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Anomaly detection has wide applications to help people recognize false, intrusion, flaw, equipment failure, 
etc. In most practical scenarios, the amount of the annotated data and the trusted labels is low, resulting in 
poor performance of the detection. In this paper, we focus on the anomaly detection for the text type data and 
propose a detection network based on biological immunity for few-shot detection, by imitating the working 
mechanism of the immune system of biological organisms. This network enabling the protected system 
to distinguish the aggressive behavior of “nonself” from the legitimate behavior of “self” by embedding 
characters. First, it constructs episodic task sets and extracts data representations at the character level. 
Then, in the pretraining phase, Word2Vec is used to embed the representations. In the meta-learning phase, a 
dynamic prototype containing encoder, routing, and relation is designed to identify the data traffic. Compare 
to the mean-based prototype, the proposed prototype applies a dynamic routing algorithm that assigns 
different weights to samples in the support set through multiple iterations to obtain a prototype that combines 
the distribution of samples. The proposed method is validated on 2 real traffic datasets. The experimental 
results indicate that (a) the proposed anomaly detection prototype outperforms state-of-the-art few-shot 
techniques with 1.3% to 4.48% accuracy and 0.18% to 4.55% recall; (b) under the premise of ensuring 
the accuracy and recall, the number of training samples is reduced to 5 or 10; (c) ablation experiments are 
designed for each module, and the results show that more accurate prototypes can be obtained by using 
the dynamic routing algorithm.

Introduction

Text data analysis can effectively help us understand the data 
corpus, quickly identify potential problems in the data, and guide 
subsequent model training and selection. This kind of data is 
widely presented in networks, Internet, logs, devices, and operat-
ing systems. In order to find the anomalies in the data and prevent 
the damage to the system, an anomaly detection (AD) has been 
used as one of the most critical systems [1]. For example, log AD 
refers to finding abnormal logs to determine the cause and nature 
of system faults. Usually, log data is modeled as a natural language 
sequence for AD.

Machine learning and deep learning are widely leveraged in the 
field of AD, hoping to improve the performance of AD systems, such 
as misuse based detection [2], deception based detection, and bio-
based detection [3]. Machine learning uses algorithms to parse net-
work data, learn characteristics of traffic data, and then classify and 
predict a certain class of things. Classic machine learning models, 
such as random forest [4], support vector machine (SVM) [5], 
and Adaboost [6], have been introduced to detect anomalies. 
Horng et al. [7] proposed an AD system based on SVM, in which a 

hierarchical clustering algorithm was used to deal with typical data. 
It reduced the complexity and redundancy of the dataset and further 
reduced the training time. Al-Yaseen et al. [8] proposed a multilevel 
hybrid detection model based on SVM, with the results showing an 
accuracy of 95.75%. In [9], a network AD system was presented based 
on Light GBM. They use an oversampling technique to increase 
minority samples of imbalanced training data to increase the 
detection accuracy. Since the detection performance of machine-
learning-based algorithms is related to the manual selection of 
features, it requires plenty of professional knowledge to deeply mine 
the deep features in the data.

The deep-learning-based algorithms are to learn the inherent 
distribution and representation level of sample data and can auto-
matically extract the characteristics of data such as text, images 
and sounds. At the same time, the nonlinear hidden layer struc-
ture in the neural network is helpful for the learning and pre-
diction of high-dimensional data. In this context, deep learning 
algorithms are gradually considered for detection tasks, such as 
autoencoders [10,11], convolutional neural networks (CNNs) 
[12,13] and long short-term memory networks (LSTMs) [14]. 
For example, Min et al. [2] proposed a system that combined 
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Text-CNN and random forest to construct an anomaly-based 
network detection system. Kim et al. [15] used deep learning to 
generate virtual samples on the dataset, and proposed a malware 
detection method based on deep convolutional generative adver-
sarial networks. The role of generative adversarial network is to 
generate similar data to detect the deformation of malware more 
accurately. In [16], it applied a deep belief neural network to 
extract data features, and then use the backward propagation neu-
ral network as a classifier to identify traffic data anomalies. In [17], 
it proposed an AD method based on BiLSTM deep learning. 
Experiments showed that in binary and multiclass AD, BiLSTM 
not only improved the performance of traditional LSTM but also 
had higher detection accuracy.

