
ETH Library

A Biological Immunity-Based
Neuro Prototype for Few-Shot
Anomaly Detection with Character
Embedding

Journal Article

Author(s):
Ma, Zhongjing; Chen, Zhan; Zheng, Xiaochen; Wang, Tianyu; You, Yuyang; Zou, Suli ; Wang, Yu

Publication date:
2024-01

Permanent link:
https://doi.org/10.3929/ethz-b-000661982

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Cyborg and Bionic Systems 5, https://doi.org/10.34133/cbsystems.0086

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-1508-8458
https://doi.org/10.3929/ethz-b-000661982
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34133/cbsystems.0086
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 1

RESEARCH ARTICLE

A Biological Immunity-Based Neuro Prototype
for Few-Shot Anomaly Detection with
Character Embedding
Zhongjing Ma1, Zhan Chen1, Xiaochen Zheng2, Tianyu Wang1,
Yuyang You1, Suli Zou1, and Yu Wang3*

1School of Automation, Beijing Institute of Technology, Beijing 100081, China. 2ETH AI Center, Andreasstrasse

5, 8092 Zürich, Switzerland. 3State Key Lab of Multimodal Artificial Intelligence Systems, Institute of

Automation, Chinese Academy of Sciences, Beijing 100095, China.

*Address correspondence to: yu.wang@ia.ac.cn

Anomaly detection has wide applications to help people recognize false, intrusion, flaw, equipment failure,
etc. In most practical scenarios, the amount of the annotated data and the trusted labels is low, resulting in
poor performance of the detection. In this paper, we focus on the anomaly detection for the text type data and
propose a detection network based on biological immunity for few-shot detection, by imitating the working
mechanism of the immune system of biological organisms. This network enabling the protected system
to distinguish the aggressive behavior of “nonself” from the legitimate behavior of “self” by embedding
characters. First, it constructs episodic task sets and extracts data representations at the character level.
Then, in the pretraining phase, Word2Vec is used to embed the representations. In the meta-learning phase, a
dynamic prototype containing encoder, routing, and relation is designed to identify the data traffic. Compare
to the mean-based prototype, the proposed prototype applies a dynamic routing algorithm that assigns
different weights to samples in the support set through multiple iterations to obtain a prototype that combines
the distribution of samples. The proposed method is validated on 2 real traffic datasets. The experimental
results indicate that (a) the proposed anomaly detection prototype outperforms state-of-the-art few-shot
techniques with 1.3% to 4.48% accuracy and 0.18% to 4.55% recall; (b) under the premise of ensuring
the accuracy and recall, the number of training samples is reduced to 5 or 10; (c) ablation experiments are
designed for each module, and the results show that more accurate prototypes can be obtained by using
the dynamic routing algorithm.

Introduction

Text data analysis can effectively help us understand the data
corpus, quickly identify potential problems in the data, and guide
subsequent model training and selection. This kind of data is
widely presented in networks, Internet, logs, devices, and operat-
ing systems. In order to find the anomalies in the data and prevent
the damage to the system, an anomaly detection (AD) has been
used as one of the most critical systems [1]. For example, log AD
refers to finding abnormal logs to determine the cause and nature
of system faults. Usually, log data is modeled as a natural language
sequence for AD.

Machine learning and deep learning are widely leveraged in the
field of AD, hoping to improve the performance of AD systems, such
as misuse based detection [2], deception based detection, and bio-
based detection [3]. Machine learning uses algorithms to parse net-
work data, learn characteristics of traffic data, and then classify and
predict a certain class of things. Classic machine learning models,
such as random forest [4], support vector machine (SVM) [5],
and Adaboost [6], have been introduced to detect anomalies.
Horng et al. [7] proposed an AD system based on SVM, in which a

hierarchical clustering algorithm was used to deal with typical data.
It reduced the complexity and redundancy of the dataset and further
reduced the training time. Al-Yaseen et al. [8] proposed a multilevel
hybrid detection model based on SVM, with the results showing an
accuracy of 95.75%. In [9], a network AD system was presented based
on Light GBM. They use an oversampling technique to increase
minority samples of imbalanced training data to increase the
detection accuracy. Since the detection performance of machine-
learning-based algorithms is related to the manual selection of
features, it requires plenty of professional knowledge to deeply mine
the deep features in the data.

The deep-learning-based algorithms are to learn the inherent
distribution and representation level of sample data and can auto-
matically extract the characteristics of data such as text, images
and sounds. At the same time, the nonlinear hidden layer struc-
ture in the neural network is helpful for the learning and pre-
diction of high-dimensional data. In this context, deep learning
algorithms are gradually considered for detection tasks, such as
autoencoders [10,11], convolutional neural networks (CNNs)
[12,13] and long short-term memory networks (LSTMs) [14].
For example, Min et al. [2] proposed a system that combined

Citation: Ma Z, Chen Z, Zheng X,
Wang T, You Y, Zou S, Wang Y. A
Biological Immunity-Based Neuro
Prototype for Few-Shot Anomaly
Detection with Character Embedding.
Cyborg Bionic Syst. 2024;5:Article
0086. https://doi.org/10.34133/
cbsystems.0086

Submitted 17 September 2023
Accepted 11 December 2023
Published 17 January 2024

Copyright © 2024 Zhongjing Ma et al.
Exclusive licensee Beijing Institute of
Technology Press. No claim to original
U.S. Government Works. Distributed
under a Creative Commons
Attribution License 4.0 (CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086
mailto:yu.wang@ia.ac.cn
https://doi.org/10.34133/cbsystems.0086
https://doi.org/10.34133/cbsystems.0086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fcbsystems.0086&domain=pdf&date_stamp=2024-01-16

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 2

Text-CNN and random forest to construct an anomaly-based
network detection system. Kim et al. [15] used deep learning to
generate virtual samples on the dataset, and proposed a malware
detection method based on deep convolutional generative adver-
sarial networks. The role of generative adversarial network is to
generate similar data to detect the deformation of malware more
accurately. In [16], it applied a deep belief neural network to
extract data features, and then use the backward propagation neu-
ral network as a classifier to identify traffic data anomalies. In [17],
it proposed an AD method based on BiLSTM deep learning.
Experiments showed that in binary and multiclass AD, BiLSTM
not only improved the performance of traditional LSTM but also
had higher detection accuracy.

