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Article

Identifying Spatial Co-occurrence in Healthy and
InflAmed tissues (ISCHIA)
Atefeh Lafzi1,2,3, Costanza Borrelli 2,3, Simona Baghai Sain 2, Karsten Bach2, Jonas A Kretz 2,

Kristina Handler 2, Daniel Regan-Komito 1, Xenia Ficht 2, Andreas Frei 1 & Andreas Moor 2✉

Abstract

Sequencing-based spatial transcriptomics (ST) methods allow
unbiased capturing of RNA molecules at barcoded spots, charting
the distribution and localization of cell types and transcripts across
a tissue. While the coarse resolution of these techniques is con-
sidered a disadvantage, we argue that the inherent proximity of
transcriptomes captured on spots can be leveraged to reconstruct
cellular networks. To this end, we developed ISCHIA (Identifying
Spatial Co-occurrence in Healthy and InflAmed tissues), a com-
putational framework to analyze the spatial co-occurrence of cell
types and transcript species within spots. Co-occurrence analysis is
complementary to differential gene expression, as it does not
depend on the abundance of a given cell type or on the transcript
expression levels, but rather on their spatial association in the
tissue. We applied ISCHIA to analyze co-occurrence of cell types,
ligands and receptors in a Visium dataset of human ulcerative
colitis patients, and validated our findings at single-cell resolution
on matched hybridization-based data. We uncover inflammation-
induced cellular networks involving M cell and fibroblasts, as well
as ligand-receptor interactions enriched in the inflamed human
colon, and their associated gene signatures. Our results highlight
the hypothesis-generating power and broad applicability of co-
occurrence analysis on spatial transcriptomics data.
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Introduction

Tissue ecosystems are maintained by the co-existence and
coordinated function of cellular networks (CNs). CNs are the
basic functional unit of any tissue: communities of neighboring
cells that interact to perform a physiological function, with cells as

nodes and cell-cell interactions (CCIs) as edges. A prime example
of CN is the colonic crypt, where a network of Wnt-secreting
mesenchymal cells and Wnt-receiving epithelial stem cells provides
self-renewal and regenerative capacity to the colonic epithelium
(Degirmenci et al, 2018).

During inflammation, CNs can be perturbed by the induction of
aberrant cell states and recruitment of non-resident cell types,
much like natural ecosystems are disturbed by the arrival of alien
species (Stuart Chapin et al, 2002). Inflammation-induce CNs can
facilitate tissue regeneration and reestablishment of homeostasis,
or can act as drivers of pathology, especially in chronic settings
such as inflammatory bowel diseases (IBD). Understanding how
CN architecture is altered by inflammation is fundamental to
gaining insights into pathological mechanisms. Most recently, CNs
have been inferred from single-cell RNA sequencing (scRNAseq)
data by computationally predicting CCIs based on the expression
levels of ligands and their receptors (Efremova et al, 2020;
Browaeys et al, 2020). Due to tissue dissociation, however,
scRNAseq only provides a fragmented view of a tissue ecosystem:
cells predicted to interact might populate spatially distinct areas of
the tissue, and thus are unlikely to constitute a genuine CN. Hence
there is a need for analytic methods that leverage spatial
information to shortlist and prioritize CCIs that are more likely
to occur in tissues.

Next generation sequencing (NGS)-based spatial transcrip-
tomics (ST) methods, such as Visium ST (10× Genomics), capture
RNA molecules in situ at spatially barcoded spots, generating bulk
RNA profiles of 10–30 cells (Rao et al, 2021). While the coarse
resolution of these methods is generally considered a disadvantage,
we show here that these “mixed transcriptomes” can be used to
infer CNs, as their gene expression profiles contain information
about cell type composition, expressed ligand-receptor (LR) pairs,
as well as signaling pathways, gene regulatory networks and effector
molecules that mediate CN function. We hypothesize that the
inherent spatial proximity of spot data can be leveraged to integrate
these three levels of information, reconstructing the architecture
and function of CNs. To this end, we developed ISCHIA
(Identifying Spatial Co-occurrence in Healthy and InflAmed
tissues), a computational framework that assigns a quantitative
property to the interaction potential of cell types or LR pairs by
computing their spatial co-occurrence within each spot. This
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probabilistic approach is inspired by species co-occurrence models
in ecology, which derive statistically significant patterns of pairwise
species associations from the frequency of their observed co-
occurrence at defined spatial locations (Veech, 2013). Co-
occurrence between two species may be positive (the observed
co-occurrence is higher than expected by chance), random
(independently distributed), or negative (lower than expected by
chance). For decades, ecologists have analyzed co-occurrence
patterns of plant and animal species to understand ecological
communities and the rules of their assembly (Veech, 2013). Here,
we apply the same principles to gain deeper insights into cellular
communities and the rules of their spatial associations in tissues.

We applied ISCHIA to chart the CN landscape of the healthy
and inflamed human colon. We generated both sequencing-based
(Visium) and hybridization-based (Molecular Cartography) ST
data of human ulcerative colitis samples, and applied ISCHIA to
identify pairs of cell types that are co-occurring in inflammation-
specific cellular neighborhoods. Within inflammatory neighbor-
hoods, we then performed co-occurrence analysis of ligand and
receptor genes, and derived associated gene signatures. Thereby, we
reconstructed the architecture of a M cell-fibroblast network
enriched in the inflamed colon. We next extended co-occurrence
analysis to the whole surfaceome (all ligands and receptor genes) to
uncover spatially coordinated tissue responses to inflammation.
Finally, we applied co-occurrence analysis to a spatial transcrip-
tomics dataset of murine colitis and identified conserved tissue
repair pathways.

Results

Composition-based clustering of spots divides tissues
into composition classes

We hypothesized that CNs would be best reconstructed within
individual spots (intra-spot analysis), as their mixed transcriptome
contains information about locally occurring cell types, expressed
ligands and receptors, and activated signaling pathways. This intra-
spot approach is distinct from state-of-the-art analysis tools for
Visium data, which consider each spot as a single datapoint, and
compute co-localization, network or cell-cell interactions analysis
between neighboring spots (inter-spot analysis).

