperature (standard stereo-
graphic triangle showing compression direction) and (b) Zr strained
to 10% in-plane compression at 76K temperature (standard stereo-
graphic triangle showing plate normal direction) at a strain rate of
103s. Several adjoining twin pairs can be seen; a few are marked by
black arrows [6]. Reprinted under open access creative commons
license from Arul Kumar et al. [6].

Mg, Be, Zr, and Ti, among others. They compare the ductility and the plastic
behavior of these materials and relate the results to the presence of twinning
in the material. It was found that the presence of few twins correlated with
brittle behavior in the material [7], and that the ductility of Ti and its alloys
is due in part to the presence of a large number of profuse, fine twins of
multiple sorts.

Twins can form under many circumstances such as homogenous nucle-
ation, in the vicinity of lattice defects, at pre-existing nuclei, and along twin
boundaries. The homogenous nucleation of twins inside grains, however, is
relatively rare. As a result, twins usually occur at grain boundaries [113],
precipitates, or twin boundaries, where stress concentrations tend to occur.
This is clearly shown in Figure 2.11, where the transmission of twins and
origination of new twins at grain boundaries is clearly shown.

The exact nucleation and growth process of twins is still the topic of
investigations [71, 119], but in general, one assumes that twins follow a
similar Schmid law for propagation once they are nucleated. The nucleated
twins propagate quickly throughout the material, forming needle-like struc-
tures as they reach the opposite sides of grains. In this process, the twin tip
propagates much faster than the lateral sides of the twins. With continued
straining, new twins may appear in neighboring grains at positions where
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Figure 2.12: Illustrative example of the transmission of a twin in a Mg bicrystal
PFM simulation with varying grain misorientation angles. (a) 11.25◦,
(b) 22.5◦, (c) 33.75◦, and (d) 45◦

primary twins have encountered a grain boundary, a process known as twin
transmission. This phenomenon is most effective when neighboring grains
have small misorientation angles, as the incoming and outgoing twins pro-
vide the best accommodation for stress concentration at the boundary. We
show results from a phase-field simulation showcasing the transmission
of twins across a grain boundary in a bicrystal in 2.12. The transmission
of the twin phase across the boundary depends on the misorientation an-
gle between the two grains, showing that a grain boundary alone is not
sufficient to nucleate twins, the orientation of the system further has to be
appropriate.

Twinning in Mg

As with slip, numerous twin systems exist. In Mg and Mg alloys, there
are several potential twin systems, with the most commonly observed
ones being the primary twins, the {101̄2} tensile and {101̄1} compressive
systems, as well as the secondary or double twins, {101̄1}-{101̄2} and
{101̄3}-{101̄2}. Other twin systems, such as the {101̄4}, {101̄5}, {303̄4},
{112̄1}, and {112̄4} systems, are rarely observed [2].

Whether twin systems are tensile or compressive depends largely on the
c/a-ratio of the material [7]. Compressive, means that the twinning leads to
a contraction along the c−axis, while tensile indicates an elongation. Below
a certain c/a-ratio, the system is a tensile twin (TT) system, and above, it is
a compressive twin (CT) system. We show this in Figure 2.13 at the example
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Figure 2.13: Twinning shear and nature of a twin system in hcp materials in
dependence of the c/a−ratio. Adapted from Yoo [7] with permission
from SNSC.

of the {1 − 1̄1} CT system. Left of a reversion point (i.e. at lower c/a ratios)
the system is tensile, meaning it elongates the c−axis upon activation. On
the right of that point, however, it becomes compressive, i.e. it shortens the
c−axis. Note that this is a given property of the system, a tensile system
may never lead to a shortening of the c−axis and vice versa. In Mg, the
ratio is 1.624, leading to the given types of twin systems that we discuss in
this thesis. Further, each twin system leads to a predefined amount of shear
in the reoriented area, depending on the twin system and the c/a−ratio.
More information is given in Yoo [7]. In addition to the polar nature of
twins, the CRSS value associated with the TT and the CT systems differ
by orders of magnitude, see Figure 2.9 meaning that TTs may form at low
stresses, whereas CTs require large stresses for activation. These factors all
together lead to disparate behavior among the twin systems in Mg.

In general, both, the TT and CT system have 6 equivalent orientations
(i.e. same CRSS and energy associated with the system), sufficient to accom-
modate almost any arbitrary deformation. However, the systems behaviour
cannot accommodate the same amounts of overall deformation. This is at-
tributed to two main effects, a rapid hardening associated with CT systems
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as well as a slower propagation of CTs compared to TTs by almost one
order of magnitude [108, 120, 121].

Despite these facts, CTs are shown to occur when physically necessary [8,
19]. However, the CTs can only accommodate relatively little deformation
themselves, as they tend to harden extensively [108]. Basal slip tends to
rapidly occur inside these twins, but due to the low twin volume on the
CT system, the combinations of basal slip and twinning is not a sustainable
mode for accommodating large amounts of plastic deformation. Instead,
it leads to rapid accumulation of dislocations inside the twinned area and
fracture [8].

Since only TT systems can accommodate large amounts of deformation,
the requirement of profuse twinning for improved ductility, mapped out by
[7] is only met under tensile loading of the crystals along the c−direction.
In contrast, the capability of the crystals to accommodate compression in
this direction is severely limited - either the CT systems or the pyramidal II
slip systems are required, and both are hard to activate and harden rapidly
and extensively.

A number of studies indicate that the two systems may, in fact, be in
competition [8, 15, 19, 25, 56, 122, 123], however, the investigations remain
somewhat inconclusive. In the following, we provide a more detailed view
on the material behavior and the potential competition of CT and pyramidal
slip that may be key to the low ductility of Mg.

2.2.3 Mechanical Response and Microstructure in Mg Single-Crystals

Numerous experimental methods are employed to characterize the proper-
ties of materials, such as micropillar compression, tension and compression
loading of bulk single-crystalline magnesium, and nano-indentation [8,
18, 25, 124].At room temperature, the variety of the behavior in the slip
systems leads to the aforementioned strong plastic anisotropy. This was
first investigated thoroughly by Kelley and Hosford [8]. In their experimen-
tal series, they performed channel-die experiments of ≥ 99.8% purity Mg
single crystals to isolate the behavior under slip- and twin-governed plastic
deformation. Figure 2.14 shows the results of Mg single crystals experi-
encing plane-strain compression for the room-temperature experiments in
pure Mg, reported by Kelley and Hosford [8]. 7 cases, A through G were
chosen with the aim to isolate the activation of given slip and twin systems.
Six of the cases were chosen with the aim to suppress the ubiquitous basal
slip, expecting pyramidal II ⟨c + a⟩ to occur in cases A and B, prismatic slip
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Figure 2.14: True stress-true strain response under plane-strain compression
of Mg single crystals at room temperature. Adapted from [2, 8],
reproduced with permission from SNCSC.

in cases C and D, and tensile twins to dominate cases E and F. Finally, case
G was chosen with the expectation for basal slip to occur predominantly.

Cases A and B, on the left, show the response typically associated with
the immobilization of the ⟨c + a⟩ slip at low strains but high stress levels.
Surprisingly, in the experiments by Kelley and Hosford [8], no traces of
pyramidal slip were reported. Instead, slight misalignment from the c−
axis could already lead to basal slip activation. Fracture occurred early on
at about 4% deformation, with traces of CTs present in the material [8]. On
the other hand, cases C and D exhibit ductile behavior at lower stress levels.
While these crystals are ideally oriented for prismatic and pyramidal ⟨a⟩
slip, they did not occur. Rather, a combination of basal slip and profuse
twin was reported [8, 19], findings that were later confirmed experimentally
and numerically by Selvarajou et al. [124].

With the c−axis freely extensible under plane-strain compression, the
crystals show a strongly twin-dominated behavior. Cases E and F showcase
the two cases from Kelley and Hosford [8]’s studies. The initial strain-
hardening rate of the single crystals is weak, showing the ease of activation
of the TT systems. The crystals deform mostly via the activation of the
tensile systems up to about 6% strain, at which point the twins in the crystals
begin to saturate. The saturation coincides with an overall stiffening of the
plastic response. This is related to a reorientation of the slip systems in the
rotated lattice. In case E, a rotation of about 86

◦ occurs [8], which leaves the
newly oriented systems in a similar configuration to cases A and B. The
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resulting rapid increase in stress levels and the similar strain-hardening
behavior confirms that. It was observed by Kelley and Hosford [8] that
fracture occurred along the {101̄1} and the {112̄4} planes, associated with
CTs and pyramidal slip, similar to the ones in case B. Crystals in case F
exhibit a different type of orientation than crystals in case E, this is mostly
due to the changes in the active slip systems. while the reorientation in case
E was about 86

◦, the one in case F was around 31
◦. This reorientation led

to the activation of some basal slip, explaining the larger ductility.
The last case is case G, where the orientation of the c−axis is such that it

is 45
◦ from the compression direction. This orientation is ideal for basal slip

activity. These crystals are characterized by ductile behavior and low stress
levels. It was later reported in Nie, Shin, and Zeng [2] and Molodov et al.
[125, 126] that these crystals can undergo up to 40 to 60% of true strain
before showing significant levels of strain hardening.

These experiments constitute some of the most complete experimental
studies on the characterization of pure Mg single crystals at room tempera-
ture and have since played an important role, in shaping our understanding
of the material behavior. They are to this day often used as benchmarks for
the calibration of Mg crystal plasticity models, such as by[52, 107, 108, 122],
by lack of better data.

Hence, confusion arises due to contradictory findings reported by Lilleod-
den [25] in their investigation of microcompression on Mg single crystals.
Their more recent research examined the material and uncovered no indica-
tions of preexisting twin nuclei or other nucleation sites prior to micropillar
compression – in their absence, no activity in the CT or TT systems during
and after compression was reported. Instead, the study suggests that the
deformation of the single crystals can be reasonably attributed solely to
pyramidal II slip, since, as the authors contended, the pyramidal II slip
systems are the only ones exhibiting non-zero Schmid factors. Although
Kelley and Hosford [8] acknowledged a similar phenomenon, they swiftly
dismissed it, postulating that minor crystal misalignments could facilitate
basal slip. In contrast, Lilleodden [25] argue that the disparity between
the observations could arise from the potential presence of twins or nu-
cleation sites in the bulk Mg crystals examined by Kelley and Hosford
[8] and Wonsiewicz and Backofen [19]. Moreover, they acknowledge the
potential influence of a size effect related to twins, a notion that is now
corroborated. However, it is noted that twinning ceases to play a significant
role in sub-micron and nanocrystalline materials, whereas Lilleodden [25]
conducted experiments on crystallites ranging from 2 − 10 µm in size.
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We hypothesize that the CTs are a symptom of necessity in Mg at low
temperatures, due to the strong hardening of the pyramidal II slip and if
possible, the activation of pyramidal slip is favored. Further, we assume
that increased mobility of the pyramidal slip system is the reason for the
improved ductility in Mg at elevated temperatures and that CTs should
gradually vanish with increased temperature. We explore the experimental
findings in this regard to strengthen our hypothesis before building a
temperature-aware model incorporating these ideas in chapter 3.

2.2.4 Mechanical Response at Elevated Temperatures

The influence of temperature on the mechanical properties of Mg has been
the subject of investigation in multiple studies [9, 16, 18, 19, 21]. Collectively,
these studies have revealed that the deformation mechanisms observed
at elevated temperatures differ from those observed at room temperature.
Elevated temperatures enhance the mobility of lattice atoms within the hcp
structure. This heightened mobility reduces the energy barrier for plastic
motion, thereby promoting slip. This effect is particularly pronounced
along non-basal planes, where substantial slip activity is hindered by high
room temperature CRSS values. This behavior is illustrated in Figure 2.9 (a).
While basal slip and the TT systems exhibit nearly temperature-independent
characteristics, non-basal slip systems experience a significant reduction
in CRSS values. This outcome results in a greater variety of available slip
systems, encompassing various slip types.

Experiments on single crystals under compression along various direc-
tions were conducted by Chapuis and Driver [9], Yoshinaga and Horiuchi
[16], and Wonsiewicz and Backofen [19]. A gradual transition was observed
in the region from 25

◦C to 300
◦C, with plastic flow occurring at lower stress

levels and higher plastic deformation being accommodated before fracture,
even for the stiffest orientations. Around 180

◦C, the ductility of the material
begins to significantly improve, allowing for the accommodation of large
degrees of deformation [2, 5, 56]. Initially, it was speculated that twinning
at lower temperatures leads to rapid hardening and fracture of crystals,
while the onset of dynamic recrystallization at elevated temperatures is
responsible for softening and increased ductility [50]. However, the role of
dynamic recrystallization in rapid softening remains unclear and requires
further investigation.

Chapuis and Driver [9] offer relatively recent studies of Mg single crystals
subject to plane strain loading at elevated temperatures. They characterized
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the CRSS values based on the stress-strain response of the single crystals.
The characterization of the CRSS values for slip and twin systems was
taken at 1% plastic strain, as shown in Figure 2.15. It is evident that the
temperature has a significant effect on the stress levels and the overall
stress-strain behavior of Mg.

Figure 2.15 (a) shows the response of the crystals oriented in a similar
fashion as those of cases A and B from Kelley and Hosford [8] and Won-
siewicz and Backofen [19]. The crystals show a more ductile response and
a rapid decay of the ultimate stress levels with increasing temperatures.
Further, at 150

◦C a relaxation of the stresses is observed around 1.5 − 2%
strain. This is attributed to the formation of compressive {101̄1} and {101̄3}
twins, however EBSD maps of the crystals show that the volume fractions
of these twins are small. Further, there is significant deviation from the
ideal orientation in this experiment, as the crystals ideal orientation in Euler
angles would be (0, 0, 0) but the authors report (45, 1, 17). As previously
shown by Kelley and Hosford [8], even small misalignment leads to the acti-
vation of basal slip, explaining the ductility at 150

◦C, opposed to the results
reported by Wonsiewicz and Backofen [19]. With increasing temperatures,
the authors report fewer and fewer occurrences of twinning and report the
deformation via pyramidal slip. In addition, they report the presence of
recrystallized zones throughout.

Figures 2.15 (b) and (c) show the response of single crystals under a−axis
compression, similar to cases E and F, and C and D, respectively. The same
trends as previously were observed, where increasing temperature leads to
a (relatively) rapid reduction of the overall stress levels. Case (b) showcases
the results for crystals ideally oriented for TT systems. At room temperature,
the corresponding EBSD map shows profuse twinning at 4% strain, as seen
in Figure 2.16 (a). Roughly 50-60% of the crystals are reoriented at this
stage which is shortly before the stress-strain response begins to drastically
change, c.f. Figure 2.15 (b). Figure 2.16 (c) shows the EBSD map for a crystal
deformed at 350

◦C after 9.6% strain. It is evident that twining is present at
this temperature, however the stresses are severely reduced compared to
the room-temperature case. This indicates that the material undergoes the
same reorientation at elevated temperatures as it does at low temperatures,
however, the reoriented region exhibits a far more compliant response to
deformation.

Finally, figure 2.15(d) shows the response of a crystal ideally situated
for basal slip, similar to case G from Kelley and Hosford [8]. The results
show inconclusive relationship between the stress-strain behavior of the
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Figure 2.15: Response of Mg single crystals under plane strain compression in
(a), c−axis compression, (b), a−axis compression with unconstrained
c−direction, (c) in a−axis compression with constrained c−direction,
and (d) at an 45

◦ angle to the c−axis such as to promote basal
slip. Reprinted from Chapuis and Driver [9] with permission from
Elsevier.
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crystals and the temperature, with stress levels at 150
◦C exceeding those at

room temperatures. Likely, the orientations of the crystalline samples were
different. This showcases how sensitive the material is to alteration in the
crystal’s orientation, as described in Nie, Shin, and Zeng [2].

Although this study confirms many ideas and findings from previous
works, it unfortunately has a number of uncertainties and inconsistencies
in the reported behavior, likely due to the non-ideal orientation of the
crystals. Hence, they must be used with caution and in conjunction with
other studies, such as the ones performed by Ono, Nowak, and Miura [3],
Akhtar and Teghtsoonian [18], Wonsiewicz and Backofen [19], Al-Samman
et al. [50], and Molodov et al. [125].

The latter investigated the large-strain temperature-dependent material
response of single crystals compressed 45

◦ along the c-axis and confirmed
the temperature-independence of the basal systems up to 40% stress. Both
Wonsiewicz and Backofen [19] and Al-Samman et al. [50] observed increased
dynamic recrystallization in the grains, which could contribute to softening
at elevated temperatures.

Overall, experimental evidence underscores the substantial ductility of
Mg at intermediate and higher temperatures, implying that the flow cri-
terion must be satisfied. Studies by Jain and Agnew [5] and Barnett [56]
demonstrated that CT mechanisms alone cannot sufficiently account for
significant deformation along the c-direction, even at elevated temperatures.
Interestingly, the frequency of CT diminishes with increasing temperatures
across a range of alloys and pure Mg, as reported by Jain and Agnew
[5], Chapuis and Driver [9], and Wonsiewicz and Backofen [19]. Given
our earlier discussion, which highlighted twinning as an alternative mode
of deformation arising due to the absence of more preferable modes, it
becomes apparent that slip systems must play a more prominent role.

We see an explanation for the improved ductility is based on the increased
mobility of ⟨c + a⟩ dislocations, as proposed by Yoshinaga and Horiuchi
[17] and confirmed by Chapuis and Driver [9], which strengthens our
hypothesis. Subsequent analysis confirmed the presence of pyramidal II slip
across temperatures ranging from 20

◦C to 600
◦C [21]. Evidence was found

that above approximately 200
◦C, the number density of immobilized long

dislocations was reduced significantly, further enhancing our hypothesis
[21].

A numerical investigation of this phenomenon is now in order, however
this necessitates a well-calibrated model. Numerous challenges persist in
characterizing and comprehending thermal effects in Mg, even from an



2.2 mechanical processes during plastic deformation in mg 41

Figure 2.16: EBSD map and corresponding pole figure of single crystal after
unconstrained a−axis compression at room temperature (a,b), ϵ =
0.04, and at 350

◦C (c,d), ϵ = 0.096. The parent grain is shown in blue,
the twins in red. Note the presence of small recrystallized zones in
(c) at the twin boundaries. Reproduced from Chapuis and Driver [9]
with permission from Elsevier.
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experimental standpoint. These discrepancies outlined above encompass
variations in ultimate stresses and the overall transition into a smoother
plastic flow regime. This fact underscores the difficulties inherent in ex-
perimental examinations of the material and, consequently, in accurately
characterizing its behavior. The findings of Chapuis and Driver [9] and Won-
siewicz and Backofen [19] constitute a comprehensive collection of studies
pertaining to the temperature-dependent material response in Mg single
crystals, and these findings are frequently employed for the calibration of
material models.

2.2.5 Mechanical Characterization of Polycrsytals

Before delving into the realm of Modeling and its own complexities, it is
worth obtaining a more in-depth understanding of the behavior of poly-
crystalline materials. In this setting, numerous additional factors such as
the texture and grain size influence the material’s response. The same
studies that offered unprecedented insight into the single crystal behavior
of Mg are also a knowledgeable resource to further our understanding of
polycrystalline behavior [8, 19].

Kelley and Hosford [8] were among the first to evaluate the properties
of pure Mg polycrystals. The same series of experiments, as described
previously for single crystals, was performed on samples of pure Mg
extracted from rolled Mg sheets.

The texture of the sheet material is depicted in Figure 2.17 (a). Here, a
basal pole figure is chosen. A strong propensity of the grains to orient along
the normal direction of rolling is observed, which is typical behavior for Mg
[2, 66]. The texture formation is owed to the strong prevalence of twinning
and basal slip during the rolling process.

The samples were cut from the rolled sheet along different orientations
and loaded under plane strain compression at quasi-static strain rates along
the normal, rolling, and transverse directions (ND, RD, and TD, respec-
tively), with varying combinations of ND, RD, and TD constrained, to
evaluate the polycrystalline response of the material. The exact nomen-
clature is explained in Kelley and Hosford [8]. The authors observed that
polycrystalline Mg generally behaves similarly to single crystals, with a
somewhat weakened response. Cases RZ and TZ exhibit twin-dominated
behavior, leading to a double-S shape of the stress-strain curve due to twin-
ning. It was observed that twinning did not lead to the same sharp change
in behavior as in the single-crystal case, which is attributed to the fact that
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Figure 2.17: The texture of polycrystalline rolled Mg sheet, reported by [8], is
shown in (a). The corresponding experimental stress-strain curves
of the polycrystals under plane strain compression are shown in (b).
The nomenclature chosen by Kelley and Hosford [8] is described in
chapter 3 and in Kelley and Hosford [8].



44 background

a number of grains are oriented away from the ideal position, leading to a
mixed, weakened response. The same observations hold true for all other
cases, such as ZT and ZR whose texture leads to similar orientations as
cases A and C, respectively. Similar experiments were conducted later by
Wonsiewicz and Backofen [19] for polycrystals at elevated temperatures.
Together, these experiments form the basis for a number of material models,
as they both were conducted under almost identical conditions, making
them ideal candidates for model calibration and validation.

Further experimental studies for pure Mg polycrystals were conducted
by e.g. Ono, Nowak, and Miura [3] who investigated the grain-size effect
of polycrystalline Mg at varying temperatures. They observed a tempera-
ture dependence of the grain-size hardening factor, although it is unclear,
whether this is due to temperature dependence of the process itself or of
the plasticity of the slip and twin systems.

Far more experimental and numerical data is available for polycrys-
talline material, especially for alloys. These contributions cover a number
of varying topics, ranging from the investigation of recrystallization, the
characterization of sheet material, and texture evolution. The overall char-
acterization of these effects lies outside the scope of the thesis, hence at this
point, we refer the interested reader to further literature [5, 49, 65, 68, 86,
89, 127–129].

2.2.6 Hardening Mechanisms in Mg and its Alloys

For a complete understanding of the material behavior, however, a number
of aspects are still missing. Most notably, there exist a number of hardening
effects that may or may not need to be accounted for. The overall material
response of a material is composed of a number of mechanisms. We provide
an overview of the relevant mechanisms in Mg. For a constitutive model,
work hardening needs to be accounted for and for an extension to alloys, a
number of other hardening mechanisms could become important. Hence,
let us introduce the main hardening effects here.

2.2.6.1 Work Hardening

The first and most important hardening mechanism for this thesis is strain
(or work) hardening. Work hardening occurs due to dislocation pile-up,
where the presence of dislocations leads to a back-stress, increasing the
stress required on a slip system to further the dislocation movement, [103].
In its most general form, the hardening mechanism is a function of the
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dislocation density and material constants and affects the CRSS, as defined
previously, via the relation

τCRSS = τ0 + Gαbρ1/2, (2.3)

with dislocation density ρ, Burger’s vector b, shear modulus G, and a
material specific correction term, α.

From this formulation, it follows that the stress required to further move
dislocations along a given system increases with the square root of the
density of dislocations. This formulation is a relatively simple one and
more accurate formulations exist that take into account the presence of
dislocations on various slip systems and the types of dislocations, such as
in the model presented by Liu et al. [4]. It is important to note that plastic
deformation moves existing dislocations along a slip direction, but further,
dislocations are generated in the process in dislocation sources.

There are a number of dislocation generation mechanisms. The main
nucleation mechanisms of interest here are homogeneous nucleation and
the nucleation at Frank-Read (FR) sources.

For one, homogeneous nucleation of dislocations occurs when atomic
planes rupture, creating two opposite-facing half-plane dislocations in the
material. Further deformation leads to these dislocations moving in separate
directions.

In addition to that, dislocations may emerge from FR sources. An FR
source is a dislocation that is pinned at two points, either by precipitates,
other dislocations, or solutes. Due to continued loading, the dislocation
bulges and begins to loop around itself, thus effectively creating a new
dislocation loop that in turn gets pinned, thus increasing the dislocation
density massively, see Figure 2.18. It has long been argued that this mecha-
nism is the main contributor to dislocation nucleation, however, a relatively
recent study by Murr [130] challenges this understanding and argues that
ledges at grain boundaries are the main mechanism. This has, however, not
been verified.

In contrast to the nucleation of dislocations, there are also annihilation
processes via recovery mechanisms and when dislocations of opposing
directions combine to a full plane (the inversion of the homogeneous
nucleation process).

2.2.6.2 Grain Size Hardening

In addition to strain hardening, grain-size hardening plays an important role
in the contribution to the yield strength. It is a hardening mechanism that
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Figure 2.18: FR dislocation source. (a): bulging of pinned dislocation, (b): looping
of the dislocation around itself, (c): forming of a new dislocation loop.
Reprinted from Gurrutxaga-Lerma et al. [10] via Open Commons
License.

mostly resides on the polycrystalline level, in contrast to work hardening
that occurs for single crystalline descriptions. It is characterized via the
Hall-Petch effect [131, 132] and postulates a hardening of the following
form

σy = σ0 +
k0√
dg

. (2.4)

Thus, the yield strength of the material, σy, increases by adding a size-
hardening term k0, divided by the square root of the grain size dg. This
hardening term is added to the base strength at large grain sizes, σ0. The
yield strength is typically measured at the onset of plasticity at 0.2% plastic
deformation [3] before strain hardening plays a significant role in hardening.

An extensive study was performed by Ono, Nowak, and Miura [3] for
the grain size dependence in rolled Mg samples at various temperatures. It
was reported that the grain-size hardening effect receded with increasing
temperatures. Few studies reporting grain-size effects in pure Mg exist, and
even fewer characterizing the impact of temperature. Sadly, this study has
some extensive drawbacks. First, no texture is reported in the study. While
the stress-strain plots suggest that the tension must have occurred in the
TD or RD direction of the rolled specimen, it is unclear. Second, the effects
of recrystallization were disregarded. While it is true that this may not have
a strong impact on the yield stress, since recrystallization is expected to
occur only during plastic deformation, some of the reported yield values
were taken at 2% plastic deformation, at which point recrystallization in
Mg would already begin, leading to softening[49, 50]. Finally, Mg is a
highly anisotropic material exhibiting a tension-compression asymmetry.
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Figure 2.19: Hall-Petch hardening in rolled Mg polycrystals tested under tensile
load. The direction of loading is unknown. Reprinted from [3], with
permission from Elsevier.

This could have severe effects on the Hall-Petch hardening curves under
various loading conditions, which was not investigated in this study.

A later study by Caceres, Mann, and Griffiths [133] sheds more light on
the directional dependence in Mg and Mg-Zn alloys. Their findings suggest
differences in Hall-Petch hardening depending on whether the samples
are loaded in tension or in compression. However, they used cast samples
instead of rolled samples, thus disregarding the potential effects due to
texture. More recent studies and an ongoing effort, such as by Wei et al.
[134], show that there are still open questions pertaining to the grain size
hardening of Mg and Mg alloys. It is in itself a phenomenon still not well
understood and requires further research.

2.2.6.3 Solute Hardening

There are multiple aspects to solute and precipitation hardening as can be
seen in e.g. [1]. First and foremost, there are the hardening effects from
solute atoms in the lattice on the various slip systems. Solutes represent
small obstacles to dislocations, inhibiting dislocation movement and thus
increasing the CRSS of the respective system. The strengthening effect of
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solutes in Mg was investigated in a number of scientists’ work, involving
experimental [18, 135] and ab-initio studies [136, 137].

The general approach to solute hardening is given as [138]

∆τCRSS = Gbϵ3/2√c, (2.5)

where G is the shear modulus of the material, b is the burger’s vector of the
dislocation, ϵ is the lattice distortion term and c is the solute concentration.

This assumption does not hold for all types of dislocations, and different
types of dislocations (edge vs screw) are affected unequally by the presence
of solutes, where screw dislocations experience much less hardening.

A comprehensive study on the impact of the presence of solutes in Mg
was only performed for basal slip by Tehranchi, Yin, and Curtin [136], who
identified the solute strengthening in a range of temperatures, showing
thermal effects of the solute hardening in multiple regimes.

2.2.6.4 Precipitation Hardening

Precipitation hardening is a hardening effect associated with the presence
of second-phase particles inside grains and along grain boundaries. These
second-phase particles pose larger obstacles to dislocations than individual
solutes and typically cause more strengthening.

The strengthening mechanism of precipitates is the so-called Orowan
strengthening and takes the form

∆τCRSS =
Gb

2πλ
√
(1 − ν)

ln
dp

r0
, (2.6)

where G represents the shear modulus of the material, b stands for the
Burger’s vector, λ is the effective inter-obstacle spacing on the slip plane,
dp is the mean planar diameter of the obstacles and r0 represents the core
radius of dislocations. Depending on the precipitate shape and orientation
as well as on the slip system being considered, the specific values for dp
and λ as well as the Burgers vector of the dislocation vary. The effects of
different precipitate shapes and sizes on basal [90] and non-basal slip [139]
were rigorously derived and evaluated for a given number density and
precipitate volume fractions between 1% and 5%. The results show that
prismatic plate precipitates achieve the highest degrees of hardening due to
their potential to reduce the inter-particle spacing the most [90]. Only at
low volume fractions, the {0001} rod-shaped precipitates are more efficient
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Figure 2.20: The theoretical precipitate hardening effect of unshearable, evenly
distributed Mg-Al precipitates at 7% volume fraction is shown.

strengtheners. For all precipitate types investigated the precipitate harden-
ing increases with increasing form factors for the basal and prismatic plates
and remains almost constant for the rods. For a given volume fraction, the
number density of precipitates also plays a significant role, with a higher
number density of relatively small precipitates leading to much higher
hardening than few, larger, precipitates, see e.g. for basal plate precipitates
in Mg-Al alloys the correlation between the number density and the change
in CRSS computed for the main slip systems in Figure 2.20

The theoretical hardening, however, is much larger than the effectively
observed response. This phenomenon was investigated by Cepeda-Jiménez,
Castillo-Rodrıguez, and Pérez-Prado [39], who found that the origin of
the lower precipitation hardening in Mg alloys lies in the ease with which
dislocations in the basal plane can shear the Mg17Al12 plate precipitates.

2.3 modeling approaches for mg

While experimental studies guide our understanding of materials, under
some circumstances, they reach limitations such as challenges in obtaining
in-situ data or different studies reporting contradictory findings. In these
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instances, it can often be useful to use models as a tool to test hypotheses
and gain insights beyond the experimental limitations.

A variety of models are at our disposal to investigate the differing aspects
of Mg, from the atomistic scale to the continuum level. The focus of this the-
sis lies on the intermediate scales ranging from the micro- to the mesoscale
and beyond and will be discussed in detail. For the sake of completeness,
however, a short overview of findings from the lower scale modeling is
given here.

2.3.1 Sub-Micro Scale Modeling of Mg

For investigations on the lowest scales, atomistic or molecular dynamics
(MD) simulations and density functional theory (DFT) are employed. These
methods have proven invaluable in obtaining insights that are otherwise
challenging to get. Yi [63] for instance used MD simulations to investigate
the role of prismatic ⟨a⟩ dislocation climb near solute clusters in the soften-
ing of the material response at room temperature. A single dislocation line
is tracked in a simulation box with solute atoms and vacancies present and
it was observed that the dislocation climbs to overcome solute obstacles.
This appears to be directly correlated with the softening of the pyrami-
dal I glide and thus reduces the anisotropy of the materials even at room
temperature. In another instance, Hu et al. [71] investigated the formation
and growth of twin embryos via means of MD simulations, gaining in-
sights into the correlation of the twin tip velocity and the applied shear as
well as confirming results experimentally. The origin of some of Mg’s key
characteristics relating to the poor ductility of ⟨c + a⟩ pyramidal slip was
investigated by [53] via MD and DFT-validated interatomic potentials.

These methods offer unprecedented insights into sub-microscopic pro-
cesses, however, suffer significantly from scaling issues. Large-scale sim-
ulations with this level of resolution are simply impossible, due to the
sheer computational cost. Hence, for this thesis, we focus on models on the
micro- and macroscales and their integration into higher scales, via multi-
scale modeling and a process called homogenization, described in Section
2.3.4. These models offer a good trade-off between physical accuracy and
computational speed (as well as scalability), making them good candidates
for both, investigating physical phenomena and efficient modeling of the
materials that are at the core of the ICMD framework.
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2.3.2 Micro- and Mesoscale Modeling Techniques for Mg

When modeling the behavior of Mg on a larger scale, it is essential to
employ models capable of capturing its complex mechanics, governed by
slip and twin systems. Several approaches with varying levels of accuracy
and computational expense exist, such as discrete dislocation dynamics
(DDD) and crystal plasticity (CP). DDD may be the most natural approach to
modeling plasticity, as the motion of individual dislocations is tracked and
computed, which makes it a high-fidelity approach. It allows us to show and
investigate local effects of slip and twin systems and their corresponding
dislocations in the material, showcasing potential size effects and local
interactions, see e.g. Figure 2.21. It typically is constrained to observations
of a few 1-10 grains due to the computational expense associated with it
and suffers from limitations in approximating twinning.

Fan et al. [11] for instance performed DDD simulations of single and
polycrystals of pure Mg investigating the interplay of twin boundaries
and slip dislocations. Their results show that tensile twin boundaries pose
significant hardening obstacles to slip and contribute significantly to overall
material hardening. While these are valuable and high-fidelity findings,
the sheer computational cost of this method renders it prohibitive for our
sought-after applications.

On the other hand, twins can be interpreted as a phase-transformation
process and as such, twins are often modeled as a phase-transformation
mechanism via phase-field models (PFM). One example is the PFM utilized
by Clayton and Knap [140] to describe twin propagation in an elastic
medium. It was later extended to model complex media and materials
and found application in Mg from Liu et al. [141] and Ocegueda and
Bhattacharya [142].