An AD based on deep learning is essentially a classifier trained 
on a large amount of data, highly dependent on feature engineering 
and dataset capacity. Data imbalance and less training data often 
appear in reality, which will cause overfitting, falling into local opti-
mal solutions, or other problems. Concerning about these problems, 
some researchers have tried to introduce few-shot learning prototype 
into network AD in recent years, such as [18–27]. Yu et al. [28] used 
the deep neural network (DNN) and CNN as the traffic embedding 
network to map each sample into a high-dimensional sample space. 
After that, the prototype vector of each anomaly category is obtained 
by averaging. Finally, the distance between the new anomaly and 
each prototype vector is measured to obtain the classification result. 
Rong et al. [25] proposed a few-shot learning based prototype 
UMVD-FSL to detect unseen malware variants with a small set of 
data. Start with network flow data generated by malware variants and 
benign applications, then convert them to grayscale images. A 
prototype-based few-shot learning model takes grayscale images 
as input and leverages meta-training to generalize the meta-
learner to adapt to new tasks. Xu et al. [18] designed a deep neural 
network, which is mainly composed of 2 parts: feature extraction 
network and comparison network, to classify network traffic samples. 
Guo et al. [26] integrated a global attention mechanism and aggre-
gated the global information of inputs by capturing the byte 
relationship between payload sequence. A metric-based AD pro-
totype was proposed in [27], which makes feature extractor fuse 
original bytes content with network flow features to improve detec-
tion precision and recall. As noted by Sung et al., RelationNet [21] 
builds a learnable nonlinear comparator through neural network to 
calculate the distance between 2 samples and then analyzes the 
sample similarity, instead of a fixed linear comparator such as 
Euclidean distance or cosine distance. In general, the above methods 
apply mean-based prototypes to measure similarity by Euclidean 
distance to obtain classification results. However, the nearest-
neighbor classifier based on mean prototype and the fixed linear 
comparator easily cause the estimation bias due to the data scarcity 
in few-shot scenarios and finally affect detection precision and 
recall. What is more, because of the hindrance of data parsing, build-
ing a universal network system to detect network traffic attacks is still 
a tough task for deep learning methods.

In this paper, we leverage the the working mechanism of the 
immune system to design a neural prototype for few-shot AD 
with character embedding, namely CharNet, which combines text 
embedding techniques and improved metric-based few-shot 
learning, improving the accuracy and recall of the existing deep 
models for few-shot network traffic classification. Specifically, 
CharNet consists of dataset construction, pretraining, meta-
learning 3 phases. Dataset construction phase is to transform the 
original traffic dataset into a episode-based dataset, converting the 
multiclassification problem into a 2-way K-shot problem. To skip 

the data parsing session, Word2Vec, a self-supervised learning 
method, is used in the pretraining phase to convert traffic into 
embedding vectors. Therefore, the multidimensional feature data 
classification task is transformed into a text classification task. In 
the meta-learning phase, we design a dynamic routing prototype 
network, which consists of 3 modules: encoder, routing, and rela-
tion, to identify whether the network traffic is normal or not. 
Compare to the mean-based prototype, CharNet uses a dynamic 
routing algorithm that assigns different weights to samples in the 
support set through multiple iterations to obtain a prototype that 
combines the distribution of samples. At last, the relation module 
gives the classification results by properly performing comparison 
between those traffic embedding vectors. The main contributions 
of this paper are as follows:

• We propose the CharNet for few-shot AD. This method uses 
the dynamic routing algorithm to assign weights to the samples 
in the support set and builds a routing-based prototype, which 
effectively reduces the estimation bias and sampling bias caused 
by a small number of samples.

• We treat network traffic as a string and use character-level 
coding to omit data parsing sessions. This processing method 
can use the Word2Vec method to pretrain the embedding layer, 
which can learn prior knowledge for network traffic classification, 
effectively improving the training speed and accuracy.

• Compare our method with other methods, the accuracy of 
our method has improved. Using the proposed method, new 
types of samples on the basis of only a limited number of labels 
in an untrained dataset can be detected relying on learned prior 
knowledge.

The rest of the paper is organized as follows. Materials and 
Methods reviews the related work to our method. Experiments 
describes the prototype and details on our proposed prototype 
and presents our experiments and make comparisons with big-
data methods and other few-shot learning methods. Conclusion 
summarizes the paper and make the conclusion.