As inferring CNs in each individual spot separately would be
noisy, sparse, computationally intensive, and would lack statistical
power, ISCHIA first divides the tissue into clusters of spots with
similar cellular composition—termed composition classes (CCs)
(Fig. 1A). CCs are thus groups of spots containing similar mixtures
of cells, or cellular communities, e.g., all spots capturing colonic
crypts. To achieve the division of the tissue into CCs, spot
transcriptomes are deconvoluted, yielding a cell type composition
matrix (spot × contribution of each cell type, calculated as identity
probability P), which is then subjected to dimensionality reduction
and k-means clustering. ISCHIA allows for both reference-based
deconvolution, with tools such as SPOTlight (Elosua-Bayes et al,
2021) or RCTD (Cable et al, 2022), and reference-free deconvolu-
tion (Miller et al, 2022). Upon deconvolution, ISCHIA summarizes
spot gene expression data in a binary presence–absence matrix,
where each cell type with P > 0.1 is listed for each spot. Each spot is
thus represented as a mixture of cell types, and similar mixtures

are clustered together in CCs. Co-occurrence of cell types and
transcript species is then calculated within each CC separately. We
applied ISCHIA on a publicly available Visium slide of a coronal
section of the mouse brain (10× Genomics), using as a reference for
deconvolution a scRNAseq dataset of adult mouse cortical cells
from the Allen Institute (Tasic et al, 2016). Composition-based
clustering of the spots yielded 5 CCs, which broadly reflect the
annotated anatomical regions (Fig. EV1A). ISCHIA then computes
cell type co-occurrence for every CC, identifying spatial association
of cell types (Fig. EV1B). ISCHIA reconstructs cellular networks
within spots with cell types as nodes, and is therefore distinct from
inter-spot analysis employed by other tools on this same sample, in
which spots are used as nodes of the inferred interaction net-
work (Palla et al, 2022; Del Rossi et al, 2022).

To demonstrate the ability of ISCHIA to chart the CN landscape
of healthy and diseased tissues, we generated Visium data from 4
inflamed and non-inflamed colon resections of 3 ulcerative colitis
(UC) patients (Fig. EV2A). We took advantage of published
(Smillie et al, 2019; Martin et al, 2019, Handler et al, 2023) and in
house datasets to compile a comprehensive, integrated IBD
scRNAseq reference (51 patients in total, Fig. EV2B). Notably,
the Handler dataset was collected using the microwell-based
platform BD Rhapsody, and thus contains granulocytes that are
mostly absent from data generated with droplet-based methods.
Using our integrated reference, we performed joint deconvolution
of Visium spots across all samples (see Methods, Fig. 1B). Principal
component analysis of the deconvolution matrix revealed no
association of a particular sample with the first 4 principal
components (Fig. EV2C,D). Subsequent dimensionality reduction
and k-means clustering of the deconvolution matrix revealed 8 CCs
of co-localizing cell types present in all samples (Fig. 1C,D). In the
healthy colon, CCs broadly reflected component layers of the
colonic wall: submucosa (CC3), crypt bottom (CC6), and crypt top
(CC5 and CC1) (Fig. 1E). In the inflamed samples, the spatial
boundaries between CCs were lost, indicating perturbed tissue
architecture and altered spatial arrangement of cells (Fig. 1E). The
most prevalent cell types across all composition classes were transit
amplifiers (TAs), colonocytes and goblet cells, reflecting the cellular
composition of the adult colonic epithelium (Elmentaite et al, 2021;
Fig. 1F). CC1 and CC5 were enriched in the inflamed colon and
were therefore termed inflammatory CCs (Fig. 1G). Indeed, their
cellular composition reflects the recruitment of macrophages, a
hallmark of IBD pathogenesis (Han et al, 2021; Na et al, 2019).
These results indicate that subdividing tissue into CCs not only
recapitulates tissue morphology and architecture, but is also able to
capture alterations in cell type composition across conditions. Of
note, CC2, CC4, CC7 and CC8 were not considered for down-
stream analysis as they mapped onto the muscular layer, or were
highly sample-specific (Fig. EV2E,F).

Cellular co-occurrence in the inflamed colon

We next compared co-occurrence of cell types between inflamma-
tory and homeostatic CCs. Indeed, we hypothesized that inflam-
matory CCs would contain CNs induced by spatial rearrangement
of cells and infiltrating leukocytes. ISCHIA identified several
pairwise cell type co-occurrences as being significantly more
frequent than expected by chance in inflammatory CCs (positive
co-occurrence, p value < 0.05) (Fig. 2A,B). For example, many
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cellular co-occurrences involving M cells—highly specialized
epithelial cells involved in antigen presentation (Dillon and Lo,
2019)—were positively co-occurring in inflammatory CCs but not
in homeostatic CCs. Of note, ISCHIA’s co-occurrence predictions
are irrespective of cell type abundance. Indeed, being the most
prominent cell type in all CCs, TAs are co-occurring with many cell
types. However, this is not higher than what is expected given their
abundance.

We further subdivided spots of inflammatory CCs in those
arising from inflamed vs non-inflamed samples, and found
that M cell co-occurrences were specifically induced by inflamma-
tion (Fig. 2C). Recently, M-like cells were indicated as an
interaction hub during colitis based on CCI predictions from
scRNAseq data (Smillie et al, 2019). Here, we complement this
finding with spatial information and prioritize M cell interactions
with monocytes, neutrophils, dendritic cells, and fibroblasts based
on the co-occurrence of these cell types specifically in the
inflamed colon.

To validate ISCHIA’s co-occurrence predictions from spot data
(bulk) on a single cell level, we performed 100-plex RNA
fluorescent in situ hybridization (FISH, Molecular Cartography).
Contrarily to sequencing-based ST methods such as Visium,
multiplexed in situ hybridization techniques achieve single-cell
resolution. Co-occurrence can thus be calculated in even smaller
cellular neighborhoods (e.g., k nearest neighbors = 5 cells), greatly
restricting the interaction space and further refining predictions.
For this analysis, we included an additional inflamed and non-
inflamed sample, for a total of 6 human UC colon samples from 4
patients. Nuclear DAPI staining was used to segment Molecular
Cartography data into putative single cells. Segments were then
annotated based on marker gene expression and subsequently used
as input for cell type co-occurrence analysis. Confirming predic-
tions by ISCHIA based on spot data, Molecular Cartography
revealed that M cells (SPIB+ segments) and fibroblasts (PDGFRA/
PDPN+ segments) were significantly co-occurring in inflamed but
not in non-inflamed samples (Fig. 2D,E). Importantly, the
increased M cell and fibroblast co-occurrence was independent of
their abundance (Fig. 2F). Thus, ISCHIA has the capacity to
capture interactions arising through co-occurrence that has been
newly established—possibly by spatial rearrangement or altered
distribution of the involved cell types—even if cell type frequencies
are unaltered (Fig. 2G).