To explore the solutions derived from these PFMs, we consider the simple
case of twin systems embedded in an elastic medium within a large-strain
setting, similar to the study conducted by Clayton and Knap [140]. Suppose
an otherwise elastic material, with a number of twin systems, β, each
described by a twin normal nβ and a direction aβ is given on a domain
Ω ∈ Rd, d = 2, 3. At each point of the domain X , the material may be in
either the matrix or the twin phase.

The overall deformation at large strains is described by the deformation
gradient F , which may be decomposed into elastic and plastic contributions,
following the approach of Kalidindi [143]

F = F eF p, (2.7)
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Figure 2.21: DDD simulations of pure Mg single crystals and polycrystals, per-
formed in 3D ParaDiS code. Adapted from Fan et al. [11], with
permission from Elsevier.
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where the superscripts e and p represent the elastic and plastic parts, respec-
tively. One possible approach to further decompose the plastic part is given
as F p = F sF tw, [144], further decomposing into slip and twin components.
This approach and the exact type and order of the decomposition, however,
are still disputed.

In the absence of slip, the only plastic component in F p stems from the
twin components, leading to

F p = F tw. (2.8)

Since twin formation involves a discrete amount of plastic simple shear
deformation, characterized by its twin normal and direction [145], each
twin system, leads to the simple shear deformation [140],

Ftw(X) = I + γtwβaβ ⊗ nβ. (2.9)

In this instance, γtw represents the discrete twinning shear associated
with each system based on the c/a ratio of the material – in our example,
we assume all systems are equivalent and have the same inherent twinning
shear. A more general formulation follows from the rate-form of the updates,
described in detail in chapter 3. For the TT systems in Mg, with c/a = 1.624,
the resulting twinning shear is 0.129.

In PFMs, each phase is described via a phase-field (or order) parameter
λ. In the case of multiple phases, a vector of phase-field parameters is
employed, that represents the volume fraction of the material in a given
phase. At any given time, each point of the system must be in either one of
the states – the twinned or the matrix phase. A phase may also never be
negative since volumes cannot be negative. Further, all volume fractions
must sum up to one. Hence at all times, and at each point, it must hold

λβ(X) =


0 if X ∈ matrix ,

(0, 1) if X ∈ boundary ,

1 if X ∈ twin ,∈ [0, 1],

(2.10)

and at every point, ∑β λβ(X) = 1. The total deformation from twins
depends on the portion of the material that is in the twinned phase, leading
to

F tw = I + γtwh(λβ)∑
β

aβ ⊗ nβ, (2.11)
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where we use λβ as a descriptor for the overall volume fraction of the
material in phase β (i.e. twinned along system β). Further, we use h as
an interpolation function that depends on the phase-field parameter λ(x)
and satisfies the conditions h(0) = 0 and h(1) = 1. Choices for h vary, e.g.
in Clayton and Knap [140] vs. Liu et al. [141]. This function must satisfy
some conditions, such as differentiability and continuity. A simple choice is
h(λ) = λ.

Now, the overall Helmholtz free energy density is represented as

W(Fe,λ) = We(F e,λ) + Wtw(λ) + Wint(∇λ), (2.12)

with contributions from the elastic and twin components. Typically, for
Wtw(λ) a multi-well potential is chosen. With one single twin system, this
potential takes on the form

Wtw(λ) = Aλ2(λ − 1)2, (2.13)

with an energy barrier A to overcome for the phase transition, see Figure
2.22. In the presence of multiple twin systems, the double-well potential
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Figure 2.22: Double-well potential typically used in phase-field modeling with
single twin variant.



2.3 modeling approaches for mg 55

turns into a multi-well potential depending on the order parameters of each
individual twin system.

Wtw(λ) = A

∑
β

λ2
β − 2 ∑

β

λ3
β +

(
∑
β

λβ

)2
 (2.14)

In addition, an interfacial energy is introduced to represent the energy
associated with twin boundaries and follows from the Cahn-Hiliard formal-
ism [146]. It typically takes the form

Wint(∇λ) = η : (∇(λ)⊗∇(λ)), (2.15)

with a second-order tensor η. In the simple case of isotropic interfacial
energy, eta = ηI.

The solution to the spatial distribution of the order parameter is obtained
by minimizing the energy with respect to the order parameters, while
solving the governing equations on the body, for details, see e.g. Clayton and
Knap [140]. Although computationally expensive, this approach allows for a
good approximation of the twin microstructure within the crystals, seen e.g.
in Figure 2.12. While these models offer high accuracy and spatial resolution,
computational complexities arise when incorporating slip and multiple twin
systems due to the coupling of these mechanisms and challenges in solving
non-convex optimization problems [147]. Furthermore, in these coupled
descriptions, scale separation issues can occur between slip and twin, as the
latter can occur at the nanoscale, resulting in nano-twins that are only a few
atomic layers wide. Achieving this level of resolution on a mesoscopic scale
with phase-field models is challenging. Additionally, phase-field models
tend to overestimate interfacial energies, requiring much larger driving
forces than those observed experimentally. This poses both physical and
computational drawbacks, where accuracy needs to be compromised [141,
142], or investigations are limited to lower scales.

2.3.2.1 Twins as Pseudo-Slip Systems

CP models, on the other hand, offer a different approach to describe plastic
deformation by accounting for individual slip and twin systems, however
on a much higher level than DDD and without the complexity of PFMs. CP
originated by searching for an efficient manner of representing slip, while
twin contributions were only included in the formulations later. In classical
CP, slip systems are described by the accumulated plastic deformation on
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each respective system [148–151]. Early work by Kalidindi [143] and Agnew,
Yoo, and Tome [46] and Staroselsky and Anand [47] considered twins in Mg
as pseudo-slip systems. However, in hcp materials like Mg, twin-induced
reorientation and the coexistence of twinned and untwinned states play
significant roles. These aspects were considered in later approaches by
Staroselsky and Anand [47], Zhang and Joshi [108], and Proust, Tomé,
and Kaschner [152], where reorientation was incorporated using a flow
rule based on the work by Kalidindi [143], capturing the effects of lattice
reorientation within grains.

Several models have addressed the issues of convexity and the coexis-
tence of twinned and untwinned states, accounting for lattice reorientation
[107, 108, 144, 153, 154]. In one approach, Homayonifar and Mosler [144]
replaced nonconvex energies with a convex envelope [147]. However, these
approaches suffer from high computational costs, limiting their application
to small samples. Another approach, as proposed by Zhang and Joshi [108],
introduced lattice reorientation via pseudo-slip systems for twins using an
integration-point-based procedure.

Chang and Kochmann [107] integrated the strengths of Zhang and Joshi’s
[108] lattice reorientation approach with the variational nature of Homay-
onifar and Mosler [144] and Ortiz and Stainier [154]. These variational
models offer several advantages, including the direct evolution of internal
variables through the minimization of a single potential, avoiding the need
for solving multiple coupled energy minimizers such as in phase-field
models. The implicit formulations introduced by Chang and Kochmann
[107] provide computational benefits by allowing larger time steps and
more efficient numerical implementation. The model considers a reduced
number of slip and twin systems, demonstrating that pyramidal II ⟨c + a⟩
slip, prismatic and basal slip, and CT systems are sufficient to capture the
material behavior. The model was calibrated using a bottom-up approach
based on single-crystal experiments and applied to various scenarios such
as rolling and tensile studies, as well as comparisons with reduced models
[155]. However, incorporating multiple slip and twin systems within the
implicit scheme presents stability challenges [59].

On the contrary, Zhang and Joshi [108] adopted a more comprehensive
approach by considering multiple slip and twin systems, including basal,
prismatic, pyramidal I ⟨a⟩, and pyramidal II ⟨c + a⟩ slip, as well as the
most commonly observed tensile and CT variants in Mg. This inclusion
of multiple mechanisms leads to a competition between different slip and
twin modes, which presents challenges in identifying model constants, as
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noted by the authors. The calibration process becomes particularly chal-
lenging and iterative, requiring repeated simulations and reassessment of
the constants. Despite these difficulties, once calibrated, the model provides
unprecedented insights into the competition among different deformation
mechanisms and enables various studies.

Both of these models take a bottom-up approach, starting with the evalu-
ation of single-crystal behavior and using it as a reference for calibration.
In contrast, models for Mg alloys, such as [5, 68, 152, 156], take a top-down
approach where single crystal data is not available. In these top-down
approaches, physical parameters are typically inferred from the response of
polycrystalline materials. Figueiredo et al. [157] even developed a compre-
hensive framework for the inverse calibration of model parameters in AZ31

alloy. However, top-down models suffer from certain drawbacks related to
the uncertainties in calibration. The polycrystal response strongly depends
on texture, which plays a crucial role in Mg but can exhibit significant
variation across different samples. Additionally, the homogenization tech-
nique employed to represent polycrystals significantly influences model
parameters. For example, the finite element method (FEM) used in [157]
approximates polycrystal behavior reasonably well but incurs higher com-
putational costs.

2.3.3 Modeling at Elevated Temperatures

Relatively few models for Mg have investigated the temperature depen-
dence of Mg and its alloys, and when conducted, they predominantly
employed top-down approaches [5, 156, 158], resulting in inconclusive
findings due to the aforementioned reasons. However, only two bottom-up
models have been used previously, yielding significantly different outcomes
[15, 159]. Both Liu, Roy, and Silberschmidt [159] and Wang, Liu, and Soh
[15] based their models on Zhang and Joshi [108]’s formulation of the
crystal plasticity (CP) model and incorporated a larger number of slip
systems compared to Chang and Kochmann [107]. The models differ in
their treatment of the temperature dependence of the compression twin
(CT) and pyramidal II slip systems. While Liu, Roy, and Silberschmidt [159]
reported greater CT activity at room temperature and minimal activity
at elevated temperatures, Wang, Liu, and Soh [15] presented contrasting
results. They observed some CT activity at room temperature, consistent
with [108], but at intermediate temperatures, a significant amount of pyra-
midal II slip was observed before the CT systems dominated at higher



58 background

temperatures. However, CT systems are known to exhibit slow evolution
and limited deformation capability, and these results contradict certain
experimental observations and explanations, highlighting the persistent
challenges and confusion surrounding the mechanical properties of Mg at
elevated temperatures.

2.3.4 Homogenization Methods

With a suitable description of the microscale chosen (e.g. via CP mod-
els), the next steps consist of finding an appropriate representation of the
polycrystals via homogenization. Homogenization, in our application, con-
sists in representing the underlying heterogeneous material via an effective,
macroscopic response, that is the average of the underlying inhomogeneous,
microstructural behavior at each point. For homogenization to be feasible,
a separation of scales must apply, i.e. the characteristic length scale of the
homogenized scale must be orders of magnitude larger than the lower scale.
In general, many approaches are conceivable to attain this, such as simple
averaging or defining representatives, but some assumptions must be made
and boundary conditions imposed.

We generally differentiate the number of possible approaches into mean-
field and full-field methods. On one hand, mean-field methods (also some-
times called self-consistent methods) study high-dimensional stochastic
systems (such as polycrystals with larger numbers of grains) by studying a
simplified model characterizing the stochastic averages of the system. This
could be as simple as repeatedly solving the single crystal problem and
taking the average of n simulations as a representative response of poly-
crystals. They are based on relatively simple and natural assumptions on
how to model polycrystals, but not without validity! Full-field methods, on
the other hand, aim to directly model the underlying system and return an
averaged material response. This is typically attained by creating a represen-
tative volume element (RVE) that represents the underlying microstrcutre
and whose average deformation is equivalent to the deformation experi-
enced by the higher scale. Since only an average is imposed, individual
grains may exhibit vastly varying behavior, so long as the imposed average
is maintained. As such, they offer much higher accuracy than mean-field
techniques, however, they come at a higher computational cost.

In the following, we provide a short overview of relevant homogenization
techniques beginning with the mean-field methods.
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2.3.4.1 Mean-Field Methods

Mean-field methods are commonly employed in mechanics to simplify
complex problems by making certain assumptions. One approach is to
assume that all grains in a polycrystalline material are of equal size and
do not interact with each other. This simplification is known as the upper-
bound model or Taylor model, introduced by Taylor [103]. In this model,
grains are treated as springs in parallel, with each grain experiencing the
same deformation and the properties of the spring (grain) being the only
differentiating factor in the individual stress-strain responses of the grains.
Due to its assumption of iso-strain, the Taylor model provides an upper
bound to the material response. On the other end of the spectrum, the
iso-stress model, proposed by Sachs [160], assumes equal stresses in each
grain, as would be the case if the springs were connected in series. Both the
upper-bound and iso-stress models have been extensively used to study the
plastic behavior of materials [47, 143, 161–163].

Another commonly used mean-field representation of polycrystals is the
self-consistent approach, which originated from the work of Kroner [164].
The self-consistent model assumes that each grain can be represented as an
ellipsoidal inclusion within an elastic, homogeneous matrix. Building upon
the solution for an elliptical inclusion in an elastic medium developed by
Eshelby [165], researchers have further developed the self-consistent model
to account for small-strain consistent polycrystals [166, 167]. The model has
also been extended to include viscoplastic flow [168] and applied to hexago-
nal close-packed (hcp) materials [169, 170]. The VPSC model has since been
extensively utilized in modeling Mg [156, 158, 171, 172] and has frequently
been employed in top-down calibration approaches. These models have
successfully captured texture evolution and complex thermo-mechanical
phenomena such as dynamic recrystallization [68, 158]. The Taylor model
has also been used repeatedly, e.g. by [107], who demonstrated that relaxing
the Taylor model based on loading conditions can yield comparable results
to FEM approximations in textured Mg polycrystals, and by Styczynski
et al. [66], who approximated the rolling texture of Mg alloy AZ31.

These computationally efficient mean-field models provide an averaged
representation of the microstructure of polycrystalline materials. This in-
herent averaging or homogenization process makes them computationally
efficient. At the same time, these assumptions induce errors and lead
to drawbacks, inherent to the model description. However, a significant
drawback of these approaches lies in their simplified representation of
microstructural features. The VPSC model, for instance, does not track
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individual grains but instead considers average grain packages, compro-
mising accuracy. Furthermore, the VPSC model can be computationally
expensive, particularly for large-scale simulations and it shows poor scaling
with parallelization [173]. Further, parameter calibration typically poses a
challenge, due to the wide range of potential parameters and the numer-
ous combinations that can yield similar stress-strain behavior, resulting in
non-uniqueness and varying outcomes.

2.3.4.2 Full-Field Methods

Alternatively, one can conceive an approach to representing the polycrystal
that takes into account much more detail, such as the size of the grains, rela-
tive positions, and boundary conditions such as continuity in displacement
across the grains. The resulting description is much more complicated and
requires far more components than the simplified This typically happens
via homogenization. For this thesis, the difference between homogenization
methods is quite relevant and shall be further elaborated here.

The full-field representation of materials offers a description with lo-
cal information of the microstructure, thus yielding a spatially resolved
description of stress, strain, or texture field on the lower scale. The most
common representatives are spectral methods (named after the use of the
spectral Fourier transform) and the FEM. Both of these methods solve the
mechanical boundary value problem (BVP) on the entire volume of the rep-
resentative volume element (RVE) with respective Dirichlet and Neumann
boundary conditions for displacements and tractions

∇ ·P (X)− ρ(X)a(X) = Fbody(X) : in Ω, (2.16)

u(X) = û(X) : on ∂ΩD, (2.17)

P (X)N (X) = t̂(X) : on ∂ΩN. (2.18)

Here, P (X) is the first Piola stress, Fbody(X) represents the body forces,
ρ(X) the density of the material, which can vary locally, a(X) stands for
the acceleration on the body. û(X) is the displacement on the Dirichlet
boundary, t̂(X) stands for the traction, and N (X) for the normal at each
point of the Neumann boundary.
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Body forces are typically omitted in purely mechanical problems on the
RVE level, and with the exception of dynamic problems (impact, vibrations,
etc.), one may also omit inertia effects, such that (2.16) simplifies to

Pi J,J = 0 : in Ω, (2.19)

ui = ûi : on ∂ΩD, (2.20)

Pi J NJ = t̂i : on ∂ΩN. (2.21)

The difference between the FEM and spectral methods lies in the way the
problem is solved. The above notation is the strong form of the BVP. We
first show how the FEM solves the mechanical BVP, before diving into the
spectral method at a later point.

The Finite Element Method
Let us discuss how we can find a solution to the problem (2.16) with the
FEM. The form (2.16) is called the strong form of the problem. In the
strong form, the requirements for any acceptable solution u are given as
u∈ C2(Ω) ∩ C0(Ω̄), where Ω represents the domain of the body we seek
the solution for. This means the solution u needs to be twice continuously
differentiable and continuous. These are strong requirements for a solution
field, rendering the direct numerical solution challenging.

Hence, it is often more advantageous to find the solution in an alternative
way [174]. An alternative solution may be found by casting the problem into
a variational form, describing the total potential energy via a functional,

I[φ] =
∫

Ω
W(F )dV −

∫
Ω

ρ0B · φdV −
∫

∂ΩN

T̂ · φdS, (2.22)

where we aim to find solutions to the deformation mapping, φ,

φ ∈ U = {φ ∈ H1(Ω) : φ = φ̂ on ∂ΩD} such that φ = arg minI [φ].
(2.23)

By assuming that the undeformed and deformed configurations of our
systems coincide, we may rewrite φ = x = X + u and hence reformulate
the variation in terms of the displacement field u ∈ U [174]. Any admissible
deformation u must therefore be the minimizer of this functional, hence we
seek solutions u that fulfill the boundary conditions on ∂ΩD and minimize
the functional, i.e., [174]

u = arg min I [u] : u = û on ∂ΩD. (2.24)
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The solution follows by taking the first variation of I

∂I [u] =
∫

Ω

∂W(F )

∂Fi J︸ ︷︷ ︸
Pi J

δui,JdV −
[∫

Ω
ρbiuidV +

∫
∂ΩN

t̂iδuidS
]
= 0, (2.25)

where we made use of the relationship Pi J = ∂W/∂Fi J , and the fact that
F = I +∇u to take the first variation [174], which has to be equal to zero
for a stationary point. We may reformulate this equation into

∂I [u] = G(u,∂u) = A(u,∂u)−L(∂u)∀∂u ∈ U0(Ω). (2.26)

Further, by interpreting ∂u as virtual displacements v , we recover the
principle of virtual work, such that

G =
∫

Ω
vi,J

∂W(F )

∂Fi J︸ ︷︷ ︸
Pi J

δui,JdV − vi,J

[∫
Ω

ρbiuidV +
∫

∂ΩN

t̂iδuidS
]
= 0, (2.27)

and attain the weak form

G(u,v) = A(u,v)− L(v) = 0, (2.28)

with
A(u,v) =

∫
Ω

PiK(∇u)vi,JdV, (2.29)

and
L(v) =

∫
Ω

ρbividV +
∫

∂Ω
t̂ividS. (2.30)

Here, A represents a generally non-linear operator for the relationship
between P and W (the internal forces due to deformation), and L represents
the sum of all external forces (body forces plus traction forces on the
boundary). Further, from the principle of virtual work, we know that
G(u,v) = 0 must always be satisfied for all permissible displacements u

and the virtual displacements v. This allows us to rephrase (2.28) into

A(u,v)︸ ︷︷ ︸
Fint(u)

= L(u,v)︸ ︷︷ ︸
Fext

. (2.31)

Finally, the weak form needs to be solved on domain Ω with displace-
ments u that need only satisfy

u ∈ U = {u ∈ H1(Ω) : = û on ∂ΩD}, (2.32)
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much weaker requirements than in the strong form.
As a numerical approach, the FEM aims to find an approximate solution,

as it cannot directly determine the exact solution. Instead, it seeks an ap-
proximate solution within a finite-dimensional subspace Uh ⊂ U, where U
is the solution space and Uh contains approximate solutions uh. This sub-
space is numerically approximated, often employing the Bubnov-Galerkin
approximation, leading to an approximation of the displacement as:

uh(x) =
n

∑
a=1

uaNa(x), (2.33)

where Na(x) represents the so-called shape functions. The choice of shape
functions, for example, linear or polynomial, influences their capability
to interpolate the solution over the domain. These shape functions inter-
polate the displacement along the element and must adhere to certain
requirements, such as:

• Ni = 1 at position x = xi for node i,

• Ni = 0 at position x = xj for node j ̸= i,

• ∑i Ni(x) = 1 for all positions x.

The discretized and approximated displacements at each element are
incorporated into the weak form (2.28). By inserting the Ansatz (2.33) for u
and v into the weak form (2.28) one obtains

G(∑
a
uaNa(x), ∑

b
vbNb(x)) = A(∑

a
uaNa(x), ∑

b
vbNb(x))− L(∑

b
vbNb(x)) = 0.

(2.34)
This leads to the discrete weak form

n

∑
a=1

va
i

[∫
Ω

Pi J(∇uh)Na
,JdV −

∫
Ω

ρpi NadV −
∫

∂Ω
t̂inadS

]
= 0, (2.35)

for all admissible virtual displacements va [174]. This results in a nonlinear
system of equations to be solved.

Fint(ua)−Fext=0,(2.36)

with
Fa

int,i

∫
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This system of equations can be solved numerically for the global force
equilibrium.

While various approaches exist for solving problems using global shape
functions defined over the entire domain, these methods bring about chal-
lenges when dealing with Dirichlet boundary conditions (BCs). When
applying BCs to a 1D bar with prescribed displacements at both ends (e.g.,
u(0) = 0 and u(L) = ∆L), all unknown coefficients are constrained. This
constraint becomes even more burdensome and impractical in higher di-
mensions when using global shape functions. Moreover, utilizing global
shape functions leads to densely populated stiffness matrices, which can
negatively impact numerical efficiency and computational performance
[174]. In FEM, shape functions are locally defined on each element. This
local definition enables the straightforward application of Dirichlet bound-
ary conditions on the nodes, ensuring continuity across elements. Within
each element, the nodal displacements uie for each degree of freedom n are
enforced via element boundary conditions, and the displacements inside
the element are approximated using these shape functions. The accuracy of
the solution is influenced by the choice of shape functions and elements,
with specific selections leading to numerical advantages and disadvantages.
For further insights, refer to Kochmann [174].

To achieve this, all displacements and forces are assembled into global
vectors U ∈ Rd·n and FG ∈ Rd·n, where n represents the number of ele-
ments, and d denotes the total degrees of freedom. This assembly process
gives rise to immense (sparse) matrices and necessitates significant compu-
tation times. The nonlinear system of equations is typically solved using a
numerical solver, with the Newton-Raphson solver being one of the most
common choices.

As the discretization of the body becomes finer, the approximation im-
proves, and the solution approaches the analytical solution more closely.
However, finer discretization also leads to an increased number of elements
and degrees of freedom, resulting in substantial computational overhead.
Furthermore, the FEM is susceptible to significant errors due to poor ele-
ment choices and numerical issues like shear locking and hourglassing.

Spectral Methods
In contrast, spectral methods typically solve for the displacement field
directly, meaning they solve the strong form of BVP (2.19) for all positions
x ∈ Ω simultaneously. This idea was introduced by Moulinec and Suquet
[175], as a relief from the large computational cost associated with FEM.
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It bypasses the need for meshing and makes direct use of microstructural
images.

We follow the discussion for the mechanical BVP as discussed in Vidyasagar,
Tan, and Kochmann [176]. P (X) results from a (typically non-linear) re-
lationship between the local deformation measure (F ) and the material
properties. We can rewrite

P (X) = C0F (X)− τ (X), (2.38)

with a (strongly) elliptic fourth-order stiffness tensor C0 (typically chosen
as the RVE-average of C(X), the latter being the local stiffness at each
position) and a perturbation stress τ (X). Further, by exploiting the relation

F = Grad(ϕ(X)), (2.39)

where ϕ represents the mapping of the deformation from the material to the
current configuration. By combining (2.38), (2.39), and (2.19), one obtains

∇ ·
[
C0∇(ϕ(X))− τ (X)

]
= 0, (2.40)

which in index notation gives[
C0

i JkLϕk,L(X)− τi J(X)
]

,L
= 0. (2.41)

Assuming C0 = const., the latter is a linear equation in ϕ which can be
easily solved in Fourier space, due to the linear nature of derivatives in
Fourier space. Let us first introduce the (discrete) Fourier transformation as

ϕ(X) = ∑
K∈Nf

ϕ̂(K) exp(ihK ·X), (2.42)

with wave vectors K, for a discrete number of frequencies Nf, and variable
h = 2π/LRVE, where LRVE is the length of a side of the RVE.

Transforming (2.41) into Fourier space yields

−h2C0
i JkLϕ̂k(K)KJKL = −ihτi J(K)KJ . (2.43)

By introducing the acoustic tensor as

Aik(K) = C0
i JkLKJKL, (2.44)

we may solve directly for the deformation mapping in Fourier space as

ϕ̂k(K) =
i
h
A−1

ik (K)τ̂i J(K)KJ . (2.45)
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Note that this solution relies on the inversion of the acoustic tensor, which
is not possible for K = 0. Further, note that we may write

F̂kL(K) = ihϕ̂k(K)KL. (2.46)

Hence we may find updates to the deformation gradient F as

F̂kL =

⟨F ⟩ if K = 0
i
hA

−1
ik (K)τ̂i J(K)KJKL, else.

(2.47)

Here, ⟨F ⟩ = F̂ (0). Also, note that this algorithm is part of an iterative
scheme since τ depends on F via the deformation. Hence, solutions to this
problem are found in an iterative manner.

The strength of full-field methods lies mainly in identifying local defor-
mations due to the underlying microstructure. This can be seen in a number
of studies performed successfully with FFT-based solvers. For instance,
Vidyasagar, Tutcuoglu, and Kochmann [12] used spectral methods to cap-
ture deformation patterning in Mg single and bicrystals during a variety
of loading paths (see Figure 2.23), and Tutcuoglu et al. [59] predicted local
grain reorientation during recrystallization in Mg with these methods.

Typically, spectral methods are more efficient and faster than FEM so-
lutions. This is largely due to the ease with which the DFFT (discrete fast
Fourier transform) can be parallelized in a multi-core environment, as
well as the fact that they are a little more light-weight, owing to the fact
that there is no need to assemble global matrices in contrast to the FEM.
Spectral methods do, however, also come with some serious drawbacks.
First of all, the spectral nature of the updates means that only periodic
boundary conditions can easily be imposed. Second, due to the constraint
in (2.45), the average deformation must always be known in order to solve
the BVP, which makes the solution of complex deformation paths more
challenging. Especially with anisotropic materials, the deformation can lead
to directional deformation, and imposing a general deformation can be
problematic. Further, an important drawback is the presence of Gibbs ring-
ing artifacts near sharp interfaces, such as inclusions or jumps in stiffness.
The treatment of these issues is non-trivial and a promising method based
on finite-difference approximations of the derivatives in Fourier space was
discussed by Vidyasagar, Tan, and Kochmann [176].
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Figure 2.23: We show the laminate pattern formation in bicrystals under shear.
(a) depicts the geometric arrangement of the two grains within the
bicrystal RVE along with the definition of angles in the blue and
red grains, respectively. Results for varying angles are shown in (b)
through (d). Reprinted from Vidyasagar, Tutcuoglu, and Kochmann
[12] with permission from Elsevier.

2.3.4.3 Multiscale Modeling

In many cases, the bridging between scales is not limited to two but to a
number of scales, e.g. from the micro to the meso scale, and again, from
the meso to the macro scale. Each of those steps of homogenizing the lower
scale and including it as an effective material response on the next larger
scale induces computational overhead. For a material-by-design approach,
as sought after in the ICMD framework of MEDE, efficiency is therefore
key.

Most models at the macroscale use the FEM to represent the macroscopic
body under consideration, such as a sample of material during impact or
during a rolling process. This is in part, because of the ease, with which
the boundary conditions can be imposed in commercial FEM software,
such as Abaqus. Commercial software is typically well parallelized and
computationally efficient.
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More options arise on the lower scales, on how to bridge the gap between
the meso and the microscale. One option is, of course, to use the FEM again,
in computing the effective response of an RVE. This approach leads to the
FE2 method, illustrated in Figure 2.24. The addition of a second layer of FE
problems at the lower scale, however, poses an almost insurmountable com-
putational effort that drastically reduces the feasibility of a truly multiscale
study. This approach has been used in the past, though, see e.g Fritzen and
Hodapp [177]. On the other hand, spectral methods could also be used at
this lower level, but the computational cost remains elevated.

Figure 2.24: Schematic depiction of the FE2 method.

The better options in terms of computational efficiency stem from using
mean-field approximations at lower levels, such as the Taylor, Sachs, or
VPSC method, see Figure 2.25 for an illustration for a FExTaylor approach.
While the VPSC method offers good results, it is poorly parallelizable and
therefore often lacks computational speed [173]. Instead, Taylor models
have been used repeatedly in the past, such as by Tutcuoglu et al. [59, 84].
Despite the good parallelization possibilities and lightweight methodology,
simulation times can still exceed weeks and months, as shown e.g. in
Tutcuoglu et al. [84].
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Figure 2.25: Schematic depiction of the FExTaylor method.

2.3.5 Preliminary Conclusions

A number of physical modeling techniques were introduced and discussed.
Each scale warrants the formulation and implementation of distinct model-
ing techniques, each suited to capture the intrinsic processes that occur on
either scale. CP models offer a good trade-off between accuracy and com-
putational cost, integrate key aspects of plasticity seamlessly and efficiently,
and provide a good choice for a representation of the microscale.

Further, there are a number of possible techniques to bridge the gap
between micro and macro scale via homogenization. Bridging from the
micro to the macro scale requires a number of layers of homogenization
to include lower-scale effects in macro-scale simulations and with each
layer of homogenization, the computational cost increases, to the point
of being unfeasible with regard to an ICMD approach. This warrants
the investigation of other techniques to reduce the computation time of
multiscale simulations. Approaches could lie in either accelerating the
computation of the underlying material models or accelerating the scale
bridging. Another approach, still, lies in leveraging data-driven methods as
surrogate models, using them for their unparalleled computational speed.
In this thesis, we explore this latter approach, illustrated in Figure 2.26.
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Figure 2.26: Schematic depiction of the FExSurrogate model approach.

It consists in replacing the mesoscopic computation entirely via a trained
neural network. In the next chapter, we discuss the requirements such a
neural network must fulfill.
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2.4 data-driven methods

Our approach to accelerating the multiscale modeling lies in accelerating
the computation speed of the lower-scale material models by creating a
surrogate for the homogenized behavior of the material at the mesoscale.
This is achieved, first, by creating a vast amount of data from a highly
efficient mesoscale model, followed by introducing a data-driven method
capable of representing the mesoscopic behavior of the material. In the
following Section, we explore the background of data-driven material mod-
eling and provide a state-of-the-art overview, followed by an explanation
of the approach we chose. The detailed implementation of the surrogate
model is provided in chapter 4.

2.4.1 Introduction to Data-Driven Methods

Machine learning (ML) has a history of achievements across various do-
mains. It is commonly divided into three sub-classes: supervised, unsu-
pervised, and semi-supervised learning algorithms. The distinguishing
factor lies in the availability of labeled data. The data is then used to com-
pute a loss criterion for evaluating algorithm performance. Supervised and
semi-supervised learning utilize labeled data for model training and are
well-suited for tasks such as classification and text recognition. Its appli-
cations are ubiquitous in our daily lives, encompassing a wide range of
tasks. For instance, supervised ML techniques are employed in computer
vision applications such as facial recognition systems that grant access to
our smartphones [178] and in spam filtering. Furthermore, it is increasingly
utilized in consumer sentiment analysis [179] and even predicting consumer
behavior, exemplified by platforms like Netflix and Amazon recommend-
ing personalized movies and products based on the purchasing patterns
of similar users. The realm of advertising has also witnessed a surge in
targeted campaigns tailored to individual preferences. Additionally, ML
algorithms enable our phones to learn our language patterns, improving
their text completion capabilities. Another application goes even further
and recognizes a person’s mental health status based on changes in their
writing style [180].

In contrast, unsupervised learning operates on unlabeled data, primarily
utilized for discovering patterns and performing clustering analysis on
unlabelled data. For instance, unsupervised learning was used to iden-



72 background

tify patterns and connections in quantum data sets [181] or for improved
classification of bird songs [182].

While many methods and algorithms have been developed and some
have been employed for decades, the field of ML is still evolving. It is one
of the most proliferous fields of science and sprouts uncountable numbers
of new contributions. Therefore, it makes no sense to attempt to provide an
overview of the entirety of the field.

Many methods applied in ML have previously been used for decades,
and hence the exact line between ML and e.g. descriptive statistics remains
blurry. With these methods entering the field of mechanics, however, more
architectures and methods are being fitted and specialized for the tasks at
hand. In the following, we provide a short history and overview of the most
important concepts and veer towards those with relevance to applications
in mechanics.

The simplest form of ML constitutes the artificial neural network (ANN).
ANNs trace their roots back to a simple idea, the perceptron, introduced by
psychologist Hebb [183]. Hebb created perceptrons as a simplified concept
of human brain neurons and can be seen as a one-layer neural network
that was initially used as a linear classifier [184, 185]. ANNs have since
gained popularity and thanks to the added computational power and the
availability of data, their applications and performance have increased. A
schematic representation of a perceptron is shown in Figure 2.27, with
inputs x, bias b, and weights w. The output it generates is denoted y, and
mathematically it is described as

y =
N

∑
i=1

xiwi + bi. (2.48)

Even a simple problem such as the linear classification problem per-
formed by [183, 184], required a rule to learn the value of the weights and
bias terms. This was initially done via Hebbian learning [183], a method
that was further improved by Oja [186] and Sanger [187]. Today, ANNs and
subsequent architectures use back-propagating gradient-descent for error
minimization as the main method to learn the model parameters [185]. To
this end, the output is compared in a sensible way to the input, via an error
function to be minimized.