An AD based on deep learning is essentially a classifier trained
on a large amount of data, highly dependent on feature engineering
and dataset capacity. Data imbalance and less training data often
appear in reality, which will cause overfitting, falling into local opti-
mal solutions, or other problems. Concerning about these problems,
some researchers have tried to introduce few-shot learning prototype
into network AD in recent years, such as [18–27]. Yu et al. [28] used
the deep neural network (DNN) and CNN as the traffic embedding
network to map each sample into a high-dimensional sample space.
After that, the prototype vector of each anomaly category is obtained
by averaging. Finally, the distance between the new anomaly and
each prototype vector is measured to obtain the classification result.
Rong et al. [25] proposed a few-shot learning based prototype
UMVD-FSL to detect unseen malware variants with a small set of
data. Start with network flow data generated by malware variants and
benign applications, then convert them to grayscale images. A
prototype-based few-shot learning model takes grayscale images
as input and leverages meta-training to generalize the meta-
learner to adapt to new tasks. Xu et al. [18] designed a deep neural
network, which is mainly composed of 2 parts: feature extraction
network and comparison network, to classify network traffic samples.
Guo et al. [26] integrated a global attention mechanism and aggre-
gated the global information of inputs by capturing the byte
relationship between payload sequence. A metric-based AD pro-
totype was proposed in [27], which makes feature extractor fuse
original bytes content with network flow features to improve detec-
tion precision and recall. As noted by Sung et al., RelationNet [21]
builds a learnable nonlinear comparator through neural network to
calculate the distance between 2 samples and then analyzes the
sample similarity, instead of a fixed linear comparator such as
Euclidean distance or cosine distance. In general, the above methods
apply mean-based prototypes to measure similarity by Euclidean
distance to obtain classification results. However, the nearest-
neighbor classifier based on mean prototype and the fixed linear
comparator easily cause the estimation bias due to the data scarcity
in few-shot scenarios and finally affect detection precision and
recall. What is more, because of the hindrance of data parsing, build-
ing a universal network system to detect network traffic attacks is still
a tough task for deep learning methods.

In this paper, we leverage the the working mechanism of the
immune system to design a neural prototype for few-shot AD
with character embedding, namely CharNet, which combines text
embedding techniques and improved metric-based few-shot
learning, improving the accuracy and recall of the existing deep
models for few-shot network traffic classification. Specifically,
CharNet consists of dataset construction, pretraining, meta-
learning 3 phases. Dataset construction phase is to transform the
original traffic dataset into a episode-based dataset, converting the
multiclassification problem into a 2-way K-shot problem. To skip

the data parsing session, Word2Vec, a self-supervised learning
method, is used in the pretraining phase to convert traffic into
embedding vectors. Therefore, the multidimensional feature data
classification task is transformed into a text classification task. In
the meta-learning phase, we design a dynamic routing prototype
network, which consists of 3 modules: encoder, routing, and rela-
tion, to identify whether the network traffic is normal or not.
Compare to the mean-based prototype, CharNet uses a dynamic
routing algorithm that assigns different weights to samples in the
support set through multiple iterations to obtain a prototype that
combines the distribution of samples. At last, the relation module
gives the classification results by properly performing comparison
between those traffic embedding vectors. The main contributions
of this paper are as follows:

• We propose the CharNet for few-shot AD. This method uses
the dynamic routing algorithm to assign weights to the samples
in the support set and builds a routing-based prototype, which
effectively reduces the estimation bias and sampling bias caused
by a small number of samples.

• We treat network traffic as a string and use character-level
coding to omit data parsing sessions. This processing method
can use the Word2Vec method to pretrain the embedding layer,
which can learn prior knowledge for network traffic classification,
effectively improving the training speed and accuracy.

• Compare our method with other methods, the accuracy of
our method has improved. Using the proposed method, new
types of samples on the basis of only a limited number of labels
in an untrained dataset can be detected relying on learned prior
knowledge.

The rest of the paper is organized as follows. Materials and
Methods reviews the related work to our method. Experiments
describes the prototype and details on our proposed prototype
and presents our experiments and make comparisons with big-
data methods and other few-shot learning methods. Conclusion
summarizes the paper and make the conclusion.

Materials and Methods

Problem formulation
We consider network AD as the task of few-shot classifier learn-
ing, whose purpose is to train a classifier fθ(⋅) with few samples
xi and predict the corresponding labels ŷi of new samples x̂i. As
shown in Fig. 1, we have 3 datasets: a base set base, a meta-
training task set train =

{
train,train

}
, and a meta-test task set

test =
{
test,test

}
. Base set has a large number of samples with

a set of classes base. If the support set of meta task sets contain
K-labeled samples for each of N unique classes, the target few-
shot problem is called N-way K-shot. As the project’s goal is usu-
ally to distinguish between normal samples and a particular type
of malicious samples, we consider the network AD as a 2-way
K-shot problem.