Co-occurrence analysis can thus be used on both spot data and
FISH-based ST data, to infer the interaction potential of cell types
based on their proximity. In ecology, species co-occurrence is not
generally considered evidence of biotic interactions (Blanchet et al,
2020), however, we argue that it can be used as a measure of spatial
association and proximity, prerequisites for juxtacrine and para-
crine signaling between cells.

Linking cell type and ligand–receptor co-occurrence to
reconstruct cellular networks

We next applied spatial co-occurrence analysis to transcript species
encoding for ligand and receptor genes. We reasoned that the
potential for molecular interaction is higher between LR pairs
which co-occur in the tissue more frequently than expected by
chance. To test this hypothesis, we performed co-occurrence
analysis of LR genes within CC5, identified positively co-occurring
pairs (FDR < 0.05, Dataset EV1), and ranked them based on the
correlation of their expression (see “Methods,” top 20 shown in
Fig. 3A). Several of the significantly co-occurring LR pairs were
previously implicated in colitis, and are mostly involved in
epithelial integrity and repair (DDR1-CDH1 (Li et al, 2022),
DSG2-DSC2 (Gross et al, 2018)), immune recruitment (MIF-CD74
(Farr et al, 2020)), and TNF signaling (GRN-TNFRSF1A (Terryn
et al, 2021; Wei et al, 2014)). This highlights ISCHIA’s ability to
capture disease-relevant pathways from spatial transcriptomics
data, even at a limited sample size. Of note, co-occurrence analysis
is agnostic to gene expression levels (gene count threshold ≥1) and
only takes into account the proximity (measured as co-occurrence)
of a given ligand and receptor (see “Methods”). The count
threshold is a user defined parameter that can be increased to
restrict the co-occurrence analysis to highly expressed ligands and
receptors. To account for the sparsity of ST data, ISCHIA calculates
LR co-occurrence within CCs (clusters of spots with similar cell
mixtures), as aggregating spots in CCs mitigates the effects of low
transcript capture rate and consequent false negative predictions.

We hypothesized that positively co-occurring cell types may
interact via positively co-occurring LR pairs, and thus focused on
M cells and fibroblasts. Using the integrated IBD scRNAseq
reference, we identified two ligands expressed by M cells (ADAM15
and VEGFA) with positively co-occurring receptors expressed by
fibroblasts (ITGA5 and PDGFRA) (Figs. 3B and EV3A). ISCHIA
thus reconstructs nodes and edges of CNs by computing co-
occurrence of cell types and LR pairs. Importantly, co-occurrence
analysis captures interactions that arise via spatial rearrangement of
the LR-expressing cells, even if transcript and cell type abundance
are unaltered (Fig. 3C). Indeed, while ITGA5 and ADAM15, and
VEGFA and PDGFRA are positively co-occurring in inflammatory
CC5, their expression is unaltered by inflammation (Fig. EV3B).
Molecular Cartography confirmed co-localizing expression of
ITGA5 by PDGFRA/PDPN+ fibroblasts and of ADAM15 by
SPIB+M cells (Fig. 3D). Moreover, an independent immunohis-
tochemical analysis of IBD colon sections showed close contact
between ADAM15-positive epithelial cells and α5β1(ITGA5)-
positive myofibroblasts in regenerative areas (Mosnier et al,
2006). By linking cell type and LR co-occurrence we thus identify
a new CN arising in the colon of UC patients (Fig. 3E). While

Figure 1. ISCHIA performs composition-based clustering of spot data.

(A) Schematic workflow of the ISCHIA pipeline. (B) Deconvolution of Visium spots based on a integrated IBD scRNAseq reference dataset. Spot composition is visualized
as a pie chart (shown in inset) and projected on the spatial coordinates. (C) Dimensionality reduction of deconvoluted matrix from all samples (n= 4). (D) Composition-
based clustering (k-means) of the deconvoluted matrix yields 8 composition classes (CC1–8), representing groups of spots with similar cell type mixtures. (E) Spots
overlayed on tissue coordinates, colored by CC. (F) Predicted cell type proportions in 4 CCs comprising the epithelial layer. Boxplots indicate median, first and third
quartiles. Whiskers extend from the hinges to the largest value no further than 1.5× the inter-quartile range. Data points beyond the end of the whiskers are plotted
individually. n= 4 samples from 3 patients. (G) Relative abundance of CCs in inflamed and non-inflamed samples. CC composition class, TA transit amplifiers, ILC innate
lymphoid cells, DC dendritic cell.
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functional characterization of this interaction in IBD is out-
standing, it illustrates the hypothesis-generating power of co-
occurrence analysis performed by ISCHIA.

Integrating cell types, LR pairs, and transcriptomic
signatures to infer CN function

An actively signaling LR pair is likely associated with a specific
transcriptional signature, which may be either upstream (inducing
LR expression) or downstream (induced by LR signaling). As spot
data are only temporal snapshots, we cannot distinguish between
causative and consequential effects, but capture the sum of both as
a LR-associated transcriptional signature.

After identifying putatively disease-relevant LR pairs, ISCHIA
performs differential gene expression analysis between spots of
the same CC expressing or lacking that LR pair. Importantly,
by doing this within the same CC, transcriptomic effects arising
from differences in cell type composition are filtered out, retaining
only effects derived from alterations in cell state that are
associated with the presence or absence of a given LR pair. Within
CC5, we computed significantly differentially expressed genes
(DEGs, FDR < 0.05) between spots having or lacking ITGA5-
ADAM15 expression (Fig. 3F). Pathway analysis of the resulting
significant DEGs revealed enrichment of terms related to
fibronectin matrix formation, as well as signaling events mediated
by integrin-linked kinase and focal adhesion kinase (FAK)
(Fig. EV3C). These results corroborate recent studies indicating
that ITGA5 is important for fibronectin assembly by fibroblasts (Lu
et al, 2019) and that ADAM15 interaction with integrin αV
(ITGA5) activates FAK signaling to promote migration (Zhou et al,
2022). Of note, these pathways were not enriched in VEGFA-
PDGFRA-associated gene sets, which instead are involved in cell-
junction organization and the HIF-1α transcription factor network
(Figs. 3G and EV3D), possibly indicating a coordinated hypoxia-
response.