ANNs in their single-layer form, however, are still severely limited. Mod-
ern applications typically use feed-forward neural networks (FFNNs),
stacked layers of ANNs, in which each new layer computes an output
based on the previous layer’s output [185, 188, 189]. The name feed-forward
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Figure 2.27: Schematic representation of a perceptron

stems from the one-way direction in which the input signal traverses the
net.

When large numbers of layers are stacked, the nomenclature typically
changes and we speak of deep neural networks (DNN) [185] or deep learn-
ing (DL) methods. Again, the exact line between FFNNs and DNN is blurry.
DNN architectures allow for a larger number of tunable parameters to
better approximate complex functions, however, this also brings a few draw-
backs. First of all, the added processing power required for DNN networks
is considerable and requires more expensive and performing computers.
Second, a purely numerical issue occurs: the vanishing and exploding gra-
dient problem occurs due to the depth of the NNs. In essence, the problems
are related to the gradients updating the weights on early layers in the
networks vanishing or exploding, due to the repeated multiplication with
small or large numbers. This problem becomes even more prevalent for
another type of network, the recurrent neural networks (RNNs), [190].

For now, let us introduce two specific types of DNN architectures. The
first type is the convolutional neural networks (CNNs) that are ubiquitous
in image recognition and classification applications [185, 191–193]. In CNNs,
one or multiple convolutional layers scan the input for patterns, before
forwarding information down the processing chain. The second type of
important DNN architectures is the gated neural network architectures,
consisting of the long short-term memory (LSTM) [194] and gated recurrent
unit (GRU) [195] architectures. LSTM cells and GRUs (an architecture
derived from the LSTM) contain a hidden state vector that allows for
information from the earlier layers to trickle down the deep architecture,
thus improving model performance [185]. A similar idea, to feed-forward
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Figure 2.28: Stress-strain response of the ANN-enhanced CP model presented by
Ibragimova et al. [13]. Graphic adapted from Ibragimova et al. [13],
with permission from Elsevier.

information to further-down layers, is found in a special type of CNN, the
U-net [196].

DL methods have gained significant traction in the field of computational
mechanics, as evidenced by numerous applications and studies (for a com-
prehensive review, refer to Kollmannsberger et al. [197]. These methods are
frequently employed to approximate solutions to specific partial differential
equations (PDEs) or to enhance the computational efficiency of existing
methods Li et al. [23], Oishi and Yagawa [198], Haghighat et al. [199], and
Guo, Li, and Iorio [200].

One common approach in DNN-based computational mechanics involves
learning fixed-dimensional mappings for PDE solutions, as demonstrated
by Guo, Li, and Iorio [200]. While effective, these methods heavily rely on
the underlying mesh structure and require recalibration and modification
when applied to new problem domains or resolutions.

Alternatively, there are techniques that directly approximate the solution
function using neural networks, as explored by Lu, Jin, and Karniadakis
[201] and Bar and Sochen [202]. In this approach, the neural network learns
to represent a specific instance of the PDE, making it mesh-independent.
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However, the computational cost associated with these methods remains a
concern [23].

A promising avenue in DNN-based computational mechanics is the uti-
lization of neural operator architectures. These mesh-free, infinite-dimensional
approximation operators, as proposed by Bhattacharya et al. [203], offer the
ability to transfer solutions across different meshes, eliminating the need
for recalibration for each new application. However, these architectures
have historically suffered from significant computational costs due to the
evaluation of integral operators.

To address this limitation, a novel type of neural operator architecture
called Fourier Neural Operator (FNO) was introduced by Li et al. [23]. This
groundbreaking approach enables the efficient solution of various PDEs, in-
cluding Darcy flow, Navier-Stokes equations, and Burger’s equations, with
unprecedented speed and accuracy. While its applications to mechanical
problems are still in progress, the FNO architecture shows great promise.

An important observation should be made at this point. Feed-forward
networks, in general, are commonly employed to enhance existing physical
solution methods, to circumvent costly numerical computations [13, 198], or
to learn solutions to specific PDEs [23, 201]. Some ANNs are used to directly
predict certain material properties or behavior, or measures of interest, for
instance in anisotropic hyperelasticity [204]. In the field of plasticity, Shen et
al. [205] used an ANN to predict the yield surface of porous materials with
Von Mises plasticity. However, little research has been conducted to leverage
feed-forward deep learning architectures for learning and modeling the
constitutive response of plastic/inelastic materials, specifically for plastic
material behavior. This limitation arises from a significant drawback of
feed-forward neural networks (FFNNs), namely their lack of "memory" or
the ability to retain information from previous outputs. Plasticity, however,
is an inherently memory-dependent process, as previous deformation or
strain history impacts the constitutive response.

2.4.2 Recurrent Neural Networks Applied to the Dependence in Plasticity

To overcome this limitation, another type of architecture, the recurrent
neural network (RNN), comes into play. RNNs are capable of storing and
remembering past outputs, allowing them to generate new outputs and
capture temporal dependencies by "unrolling" the networks through time.
Figure 2.29 provides a simple and illustrative example of this concept,
where the output from a previous time step serves as input for the next
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Figure 2.29: Schematic visualization of a simple RNN with two inputs and one
of which being propagated through time.

time step. This memory effect enables the prediction at the new time step to
incorporate information from previous outputs, a key requirement for their
viability as surrogates for (crystal) plasticity material models. Wang and
Sun [206], for instance, used RNNs to model the poroplasticity of geological
materials.

In the following, we first introduce what RNNs are and discuss differ-
ent issues arising from the new architecture. We will introduce the long
short-term memory LSTM [194] and GRU cells, concepts borrowed from
language processing, that were developed to mitigate these issues and give
some examples of the successful application of RNNs as surrogate models
for plastic materials. We then introduce a specific kind of architecture de-
rived from these two cell types, the minima state cell (MSC) [76] that was
developed specifically for the modeling of plastic material responses, and
discuss its existing advantages and drawbacks. Finally, we conclude this
Section by introducing the foundational work used for the CP surrogate
model employed in this thesis, the Markovian description introduced by
Bhattacharya et al. [79].

2.4.2.1 Specific Recurrent Network Architectures

Consider the unrolled RNN depicted in Figure 2.29. Assume we wanted to
investigate a time- and path-dependent problem, such as plasticity. To this
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end, we would track the evolution of the output over time, and use it to
make the next prediction. In an RNN, the same network is invoked at each
time step. This means that the weights and biases must be learned such
as to best approximate the response at each timestep ti. The conventional
back-propagation technique reaches a limitation. The problem is remedied
with a new type of back-propagation capable of "flowing back in time" to
past weights and inputs [190], in a process called back-propagation through
time (BPTT). This process is described in detail in Hochreiter [190] and we
offer only a short overview here.

Let us begin by taking the derivative of the error-function w.r.t. all weights
θ,

∂J
∂θ

= ∑
t=1

∂Jt

∂θ

= ∑
t=1

∂Jt

∂ŷt

∂ŷt

∂θ
.

(2.49)

Here, ŷt depends on the hidden state ht, which in turn depends on the
weights θ of all previous instances of the RNN in time. Hence, we obtain
the following form for the derivative:
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In fact, the present hidden state also depends on the previous hidden states
of previous unrolled networks. Hence, by applying the chain rule, one
obtains
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(2.51)

In essence, the "unrolling" of RNNs through time leads to deep network
architectures. The deeper the network, the more multiplications with deriva-
tives of the hidden state occur. The hidden state itself, however, also entails
an activation function, whose derivatives lie in [0, 1) for most traditional
choices, meaning the chain rule of differentiation used in backpropaga-
tion leads to the multiplication of small numbers with themselves. This
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Figure 2.30: Graphical representation of an LSTM cell. The LSTM cell has two
memory vectors, the hidden vector h(t) and the cell state c(t),
carrying information through time. These vectors are updated based
on "gates", the forget gate, update gate, input gate, and output gates.
The output of the cell is the new hidden state h(ti).

occurs as often as the network is unrolled, rendering the numbers almost
infinitesimal, as is seen in the term ∏k

∂htk
∂htk−1

of (2.51) that represents a
repeated multiplication of values, typically smaller than 1. This leads to
infinitesimally small updates on the network weights, thus having barely
any effect on the network performance, meaning these kinds of networks
become challenging to train. It can be remedied by increasing or decreasing
the learning rates, however, this also entails new issues. Alternatively, one
could use activation functions whose gradients can be larger than 1. In
this case, repeated multiplication has the potential to lead to the opposite
phenomenon, where the gradients grow uncontrollably [207]. This latter
problem is known as the exploding gradient problem and both of these
issues together have led to novel architectures for RNNs.

One such architecture stems from Hochreiter and Schmidhuber [194],
who recognized the issues associated with the exploding and vanishing
gradient phenomena. As RNNs are, in essence, deep neural nets, it is no
surprise that the LSTM cells are commonly found in RNN architectures
[194]. They differ substantially from classical RNNs in that they contain
LSTM cells at each layer, depicted in Figure 2.30

The LSTM cell produces two outputs, the cell state c(ti) and the hidden
state, which is at the same time the output, h(ti), at the new time. At each
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time, the old cell state and hidden state are updated via a number of gates.
First, the old hidden state and the new input at time ti are combined into a
new combined input vector,

x(ti) = x(ti) + h(ti−1). (2.52)

Based on this input, the cell first decides how much information to forget.
This is done via the forget gate. The forget gate consists of a linear layer
with trainable weights W f and a sigmoid activation function, σ = 1

1+e−x .
They produce a forget vector, f , whose values lie in [0, 1], of the following
form

f = σ(W fx(ti) + b f ). (2.53)

Here, W f represents the trainable weights of the forget gate, x(ti represents
the input at a time ti, and b the bias terms of the gate. This operation is
equivalent to rating the information from not important at the lower end to
important at the upper end. The vector is then point-wise multiplied with
the old cell state c(ti−1), effectively removing the unimportant information
and storing only what is deemed important,

c(ti) = f ⊙ c(ti−1), (2.54)

where ⊙ stands for point-wise multiplication. The fact that W c f are train-
able weights allows the cell to learn which values are important and which
are noise.

Next, the input gate is activated. The input gate works in the same way as
the forget gate, except that here, it is decided which information is required
to be kept. Thus, the input i is given as

i = σ(Wix(ti) + b)i, (2.55)

, with input-gate weights Wi and biases bi, and the update to the cell vector,
u, is given as

u = tanh(Wux(ti) + bu), (2.56)

again with trainable weights and biases Wu and bu. The update gate
decides what information from the input vector is retained. The update
values always lie between -1 and 1, thus preventing exploding values. They
are again point-wise multiplied to filter out the irrelevant information and
then added to the cell state resulting in an updated cell state

c(ti) = c(ti) + u⊙ i. (2.57)
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At this point, the cell carries all the previous and updated information in
the new cell state c(ti) and it is time to make a new prediction. The output
gate provides information about what information from the current input
should be carried on. It computes an output vector o as

o = σ(Wox(ti) + bo). (2.58)

This information is multiplied with the information passed down from
memory (new cell state), which is again passed through a sigmoid activation
function to determine which entries the new hidden state should carry on.
Finally, the new hidden state h(ti) is computed as

h(ti) = o⊙ tanh(c(ti)), (2.59)

and is used to make predictions and to be passed into the next unrolled
cell.

This architecture largely prevents the issues with the vanishing and
exploding gradients. The proof is quite tedious and thus omitted in this
thesis, but the interested reader is referred to DiPietro and Hager [208] for
a more in-depth discussion and explanation.

Their main drawbacks stem from a large number of trainable parameters.
This renders the LSTMs quite heavy and lengthy to train. Further, they
require large amounts of data, which is typically a pitfall in computational
mechanics applications.

Alternatively, another type of cell was introduced as a simpler alterna-
tive to LSTMS, the GRU, depicted in Figure 2.31. GRUs have a similar
architecture as the LSTM cells, as they are derived from the same concept,
however, they only have two gates and have removed the cell state, only
storing information in the hidden state vector. This reduces the number of
parameters and increases the efficiency with which GRU networks can be
trained.

We will not discuss the GRU in detail here, but Chung et al. [195] and
DiPietro and Hager [208] offer comparisons with LSTMs and assess the
viability of GRUs. In general, GRUs and LSTMs tend to perform relatively
similarly, but LSTMs are more heavy-weight, thus often requiring longer
training and more data. In practice, engineers will often try out both
architectures and see which one works best for their application.

Both GRUs and LSTMs have been used in the field of data-driven compu-
tational mechanics quite extensively. Especially for CP surrogate modeling,
texture evolution, and plasticity in general, these RNN architectures make
a lot of sense and show promise. The hidden and cell states are a natural
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Figure 2.31: Sketch of a fully gated GRU cell with a reset and an update gate
and a hidden state h.

way to include the history-dependence of plasticity and are analogous to
internal variables, often used in CP models, to describe the state of the
material. Another application of the texture evolution is shown in Pandey
and Pokharel [81]’s work, which uses LSTMs to learn the evolution of
Euler angles on an RVE of pure Cu crystals. The LSTM surrogate led to a
significant reduction in computation speed compared to the CP-FFT model
used as a ground truth. Frankel, Tachida, and Jones [209], used an adapted
version of the LSTM, the Convolutional STM, to learn the stress-strain
response of polycrystals with multiple realizations of the microstructure.
The study attained mixed results, achieving good results for the average
stress measures and somewhat higher errors for the overall stress field,
nevertheless demonstrating the power of data-driven methods for these
applications. Another example showcasing the potential of data-driven
methods in computing the plastic response of material stems from Mozaffar
et al. [78]. They used a GRU-based architecture to learn the homogenized
response of a composite 2D RVE, containing a plastic matrix and stiff in-
clusions. To this end, the RVE is loaded with a variety of randomized load
paths. This ensures that the overall response of the material is captured
in the randomness of the deformation and that the NN extracts the key
aspects of the constitutive behavior. For training, the NN receives the strain
data as input and learns the corresponding stress and energy outputs. This
allows the NN to be used on other, arbitrary paths in the future that may
not have figured in the initial training data. The GRU-based architecture
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captures the behavior of the material accurately and is capable of predicting
the yield surface when shown the same loading paths as the RVE.

2.4.2.2 Drawbacks of Existing Architectures

Despite the positive preliminary results of these methods, a number of
substantial drawbacks exist that should be addressed. The first drawback
for GRUs and LSTMs lies in the lack of interpretability. GRU and LSTM
states (or hidden vectors) are typically large and carry no intrinsic meaning.
Especially with regards to CP modeling, this is a drawback to be addressed.
Hidden states can be interpreted analogously to internal variables in CP
modeling, and hence an interpretable state vector is desirable. Further, both,
LSTMs and GRUs, suffer from relatively high training times due to the
large number of parameters associated with each of their gates. For large
networks and hidden state vectors, the training time of these methods is
typically long [76, 80].

One approach that has tackled the issue of a non-interpretable state
vector stems from [76]. Their idea of creating a custom architecture based
on LSTM gates led to the minimal state cell (MSC), an architecture capable
of identifying the number of state variables required for relatively simple
plastic material models, as well as creating a direct link between those
state variables and the stress state at any time. The MSC was successfully
applied to learn a large number of materials’ constitutive responses, such as
Von Mises plasticity, crushable foams, and other materials, whose main de-
scriptor was the total accumulated plastic strain ϵp. These physical models,
however, remain fairly simple.

As an additional drawback, the gate functions used in LSTMs, GRUs and
MSCs are time-agnostic. This means that they are not aware of temporal
resolution in training, which makes the extension to applications outside of
the training resolution quasi-impossible. When used as surrogate models,
this is an especially taxing drawback, since simulations can effectively only
be performed at the training resolution, limiting the utility of the models.
To overcome this limitation Bonatti and Mohr [83] introduced modulations
to the gate functions such as to be self-consistent.

Thus far, the MSCs were shown to be successful in capturing the material
behavior of simple plasticity models, see e.g. the models employed in [76]
as well as "identifying" the state variables included. Their applications
to more complex material models such as in CP do not yield the same
astonishing results. In Bonatti, Berisha, and Mohr [75], linearized MSCs
(developed in Bonatti and Mohr [83]) are applied to learn the homogenized
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constitutive behavior of an fcc material. They found that the MSCs require
a large number of internal state variables to perform sufficiently well and
show that for more complex problems, the MSCs are still somewhat limited.
No interpretation of the state variables was possible.

2.4.2.3 The Markovian Recurrent Neural Operator

On the contrary, Liu et al. [14] and Bhattacharya et al. [79] have developed
a custom RNN operator based on a physically motivated approach that
shows promise in providing both, a means to identifying the number of
required state variables, as well as a resolution-independent ML surrogate.
We only give a minimal overview here, since the architecture is explained
in detail in chapter 4.

Their approach consists of learning a (hidden) state vector ξ, without any
a-priori knowledge of the material model, followed by a map from the state
vector to the stress state of the material. This is achieved in a two-stage
process, by two functions F and G [79], where

ξ̇(t) = G(F (t), ξ(t)), (2.60)

and
σ(t) = F (F (t), Ḟ (t), ξ(t)), (2.61)

where F represents the overall deformation gradient, and σ the Cauchy-
stress. The state vector at each time t is given as

ξ(t) = ξ(t − ∆t) + ∆tξ(t), (2.62)

and ξ(0) = 0.
The Forward-Euler integration in time has allowed the authors to find a

time-resolution independent description in the surrogate models of a Kelvin-
Voigt material, [79], as opposed to the LSTM and GRU gate functions that
are not capable of handling different resolutions.

An application showcasing the potential of the architecture is found in Liu
et al. [14]. They learned the constitutive response of viscoelastic and elastic-
viscoplastic materials in two and three dimensions and investigated the
resolution independence and the capability of the architecture to identify the
minimal state variables. They identified that for the viscoelastic composite
material in two dimensions, three state variables were minimally required
without strain hardening present and four state variables were required
with strain hardening. Contrarily, for the elasto-viscoplastic material with
strain hardening, only two state variables are required, see e.g. Figure 2.32.
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Figure 2.32: Test error of the trained model for elasto-viscoplastic material model
in (a), and for the viscoelastic model in (b). Reprinted and adapted
from Liu et al. [14] with permission from Elsevier.

Further, the study shows that resolution independence follows naturally
from the description if the architecture is representative of the physics of
the underlying material. The authors investigated this by comparing the
capabilities of a viscoelastic and an elasto-viscoplastic RNO to learn the
homogenized behavior of an elasto-viscoplastic material with exponential
hardening. The viscoelastic RNO contained an explicit dependence on the
rate of change of the deformation gradient, whereas the elasto-viscoplastic
one does not. As shown in Figure 2.33, both architectures perform relatively
well at the training resolution. For increasing refinement (higher resolution),
however, only the RNO with the appropriate architecture retains a low error
measure.

2.5 outline of this thesis

We have presented an overview of the physical and data-driven modeling
techniques for Mg in this chapter. Let us first provide a short recapitulation
of the key points of this chapter and define the research question and niche
for this thesis.

As previously shown, Mg is an interesting candidate for a number of
applications in the automotive and aerospace industries. In its pure form,
its properties are far too poor for actual application in industry, but even
specially designed alloys still require improved material properties, such as
improved ductility for processing and improved stiffness and hardness of
the material. Many of the processes associated with improving these aspects
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Figure 2.33: Comparison of the test error of an RNO trained with training data
at a resolution of 200 time-steps again test data various resolu-
tion, for both the elasto-viscoplastic RNO labeled “E-VP” and the
alternate viscoelastic RNO labeled “VE”. (a) One-dimensional elasto-
viscoplastic composite (b). Reprinted from Liu et al. [14] with per-
mission from Elsevier.

of the material are temperature dependent, such as precipitate formation
that leads to precipitate hardening or recrystallization that leads to grain
refinement, increasing the ductility of the material and leading to grain-size
hardening. Many of these effects are still not understood properly and need
further investigation.

Further, this thesis was written as part of the effort of a larger consortium
that follows an ICMD approach to material design, a process that requires an
enormous computational effort on multiple scales. The key to any successful
ICMD approach is the efficient modeling of material behavior via physically
meaningful and efficient predictive models. These models have to account
for a plethora of mechanical effects on a large number of different scales
(in space and time) and each scale warrants its own modeling techniques
(Atomistics, MD, DFT, CP, Continuum models), with varying degrees of
physicality and associate computational cost. We discussed existing CP
models containing both slip and twin descriptions, allowing for rapid and
easy modeling of these mechanisms in Mg. From these findings, we deduct
the following two contributions to be addressed in this thesis.

First, it is apparent that the thermal effects on the plastic behavior of
Mg are not yet fully understood. Hence, the first primary objective of this
thesis is to further investigate the thermally-driven competition between
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the CT and pyramidal II systems while developing a robust and highly
efficient temperature-aware material model for Mg using a bottom-up ap-
proach. Our aim is to achieve a high level of physical accuracy by leveraging
efficiency-improving strategies such as representing twins through effective
volume fractions as proposed by Chang and Kochmann [107] and employ-
ing the relaxed Taylor model. We will also restrict the use of slip systems
to those that are relevant within the scope of our investigation, aiming to
reduce calibration ambiguity and gain insights into the mechanics of CT
and pyramidal II competition. To address stability issues encountered by
Chang and Kochmann [107], explicit updates are employed to investigate
the constraints on material parameters. Furthermore, our model formu-
lation will be based on the variational approach proposed by Ortiz and
Stainier [154], allowing the derivation of slip and twin behavior through an
optimization framework.

Second, in view of the sought-after applications of our model in an
ICMD framework, the development of a suitable data-driven surrogate
is required. While some of the works conducted previously have already
showcased the capabilities and potential of ML applications in accelerating
modeling and reducing computational costs, as well as their prowess to
predict material behavior when used as surrogate models, a number of
open challenges remain that offer opportunities for research. The material
models whose behaviors were learned are still relatively simple, such as
the von Mises or the J2 models. The MSC architecture used by Bonatti and
Mohr [76] was efficient at learning these material representations, however,
as shown in Bonatti, Berisha, and Mohr [75], it performs worse on actual
CP data. Further, the CP model used in Bonatti, Berisha, and Mohr [75]
is that of an fcc material with isotropic hardening, and does not account
for effects such as twinning, necessary for simulating Mg. Further, while
some work has been done on learning the effect of temperature [210], its
effect are not commonly included. Hence, the second contribution of this
thesis is based on the development and implementation of a suitable NN
architecture with the goal of developing a surrogate model for the physical
model. This research question is in itself an interesting challenge, as we wish
to overcome several limitations of existing ML approaches in mechanics,
such as the resolution dependence and the lack of interpretability. The
complexity of the material behavior in Mg poses a challenging task and
an interesting case study for the capability of NN algorithms. As part of
this second contribution, we apply and compare multiple NN approaches
such as GRUs and LSTMs, as well as Liu et al. [14] and Bhattacharya et
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al. [79]’s recurrent neural operator to textured Mg polycrystals in a bid
to learn the constitutive behavior without any a-priori knowledge of the
underlying physics and evaluate the performance, interpretability, and
resolution-dependence of the surrogate. We then implement the surrogate
in Abaqus/Explicit to perform truly multiscale simulations of textured Mg
polycrystal samples on the macroscale.
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E F F I C I E N T T E M P E R AT U R E - D E P E N D E N T C RY S TA L
P L A S T C I T Y M O D E L F O R P U R E M G

This chapter has been adapted from Hollenweger and Kochmann [52].
"An efficient temperature-dependent crystal plasticity framework for pure
magnesium with emphasis on the competition between slip and twinning".
International Journal of Plasticity 159 (2022)

chapter overview

The first contribution of this thesis focuses on the development of an ef-
ficient, temperature-aware, predictive model for Mg on the micro and
mesoscale. In this Chapter we give a renewed, short introduction to the
important topics covered hereinafter. We then provide a detailed descrip-
tion of the kinematics and the constitutive relations, before describing the
temperature-dependent mechanisms in Mg in detail. The competition be-
tween the CT and pyramidal II systems at varying temperatures warrants
the implementation of two distinct versions of the model. We then calibrate
and explain the identification of model parameters for both models based
on test cases and provide single and polycrystalline results to showcase the
capabilities of the presented constitutive model and the competition of the
pyramidal II and CT systems.

3.1 introduction

In practical applications, the utilization of Mg and Mg alloys has been
limited due to several fundamental drawbacks. These materials exhibit
relatively low corrosion resistance and are challenging to harden using con-
ventional thermal methods [1]. Additionally, their poor forming capabilities
stem from plastic anisotropy, a phenomenon attributed to the hexagonal
close-packed (hcp) atomic crystal structure. The plastic behavior of hcp
materials involves the collective activation of various slip and twin mecha-
nisms. Specifically, basal, prismatic, and pyramidal slip systems, as well as
tensile and compressive twin systems (TT and CT, respectively), are com-
monly observed deformation modes, as schematically depicted in Figure

89
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Figure 3.1: Main deformation modes occurring in Mg

3.1. For brevity, we will refer to the second-order pyramidal ⟨c + a⟩ system
as pyramidal II throughout this work. The limited number of activatable
deformation modes in the hcp structure restricts its ability to accommodate
plastic deformation at room temperature [45–47]. Consequently, plastic
deformation localizes in twins, leading to premature failure at room tem-
perature [2, 8, 19]. These limitations, along with others (see e.g., Nie, Shin,
and Zeng [2], Kecskes et al. [58], or Eswarappa Prameela et al. [1]), have
hindered the widespread industrial use of Mg alloys.

Various approaches have been employed to enhance the ductility and
workability of Mg. Notably, Zeng et al. [48] demonstrated that even pure
Mg can exhibit exceptional malleability and ductility through severe grain
refinement. One common strategy to improve the formability of Mg in-
volves working at elevated temperatures, which capitalizes on the increased
lattice mobility accompanying temperature rise. This allows for a greater
number of available deformation modes compared to room temperature
conditions, resulting in more homogeneous plastic deformation [2, 9, 26,
45, 56, 86, 118, 123]. The improved isotropic and ductile behavior enhances
workability and formability during processing. Consequently, Mg alloys
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are often subjected to hot processing techniques to overcome the aforemen-
tioned limitations [211–215]. However, a comprehensive understanding of
the thermo-mechanically coupled microstructure evolution and the lack of
a reliable predictive model remain significant challenges. In this chapter,
we present our own temperature-aware predictive model, validate it using
experimental data from multiple sources, and employ the model in poly-
crystal simulations to assess its viability and investigate the influence of
temperature on the microstructure.

3.1.1 Experimental Investigations

The plastic behavior of Mg and Mg alloys has been the subject of experi-
mental studies for decades [7–9, 16, 18, 19, 45, 86, 120]. It was observed that
single-crystals and textured polycrystals show strong plastic anisotropy.

Single- and polycrystal experiments revealed that basal slip and TTs
dominate at room temperature [2, 8, 18, 19, 108], while the contributions
of the various non-basal systems increase with increasing temperature
[3, 9, 16, 21, 123, 151, 216–218]. Due to the reduced activation stresses
on these systems, at elevated temperature, pyramidal and prismatic slip
accommodate a larger portion of the plastic deformation. This leads to a
smaller relative contribution of basal slip and twin systems to accommodate
the overall deformation [2, 56, 58]. Hence, a strong temperature dependence
of the non-basal slip systems was inferred, whereas, surprisingly, it was
found that basal slip as well as TTs show little to no change in behavior with
increasing temperature and are often assumed to be virtually temperature
independent [2, 9].

Although most studies confirm the above general trends, there exists con-
tradictory experimental evidence and interpretation of the microstructure
of Mg, both at room temperature and at elevated temperature. One such
controversy lies in the presence of pyramidal II slip at room temperature.
Ono, Nowak, and Miura [3], Koike et al. [127], and Muránsky et al. [219]
reported significant contributions of pyramidal slip starting at ambient
temperature. Further, Lilleodden [25] reported that only pyramidal II slip
was active during their micro-compression studies, whereas Kelley and
Hosford [8] and Wonsiewicz and Backofen [19] found no evidence of this
deformation mode. Another controversially discussed aspect is the role of
the CT systems with increasing temperature. CTs have been observed in
both single- and polycrystal studies at room temperature [19, 56, 123] and
are considered one of the main reasons for the early failure of Mg alloys
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Al-Samman, Li, and Chowdhury [51], Zhou and Sui [220], and Chakkedath
et al. [221]. Their temperature dependence, however, has remained an open
question. Wonsiewicz and Backofen [19] observed an increasing amount of
CTs in their single-crystal experiments at higher temperatures, whereas [56,
58, 123, 221] noted a reduced propensity for twinning and especially for CT
with increasing temperature. To accommodate deformation along the c-axis
of the crystal, the material must exhibit some deformation mode(s) with a
c-component in the Burgers vector. Due to the polar nature of twinning, the
{101̄2} TT system can only do so under c-axis extension, and the {101̄1}CT
systems only under compression. The nature of a twin system (tensile or
compressive) is due to the c/a ratio of the material Yoo [7]. Pyramidal II sys-
tems, by contrast, can account for both types of deformation. Interestingly,
this results in a competition between these aforementioned deformation
modes. Understanding the nature of the controversial findings and the
competition between the pyramidal II and the CT systems will, among
others, be the subject of this investigation. Recently, the question was raised
whether pyramidal I ⟨c+ a⟩ or pyramidal II slip was the predominant mode:
Kweon and Raja [54], Zecevic, Beyerlein, and Knezevic [222], and Xie et al.
[110] suggested that pyramidal I ⟨c + a⟩ slip may be the dominant mode.
Since, however, little is known about the temperature-dependent behavior
of pyramidal I ⟨c + a⟩ slip, investigating this additional controversy lies
outside the scope of this work.

3.1.2 Numerical Studies

Thanks to the advent of inexpensive and accessible computational power, a
steadily growing number of numerical techniques have been employed to
improve our understanding of plasticity in hcp metals. Modelling occurs on
a variety of length (and time) scales, from the atomic to the continuum level,
each providing different insight and suffering from different limitations.
Molecular Dynamics (MD) simulations have provided insight at the scale
of lattice defects, including the formation of dislocations, twins, and voids
as well as solute clustering in alloys [62, 71, 223, 224]. At larger scales,
phenomenological models trade efficiency for accuracy and mechanistic
rigor to allow for simulations of large, especially polycrystalline, systems.
This includes primarily phase field and crystal plasticity models as well
as combinations thereof [4, 47, 108, 140, 159], which live at continuum
scales. A noteworthy advance in the efficient representation of deformation
twinning on larger scales is due to Tomé, Lebensohn, and Kocks [225], who
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introduced the predominant twin reorientation model, capturing the texture
change in zirconium due to twinning events and contributing significantly
to the texture modelling of hcp materials.

In this study, we focus on continuum-level mesoscale modelling, which
admits simulating large ensembles of grains, while being efficient and
incorporating the underlying deformation modes to investigate the mi-
crostructure evolution. When adopting the nomenclature of Liu, Roy, and
Silberschmidt [159], phenomenological mesoscale approaches can be catego-
rized as top-down [156, 158, 226, 227] and bottom-up [54, 107, 108, 159] based
on the model calibration. Top-down approaches use experimental polycrys-
tal data to calibrate the model parameters, whereas bottom-up approaches
calibrate a single-crystal plasticity (SCP) model with available experimental
data and use that SCP description locally in a polycrystalline simulation
framework. In comparison, this latter approach shows superior accuracy
and is applicable to general polycrystalline textures. As a bottom-up exam-
ple, the variational SCP framework of Chang and Kochmann [107] for pure
Mg used a reduced set of active deformation mechanisms for an efficient
representation of the Mg microstructure. When embedded in finite element
(FE) [155] or Fast Fourier Transform (FFT) [12] homogenization schemes,
this model was shown to efficiently predict the stress-strain behavior and
texture evolution of polycrystals.

Both bottom-up and top-down approaches have proven successful in
capturing essential features of Mg’s plastic behavior. Ardeljan et al. [156]
captured the temperature and strain rate dependence of Mg alloy AZ31 in
a multiscale “FE×Taylor” top-down framework. Further, Jain and Agnew
[5] successfully investigated the temperature effects on twinning in Mg
alloy AZ31B by means of a top-down viscoplastic self-consistent model,
and Walde and Riedel [68] successfully modeled recrystallization in AZ31

with a similar approach. More recently, Tam et al. [158] accurately modeled
the temperature-dependent response of AZ31 polyrcystals as well as the
texture evolution and the dynamic reycrystallization, while Sahoo et al. [228]
investigated the texture evolution in an all-twin-variant crystal plasticity
model for hcp materials, capturing the twin effects and intersecting twin
variants. Despite these successes, top-down approaches typically suffer
from significant drawbacks, including a strong dependence on the choice of
the calibration data and of the homogenization method [156], the inability
to apply at the single-crystal level, and a lack of microstructural insight
[122].
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Despite the wealth of models for hcp materials, only a small number
of temperature-dependent models for Mg exist. On the one hand, the
bottom-up approach of Zhang and Joshi [108] for the room-temperature
description of Mg single- and polycrystals was adopted by Liu, Roy, and
Silberschmidt [159] and extended to the temperature range from 298 K
to 523 K, observing a transition in deformation modes with increasing
temperature. The latter was primarily associated with a decrease of basal
slip at elevated temperature at the expense of pyramidal ⟨a⟩ slip as well
as a transition from CT to pyramidal II slip with increasing temperature.
On the other hand, Wang, Liu, and Soh [15] used a Johnson-Cook-type
hardening law for single-crystals and included temperature dependence,
while considering CTs as quasi-inactive at room temperature, while showing
a transition away from pyramidal slip to CT above 423 K. The reported
microstructures of both approaches were substantially different and to some
degree contradictory. Furthermore, the assumptions made by Wang, Liu,
and Soh [15] on the behavior of CTs were not supported by the observations
of Barnett [56] and Barnett et al. [123]. Both Wang, Liu, and Soh [15] and
Liu, Roy, and Silberschmidt [159] included the entire range of possible
deformation (slip and twin) modes. This choice is problematic from a
calibration point of view, as, e.g., pyramidal ⟨a⟩ slip and prismatic slip,
as well as pyramidal II slip and CTs are in direct competition, which may
corrupt or at least exacerbate the calibration, even on the basis of single-
crystal experiments, as noted by Zhang and Joshi [108].