According episode-based training proposed in [29], in each
episode iteration, the support set is formed by K-labeled
samples from each of the C classes, that is, = {(xi, yi)}

K×C
i=1

.
Similarly, the query set is formed from the remainder of those
C classes’ samples, that is, = {(xj, yj)}

B
j=1

. Meanwhile, the base
set with abundant labeled samples base = {(xi, yi)}

m
i=1

. Both
meta task sets contain the support set and the query set, and
the support set and query set share the same label space, but
the label space of meta-training task set is disjoint with the

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 3

the label space of meta-test task set. That is, train ∩ test = Ø,
train ∩train = Ø, and test ∩test = Ø.

Our goal is to learn a good meta-learner fθ(⋅) on the support set
 based on prior knowledge obtained on the base set base so that
it can perform well on the query set . In our few-shot experiments
(see Results and Discussion), we consider 5-shot (K = 5) and ten-
shot (K = 10) settings.

Overall prototype
As shown in Fig. 2, the proposed prototype is divided into
3 phases, including dataset construction, pretraining, and
meta-learning.

Dataset construction
In the phase, we will construct base set base, train task set
train, and test task set test. We firstly perform preprocessing
operations, such as duplicate value deletion, default value
supplementation, and zero padding at the end of the most
extended traffic log length. Then, each traffic log is tokenized
by character level to extract fine-grained feature expressions.
After that, in order to define each task as a 2-way K-shot task,
we mix K normal samples with K malicious samples of each
type.

The classes train with a large number of samples are selected
as the train task set train, and the remaining classes test is used
as the test task set test. To follow the episode-based strategy, the
few-shot task generating details are shown in Algorithm 1. In
order to improve the training speed and accuracy, we take the
support set of train task set train⟨⟩ as the base set base to par-
ticipate in pretraining.

Pretraining
A Word2Vec [30] self-supervised classifier is trained with the
samples in base set base. Skip-gram model is applied in our
word-embedding task, which predicts the surrounding words
from the central word. We define 2 parameter matrices,
W ∈ ℝD×|V| and W′ ∈ ℝ|V|×D, where D represents the embedding
dimension and can be set to any size. Since we treat network
traffic as a string, we tokenize the string by characters [31] and
one-hot encode it according to the dictionary V to get the
sequence u = {u1, u2, …, uL}, L is the length of the sequence.
Here, |V| is the size of the dictionary set V. Skip-gram works
as the following steps:

Fig. 1. The illustration of the division of meta-learning tasks.

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 4

Meta-learning
In this phase, a meta-learner fθ(⋅) learn meta knowledge in train,
and they can learn quickly and accurately with few data in test. This
phase is divided in 2 phases: meta-training and meta-test. In Dataset
construction, we have constructed a train task set train and a test
task set test, both containing the support set S and the query set Q.
In Pretraining, a feature extractor fφ(⋅) is trained on base.

In meta-training phase, based on the feature extractor fφ(⋅), a
meta-learner fθ(⋅) is trained on the support set of train task set
train⟨⟩ by maximizing the likelihood estimation on the query
set of train task set train⟨⟩. That is,

where ω represents meta knowledge, and φ and θ represent the
parameters of fφ(⋅) and fθ(⋅), respectively. We learn meta knowl-
edge by sampling a large number of train tasks, so the optimal
meta knowledge ω can be expressed as this:

In meta-test phase, based on the optimal meta knowledge ω∗
that has been learned, the optimal meta-learner parameters θ∗
are found as following:

As for evaluation, we directly predict labels in test⟨⟩ by the
optimal meta-learner fθ

∗(⋅) and then compare with the ground
truth to evaluate the performance.

Architecture of CharNet
Our CharNet includes 3 modules: encoder module, routing mod-
ule, and relation module, which is shown in Fig. 3 (the case of
2-way 3-shot model).

Encoder module
In order to consider both the historical information and future
information of the sequence, and let the model focus more on
finding helpful information in the input data that is salient and
relevant to the current output, we adopt the bidirection LSTM
network with self-attention [32]. For simplicity, the encoder
module receives an input sequence x = (c1, c2, …, cL), where cl

(1)max
�

�(,)∈train

∑

(x,y)∈

log
(
P
(
y|x,�, ,�, �

))

(2)�∗ = argmax
�

logp
(
� |train

)

(3)�∗ = argmax
�

logp
(
� |�∗, test

)

Fig. 2. The prototype of few-shot AD.

Fig. 3. The architecture of CharNet.

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 5

represents the character embedding, L represents the length of
sequence. The forward hidden state �⃗h t and the reverse hidden
state ⃖ �h t are obtained by biLSTM and then concatenate �⃗h t and ⃖ �h t
to obtain the hidden state ht.

We set the dimension of each LSTM unit hidden state to u, and
the set of all hidden units state is H = (h1, h2, …, hL). Through a linear
transformation, a variable dimension of input sequence x is trans-
formed into a fixed dimension of hidden state sequence H. Afterwards,
the self-attention mechanism is used to assign a corresponding atten-
tion score to each hidden state, which takes the set of whole hidden
state H as input, and outputs a vector of weights a.

Here, Wa1 ∈ Rd
a
×2u and Wa2 ∈ Rd

a are weight matrices and da
is a hyperparameter. The output representation e of the encoder
is the weighted sum of a and H:

Routing module
The dynamic routing algorithm is the core of this section,
which is similar to the multihead attention mechanism. It can
assign the weight of the samples in the support set through mul-
tiple iterations, so as to obtain a prototype vector that combines
the distribution of the samples. We regard these vectors e
obtained from the support set S by Eq. 8 as sample vectors es,
and the vectors e from the query set Q as query vectors eq.
Routing module converts sample vectors es

ij
 to prototype vectors

pi through a nonlinear mapping, where i = 1, …, C and j =
1, …, K.