Using spot data from unbiased, genome-wide spatial transcrip-
tomic profiling, cell type co-occurrence and LR co-occurrence can
thus be correlated to alterations in the transcriptome, granting
deeper insights into the function of reconstructed CNs.

Differential co-occurrence identifies niche-specific
response programs

Ligands and receptors within a spot make up the words of
the locally occurring cellular “conversations.” We computed
the co-occurrence of genes encoding for ligands and receptors

within all spots in our dataset (across all CCs), irrespective of
whether they are annotated as interacting pairs based on
PPI predictions databases. We next selected differentially co-
occurring pairs: LR genes that only positively co-occur in a
composition class (FDRCCx < 0.05 and FDRCCy > 0.05) or in
a condition (FDRcondition_x < 0.05 and FDRcondition_y > 0.05). We
reasoned that these particular “conversations” may reveal coordi-
nated tissue responses specific to distinct niches or disease-relevant
states.

We first analyzed differentially co-occurring LR genes unique to
the inflammatory CC5, which is characterized by a high relative
abundance of macrophages. We identified differentially co-
occurring LR genes that are significantly positively co-occurring
in CC5 (FDRCC5 < 0.05) but not in other CCs (FDRother_CCs > 0.05),
indicating a tight association with this particular cell type
composition (Fig. 4A). The strongest differentially co-occurring
LR network (ranked by P value difference and observed co-
occurrence in CC5) involves EDN1—an endothelium-derived
vasoconstricting peptide implicated in the pathogenesis of IBD
(Angerio et al, 2005). Among the 28 EDN1-involving LR co-
occurrences, EDN1-CDH17, EDN1-CDH1 and EDN1-F2RL1 are
predicted protein-protein interactions. We further detected differ-
ential co-occurrence networks specific to CC5 centered around the
epithelium-derived pro-angiogenic factors SEMA3C (Banu et al,
2006; Yang et al, 2015) and CXCL5 (Owen and Mohamadzadeh,
2013). Molecular Cartography confirmed localized expression of
epithelial SEMA3C with PTPRB (expressed by the endothelium),
MMP9 (macrophages and monocytes), CXCL8 (macrophages),
CXCL5 (epithelium, inflammatory fibroblasts, neutrophils) and
SEMA4D (T cells) (Fig. 4B).

Molecular Cartography further revealed highly spatially
restricted and sporadic epithelial expression of CXCL5 in UC
colon samples, which coincided with neutrophil-rich areas,
identified by ITGAM transcript (Fig. 4C). CXCL5 expression is
characteristic of colon adenocarcinoma (Chen et al, 2019; Situ et al,
2022; Lin et al, 2021) and colitis (Keates et al, 1997; Z’Graggen et al,
1997; Rieder et al, 2001), but CXCL5+ cells are also occasionally
found scattered in the healthy colon (Z’Graggen et al, 1997),
indicating highly localized induction of this cytokine. DEGs
associated with differentially co-occurring CXCL5 interactions
(Fig. EV4A) indicate a strong SOX2 and HIF1-α transcriptional
signature and enrichment of gene sets associated with innate
immunity and neutrophil degranulation (Fig. EV4B). Interestingly,
SOX2-induced expression of CXCL5 was previously linked to
neutrophil recruitment in non-small-cell lung cancer (Mollaoglu
et al, 2018). Whether this signaling axis is involved in IBD is largely

Figure 2. M cells and fibroblasts co-occur in the inflamed human colon.

(A, B) Diagonal matrix plot depicting cell type co-occurrences in homeostatic CCs (left) and inflammatory CCs (right). Co-occurrence is positive when observed more
frequently than expected (P < 0.05), random when there is no significant difference, negative when observed less than expected (P < 0.05). Underlying statistical analysis
outlined in “Methods.” (C) Cell type co-occurrences in inflammatory CCs, shown as a network. Nodes are cell types, edges indicate positive co-occurrences, colored by
condition. (D) M cell co-occurrence in spatially restricted cellular neighborhoods (k= 5) quantified separately for each ROI from Molecular Cartography data. (E) SPIB
(M cells) and PDGFRA/PDPN (fibroblasts and inflammatory fibroblasts) expression in inflamed and non-inflamed colon as shown by Molecular Cartography. Dashed lines
indicate areas of elevated SPIB (blue lines) or PDGFRA/PDPN (green lines) expression. Scale bar 20 μm. (F) M cell (SPIB+ segments) and fibroblasts (PDGFRA/PDPN+
segments) relative abundance in 6 UC patient samples, as measured by Molecular Cartography. Boxplots indicate median, first and third quartiles. Whiskers extend from
the hinges to the largest value no further than 1.5× the inter-quartile range. Data points beyond the end of the whiskers are plotted individually. n= 6 samples from 4
patients. n.s. non significant, unpaired Wilcoxon test. (G) Spatial rearrangement of cells during inflammation leads to positive co-occurrence. Source data are available
online for this figure.
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unknown. Moreover, the observation of scattered CXCL5+ crypts
in both inflamed and non-inflamed samples may indicate that
aberrant, localized CXCL5 expression is an early event in UC
pathogenesis, and warrants further investigation.

These data suggest that differential co-occurrence analysis of LR
genes grants insights into concerted tissue transcriptional responses
that only arise in specific cellular neighborhoods. While spatial co-
occurrence does not necessarily represent physical binding nor
molecular interaction, ligands and their cognate receptors are
bound to be co-occurring in close spatial proximity for paracrine
and juxtacrine signaling. Whether differential co-occurrence
analysis can be used to predict novel putative LR pairs based on
their spatial associations in tissues remains to be orthogonally
validated.

