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Abstract

The widespread practices of data collection and tracking on the internet
drive the business models of numerous web services, which was demon-
strated by numerous prior research. Despite the emergence of privacy
regulations and technologies, their impact on data collection practices
remains understudied. In a continuously evolving online landscape,
unlike long-term studies, one-time web measurements have several
limitations in their meaningfulness.

The majority of tracking studies require collecting specific data that
existing internet archiving initiatives do omit. In contrast, the Privacy
Observatory introduced in this thesis orchestrates long-term, regular
crawls and measurements. We reimplement five influential privacy mea-
surement studies, and evaluate their reproducibility, by using theoretical
criteria from prior work, which we show are not guaranteeing practical
aspects of reproducibility. Our approach relies on containerised Docker
images and standardised input/output interfaces, which not only fa-
cilitates study replication but also reveals six fundamental principles
crucial for ensuring the long-term replicability of such studies by future
researchers.

By reimplementing these studies on the Privacy Observatory and exe-
cuting them regularly, we enable continuous observation of trends in
privacy regulation compliance within an immutable execution environ-
ment, offering insights into long-term developments in internet privacy
practices.
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Chapter 1

Introduction

The replication crisis is a growing concern in the scientific community, high-
lighting doubts about the reliability and replicability of research findings,
particularly in psychology, social sciences, and biomedical research as pointed
out by Moones et al. [1]. This phenomenon has sparked questions about
the credibility of scientific research, and whilst it had a disruptive impact in
other disciplines in 2010, computer science remained largely unaffected.

As highlighted by Cockburn et al. [2], Peter J. Denning demanded in 1980
that computer science should live up to the traditional standards of science
and that replication and repeatability in the field of computer science is
of significant importance. Especially in a dynamic environment like the
internet, the slightest modifications in the configuration of measurement
setups can have huge implications on the observed behaviour of websites, as
Demir et al. [3] showed. Whilst requirements on how to enable and ensure
repeatability for crawling studies were researched and discussed in the past
by Demir et al. [4], these were not evaluated in practice and a common and
unified approach on how to fulfil them has not yet been widely adopted.

In comparison to other disciplines, computer science leverages the use of
source code to produce or generate measurements or results. Considering
the subject of reproducibility, this source code often plays a central role
in the efforts of reproducing past results, thus only as late as 2017, the
ACSAC conference enabled artefact submission.1 Benzel noted that article [5],
conferences like the USENIX Security nowadays go as far as requiring an
applicant to answer 23 detailed questions and a set of complex descriptions
regarding their study execution environment. This creates an additional
significant workload due to the level of detail and the large number of items
required for an artefact submission and induces an overhead for assessing
the artefacts.

1https://www.acsac.org/2017/cfp/
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Our work

In this thesis, we evaluate and address the reproducibility issues in the field
of web privacy measurements. First, we developed the Privacy Observatory
platform, which simplifies the maintenance of long-term studies. This plat-
form streamlines the process of regularly repeated crawls and their respective
post-processing in order to verify long-term trends over the years with a
stable configuration of the study environment. Secondly, we reproduce five
influential privacy measurement studies, evaluating both the suitability of
our Privacy Observatory platform and the reproducibility of these studies.

The central idea of our approach focuses on the use of containerised images,
in particular Docker Images. Source code that is not containerised leaves
space for several factors negatively influencing reproducibility, such as variety
in deployment configuration or versions of used programs and libraries. In
contrast, Docker containers freeze2 the software and configuration at the point
of the image build. This is essential for web crawling which has external
dependencies, e.g. the existence of old compatible packages in software
repositories. In addition, containerisation simplifies the effort to keep a clean
browsing environment for each crawl, further reducing potential sources of
bias like temporary files or collected cookies which have a negative impact
on the reproducibility efforts.

Whilst Docker and distributed systems like Kubernetes found wide applica-
tion in the private sector, these technologies are also well understood in the
academic community, even though their use is only rarely found in artefacts
of web crawling studies. In 2022, first conferences like the USENIX Security
started recommending the submission of Docker images as artefacts, yet not
requiring it.3 However, the call for artefacts of USENIX Security 2023 does
no longer contain this mentioned recommendation.4

2Freeze in this context means that container images contain a fixed source code and
execution environment of an application, e.g. a web crawler.

3https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts
4https://www.usenix.org/conference/usenixsecurity23/call-for-artifacts
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Contributions

We propose containerisation as a simple method to improve reproducibility
and illustrate the improvement of this method both theoretically and practi-
cally. We have engineered an orchestration platform, the Privacy Observatory,
which facilitates the orchestration of long-term studies as well as their post-
processing. Consisting of several components, which are explained in depth
in this work, the complete source codes, as well as the above-mentioned
reimplemented case studies are provided as artefacts.