3.2 kinematics

Let sα and mα denote the slip directions and normals of the Np slip systems
α ∈ [1, Np], whereas aβ and nβ are the twinning directions and normals
of the Ntw twin systems β ∈ [1, Ntw]. The total deformation gradient is
assumed to follow a multiplicative decomposition into elastic and inelastic
contributions [143, 148], so

F = FeFin, (3.1)

where Fe represents the elastic part, and Fin stems from the combined slip
and twin activity of the respective systems. Note that the above choice of
the decomposition is non-unique and other approaches exist, in which the
deformation gradient is decomposed further into components for slip and
twinning [144], resulting in the interactions of twin and slip activity at the
kinematic level. In our case, the interaction between slip and twinning is
embedded in the constitutive relations, as discussed in Section 3.3.
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The total velocity gradient follows as

l = Ḟ F−1

= ḞeF
−1
e︸ ︷︷ ︸

le

+Fe ḞinF
−1
in︸ ︷︷ ︸

l̃in

F−1
e , (3.2)

with elastic and inelastic contributions le and l̃in, respectively. The latter is
further decomposed into slip and twin components:

l̃in = l̃p + l̃tw, (3.3)

where l̃tw results from the combined effect of the changing Ntw twin vol-
ume fractions λβ. With γtw

β denoting the twinning shear strain (a material
constant known from the crystallography [108]) associated with system β,
this implies

l̃tw =
Ntw

∑
β=1

λ̇βγtw
β aβ ⊗nβ. (3.4)

l̃p stems from the activities of the slip systems in the twinned and un-
twinned regions of the crystal, so that

l̃p =
ns

∑
α=1

γ̇α

[(
1 −

Ntw

∑
β=1

λβ

)
sα ⊗mα +

Ntw

∑
β=1

λβs
′
α ⊗m

′
α

]
︸ ︷︷ ︸

=pα

. (3.5)

Here, the slip rates γ̇α are assumed to capture slip in both untwinned and
fully twinned regions, the latter being defined for twin system β by

s
′
α = Qβsα; m

′
α = Qβmα. (3.6)

with the householder mapping

Qβ = I − 2nβ ⊗nβ, (3.7)

which describes the reorientation of the lattice due to the twinning of the
crystal around the plane normal of system β [120].

3.3 constitutive relation

Following Chang and Kochmann [107], we introduce the Helmholtz free
energy density, here dependent on temperature T, as

W(F ,Fin, ϵ,λ, T) = We(Fe, T) + Wp(ϵ,λ, T) + Wtw(λ, T), (3.8)
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consisting of a (hyper-)elastic energy density We and the stored plastic
energies (i.e., energy irreversibly stored in the microstructure) due to slip
and twinning, Wp and Wtw, respectively. The latter two depend on the twin
volume fractions λ = {λ1, . . . , λNtw} and the accumulated plastic strains
ϵ = {ϵ1, . . . , ϵNp}, which evolve according to ϵ̇α = |γ̇α|, γ̇α being the slip
rate on system α.

The twin and slip contributions to the energy density account for self-
and latent hardening. We base our description of the twin hardening on
Tutcuoglu et al. [59] and Chang and Kochmann [107], while incorporating
the CT effect similar to Zhang and Joshi [108], assuming they follow the
same Schmid-type behavior as TTs 1. The hardening of TTs and CTs is
assumed to follow a linear law, which leads to

Wtw =
nt

∑
β=1

kβ(T)
2

λ2
β︸ ︷︷ ︸

self-hardening

+
1
2
λ · K(T)λ︸ ︷︷ ︸

cross-hardening

, (3.9)

whereas plastic hardening due to slip is based on

Wp =



ns

∑
α=1

σ∞
α (T)

[
ϵα +

σ∞
α (T)

h0
α(T)

exp
(
−h0,α(T)ϵα

σ∞
α (T)

)]
︸ ︷︷ ︸

self-hardening

+
1
2
ϵ · H(T)ϵ︸ ︷︷ ︸

cross-hardening

, if λ < λcrit,

ns

∑
α=1

σ∞
α (T)

[
ϵα +

σ∞
α (T)

h0
α(T)

exp
(
−h0,α(T)ϵα

σ∞
α (T)

)]
︸ ︷︷ ︸

self-hardening

+
1
2
ϵ · H(T)ϵ︸ ︷︷ ︸

cross-hardening

+
Ns

∑
α=1

cα(T)ϵα︸ ︷︷ ︸
twin-slip interaction

, if λ ≥ λcrit.

(3.10)

K is a positive semi-definite matrix, having twin cross-hardening terms
kββ′ in its off-diagonal components and a zero diagonal to represent twin-

1 It was noted as early as by Kelley and Hosford [8] that CTs may in fact not follow this pattern.
In modelling, however, when included, CTs are generally assumed to follow approximately a
Schmid law with a medium to high critical resolved shear stress (CRSS) value and strong hard-
ening [15, 108, 159]. For the sake of simplicity we here follow this assumption – investigating
the physics behind CTs goes beyond the scope of this contribution and requires lower-scale
models of experimental insight.
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twin cross-hardening. Specifically, the values of kββ′ are chosen such as to
admit only one active (compressive or tensile) twin variant at a time [107].
Analogously, H(T) is a positive semi-definite matrix, capturing slip-slip
cross-hardening through terms hαα′ on its off-diagonals and a zero diagonal.

Twin hardening effects on the slip systems are included via a saturation
hardening law. Upon reaching a critical twin volume fraction, the twin is
considered saturated and set to be fully reoriented. This leads to strain
hardening [58] (due to twin boundary and geometric hardening, while the
Basinski effect leads to the transformation of glissile into sessile disloca-
tions [229, 230]). As we do not resolve twins spatially nor account for the
formation of twin lamellae (such as, e.g., in the composite grain model
of Proust, Tomé, and Kaschner [152]), these effects are condensed into a
single hardening parameter cα, applied upon twin saturation. Jain and
Agnew [5] noted that not all systems are affected equally by the presence
of twins, which is why their model introduced a stronger latent hardening
factor for basal slip. Similar observations were made by Yu et al. [231], who
investigated experimentally the hardening effect of twinning on basal and
prismatic slip in AZ31, noticing an increased effect of twin hardening on
basal systems as compared to prismatic systems. Here, this phenomenon is
accounted for by different choices for the parameters cα in (3.10).

Assuming that both slip and twinning follows a Schmid-type law, the
resolved shear stress (RSS) of slip system α is

τ
p
α = Σ · pα, (3.11)

with pα from (3.5). Equivalently, the RSS for twin system β becomes

τtw
β = Σ · γtw

β aβ ⊗nβ, (3.12)

with the Mandel stress tensor Σ, defined as

Σ = F T
e PF T

in with P =
∂W
∂F

. (3.13)

The evolution laws for the plastic slips in this variational setting follow
as

γ̇α = γ̇0,α

∣∣∣∣∣∣ |τ
p
α | −

∂Wp
∂ϵα

τ0,α(T)

∣∣∣∣∣∣
1/mp

sign(τp
α ), (3.14)
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with reference slip rates γ̇0,α, a temperature-dependent CRSS τ0,α for each
slip system, and hardening exponent mp. Analogously, the twin volume
fractions evolve according to

λ̇β = λ̇0,β

∣∣∣∣∣∣
|τtw

β | − ∂Wtw
∂λβ

τ0,β

∣∣∣∣∣∣
1/mtw

(3.15)

with a reference rate λ̇0,β, hardening exponent mtw, and temperature-
independent CRSS τ0,β.

The constitutive model is completed by a choice of the elastic energy
density. Chang and Kochmann [107] showed that – owing to its low level
– elastic anisotropy has a negligible effect on the texture evolution and
stress-strain relation of Mg. For simplicity, we thus choose a compressible
Neo-Hookean strain energy density

We(Fe, T) =
µ(T)

2
(tr C̄e − 3) +

κ(T)
2

(J − 1)2 (3.16)

with
C̄e = F̄ T

e F̄e, F̄e =
Fe

J1/3 , J = detFe = detF (3.17)

and temperature-dependent shear and bulk moduli µ and κ, respectively.

3.4 temperature dependence

The temperature dependence of slip and twinning was studied, among
others, by Chapuis and Driver [9] and Wonsiewicz and Backofen [19],
who concluded that basal slip and tensile twins are largely temperature
insensitive, whereas non-basal slip and compressive twins (CT) show a
moderate to strong temperature dependence – as also argued by Nie, Shin,
and Zeng [2], Wang, Liu, and Soh [15], and Liu, Roy, and Silberschmidt
[159].

We note that some studies observed reduced twin activity with increasing
temperature [5, 9, 19, 58], which can be explained by the fact that other
deformation modes can more readily accommodate the deformation due to
the increased lattice mobility, leading to a reduction in twinning. Further,
the accrued slip may have an inhibitory effect on twinning. Jain and Agnew
[5] assumed an inverse temperature dependence of the CRSS of TT systems
in their study of AZ31, leading to hardening and a reduction of twin
activity with increasing temperature. Although that assumption does yield
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the expected result of a decrease in twin activity at elevated temperature, it
is questionable, whether the phenomenon they observed is due to an actual
increase in the CRSS value or due to other effects, such as the increased
propensity for precipitates in the alloy, which are known to promote twin
hardening [72]. As the present formulation of the model cannot account
for complex mechanistic effects, we follow Chapuis and Driver [9] and
Wonsiewicz and Backofen [19] and assume that the TT (and basal slip)
systems are temperature-independent, so that temperature dependence is
incorporated only in the non-basal slip systems, and in CTs, as in Wang,
Liu, and Soh [15] and Liu, Roy, and Silberschmidt [159].

Similar to Wang, Liu, and Soh [15], Liu, Roy, and Silberschmidt [159],
and Beyerlein and Tomé [232], we assume an Arrhenius-type law for the
temperature dependence of the CRSS values, so the temperature depen-
dence of the non-basal slip systems is assumed to decay exponentially with
temperature, i.e.,

τ0,α(T̄) =

τ0,α(Tref) for basal systems,

τ0,α(Tref) exp(−ωαT̄) else,
(3.18)

with distinct parameters ωα > 0 for the prismatic and pyramidal systems,
and the dimensionless temperature

T̄(T) =
T − Tref

Tmelt − Tref
. (3.19)

The melting temperature of Mg is Tmelt = 650◦C, while we take as a
reference the ambient temperature Tref = 25◦C.

The exponential ansatz is also used to describe the temperature sensitivity
of the Voce hardening parameters:

h0
α(T̄) =

h0
α(Tref) for basal systems,

h0
α(Tref) exp(−ηαT̄) else,

hαα′(T̄) =

hαα′(Tref) for basal systems,

hαα′(Tref) exp(−χαT̄) else,

σ∞
α (T̄) =

σ∞
α (Tref) for basal systems,

σ∞
α (Tref) exp(−ναT̄) else.

(3.20)
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Analogously, the hardening laws for TTs are assumed to be temperature
insensitive:

k0
β(T̄) =

kβ(Tref) for TT systems

kβ(Tref) exp(−ξβT̄) for CT systems.
(3.21)

The entries of K are temperature-independent. The twin-twin cross hard-
ening matrix ensures no more than one twin system is active at the material
point. This assumption does not collapse for elevated temperatures.

Finally, the elastic constants are chosen as µ(T) = 17 exp(−3T̄) GPa
and κ(T) = 16 exp(−3T̄) GPa, by extending the (room-temperature) Neo-
Hookean formulation from Vidyasagar, Tutcuoglu, and Kochmann [12].

3.5 parameter identification and model validation

Polycrystalline materials serve as a valuable source of experimental data,
particularly for alloys where growing single crystals is challenging or
impractical. In the case of Mg and Mg alloys, the available data primarily
pertains to wrought sheet materials or extruded billets [55, 57, 58, 87, 233–
236]. During processing, polycrystalline Mg exhibits a strong texture that
is influenced by grain reorientation and recrystallization [57, 236]. Cold
and asymmetric hot rolling lead to the development of a prominent basal
texture, while extruded material acquires a distinct texture resulting from
a combination of reorientation and recrystallization [2, 49, 51, 58, 86, 96].
Basal slip, which can be activated by small Schmid factors (even as low as
0.4◦ misalignment from the normal direction according to Kelley et al. [8]),
is a prevalent deformation mode in polycrystalline materials. As a result,
the directional behavior of single crystals is imparted to the polycrystals,
albeit with some attenuation due to the presence of basal slip [5, 8, 96, 157,
234].

From a modeling standpoint, these observations have significant impli-
cations. Since texture cannot be precisely controlled and is influenced by
factors such as strain rate, processing temperature, and pre-existing grain
sizes, it becomes challenging to extract or define physical parameters di-
rectly from polycrystalline data. This variability in texture is one possible
explanation for the range of reported values for individual critical resolved
shear stresses (CRSS) in the literature, as well as the diversity of models
employed [5, 156, 157, 234]. Inferring single-crystalline parameters from
polycrystals presents significant drawbacks, as highlighted by Herrera-Solaz
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et al. [89]. The numerous influencing factors, such as grain size, texture,
presence of precipitates and solutes, among others, result in a large number
of parameters to be determined, making the task of finding an optimum
solution neither easy nor guaranteed.

Therefore, our (bottom-up) strategy is to first calibrate the room-temperature
single-crystal model, followed by calibrating the temperature-related parame-
ters, for both of which the Taylor model provides poly-crystal predictions
for validation. We begin by calibrating the room-temperature single-crystal
model, using the data reported by Kelley and Hosford [8], who performed
a series of room-temperature channel-die experiments. They used seven dis-
tinct orientations of their single-crystal samples with respect to the applied
loading, denoted by cases A through G, which were designed to isolate the
behavior of individual slip and twin systems in Mg at room temperature.
Table 3.1 provides an overview of the applied deformation and constraints
as well as the deformation mechanism(s) calibrated by each case.

Table 3.1: The seven cases in the channel-die experiments of Kelley and Hosford
[8]. Single-crystals were subjected to plane-strain compression, being
compressed in the Compression direction with a rigid constraint im-
posed in the Constraint direction, while being unconstrained in the
third (orthogonal) direction. Each case is designed to promote the
activity of the denoted system (Deform. Mode(s)), including pyramidal
(Py), prismatic (Pris) and basal slip as well as tension twins (TT) and
compressive twins (CT).

Case A B C D E F G

Compression {0001} {0001} {101̄0} {12̄10} {101̄0} {12̄10} {0001} @ 45
◦

Constraint {101̄0} {12̄10} {0001} {0001} {12̄10} {101̄0} {101̄0}
Deform. Mode(s) Py & CT Py & CT Pris & CT Pris & CT TT TT Basal

Simulations for calibration were performed under quasistatic conditions
at a strain rate of ϵ̇ = 10−4s−1. The channel-die setup—with compression
being applied in the x3-direction and the sample surfaces perpendicular to
the x1-direction left free and constrained in the x2-direction, is approximated
by imposing the deformation gradient

F =

F11 F12 F13

0 1 0

0 0 eϵ̇t

 . (3.22)

The unknown entries F1i (accounting for the free boundaries of the channel)
are found by solving for the traction-free boundary conditions P1i = 0 [147].
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Figure 3.2: Range of the experimentally reported CRSS values for the slip and
twin systems. The shown ranges were obtained from Wang, Liu, and
Soh [15] and expanded with experimental data from Chapuis and
Driver [9](1), Kelley and Hosford [8](2), Yoshinaga and Horiuchi [16,
17](3,7), Akhtar and Teghtsoonian [18](4), Wonsiewicz and Backofen
[19](5), and Kitahara et al. [20](6). The pyramidal II CRSS of the
reduced model coincides with the experimental values of Obara,
Yoshinga, and Morozumi [21]

Parameter calibration starts with the room-temperature CRSS values,
which were chosen to lie in the range reported experimentally (see Fig. 3.2),
with the parameters reported by Chang and Kochmann [107] used as initial
guess. The room-temperature CRSS values were, once chosen, held constant
for the remainder of the calibration process.

The calibration for each case in Table 3.2 (assuming that only the indi-
cated deformation modes are active) follows the same protocol. With the
Voce hardening laws, the initial onset of plastic flow is governed by the
CRSS values of the active systems. The peak stress depends mostly on
the saturation stress σ∞

α , while the shape of the plastic stress-strain curve
depends primarily on the self-hardening factor h0

α. The large-strain behavior
additionally depends on the cross-hardening factors hαα′ and h0

α. Calibra-
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tion of the model was accomplished by critically comparing the results of
the simulated single-crystal behavior to the experimental stress-strain data
of Kelley and Hosford [8], calibrating the relevant model parameters one
at a time to capture the onset of plastic flow, hardening, and large-strain
behavior in a similar spirit to Zhang and Joshi [108].

This procedure works best when there is no ambiguity in the deformation
modes during plastic deformation. Hence, Case G, involving only basal
slip, proves easiest to calibrate, so optimal material parameters were readily
obtained. Analogously, case E is ideally suited to calibrate the TT systems.
Since twins follow a slightly different hardening law than the slip systems,
hardening parameter k0 was calibrated with the initial response of the
single-crystal experiments from Kelley and Hosford [8] to fit the slope of
the twin hardening region up to 6% strain. The bifurcation point, indicating
the saturation of the twin system and the subsequent reorientation of the
lattice, corresponds to the results obtained by Zhang and Joshi [108] for a
critical volume fraction of 0.9.

Calibration of the pyramidal II and prismatic systems was less trivial, as
both systems in principle occur simultaneously in cases A and C (along
with CT). As a simplifying assumption, we assume that simulations of
case A are dominated by pyramidal II slip and CT activity, and case C by
the prismatic systems and CTs (as indicated in Table 3.2). This led to a
iterative calibration route of those systems. Cases B and D, which feature
the same deformation modes but to different extent, were used to check
and validate the calibrated model parameters.

While in the reduced model (without CT) the seven cases were well suited
to isolate each deformation mode, the ambiguity linked to the presence of
the CT systems in the full model led to challenges (similar challenges were
noted by Zhang and Joshi [108]). As a remedy, we assume, based on data
from Kelley and Hosford [8], Yoshinaga and Horiuchi [16], Wonsiewicz and
Backofen [19], and Kitahara et al. [20], that CTs exhibit a lower CRSS than
the pyramidal II systems at lower temperatures. In fact, in the full model
this assumption was necessary to obtain CT contributions in the first place.
The self-hardening factor k0

CT of the CT systems was calibrated such as to
capture the initial slope of case A, see Fig. 3.8. The excessive self-hardening
is in agreement with experimental observations and simulation results [19,
108]. Upon saturation (not due to reaching the critical volume fraction,
but instead due to extensive self-hardening) additional deformation is
accommodated by pyramidal II slip.
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Once calibrated at room temperature, the single-crystal model was made
temperature-dependent, as described in Section 3.4, again beginning with
the CRSS values, for which an exponential ansatz was chosen for the pyra-
midal II and prismatic ⟨a⟩ slip as well as the CT systems (see Section 3.4).
Unfortunately, the experimentally reported CRSS values are inconclusive.
For instance, the CRSS values for the prismatic systems reported by Yoshi-
naga and Horiuchi [16] and Akhtar and Teghtsoonian [18] differ substan-
tially. The exponential decay parameters were thus obtained by critically
comparing the predicted CRSS values with the range of experimental results
reported by Nie, Shin, and Zeng [2], Chapuis and Driver [9], Yoshinaga and
Horiuchi [16], Akhtar and Teghtsoonian [18], and Obara, Yoshinga, and
Morozumi [21]. Due to the wide range of experimental data, we note that
the calibrated CRSS values may not represent physical material constant.
We observe, however, good agreement with the experimentally reported
values for the temperature range up to 300

◦C, see Fig. 3.3.
Calibration of the hardening parameters at elevated temperature was

performed via optimization, using the Nelder-Mead optimization routine
from the SciPy library [237]. For each case, an initial guess was chosen
manually. As in the room-temperature case, the calibration of these systems
is not straight-forward, and cases A and B need to be considered jointly.
Therefore, in the numerical optimization, the objective was to minimize the
mean square error (MSE) of the accumulated stress-strain error of both cases
(A and C) at temperatures of 116

◦C, 200
◦C, 271

◦C for case A, and 110
◦C,

180
◦C, and 270

◦C for case C. This allowed us to identify the temperature
parameters ηα, ξα, and να for each deformation mode. Note that no global
optimum was found, and the temperature-dependence depends on the
initial guess. The optimization procedure was repeated 20 times, and the
best set of parameters (in terms of the lowest stress-strain MSE) was chosen.

The calibration of the temperature parameters proved to be complex, since
the room temperature data for cases A, B, C, and D from Kelley and Hosford
[8] and Wonsiewicz and Backofen [19] differ significantly (see Fig. 3.4).
While both authors reported similar peak stresses and general behavior,
the path to failure varied. Data from Kelley and Hosford [8] shows strong
initial hardening in the elastic region with a flow stress of around 100 MPa,
followed by a slow transition into a peak-stress around 300 MPa at 4% strain.
The behavior reported by Wonsiewicz and Backofen [19] exhibits a different
initial hardening behavior: the material seems to exhibit an early onset of
plastic flow at considerably lower stresses of around 40 MPa, followed by
slower and less pronounced hardening, which abruptly plateaus at around
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Table 3.2: Model parameters for the slip systems at room temperature, calibrated
based on the experimental data of Kelley and Hosford [8]. All values
are for the reduced model, unless those marked by †, which are for the
full model including the CT systems. Values marked by an asterisk (∗)
were calibrated based on data from Kelley and Hosford [8], Chapuis
and Driver [9], Akhtar and Teghtsoonian [18], Lilleodden [25], and
Ando et al. [26] The temperature dependence of the CRSS values was
calibrated such as to lie in the range of experimentally reported data,
see Fig. 3.3.

Parameter Symbol Unit Basal Prismatic Pyramidal II Reference/Calibration

CRSS τ0 MPa 2.0 20 40 (100†) calibration∗

Self hardening factor h0 MPa 750 6000 13000 calibration

Cross hardening factor hij MPa 10 10 12 calibration

Saturation stress σ∞ MPa 0.8 72 115 (60†) calibration

Twin-slip cross-hardening factor cα MPa 20 10 5 calibration

Reference slip rate γ̇0 s−1 10−3 10−3 10−3 Zhang and Joshi [108]

Slip exponent mp – 0.5 0.5 0.5 Chang and Kochmann [107]

CRSS temperature factor ω – – 3.0 2.95 (5.5†) calibration∗

Self-hardening temperature factor η – – 5.2 4.5 (2.2†) optimization

Cross-hardening temperature factor ν – – 1.3 2.5 optimization

Saturation stress temperature factor ξ – – 2.5 4.05 (2.5†) optimization

Table 3.3: Model parameters for the twin systems in full and reduced models,
calibrated based on the data of Kelley and Hosford [8] and Wonsiewicz
and Backofen [19]

Parameter Symbol Unit TT CT Reference/Calibration

CRSS τ0 MPa 3.5 50 calibration

Self hardening factor k0 MPa 25 3000 calibration

Twin shear γ̇0 – 0.129 0.138 Chang and Kochmann [107] and Zhang and Joshi [108]

Cross hardening factor hij MPa 100 100 Chang and Kochmann [107]

Critical volume fraction vcrit – 0.9 0.9 Zhang and Joshi [108]

Twin rate γ̇0 – 10
−3

10
−4 Zhang and Joshi [108]

Twin exponent mtw – 1 1 Chang and Kochmann [107]

CRSS temperature factor ω – – 3.5 calibration

Self-hardening temperature factor ξ – – 4.0 calibration.

5.5% strain before fracture occurrs at 6% strain. We show a comparison for
case A in Fig. 3.4, but the same trends persist for cases B, C, and D. While the
differences in experiments rendered the calibration task more challenging,
the fact that the peak stresses appear to be unaffected by the difference
in experimental setups, the model was calibrated to the available single-
crystal data despite the apparent differences. This calibration required
manual tuning, as the optimizer generally tends to over-predict the stress
at elevated temperature and under-predict at lower temperatures.
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Figure 3.3: Experimentally measured CRSS values for the slip and TT systems
in Mg in comparison with this model over the studied range of
temperatures. The filled markers show experimentally reported data
from Yoshinaga and Horiuchi [17], Akhtar and Teghtsoonian [18],
Wonsiewicz and Backofen [19], and Obara, Yoshinga, and Morozumi
[21]. The solid lines with markers represent the data for the reduced
model, the dashed lines for the full model. The TT and basal CRSS
values were constant for both models.

3.6 single crystal simulations

The single-crystal response of Mg is highly sensitive to the crystal orienta-
tion with respect to the applied loading, and it depends on temperature.
Unfortunately, the literature is controversial when it comes to the non-basal
slip vs. twin activity. Compression along the c-axis requires the activation
of deformation modes such as pyramidal II slip or CTs [16, 21, 216]. Accord-
ing to Ono, Nowak, and Miura [3], ⟨c + a⟩ pyramidal slip is a prominent
deformation mode for through-thickness compression along the c-axis. In a
similar spirit, Obara, Yoshinga, and Morozumi [21], Koike et al. [127], and
Muránsky et al. [219] reported pyramidal II slip activity at room temper-
ature. These findings stand in contradiction to the observations of Kelley
and Hosford [8] and Wonsiewicz and Backofen [19], who observe mostly
{101̄1} CTs and {101̄2} TTs alongside large amounts of basal slip at room
temperature and, in part, at elevated temperature, where especially the
presence of TTs appears counter-intuitive due to the polar nature of the
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Figure 3.4: Stress-strain data for the channel-die experiments of Kelley and Hos-
ford [8] (dotted line) and Wonsiewicz and Backofen [19] (solid line).

twin systems. With increasing temperature, Wonsiewicz and Backofen [19]
further observed increasing amounts of twinning and double twinning in
Mg single-crystals, when compressed along the c-axis. This, in turn, is in
contradiction to the more recent investigations by Barnett [56], who found
CT activity to be inversely proportional to temperature. Above a transition
temperature, CTs were found to be less dominant, while non-basal slip
systems account for the increasing amount of deformation [123]. Similar
findings were reported by Khosravani et al. [238] for alloy AZ31B, where
this transition temperature was found to be as low as 350K. Wonsiewicz and
Backofen [19] reported evidence of CTs even at room temperature for cases
C and D, in which the crystal is not ideally oriented for CTs to show activity.
With the goal of shedding light into these controversial reports (while also
validating the model’s suitability), we proceed to model the response of
Mg single-crystals, using the two versions of our model (reduced and full,
where only the latter accounts for CT) along with a detailed comparison
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and discussion—and we do so both at room temperature and at elevated
temperature.

3.6.1 Room-Temperature Single-Crystal Response

In the following we simulate the room-temperature mechanical response
of Mg single crystals and compare our results with experimental bench-
marks. We begin by showing the results of the reduced representation,
followed by those of the full model, including CTs. Finally, we compare
both implementations and assess their results critically.

3.6.1.1 Reduced Representation of the Microstructure (without CT)

Fig. 3.5 shows the stress-strain behavior of Mg single-crystals for cases A
through G, predicted by the reduced model with the material parameters
in Table 3.2. The predicted response captures the salient features and
compares well with the experimental data in all cases. To highlight the
microstructure evolution, we also report the predicted activity of the various
deformation modes. To this end and to compare the activities, we introduce
as a qualitative measure the relative activity of each deformation mode as

Ybas./prism./pyr. =
Γbas./prism./pyr.

∑Ns
α=1 |γα|

, (3.23)

where Γbas./prism./pyr. = ∑α |γα| represents the sum of either all basal, all
prismatic, or all pyramidal slip activity. We define an analogous relative TT
activity

YTT =
Nt

∑
β=1

λβ, (3.24)

which is a qualitative measure of the overall TT activity (YTT = 0 implying
no TT activity). Let us comment on the individual load cases and their
predicted microstructural characteristics.

c-axis compression:
Mg crystals under plane-strain compression along the c-axis of the crystal
are distinguished by strong strain hardening, characteristically followed
by rapid fracture at roughly 4% to 6% strain [8, 19]. The resulting limited
formability is related to the localization of deformation due to an insufficient
number of deformation modes, resulting in the formation of shear bands
and ultimately failure [2, 8, 19, 45]. Both cases A and B are similar in nature,
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Figure 3.5: Stress-strain responses of cases A through G. Dots represent ex-
perimental data by Kelley and Hosford [8], solid lines are results
simulated with the reduced model.

B showing a slightly higher peak stress [8, 19]. The reduced model captures
this phenomenon accurately.

The relative activities in Fig. 3.6 for cases A and B show a predominant
activation of pyramidal systems, which agrees with the results by Wang, Liu,
and Soh [15] and Zhang and Joshi [108]. In the absence of CTs, pyramidal
slip is the only option to accommodate compressive c−axis deformation.
Experimentally, the presence of pyramidal slip at room temperature was
shown by Ono, Nowak, and Miura [3], Obara, Yoshinga, and Morozumi [21],
Lilleodden [25], and Muránsky et al. [219]. Since the pyramidal II systems
have a Burgers vector with both, c- and a-components, and a constraint is
applied, some of the deformation along the a− axis induced by the activity
of the pyramidal systems requires compensation. This induces a smaller
degree of prismatic slip. The change in orientation in case B leads to an
increased activity in the prismatic systems. Similar effects were reported
in previous numerical studies [107, 108, 159]. The larger peak strain in
case B comes from the effect of the constraint which effectively hardens
the pyramidal systems [108] as well as the increased slip activity on the
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Figure 3.6: Relative twin and slip activities for cases A, B, C, D, E, and F. Case G
shows only basal activity, as expected, and is hence omitted here.
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prismatic systems, which lead to a hardening effect.

a-axis compression with constrained c-axis:
Mg single-crystals under a-axis compression typically exhibit strong initial
strain hardening, followed by a gradual strain softening and no explicit
peak stress. This case is also characterised by an exceptionally high ductility,
as it can accommodate large strains before fracture [8, 19]. This behavior
is accurately described by the present formulation. In both cases C and D,
the constraint is applied in the {0001} direction, and the prismatic systems
are expected to be the predominant sources of plastic slip. In addition,
the non-zero resolved stresses on the TT systems along with their low
CRSS lead to a significant amount of TTs despite the hard constraint. The
deformation along the c-axis, which results from the TTs, is offset by elastic
deformation in the channel wall as well as by the activity of CTs in an
experimental setting, allowing up to 20% twin volume fraction[19]. In our
simulations, however, the channel is rigid and CTs are not accounted for
in the reduced model, yet TTs are also observed. This is possible as the
strain along the constrained c-axis due to TTs is offset by activating the
pyramidal systems. Case C exhibits a larger TT contribution, which plateaus
at about 3% strain. In agreement, the pyramidal II contributions tend to
vanish beyond this level of strain, as little c-axis deformation is induced
(see Fig. 3.6). Conversely, case D exhibits less TT activity, in agreement with
the pyramidal activity also being reduced.

a-axis compression with unconstrained c-axis:
Cases E and F are dominated by TTs, characterized by low strain hardening
up to 6% strain. TT in Mg is easy to activate, and twins grow until they
reach saturation, thus showing little strain hardening during the initial
deformation phase (see Fig. 3.5). Upon saturation, the crystal reorients
abound the twin plane of the active twin system, which leads to a drastic
change in the stress-strain response, as demonstrated by cases E and F.

Twinning is an asymmetric deformation mode2, which is captured by the
reduced model, as shown in Fig. 3.7.

2 The characterisation as a “compressive” vs. “tension” twin depends on the c/a ratio of the
material [7]. For materials with a c/a <

√
3 (which includes Mg) the {101̄2} twinning mode

is a tension twin, i.e., it elongates the c-axis. It hence activates under c-axis tension, while
showing no activity under c-axis compression.
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Figure 3.7: Tension-compression asymmetry and the reorientation of the crystal:
due to the imposed initial orientation of the crystal, the x-direction
is unconstrained, and the loading direction corresponds to the y-
direction in the pole figures (a.b). Case E leads to a reorientation by
86◦ (a), whereas case F leads to a reorientation by 30.3◦ (b) [15, 19]. (c)
shows the tension-compression asymmetry of the TT system, which
is active under c-axis extension but inactive under c-axis compression.
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For case E, the unobstructed c-axis allows the TT to grow, contributing
a ⟨c + a⟩ component to the total deformation. Initially, this leads to the
activation of prismatic systems to offset the ⟨a⟩ contributions against the
constraint. After about 2% strain the crystal has sufficiently reorientated
due to slip, so that basal slip becomes active and almost instantaneously
governs the deformation. The twin system saturates at about 6%, which
leads to an instantaneous change in the stress-strain behavior. In case E of
the simulations, the twins reorient the material by 86.3◦, which is close to
the orientation initially shown in cases A and B [8]. In this configuration,
the shear stress on the basal systems is minute, in contrast to the pyrami-
dal systems, which are now again favorably aligned. Note also that the
total amount of slip is small during the first 6% of deformation, since the
pyramidal slip almost instantaneously accounts for the majority of all slip
upon reorientation. The reoriented crystal is close to cases A and B, but
the response is stiffer, which was also noted by Kelley and Hosford [8] and
which is attributed to prior twin-hardening of the material.