Differential co-occurrence reveals an altered
crypt surfaceome

Inflammation may not only generate new CNs, but also alter the
architecture of existing ones by changing the way the same cell
types interact with each other. This would be reflected in altered
patterns of positively co-occurring LR pairs. We tested this
hypothesis by analyzing the homeostatic CC6, which is present
in both inflamed and non-inflamed samples, and maps onto the
lower colonic crypt, where epithelial stem cells reside (Fig. 1E–G).
We computed differential LR co-occurrence between inflamed and
non-inflamed spots of CC6. 9 pair-wise LR combinations were
differentially co-occurring in inflamed samples (FDRinflamed < 0.05
and FDRnon-inflamed > 0.05, differential co-occurrence calculated as
FDRinflamed− FDRnon-inflamed) (Fig. 4D). As above, by performing
this analysis across conditions but within the same CC, we filter
out effects arising from different cell type compositions, and retain
the differential interactions of the same groups of cells. Specifically,
we detected differential co-occurrence of Complement 3 (C3) with
MDK and SAA1, all of which have roles in the recruitment of
leukocytes (Daffern et al, 1995; Weckbach et al, 2014; De Buck
et al, 2018; Davis et al, 2021). In addition, inflammation-specific
differential co-occurrence of C3 and trefoil factor 1 (TFF1) might
indicate a tissue-protective program, as both factors were
implicated in epithelial maintenance (Kulkarni et al, 2019;
Hoffmann, 2020).

The differentially co-occurring LR network centered around
SECTM1 (Secreted And Transmembrane 1) similarly suggests a
balance between immune cell recruitment and tissue protection.
SECMT1 is a soluble protein highly expressed by crypt-top
colonocytes (mostly in CC1), that exerts immunomodulatory and
chemotactic functions via CD7 on T cells (Wang et al, 2012;
Huyton et al, 2011; Wang et al, 2014). In CC6 (crypt bottom), we
observed its expression mostly in DCs (CLEC10A+) and neutro-
phils (ITGAM+) (Fig. EV4C) but its expression was also recently

reported in intestinal epithelial stem cells (Biton et al, 2018).
Interestingly, among DEGs associated with SECTM1-interactions
are several CEACAM genes, encoding for epithelial-derived
adhesion proteins involved in immune modulation and colitis
(Gray-Owen and Blumberg, 2006; Kelleher et al, 2019; Fig. 4E).
Collectively, SECTM1-interactions-associated DEGs are enriched in
genes involved in the assembly of hemidesmosomes, whose
integrity protects the epithelium against inflammation (De
Arcangelis et al, 2017; Fig. EV4D). This data suggests that in
inflamed colon areas, the crypt epithelium collectively responds to
insults by secreting tissue protective factors and by enhancing cell
adhesion. Interestingly, SECTM1 is differentially expressed between
pediatric responders and nonresponders to anti-TNF therapy for
IBD (Salvador-Martín et al, 2021). However, while the immuno-
modulatory function of this protein in cancer has been the focus of
several studies (Wang et al, 2008, 2012, 2014), its role in colitis is
largely unknown.

Repair pathways are conserved across species

Finally, we applied co-occurrence analysis to an independent Visium
dataset of the healing mouse colon (Parigi et al, 2022; Fig. 5A). As no
matched scRNAseq dataset was available, we deconvoluted spots in a
reference-free manner using topic modeling (see “Methods”), and
clustered the deconvoluted matrix in 8 CCs (Fig. 5B). In both the
human and murine dataset, we identified LR pairs that are
differentially co-occurring in inflammatory vs homeostatic CCs
(FDRinflammatory_CCs < 0.05 and FDRhomeostatic_CCs > 0.05). Interest-
ingly, we found several orthologous LR pairs that were differentially
co-occurring in both mouse and human inflammatory CCs, and whose
molecular interaction is also reported in PPI databases (Fig. 5C).
Several of those pairs involve TNFRSF1B, encoding for the tumor
necrosis factor receptor 2, and a genetic risk factor for colitis.
Indeed, polymorphisms in TNFRSF1B are associated with
increased susceptibility to IBD (Ferguson et al, 2009; Sashio et al,
2002; Nagaishi et al, 2016). However, little is known about the
function of this gene in inflammation (Punit et al, 2015). Thanks to
our comprehensive IBD scRNAseq reference, we could map the
expression of TNFRSF1B in humans to DCs, monocytes, macro-
phages and, most prominently, neutrophils (Fig. 5D). Recently,
TLR2 signaling in colitis was linked to increased extracellular trap
formation by neutrophils (Neuenfeldt et al, 2022), which are
emerging as key cellular players IBD (Wéra et al, 2016). However,
to what extent this pathway contributes to tissue damage during
IBD is still unknown, and highlights the need for cellular atlases
that include granulocytes.

Collectively, our comparative analysis in human and mouse
colitis suggests that repair CNs are shared across species, and
illustrates the ability of ISCHIA to identify co-occurring LR pairs
from ST data also in the absence of a single-cell reference.

Figure 3. Reconstructing cellular networks from cell type co-occurrence, LR co-occurrence and corresponding transcriptomic signatures.

(A) Top 20 positively co-occurring LR pairs in inflammatory CC5 (observed co-occurrence > expected co-occurrence, FDR < 0.05). Ranking based on Spearman correlation
of expression of ligand and receptor genes within spots. (B) Expected vs observed co-occurrence (spot count) of ADAM15 and ITGA5, and VEGFA and PDGFRA. (C) Spatial
rearrangement of cells induces positive co-occurrence of LR pairs even if expression levels are unaltered. (D) SPIB, PDGFRA/PDPN, ADAM15 and ITGA5 expression in
inflamed and non-inflamed colon as shown by Molecular Cartography. Dashed lines indicate areas of elevated SPIB (blue) or PDGFRA/PDPN (green) expression. Scale bar
20 μm. (E) Proposed cellular network in inflammatory CCs. (F, G) DEGs associated with ITGA5-ADAM15 and VEGFA-PDGFRA pairs. Non-parametric Wilcoxon rank
sum test.
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Figure 4. Differential co-occurrence identifies niche and condition-specific interactomes.