In this work, the theoretical criteria by Demir et al. [4] are assessed, showing
that the majority of them is satisfied by containerised artefacts. In addition,
we practically evaluate five studies by containerising them, showing their
suitability for such effort. Furthermore, we found that while some of these
studies followed the principles by Demir et al., they still face severe troubles
with reproducibility, which is not the case for a containerised system.

We show that source code artefacts from published studies are not designed
to guarantee long-term functionality. We observe issues that arise from
integrating static certificates with a fixed expiry date. Additionally, multiple
assessed published artefacts contain untested source code with references to
missing files. We discovered that post-processing procedures are significantly
less documented, let alone automated, as the web crawler itself is. In many
cases of our scoped case studies, these scripts were not publicly available and
needed to be inquired by reaching out to the original authors directly.
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Thesis outline

In this master thesis report, in Chapter 2, we first introduce the limita-
tions regarding the meaningfulness of large-scale web measurements and
induced hurdles with repetitive crawls performed over a long period of
time. Additionally, we also define the scopes studies, that we selected for
reimplementation and replication.

In Chapter 3 we describe the engineered generic study interface, which
our containerised approach is based on, followed by the related usage of
these standardised Docker images on the Privacy Observatory in Chapter 4.
Furthermore, the individual components of the platform are highlighted and
explained in detail.

We state all gathered observations regarding our reimplementation work in
Chapter 5 in the form of practical reimplementation principles. The results of
the performed long-term analysis on the Privacy Observatory are discussed
in Chapter 6.

Finally, we discuss our work in Chapter 7, highlighting all identified risks
stemming from empirical privacy research as well as all discovered limitations
currently present on the Privacy Observatory platform and conclude this
master thesis in Chapter 8.
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Chapter 2

Background

In this chapter, we introduce some useful background information concerning
the impact and significance of long-term internet studies and we discuss
the present state of their artefacts. Additionally, we highlight the progress,
that has already been made in the direction of well-defined study execution
environments and introduce five influential publications, which we selected
for reimplementation and replication.

On the internet, data collection and tracking are ubiquitous and essential for
the business of many web services. Already in 2012, Roesner et al. [6] were
able to detect over 500 unique trackers by crawling the Alexa 500 Top Websites
published on September 19, 2011, and found that most commercial pages are
tracked by multiple parties. As a response, both privacy regulations1 and
privacy enhancing technologies emerge. It remains a cat&mouse game. Data
collection services circumvent these protective technologies by introducing
new methods of tracking like fingerprinting-based approaches as Englehardt
et al. [7] observed by analysing one million websites by leveraging the
OpenWPM framework. Furthermore, Acar et al. [8] deduced that 5% of
the top 100,000 websites employ canvas-based fingerprinting for persistent
tracking without the use of cookies.

As the web is an ever-evolving environment, the meaningfulness of large-
scale web measurements only conducted at a single point in time is limited
compared to studies spanning over a larger time interval. To address this,
web archiving projects such as the HTTPArchive or the Internet Archive
emerged. Trevisan et al. [9, 10] used the Internet Archive to perform a long-
term analysis of privacy policies over time. Whilst access to these archives is
often simpler and less time-consuming than building a crawler and tracing
its results over several months, their snapshot limitations prevent researchers
from analysing browser states like user tracking behaviour, since often the

1https://gdpr-info.eu/
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2.1. Related work

old third-party tracking APIs are broken and unusable. Additionally, the
coverage of the mentioned large-scale data collections focuses only on popular
websites.

As an alternative data collection strategy, researchers like Hils et al. [11]
perform repetitive crawls to perform measurements over a long period of
time. In comparison to using large data collections, this often leads to a wide
range of yet mostly unexplored hurdles, like missing long-term support and
other time-induced challenges. Dabrowski et al. [12] followed this approach
when comparing cookie privacy violations in 2019 using a Chrome-based
crawler with the situation in 2016 using a Firefox-based one. The question
arises as, to whether these results are comparable at all, due to the changed
study execution environment.

In this thesis, we focus on how specific approaches can overcome issues
induced by long-term experiments, after giving a theoretical background in
this chapter as well as defining the scope of case studies, on which we are
going to measure the effectiveness of our reproducibility efforts.