Since we treat the flow as a string, and the order of the char-
acters plays a crucial role in the model, we multiply all the
sample vectors in the support set es

ij
 with a transformation

matrix Ws ∈ R2u×2u and add a bias bs. After iteration, a most rep-
resentative linear mapping can be found. Each sample prediction
vector êsij is computed by:

where squash is defined as Eq. 10, which not only ensures that
the data is between 0-1, but also preserves the direction of the
vector.

In order to ensure that the prototype vector can automati-
cally aggregate the sample feature vectors of this class in the
case of very little data capacity, it is necessary to iteratively
apply the dynamic routing mechanism. At each iteration,
the coupling coefficients di for each class i sum to 1 by soft-
maxing bi.

(4)�⃗h l =
����������⃗LSTM

(
cl , hl−1

)

(5)�⃖h l =
�⃖���������LSTM

(
cl , hl+1

)

(6)hl = concatenate
(
�⃗h l ,

�⃖h l

)

(7)a = softmax
(
Wa2tanh

(
Wa1H

T
))

(8)e =

L∑

l=1

al ⋅ hl

(9)ê
s
ij = squash

(
Wse

s
ij + bs

)

(10)squash(x) =
∥ x ∥2

1 + ∥ x ∥2
x

∥ x ∥

(11)di = softmax
(
bi
)

Table 1. The number of samples in the CICIDS2017FS

Type of
attacks

Training task Test task

Support
set

Query set
Support

set
Query set

Botnet 2,622 1,310 - -

DoS-
GoldenEye

13,724 6,862 - -

DoS-Hulk 308,098 154,048 - -

DoS-
slowloris

7,728 3,864 - -

Heartbleed 16 6 - -

Infilteration 48 24 - -

SSH-Patator 7,864 3,930 - -

Brute force 2,010 1,004 - -

SQL injection 28 14 - -

XSS 870 434 - -

DDos - - 516 2,034

DoS-
Slowhttptest

- - 496 2,062

FTP-Patator - - 424 207

PortScan - - 490 2,032

Table 2. The number of samples in the CM2021FS

Type of
attacks

Training task Test task

Support
set

Query set
Support

set
Query set

Cloud
server
access

29,796 14,896 - -

Blocked IP 25,216 12,608 - -

Crawler
tool

16,106 8,052 - -

SQL
injection

- - 190 810

Directory
traversal

- - 70 700

XSS
cross-site

- - 24 120

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 6

where bi is the logits of coupling coefficients, and initialized by 0
in the first iteration. Given each sample prediction vector ̂esij, each
candidate prototype vector p̂i is a weighted sum of all sample
prediction vectors êsij in class i:

Then the “squash” function is applied to ensure that the
length of the vector output of the routing process will not
exceed 1:

The last step of each iteration is to adjust the logarithm of the
coupling coefficient bij by means of “protocol routing”. If the
modulus between the sample prediction vector êsij and the can-
didate prototype vector is large, that is, the two are very similar,
then increase the coupling coefficient of the prediction vector,
and through several iterations, a good coupling relationship can
be obtained, and the final prototype vector can be obtained.

Formally, the dynamic routing algorithm is shown in
Algorithm 2.

Relation module
We obtain the prototype vectors pi through the routing module
mentioned in Routing module and use the encoder module men-
tioned in Encoder module to convert the samples in the query
set into query vectors eq. Then, we need to measure the connec-
tion between query vectors eq and prototype vectors pi. We draw
on the ideas in [21] and use neural networks to replace common
mathematical distance metrics. Thus, the similarity measure
between pi and eq is represented by the relation score, which is
between 0 and 1.

(12)p̂i =
∑

j

dij ⋅ ê
s
ij

(13)pi = squash
(
p̂i
)

(14)bij = bij + ê
s
ij ⋅ pi

Table 3. Comparison of detection result and the number of samples in the proposed method and big-data methods

Approach Method Dataset Type Number of samples Acc (%) Recall (%)

Machine learning GA-based Adaptive
Method (2018) [40]

CICIDS2017 GA + clustering 760,056 N/A 92.85

Multilayer ensemble
SVM (2018) [5]

CICIDS2017 SVM N/A N/A 94.94

DT and Rule Based
IDS (2019) [37]

CICIDS2017 REP Tree + random
forest

40,000 96.66 94.47

GBT-based Big Data
Method (2019) [36]

CICIDS2017 Gradient Boosted Tree 1,000,000 99.97 N/A

Improved AdaBoost-
based IDS (2019) [6]

CICIDS2017 AdaBoost 158,021 81.83 100.0

Multi-Stage Optimized
ML-based IDS (2021)

[4]

CICIDS2017 KNN + random forest 2,830,540 99.99 99.00

Deep learning Flow-based deep
learning method

(2018) [14]

CICIDS2017 CNN + LSTM 1,028,007 98.87 98.83

SU-IDS(2018) [38] CICIDS2017 Autoencoder 40,000 71.02 N/A

Deep Hierarchical IDS
(2019) [41]

CICIDS2017 CNN + LSTM 553,850 99.91 99.92

Random attention
capsule (2020) [42]

CICIDS2017 Attention + capsule 863,240 98.60 98.61

DNN-kNN IDS (2020)
[34]

CICIDS2017 DNN + kNN 225,745 99.63 99.69

CLAIRE (2021) [11] CICIDS2017 Autoencoder + CNN 100,000 98.01 95.20

Ours CharNet CICIDS-2017FS Siamese + Routing 5 95.94 98.78

CharNet CICIDS-2017FS Siamese + Routing 10 99.87 99.98

CharNet CM2021FS Siamese + Routing 5 94.29 96.56

CharNet CM2021FS Siamese + Routing 10 98.56 97.68

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 7

The neural network consists of a neural tensor layer and a
sigmoid layer, where the neural tensor layer outputs a relation
vector as follows:

where Mk ∈ R2u×2u, k ∈ [1, …, h] is one slice of the tensor param-
eters and f is RELU activation function. The final relation score
riq between the i-th class and the q-th query is calculated by a
fully connected layer activated by a sigmoid function.