(A) Network representation of the CC5-specific differentially co-occurring interactome. Purple and pink edges indicate pairwise co-occurrences in more or less than
20 spots, respectively. Green edges indicate pairwise co-occurrences between LRs predicted to interact by PPI databases NicheNet (Browaeys et al, 2020), OmniPath
(Türei et al, 2016) or CellTalkDB (Shao et al, 2021). (B) SEMA3C co-occurrence network visualized by Molecular Cartography. Scale bar, 20 μm. (C) CXCL5 and ITGAM
expression in non-inflamed and inflamed colon samples. Scale bar, 20 μm. (D) Top, Network representation of differentially co-occurring LR genes within inflamed
CC6 spots. Bottom, differential co-occurrence score calculated as FDRinflamed− FDRnon-inflamed. (E) Heatmap of SECTM1-interaction-associated DEGs.
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Discussion

In community ecology, co-occurrence analysis is the study of
distributions of species at defined spatial locations (Veech, 2013).
While the link between co-occurrence and biotic interactions is still
debated, modeling of presence–absence data has been instrumental
in understanding the rules of assembly of ecological communities
(Blanchet et al, 2020). Here, we propose the use of co-occurrence
analysis for spatial transcriptomics data. We calculated spatial co-
occurrence of cell types and LR genes in Visium data of human UC
colon resections. Thereby, we identified a M cell-fibroblast network
in inflamed regions of UC patients, which we validated at single-cell
resolution by means of Molecular Cartography. We further showed
that co-occurrence analysis can successfully be applied to
hybridization-based ST data, further refining predictions from

Visium data by analyzing small cellular networks of, for
example, k = 5 neighboring cells.

ISCHIA differs from other analysis tools for Visium data in that it
predicts CNs within spots and not across spots. As proximity is a
prerequisite for juxtacrine and paracrine cell-cell communication,
which in turn constitutes the basis for the coordinated function of CNs,
we hypothesized that CNs would best be reconstructed within
individual spots, rather than across neighboring spots. To increase
robustness, spots are grouped in clusters of similar cellular composition,
termed composition classes. Composition-based clustering of the tissue
represents a major advantage of this method, and distinguishes it from
other methods, such as Squidpy (Palla et al, 2022) or Giotto (Del Rossi
et al, 2022), that assign an identity to each spot based on marker gene
expression or on the most abundant cell type. In addition to preserving
the complexity of the cell type composition of the analyzed tissue,

inflammatory CC6 homeostatic CC5

CC1
CC2
CC3
CC4
CC5
CC6
CC7
CC8

Visium data
Reference-free

spot deconvolution
Division of tissue

in composition classes

1

3

5

B 
ce

lls
CD

4+  T
 c

el
ls

CD
8+  T

 c
el

ls
D

C
En

do
th

el
ia

l c
el

ls
Co

lo
no

cy
te

s

Fi
br

ob
la

st
s

G
ob

le
t c

el
ls

IL
Cs

In
fla

m
m

at
or

y 
Fi

br
ob

la
st

s
M

ac
ro

ph
ag

es
M

as
t c

el
ls

M
-c

el
ls

M
on

oc
yt

es
N

eu
tr

op
hi

ls
N

K 
ce

lls
Pl

as
m

a 
ce

lls TA
T re

g c
el

ls

Tu
ft

 c
el

ls

Ex
pr

es
si

on
 L

ev
el

d0
 (u

nt
re

at
ed

)
d1

4 
(D

SS
)

DSS_Topic_1

DSS_Topic_2

DSS_Topic_3

DSS_Topic_4

DSS_Topic_5

DSS_Topic_6

DSS_Topic_7

DSS_Topic_8

DSS_Topic_9

DSS_Topic_10

DSS_Topic_11

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
8

_

_

_

_

_

_

_

_

_

_

_

_

_

0.
5

0.
0

0.
5

differential co-occurrence score (FDRhomeostatic_CCs – FDRinflammatory_CCs)

L−
R 

in
te

ra
ct

io
n

DSSIBD

Figure 5. ISCHIA identifies conserved co-occurring LR pairs.

(A) Visium data from Parigi et al (2022), representing untreated (d0) and regenerating (d14 post DSS) mouse colon. Left: hematoxylin–eosin staining, center: reference-
free spot deconvolution, right: division of tissue in composition classes. (B) Topic distribution in inflammatory and homeostatic CCs in mouse colon. Boxplots indicate
median, first and third quartiles. Whiskers extend from the hinges to the largest value no further than 1.5× the inter-quartile range. Data points beyond the end of the
whiskers are plotted individually. n= 2 samples. (C) Common differentially co-occurring LR pairs with FDRinflammatory_CCs < 0.05 and FDRhomeostatic_CCs > 0.05 in both human
IBD (left) and mouse DSS (right) Visium data. X-axis shows the differential co-occurrence score, calculated as FDRhomeostatic_CCs− FDRinflammatory_CCs. LR pairs involving
TNFRSF1B shown in red. (D) Expression of TNFRSF1B in human IBD scRNAseq reference. n= 51 patients.
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composition-based clustering of spots also confers robustness towards
variations in expression levels due to batch effects. Indeed, other spatial
analysis methods such as Starfysh (He et al, 2022) have found that
identifying inter-sample commonalities using composition-based
clusters is easier than identifying common transcriptome-based clusters
between samples. Still, batch analysis and, if needed, correction of the
ST data is recommended prior to analysis with ISCHIA. Composition-
based clustering of spots further allows to restrict downstream analysis
to similar mixtures of cells, filtering out transcriptome heterogeneity
arising from distinct cellular compositions, which might act as a
confounder variable when performing differential gene expression or
cell-cell interaction predictions.

To reconstruct cellular neighborhoods, ISCHIA performs co-
occurrence analysis of cell types within CCs, leveraging the inherent
proximity of mixed transcriptomes within individual spots. Hence, the
cell types within the spots, rather than the spots themselves, are the
nodes of the CN. This is distinct from other tools which build a
neighborhood graph using spatial coordinates of spots and a fixed
number of adjacent spots (Del Rossi et al, 2022; He et al, 2022; Palla
et al, 2022), thereby ignoring the missing data between spots as well as
the multicellular nature of each spot. ISCHIA’s approach allows for
reconstruction of much smaller CNs, operating in close spatial
proximity, a prerequisite for juxtacrine and paracrine signaling
between cells. ISCHIA further predicts LR interaction as edges
connecting cell types within spots, not across spots. Finally, by
integrating co-occurrence of cell types, co-occurrence of LR pairs, and
associated gene signatures, ISCHIA infers CN function.