Materials and Methods

Problem formulation
We consider network AD as the task of few-shot classifier learn-
ing, whose purpose is to train a classifier fθ(⋅) with few samples 
xi and predict the corresponding labels ŷi of new samples x̂i. As 
shown in Fig. 1, we have 3 datasets: a base set base, a meta-
training task set train =

{
train,train

}
, and a meta-test task set 

test =
{
test,test

}
. Base set has a large number of samples with 

a set of classes base. If the support set of meta task sets contain 
K-labeled samples for each of N unique classes, the target few-
shot problem is called N-way K-shot. As the project’s goal is usu-
ally to distinguish between normal samples and a particular type 
of malicious samples, we consider the network AD as a 2-way 
K-shot problem.

According episode-based training proposed in [29], in each 
episode iteration, the support set  is formed by K-labeled 
samples from each of the C classes, that is,  = {(xi, yi)}

K×C
i=1

. 
Similarly, the query set  is formed from the remainder of those 
C classes’ samples, that is,  = {(xj, yj)}

B
j=1

. Meanwhile, the base 
set with abundant labeled samples base = {(xi, yi)}

m
i=1

. Both 
meta task sets contain the support set and the query set, and 
the support set and query set share the same label space, but 
the label space of meta-training task set is disjoint with the 
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the label space of meta-test task set. That is, train ∩ test = Ø, 
train ∩train = Ø, and test ∩test = Ø.

Our goal is to learn a good meta-learner fθ(⋅) on the support set 
 based on prior knowledge obtained on the base set base so that 
it can perform well on the query set . In our few-shot experiments 
(see Results and Discussion), we consider 5-shot (K = 5) and ten-
shot (K = 10) settings.

Overall prototype
As shown in Fig. 2, the proposed prototype is divided into 
3 phases, including dataset construction, pretraining, and 
meta-learning.

Dataset construction
In the phase, we will construct base set base, train task set 
train, and test task set test. We firstly perform preprocessing 
operations, such as duplicate value deletion, default value 
supplementation, and zero padding at the end of the most 
extended traffic log length. Then, each traffic log is tokenized 
by character level to extract fine-grained feature expressions. 
After that, in order to define each task as a 2-way K-shot task, 
we mix K normal samples with K malicious samples of each 
type.

The classes train with a large number of samples are selected 
as the train task set train, and the remaining classes test is used 
as the test task set test. To follow the episode-based strategy, the 
few-shot task generating details are shown in Algorithm 1. In 
order to improve the training speed and accuracy, we take the 
support set of train task set train⟨⟩ as the base set base to par-
ticipate in pretraining.

Pretraining
A Word2Vec [30] self-supervised classifier is trained with the 
samples in base set base. Skip-gram model is applied in our 
word-embedding task, which predicts the surrounding words 
from the central word. We define 2 parameter matrices, 
W ∈ ℝD×|V| and W′ ∈ ℝ|V|×D, where D represents the embedding 
dimension and can be set to any size. Since we treat network 
traffic as a string, we tokenize the string by characters [31] and 
one-hot encode it according to the dictionary V to get the 
sequence u = {u1, u2, …, uL}, L is the length of the sequence. 
Here, |V| is the size of the dictionary set V. Skip-gram works 
as the following steps:

 

Fig. 1. The illustration of the division of meta-learning tasks.
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Meta-learning
In this phase, a meta-learner fθ(⋅) learn meta knowledge in train, 
and they can learn quickly and accurately with few data in test. This 
phase is divided in 2 phases: meta-training and meta-test. In Dataset 
construction, we have constructed a train task set train and a test 
task set test, both containing the support set S and the query set Q. 
In Pretraining, a feature extractor fφ(⋅) is trained on base.

In meta-training phase, based on the feature extractor fφ(⋅), a 
meta-learner fθ(⋅) is trained on the support set of train task set 
train⟨⟩ by maximizing the likelihood estimation on the query 
set of train task set train⟨⟩. That is,

where ω represents meta knowledge, and φ and θ represent the 
parameters of fφ(⋅) and fθ(⋅), respectively. We learn meta knowl-
edge by sampling a large number of train tasks, so the optimal 
meta knowledge ω can be expressed as this:

In meta-test phase, based on the optimal meta knowledge ω∗ 
that has been learned, the optimal meta-learner parameters θ∗ 
are found as following:

As for evaluation, we directly predict labels in test⟨⟩ by the 
optimal meta-learner fθ

∗(⋅) and then compare with the ground 
truth to evaluate the performance.