Objective function
In the process of training the model, we set the mean square error
loss as the loss function. The purpose is to transform a 2-way clas-
sification problem into a similarity regression problem, that is, the
similarity problem between relationship scores riq and the ground
truth yq. Given the support set with 2 classes and query set in
an episode, the loss function is defined as:

All parameters of the 3 modules are trained jointly by back-
propagation. The stochastic gradient descent is used on all
parameters in each training episode. Our model does not need
any finetuning on the classes it has never seen due to its gener-
alization nature. The routing and comparison ability are accu-
mulated in the model along with the training episodes.

Results and Discussion
In this section, 2 datasets are selected to evaluate the performance
of our proposed CharNet by comparing with big-data and few-
shot network AD methods respectively. After that, the function
of each module is analyzed through ablation study.

Datasets
CICIDS2017FS
CICIDS2017 dataset [33] contains benign and the most up-to-date
common attacks, which resembles the true real-world data
(PCAPs). Each network traffic has been labeled by using

CICFlowMeter with labeled flows based on the time stamp,
source, and destination IPs, source and destination ports, protocols
and attack. The dataset includes the most common attacks based
on the 2016 McAfee report, such as Web based, Brute force, DoS,
DDoS, Infiltration, Heart-bleed, Bot and Scant. We select 14 differ-
ent types of attacks to form the data sets, 10 types of which were
used as base set and 4 types as support set and query set. Then,
using the task generating Algorithm 1 to generate 2-way K-shot
tasks from each sets. The number of samples in the CICIDS2017FS
is shown in Table 1.

CM2021FS
This dataset was collected from a week of real server, which contains
nearly 160,000 samples in 6 different types of attacks and normal
requests. The 6 classes are respectively divided into 3 (Cloud Server
request, blocked IP, crawler tool) and 3 (SQL injection, Directory
traversal, XSS cross-site) for pretraining tasks and meta-learning
tasks. We create 2-way K-shot learning models on this dataset. The
number of samples in the CM2021FS is shown in Table 2.

Implementation details
Experiment platform
The experiments were carried out under the following hardware
and software environment: Intel Core i9-10920X @3.50 GHz,
64 GB RAM, NVIDIA GeForce RTX 3090; CUDA 10.2, cuDNN
8.0, and PyTorch 1.10.2.

Architecture
We use Word2Vec [30] to pretrain the language coding layer on
dataset base, where the dimension is 300 and the window size is 64.
In encoder module, we set the dimension of hidden state of LSTM
to 128 and the dimension of attention matrix to 64. In routing mod-
ule, the iteration number iter is 4. In relation module, the output
dimension is 100, and the activation function is Relu. After that, it is
transformed into a score of [0,1] through a sigmoid layer.

Training details
In the pretraining stage, we pretrain the word embedding on base
dataset base with Word2Vec [34]. In the meta-training stage, we
train the CharNet with 10,000 episodes on the support set of train

(15)v
(
pi, e

q
)
= f

(
pTi M

[1:h]eq
)

(16)ciq = sigmoid
(
Wrv

(
pi, e

q
)
+ br

)

(17)L(,)=

2∑

i=1

n∑

q=1

(
riq−1

(
yq== i

))2

Table 4. Few-shot experimental result on CICIDS2017FS

Methods

Two-way 5-shot Two-way 10-shot

Acc (%)
Recall

(%) Acc (%)
Recall

(%)

FC- Net
[18]

94.13 98.49 95.39 98.19

DF- Net
[23]

93.87 96.29 95.56 96.4

GP- Net
[26]

94.58 94.23 96.40 96.96

FS- AD [27] 93.60 98.60 97.51 99.17

CharNet 95.94 98.78 99.87 99.98

Table 5. Ablation study with encoder module on 2-way 10-shot
tasks

Encoder
module

CICIDS2017FS CM2021FS

Acc (%)
Recall

(%) Acc (%)
Recall

(%)

biLSTM +
attention

99.87 99.85 98.56 98.92

LSTM +
attention

95.60 96.07 94.62 95.16

CNN +
attention

97.83 97.98 97.58 97.98

Transformer 98.67 99.87 98.47 98.86

biLSTM 98.60 98.76 98.19 97.29

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 8

task set train⟨⟩ in an episodic manner via a stochastic gradient
descent with momentum of 0.9 and weight decay of 0.0005. Then,
we chose the model with the highest accuracy in the query set of
train task set train⟨⟩ as the final model. In the meta-test stage,
We build 2-way K-shot (K = [5, 10]) models on 2 datasets to
simulate the scenario of the network AD.

Discussion of results
In this section, we provide an overview of several most recent
deep learning and machine learning algorithms in network AD
and discuss the detection results and the number of samples.
Then, we compare the proposed routing network with other
few-shot learning methods. After that, the ablation study is
conducted to evaluate the effect of each module.

Comparison with big-data methods
In previous studies, many scholars have achieved excellent per-
formance using machine learning and deep learning algorithms

A B C

D E F

G H

Fig. 4. Effect of Encoder under CICIDS2017FS (the green dots indicate normal traffic, and the red dots indicate abnormal traffic). (A) DDos before Encoder. (B) Slowhttptest
before Encoder. (C) FTP-Patator before Encoder. (D) PortScan before Encoder. (E) DDos after Encoder. (F) Slowhttptest after Encoder. (G) FTP-Patator after Encoder.
(H) PortScan after Encoder.