Finally, we propose differential co-occurrence analysis of LR genes
as a predictive tool to infer concerted and spatially restricted tissue
responses. These can be envisioned as “conversations” between cells in
a CN, which may vary according to the composition of the CN, or the
environmental condition the CN is in (e.g., inflamed vs non-inflamed
colon). We define differential co-occurrence as a condition- or niche-
specific positive co-occurrence between LR genes. Whether spatial
proximity and differential co-occurrence of LR genes can be employed,
in conjunction with protein-protein interaction predictions, for the
identification of novel putative interacting pairs, warrants further
investigation.

Collectively, our study shows that co-occurrence analysis can be
applied to both sequencing- and imaging-based ST data, to refine
interaction predictions from scRNAseq-based analysis. Co-occurrence
analysis is complementary to differential gene expression, as it does
not depend on the abundance of a given cell type or transcript, but
rather on their spatial in the tissue. Co-occurrence analysis on spatial
transcriptomics data can be used to chart the distribution and infer the
interactions of cell types and transcripts, revealing disease-specific
cellular communities, and predicting juxtacrine and paracrine
signaling. It therefore represents a powerful tool for hypothesis-
generation from spatial transcriptomics data.

Methods

Data analyzed in the study

scRNAseq
scRNAseq data from IBD patients was obtained from published
datasets (Smillie et al, 2019; Martin et al, 2019; Handler et al, 2023)
or collected in house with 10× Genomics according to the

manufacturer’s instructions (2 UC patients, 2 suspected IBD
patients, 4 healthy controls).

10× Visium
Fresh frozen UC colon samples were sectioned onto a 10× Visium
Spatial Gene expression slide. cDNA libraries were generated
according to the manufacturer’s instructions. After methanol
fixation, tissue morphology was assessed by hematoxylin and eosin
(H&E) staining. The permeabilization time of 50 min was assessed
with the Tissue Optimization Protocol. Lysis, reverse transcription,
second strand synthesis and cDNA denaturation were performed
on the slide. cDNA was then amplified by PCR using the cycle
number identified by qPCR and then subjected to end repair, A-
tailing, adapter ligation and indexing to generate sequencing
libraries. Quality and quantity of all libraries were assessed using
the dsDNA high-sensitivity (HS) kit (Life Technologies #Q32854)
on a Qubit 4 fluorometer (Thermo Fisher) and high sensitivity
D1000 reagents and tapes (Agilent #5067-5585, #5067-5584) on a
TapeStation 4200 system (Agilent Technologies). Paired-end
sequencing was performed on a NovaSeq 6000 system (Illumina)
using NovaSeq SP Reagent Kits (100 cycles) v1.5. Data was pre-
processed using Space Ranger (v1.2.0) (10× Genomics) with
GRCm38 v2020-A genecode. Published Visium data were obtained
from 10× Genomics (mouse brain) and (Parigi et al, 2022, DSS-
treated murine colon).

Molecular Cartography
Fresh frozen UC colon samples were sectioned onto coverslips and
processed by Resolve Biosciences. Cellpose v. 2.0.4 (Stringer et al,
2021) was used to segment nuclei in the DAPI images with the
pretrained nuclei model and flow_threshold 0.5, cellprob_threshold
-0.2. Using the “expand_labels” function in scikit-image, the
nuclear segments were then expanded by 10 pixels (1.38 µm) and
transcripts were subsequently assigned to the expanded segments.
Segments with less than 3 molecules or 3 genes detected were
removed from the analysis.

Integration and annotation of scRNAseq data

For every scRNAseq dataset, we performed log normalization with
scale factor 10,000. The top 2000 variable genes were selected for
each dataset using the “vst” method in Seurat (Butler et al, 2018).
Next, we used the FindIntegrationAnchors function to align shared
cellular populations across datasets by finding pairs of cells that are
in matching states. The identified anchors are then used in the
IntegrateData function to calculate an integrated (batch-corrected)
expression matrix for all cells, enabling joint analysis. We used the
labels provided by (Smillie et al, 2019) as reference for automatic
annotation of all the clusters in the integrated data with the
TransferData function from Seurat. We then manually grouped the
clusters into 20 major cell types (Fig. EV3A). Granulocytes were
directly retrieved from the Handler et al (2023) dataset.

Deconvolution of Visium spots

Reference-based deconvolution
We used the integrated scRNAseq reference to deconvolute human
IBD Visium spot data with SPOTlight (Elosua-Bayes et al, 2021), a
computational tool that enables the integration of ST and scRNA-
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seq data using a seeded non-negative matrix factorization (NMF)
regression. The deconvolution function was run with default
parameters. The brain coronal Visium sample was deconvoluted
with RCTD (Cable et al, 2022) with default parameters.

Reference-free deconvolution
Mouse colitis Visium data was deconvoluted in a reference-free
manner with STdeconvolute (Miller et al, 2022), which builds on
latent Drichlet allocation (LDA). Given a count matrix of gene
expression in multicellular Visium spots, STdeconvolute applies
LDA to infer the putative transcriptional profile for each cell type
and the proportional representation of each cell type in each multi-
cellular spot. The deconvolution function was run with default
parameters.

Co-occurrence analysis on Visium data

ISCHIA uses spatial co-occurrence, a probabilistic approach inspired
by species co-occurrence models in ecology that assigns a measurable
property for spatial proximity between cell types or transcripts.
Observed co-occurrence is quantified as the number of spatial spots
where two cell types or genes co-occur. Observed co-occurrence is
compared to the expected co-occurrence, where the latter is the product
of the two cell types’ probability of occurrence, multiplied by the
number of spots: E (N cell type 1, 2)= P (cell type 1) × P (cell type 2) × N.

This probabilistic model uses combinatorics to determine
whether the observed frequency of co-occurrence is significantly
greater than expected (positive association), significantly smaller
than expected (negative association), or not significantly different
than expected (random association). Specifically, this analysis
calculates, for each cell type or transcript pair, the exact probability
of the observed co-occurrence to be greater than (P(gt)) or less than
(P(lt)) the expected co-occurrence. Importantly, this analysis is
distribution-free and the results can be interpreted and reported as
P values, without reference to a statistic. Therefore, given two cell
types in a dataset, a P(lt) ≤ α suggests that those two species are
negatively associated (where P(lt) = $p_lt and α = 0.05).