The situation is different for case F, where the twins reorient the material
such that the basal plane forms a 31◦ angle with the loading direction (Fig.
3.7), thus enabling basal slip to emerge easily [8]. As noted by Wang, Liu,
and Soh [15], the orientation of case F leaves the basal systems ideally ori-
ented and explaining the different behavior of the twinned crystal. Further,
in case F four TT systems are ideally oriented for activation, as noted by
Kelley and Hosford [8]. As seen in Fig. 3.7, we capture the reorientation
of both cases E and F accurately in our simulations. The discrepancy in
the predicted stress for case F is due to other aspects. The predominant
twin model used here (only the twin system with the largest CRSS is active)
cannot capture multiple twin systems. This leads to premature saturation
of a single system and the subsequent lack of twin-slip hardening yields a
lower stress at larger strains.

Orientations promoting basal slip:
Under plane-strain compression with the c-axis forming a 45◦ angle to
the compression direction (case G), basal slip is favored. Samples in this
case exhibit considerably higher plastic strains and noticeable hardening is
observed only at large strains, as is evident from the data of Nie, Shin, and
Zeng [2] and Kelley and Hosford [8]. The low hardening rates and early
onset of plasticity reflect the discrepancy in CRSS and hardening behavior
between the basal systems and all others, as basal slip is solely active up to
10% strain in this case. At higher strains, deformation is also accommodated
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Figure 3.8: Stress-strain responses of cases A through G, as obtained from the
full model including CT. Dots represent experimental data of Kelley
and Hosford [8], lines are simulated results.

via twin band formation. After about 50%-60% strain, the crystal hardens
extensively, as the twinned volume fraction increases [2].

3.6.1.2 Full Representation (including CT)

The full model including CT (calibrated through cases A and C, as explained
in Section 3.5) leads to the stress-strain responses shown in Fig. 3.8 for all
seven cases. Again, good agreement with experiments is achieved, and the
key aspects of the stress-strain behavior are captured. CTs lead to a slightly
stiffer initial response for cases A and B as well as under reorientation due
to twinning. This is related to the high hardening and slow kinematics of
the twin propagation generally associated with CT [15, 19, 108] as well as
with the change in CRSS and initial hardening parameters of the pyramidal
systems, as obtained from the calibration of the full model (see Table 3.2).
Predictions for cases E, F, and G are close to those of the reduced model, so
that we will focus on the cases A and C to discuss the influence of CTs.



3.6 single crystal simulations 115

c-axis compression:
CTs offer a second deformation mode next to the pyramidal II systems
to accommodate deformation along the c-axis under compression, while
also affecting the crystal reorientation. Fig. 3.9 shows the activity of the
deformation modes, highlighting the competition between the CT and
pyramidal II systems. Initially, basal slip occurs alongside CT formation
in agreement with experimental observations [19]. The reorientation due
to CT is, however, minimal, seen over the entirety of the crystal, and the
volume fraction remains below 10% for the duration of the simulation.
CTs are known to propagate more slowly than their tensile counterparts
[108] and to harden more extensively. Due to the slow propagation of CT
lamellae in the crystal (described in our model by the reduced reference
growth rate) the crystal must activate pyramidal slip once the CT systems
have hardened substantially (which occurs at about 3% strain, when the CT
system has hardened so much that any further increase in the twin volume
fraction is unfavourable). The deformation is henceforth accommodated by
a combination of pyramidal and prismatic slip, in a similar fashion to case
A in the reduced configuration.

a-axis compression with constrained c-axis:
Wonsiewicz and Backofen [19] reported a significant amount of {101̄2}
twin formation with some {101̄1} CTs, which “could only have happened
to relieve the c-axis expansion generated by the {101̄2} twinning”. The CT
banding is hence activated as a mechanism to reduce the stress induced
by the TT formation. The full model captures this behavior, as shown in
the relative activities in Fig. 3.9. Initially, a combination of basal slip, CT,
and TT is activated, followed by a sharp increase in prismatic slip activity.
Up to approximately 3% strain, CT balance the c-axis extension induced by
TT. Upon hardening at strains larger than 3%, the CTs saturate and small
amounts of pyramidal slip activity accommodate further c-axis deformation.
TTs slowly saturate around 6% strain, which also leads to a reduction in
pyramidal activity. a-axis deformation is accommodated by a combination
of mostly prismatic and a smaller portion of basal slip.

a-axis compression with unconstrained c-axis:
Simulations of crystals with an unconstrained c-axis, again, show the typical
twin-dominated deformation behavior, as seen with the reduced model. The
initial deformation is accommodated mostly by the TT system alongside
basal and small amounts of prismatic slip for compatibility reasons. At
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Figure 3.9: Relative activities of the deformation modes, as obtained from the full
model including CT. Results are for a single-crystal under plane-strain
compression, mimicking cases A, C, E, and F of the experiments by
Kelley and Hosford [8]

close to 6% strain, the twins saturate and the crystal is fully reoriented [8],
bringing it close to the orientation of cases A and B. Upon reorientation in
case E, pyramidal II slip is slowly activated in the reoriented region. Due to
the larger CRSS of the pyramidal slip, the activity of this deformation mode
increases more slowly than for the reduced model. Case F shows generally
a similar behavior: the first 6% strain are governed by the TT system.
Upon reorientation, however, due to the different orientation of the twinned
region, the basal plane is favorably oriented for slip [8]. Hence, basal activity
is the key contributor to deformation in the reoriented crystal, which is
captured accurately in both implementations of the model. The observed
microstructures are generally in good agreement with the observations of
Kelley and Hosford [8] observations. One exception is the fact that Kelley
and Hosford [8] reported {101̄1} activity right before fracture for case E,
which is not captured here as we do not account for double-twinning.
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3.6.1.3 Summary

In summary, both full and reduced models capture the stress-strain behav-
ior of Mg qualitatively and quantitatively well in comparison to experi-
mental data, which also extends to the microstructural mechanisms. The
key difference lies in how deformation along the c-axis in compression
is accommodated—either involving the CT systems or non-basal slip sys-
tems. Results indicate that both versions (with properly calibrated plastic
material parameters, which differ in the full and reduced models) capture
the salient stress-strain response. The full model, which includes the CT
systems, shows the competition between the CT and the pyramidal systems,
previously reported in experiments, and offers an insight into their relative
activities at room temperature.

3.6.2 Temperature Dependence of Monocrystalline Mg

Let us proceed to test the two models for their temperature-dependent pre-
dictions. While the basal and twin systems were chosen to be temperature-
independent, prismatic and pyramidal slip undergo a strong increase in
activity at elevated temperature Nie, Shin, and Zeng [2], Ono, Nowak, and
Miura [3], and Chapuis and Driver [9]. This has a marked influence on
the activity of deformation modes with increasing temperature, as we will
demonstrate in our comparison of results, again beginning with the reduced
model before advancing to the full one.

3.6.2.1 Temperature Dependence in the Reduced Model

As cases A and C prominently activate the temperature-dependent deforma-
tion modes, we evaluate these two cases for their temperature-dependent
response. Experimental single-crystal data is available from Wonsiewicz
and Backofen [19] at temperatures of 116, 200, and 271

◦C for case A, and at
110, 180, and 270

◦C for case C. Fig. 3.10 shows good agreement between
the model predictions and the experimental data under c-axis compression
at four selected temperatures (results at 25◦C (room temperature, RT) are
identical to those in Fig. 3.5). Strain hardening and peak stresses signifi-
cantly reduce with increasing temperature, as expected. Differences at low
strains primarily stem from the fact that, as discussed before, the experi-
mental data of Kelley and Hosford [8] and Wonsiewicz and Backofen [19]
differ (hardening rates in Wonsiewicz and Backofen [19] are consistently
smaller than those of Kelley and Hosford [8], while the peak stresses match
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Figure 3.10: Temperature-dependent stress-strain response of Mg single-crystals,
corresponding to cases A (left) and C (right). Solid lines are predic-
tions by the reduced model, whereas the scatter plot represents the
experimental data obtained by Wonsiewicz and Backofen [19]

closely). Since we calibrated the single-crystal RT response with the data of
Kelley and Hosford [8], the observed differences especially in the low-strain
regime may be expected. In fact, such strong temperature-induced softening
in the experimental data in the low-strain regime seems unusual. Other
data from Ono, Nowak, and Miura [3] and Chapuis and Driver [9] do not
show such behavior; however, Ono, Nowak, and Miura [3] provide only
polycrystal data, while Chapuis and Driver [9] does not provide sufficient
data at elevated temperature. Further, note that above 170◦C the material is
prone to show crack formation as noted ny Wonsiewicz and Backofen [19].
As we do not capture failure in this model, an overestimation of the stresses
at large strains is the result. Dynamic recrystallization (DRX) may also
play a role (Wonsiewicz and Backofen [19] reported that twinned regions
often show recrystallized areas, even at room temperature; Sitdikov and
Kaibyshev [239] noted low-temperature twin DRX as a mechanism in Mg,
alongside the early onset continuous and discontinuous DRX depending
on the temperature). While such effects are not accounted for in the chosen
SCP model, the overall temperature-dependent stress-strain behavior at
all shown temperatures is captured adequately. This includes the typical
reduction in yield stress and work hardening with increasing temperature.

Kang et al. [118] reported that pyramidal slip may be tightly related to
dynamic recovery mechanisms in Mg. As the dislocations move across dislo-
cation lines by double-cross slip, they lead to dislocation annihilation. This
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increases the ductility of the material and reduces work-hardening. While
the present SCP model does not capture recovery, the chosen temperature-
dependent formulation reproduces the reduced work hardening with in-
creasing temperature due the strong decrease of the self- and crossharden-
ing parameters.

In case C, the crystals are oriented with their c-axis perpendicular to the
loading direction and hence show higher ductility. The model accurately
predicts the stress-strain response of this case throughout the temperature
range (see Fig. 3.10). Again, experimental data show discrepancies, yet
predictions deviate less from experiments than in case A. The low hardening
rates reported in experiments (and seen in Fig. 3.10) are captured by the
strongly reduced self-hardening factors. Overall, the reduced model reflects
the experimentally observed single-crystal response of Mg properly.

3.6.2.2 Temperature Dependence in the Full Model

Figure 3.11: Temperature-dependent stress-strain response of Mg single-crystals,
corresponding to cases A (left) and C (right). Solid lines are pre-
dictions by the full model, whereas the scatter plot represents the
experimental data of Wonsiewicz and Backofen [19].

It is often assumed that CTs show a strong temperature dependence and
are either more active [15] or less active [56] at elevated temperatures. The
reduced activation barrier for pyramidal slip at elevated temperatures leads
to the preferred activation of this slip mode over CT. Barnett [56], Barnett
et al. [123], and Liu, Roy, and Silberschmidt [159] reported temperature
dependence in the activity of twinning, notably the existence of a transition
temperature for Mg and Mg alloys (around 450-475K in pure Mg, which
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is affected by alloying elements), above which CT activity is reduced at
the expense of other deformation modes, contradictory to the observations
made by Wonsiewicz and Backofen [19], who observed an increase in CT
activity under c-axis compression at all tested temperatures. The stress-
strain curves for cases A and C are shown in Fig. 3.11. Surprisingly, the
single-crystal curves obtained by Wonsiewicz and Backofen [19] show
relatively strong softening in the initial region, which is in disagreement
with temperature data from Chapuis and Driver [9] and polycrystal data
from Ono, Nowak, and Miura [3].

With the full model, good agreement with experiments is obtained for
the individual cases, except for case C at the highest temperature, where
the initial hardening rates are overpredicted significantly. This may be
attributed to the early onset of recrystallization in experiments (Wonsiewicz
and Backofen [19] noted the presence of recrystallization, especially in twin
bands), which is not captured by the model.

To highlight the predicted microstructure evolution, Fig. 3.12 shows the
slip activities for case A at 271

◦C. For both models, the contribution of
pyramidal slip increases with increasing temperature, indicating that the
pyramidal systems tend to dominate the competition with CTs. The model
agrees with the experimental observations of Barnett [56] and Khosravani
et al. [238], who observed increased pyramidal activity. The reduced hard-
ening also allows for higher levels of deformation to be accommodated by
this deformation mode alone (compared to at room temperature). Never-
theless, CTs remain present in the full model (they may vanish at higher
temperatures, but this is outside our scope).

In both models, prismatic slip dominates the deformation during case
C at elevated temperature with only minor differences. In the reduced
model, we attribute the predicted presence of pyramidal slip to the con-
strained c−direction, while TTs also contribute to the deformation at ele-
vated temperature—in agreement with experimental observations by Won-
siewicz and Backofen [19]. However, TT is reduced to lower volume fractions
than at room temperature. The full model shows a similar transition in
deformation modes, with more slip activity on the prismatic systems and
TT. Unlike at room temperature though, the pyramidal systems seem to be
activated to offset the TT-induced elongation of the c−axis.

In conclusion, the full model captures the competition between the CT
and pyramidal systems accurately across the examined range of tempera-
tures, and a good correlation with the experimentally reported microstruc-
tural deformation modes is observed. In all cases, the CT volume fraction
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Figure 3.12: Relative activities of the slip and twin systems in Mg single-crystals
for cases A at 271

◦C and C at 270
◦C. Results on the left were obtained

from the reduced model, and results on the right from the full model.
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remains small despite the included temperature dependence of their CRSS
values and hardening parameters in the model. This hints at the fact that
the CT systems may in fact not be temperature-dependent (the inclusion
of temperature dependence in the model has no impact on the predicted
deformation modes), but that their apparent temperature dependence in
experiments is implicitly a result of the temperature-dependent pyramidal
systems.

3.7 polycrystal simulations

Having calibrated the (full and reduced) models based on their single-
crystal behavior, we now predict the temperature-dependent polycrystalline
response at elevated temperature as a further means of validation in com-
parison with experiments Wonsiewicz and Backofen [19].

3.7.1 Taylor Model for Polycrystal Simulations

A simple mean-field, Taylor-type homogenization scheme is adopted to
represent polycrystals in a highly efficient and parallelizable fashion. We
note that, while efficiency is one of this method’s key strengths, the Taylor
model does not have an intrinsic length scale and does not account for
detailed spatial variations on the grain level. Those could be captured by
a (significantly more expensive) spatially-resolved model [12, 107]. The
present model aims to efficiently provide an estimate for the effective,
macroscale response of a large ensemble of grains on the microscale. We
thus consider an ensemble of N grains on the microscale, each given a
volume fraction fi ∈ [0, 1].

Furthermore, each grain is endowed with an initial crystallographic
orientation, described by a 3D rotation tensor Ri ∈ SO(3), which defines
the slip and twin systems within grain i in the global coordinate system as,
respectively,

si,α = Risα, mi,α = Rimα, (3.25)

and
ni,β = Rinβ, ai,β = Riaβ. (3.26)

With each grain having internal variables η = [ϵ,λ], we denote the set of
all internal variables in the polycrystal by G = {η1, f1, . . . ,ηN , fN}, and the
set of all grain orientations is R = {R1, . . . ,RN}.
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Figure 3.13: Schematic view of the Taylor model used for the extraction of the
polycrystal response during channel-die loading with the indicated
loading, constraint, and unconstrained free directions.

Following the Taylor assumption, each grain is subject to the same ap-
plied deformation gradient F (hence expecting an upper bound on the
effective, homogenized polycrystal response), see Fig. 3.13 for a visualiza-
tion. We furthermore assume a uniform, constant temperature T across
the polycrystal (thus neglecting the heat generated by plastic mechanisms
under quasistatic loading). With the individual grain behavior given by
the single-crystal model of Sections 3.2, 3.3 and 3.4, the response of the
polycyrstyal is obtained from the volume fraction-weighted grain average,
so the effective energy density reads

WTaylor(F ,R,G) =
N

∑
i=1

fiW(RiF , ϵi,λi), (3.27)

and the effective first Piola-Kirchhoff stress tensor follows as

P =
∂WTaylor

∂F
. (3.28)

3.7.1.1 Convergence of the Taylor Model

We first verify that the chosen Taylor model converges with increasing
number of grains. We perform a set of 20 simulations with 24 to 200 grains,
whose average stress-strain responses are shown in Fig. 3.14 (in comparison
with experimental results from Kelley and Hosford [8]). The corresponding
texture for the polycrystal simulations is shown in Fig. 3.15.

Initially, the grains show a purely elastic response, hence the close agree-
ment of all curves at strains ϵ < 0.03. For 24 and 50 grains, we observe a
large spread in the stress-strain response, as individual grains can have a
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significant impact on the average response. For 200 grains both convergence
and a good approximation of the experimentally measured response are
observed. We therefore deem a total of 200 grains sufficient and perform
all following polycrystalline simulations with 200 grains, unless otherwise
indicated.

Figure 3.14: True stress-true strain response of textured polycrystals of pure Mg
from experiments (dashed line) and from simulations with 24, 50,
100, and 200 grains simulated with the reduced model. Experimental
data are from Kelley and Hosford [8].

3.8 model validation

3.8.1 Textured Polycrystals at Room Temperature

Next, we perform channel-die simulations of textured polycrystals at room
temperature. At room temperature, we simulate the cases labeled ZT, RT,
and ZR among the experiments of Kelley and Hosford [8]. All grains are
assumed to have identical volume fractions and initial orientations chosen
to qualitatively match the pole figures reported by Kelley and Hosford [8],
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as shown in Fig. 3.15. Fig. 3.15 confirms that the reduced model captures
the stress-strain response of the textured polycrystals quantitatively well,
with small deviations attributed to variations in the texture, experimental
uncertainties, and the Taylor model’s tendency to over-predict stresses.
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Figure 3.15: True stress vs. true strain response of textured polycrystals of pure
Mg from experiments (markers) and from simulations with the
reduced model (solid lines) at room temperature. The experimental
data was obtained by Kelley and Hosford [8]. The representative
texture utilized for the simulations is shown on the left and was
chosen such as to approximate the texture reported by Kelley and
Hosford [8].

In case ZT, most grains have their c-axes oriented along the loading direc-
tion while being constrained in the transverse direction. The stress-strain
response resembles strongly that of single-crystal cases A and B (Fig. 3.5),
yet with lower peak stresses. This is due to the non-ideal orientation of the
crystals compared to cases A and B so that basal slip is favored in many
grains [8]—especially in the Taylor model, grains with lower peak stresses
reduce the average response.

Case RT represents compression along the rolling direction with a con-
strained transverse direction so that the c-axis of the majority of grains
is allowed to extend. This configuration promotes significant amounts of
twinning, whose reorientation of grains leads to a stiffened response at
approximately 6%, analogous to single-crystal cases E and F. The transition
in the homogenized polycrystal case is less sharp than for single crystals,
as may be expected. Finally, case RZ imposes compression in the rolling
direction with a constrained normal direction, i.e., the c-axis extension of
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the majority of the grains is constrained. The resulting stress-strain curve is
close to single-crystal cases C and D. (The same observations were made
by Kelley and Hosford [8].) We conclude that the Taylor model captures
the room-temperature response of textured polycrystals under different
loading directions qualitatively and quantitatively well.

3.8.2 Temperature-Dependent Response of Textured Polycrystals

A comparison of simulation results with experimental polycrystal data at
both room and elevated temperature is summarized in Fig. 3.16, using
the experimental data of Wonsiewicz and Backofen [19]. These authors
reported a texture that appears to be similar to Kelley and Hosford [8]
but less pronounced. As no precise texture information was provided,
we chose—based on the descriptions in Wonsiewicz and Backofen [19]—
the one shown in Fig. 3.16. Wonsiewicz and Backofen [19] described the
texture in their experiments as follows: “Under metallographic examination
with polarized light, the material was found to be textured, somewhat
diffusely but with {0001} poles clustered around the sheet normal and
spreading outwards by as much as 50◦”. We obtain the texture in Fig.3.16

by assuming a normal distribution of the {0001} poles around the normal
direction with a standard deviation of 25◦.Compression is applied along
the normal direction (ND). The predicted stress-strain response of both (full
and reduced) models agrees well with experiments.
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Figure 3.16: True stress-true strain response as obtained from polycrystal simu-
lations, using the full and reduced models. Markers correspond to
experimental data from Wonsiewicz and Backofen [19], solid lines
show the response predicted by the reduced model, and dotted lines
by the full model. The shown texture (used in simulations) was
obtained by assuming a normal distribution with expectation value
at the basal pole and outliers as far as 50◦ from the normal direction.

Most grains in this case are aligned with the ND (and hence similarly as
in single-crystal cases A and B). The polycrystal exhibits relatively strong
initial hardening in the plastic regime around 1%-3% strain, before the
stress gradually plateaus. In comparison to the single-crystals, the the stress
reaches its peak more gradually and the peak stresses are reduced, which
stems from the influence of all other grains oriented away from the ND
and contributing to the polycrystal response. At 25

◦C and 96
◦C, crystals in

experiments were observed to show crack formation [19] at 7%-10%, which
explains the reduction of stresses at that level of strain as compared to
simulations (which do not model material failure).

Both models capture the incipient behavior up to 5% strain accurately, in-
cluding the temperature-induced softening. At larger strains, experimental
polycrystals showed cracks and strain localization [8, 19]. Further, effects
such as grain boundary sliding may lead to softening. The Taylor model,
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agnostic to those effects, consequently over-estimates stresses in the large-
strain regime. It is, however, noteworthy that the full model generally
predicts a higher stress level than the reduced model. We attribute this to
the presence of CTs, which in turn harden the TT systems (one of the weak-
est deformation modes). The accuracy improves with elevated temperature,
providing further evidence for this assumption. As the pyramidal systems
become more prevalent, the hardening linked to CT has a smaller impact.

3.9 texture evolution in mg

As a representative example, let us first study the texture evolution of a
rolled sample of pure Mg under uniaxial compression along the rolling
direction (RD). The initial texture of the polycrystal is chosen to mimic a
typical rolled sheet of Mg, see Fig. 3.17, which shows a strong pole in the
normal direction (ND).

.

Figure 3.17: Texture of the undeformed (left) and deformed (right) polycrystal
of pure Mg, simulated by the reduced model for the case of com-
pression up to 30% true strain at 25

◦C. Initially a strong pole in the
normal direction exists (left). After deformation, most grains are
reoriented due to twinning, leading to a new, weaker texture with
the pole in the transversal direction (TD) (right)
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Assuming volume-preserving deformation due to small elastic strains
and plastic incompressibility, we apply the deformation gradient

F =

(ϵ̇t)1/2 0 0

0 (ϵ̇t)1/2 0

0 0 ϵ̇t


with strain rate ϵ̇ > 0 and t denoting time, to the polycrystal model up to
a true strain of 20%. At room temperature, samples are expected to show
cracks at larger strains, hence setting a limit to the applied deformation.
The simulated texture before and after deformation is compared in Fig. 3.17.
The initially strong basal pole in the ND transforms into a weaker pole
in the transverse direction (TD), capturing the essential feature of texture
reorientation due to twinning and slip and qualitatively in agreement with
observations made for AZ31B [5].

As a further example, we investigate the texture evolution during cold
and hot asymmetric rolling. Rolling is assumed to be a superposition of
compression and simple shear [147], so it can be simulated by applying the
deformation gradient

F =

eϵ̇t 0 α · ϵ̇t

0 1 0

0 0 e−ϵ̇t


with a constant α = 3.

We observe the formation of a split basal pole, which is slightly tilted
towards the RD. The tilt is typical for the processing during asymmetric
rolling, investigated here, and was reported similarly in experiments with
commercially pure Mg by Beausir et al. [240]. As noted by Styczynski et al.
[66], the texture evolution obtained from including basal, prismatic and
pyramidal II slip as well as TTs in the Taylor model leads to the formation
of a fibrous texture; similar results were obtained by Agnew, Yoo, and
Tome [46] and Chang and Kochmann [107] in their rolling simulations.
Here, we investigate the impact of CTs on the texture development of a
polycrystal with 1000 grains and an initially randomized texture, comparing
the cold-rolled textures with and without CTs. For both full and reduced
models, the formation of a fibrous texture is observed (see Fig. 3.18). Most
grains adopt an orientation close to the basal pole but split either way of
the TD (the vertical axis). Similar trends were observed during numerical
studies Agnew, Yoo, and Tome [46], Styczynski et al. [66], and Chang and
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Kochmann [107] and in a less pronounced manner for certain Mg alloys
in experiments Huang and Logé [85]. This indicates that the pyramidal
systems are highly active [46, 66, 107]. Additionally, Styczynski et al. [66]
discussed the influence of various deformation modes and reached the
conclusion that the ⟨c + a⟩-pyramidal systems play a major role in the
splitting of the poles. They noted that a splitting of the basal pole in ±15◦

around the TD is commonly observed in AZ31, while Agnew, Yoo, and
Tome [46] reported such a trend during processing of pure Mg. The same
behavior has been observed for Mg-3Li alloys in the experiments of Agnew,
Yoo, and Tome [46], further emphasizing the impact of precipitates and
alloying elements on the texture evolution.

In their viscoplastic model, Agnew, Yoo, and Tome [46] found a similar
behavior as Styczynski et al. [66] for the evolution of Mg sheets during
rolling, yet they were able to mitigate it by increasing the CRSS of the
pyramidal systems to effect an increased activity of basal and prismatic ⟨a⟩
dislocations.

As observed in the previous sections, CTs saturate due to self-hardening
at relatively low strains. Therefore, during simulated rolling with an ap-
plied thickness reduction of up to 60%, the influence of the CT remains
small. We therefore cannot observe a direct impact of the CT systems. Due
to the early crack formation at low thickness reductions below 30% [241],
cold-rolling of Mg is typically performed in multiple passes. Hence, for
a better representation, the deformation during rolling must be applied
incrementally, while accounting for thermal treatment in between passes,
as is customary in industrial rolling processes. The present model cannot
account for those factors. Further, in the case of a Taylor model, which
is—adopting the wording of Styczynski et al. [66]—a “compatibility first”
model, the texture evolution is severely impacted by the constraint of uni-
form deformation across all grains. A better agreement with experimental
textures may hence be found by relaxing this constraint through another
homogenization approach.

3.10 chapter summary

The presented full and reduced models (with and without CTs) have obvious
differences and limitations, which we briefly discuss here.

As the main difference, the single-crystal results highlighted the com-
petition between the pyramidal II and the CT systems. Under c-axis com-
pression, the reduced model can accommodate the deformation only via
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.

Figure 3.18: We show the textures of a polycrystal with 1000 grains. In (a), we
depict the initial random grain orientations, whereas in (b) we show
the cold-rolled texture, simulated by the reduced model. In (c) we
show the hot-rolled texture predicted by the full model including
CT, and in (d), the hot-rolled texture as predicted by the reduced
model. The simulations were performed up to a total of 60% strain
at a strain rate of ˙ϵtrue = 10−4s−1 at a temperature of 25

◦C for the
cold case and 270

◦C for the hot case

the activation of pyramidal slip, whereas the full model accommodated the
early stages of plastic deformation via a combination of basal slip and CTs.
Even though the effective stress-strain curves were similar, the underlying
microstructural deformation modes differed substantially. In the full model,
CTs were observed to saturate at relatively low strains, which is attributed
to the slow kinetics of this system [108] as well as the strong self-hardening.
With the saturation of CTs at low volume fractions, we infer that no viable
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deformation modes are available, and while traces of pyramidal II slip may
occur, the strong self- and cross hardening of this deformation mode as well
as the pinning of ⟨c + a⟩ dislocations observed by Kang et al. [118] is what
leads to significant basal slip suddenly occurring in the reoriented CT bands
alongside {101̄2} double-twinning, as observed in experiments by Won-
siewicz and Backofen [19]. The model captures such a behavior in essence.
However, due to the lack of a failure criterion and the absence of double-
twinning in the model, not all of the intricate microstrucutre evolution was
captured. At elevated temperature, for both single- and polycrystals, the
behavior changes[19, 123]. The apparent temperature dependence of CTs
and even of TTs ( Jain and Agnew [5] inferred that less twins overall are
present in the material at higher temperature) can be explained by increased
activity on the non-basal slip systems [123]. These observations suggest
that CTs are a sub-optimal deformation mode, occurring in the absence
of pyramidal II slip out of necessity to accommodate the flow criterion. In
reverse, these findings also indicate that the activation of non-basal slip is
what leads to the apparent temperature dependence of the CT systems and,
further, could be the key to increasing the ductility of Mg.

Calibration of both models remains somewhat challenging, even at the
single-crystal level, since the influence of each model parameter cannot be
isolated and various deformation modes show similar stress-strain char-
acteristics. The full model with its competition of c-axis modes proved to
be more difficult to calibrate. Better agreement with experiments seems
possible with an improved twin model, where the saturation of CT lies
near the point of fracture. In addition, the presented full model likely
understates the importance of CT mode by activating only a single twin
system at a time. Nevertheless, the present assumption leads to a very
good approximation for the TT systems and is hence unlikely to have a
significant adverse impact. The inclusion of CTs in the model yields an
overall hardening effect, as seen in Fig. 3.16. This is due to the twin-twin
hardening of CTs on the TT mode—one of the easier-to-active deformation
mechanisms to accommodate plastic deformation. Despite the challenges
linked to including the CT systems, they play an important role on the
microstructure evolution and require to be present for an accurate depiction
of the material behavior.

We note that for both models a high self- and cross hardening is necessary
for the pyramidal systems to capture the strong strain hardening. This
observation can in part explain the nature of the ambiguity in experimental
reports. Pyramidal II slip is clearly the best-suited deformation mechanism
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to accommodate c−axis deformation, and hence it is not surprising that
it should occur to some degree even at low temperature, as suggested
by experimental results [3, 28]. The strong self-hardening, as well as the
immobilization of ⟨c + a⟩-dislocations noted by Kang et al. [118], however
explain the scarcity of pyramidal II slip in some experimental observations.
Further evidence for this hypothesis is found in observations by Lilleodden
[25] who observes no CT formation during experiments and argues that CTs
observed by Kelley and Hosford [8] and Wonsiewicz and Backofen [19] stem
from preexisting nuclei and nucleation sites. Increasing the temperature
leads to a higher activity of the pyramidal systems and thus to strain
softening and an increase in ductility Chakkedath et al. [221]. Seeing that
pyramidal slip provides a large number of possible deformation modes [118,
242] and considering the observations of Obara, Yoshinga, and Morozumi
[21], Barnett [56], and Barnett et al. [123], pyramidal slip must be the
dominant deformation mode at elevated temperature.

Model limitations lie in the simplified representation of the twins, which
has implications on the accuracy of the twin predictions, as well as con-
sidering only the {101̄1} CT variant. Further, the isostrain assumption for
the Taylor polycrystal model is a strong approximation, which overpredicts
local strains. While good agreement in the stress-strain data was observed,
the texture evolution during rolling was not fully as expected in Mg (yet,
this also depends on the chosen initial texture chosen for simulations).
Further, the model does not capture (dynamic) recrystallization (DRX),
whose nature in Mg is still not fully understood; see, e.g., Kecskes et al.
[58], Sitdikov and Kaibyshev [239], and Kaibyshev [243] and references
therein. Sitdikov and Kaibyshev [239] and Kaibyshev [243] argued that
Mg exhibits multiple forms of DRX, beginning with twin DRX at lower
temperature, followed by a mixture of continuous and discontinuous DRX
at higher temperature. For the present models, these factors cannot be
accounted for, and, as already noted by Wonsiewicz and Backofen [19], we
have little understanding of their impact on the crystal behavior. There is,
however, no doubt that at temperatures above 250

◦C recrystallization plays
an important role, setting a natural upper limit to the present model and
calling for models including DRX [59, 68, 84].
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This chapter has been adapted from Hollenweger, Kochmann, and Liu [244].
"Physics-Informed Crystal Plasticity RNN for Temperature-Dependent
Anisotropic Plasticity in a HCP Material". In preparation (2023)

chapter overview

In the previous chapter of this Thesis, we introduced a temperature-aware
CP model describing the plastic deformation and microstructure formation
in Mg. We have shown its capabilities and its drawbacks and identified it
as a suitable method for a vast range of applications. It offers a range of
insights such as the type of deformation (slip, twin), texture evolution, and
the stress-strain relationship. If included in a full-field method, it may also
provide the user with local information about the stresses, deformation
modes, and microstructure. It still suffers from a detrimental drawback,
however, in terms of applicability in an ICMD setting. Despite the emphasis
we put on efficiency, the computation of the plastic updates remains costly
and a major bottleneck for ICMD integration.

In this chapter, we emphasize utilizing data-driven methods as a means to
accelerate the computation in a multiscale setting. The chapter is structured
as follows. First, we provide a short introduction to the problem and
a reminder of the state of the art in section 4.1. We then introduce the
proposed architecture in section 4.2 Next, we introduce the applied materials
and methods, the data generation methodology and the training strategy
in section 4.3, followed by the training performance of the surrogate in
section 4.4. In section 4.5, we compare our architecture to existing models
and discuss key features such as self-consistency before incorporating the
surrogate into the commercial FEM software Abaqus/Explicit to showcase
its versatility and utility in real-world applications. Finally, we provide a
chapter conclusion and outlook for future work.

135
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4.1 introduction

Plasticity is commonly observed in engineering materials and plays a critical
role in designing structures that are more durable, safer, and make efficient
use of the materials. This is especially the case for metals, where plastic
deformation is a crucial aspect of manufacturing and deformation processes
as well as in component design. However, plasticity is a complex mechanism
that is both path and history-dependent, making it challenging to model
and understand, as we described in chapter 3. Plastic deformation and
behavior during processing is especially important in a material-by-design
approach, as it has severe implications on the properties of the finished
parts. Hence, it is crucial to understand and represent the interrelationships
appropriately. This is only possible with reasonably accurate and efficient
models.

CP models, such as the one developed in chapter 3, have been extensively
used to study and model plasticity in metals [4, 5, 12, 107, 108, 144]. These
models have been used in applications such as CP-FEM, CP-FFT, and in
combination with phase-field modeling, or mean-field techniques such as
the VPSC model, the Taylor or the Sachs model as means to model material
behavior and to investigate material properties and the microstructure
evolution.