2.1 Related work

Demir et al. [4] explored the theoretical requirements of web measurement
studies’ reproducibility by surveying 117 recent research papers to derive best
practices for web-based measurement studies. A total of 18 documentation
criteria were specified to ensure good reproducibility of a work. These
criteria are grouped into categories and include requirements regarding the
specification of the dataset (C1 - C4), the applications and programs used for
running the crawler (C10), the specific crawling environment (C11 - C14), as
well as how post-processing is performed in the evaluation category (C15 -
C18). While Demir et al. studied the problem on a theoretical level, our work
directly evaluates challenges faced by reproducing multiple measurement
studies. We reuse the definitions from Demir et al. [4, Sec. 2] for the following
key terms used throughout this thesis:

Repeatability means the same team using the same experimental setup
reperforms a study,

Reproducibility denotes a different team using the original experimental
setup, and

Replicability means different teams are using a different experimental setup
to recreate the measurements.

In this work, we propose a practical implementation to address multiple
of Demir et al.’s criteria. We will evaluate the efficiency of this method in
Chapter 5, and comment on the completeness of these criteria.
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2.1. Related work

Table 2.1: Summary of the effort needed to reimplement the publications, the reused compo-
nents of the original artefacts of the publications and the status of the reimplementation (S =
successfull?).

Publication Effort Reused Components S
CookieBlock 16h Crawling procedure, crawler framework &

post-processing code
3

CookieHunter 51h 7

OmniCrawl 41h Crawling procedure, crawler framework &
post-processing code

3

AnymIP 17h Crawling procedure 3

LeakyForms 36h Crawling procedure, crawler framework &
post-processing code

3

Besides stating reimplementation criteria, Demir et al. [3] additionally re-
searched the impact of a modified execution environment. By using five
different measurement setups, they crawled a total of 1.7 million websites
and built the experienced dependency tree of the loaded resources and com-
ponents. Their measurements indicate a high degree of similarity considering
the first-party nodes of the dependency tree, while third-party components,
which are of most interest in privacy-focused studies, experienced a substan-
tial deviation using the different crawling setups.

We assessed the compliance with the above mentioned 18 documentation
criteria of four influential privacy measurement studies mentioned below.
Moreover, we reproduced these studies to determine how measurements
hold over time by using a modified containerised crawling setup.

2.1.1 Reproduced studies

A summary of all scoped reimplemented studies and reused components
from the original artefacts is displayed in Table 2.1. We select publications of
different scopes to investigate the reproducibility of a wide range of methods
and to cover different crawling environments as use cases. The measurement
methods range from simple Python requests to sophisticated frameworks
such as OpenWPM using the Selenium library. The latter in particular has
become increasingly popular in privacy measurement studies in recent years.2

Below, we present an overview of the individual studies selected for reimple-
mentation, together with the justification why they were chosen.

2https://scholar.google.com/scholar?q=OpenWPM
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2.1. Related work

CookieBlock

Bollinger et al. [13] (CookieBlock) analyse the compliance of websites with
the European Union’s General Data Protection Regulation (GDPR), which
requires websites to inform users about personal data collection and request
consent for cookies. The study used a Python-based crawler and some
post-processing scripts to directly generate measurement statistics.

The publication was originally written by Dino Bollinger from ETH Zurich
and was our first study to reimplement, since it won the best artefact reward
of the USENIX 2022 conference, including all three artefact badges available,
functional, and reproduced. These indicate a good quality and availability
of the source code and enable an easy containerisation of the source code
and the study environment. Additionally, the combination of different
crawling methods, fast Python scripts for pretesting and a detailed scan
using OpenWPM allowed us to practice the Docker approach with different
technologies. Reimplementing OpenWPM was of particular interest, since
this framework is not designed as a customisable library but instead uses a
fork-and-develop approach.

Part of the mentioned study is the development of a browser extension,
whose reproducibility is out of scope of this thesis.

CookieHunter

New security mechanisms like the HTTP Strict Transport Security (HSTS)
were introduced by IETF, which can be triggered by website owners through
the use of HTTP headers to enable security functionalities of browsers and to
protect the session of the user. Drakonakis et al. [14] (CookieHunter) studied
their adoption by websites during the full authentication flow when signing
in or signing up to a website, to identify privacy loss caused by exposed
cookies that could lead to cookie-hijacking. To observe authentication cookies,
they had to automate the registration procedure using a web crawler.

We chose the CookieHunter publication since it is based on a custom Sele-
nium crawler and not on OpenWPM as the CookieBlock. In addition, it uses
stateful crawls and the source code was made accessible upon requesting it
from the authors.