Table 6. Ablation study with routing module on 2-way 10-shot
tasks

Routing
module

iter CICIDS2017FS CM2021FS

Acc (%)
Recall

(%) Acc (%)
Recall

(%)

Routing 1 97.41 98.78 93.94 97.56

Routing 2 97.52 98.89 95.78 98.75

Routing 3 98.52 98.64 97.62 98.24

Routing 4 99.87 99.85 98.34 98.92

Routing 5 98.97 99.37 98.56 99.13

Routing 6 98.02 98.67 97.92 98.36

Mean - 98.89 99.12 96.98 97.38

Table 7. Ablation study with relation module on 2-way 10-shot
tasks

Relation
module

CICIDS2017FS CM2021FS

Acc (%)
Recall

(%) Acc (%)
Recall

(%)

Relation 99.87 99.85 98.56 98.92

Cosine 96.46 98.69 97.98 98.88

Euclidean 97.04 99.24 97.52 98.58

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 9

based on large amounts of data. To ensure the fairness of the
experiments, we made a comparison between CharNet with
other existing researches that used the same public benchmark
dataset CICIDS2017. At the same time, we also conduct few-
shot experiments on the private dataset CM2020FS, the preci-
sion and recall were 94.29% and 96.56% for K = 5, and 98.56%
and 97.68% for K = 10. The results are shown in Table 3.

The noteworthy observation is that the overwhelming major-
ity of researches, whether machine learning or deep learning,
are based on “big data”. As can be seen from Table 3, the accuracy
and recall of these researches are almost above 95%, for example,
Multi-Stage Optimized ML-based AD (2021) [4] even achieves
99.99% accuracy and 99.00% recall. However, their sample size
has reached hundreds of thousands, or even millions, which
requires tremendous human efforts to collect, process and label
these data manually. In addition, it is difficult for us to quickly
identify new and ever-changing attacks.

As shown in Table 3, CharNet (K = 5) only outperforms
GA-based Adaptive Method [35], Multilayer ensemble SVM

[5], and SU-AD [36] in both accuracy and recall, while CharNet
(K = 10) outperforms all methods except GBT-based Big Data
Method [37], Improved AdaBoost-based AD [6] and Deep
Hierarchical AD [38]. With a slight decline about 4% and 0.8%
in accuracy and recall (K = 5), and about 0.1% and 0.02% in
accuracy and recall (K = 10), required training samples of
CharNet is much fewer than these method. It should be noted
that the result obtained by CharNet is on the basis of only 5
and 10 labeled samples used in training process, which drasti-
cally reduces the cost of data collection and manual labeling.

Comparison with few-shot learning methods
We compare CharNet with some state-of-the-art metric-based
approaches of network AD, such as FC-Net, DF-Net, GP-Net, and
FS-AD. FC-Net [18] is based on RelationNet to implement few-
shot traffic classification and achieves good performance in its
experimental setting. DF-Net [23] takes use of siamese capsule
network for AD with imbalanced traning data. A relative position
mechanism and a global-enhanced feature extractor are designed

A B

DC

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Pretrain
No pretrain

Pretrain
No pretrain

Pretrain
No pretrain

Pretrain
No pretrain

Fig. 5. Effect of pretraining under CICIDS2017FS and CM2021FS. (A) The accuracy of CICIDS2017. (B) The loss of CICIDS2017F. (C) The accuracy of CM2021FS. (D) The loss
of CM2021FS.

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 10

in GP-Net [26] to capture the relationship between arbitrary 2-byte
payload sequences. FS-AD [27] adopts autoencoder, CNN, and
euclidean distance metric module in series in the few-shot frame.

To ensure fairness, we compare the performance of our method
and the baseline methods on the same benchmark dataset
CICIDS2017FS, the result is shown as Table 4. In order to be con-
sistent with the setting of FC-Net, we did 2 experiments with K = 5
and K = 10. It can be found that our proposed network achieves
the highest precision and recall in both k = 5 and k = 10 experi-
ments. In the 2-way 5-shot experiment, the accuracy of CharNet
exceeds the state-of-the-art methods by 1.3%∼2.34%, and the recall
rate exceeds 0.18%∼4.55%. In the 2-way 10-shot experiment, the
accuracy exceeds the advanced method by 2.36%∼4.48%, and the
recall rate exceeds 0.81%∼3.58%. It is worth noting that our method
beats FC-Net, which demonstrates that the routing-based prototype
is more effective than the mean-based prototype.

Ablation study
The experiments are conducted on CICIDS2017FS and CM2021FS
to evaluate the effect of each module, i.e., encoder module, routing
module, relation module, and pretraining. Specifically, (a) we
change the backbone network of the encoder to explore the best
feature extractor; (b) for the routing module, we change the num-
ber of iterations iter of the routing algorithm to find the best
routing-based prototype in different datasets and also compare
with the mean-based prototype. (c) We replace the relation mod-
ule with cosine distance metric and euclidean distance metric.

The effect of encoder module
In the experiment of the encoder module, the different back-
bone network are applied, such as biLSTM, LSTM, CNN, and
Tranformer. The results are shown in Table 5. It can be found
that (a) the accuracy of biLSTM with attention on both datasets
outperform the other 3 backbone networks, while the trans-
former is not too far apart, whose recall achieves the best results
on CICIDS2017FS; (b) the attention mechanism plays a role
and helps biLSTM improve the accuracy and recall by around
1%; (c) LSTM with attention is around 4% in precision and 3%
in recall lower than biLSTM with attention, which means that
the informal text such as network traffic requires bidirectional
semantics to better express the information in it.

In Fig. 4, it shows the t-stochastic neighbor embedding [39]
visualization before and after encoder module. We carry out the
test task of CICIDS2017FS, which includes 4 categories: DDos,
Slowhttptest, FTP-Patator, and PortScan. We can see that the
vectors after encoder are more separable, demonstrating the
effectiveness of encoder to separate the solution space.