However, computing fully resolved CP-FEM or CP-FFT simulations in a
computational material-by-design setting is prohibitively slow. The major
drawback of most physically rooted simulations is their high computational
cost, which becomes even more significant in multi-scale settings. Even the
more efficient mean-field techniques, such as the Sachs or Taylor model
still require too much computational effort to rapidly iterate through the
solution space of process parameters and resulting material behaviors.

To address this issue, empirical mechanical models or physical reduced-
order models were developed and are often employed [155]. These types
of models, however, exhibit another drawback, in that they offer varying
degrees of accuracy, depending on the degree of simplification. As a result,
users face a trade-off between accuracy and computational efficiency (see
e.g. Chang et al. [155]). Moreover, these models fare especially badly for
materials exhibiting complex behavior such as anisotropy or twinning.

More recently, however, there has been a movement towards exploring
the potential of data-driven methods (neural networks, mostly) in over-
coming this trade-off [13, 76, 78]. We see tremendous potential in these
methodologies and in the following provide a brief overview of this topic.
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4.1.1 State of the Art

Generally, there are two main approaches to overcome the above-mentioned
issue; directly representing the material’s constitutive behavior via a neural
network or accelerating certain aspects of the computation while keeping
the physical structure of the model. Here and in the following, we call the
latter approach an indirect approach. In this work, we focus on the micro-
and mesoscale representation, where CP models find their application, as
they provide a good compromise between accuracy and speed for modeling
the microscale, however, the discussion can be extended to larger and
smaller scales.

We begin our discussion with the indirect approach. Here, neural net-
works are used to learn a relationship between certain physical parameters.
For instance, Ibragimova et al. [13] used fully connected neural networks
(FCNNs) in an fcc material model for Al to accelerate the computation of
costly constitutive updates, such as the evolution of slip and twin activity or
the hardening laws in the CP model. The approach uses an artificial neural
network to map the CRSS values of the slip systems, τ, the hardening
factors h, the texture a, and the initial strain rate D to the updated texture,
the stress, and variables associated with the CP model, g, and γ

FANN : {τ, h, Dn
ij, an

ij} 7→ {g, σn+1
ij , an+1

ij , γ}. (4.1)

These computations often exhibit stability-related constraints in CP models,
therefore using a neural network to learn the relations is extremely valuable
to circumvent these limitations and to allow for faster computation. At
the same time, neural networks are especially efficient to compute, as they
consist of highly parallelizable computations, in contrast to mostly serial
computations in physical modeling. The training of their model, however,
required almost 1.5 million samples for training, a vast amount of data
that needs to be generated in an efficient manner. This requirement alone
poses a challenging task and threatens the viability of such an approach.
Another successful example of the indirect approach was provided by Sun
et al. [245], who used FCNNs to predict the microstructure evolution in an
fcc constitutive model that was trained on CP simulation results.

In contrast to the indirect approach lies the direct approach to learning the
constitutive response of the models. This removes the need for a physical
model and the computation of physically meaningful equations in the
first place by learning a representation of the constitutive behavior via a
neural network directly. The result is, mathematically speaking, a map,
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that maps measures from one space (the input space) into another space
(the results space). For instance, Al-Haik, Hussaini, and Garmestani [65]
used a 3-layer FCNN to predict creep-stress in composites by accounting
for temperature, strain, and time as input values. This approach maps the
strain, the temperature, and the time in the input space to the creep stress
in the output space,

M :{ϵ ∈ Rdxd, T ∈ R, t ∈ R} 7→ σcreep ∈ Rdxd, (4.2)

with dimension d. Zhang and Mohr [246] later managed to represent Von
Mises plastic behavior with a similar neural network based solely on the
strain.

Despite these initial successes, modeling plasticity with FCNNs has severe
limitations. Plasticity is inherently a history-dependent process, notably
reliant on past deformation history. These architectures still require prior
knowledge about the nature of the plastic process or input of the plastic
flow and hardening, notably they require the plastic strain. This measure
is not normally readily available but computed "on the fly" during the
deformation process. For instance, Zhang and Mohr [246] pass the plastic
strain as an input and compute it externally, since it is not a measure that
their architecture can inherently learn. While this may be feasible in a J2
model, it is a costly matter for more complex material models. Another
drawback lies in the resolution and rate dependence of these methods, as
observed by Zhang and Mohr [246]. Additionally, this approach typically
fails for more sophisticated plasticity models.

Hence, in order to directly learn the constitutive behavior of plastic
materials, recurrent neural networks (RNNs) are more frequently utilized.
They learn to predict a series of states (stresses, plastic strains, etc.) of the
material in a recurrent manner; the new state is predicted from the current
and/or previous states. As such, these architectures are inspired by other
fields, notably natural language processing, that deal with serial inputs and
outputs.

Long short-term memory (LSTM) cells, introduced by Hochreiter and
Schmidhuber [194], or gated recurrent units (GRU) introduced by Chung
et al. [195] are commonly employed to model plastic behavior [78, 80, 210,
247, 248]. For example, Yu et al. [80] showed the capability of LSTM and
GRU models to predict plastic behavior for J2-plasticity without the need
for the plastic strain as an input. Instead, the architecture carries the infor-
mation in its own "hidden" state. In another study, Mozaffar et al. [78] used
GRUs to model the three-dimensional path-dependent stress in elastoplastic
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materials, and Gorji et al. [247] showed that a GRU-based model could
capture the constitutive response of a homogeneous anisotropic hardening
(HAH) 2D material. Further, Abueidda et al. [210] showed the capability
of these architectures to capture complex, thermoplastic material behavior.
They also noted, however, that these architectures are slow in training.
rather inefficient for the task at hand. Therefore, they introduced a temporal
convolutional network architecture to circumvent the issues and increase
the efficiency and even the quality of the prediction. Finally, Ghavamian
and Simone [248] demonstrated that RNNs with LSTM cells could learn the
viscoplastic behavior of a relatively simple Perzyna viscoplasticity model
and thus accelerate FE2 computations by bypassing the need for the evalu-
ation of the plastic constitutive model. In a bid to increase the generality
of their surrogate model to multiple strain rates, the authors interpolated
between results that were trained at different strain rates. They re-trained
the NN on varying strain rates and managed to show decent agreement
with the ground truth. Nevertheless, the temporal and spatial resolution
dependence still poses a challenge for many applications.

In general, however, these architectures are no natural choice to capture
physical processes in plasticity, as they were developed for natural language
processing tasks. These problems typically contain serial input, such as text
or a voice recording, however, these series are typically non-Markovian.
Markovian refers to a process that fulfills the Markov property, meaning
that the probability of future states of the process, given the present state
and all past states, depends only upon the present state, and not any past
states in addition to that. In simpler terms, in a Markovian process, the next
state of the process only ever depends on the current state of the process, if
that state describes the problem perfectly. In conventional plasticity models,
one often assumes that all of the information describing the constitutive
behavior is encoded in a set of internal variables at each given time. The entire
history of the deformation is stored in these internal (or state) variables.
This is in stark contrast to applications in natural language processing,
where the meaning of a sentence depends on the location of individual
words that additionally hold different weights to the overall meaning. In
architectures such as the LSTMs and GRUs, this led to the development of
gate functions that are trained to store long-past information, such as to
account for these necessities. In applications for plasticity, however, these
additional gates and the trainable weights associated with the capability to
store long-past information lead to inefficiencies and long training times.
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So while it is evident that LSTMs and GRUs are extremely versatile,
they struggle with capturing plastic behavior efficiently [76]. These models
require a vast number of parameters, leading to overly complex models that
further lack interpretability [75, 76]. Further, the gate functions in GRUs
and LSTMs, lead to an additional issue. The gates were developed to deal
with sequential input of the same frequency – word for word. Hence, these
architectures only perform well in applications, where the input (e.g. the
strain) is provided in uniformly spaced chunks (for instance one input
per second of simulation time). This is a severe limitation for surrogate
modeling. For numerous reasons, it is advantageous to have varying time
increments. Consider for instance dynamic impact as a scenario, where
time resolution around the time of the impact is much higher than prior
and after.

Therefore, customized and specialized approaches for plasticity were
introduced. A prominent approach was shown in Bonatti and Mohr [76],
which is known as the minimal state-cell (MSC) architecture. The MSC
architecture directly maps the (plastic) deformation to the (deviatoric) stress
and learns the evolution of state variables "on the go" via GRU-inspired
update gates. Furthermore, the MSC approach enables the identification
of a set of minimal state variables, from where it draws its name. This
feature is a significant step up from the non-interpretable states in LSTMs
and GRUs. It was exemplified by Bonatti and Mohr [76] in a recent study,
where they utilized a large amount of data obtained from single-element
simulations to predict the deviatoric stress response of various materials,
encompassing different hardening types and effects such as the Mullins and
Bauschinger effects from (relatively simple) underlying material models.
The MSC identified the number of state variables required for each material,
corresponding to the state variables of the phenomenological models used
in training plus the five plastic strain components [76]. The approach was
later used by Bonatti, Berisha, and Mohr [75] to capture the homogenized
response of an fcc material, albeit with inconclusive results pertaining to
the number of required internal state variables. In its original form, the MSC
approach still depends on the training resolution. This issue was addressed
by Bonatti and Mohr [83] in later work on the importance of self-consistency
in surrogate models. The goal of their work lies not in providing an entirely
temporal resolution independent formulation, but at least in guaranteeing
consistency under refinement of the path sampling frequency along the time
series. Their approach to self-consistency (i.e. validity across varying input
frequencies) relies on constraining the gated transition functions. However,
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there is no guarantee that the selected transition function is correct or works
in a general sense for a wider range of problems [83].

4.1.1.1 Problem Statement

Hence, despite the potential shown by the introduced methods, their use
comes with significant drawbacks and challenges. LSTMs and GRUs suffer
from inefficient training behavior and high complexity as well as a lack of
interpretability. MSCs and linearized MSCs are a significant improvement
and allow (some) interpretation of the state variables. Further, they have
begun to address the issues relating to self-consistency that pose a major
shortcoming to the application of RNNs as surrogate models.

An additional obstacle is the need for a considerable amount of data to
train models accurately, which can be both costly and difficult to obtain.
Further, the requirement for more data increases with the complexity of
the material behavior. Moreover, data-driven approaches may struggle to
generalize beyond the conditions of the training data, emphasizing the
importance of selecting representative datasets carefully. Overfitting the
training data can lead to poor model performance when applied to new
data, and the accuracy of data-driven models may depend on the quality
and representation of the data used.

A commonality to all of these approaches further lies in the complexity
of the modeled behavior. Most applications are limited to relatively simple
material behavior and models. This is problematic for our goal of develop-
ing novel Mg-based materials. In fact, the vast majority of ML surrogate
models have so far focused on either capturing the homogenized, often
isotropic, response of a material or learning the behavior of phenomeno-
logical constitutive models with limited physical accuracy and complexity.
Such models do not require a large state space and are often described via
an equivalent plastic strain measure ϵp [76, 78] or simple hardening laws
[248]. More recently, CP-RNN surrogates were introduced for single and
polycrystals of fcc materials, such as by Bonatti, Berisha, and Mohr [75]. In
their case the capability of the MSC to identify an exact number of state
variables and any potential meaning collapsed, exposing the limitation of
this architecture.

4.1.2 Proposed Solution

Hence, we identified the following opportunities for research in the field.
First, we aim to seamlessly integrate self-consistency into the model for-
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mulation, without the need for cumbersome modulation functions. To this
end, we build upon another approach, based on the Markovian model, in-
troduced by Bhattacharya et al. [79]. We describe our proposed architecture
in section 4.2.

Second, we aim to learn more complex mechanical behavior at the micro-
or mesoscale and Mg lends itself as a good candidate due to the pronounced
plastic anisotropy it exhibits, even on the polycrystal level. Further, the
impact of twinning poses an intriguing challenge to ML applications, due
to the nonlinearity it introduces to the behavior of the material. Further, as
shown in chapter 3, the material exhibits a strong temperature dependence
that alters its mechanical response substantially, leading to a more isotropic
response. The thermomechanical interplay of Mg’s deformation modes
and linked plasticity still poses a challenge to scientists [5, 52, 122, 232], as
discussed in chapter 3. In a recent publication, Eswarappa Prameela et al.
[1] outlined a fully integrated computational framework for the design of
Mg-based materials. For such an application, a good surrogate capable of
representing such complex material behavior is of high interest.

4.2 background and proposed architecture

We consider a heterogeneous body occupying the region Ω ∈ Rd, in d = 2, 3
dimensions in the reference configuration, whose state is entirely defined
by a set of internal variables, ξ. We are interested in the coupled thermome-
chanical analysis. Let us denote by u : Ω 7→ Rd the displacement field, by
T : Ω 7→ R the temperature field within the body, and by F = I +∇u the
deformation gradient. This formulation is consistent with our formulations
in chapter 3, however, we reformulate our relations here for consistency
with the customary formulations in the literature of the field.

As before, the constitutive relation is expressed as a function of the
(Cauchy) stress, σ, the heat flux Q. Further, we assume a kinematic relation
K(F ,T , ξ, ξ̇) that describes the evolution of the internal variables. Further,
we introduce an energy function U(F , T,Q) comprising the external heat,
the stress power, and any contributions due to the dependence of the
internal energy on quantities other than temperature. Finally, let ρ : Ω 7→ R

and c : Ω 7→ R denote the density and specific heat, respectively.
Given initial conditions (ICs) u0, v0, T0, Q0 at time t = 0 and boundary

conditions (BCs) û, v̂, T̂, Q̂, on the boundary ∂Ω, the displacement u,
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Figure 4.1: Graphical representation of the surrogate model in a multiscale set-
ting. On the top, a graphical representation of a multiscale model
with a FExTaylor Ansatz is shown, where the macroscopic BVP is
solved via the FEM, and the mesoscopic representation is given by
the Taylor mode, comprising the average of numerous grains. On
the bottom, we show the same multiscale model, however, we have
replaced the Taylor model with a data-driven surrogate.
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temperature T, and internal variable ξ are given by the solution of the
system of equations

∇ · σ(x, ξ, T, t) = ρü(t) on Ω (4.3)

∇ ·Q(x, T, t) + r(T, t) = ρcpṪ on Ω (4.4)

K(F , ξ, T, t) = 0 on Ω (4.5)

u(x, 0) = u0(x), u̇(x, 0) = v0(x) on Ω (4.6)

ξ(F , 0) = ξ0(), T(x, 0) = T0(x) on Ω (4.7)

u(x, t) = û(x, t) on ∂ΩDu (4.8)

σ(x, t)n(x) = ŝ(x, t) on ∂ΩNs (4.9)

T(x, t) = T̂(x, t) on ∂ΩDt (4.10)

Q(x, t) = q̂(x, t) on ∂ΩNq, (4.11)

where we denote the Neumann and Dirichlet boundaries by N∗ for the
respective fields. In this extended, coupled BVP, the conservation of linear
momentum (4.3) and the heat equation (4.4), respectively are described. The
kinetic relation that describes the evolution of internal variables is given in
(4.5).

A solution to this problem may be found in various manners, e.g. via the
finite element method or the spectral method, both introduced in chapter
2. This would lead to learning a microscopic constitutive closure relation,
linking the local microscopic deformation gradient F (x, t) and the local
temperature T(x, t) to the stress, σ(x, t), and the heat flux, Q(x, t), via a
general map

ψ : {F (x, t), T(x, t) : t ∈ (0, tmax)} 7→ {σ(x, t),Q(x, t)}. (4.12)

The evaluation of the mapping ψ, however, involves the repeated solution
of the coupled thermomechanical RVE problem, as defined above, for
each time t and macroscopic point X . This process is notorious for its
prohibitive expense and hence not viable for data generation. Another
issue arises from a physical perspective, in the sense that it is uncertain
whether a finite set of internal variables can encapsulate the dependence of
stress on both deformation and thermal history at the macroscopic scale,
although conventional empirical-based models, such as the Johnson-Cook
model, tend to posit that ψ can be approximated with internal variables
primarily dependent on the deformation history, as opposed to the thermal
history. Solving this problem with a surrogate, however, would involve
the costly solution of the given boundary value problem on the domain Ω
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with numerous degrees of freedom and high dimensional input and output
values, requiring tremendous amounts of computing power and data for
training.

Hence, in this work, we omit this calculation and instead operate under
the Taylor assumption from chapter 3 and assume homogeneity of the
deformation on the microscale. Further, we assume that the dependency
of the thermal flux, Q, on the strain and thermal history, is known a priori
and that temperatures are uniformly distributed within the sample – a fair
assumption given that we investigate polycrystals on a mesoscopic scale
and large thermal variations are not expected at this scale. Our focus thus
solely lies on the examination of the strain and thermal dependency of the
averaged stress response.

4.2.1 Recurrent Neural Operator

As a result, we narrow our attention to a reduced map ψ†,

ψ† : F (t), T(t) : t ∈ (0, tmax) 7→ σ(t), (4.13)

independent of the position x.
We address the problem with an RNO architecture such as the one

proposed in Liu et al. [14] and Bhattacharya et al. [79], where we extend
the original formulation to incorporate the thermal history. We assume
that a relationship between the evolution of the state variables and the
deformation exists that can be described by a function G, and that a similar
relationship exists between the state variables and the stress, denoted by a
function F . This is, essentially, the same assumption as previously made for
the CP model in chapter 3, where we first define an evolution law for the
internal variables, followed by the definition of an energy density function
relating the deformation as well as the current internal variables to the
stress.

Further, we exploit our description of the stress as σ, which allows us to
decompose the tensor into two parts as follows

σ(F , T) = σh(det(F ), T)I + σdev(F , T), (4.14)

where σh = 1
3 tr(σ) denotes the hydrostatic pressure, σdev = σ − σhI is

the deviatoric stress and I the identity tensor. In the following, we assume
that only the deviatoric component of the stress depends on the state
variables, whereas the hydrostatic pressure has no history dependence and
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is simply a function of the temperature and the volumetric change, denoted
by J − det(F . We thus obtain a description for ψ† as

ψ† ≈ ψdev
r + ψh

r , (4.15)

where we approximate both components with neural networks. The first
term, ψdev

r is represented via an RNO that consists of two FCNNs F dev :
Rd×d × R × Rm 7→ Rd×d, and Gdev : Rd×d × R × Rm 7→ Rm, such thatσdev(t) = F dev(F (t), T(t), {ξdev

α (t)}m
α=1),

ξ̇dev
i (t) = Gdev

i (F (t), T(t), {ξdev
α (t)}m

α=1) i = 1, . . . m,
(4.16)

where ξh ∈ Rl are internal variables that we seek to define through the
training. Similarly, we construct a second network, ψh

r , consisting of a
FCNN, F h : R × R × Rl 7→ R a such that

σh(t) = F h(det(F (t)), T(t), {ξh
α(t)}l

α=1). (4.17)

4.2.2 Time Discretization and Operator Architecture

We note that G is chosen such to predict only the rate of change of the state
variables, i.e. it represents an evolution law, compared to e.g. in the MSC or
GRU architectures, where the new state is learned directly. This formulation
has an interesting advantage. It allows the RNO to be trained with data
from arbitrary temporal discretization. Given a sequence of input functions
{Fα, Tα; α ∈ {0, ..., N}} discretized with time step ∆t, we construct the RNO,
ψdev

r , using a forward-Euler integration scheme:σα = F dev(F α, Tα, {ξα,j}m
j=1),

ξj,i(t) = ξn−1
j,i (t) + ∆t Gi(F

α(t), Tα(t), {ξα,j(t)}m
j=1), for j = 1, . . . , m.

(4.18)
Figure 4.2 (a) provides a graphical representation of the RNO architecture.

The networks F and G comprise four fully connected layers with Scaled
Exponential Linear Units (SELU)[249] activation function.1

To test the effectiveness of our model, in section 4.5.2, we compared it with
classical neural networks based on Gated Recurrent Units (GRU) and Long

1 Although ReLU is typically the default choice for a hidden layer’s activation function, we
achieved better results with SELU. We also tested the hyperbolic tangent and sigmoid functions
but with limited success.
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Short-Term Memory (LSTM) units which have been explored in previous
studies for constitutive modeling [80]. the GRU and LSTM architectures
follow a simple setup. We take four GRU (or LSTM, respectively) layers,
followed by a single FCNN layer that translates the output of the gated
cells to the six stress components. In doing so, we essentially follow the
approaches in Yu et al. [80] and Bonatti and Mohr [76]. For completeness,
we included the detailed GRU and LSTM architectures that we examined
in Figure 4.2 (b) and (c) respectively.

Figure 4.2: From left to right we show the schematic of the RNO architecture, as
well as the the GRU- and the LSTM-based networks that were used
for comparison.
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4.2.3 Internal Variables and Markovian Description

The RNO model is an approximation [203] of the mapping ψ† that takes
the deformation and temperature {F (t), T(t)}, 0 ≤ t ≤ tmax as inputs. It
contains map G, charged with the identification of (internal) state vari-
ables ξ = {ξdev, ξh} ∈ Rm+l that encapsulate the memory/history of
the thermal and deformation path at each time. Consequentially, at any
time t ∈ (0, tmax), the evaluation of the RNOs only require known inputs
{F (t), T(t), ξ(t)}, thus fulfilling the Markovian condition. In this work,
we assume the existence of the internal variables but do not make any
assumptions about the number of the internal variables, nor their evalua-
tions a-priori. Instead, we train the RNO with different numbers of internal
variables and seek to interpret their physical meanings from the trained
networks. We discuss this in detail in section 4.5.3. This means that we
require a training function for the evolution of the state variables in one
way or another.

4.2.4 Loss Function

The train and test error is computed as the error over all time steps and
over all samples of the testing and validating sets with the loss function
given by

E =
1

Ns

Ns

∑
ns=1

N

∑
α=0

(
(σtruth

ns (tα)− σ
approx
ns (tα))2

(σtruth
ns (tα))2

)
, (4.19)

with Ns samples and N time steps of the discretization. We observe that
this loss function does not provide any information regarding the inter-
nal variables ξ. Hence, in the current architecture, internal variables, and
their evolution laws are learned implicitly in an unsupervised manner,
based solely on the performance of the network to capture the constitutive
behavior.

4.3 material and methods

Our ultimate goal is to learn and represent the thermomechanically coupled
response of the mesoscopic material. However, the presented RNO has never
been tested for materials exhibiting the level of anisotropy found in Mg, nor
for thermal effects. Hence, we take a step-by-step approach. First, we evalu-
ate the capability of the RNO to represent the twin-dominated response of
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Mg appropriately. This is followed by an extension to a temperature-aware
description containing constant temperatures, such as the ones described
in chapter 3 as well as arbitrary temperature paths for a more general
applicability of the method.

For each of the cases, we follow the same steps. A training dataset is
generated via the CP model described in chapter 3. The dataset is divided
into training (85%), and testing(15%) portions. Separate data sets are used
for validation, as shown in Table 4.1. If the RNO appropriately manages to
represent the constitutive response at the given stage, i.e. if the validation
and testing errors are small and there is good agreement with the ground
truth, we expand the problem to the next stage.

In this section, we provide a detailed overview of the data generation
process. First, we introduce the nomenclature that we chose to provide
unique descriptors of the datasets and trained RNOs. We then provide our
data generation strategy, followed by the training strategy.

4.3.1 Data Generation

We aim to learn the Taylor-homogenized response of a polycrystalline
sample on the mesoscale. To ensure the applicability of our surrogate to
a wider range of anisotropic materials, we require that even the averaged
response exhibits a pronounced level of anisotropy. To this end, we use the
reduced model, introduced in chapter 3, and a Taylor model representing
200 grains with a strong basal texture. The resulting stress-strain curves
obtained from uniaxial tension and compression along the main directions
are shown in Figure 4.3 (a) and (b) and the texture in 4.3 (c). The reduced
version of the model leads to a representation of the deformation with a
total of 18 deformation modes (three basal slip modes, three prismatic slip
modes, six pyramidal II slip modes, and six tensile twin modes), shown in
Figure 4.3 (d). All samples we refer to in the following were obtained with
this configuration.

4.3.1.1 Training and Test Data

The training and testing data is generated by repeatedly computing the
Taylor model response to varying deformation and temperature paths
(histories), such as to obtain various realizations of the mapping ψ†. Hence,
we first generate a series of deformation paths (in the form of deformation
gradients) and associated temperature paths in Matlab. Details for the
generation of strain and temperature paths are given in sections 4.3.1.4
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Figure 4.3: Depiction of the stress-strain response of the Taylor model that was
chosen as the ground truth for the data generation. We show results
in ND tension in (a) and in ND compression in (b). The strong basal
texture we chose for our polycrystals is depicted in (c), and the
deformation modes present in the reduced crystal plasticity model in
(d).
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through 4.3.1.7. Each deformation path consists of 10,000 increments that
are further linearly interpolated to attain a total of 100,000 strain increments
for the Taylor model. The time step between each increment is 10

−3 seconds,
hence the total simulation time is 100 seconds. There is no constraint on the
amount of deformation within an increment, which leads to light variations
in the strain rate along the strain history. The deformation gradients are
subsequently applied to the Taylor model, previously introduced in chapter
3. We assume all entries are constrained and prescribed by the deformation
pathways, hence there is no need to solve any boundary conditions. This
assumption significantly reduces the computation time. For the grains in
the Taylor model, a dominant texture in the normal direction with random
rotations around the crystal’s c− axis was chosen, as shown in Figure 4.3(c).
This choice emphasizes the anisotropy commonly observed in Mg single
and polycrystals, while mitigating the non-linearity due to twinning slightly,
compared to the single crystal case.

While the initial texture significantly impacts the polycrystal’s behavior [8,
19, 32, 232], exploring this added complexity falls beyond the scope of this
study. Therefore, an exactly identical initial texture is selected for each of the
polycrystalline samples. The texture is described via an initial 3D rotation
tensor Ri ∈ SO(3). This rotation defines the slip and twin systems in each
grain, denoted by subscript i, relative to the global coordinate system as

si,α = Risα, mi,α = Rimα, (4.20)

and
ni,β = Rinβ, ai,β = Riaβ, (4.21)

with sα,mα, and aβ,nβ being the slip and twin directions and normals for
system α, β, respectively. R remains constant for all of the simulations.

The temperature-dependent stress response of the polycrystals is sub-
sequently computed and outputted for each strain increment. Note that
the Taylor averaged stress was chosen. This leads to 100,000 stress-strain-
temperature triplets for each sample. Each sample was subsequently verified
(some deformation and temperature path combinations led to instability)
before being added to the respective datasets. A graphical representation of
the process is given in Figure 4.4.

4.3.1.2 Nomenclature

In this thesis we chose to follow an incremental approach, beginning with
capturing the anisotropy of the material at room temperature and gradually
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Figure 4.4: Schematic representation of the data generation process.
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increasing the complexity of the task by first introducing constant and then
varying temperatures. Therefore, throughout the remainder of the thesis, we
need to handle numerous datasets for the different cases. In total we handle
three types of temperature paths and three types of strain paths, resulting in
nine possible combinations of data sets. An overview of our datasets and the
nomenclature is given in Table 4.1. The types of temperature paths range
from temperature-independent with constant, ambient, temperature to
temperature varying, with (randomly) changing temperatures throughout a
single deformation path. Equally, we handle deformation paths ranging in
complexity from simple, linearly applied uniaxial or shear deformation to
completely random (and unphysical) deformation paths. To avoid confusion,
we introduce a simple nomenclature that allows for simple differentiation
between the datasets and their use cases. Each dataset consists of a number
of samples, Ns, as given in Table 4.1. Each sample in the set comprises
a time series of stress-strain pairs that describe the deformation along a
specific path at corresponding times with associated stresses.

The first dataset consists of temperature-independent data samples. The
goal is to map the entire anisotropic stress-strain response including the
effects of twinning, but without the added complexity of thermal effects.
We denote it as the "TI" dataset. The second set contains temperature-
dependent samples. We increase the complexity by providing data at different
temperatures that remain constant throughout the simulations, between
25

◦C and 250
◦C. This set is called the "TD" set. The final type of data has

the highest complexity. It contains data at varying temperatures throughout
the simulations. The temperatures are randomly chosen to begin with and
then fluctuate throughout the simulation. These data are labeled TV.

Next, we differentiate between the applied types of deformation. The
general approach utilized by Bonatti and Mohr [76] or Liu et al. [250] con-
sists of imposing randomized deformation (though their implementations
of random deformation differ). We use this as our baseline and denote
the datasets with the appendix "-R". Due to the complexity of the mate-
rial behavior, however, we also chose to create a separate, second type of
dataset emphasizing the twin events, with predetermined loading paths,
appended with "-D". Finally, we create a validation dataset labeled with
"-V". A detailed explanation of the generation of these datasets follows in
section 4.3.1.3.
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Table 4.1: Nomenclature of the datasets as well as key characteristics.

dataset Ns Temperature Deformation paths ϵmax purpose

TI-R 9965 25-25
◦C random 0.1 train/test

TD-R 9894 25-250
◦C random 0.1 train/test

TV-R 10034 25-250
◦C random 0.1 train/test

TI-D 4997 25-25
◦C component predetermined 0.1 transfer learning

TD-D 4997 25-25
◦C component predetermined 0.1 transfer learning

TI-V 50 25-25
◦C determined 0.1 validate

TD-V 50 25-250
◦C determined 0.1 validate

4.3.1.3 Stress-Strain Paths in Data Generation

With the nomenclature defined and all possible confusion avoided, let us
dive into the details of the data generation.

First, let us establish the measures of interest for our applications. We
use the deformation gradient F , to represent the deformation at large
strains and the associated Cauchy stress σ at each time step as the chosen
stress measure. While the first Piola Stress P is the natural measure of
stress associated with F , our choice is based on the symmetry of σ, which
simplifies the problem’s order. Alternative formulations are e.g. by using
the conjugate pairs S, and E. The temperature in ◦C is represented by T.

4.3.1.4 Generation of Randomized Strain and Temperature Paths

Initially, we establish random deformation paths that serve as the basis
for the model’s training. These paths must satisfy specific criteria, namely,
they should be continuous, smooth, and span a broad area of the possible
deformation space to capture the entire range of behavior in Mg. Similar
approaches and requirements were given by e.g. Bonatti, Berisha, and
Mohr [75], Bonatti and Mohr [76], and Liu et al. [250], who applied the
methodology before us. As such, the paths should consist of random
deformations and change orientations repeatedly [250].

To sample the random input functions, we use the Ansatz outlined in
Liu et al. [250]. We first divide the total time tmax allotted for deformation
into N = 104 intervals of equal time steps ∆t = tmax/N. At a given
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time tα = α∆t, we compute the deformation gradient F α = F (tα) and
temperature Tα = T(tα) as

Fα
ij = δi j + Fi jα−1 + ϱαϵmax

√
∆t (4.22)

Tα = Tα−1 + καθmax
√

∆t (4.23)

where ϱα, κα ∈ {−1, 1} and follow a Rademacher distribution [250]. Further,
Tα ∈ [25, 250] for α = 0, and θmax = 225. A total of 10, 034 data were
generated with ϵmax = 0.1 and θmax = 150. An example of a random strain
and temperature path is given in Fig. 4.5. We show the time evolution of
the diagonal entries in (a), where it can be seen that the paths are smooth
yet may change direction throughout the simulated time. These changes in
direction occur multiple times, leading to alternating types of loading. All
entries start at zero and follow a random path. Conversely, in (b), we show
the temperature paths. These paths are smoother than the strain paths since
we observed stability issues in the CP model for rapid, large variations. In
contrast to the deformation paths, the temperature can start at any value
between 25 and 250

◦C.

Figure 4.5: Example of the randomized strain and temperature paths.

4.3.1.5 Random Deformation Datasets

For all datasets labeled with "-R," the strain paths are generated following a
consistent procedure. Each element of the deformation gradient follows a
distribution described by (4.22). This results in volumetric deformation that
is entirely random in the polycrystals. It is assumed that these deformations
induce all of the material’s possible constitutive behavior. However, given
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the material’s complexity and anisotropy, certain deformation modes, such
as simple shear and twinning-controlled deformations, may be underrepre-
sented in these datasets.

To address this issue and reduce the overall data required for train-
ing, a second type of dataset is generated, with a specific focus on these
underrepresented deformation modes.

4.3.1.6 Semi-Deterministic Deformation Paths

This new dataset includes isochoric uni-axial loading and shear along ran-
domized strain paths. We distinguish between nine distinct cases, covering
loading in the 11-, 22-, and 33 directions, as well as shear along any of the
off-diagonal directions.

Each case is assigned a number from 1 to 9 according to the following
scheme: the diagonal entries F11, F22, and F33 are assigned numbers 1

through 3, while the off-diagonal entries are assigned numbers 4 through 9

in the following order: F12, F13, F21, F23, F31, F32.
For the shear cases, the corresponding entry of the deformation gradient

F follows smooth, yet random paths, as defined in equation (4.22). In the
case of uni-axial deformation, an additional constraint is imposed on the
diagonal elements to ensure that det(F ) = 1, as shown below. Assume the
load is applied on F11. Then, to satisfy isochoric deformation we impose a
strict constraint on F ,

F(ii) =
1√
F(11)

, i ̸= 1. (4.24)

This constraint is stricter than isochoricity but ensures that all principal
directions (ND, RD, and TD, aligned with the 11-, 22-, and 33- directions)
are loaded in a similar fashion. It is fair to assume for a rolled material, that
the RD and TDs behave quasi-equally [86].