Architecture of CharNet
Our CharNet includes 3 modules: encoder module, routing mod-
ule, and relation module, which is shown in Fig. 3 (the case of 
2-way 3-shot model).

Encoder module
In order to consider both the historical information and future 
information of the sequence, and let the model focus more on 
finding helpful information in the input data that is salient and 
relevant to the current output, we adopt the bidirection LSTM 
network with self-attention [32]. For simplicity, the encoder 
module receives an input sequence x = (c1, c2, …, cL), where cl 

(1)max
�

�( ,)∈train

∑

(x,y)∈

log
(
P
(
y|x,�, ,�, �

))

(2)�∗ = argmax
�

logp
(
� |train

)

(3)�∗ = argmax
�

logp
(
� |�∗, test

)

Fig. 2. The prototype of few-shot AD.

Fig. 3. The architecture of CharNet.
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represents the character embedding, L represents the length of 
sequence. The forward hidden state �⃗h t and the reverse hidden 
state ⃖ �h t are obtained by biLSTM and then concatenate �⃗h t and ⃖ �h t 
to obtain the hidden state ht.

We set the dimension of each LSTM unit hidden state to u, and 
the set of all hidden units state is H = (h1, h2, …, hL). Through a linear 
transformation, a variable dimension of input sequence x is trans-
formed into a fixed dimension of hidden state sequence H. Afterwards, 
the self-attention mechanism is used to assign a corresponding atten-
tion score to each hidden state, which takes the set of whole hidden 
state H as input, and outputs a vector of weights a.

Here, Wa1 ∈ Rd
a
×2u and Wa2 ∈ Rd

a are weight matrices and da 
is a hyperparameter. The output representation e of the encoder 
is the weighted sum of a and H:

Routing module
The dynamic routing algorithm is the core of this section, 
which is similar to the multihead attention mechanism. It can 
assign the weight of the samples in the support set through mul-
tiple iterations, so as to obtain a prototype vector that combines 
the distribution of the samples. We regard these vectors e 
obtained from the support set S by Eq. 8 as sample vectors es, 
and the vectors e from the query set Q as query vectors eq. 
Routing module converts sample vectors es

ij
 to prototype vectors 

pi through a nonlinear mapping, where i = 1, …, C and j = 
1, …, K.

Since we treat the flow as a string, and the order of the char-
acters plays a crucial role in the model, we multiply all the 
sample vectors in the support set es

ij
 with a transformation 

matrix Ws ∈ R2u×2u and add a bias bs. After iteration, a most rep-
resentative linear mapping can be found. Each sample prediction 
vector êsij is computed by:

where squash is defined as Eq. 10, which not only ensures that 
the data is between 0-1, but also preserves the direction of the 
vector.

In order to ensure that the prototype vector can automati-
cally aggregate the sample feature vectors of this class in the 
case of very little data capacity, it is necessary to iteratively 
apply the dynamic routing mechanism. At each iteration, 
the coupling coefficients di for each class i sum to 1 by soft-
maxing bi.

(4)�⃗h l =
����������⃗LSTM

(
cl , hl−1

)

(5)�⃖h l =
�⃖���������LSTM

(
cl , hl+1

)

(6)hl = concatenate
(
�⃗h l ,

�⃖h l

)

(7)a = softmax
(
Wa2tanh

(
Wa1H

T
))

(8)e =

L∑

l=1

al ⋅ hl

(9)ê
s
ij = squash

(
Wse

s
ij + bs

)

(10)squash(x) =
∥ x ∥2

1 + ∥ x ∥2
x

∥ x ∥

(11)di = softmax
(
bi
)

Table 1. The number of samples in the CICIDS2017FS

Type of 
attacks

Training task Test task

Support 
set

Query set
Support 

set
Query set

Botnet 2,622 1,310 - -

DoS-
GoldenEye

13,724 6,862 - -

DoS-Hulk 308,098 154,048 - -

DoS-
slowloris

7,728 3,864 - -

Heartbleed 16 6 - -

Infilteration 48 24 - -

SSH-Patator 7,864 3,930 - -

Brute force 2,010 1,004 - -

SQL injection 28 14 - -

XSS 870 434 - -

DDos - - 516 2,034

DoS-
Slowhttptest

- - 496 2,062

FTP-Patator - - 424 207

PortScan - - 490 2,032

Table 2. The number of samples in the CM2021FS

Type of 
attacks

Training task Test task

Support 
set

Query set
Support 

set
Query set

Cloud 
server 
access

29,796 14,896 - -

Blocked IP 25,216 12,608 - -

Crawler 
tool

16,106 8,052 - -

SQL 
injection

- - 190 810

Directory 
traversal

- - 70 700

XSS 
cross-site

- - 24 120
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where bi is the logits of coupling coefficients, and initialized by 0 
in the first iteration. Given each sample prediction vector ̂esij, each 
candidate prototype vector p̂i is a weighted sum of all sample 
prediction vectors êsij in class i:

Then the “squash” function is applied to ensure that the 
length of the vector output of the routing process will not 
exceed 1:

The last step of each iteration is to adjust the logarithm of the 
coupling coefficient bij by means of “protocol routing”. If the 
modulus between the sample prediction vector êsij and the can-
didate prototype vector is large, that is, the two are very similar, 
then increase the coupling coefficient of the prediction vector, 
and through several iterations, a good coupling relationship can 
be obtained, and the final prototype vector can be obtained.

Formally, the dynamic routing algorithm is shown in 
Algorithm 2.

 
Relation module
We obtain the prototype vectors pi through the routing module 
mentioned in Routing module and use the encoder module men-
tioned in Encoder module to convert the samples in the query 
set into query vectors eq. Then, we need to measure the connec-
tion between query vectors eq and prototype vectors pi. We draw 
on the ideas in [21] and use neural networks to replace common 
mathematical distance metrics. Thus, the similarity measure 
between pi and eq is represented by the relation score, which is 
between 0 and 1.

(12)p̂i =
∑

j

dij ⋅ ê
s
ij

(13)pi = squash
(
p̂i
)

(14)bij = bij + ê
s
ij ⋅ pi

Table 3. Comparison of detection result and the number of samples in the proposed method and big-data methods

Approach Method Dataset Type Number of samples Acc (%) Recall (%)

Machine learning GA-based Adaptive 
Method (2018) [40]

CICIDS2017 GA + clustering 760,056 N/A 92.85

Multilayer ensemble 
SVM (2018) [5]

CICIDS2017 SVM N/A N/A 94.94

DT and Rule Based 
IDS (2019) [37]

CICIDS2017 REP Tree + random 
forest

40,000 96.66 94.47

GBT-based Big Data 
Method (2019) [36]

CICIDS2017 Gradient Boosted Tree 1,000,000 99.97 N/A

Improved AdaBoost-
based IDS (2019) [6]

CICIDS2017 AdaBoost 158,021 81.83 100.0

Multi-Stage Optimized 
ML-based IDS (2021) 

[4]

CICIDS2017 KNN + random forest 2,830,540 99.99 99.00

Deep learning Flow-based deep 
learning method 

(2018) [14]

CICIDS2017 CNN + LSTM 1,028,007 98.87 98.83

SU-IDS(2018) [38] CICIDS2017 Autoencoder 40,000 71.02 N/A

Deep Hierarchical IDS 
(2019) [41]

CICIDS2017 CNN + LSTM 553,850 99.91 99.92

Random attention 
capsule (2020) [42]

CICIDS2017 Attention + capsule 863,240 98.60 98.61

DNN-kNN IDS (2020) 
[34]

CICIDS2017 DNN + kNN 225,745 99.63 99.69

CLAIRE (2021) [11] CICIDS2017 Autoencoder + CNN 100,000 98.01 95.20

Ours CharNet CICIDS-2017FS Siamese + Routing 5 95.94 98.78

CharNet CICIDS-2017FS Siamese + Routing 10 99.87 99.98

CharNet CM2021FS Siamese + Routing 5 94.29 96.56

CharNet CM2021FS Siamese + Routing 10 98.56 97.68
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The neural network consists of a neural tensor layer and a 
sigmoid layer, where the neural tensor layer outputs a relation 
vector as follows:

where Mk ∈ R2u×2u, k ∈ [1, …, h] is one slice of the tensor param-
eters and f is RELU activation function. The final relation score 
riq between the i-th class and the q-th query is calculated by a 
fully connected layer activated by a sigmoid function.

Objective function
In the process of training the model, we set the mean square error 
loss as the loss function. The purpose is to transform a 2-way clas-
sification problem into a similarity regression problem, that is, the 
similarity problem between relationship scores riq and the ground 
truth yq. Given the support set  with 2 classes and query set  in 
an episode, the loss function is defined as:

All parameters of the 3 modules are trained jointly by back-
propagation. The stochastic gradient descent is used on all 
parameters in each training episode. Our model does not need 
any finetuning on the classes it has never seen due to its gener-
alization nature. The routing and comparison ability are accu-
mulated in the model along with the training episodes.