The effect of routing module
To explore the effect of iterations iter on the routing module, we
set iter from 1 to 6 on CICIDS2017FS and CM2021FS. In addi-
tion, the routing module is removed and replaced the mean-
based prototype. According to the result in Table 6, we observe
that (a) the best performance is achieved when we used 4 and 5
iterations, and more rounds of iterations did not further improve
the performance; (b) the best performance of routing module
exceeds the mean-based prototype by around 1%, which indi-
cates that the routing module shows effectiveness.

The effect of relation module
For the relation module, we draw on the idea of relation network
[21] and use neural network training to obtain a learnable nonlinear

similarity measure function, thereby constructing an end-to-end
network structure. The experimental results of the relaton module
are shown in Table 7, from which we find that the relation module
outperform the cosine and euclidean distance metric on both
datasets.

The effect of pretraining
To pursue faster training speed, we consider adding pretraining
before the encoder module. Figure 5 shows the accuracy and
loss curves with and without pretraining in CICIDS2017FS and
CM2021FS, where iter is set to 4 and 5 respectively, and episode
is set to 8,000. It can be seen intuitively that the convergence
can be faster with pretraining, indicating that the pretraining
can effectively extract the text information in the traffic log.

Conclusion
In this paper, we propose the CharNet, a novel neural model for
few-shot network AD prototype. For this purpose, a basic binary
classification task was defined and a pair of network traffic sam-
ples including a normal unaffected sample and a malicious one
were constructed for learning. The routing module combines
the dynamic routing algorithm with a meta-learning prototype,
and the routing mechanism finds a more accurate prototype
through multiple iterations, making our model more general to
recognize unseen classes. The experiment results show that the
proposed model outperforms the existing state-of-the-art few-
shot network AD models, and only need 5 or 10 samples to get
a high-accuracy model. We found that both the pretraining and
encoder contribute tremendously to the few-shot learning tasks.

Acknowledgments
Funding: This work was supported in part by Beijing Natural
Science Foundation under Grant 4222055, in part by the National
Natural Science Foundation of China under Grant 62122087,
62073316, and 62373051.
Competing interests: The authors declare that they have no
competing interests.

Data Availability
The open dataset CICIDS2017FS can be accessed through the
following link: https://www.unb.ca/cic/datasets/ids-2017.html.

References

 1. Tian Y, Liao H, Xu J, Wang Y, Yuan S, Liu N. Unsupervised
spectrum anomaly detection method for unauthorized bands.
Space Sci Technol. 2022;2022:9865016.

 2. Min E, Long J, Liu Q, Cui J, Chen W. TR-IDS: Anomaly-based
intrusion detection through text-convolutional neural network
and random forest. Secur Commun Netw. 2018;2018:4943509.

 3. Liu R, Ren C, Fu M, Chu Z, Guo J. Platelet detection based on
improved YOLO_v3. Cyborg Bionic Syst. 2022;2022:9780569.

 4. Injadat M, Moubayed A, Nassif AB, Shami A. Multi-stage
optimized machine learning framework for network
intrusion detection. IEEE Trans Netw Serv Manag. 2021;18(2):
1803–1816.

 5. Marir N, Wang H, Feng G, Li B, Jia M. Distributed abnormal
behavior detection approach based on deep belief network and
ensemble SVM using spark. IEEE Access. 2018;6:59657–59671.

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086
https://www.unb.ca/cic/datasets/ids-2017.html

Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 11

 6. Yulianto A, Sukarno P, Suwastika NA. Improving AdaBoost-
based intrusion detection system (IDS) performance on CICIDS
2017 dataset. J Phys Conf Ser. 2019;1192:Article 012018.

 7. Markel Z, Bilzor M. Building a machine learning classifier for
malware detection, Proceedings of the 2014 Second Workshop
on Anti-malware Testing Research (WATeR); Canterbury, UK;
23 October 2014; pp. 1–4.

 8. Al-Yaseen WL, Othman ZA, Nazri MZA. Multi-level hybrid
support vector machine and extreme learning machine based
on modified k-means for intrusion detection system. Expert
Syst Appl. 2017;67:296–303.

 9. Liu J, Gao Y, Hu F. A fast network intrusion detection system
using adaptive synthetic oversampling and lightgbm. Comput
Secur. 2021;106:Article 102289.

 10. Min B, Yoo J, Kim S, Shin D, Shin D. Network anomaly
detection using memory-augmented deep autoencoder. IEEE
Access. 2021;9:104695–104706.

 11. Andresini G, Appice A, Malerba D. Nearest cluster-based
intrusion detection through convolutional neural networks.
Knowl-Based Syst. 2021;216:Article 106798.

 12. Zheng F, Yan Q, Leung VC, Yu FR, Ming Z. HDP-CNN:
Highway deep pyramid convolution neural network combining
word-level and character-level representations for phishing
website detection. Comput Secur. 2022;114:Article 102584.

 13. Shi Z, Wang T, Huang Z, Xie F, Song G. A method for the
automatic detection of myopia in optos fundus images
based on deep learning. Int J Numer Methods Biomed Eng.
2021;37(6):Article e3460.

 14. Pekta A, Acarman T. A deep learning method to detect
network intrusion through flow-based features. Int J Netw
Manag. 2019;29(3):e2050.

 15. Kim J, Kim J, Kim H, Shim M, Choi E. Cnn-based network
intrusion detection against denial-of-service attacks.
Electronics. 2020;9(6):916.

 16. Peng W, Kong X, Peng G, Li X, Wang Z. Network intrusion
detection based on deep learning, Proceedings of the 2019
International Conference on Communications, Information
System and Computer Engineering (CISCE); Haikou, China;
5–7 July 2019; pp. 431–435.