4.3.1.7 Deterministic Datasets for Validation

We proceed to generate a small set of validation data. Unlike the -D labeled
datasets which rely on a stochastic approach, the -V datasets are generated
using a deterministic method. Within this set, we retain the ten cases
previously introduced as cases 1 through 9, and include an additional tenth
case for cyclic loading along the 11− direction. This specific direction is
selected due to its pronounced twin-induced plastic anisotropy, making it
particularly relevant for validation purposes [52].
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To ensure realism in the deformation, which is essential for validating
the underlying physical model, we enforce volume preservation for each
of the validation cases. In contrast to the "-D" labeled datasets, where
deformation is applied in a random fashion, in the "-V" labeled datasets,
a linear increase of the strain is applied for the simple shear and uniaxial
tension and compression scenarios.

4.3.2 Training Methodology

Let us now dive into the training methodology used for the RNOs. We
trained several neural networks to capture the constitutive behavior of
magnesium under different conditions. Specifically, three types of Recurrent
Neural Operators (RNOs) were trained, each targeting different aspects of
the material’s response.

The first RNO is temperature-independent (TI-RNO), designed to learn
the constitutive behavior of magnesium at room temperature. This RNO
is trained on the TI datasets, which represent the material at ambient
temperature. The second case involves a temperature-dependent RNO
(TD-RNO), which serves as a surrogate for the temperature-dependent
CP model in chapter 3. In this case, the temperature follows a uniform
distribution between T = U (25, 250)◦C, and it remains constant during
the simulations. A third case is presented by the TV-RNO. The TV dataset
represents the material’s response under varying temperature conditions,
allowing the RNO to capture the temperature-dependent behavior of the
material’s stresses. Last, the TV-RNO is applied to the TD dataset, aiming
to predict and learn the temperature-varying evolution of the stresses in
the material.

4.3.2.1 Normalization and Stress Decomposition

Our method of generating the deformation gradient, F , leads to a quasi-
normal distribution of the strain entries, see Figure 4.6, which is advan-
tageous for training purposes. Due to the randomized deformation, the
material experiences significant volumetric deformation, leading to large
variations in the entries of the stress tensor σ. This proves to be a fur-
ther advantage of the decomposition of the stress into a deviatoric and a
hydrostatic part, see (4.14).

We normalize both components, σh and σdev, in order to represent the
training data of the neural networks on the range [−1, 1]. We normalize all
entries of the stress tensors equally, thus following the approach of Bonatti
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Figure 4.6: Distribution of the strains (a) and of the training vs. testing data sets
(b).

and Mohr [76], and maintaining the relative magnitudes of the entries. σ0
and p0 were chosen as the maximal values occurring in the TI dataset since
they represent the largest values across the training data overall.

For the RNO, the output reads

y(tα) = yα =



σα
dev,11,

σα
dev,22,

σα
dev,33,

σα
dev,12,

σα
dev,23,

σα
dev,13


/σ0, (4.25)

whereas for the FCNN tasked with computing the hydrostatic pressure, it
is ŷα

FCNN = σh/p0. The deformation gradient serves as input and remains
unaltered, such as to facilitate the direct integration of the RNN in a UMAT
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Figure 4.7: The distribution of the hydrostatic component (a) and of the deviatoric
component (b) of the TI vs. TD datasets is shown.

and the independence of the maximal strain applied during training. In the
case of the RNO it is composed as

xα =



Fα
11 − 1,

Fα
22 − 1,

Fα
33 − 1,

Fα
12,

Fα
23,

Fα
13,

Fα
21,

Fα
32,

Fα
31,

∆t,

ξα−1
1 ,

. . . ,

ξα−1
ns



, (4.26)

whereas for the FCNN it is xα,FCNN = (Jα, Tα). We identify two normaliza-
tion constants: σ0 = 0.22 GPa for the deviatoric stress and p0 = 8.71 GPa
for the hydrostatic pressure, see Figure 4.7.

4.3.2.2 Hyperparameter Tuning

Finally, we aim to identify the hyperparameters for the RNO and the
FCNN, such as the batch size, the learning rate, the depth and width of
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the networks, as well as the size of the state vector (in the case of the
RNO only). To isolate the effects of individual parameters, we conduct a
series of tests. We assume as a first guess that five state variables should
be sufficient to properly capture the mechanical behavior, as was shown in
Liu et al. [250] for homogenized plastic behavior. We train our models on
2000 samples and use a batch size of 100, and a learning rate of 10−3. For
training, we down-sample the data from 100,000 data points per sample to
100, corresponding to time increments of 1s or a training resolution of 100.
An initial training rate of 10−3 and a cosine learning rate scheduler with a
reset rate of 10−6 were used for training all networks, as the results were
satisfactory and stability was ensured. For more details, see the Pytorch
website [251] or Paszke et al. [252]. Each RNO is trained for 2500 epochs.

First, we aim to identify the number of trainable parameters. To this end,
we vary the width and depth of the layers in the RNO from 50 to 400 in
increments of 50, as well as the number of layers from three to five in incre-
ments of one. Overall this provides us with 24 different RNO architectures
and their corresponding test errors. Preliminary results showed that three
layers in the RNO were by far insufficient to represent the material behavior
and layers below 200 nodes were also not expressive enough. We evaluate
the number of parameters for the remaining architectures via the built-in
functionality in LinuxFoundation [251] and show the results in Figure 4.8.
We observe that the error remains relatively high, for any of the cases.
This puzzling result led us to first hypothesize that the architecture was
inadequate to represent the material behavior. We settled for a network with
slightly over 500,000 trainable parameters, as the test error does not improve
significantly beyond that point, see Figure 4.8. This is equivalent to an RNO
with four layers in F and G with 300 nodes per layer. In comparison, the
FCNN tasked with learning the hydrostatic pressure requires four layers
containing 50 nodes per layer for no further improvements in the training
error. Increasing the number of training data also only had a small effect
on the performance and we increased the number of training data up to
8500 samples, the maximum we allocated for training. We observed that the
network is not expressive enough in its present configuration to provide a
good approximation of the material behavior. Further, increasing the depth
or the width of the RNO had not the significant effect on the error one
would expect and hence, we deduced that the only remaining degree of
freedom lay with the number of state variables.
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Figure 4.8: Training and testing error vs. the number of trainable parameters in
the network.

4.3.2.3 State Variable Identification

We therefore repeat a similar experiment for the number of state variables
for each type of RNO and subsequently for the three temperature cases.
We vary the size of the state vector from five to 10 in steps of one and
further to 50 in increments of 10, and evaluate the RNOs after 2,500 epochs
of training. We show the results in Figure 4.9. For the TI case, the RNO
demonstrates an exceptional convergence behavior, reaching convergence
at only 15 internal variables (IVs), which is noteworthy considering that it
is comparable to the number of physical internal variables needed in the
material model. The error rate stabilizes at around 7.5% with insignificant
improvements beyond 15 IVs.

Similarly, for the TD and TV cases, the RNOs exhibit a trend toward
rapid convergence with the number of state variables. However, in these
cases, the error smoothly decreases to a lower value at a higher number
of state variables. This behavior is significantly different from the results
reported by Bonatti and Mohr [76] and Bhattacharya et al. [79], where a
clear number of internal variables can be identified based on the immediate
saturation of the error. In our case, the optimal convergence is achieved



162 recurrent neural operator describing thermoplastic behavior in mg

somewhere between 35 and 40 state variables. Even a finer increase of
the state variables in that region did not allow for a clear identification of
the state variables. For the TD case, a quasi-steady response is attained
above 35 IVs at low error levels of about 5.9% with 35 state variables. The
TV-trained RNO achieves an error rate of approximately 6.8% at 35 state
variables, and this decreases to around 6.2% for 50 state variables. These
results suggest that certain mechanisms are at play within the TD and
TV cases, necessitating the use of additional state variables in the RNO.
Interestingly, the two cases involving temperature as an input to the RNO
converge almost simultaneously beyond 10 state variables. This indicates
that the presence of temperature as an input to the RNO is a crucial factor

Figure 4.9: Convergence of the training error with the number of state variables
for TI, TD, and TV cases. The TD and TV cases show the same kind
of slower convergence with larger numbers of IVs (35-40) compared
to the TI case, which converges much more rapidly and saturates
around 15 IVs.
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contributing to this phenomenon. While we accept this as a fact for now, a
discussion follows later in this chapter, in section 4.5.3.

Let us briefly recapitulate the findings of this experiment so far, before
discussing final training and the architecture’s performance. We identified
an RNO architecture with four layers and 300 nodes as the optimal solution
for the architecture and a good trade-off between training performance and
speed. Further, we observed that training with 8500 samples, the maximum
at our disposal, led to the best results. In addition, we noticed that five
state variables are insufficient to describe the state of the present material.
A minimum of 15 are required for the TI case and up to 35 are required for
the TD and TV cases. We also note that the learning rate of 10

−3 and the
batch size of 100 seemed adequate.

4.4 training performance

With these hyperparameters in mind, we now move on to a final round of
training and to evaluate the performance of the RNO.

4.4.1 Operator Training

We begin by evaluating the performance of the RNO architecture on learning
the behavior encoded in the TI-R dataset. We train an RNO with four layers
in both F and G, with a width of 300 and a state vector size of 15. Figure
4.10 (a) displays the testing errors for 2500, 5000, and 8500 samples, as
well as the training error for the last case with 8500 samples. We observe a
slight over-fitting but to a non-concerning degree. We note that the errors
converge to comparable values for 5000 and 8500 samples, both around
7.6%, indicating that little data is needed for our architecture to learn the
behavior of the underlying material model. This stands in stark contrast
with the often tens of thousands or millions of data points required in
previous studies [13, 76]. For 2500 samples, the error lies above 10%, which
is above our acceptance threshold. We notice that with more data used for
training, the error converges faster to its ultimate value, but that it does not
scale particularly well with the addition of further data. Additionally, for
2500 samples, the error curve exhibits different behavior with numerous
oscillations. We believe that the parameters for the cosine-annealer or the
batch size of 100 may not have been optimally suited for this small sample
size. However, to ensure comparability of the results, we chose not to
modify the parameters for the smaller datasets.
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Figure 4.10: Test error evolution with the number of training epochs for training
on the random dataset in the TI case (a), the TD case (c), and the TV
case (e). Cases (b),(d), and (f) showcase the fine-tuning results of the
RNOs on the -D labeled datasets.
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Next, we repeat the training process for the datasets TD-R and TD-V,
using temperature-dependent RNO architectures. In this case, we increase
the state vector size from 15 to 35, as shown in Figure 4.9, while keeping
all other parameters unchanged. The results of our training process are
presented in Figure 4.10 (c) and (e) for TD-R and TD-V, respectively. Similar
trends are observed as with the TI case, and a slightly lower error is
attained at approximately 6.2% for both TD-R and TD-V. We attribute this
improved performance to a slightly more homogeneous distribution of
stresses in the presence of elevated temperatures, as seen in the distribution
in Figure 4.7(b). We further showcase the results of learning the map for
the hydrostatic component via the simple FCNN.

Overall, the RNO architecture demonstrates effective learning capabilities
and is capable of capturing the material behavior in both temperature-
invariant and temperature-dependent cases. The results indicate that the
RNO achieves a reasonably low error while maintaining good convergence
properties, making it a suitable choice for representing the complex ma-
terial response accurately. The TI and TD cases are representative of the
applications of our CP model in chapter 3, where we assumed constant
temperatures during our polycrystalline simulations. Before moving on to
a more generalized description with varying temperatures, we evaluate the
predictive capabilities of the model. Figure 4.11 (a) and (b) display stress
responses of a testing sample in the TI-R and TD-R sets, respectively. The
solid lines mark the true response, and the dashed lines represent the RNO
prediction.

We observe that the model accurately captures the deviatoric stress state
for the trained samples, confirming that our achieved loss of approximately
6-7% is satisfactory. The randomized data appears to be representative
of the overall mechanical behavior of the material, enabling the RNO to
predict stress responses with a high level of accuracy. This indicates that
our proposed architecture is capable of effectively learning the complex
plastic material behavior and generalizing well to unseen data.

To further evaluate this hypothesis, we compare a directly trained RNO
with a fine-tuned RNO. Fine-tuning occurred via 50 epochs of transfer
learning on the TI-D and TD-D datasets. For the present evaluation, the
RNOs were fine-tuned on 4000 samples. The losses are shown in Figure
4.10 (b), and (d), respectively. Fig. 4.10 (b) displays the error evolution
during these 50 epochs of fine-tuning on the TI-D dataset, using 500 and
4000 samples. We observe that only a few epochs of training are needed to
approximate the behavior with a small error.
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Figure 4.11: Stress evolution for a testing case in the TI-R (top) at 25◦C and TD-R
(bottom) at 241◦C datasets, respectively. The ground truth is shown
as solid and the predicted response from the RNO is shown in a
dashed line.

Figure 4.12 depicts the true (dashed) and predicted (dotted, solid) stress-
strain behavior of a simple shear case, present in the validation dataset (TI-
V). The directly trained RNO predicts the stress-strain behavior relatively
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well (dotted line). Intriguingly, there are nonphysical fluctuations in the
prediction, specifically in the low-strain regime. Further, the prediction on
the larger stress components is much better than for the lower ones. This
indicates that the commonly used method of generating training data via
random deformation has certain limitations for highly anisotropic materials,
in that some components are better represented than others. Nevertheless,
the directly trained RNOs capture the general behavior of the physics. The
nonphysical fluctuations and the overall error can be significantly improved
by a short period of transfer learning on a dataset containing more specific
data, which we represent with the solid line. We deduct that while the
physics of the material is incorporated in the training data, the smaller
components of the stress tensor are underrepresented. It is likely, that a
different normalization method than the one introduced in section 4.3.2.1
could alleviate these issues naturally. These findings show that the RNO
architecture is versatile and rapid to adapt, allowing us to further explore
the capabilities for generalizing the applications of the RNO via transfer
learning.
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Figure 4.12: RNO Response pre and post-50 epochs of transfer learning on the
RD-D dataset The response prior to transfer learning is shown by
the dotted lines, the response afterward by the solid line. The dashed
line represents the ground truth.
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4.4.2 Generalization for Various Temperature Paths via Transfer Learning

The RNO has shown promise in learning the complex anisotropic and
temperature-dependent response of the underlying material thus far. In
the following, we wish to investigate whether the architecture is capable of
extrapolating and representing multiple temperature paths as well. First,
we evaluate whether this capability is already included in the RNO trained
on the TV samples. The trained RNO is tested with the TD set and the
results are included in Figure 4.13(a). We observe that the RNO trained
with a random thermal history performs poorly when tested on a constant
temperature path. This is not surprising, it is known that neural networks
extrapolate poorly to unseen inputs.

To address this issue, we wish to evaluate whether transfer learning
[253, 254] can overcome the issue. We fine-tune the trained RNO using
the temperature constant dataset and perform 50 epochs of training with
varying numbers of data. We show the results of the training in Figure 4.10

(f). We observe that with a relatively small amount of data (1000 samples),
the RNO is capable of reducing the test error from 25% to 6.5% via transfer
learning. This shows the efficacy of the method as well as the versatility of
the RNO. We note that while the RNO trained with a random thermal path
generalizes poorly to other thermal paths, the fine-tuned RNO is capable
of generalizing to temperature paths that are commonly encountered in
practice. This indicates that the map from random to constant temperature
paths and vice-versa is possible.

4.5 results and discussion

4.5.1 Validation of the RNO

Let us now move on to the validation of the RNO’s performance. For the
final application, we utilize a temperature-aware RNO with four layers each
for F and G, a layer width of 300, and 35 state variables. We initially train
this RNO on 8500 samples from the TV-R dataset and then perform 1000

epochs of transfer learning on 2000 samples from the TD-D dataset. This
configuration ensures that the RNO effectively represents the wide range
of Mg’s plastic behavior.

We use the trained RNO to predict the data inside the validation datasets,
beginning with the TI case. Figure 4.14 displays the outcomes for different
scenarios in the TI validation set, specifically a case of pure shear in the 13
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Figure 4.13: Performance of the TV-trained RNO before fine-tuning (a) and (b)
after.

direction, and cyclic loading and unloading along the 11 direction, which
is parallel to the ND of the rolled texture. The figures illustrate the time
evolution of the deformation measure and the stress-strain relationship.

Figure 4.14(a) illustrates a simple shear case, where the solid line rep-
resents the ground truth predicted by the CP model, and the dotted lines
depict the RNO’s predictions. The RNO exhibits a close and accurate fit to
the ground truth, capturing the lower stress levels associated with shear
deformation precisely. In Figure 4.14(b), we present the stress-evolution
over cyclic loading, showcasing the RNO’s ability to accurately predict
the response throughout the applied loading time. The RNO captures the
different hardening rates during tension and compression, as well as the
increased stress levels due to strain hardening. Remarkably, it performs well
even at room temperature, despite being trained on elevated temperature
cases in the TV and TD scenarios. We are pleased with the RNO’s perfor-
mance and proceed to evaluate its capabilities at elevated temperatures.

Figures 4.14(c) and (d) present the results for two cases of interest at
three randomly sampled temperatures each. Figure 4.14(c) demonstrates
uniaxial, isochoric tension along the ND – the normal direction of the
sample, along which most c−axes of the crystals are aligned. The RNO
accurately captures the saturation point for all three temperatures, leading
to an appropriate hardening response. In the lowest temperature case, the
initial hardening during twin propagation (up to approximately 6.4% strain)
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Figure 4.14: Predicted (dashed) and true (solid) material response for different
load cases at room temperature: shear in the 13 direction in (a) and
cyclic loading along the 11 direction in (b). (c) and (d) show the
response for elevated temperatures instead.

is slightly underpredicted, with a maximal error of about 8 MPa, which is
significant but not problematic for this deformation mode. Figure 4.14(d)
depicts uniaxial tension along the RD. This mode highlights the overall
softening due to thermal activity, along with changing saturation points
and stress-strain curve levels. The RNO predicts the material response with
great accuracy, consistently slightly underpredicting the stress level. The
maximal error is approximately 2.5 MPa, indicating a good approximation.

Consequently, we explore the RNO’s capability to capture strain harden-
ing and directional anisotropy, demonstrated by cyclic loading along the
ND (Figure 4.15(a)). The RNO accurately reproduces the observed behavior,
showing weak strain hardening during tensile loading due to the activation
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Figure 4.15: Bauschinger effect under uniaxial tension/compression (a) and shear
(b) at varying temperature levels captured by the RNO.

of TT systems, followed by increased strain hardening. During compressive
deformation, a rapid stress increase is seen due to the presence of strong
hardening associated with activated slip systems. This behavior is consis-
tent with what would be expected from a physical material. Similarly, for
cyclic shear (Figure 4.15(b)), the RNO captures the temperature-induced
reduction in hardening rates. Additionally, it captures the strain hardening
expected from such deformation modes. These cases highlight the RNO’s
capability to capture intricate effects, such as the Bauschinger effect during
repeated loading and unloading. Overall, the RNO demonstrates its ability
to predict complex material responses accurately across various loading
conditions and temperatures.

Finally, for the sake of completeness, we show the results of the FCNN
predicting the hydrostatic stress contribution in Figure 4.16. This network
was trained with 300 nodes per layer and four layers, as well, for 8500

samples of the TV data set. It generalizes well for all temperature cases
inside the data set and shows a low error overall, as indicated by the low
error shown in Figure 4.10(e).

4.5.2 Comparison with Traditional Recurrent Architectures

We have shown the strengths of the RNO, its adaptability, and its capability
to represent complex material behaviors. Many of these qualities, however,
are also present in traditional architectures, explaining their widespread
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Figure 4.16: Architecture of the FCNN learning the equation of state, relating
J and T to the hydrostatic pressure σh in (a) and prediction of the
network for a random sample in the testing data set (b).

success. Traditionally, architectures such as GRU and LSTM-based networks
have been widely used with great success to learn and predict the plastic
response of materials. These architectures have demonstrated their ability
to capture complex, history-dependent behavior and have achieved remark-
able success in a variety of fields. Therefore, they have been applied to
predict the constitutive behavior of history-dependent materials in the past.
For instance, in a study by Yu et al. [80], a GRU-based and an LSTM-based
architecture were successfully employed to predict the plastic stress-strain
response of an elastoplastic material with J2-plasticity. We now perform
a comparative study of a variety of GRU- and LSTM-based architectures
and evaluate their capability to capture the constitutive behavior of our
material.

We specifically focus on the simplest case, which is the temperature-
independent response at room temperature, where the main challenge lies
in accurately capturing the material’s anisotropic plastic response using a
limited number of parameters. To compare the GRU and LSTM networks
directly with our proposed RNO for the temperature-invariant response,
we use a small subset of 2000 samples from the TI-R dataset. We explore
various GRU and LSTM architectures, as described in Table 4.2. The network
(a) is directly based on Yu et al. [80], initially used for J2-plasticity, with
other architectures being mostly adaptations. The adaptations are obtained
by changing the hyperparameters for different architectures, such as to
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investigate whether larger or different types of architectures would perform
better than the suggested one. We vary the layer width in the GRU/LSTM
cells, explore the addition of multiple FCNNs, and examine the impact of
altering the GRU/LSTM layer width. We also investigate the effect of using
a feed-forward architecture, where the final FCNN layers are aware of the
input at any given time. All these investigations are carried out with the
same learning rate of 0.001 (except for the LSTM network), a batch size of
100, 2000 training samples, and 7894 testing samples. The results of our
investigation are presented in Table 4.2. The RNO used for this comparative
study is the same architecture employed for final training and validation. It
consists of two four-layer deep FCNNs with a uniform layer width of 300

and a hidden state of 35 state variables, resulting in networks of overall
similar sizes [80].

We observe that among the GRU networks, the architecture proposed
in Yu et al. [80] achieves the best results on the given dataset. The LSTM-
based architectures, surprisingly, suffered from stability issues that led to
a reduction in the learning rate for these architectures. Further, increasing
the size of individual layers of the GRU did not help in improving the
predictions of the networks. The comparison clearly indicates that our
introduced RNO outperforms both GRU and LSTM-based architectures
for this specific task. The RNO not only achieves better accuracy but also
exhibits faster convergence and greater robustness, making it the preferred
choice for capturing the material behavior in our study.

Table 4.2: GRU and LSTM architectures tested against the present RNO

network Layers # Train. samples Min loss (L2)

(a) GRU GRU GRU GRU FCN

500 128 500 128 6
∗

8500, lr = 0.001 unstable

(b) GRU GRU GRU GRU FCN

500 128 500 128 6
∗

8500, lr = 0.0001 23.1%

(c) GRU GRU GRU GRU FCN

500 256 500 256 6
∗

8500, lr = 0.001 25.8%

(d) LSTM LSTM LSTM LSTM FCN

500 128 500 128 6
∗

8500, lr = 0.0005 unstable

(e) LSTM LSTM LSTM LSTM FCN

500 128 500 128 6
∗

8500, lr = 0.0001 43.6%
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Finally, we illustrate the testing error of the best-performing architectures,
networks (a) and (g), in comparison to our proposed RNO in Figure 4.17(a).
Several notable observations can be made. First, it is evident that the
introduced RNO achieves significantly better performance compared to
both the classical LSTM and GRU-based architectures. The GRU achieves
the lowest error of 23.1%, while the LSTM only manages to reach an error of
approximately 43.6% within the given training period. Although increasing
the size of the LSTM improves the error, it also considerably prolongs the
training time, leading us to refrain from pursuing this approach further.

Next, we observe that the RNO exhibits faster convergence towards a
reasonable error. On the other hand, the GRU and LSTM seem to encounter
local minima during training, as indicated by the plateaus in the testing
errors. Additionally, the LSTM displays slower convergence compared to
the GRU and demonstrates instances of (almost) unstable behavior, where
the error increases significantly before decreasing again. Notably, around
the 300 epoch mark, the LSTM error becomes exceptionally large, requiring
several epochs to stabilize. This behavior persists despite the LSTM’s lower
learning rate in comparison to the RNO. These findings confirm the notion
that GRU cells are generally more robust than LSTM cells. However, our
presented RNO exhibits greater robustness for the given problem and is
evidently better suited for this particular task.

During the course of our investigation, we observed that the GRU and
LSTM networks necessitated much lower learning rates compared to what
we were able to achieve with our RNO. Particularly, the LSTM networks
were prone to exhibiting instability even at low learning rates. Consequently,
the training process for these recurrent neural networks would require
substantially more time compared to the current RNO. Additionally, we
noted that the scalability of the GRU and LSTM networks in relation to
the training set size was not adequate. Despite possessing a larger number
of tunable parameters, these recurrent neural networks were unable to
effectively capture the anisotropic behavior with the required precision.
Subsequently, in Fig. 4.17(b), we present the stress response predicted by the
GRU model at the training resolution compared to the ground truth. While
the GRU model is able to capture certain aspects of the behavior, the overall
error remains significant. Based on these results, we conclude that the GRU
architecture introduced in [80] is not ideal for accurately capturing broader
or more complex plastic behavior. Further training or larger networks may
indeed improve the prediction of the GRU further, however, there is a clear
discrepancy in the performance of the two architectures.
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Figure 4.17: (a)Best performing GRU and LSTM architectures vs. TI-RNO with
300 NPL, 15 IVs. Trained on 8500 samples for the temperature
invariant case at 25

◦C. (b) shows the prediction of the best-trained
GRU model vs. the ground truth.

We have shown that the RNO has a number of advantages over its clas-
sical counterparts, such as the rapid convergence, the reduced number of
parameters needed to represent the width of the behavior as well as the
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relatively small number of data needed to train the model. The primary ad-
vantage of our architecture over classical RNNs, however, lies in a different
aspect.

4.5.2.1 Resolution-Dependence of Architectures

Other architectures, including MSCs, are highly dependent on the resolution
of the data, meaning that, as the data is sampled at different rates from the
training resolution, the prediction error increases significantly. However,
the presented RNO aims to counteract this phenomenon.

As discussed in Bhattacharya et al. [79], an effective RNO architecture
should be capable of learning the true mapping from F to σ, resulting in
a time-independent representation of the stress-strain relationship. If this
assumption holds, then the predictions at different time resolutions should
maintain a similar level of quality as the training resolution. Liu et al. [14]
conducted tests to verify this hypothesis and observed that the error of the
Markovian RNO remained bounded and small for resolutions higher than
the training resolution, provided that the correct physics and number of
internal state variables were chosen. However, there exists a lower bound
for the resolution due to stability limitations imposed by the forward Euler
updates, which may introduce instability for small timesteps.

We conducted a comparison between the RNO and GRU networks at
different resolutions to assess their performance. Specifically, we used the
trained RNO and GRU RNN models to predict the response of the test data
in the TI-R and TD-R sets, respectively. The training resolution was set at
100 time steps per strain path. We then varied the sampling rate, which
corresponded to different resolutions, ranging from 50 to 1000, with higher
numbers indicating more steps and smaller values for the time increment
∆t. Subsequently, we employed each architecture to predict the response
for these various resolutions.

As anticipated, all architectures demonstrate their best performance at
the training resolution. The TD RNO case exhibits approximately 7.5%
testing error, while the GRU architectures on the TI case show an error of
roughly 23%. At higher resolutions, the error for the RNO slowly increases
to approximately 9.5%, but eventually levels off and shows no indication of
further increase. At lower resolutions, the RNO initially maintains relatively
small errors, but below 80, the error rapidly escalates as it approaches the
stability limit, consistent with the observations made by Liu et al. [14]. Con-
versely, the GRU and LSTM architectures experience a rapid decay in the
prediction quality as the time increment changes compared to the training
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Figure 4.18: Resolution dependent test error of the GRU, LSTM and RNO. The
GRU and LSTM networks show a strong resolution dependence with
the error increasing as soon as one moves away from the training
resolution. The RNO’s error at finer resolutions, however, remains
bounded.

resolution. This limitation becomes particularly significant when the goal
is to employ the trained RNN model in a multiscale framework where the
resolution may vary. The RNO demonstrates a robust performance, as long
as the actual resolution does not fall below the stability limit, ensuring
sensible predictions and maintaining accuracy close to the trained level.
This feature of the RNO is of high importance. As we have shown, the
training resolution is relatively large, leading to good training performance.
The true strength of the RNO lies in its ability to almost arbitrarily refine
the temporal resolution. We show the use of this property in section 4.5.4,
where we perform multiscale impact simulations.
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We have thus proven that the RNO naturally includes self-consistency,
an important step for applications in multiscale models, as the deformation
increments in FE-simulations typically occur on orders of magnitude lower
time scales than the training resolution. This advantage of the RNO is crucial
in the following step, the implementation in a commercial FE software.
Before delving into this step, however, let us perform a final investigation
on the RNO, linked to its state variables.

4.5.3 Behavior of State Variables

The presented architecture has demonstrated impressive capabilities in
learning and predicting complex plastic material behavior with relatively
small amounts of training data. Further, the predicted temperature-aware
response of the material aligns well with the predictions from the CP model
presented in chapter 3. Moreover, it outperforms other architectures like
GRUs and LSTMs in accuracy and training time. The flexibility of the RNO
further allows for the reduction of timestep as desired, making it well-suited
for implementation in dynamic simulations (see section 4.5.4).

One fundamental question remains, however; How does the RNO achieve
this? And moreover,is it possible to extract any meaningful insights from
the state variables or the model’s learning process? Previous research,
such as that by Liu et al. [14] or Bonatti and Mohr [76], has managed to
identify some meaning in the state variables for the averaged responses of
polycrystals. For instance, [250] revealed that the internal variables have a
meaningful interpretation in the 2D mean-field response of polycrystals,
potentially representing the independent entries of the plastic strain tensor.
A similar understanding was found in Bonatti and Mohr [76], where the
architecture identified the exact number of internal variables used in the
underlying model, along with the five independent components of the
plastic strain tensor. We explore this path in the present work as well.

The architecture’s nonlinear mapping between state variables and the
final stress, unlike the linear map used in the MSC architecture used in
Bonatti and Mohr [76], renders this task quite complex. Nevertheless, we
can investigate the evolution of state variables for distinct loading cases.
Under cyclic loading we observe that certain state variables mimic the cyclic
evolution of deformation, see Figure 4.15 (a). We show the evolution of all
state variables as a heat map with the time on the y−axis and the internal
variable identifier on the x−axis, such as to get a visual representation of
the states. We observe that certain state variables show similar behaviors
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Figure 4.19: Evolution of a given set of internal variables depicted as a surface
plot with the y-axis being the time increments and the x-axis depict-
ing the state variable identifier (a). The color indicates intensity. In
(b), we show the five state variables that were identified to follow
the cyclic deformation closely.

decreasing and increasing in intensity cyclically, thus mirroring the cyclical
load. From Figure 4.19 (a) we identify five internal variables that exhibit
a cyclical behavior. Further exploration reveals that they precisely mirror
the cyclic load, as shown in Figure 4.19 (b). This finding is intriguing in the
light of Bonatti and Mohr [76] and Liu et al. [250]’s findings. They identified
five state variables corresponding to the five independent entries of total
plastic deformation. While direct comparisons beyond this point are not
(yet) possible, we believe that there is an inherent connection between the
state variables and the deformation history of the material. These results,
however, remain indicative at this stage.

We further test our hypothesis by evaluating the evolution of the hid-
den states for known deformations of the TI-validation samples. Notably,
we consider shear along the 23− and 13−directions, tension along the
11− direction (i.e., tension along the ND), and tension along the 22− (RD)
direction. Each of those cases should (in theory) lead to the activation of
different components in the strain tensor. We perform all of those tests on
the RNO trained for the temperature-dependent data. Again, we show the
results of the internal variables for each case as a heat map, see Figure 4.20.

We observe that, depending on the different deformation cases, the
activity of the states changes, and there appears to be unique combinations
of states for each of the deformation cases. This is sensible in the light of the
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Figure 4.20: Heat map showing the time evolution of the activity levels of the
states in the TD-RNO at 25

◦C for four distinct loading cases.

physics at play, for instance, in tension along the 11− vs. 22− directions,
different deformation mechanisms are activated and would lead to different
strains inside the material. In contrast to results by Bonatti and Mohr [76],

We further observe that each of those deformation modes leads to the
activation of various deformation modes such as slip and twinning. Natu-
rally, this begs the question of whether the state variables are related to the
slip and twin systems of the material. Our findings remain, unfortunately,
inconclusive at this point. First, we experimented with identifying a map be-
tween the evolution of the state variables and the evolution of the averaged
slip and twin activities, such as shown previously in chapter 3. We trained
a single-layer neural network to map the output of net G to the averaged
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slip and twin activities of the polycrystal with the goal of identifying such
a linear relationship

L : ξ 7→ γ, (4.27)

where γ represents the average slip and twin activities of all 200 grains
in the polycrystal. We first investigate the prediction for a single sample
of the data set and observe a good agreement with the ground truth right
away, see Figure 4.21. We observe a very good fit between the prediction
and the ground truth, however with some oscillatory behavior in the twin
systems. Clearly, a linear relationship can be found between the internal
variables and the slip activities for this simple case. Considering the strong
correlation between the deformation and the evolution of the internal
variables, this may come as no surprise. Upon increasing the number of
training samples, however, the error quickly deteriorates and it becomes
impossible to identify a common map between the state variables and
the slip and twin activities. We hypothesize that this has to do with the
numerous possible combinations of slip in the material to accommodate
certain types of deformations. Further attempts were made to improve
the mapping, such as by investigating only the total amounts of basal,
prismatic, and pyramidal slip or by simplifying even further, to account
only for ⟨a⟩ and ⟨c + a⟩ systems. However, our efforts to find a global map
were, so far, unsuccessful, even by abandoning the idea of a linear map
and increasing the number of layers in the network. Nevertheless, it is clear
from the behavior of the state variables, such as outlined in Figures 4.19

and 4.20 that they hold a certain meaning. What this meaning could be, is
left for future work to uncover.