Results and Discussion
In this section, 2 datasets are selected to evaluate the performance 
of our proposed CharNet by comparing with big-data and few-
shot network AD methods respectively. After that, the function 
of each module is analyzed through ablation study.

Datasets
CICIDS2017FS
CICIDS2017 dataset [33] contains benign and the most up-to-date 
common attacks, which resembles the true real-world data 
(PCAPs). Each network traffic has been labeled by using 

CICFlowMeter with labeled flows based on the time stamp, 
source, and destination IPs, source and destination ports, protocols 
and attack. The dataset includes the most common attacks based 
on the 2016 McAfee report, such as Web based, Brute force, DoS, 
DDoS, Infiltration, Heart-bleed, Bot and Scant. We select 14 differ-
ent types of attacks to form the data sets, 10 types of which were 
used as base set and 4 types as support set and query set. Then, 
using the task generating Algorithm 1 to generate 2-way K-shot 
tasks from each sets. The number of samples in the CICIDS2017FS 
is shown in Table 1.

CM2021FS
This dataset was collected from a week of real server, which contains 
nearly 160,000 samples in 6 different types of attacks and normal 
requests. The 6 classes are respectively divided into 3 (Cloud Server 
request, blocked IP, crawler tool) and 3 (SQL injection, Directory 
traversal, XSS cross-site) for pretraining tasks and meta-learning 
tasks. We create 2-way K-shot learning models on this dataset. The 
number of samples in the CM2021FS is shown in Table 2.

Implementation details
Experiment platform
The experiments were carried out under the following hardware 
and software environment: Intel Core i9-10920X @3.50 GHz, 
64 GB RAM, NVIDIA GeForce RTX 3090; CUDA 10.2, cuDNN 
8.0, and PyTorch 1.10.2.

Architecture
We use Word2Vec [30] to pretrain the language coding layer on 
dataset base, where the dimension is 300 and the window size is 64. 
In encoder module, we set the dimension of hidden state of LSTM 
to 128 and the dimension of attention matrix to 64. In routing mod-
ule, the iteration number iter is 4. In relation module, the output 
dimension is 100, and the activation function is Relu. After that, it is 
transformed into a score of [0,1] through a sigmoid layer.

Training details
In the pretraining stage, we pretrain the word embedding on base 
dataset base with Word2Vec [34]. In the meta-training stage, we 
train the CharNet with 10,000 episodes on the support set of train 
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Table 4. Few-shot experimental result on CICIDS2017FS

Methods

Two-way 5-shot Two-way 10-shot

Acc (%)
Recall 

(%) Acc (%)
Recall 

(%)

FC- Net 
[18]

94.13 98.49 95.39 98.19

DF- Net 
[23]

93.87 96.29 95.56 96.4

GP- Net 
[26]

94.58 94.23 96.40 96.96

FS- AD [27] 93.60 98.60 97.51 99.17

CharNet 95.94 98.78 99.87 99.98

Table 5. Ablation study with encoder module on 2-way 10-shot 
tasks

Encoder 
module

CICIDS2017FS CM2021FS

Acc (%)
Recall 

(%) Acc (%)
Recall 

(%)

biLSTM + 
attention

99.87 99.85 98.56 98.92

LSTM + 
attention

95.60 96.07 94.62 95.16

CNN + 
attention

97.83 97.98 97.58 97.98

Transformer 98.67 99.87 98.47 98.86

biLSTM 98.60 98.76 98.19 97.29

D
ow

nloaded from
 https://spj.science.org at E

th Z
urich on February 28, 2024

https://doi.org/10.34133/cbsystems.0086


Ma et al. 2024 | https://doi.org/10.34133/cbsystems.0086 8

task set train⟨⟩ in an episodic manner via a stochastic gradient 
descent with momentum of 0.9 and weight decay of 0.0005. Then, 
we chose the model with the highest accuracy in the query set of 
train task set train⟨⟩ as the final model. In the meta-test stage, 
We build 2-way K-shot (K = [5, 10]) models on 2 datasets to 
simulate the scenario of the network AD.