To define the cell type composition of each spot, the spot
transcriptional profile is deconvoluted. The resulting spot cell type/
topic probability matrix is then converted to a binary
presence–absence matrix by thresholding (probability P > 0.1 =
presence). For LR pairs, the presence–absence matrix is derived by
their expression. This matrix is then used as an input for co-
occurrence calculation with the R package cooccur (Griffith et al,
2016): we calculate the probability of selecting a spot that has cell
type #1 given that it already has cell type #2.

The probability that the two cell types co-occur at exactly j
number of spots is given by

Pj ¼
N1

j

� �
´

N � N1

N2 � j

� �

N

N2

� �

For j = 1 to N1 spots: N1 = number of spots where cell type #1 occurs;
N2 = number of spots where cell type #2 occurs; N = total number of
spots sampled (where both cell types could occur).

The term,
N1

j

� �
represents the number of ways of selecting j

spots that have cell type #1 given that there are N1 such spots in the

“population” of all spots.

The term
N � N1

N2 � j

� �
represents the number of ways of

selecting N2 − j spots that have cell type #2 but not cell type #1

given that there are N − N1 such spots.

The numerator
N1

j

� �
´ N � N1

N2 � j

� �
gives the total number of

ways of selecting j spots that have cell types #1 and #2. The

denominator
N
N2

� �
represents the total number of ways that N2

number of spots could be obtained out of a total of N spots. Thus
the equation is giving the proportion of the N2 spots that also have
cell types #1 under the condition that the two cell types co-occur at
j spots.

The spatial co-occurrence for LR pairs follows the same
principle (presence–absence matrix based on count >1). Addition-
ally, ISCHIA ranks LR pairs by calculating the Spearman
correlation of expression between the ligand and receptor gene in
each spatial spot, expecting that if a LR pair is interacting, the
expression of the ligand and receptor should correlate as well. For
the calculation of LR-associated DEGs, ISCHIA computes differ-
ential gene expression between spots that are double positive or
double negative for a given LR pair. The significant DEGs are then
used for pathway enrichment with any tool of choice, such as
EnrichR (https://bio.tools/enrichr). We employed a permutation-
based approach to assess the significance of the obtained DEGs.
Specifically, we generated a null distribution of DEGs (noise
estimation) by 1000-fold random sampling of spots into two
groups, and calculating DEGs between these groups. Next FDR-
adjusted Monte Carlo P values were calculated for each LR-
associated DEG, comparing the initially computed P values DEG
from with the null distribution, and subsequently adjusting for
multiple testing. DEGs with Monte Carlo FDR < 0.05 are likely
specific to the presence of a given LR and unlikely to result from
random spot sampling.

Co-occurrence analysis on Molecular Cartography data

We applied co-occurrence analysis on Molecular Cartography data
by transforming the x,y coordinates of the segmented cells into
cellular neighborhoods. To do so, we calculated the K-nearest
neighbor graph of the x,y coordinates where k = 5. We applied
ISCHIA’s co-occurrence analysis on the presence–absence matrix
of calculated CNs and cell types as explained above.

Data availability

The datasets and computer code produced in this study are
available in the following databases: Spatial transcriptomics data:
Zenodo repository https://doi.org/10.5281/zenodo.7589581. Code:
ati-lz/ISCHIA: Framework for analysis of cell-types and Ligand-
Receptor cooccurrences (github.com).

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00006-5.
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Expanded View Figures

Expanded View Figures
Figure EV1. Composition-aware clustering and cell type co-occurrence in mouse brain Visium data.

(A) A Visium sample of a mouse brain coronal section (10× Genomics) is deconvoluted using a scRNAseq reference (Tasic et al, 2016), yielding 5 composition classes.
Scale bar, 1 mm. (B) Diagonal matrix plot depicting cell type co-occurrences in every CC. Co-occurrence is positive when observed more frequently than expected
(P < 0.05), random when there is no significant difference, negative when observed less than expected (P < 0.05). Underlying statistical analysis outlined in “Methods.”
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Figure EV2. Composition-aware clustering of human colon Visium data.

(A) Hematoxylin–eosin staining of colon resections from four samples (a total of 3 ulcerative colitis patients, 2 inflamed and 2 not inflamed samples) analyzed by Visium
ST (10× Genomics). Scale bar, 1 mm. (B) Integration of published and in house scRNAseq datasets yields a comprehensive IBD reference with a total of 51 patients. Dots
represent single cells, colored by cell type. (C) Percent of variance of the deconvolution matrix explained by the first 10 principal components. PCs 1–4 explain more than
80% of the variance. (D) PC plot showing no association of any sample with a particular principal component. (E) Dimensionality reduction of spots colored by sample. (F)
Percentage of CC per sample.
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Figure EV3. Co-occurring LR pairs are associated with a transcriptional signature.

(A) Expression of cell type markers (PDPN, PDGFRA, SPIB) and LR pairs (PDGFRA, VEGFA, ITGA5, ADAM15) by fibroblasts and M cells in integrated IBD scRNAseq
reference. (B) Differential gene expression within CC5, inflamed vs non-inflamed (4 samples, 3 patients). Non-parametric Wilcoxon rank sum test. (C) Reactome and NCI
Nature Interaction Database pathway enrichment of ITGA5-ADAM15-associated genes. (D) Reactome and NCI Nature Interaction Database pathway enrichment of
VEGFA-PDGFRA-associated genes.
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Figure EV4. Differential co-occurrence analysis of the surfaceome reveals concerted tissue responses.

(A) CXCL5-interactions associated DEGs. Non-parametric Wilcoxon rank sum test. (B) Reactome, ChiP-X Enrichment Analysis and NCI Nature pathway enrichment of
shared CXCL5-associated DEGs. (C) Molecular Cartography image of SECTM1, ITGAM (neutrophils) and CLEC10A (DCs) expression. Scale bar, 20 μm. (D) Reactome and
NCI Nature pathway enrichment of SECTM1-associated DEGs.
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