4.5.3.1 Temperature-Varying vs. Temperature Invariant State Variables

Finally, an additional topic concerning the state variables warrants further
investigation. As discussed in section 4.3.2.2, we observed the intriguing
phenomenon of requiring additional state variables to accurately represent
the temperature-dependent behavior of the material. In this section, we
conduct a deeper analysis of this behavior, employing the temperature-
dependent RNO. Our hypothesis is that certain internal states primarily
or strongly correlate with changes in temperature, while others are more
closely linked to deformation.

To test this hypothesis, we closely examine the evolution of the inter-
nal states of the fully trained RNO with temperature dependence, uti-
lizing samples from the temperature-independent validation (TI-V) and
temperature-independent deterministic (TI-D) datasets. Specifically, within
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Figure 4.21: Prediction of the slip and twin activity for a single sample of the
dataset via one linear layer. The solid lines are the results from the
Taylor model, whereas the dotted lines are the predictions from the
network.

the temperature-dependent validation (TD-V) dataset, we identify three
commonly occurring deformation cases at different temperatures: shear in
the 23-direction, shear in the 13-direction, and tension in the 11-direction.

To assess the effect of temperature, we follow the outlined procedure
below:

• First, we calculate the mean activation values of individual states over
time for each specific temperature.

• Second, we construct an array of values for each sample, which
contains the time-averaged means of the states.

• Finally, we compute the variance of this array with respect to temper-
ature as a measure of the temperature’s impact.

This methodology allows us to identify the state variables that genuinely
exhibit high variance in response to temperature changes, while others
should demonstrate minimal or no change. We apply this approach to the
entire set of 50 samples in the temperature-independent validation (TI-V)
dataset, while keeping the temperature constant, to evaluate the effect of
deformation using the same measure. The findings from these analyses are
presented in Figure 4.22.
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Figure 4.22: Variance of state variables with respect to temperature, denoted by
VarT , and mechanical deformation at room temperature, denoted by
VarF.

We observe several noteworthy phenomena from our analysis. First, the
individual state variables exhibit varying levels of variance, with a few
state variables showing significant activity, while most exhibit only minor
variance in response to temperature or deformation. It is important to note
that the absolute values of the state variables do not directly correspond to
their importance in our context.

Second, in cases where temperature changes are considered, certain
state variables demonstrate higher variance in activity levels compared
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to others. Although the specific values of these states differ across the
three realizations of the test, a discernible pattern emerges. Notably, a
group of states, indicated by red arrows, displays the greatest variance with
temperature, while the other states remain relatively unaffected.

Third, we find that some state variables show no significant changes with
temperature but exhibit considerable variance when subjected to different
loading conditions (denoted as VarF). Conversely, a different set of state
variables display significant variance in response to deformation modes but
remain insensitive to temperature changes. However, it is worth noting that
the majority of state variables demonstrate some degree of variance with
both temperature and deformation.

These findings lead us to hypothesize that certain state variables play
a prominent role in capturing temperature variations, while others are
primarily associated with mechanical deformation. The implications of
these findings raise intriguing questions regarding the additional memory
requirements associated with temperature effects, namely that the thermal
past of the material also introduces a history dependence.

We examine this intriguing phenomenon further. To this end, we compare
the final stresses of polycrystals undergoing a predefined strain path, but
with two kinds of temperature paths – one linearly connecting the initial
and final temperatures, and one varying randomly such as used in the
TV data set. We put an emphasis on both temperature paths to begin and
end at the exact same temperature. Our hypothesis is that if temperature
induces a history in the material, then the final stresses should differ. For
our investigation, we chose a single deformation path and 100 pairs of
random and linear temperature paths to predict with the RNO. Further, we
repeat the same experiment a few times in the Taylor model as a control
mechanism to ensure our results are not linked to the nature of the RNO.

We show the results of our study in Figure 4.23. In (a), we illustrate
the maximal difference between the varying and linear temperature path-
ways for one of the samples. In (b), we show the distribution of the final
stress differences, σ11(tmax), between the linear and random temperature
histories. In addition, we show the temperature at which the experiment
terminated. As expected, if the temperature paths are quasi-equivalent
and have small differences in temperatures at any given time, the final
stresses coincide. However, with increasing dT , we observe a clear trend
towards an increasing difference in the ultimate stresses. This trend persists
throughout the range of the final temperatures, although it is apparent, that
the differences are smaller for higher ending temperatures. We attribute
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Figure 4.23: Depiction of the linear and varying temperature paths of a sample
used for data generation in (a) – we show the maximal distance
between the temperatures with dT . (b) shows the distribution of the
stress difference (in MPa) of linear v.s. varying temperature paths
along the same deformation pathway. Here, 100 pairs of linear v.s.
varying temperature paths are shown for the same deformation path.
The dots represent the predictions from the RNO, whereas the red
diamonds show the results from the Taylor model for comparison.
Finally, the color indicates the temperature at the final time step.

this phenomenon to the overall lower stress levels associated with elevated
temperatures. Ultimately, our findings suggest that the temperature history
influences the final stresses of the material and that the additional internal
variables needed for the temperature-dependent RNO are related to the
corresponding phenomenon. At this point, however, the exact meaning of
the additional variables is still unknown and warrants further investigation
in future work.

4.5.4 Application in Multiscale Simulations

In the following section, we shift our focus to the application of the RNO as
a surrogate mode. The utilization of surrogate models offers a significant
advantage in terms of computational efficiency for large multiscale simu-
lations [203]. Conventional physical models, like CP, require the repeated
updating of numerous physical parameters and equations at each iteration.
In dynamic simulations, explicit time updates are often employed due to
the small time steps involved, leading to a rapid increase in computational
inefficiency and time consumption with traditional models. However, our
RNO was trained efficiently on a large timestep, and its resolution indepen-
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dence, as discussed in section 4.5.2.1, allows it to be seamlessly applied in
dynamic simulations without any further adjustments.

To demonstrate the performance and potential applications of our archi-
tecture, we conduct a series of multiscale simulations that would have been
impractical or even infeasible using other physical models within short time
frames. We assess the runtime improvements achieved by employing the
RNO as a surrogate model whenever possible, providing estimates of the
computational time saved compared to traditional approaches. The ability
to efficiently perform these simulations with the RNO surrogate under-
scores the value of our approach in addressing computational challenges
and advancing the scope of applications in multiscale simulations.

4.5.4.1 Taylor Anvil Test

In order to demonstrate the capabilities of the RNO architecture, we conduct
a Taylor anvil test. The test involves a sheet of rolled magnesium (Mg) with a
specific texture, as described earlier. Cylinders are extracted from the sample
with diameters of D = 1 mm and heights of H = 5 mm, oriented along
the rolling direction (RD) and the normal direction (ND), respectively. This
orientation ensures that the majority of Mg grains are aligned longitudinally
or radially.

The simulations involve cylinders impacting a frictionless wall at time
t = 0 with an initial velocity of V = 200m/s. We conduct the simulations
at three different temperatures, 25

◦C, 115
◦C, and 205

◦C, for both config-
urations of the cylinder (RD and ND). The goal is to study the material’s
response under these conditions and observe any temperature-dependent
effects on the deformation behavior. By performing these simulations with
the RNO as a surrogate model, we aim to showcase its efficiency in handling
complex multiscale problems, like the Taylor anvil test, which would other-
wise be computationally intensive and time-consuming using traditional
physical models.

In both cases of the Taylor anvil test, an elastic wave is transmitted upon
impact, followed by plastic deformation. Cross-sections of the impactor
after 10−6 ms are shown in Figures 4.24 (a) and (b), which illustrate the
impact of the change in orientation. At this time, the elastic wave has largely
dissipated from the impact zone, allowing for a more accurate investigation
of the plastic behavior.

In Figure 4.24 (a), the sample is oriented such that the normal direc-
tion (ND) lies in the plane of impact, resulting in compression along the
transverse direction (TD). The deformation is borne by a mixture of basal
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Figure 4.24: Von Mises equivalent stress distribution in the Taylor anvil for
impact along the (a) TD and (b) ND at 25, 115, and 205

◦C after e ×
10−7 seconds. The corresponding reaction forces over the duration of
the simulation are shown in (c). Observe the varying stress levels for
both cases. (d) shows a set of the simulation setup and (e) exemplifies
the anisotropic stress distribution on the impact face at 115

◦C under
impact along the TD (configuration (a)).

and prismatic slip, leading to a relatively weak material response. The
maximum stress is concentrated at the center of the impact zone, where
a combination of compression along the longitudinal direction (RD) and
tension in the radial direction is experienced. Tension along the RD or
TDs is relatively stiff compared to the tensile deformation along the ND
of the rolled sample, leading to the observed asymmetric response. As
the deformation progresses, twinning is expected to occur, leading to a
drastic increase in stress along the ND. This behavior persists at elevated
temperatures, as shown in Figure 4.24 (e) for the case at 115◦C.

Conversely, impact along the ND leads to a different overall response, as
the material is oriented such that the ND aligns with the impact direction.
This results in a much stiffer material response compared to the previous
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case. Overall higher stresses are observed in a larger region near the impact
zone. The stress level decreases rapidly with temperature, rendering the
overall response more isotropic.

Figure 4.24 (c) shows the reaction forces measured at the nodes of the
impact face for all six cases. Large differences are observed between the two
orientations and across the temperatures, as expected. The RNO accurately
captures the temperature-dependent elastic component of the CP model, as
evident from the reaction force responses, particularly in the ND impact
cases. The reaction force rapidly increases, followed by the propagation and
reflection of an elastic wave at the free end of the material. The wavelength
of the elastic wave changes with temperature due to the variation of Young’s
modulus, which is captured by the hydrostatic component of the stress, as
described earlier.

4.5.4.2 Plate-Impact Test

As another application of the present RNO, we conduct a numerical impact
test on a plate of Mg along the rolling direction (RD) at room tempera-
ture. During such loading conditions, the temperature in the material is
known to rise [22]. This temperature increase is generally attributed to two
phenomena.

First, a portion of the plastic energy is dissipated into heat [22, 255]. Typi-
cally, a linear relationship is assumed, where the increase in temperature
is directly correlated with the dissipated energy through a proportionality
factor. In the case of Mg and AZ31B, it has been shown that this factor
depends on the orientation of the material [255]. However, in the case of
impact along the RD, the percentage of plastic energy dissipated into heat
is fairly low, and therefore, for the time being, we neglect this contribution.

The second mechanism is associated with the quasi-isentropic elastic
compression of the material [22]. This phenomenon can be described by the
equation [256]

dT =
aTH exp(−mp)Tdp

Cpρ0
. (4.28)

Here, T represents the temperature, a = 7 × 10−5K−1, m = 0.0021 GPa−1,
p is the hydrostatic pressure, and ρ0 is the initial density of the material.
The specific heat, Cp = (900 + 0.446T) Jkg−1K−1. We solve (4.28) explicitly
for every timestep in Abaqus.

Figure 4.25 (a) shows the Von Mises stress distribution across the plate
during impact at 10−8, 8 × 10−8 and 1.6 × 10−7 s after impact. Stress peaks
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are observed near the edge of the rounded impactor which relatively rapidly
dissipates in the material. In Figure4.25 (c) we observe that the stress
distribution inside the material is anisotropic due to the differences between
the ND, TD and RD. Unfortunately, there is no reliable comparison data
available for this test. However, we are able to compare the evolution of
the temperature for the predicted stresses with experimental results from
Ravindran et al. [22].

Figure 4.25: Depiction of the Von Mises Stress (a) and the temperature distribu-
tion (b) in the Mg plate during impact. Distribution of the stress
showcasing the anisotropy in Mg (c) at 25

◦C during impact. The
geometry of the plate impact test (d).

Figure 4.26 shows the results of the isentropic hardening in a Mg sample
from Ravindran et al. [22]. They conducted pressure shear-plate experiments
under high velocity impact and observed temperature rise due to shear
and normal shock. The simulated temperature rise of our experiments
agrees well with the experimental data, as shown in Figure 4.26. We note
that our results were obtained for far smaller pressures, limited to roughly
1-2 GPa, but follow the same trend line as shown in Ravindran et al.
[22]. This indicates that the presented multiscale setup provides a sensible
approximation for the impact application under consideration.
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Figure 4.26: Isentropic heating contributions vs. the hydrostatic pressure. Com-
parison of the experimental study by Ravindran et al. [22] and our
present model. The model prediction coincides well with the ob-
served trends in Ravindran et al. [22].

4.5.5 Runtime Comparison

Finally, we perform a runtime comparison to showcase the speedup po-
tential of using a surrogate model instead of the underlying CP model.
Material point computations are performed with the CP-Taylor model with
200 grains on one side and the RNO on the other. Each computation is
repeated five times and the average duration is reported. In each case, we
perform simulations up to 10% compressive strain along the 11-direction
in 100,000 steps at a strain rate of ϵ̇ = 10−4. The total simulated time is
thus 100 seconds and the timestep ∆t = 10−3s. Simulations for the RNO
are performed on a single core of a MacBook Pro 2019 with a 2.6 GHz
6-Core Intel Core i7 processor and 16 GB of RAM, whereas the Taylor
model was run on one node of ETH’s cluster Euler VI on 16 cores of an
AMD EPYC 7742 processors and 64 GB of RAM. Both simulations run in a
virtual environment on the system. The Taylor model is a highly efficient
C++ application, while the RNO is a non-parallelized PyTorch job without
CUDA support. In the next step, we also show the improvement with
parallelization in the Taylor model vs. the RNO.
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Table 4.3: Runtimes of the physical model vs. the RNO for multiple applications

Simulation #steps Simulation Time [s] Threads cores

Taylor 200 Grains 105
77.07 1 / 1

Taylor 200 Grains 105
8.520 16 / 16

Taylor 200 Grains implicit 4000 48.7 1

RNO 100 0.0583 1

Table 4.3 shows the execution times for the RNO and Taylor models in se-
quential and parallelized execution. Compared to the single-core sequential
Taylor model, the RNO yields a 1321.9 times speedup, and compared to the
parallelized 16-core Taylor model it still represents a speedup of 146 times.
This is likely due to the improved stability and the much larger timesteps
the RNO can accommodate. Even when the explicit solver in the CP model
is replaced by an implicit solver, the RNO still leads to an 835 times faster
execution. In addition, the implicit solver has its own drawbacks, especially
in dynamic simulations and it faces stability issues, described in Chang and
Kochmann [107]. The RNO is much more robust than the CP models we
investigated, which was especially noticeable in the Abaqus simulations.

4.6 chapter summary

In conclusion, we have introduced a novel Recurrent Neural Ordinary
(RNO) architecture for temperature-dependent, anisotropic plasticity prob-
lems and compared its performance to state-of-the-art RNNs used in surro-
gate modeling. Our findings can be summarized as follows:

• The RNO exhibits easier and more accurate training compared to
LSTM and GRU-based RNNs with the same amount of data. It gener-
ally represents the material behavior better and with fewer data than
reported in literature [75, 76, 80], notably, the optimizer converges
faster and the accuracy is higher.

• Further, the RNO naturally exhibits self consistency at resolutions
finer than the training resolution. The error remains bounded and
the predictions accurate, a capability lacking in LSTM and GRU
architectures. This feature effectively allows the RNO to be employed
for effective time steps anywhere below 1 second and in general,
below the training resolution.



192 recurrent neural operator describing thermoplastic behavior in mg

• Additionally, we have identified temperature-dependent phenomena
that require a larger number of state variables in the RNO. Some
of these state variables are solely dependent on temperature, while
others are influenced by the mechanics of the material. However, the
full interpretation of these state variables remains a topic for further
investigation.

• The RNO performs well on validation data, accurately capturing the
overall material response, including key mechanics such as phase-
change-induced nonlinearity due to twinning and material anisotropy
over a range of temperatures. It also effectively captures the Bauschinger
effect at multiple temperatures and various loading conditions.

• Integrating the RNO into Abaqus/Explicit simulations leads to signif-
icant speedups and improved simulation stability.

Limitations of the methodology naturally persist. In the present config-
uration, the RNO surrogate does not offer as detailed physical insight as
a CP model, however, this is likely possible to achieve in the near future
for instance by including slip and twin activity as a metric to be learned or
providing the RNO with further information on the deformation modes.
Further, the model is currently only validated for one type of fixed texture.
This limits the model for now, however, thanks to short training times and
ease of application, the RNO can be easily extended to multiple textures.
Finally, it is not known whether the presented RNO could be subject to
vanishing or exploding gradient problems, as these issues did not arise in
the study. Technically, however, it is possible that these issues could limit
the wide-spread use of the RNO architecture and a solution is needed.

From our findings, new opportunities for future research also arise.
Texture evolution, particularly in the context of magnesium, remains an
interesting topic to explore. Additionally, utilizing the RNO as a pre-trained
network for transfer learning in other materials is a promising avenue for
further investigation. Furthermore, the RNO’s speed and efficiency make it
well-suited for inverse design problems, opening new possibilities for its
application.



5
C O N C L U S I O N A N D O U T L O O K

5.1 concluding remarks

Let us finalize this thesis with some concluding remarks on the success
of our work in the context of the primary research goals. The goal of this
work was to identify and model thermal effects on the microstructure of
the material and the corresponding response of Mg in an efficient manner
in a push toward an ICMD framework. This goal was further divided into
two parts.

In the first part, the need for a dependable and efficient predictive model,
capable of capturing the thermal effects on the microstructure evolution
in Mg and quantifying the competition between the CT and pyramidal II
systems that still poses an open question in the field, was identified. To
this end, a novel model was formulated, calibrated, and validated. This
temperature-aware CP model for pure Mg was developed and implemented
in two distinct flavors - one including the CTs and one describing the behav-
ior solely based on the pyramidal II systems. The results were compared
and critically assessed. Single and polycrystal simulations we performed as
means to calibrate and validate the models. Notably, single-crystal channel-
die simulations with relaxed material-point simulations were performed,
capturing the reported stress-strain and slip behavior reported by Kelley
and Hosford [8] and Wonsiewicz and Backofen [19] over the range of tem-
peratures from 25

◦C to 250
◦C as well as polycrystalline behavior reported

by Wonsiewicz and Backofen [19]. Further, we investigated the competition
between said mechanisms in a comparative study of both models. We iden-
tified that CTs play a significant role in the early stages of deformation at
RT and that their presence can explain the presence of basal slip in the early
stages of c−axis compression of single crystals, as observed by Wonsiewicz
and Backofen [19]. Due to the larger twinning shear, slow propagation,
and high hardening levels associated with the CTs, however, they appear
ill-suited to accommodate large amounts of plastic deformation. We also
observed less twin activity at elevated temperatures where the balance tips
in favor of the pyramidal II systems, which is in agreement with experi-
mental studies and observations. Overall, our findings agree well with the
hypothesis and offer an explanation that the main driver behind the low
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ductility of Mg at lower temperatures lies with the strong hardening and
pinning of the pyramidal ⟨c + a⟩ dislocations since CTs play too small a role
in accommodating large amounts of plastic deformation. These findings
capture the experimental observations and indicate that the CT system is
a symptom of the aforementioned strong hardening of the pyramidal II
systems. Our results indicate that the key to improved ductility in Mg alloys
therefore lies in improving the mobility of pyramidal II dislocations. Finally,
rolling simulations with the relaxed Taylor model as described by Chang
[147] were performed, during which good qualitative agreement with the
expected results was observed.

In the second part of the thesis, the aim was to further improve the
efficiency of the modeling process. To this end, the temperature-dependent
constitutive behavior of the material was learned via a custom architecture
RNO based on learning a set of state variables such as to describe the
state of the material entirely. The RNO was trained on randomized stress-
strain data for three distinct use cases, including temperature-dependent
and independent loading paths. The need for additional state variables
was identified in the latter cases, allowing for the distinction between
temperature and mechanistic state variables as two archetypes of states
required to describe material behavior. In addition, it was shown that the
present architecture outperforms RNNs such as LSTMs and GRUs in a
comparative study in terms of accuracy, training time, and especially, the
fact that the formulation of the RNO seamlessly leads to self-consistency.
The RNO’s predictions were validated via the stress-strain response of
textured Mg polycrystals without any prior knowledge of the underlying
physics, and show that the RNO captures complex anisotropic plastic
behavior as well as the effect of the twinning-induced phase transformation
on the stress. Finally, the RNO was used as a surrogate model and included
as a VUMAT in ABAQUS/explicit to perform true multiscale simulations
at unprecedented speed. During this process, we further validated the
sensibility of the results by comparing them to experimental results of heat
generation during isentropic deformation by Ravindran et al. [22].

The results from both parts of this thesis clearly meet the goals and
represent a clear improvement in the state of the art, both in the realms of
physical and data-driven modeling. We have contributed to a better under-
standing of the competition between the CT and pyramidal slip systems and
enriched the field with an easy-to-calibrate predictive temperature-aware
material model for hcp materials, based on a reduced number of slip- and
twin systems. In addition, the potential of our RNO to learn and represent
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complex material behavior from limited amounts of data, as well as the
massive speedup and robustness they bring to multiscale simulations, was
clearly showcased. This makes the method suitable for an ICME (or ICMD)
approach and highlights the potential yet to be discovered in these methods.

The impact of these contributions is still to be seen in the future, however,
with both approaches, we laid the groundwork for future research, both
in the realm of physical modeling, as well as for opportunities related to
data-driven methods in mechanics and plasticity.

Drawbacks and Solutions

Naturally, our methods also suffer from drawbacks and require further
improvements. First, the CP model we introduced relies heavily on the
availability of single-crystal data for calibration. This data is not available
for a majority of the alloys, hence bottom-up calibration is a limiting factor.
This issue can, however, be bridged with enhanced calibration methods. For
one, the approach of Herrera-Solaz et al. [89] could be used to calibrate the
CP model for alloys. Further, due to the efficiency of the Taylor model, even
a relatively simple optimization approach could prove to be promising for
calibrating the material behavior for a given texture for alloys. This would
lead to unprecedented versatility for CP modeling.

Further, recrystallization evidently plays an important role in Mg even at
relatively low temperatures [49, 50]. Hence, for a more complete picture,
future work should aim at including recrystallization in Mg. Ground-laying
work was already performed by e.g. Walde and Riedel [68] and Tam et al.
[69], however, these models still rely heavily on empirical parameters and
thus do not offer a proper predictive methodology. The predictive model we
introduced can be used for further evaluation of dynamic recrystallization
(DRX) mechanisms in Mg and its alloys. With a solid foundation in physics
and an efficient computational approach, the addition of recrystallization
effects should be possible without the need for the empirical parameters
needed in Walde and Riedel [68] and Tam et al. [69]. Further, the Taylor
model has significant advantages over the VPSC model, used in Walde and
Riedel [68] and Tam et al. [69], when it comes to modeling DRX. Newly
formed grains are mostly elastic and the assumptions in the VPSC could
lead to misrepresentation of the energies in the material which are often
used to compute grain growth and further recrystallization waves [59, 84].
Additionally, the formation of new grains increases the computational load,
even in efficient mean-field models [84]. Here we see a potential for the
RNO to represent single-crystal stress-strain relationships and serve as a
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highly efficient surrogate for DRX simulations, cutting the computational
expenses even further. This latter approach would require further work
in including the single-crystal slip behavior or texture reorientation in the
RNO description. The data for this process is, however, easily obtainable
and no major concerns around its feasibility exist to date.

Third, a promising path lies in further enhancing the physical model with
additional features, such as rate-dependence and solute- and precipitate-
hardening effects and mechanisms. The addition of these effects would
prove to be the first holistic approach of this type for Mg and is subject to
ongoing work [257]. The addition of the solute and precipitation hardening
effects is relatively straightforward. Preliminary work on these topics has
already been carried out. For instance, the precipitation-hardening effects
have been implemented. The calibration and validation thereof, however,
still remain an open challenge. As explained in Cepeda-Jiménez, Castillo-
Rodrıguez, and Pérez-Prado [39], different types of slip systems have a
tendency to shear the precipitates due to a high degree of compatibility
of the respective slip systems. So while including the hardening effect of
non-shearable precipitates is straightforward, understanding the effect of
shearable particles in Mg still remains a somewhat open question. Further,
the calibration of this holistic model suffers from the absence of data. We
performed some work on including the grain-size refinement in Mg based
on data from [3], however, too little is known about the effect of the grain
size on the individual slip systems.

5.2 outlook

The next steps will include addressing these issues and enhancing the
capabilities of our methods. Further, there is ongoing, soon-to-be-published
work that proves to be an interesting application of the presented methods.

Ongoing Work

First, we showcase an interesting application of the model introduced in
chapter 3, related to seeking solutions to some of Mg’s existing drawbacks,
notably the weak hardening effects observed during conventional aging.
The presence of solutes and precipitates in alloys plays an important role in
the path to future work, especially with respect to applications in industry.
It was shown by Eswarappa Prameela et al. [1] that a high number density
of small precipitates has the potential to harden Mg alloys substantially,
and further, such nano-precipitates were observed experimentally in experi-
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mental work by Eswarappa Prameela et al. [257]. Hence, a topic of interest
lies in the optimization of processing routes for Mg alloys to promote nano-
precipitation and solute cluster segregation, both of which are seen as a
means to alleviate the weak thermal hardening exhibited by Mg as well as
potential sites that facilitate the cross-slip of ⟨c + a⟩ [62, 63, 118].

To this extent, Eswarappa Prameela et al. [257] investigated the forma-
tion of precipitates in rolled A9 samples compressed under quasi-static
conditions at various temperatures. In thermal aging, the precipitation sites
are typically observed to be continuous precipitation inside grains and
discontinuous precipitation at grain boundaries. These precipitation path-
ways typically lead to relatively large, shearable, and scattered precipitates,
resulting in poor hardening effects [39]. In contrast thermomechanical aging
an interesting phenomenon called deformation-induced precipitation (DIP)
occurs [1, 257], leading to novel types of precipitation pathways, such as
along propagating twin boundaries and in combined reaction zones, local
occurrences where dynamic recrystallization and precipitation occur simul-
taneously. The nucleation paths are schematically shown in 5.1. It has been
investigated in Al-alloys by [258], who saw promising results regarding
an improved hardening response. Bignon, Shanthraj, and Robson [258]
suggest that the average size of the precipitates during this process could
be far inferior compared with thermal aging. This indicates an increased
potential for hardening of the material. The plasticity model used in Bignon,
Shanthraj, and Robson [258], however, is relatively simple in nature and
accounts only for averaged measures. In our ongoing investigation, we
couple efficient spectral methods with our crystal plasticity model from
chapter 3 to investigate the dynamics of precipitation pathways. To this
end, we combine the model with a nucleation criterion, such as the classical
nucleation theory. It became evident that nucleation, as described by classi-
cal nucleation theories such as the Kampmann-Wagner nucleation (KWN)
models [259, 260], is subject to various influencing factors. The process of
new nucleus formation follows an exponential decay pattern, governed by
an incubation time denoted as τ = 1/(2β∗Z2). This phenomenon can be
mathematically expressed as follows

l̇ = Zβ∗Nc exp
(
−∆G∗

kBT

)
exp

(
−τ

t

)
. (5.1)

Here, ∆G∗ signifies the nucleation barrier, represented by the equation

∆G∗ = f γ3

F2 , where f denotes a shape factor (for spherical precipitates,
f ≤ 16π/3 [138]). In this equation, Nc stands for the count of available
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Figure 5.1: Deformation pathways in thermal aging (left) and during thermo-
mechanical aging (right).

nucleation sites, while Z represents the Zeldovich factor (= 10−2, as defined
in [261]). β∗ is the atomic attachment rate for the critical radius, given
by [260], which relies on the lattice spacing a, diffusion coefficient Dm,Al,
and mean site fractions in the matrix um,Al:

β∗ =
4πρ∗2

a4 Dm,Alum,Al (5.2)

The diffusion coefficient, in turn, depends on factors such as hydrostatic
pressure, as demonstrated by Yi [63], as well as the count of excess vacancies
[258], which can be expressed as:

Deff = Dth

(
1 +

cex

cth

)
. (5.3)

Here, cex represents excess vacancies and cth = 23.8 exp(− Q f
kBT )[258, 262]

stands for equilibrium thermal vacancies. Additionally, Bignon, Shanthraj,
and Robson [258] presents an explanation for the evolution of excess vacan-
cies using empirical constants, dislocation density, and terms accounting
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for the generation and elimination of vacancies. This can be represented by
the following equation:

dcex

dt
=

(
χ

σΩ0

Q f
+ ξ

cjΩ0

4b3

)
ϵ̇ −

(
ρ

κ2 +
1
l2

)
Dvcex. (5.4)

In this equation, χ represents a phenomenological constant, indicating the
proportion of mechanical work converted into vacancies. Ω0 stands for
the atomic volume of the matrix, b represents the Burgers vector, and cj
signifies the concentration of thermal jogs, calculated from the formation

energy Qj as exp(− Qj
kBT ). Lastly, ξ is a parameter relating the contribution

of thermal jogs to the generation of excess vacancies and the dislocation
density.

With a constitutive model such as introduced in chapter 3, the dislocation
density must be obtained through an approximation, e.g., the Lukac-Balik
model, proposed by Lukáč and Balık [263]:

dρ

dϵ
= K1 + K2ρ1/2 − K3ρ − K4σρ3/2, (5.5)

Here, empirical constants K1 through K4 are involved in the formulation.
For dislocation-based crystal plasticity models such as the one used in
[141], the dislocation density could be directly obtained. Full-field RVE
simulations conducted for a rolled Mg sample characterized by a uniform
texture, such as shown in Figure 5.2, disclose significant variations in local
measures inside the RVE, such as in the hydrostatic pressure and the stress.
We show results for three temperature cases, 25

◦C, 100
◦C, and 200

◦C, in
Figure 5.2. It remains to connect these insights with a suitable precipitation
model and to compare the simulated and experimental results. In doing
so, we propose a comprehensive modeling framework with the potential to
facilitate the design of deformation-induced precipitation (DIP)-hardened
Mg superalloys.

In theory, the essential components for creating such a fully coupled
thermomechanical precipitation model are already available. Certain key
elements necessary for the calibration and validation of this model, however,
are still missing and require further work. The scarcity of quantifiable data
surrounding precipitation in Mg renders the calibration of the multitude of
empirical values a formidable challenge. Additionally, there is a significant
lack of experimental validation concerning DIP particle densities and sizes
in Mg alloys. Nevertheless, this model framework presents an exceptional
opportunity to gain unparalleled insights into the underlying mechanisms
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Figure 5.2: Heterogeneity of the stresses, hydrostatic pressure, and plastic activity
across the RVE in a rolled Mg sample.
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of Mg and with meticulous calibration, it holds the promise of becoming the
foremost predictive model of its kind. the potential to significantly quicken
the development of Mg alloys with the sought-after properties.

Opportunities Arising from Data-Driven Methods

Finally, let us also explore additional opportunities stemming from the use
of data-driven methods, a field that offers uncountable room for future
work.

One additional exciting potential avenue for future exploration involves
the extension of surrogate modeling into the realm of full-field techniques.
The RNO presented in chapter 4 learned to represent the mean-field stress-
strain relationship of a highly intricate material. However, for an inversion
of the design process and higher-quality outcomes in ICME, full-field
resolutions are essential. Recent, work by [24] showcases the potential of
Fourier neural operators [23] in conjunction with RNOs to learn and predict
the full-field material response of a textured polycrystal based solely on the
average deformation measure. The results are shown in Figure 5.3 (a) - (c).
It is evident that the method still requires further refinement, however, the
preliminary results show promise. The neural network correctly identifies
the grains and grain boundaries as well as the stress peaks in the 2D
space. The order of magnitude of the stresses is equally captured and
even key areas such as grain boundaries and triple-junctions are identified
correctly. Further, the operator introduced in [24] converges rapidly to an
acceptable error. The presented results were obtained with limited data
and a small network, hence we are confident that larger networks trained
on more data will prove capable of capturing the stress distribution inside
the domain. The prospects of these applications are virtually limitless,
given the increase in computational speed coupled with the potential
for straightforward inversion, offering entirely new avenues for materials
design. Not least, such an architecture could be used to significantly enhance
the computational speed of a fully coupled precipitation and hardening
model, such as introduced above.

Another area for improvement that could prove fruitful lies with the
inclusion of texture as a model parameter in the RNO. This would enhance
the versatility of the approach presented in chapter 4 significantly. Various
methods are conceivable for achieving this goal. Given that we have effec-
tively learned the response of a strongly textured material, the RNO should
also be able to learn the single crystal response. Moreover, as texture is
essentially represented through grain rotations, applying the corresponding
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Figure 5.3: Ground truth (a) and prediction of an FNO network (b) of a 2D
full-field simulation of a Mg polycrystal. The network is based on
the work of Li et al. [23] and Wu, Hollenweger, and Liu [24]. The
training performance of the network is shown in (c). These results are
courtesy of Ms Rui Wu and Prof. Burigede Liu at the University of
Cambridge. The training error of a transfer learning attempt of the
existing RNO to a different texture is shown in (d).

deformation by rotating the deformation gradient is straightforward — and
the RNO has demonstrated its capacity to accommodate arbitrary deforma-
tions. Preliminary outcomes of employing transfer learning to account for
different textures are promising, as illustrated in Figure 5.3 (d).

In addition, enabling the RNO to capture rate dependence would broaden
its capability to capture a wider spectrum of material behaviors. Initial
findings by Bhattacharya et al. [79] indicate that expanding the RNO archi-
tecture to encompass a rate-dependent description is feasible, rendering
this a potential low-hanging fruit for future research.

Finally, it remains to be acknowledged that Mg and its alloys continue to
harbor numerous secrets to be unveiled and the duration of a single thesis
is insufficient to comprehend them all. The potential embedded in these
materials to aid us in grappling with depleting resources and climate change
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remains untapped and necessitates further investigation. Additionally, the
ongoing advancement of numerical methods heralds an exhilarating new
era of possibilities in material design, left to future scientists to uncover.
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