Discussion of results
In this section, we provide an overview of several most recent 
deep learning and machine learning algorithms in network AD 
and discuss the detection results and the number of samples. 
Then, we compare the proposed routing network with other 
few-shot learning methods. After that, the ablation study is 
conducted to evaluate the effect of each module.

Comparison with big-data methods
In previous studies, many scholars have achieved excellent per-
formance using machine learning and deep learning algorithms 

A B C

D E F

G H

Fig. 4. Effect of Encoder under CICIDS2017FS (the green dots indicate normal traffic, and the red dots indicate abnormal traffic). (A) DDos before Encoder. (B) Slowhttptest 
before Encoder. (C) FTP-Patator before Encoder. (D) PortScan before Encoder. (E) DDos after Encoder. (F) Slowhttptest after Encoder. (G) FTP-Patator after Encoder. 
(H) PortScan after Encoder.

Table 6. Ablation study with routing module on 2-way 10-shot 
tasks

Routing 
module

iter CICIDS2017FS CM2021FS

Acc (%)
Recall 

(%) Acc (%)
Recall 

(%)

Routing 1 97.41 98.78 93.94 97.56

Routing 2 97.52 98.89 95.78 98.75

Routing 3 98.52 98.64 97.62 98.24

Routing 4 99.87 99.85 98.34 98.92

Routing 5 98.97 99.37 98.56 99.13

Routing 6 98.02 98.67 97.92 98.36

Mean - 98.89 99.12 96.98 97.38

Table 7. Ablation study with relation module on 2-way 10-shot 
tasks

Relation 
module

CICIDS2017FS CM2021FS

Acc (%)
Recall  

(%) Acc (%)
Recall 

(%)

Relation 99.87 99.85 98.56 98.92

Cosine 96.46 98.69 97.98 98.88

Euclidean 97.04 99.24 97.52 98.58
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based on large amounts of data. To ensure the fairness of the 
experiments, we made a comparison between CharNet with 
other existing researches that used the same public benchmark 
dataset CICIDS2017. At the same time, we also conduct few-
shot experiments on the private dataset CM2020FS, the preci-
sion and recall were 94.29% and 96.56% for K = 5, and 98.56% 
and 97.68% for K = 10. The results are shown in Table 3.

The noteworthy observation is that the overwhelming major-
ity of researches, whether machine learning or deep learning, 
are based on “big data”. As can be seen from Table 3, the accuracy 
and recall of these researches are almost above 95%, for example, 
Multi-Stage Optimized ML-based AD (2021) [4] even achieves 
99.99% accuracy and 99.00% recall. However, their sample size 
has reached hundreds of thousands, or even millions, which 
requires tremendous human efforts to collect, process and label 
these data manually. In addition, it is difficult for us to quickly 
identify new and ever-changing attacks.

As shown in Table 3, CharNet (K = 5) only outperforms 
GA-based Adaptive Method [35], Multilayer ensemble SVM 

[5], and SU-AD [36] in both accuracy and recall, while CharNet 
(K = 10) outperforms all methods except GBT-based Big Data 
Method [37], Improved AdaBoost-based AD [6] and Deep 
Hierarchical AD [38]. With a slight decline about 4% and 0.8% 
in accuracy and recall (K = 5), and about 0.1% and 0.02% in 
accuracy and recall (K = 10), required training samples of 
CharNet is much fewer than these method. It should be noted 
that the result obtained by CharNet is on the basis of only 5 
and 10 labeled samples used in training process, which drasti-
cally reduces the cost of data collection and manual labeling.

Comparison with few-shot learning methods
We compare CharNet with some state-of-the-art metric-based 
approaches of network AD, such as FC-Net, DF-Net, GP-Net, and 
FS-AD. FC-Net [18] is based on RelationNet to implement few-
shot traffic classification and achieves good performance in its 
experimental setting. DF-Net [23] takes use of siamese capsule 
network for AD with imbalanced traning data. A relative position 
mechanism and a global-enhanced feature extractor are designed 

A B

DC

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Pretrain
No pretrain

Pretrain
No pretrain

Pretrain
No pretrain

Pretrain
No pretrain

Fig. 5. Effect of pretraining under CICIDS2017FS and CM2021FS. (A) The accuracy of CICIDS2017. (B) The loss of CICIDS2017F. (C) The accuracy of CM2021FS. (D) The loss 
of CM2021FS.
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in GP-Net [26] to capture the relationship between arbitrary 2-byte 
payload sequences. FS-AD [27] adopts autoencoder, CNN, and 
euclidean distance metric module in series in the few-shot frame.