 17. Imrana Y, Xiang Y, Ali L, Abdul-Rauf Z. A bidirectional lstm
deep learning approach for intrusion detection. Expert Syst
Appl. 2021;185:Article 115524.

 18. Xu C, Shen J, Du X. A method of few-shot network intrusion
detection based on meta-learning framework. IEEE Trans Inf
Forensics Secur. 2020;15:3540–3552.

 19. Vinyals O, Blundell C, Lillicrap T, Wierstra D. Matching
networks for one shot learning. Proceedings of the 30th
International Conference on Neural Information Processing
System; December 2016; pp. 3637–3645.

 20. Snell J, Swersky K, Zemel R. Prototypical networks for few-shot
learning. Proceedings of the 31st International Conference on Neural
Information Processing Systems; December 2017; pp. 4080–4090.
(ICCCS 2018); 27-30, 2018 Apr 27-30; Nagoya, Japan.

 21. Sung F, Yang Y, Zhang L, Xiang T, Torr PH, Hospedales TM. Learning
to compare: Relation network for few-shot learning. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition;
Salt Lake City, UT, USA; 18–23 June 2018; pp. 1199–1208.

 22. Geng R, Li B, Li Y, Zhu X, Jian P, Sun J. Induction networks
for few-shot text classification. arXiv. 2019. https://doi.
org/10.48550/arXiv.1902.10482

 23. Wang Z-M, Tian J-Y, Qin J, Fang H, Chen L-M. A few-
shot learning-based siamese capsule network for intrusion

detection with imbalanced training data. Comput Intell
Neurosci. 2021;2021:7126913.

 24. Ye T, Li G, Ahmad I, Zhang C, Lin X, Li J. FLAG: Few-shot
latent dirichlet generative learning for semantic-aware traffic
detection. IEEE Trans Netw Serv Manag. 2021;19(1):73–88.

 25. Rong C, Gou G, Hou C, Li Z, Xiong G, Guo L, UMVD-FSL:
Unseen malware variants detection using few-shot learning.
Proceedings of the 2021 International Joint Conference on Neural
Networks (IJCNN); Shenzhen, China; 18–22 July 2021, pp. 1–8.

 26. Guo J, Cui M, Hou C, Gou G, Li Z, Xiong G, Liu C. Global-aware
prototypical network for few-shot encrypted traffic classification.
Proceedings of the 2022 IFIP Networking Conference (IFIP
Networking); Catania, Italy; 13–16 June 2022; pp. 1–9.

 27. Yang J, Li H, Shao S, Zou F, Wu Y. FS-IDS: A framework for
intrusion detection based on few-shot learning. Comput Secur.
2022;122:Article 102899.

 28. Yu Y, Bian N. An intrusion detection method using few-shot
learning. IEEE Access. 2020;8:49730–49740.

 29. Zhan G, Wang W, Sun H, Hou Y, Feng L. Auto-CSC: A
transfer learning based automatic cell segmentation and count
framework. Cyborg Bionic Syst. 2022;2022:9842349.

 30. Mikolov T, Chen K, Corrado G, Dean J, Efficient estimation of
word representations in vector space. arXiv. 2013. https://doi.
org/10.48550/arXiv.1301.3781

 31. Lin SZ, Shi Y, Xue Z. Character-level intrusion detection based
on convolutional neural networks. Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN);
Rio de Janeiro, Brazil; 8–13 July 2018; pp. 1–8.

 32. Bai D, Liu T, Han X, Yi H. Application research on optimization
algorithm of sEMG Gesture recognition based on light
CNN+LSTM model. Cyborg Bionic Syst. 2021;2021:9794610.

 33. Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new
intrusion detection dataset and intrusion traffic characterization.
Proceedings of the 4th International Conference on Information
Systems Security and Privacy (ICISSP 2018); 2018; pp. 108–116.

 34. de Souza CA, Westphall CB, Machado RB, Sobral JBM, dos
Santos Vieira G. Hybrid approach to intrusion detection in fog-
based IoT environments. Comput Netw. 2020;180:Article 107417.

 35. Rong X. word2vec parameter learning explained. arXiv. 2014.
https://doi.org/10.48550/arXiv.1411.2738

 36. Faker O, Dogdu E. Intrusion detection using big data and deep
learning techniques. Proceedings of the 2019 ACM Southeast
Conference; April 2019; pp. 86–93.

 37. Ahmim A, Maglaras L, Ferrag MA, Derdour M, Janicke H. A novel
hierarchical intrusion detection system based on decision tree
and rules-based models. Proceedings of the 2019 15th International
Conference on Distributed Computing in Sensor Systems (DCOSS);
29–31 May 2019; Santorini, Greece; pp. 228–233.

 38. Min E, Long J, Liu Q, Cui J, Cai Z, Ma J. SU-IDS: A semi-
supervised and unsupervised framework for network
intrusion detection. Paper presented at: International
Conference on Cloud Computing and Security; 2018.

 39. van der Maaten L, Hinton G. Visualizing data using t-SNE.
J Mach Learn Res. 2008;9(86):2579–2605.

 40. Resende PAA, Drummond AC. Adaptive anomaly-based
intrusion detection system using genetic algorithm and
profiling. Secur Priv. 2018;1(4):Article e36.

 41. Zhang Y, Chen X, Jin L, Wang X, Guo D. Network intrusion
detection: Based on deep hierarchical network and original
flow data. IEEE Access. 2019;7:37004–37016.

 42. Zhang X, Shenglin Y. Intrusion detection model of random
attention capsule network based on variable fusion. J Commun.
2020;41(11):160.

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086
https://doi.org/10.48550/arXiv.1902.10482
https://doi.org/10.48550/arXiv.1902.10482
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1411.2738