To ensure fairness, we compare the performance of our method 
and the baseline methods on the same benchmark dataset 
CICIDS2017FS, the result is shown as Table 4. In order to be con-
sistent with the setting of FC-Net, we did 2 experiments with K = 5 
and K = 10. It can be found that our proposed network achieves 
the highest precision and recall in both k = 5 and k = 10 experi-
ments. In the 2-way 5-shot experiment, the accuracy of CharNet 
exceeds the state-of-the-art methods by 1.3%∼2.34%, and the recall 
rate exceeds 0.18%∼4.55%. In the 2-way 10-shot experiment, the 
accuracy exceeds the advanced method by 2.36%∼4.48%, and the 
recall rate exceeds 0.81%∼3.58%. It is worth noting that our method 
beats FC-Net, which demonstrates that the routing-based prototype 
is more effective than the mean-based prototype.

Ablation study
The experiments are conducted on CICIDS2017FS and CM2021FS 
to evaluate the effect of each module, i.e., encoder module, routing 
module, relation module, and pretraining. Specifically, (a) we 
change the backbone network of the encoder to explore the best 
feature extractor; (b) for the routing module, we change the num-
ber of iterations iter of the routing algorithm to find the best 
routing-based prototype in different datasets and also compare 
with the mean-based prototype. (c) We replace the relation mod-
ule with cosine distance metric and euclidean distance metric.

The effect of encoder module
In the experiment of the encoder module, the different back-
bone network are applied, such as biLSTM, LSTM, CNN, and 
Tranformer. The results are shown in Table 5. It can be found 
that (a) the accuracy of biLSTM with attention on both datasets 
outperform the other 3 backbone networks, while the trans-
former is not too far apart, whose recall achieves the best results 
on CICIDS2017FS; (b) the attention mechanism plays a role 
and helps biLSTM improve the accuracy and recall by around 
1%; (c) LSTM with attention is around 4% in precision and 3% 
in recall lower than biLSTM with attention, which means that 
the informal text such as network traffic requires bidirectional 
semantics to better express the information in it.

In Fig. 4, it shows the t-stochastic neighbor embedding [39] 
visualization before and after encoder module. We carry out the 
test task of CICIDS2017FS, which includes 4 categories: DDos, 
Slowhttptest, FTP-Patator, and PortScan. We can see that the 
vectors after encoder are more separable, demonstrating the 
effectiveness of encoder to separate the solution space.

The effect of routing module
To explore the effect of iterations iter on the routing module, we 
set iter from 1 to 6 on CICIDS2017FS and CM2021FS. In addi-
tion, the routing module is removed and replaced the mean-
based prototype. According to the result in Table 6, we observe 
that (a) the best performance is achieved when we used 4 and 5 
iterations, and more rounds of iterations did not further improve 
the performance; (b) the best performance of routing module 
exceeds the mean-based prototype by around 1%, which indi-
cates that the routing module shows effectiveness.

The effect of relation module
For the relation module, we draw on the idea of relation network 
[21] and use neural network training to obtain a learnable nonlinear 

similarity measure function, thereby constructing an end-to-end 
network structure. The experimental results of the relaton module 
are shown in Table 7, from which we find that the relation module 
outperform the cosine and euclidean distance metric on both 
datasets.

The effect of pretraining
To pursue faster training speed, we consider adding pretraining 
before the encoder module. Figure 5 shows the accuracy and 
loss curves with and without pretraining in CICIDS2017FS and 
CM2021FS, where iter is set to 4 and 5 respectively, and episode 
is set to 8,000. It can be seen intuitively that the convergence 
can be faster with pretraining, indicating that the pretraining 
can effectively extract the text information in the traffic log.

Conclusion
In this paper, we propose the CharNet, a novel neural model for 
few-shot network AD prototype. For this purpose, a basic binary 
classification task was defined and a pair of network traffic sam-
ples including a normal unaffected sample and a malicious one 
were constructed for learning. The routing module combines 
the dynamic routing algorithm with a meta-learning prototype, 
and the routing mechanism finds a more accurate prototype 
through multiple iterations, making our model more general to 
recognize unseen classes. The experiment results show that the 
proposed model outperforms the existing state-of-the-art few-
shot network AD models, and only need 5 or 10 samples to get 
a high-accuracy model. We found that both the pretraining and 
encoder contribute tremendously to the few-shot learning tasks.
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