OmniCrawl

By conducting a large-scale analysis of websites’ third-party advertising and
tracking, Cassel et al. [15] (OmniCrawl) analysed the difference in tracking
behaviours of privacy-focused browsers and their counterparts. Furthermore,
they performed equal measurements on mobile versions of websites using
mobile devices. All of these platforms were orchestrated by their framework
OmniCrawl.

8



2.1. Related work

This study was chosen since it earned the Artifact Award at the PETS 2022
conference. This award should reflect code quality and documentation, which
allows us to assess how easy it is to convert the artefact virtual machine into
a containerised approach and publish it on the Privacy Observatory platform.

We limited the implementation scope to four different desktop browsers, i.e.
Firefox, Tor, Chrome, and Brave, and omitted the mobile analysis, due to the
hardware requirements.

AnymIP

Maass et al. [16] (AnymIP) researched the behaviour of website owners upon
receiving a notification about a detected misconfiguration or security issue
from researchers, which often results in mistrust, reachability issues or a
perceived lack of importance. By assessing the Google Analytics tracking
requests, it can be determined if the IP address of the website visitor is
obfuscated or passed in plaintext to Google.

We decided, that besides containerising existing code artefacts, we also want
to fully reimplement and replicate a complete study. We therefore decided
to do this with a crawling environment that features a low complexity. We
reimplemented the code of a crawler, which scans and analyses Google
Analytics tracking requests by visiting websites.

This limited the scope of reimplementation for this case study solely on
their used crawler to identify misconfigured Google Analytics website setups,
which do not anonymize the IP address of website visitors.

LeakyForms

In order to examine the flexibility of the interfaces of the Privacy Observatory
after its development, the study of Senol et al. [17] (LeakyForms) was chosen
for reimplementation. By automatically filling out forms on websites and
observing the network traffic, they showed that from a total of 100’000
websites, 1844 in the EU and 2950 websites in the US leaked user details
present in forms before submission and without consent.

As this publication has multiple GitHub repositories3 as artefacts and exten-
sive README files, the source code seems to follow modern development
and documentation best practices. Additionally, it follows the classical
two-step study procedure, with an internet crawl in the first step and a
post-processing of the results in the second phase.

3https://github.com/leaky-forms/leaky-forms
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Chapter 3

Study interface

We promote the use of containerised images, for example, Docker images, in
order to satisfy as many reimplementation criteria from Demir et al. [4] as
possible and provide a fixed Docker environment for repetitive study execu-
tions. Additionally, we aim to standardise generalised command & control
interfaces for the measurement containers, in order to design a compatible
interface design with our Privacy Observatory platform. This allows the
platform to manage different case studies with minimal customisation efforts
and facilitates long-term analysis. An overview of the involved components
is given in Fig. 3.1.

3.1 Module specifications

As explained in Chapter 4, the Privacy Observatory platform consists of a
central part for study orchestration and job dispatching, while each study job
is performed in a separate container. These study containers need to follow
the required specifications highlighted in this section.

For each of the reimplemented case studies, we engineered a manager.py

Python script, which is responsible for preparing and setting up the ex-
ecution environment, performing the crawling, as well as organising all
post-processing tasks, to generate the final statistics.

After performing the complete study, the manager.py script returns the
individual measurements as a JSON object to the Privacy Observatory.

10



3.2. Data interface

Figure 3.1: Containerised study execution environment built and pushed on a Docker image
repository, as well as pulled and deployed on the Privacy Observatory worker.

3.2 Data interface

As already mentioned, the internet is a constantly changing environment
and thus a fixed embedded domain-list in the Docker images may not be
representational of the original scope of the studies (e.g. selecting a specific
source and sample size from a website list). Therefore, a domain-list is given
as input. Moreover, the output must be able to be collectable and storeable
for later analysis. Thus, a generic interface for input and output transfer is
essential, which we model by mounting an input.txt and an output.txt file
to the studies, defined in the docker-compose.yaml file. These interface files
get mounted in the /opt directory of the study containers, as is visualised in
Listing 3.1.

1 /opt/

2 - input.txt

3 - output.txt

Listing 3.1: Mount overview of the data interface files.

11



3.2. Data interface

3.2.1 Input generator

Having the above-defined data interfaces to import new crawling targets to
the study containers, we provide the possibility to register dynamic input
generators on the platform as an alternative to static URL lists. These
generators are custom Python scripts, that can generate or load the newest
versions of ranked domain-lists or perform other scoping operations. An
example based on the Tranco Domain List, originally created by Le Pochat et
al. [18], is given in the Listing 3.2.

1 ’\n’.join([

2 line.split(’,’)[1]

3 for line in

4 __import__(’requests ’).get(

5 ’https :// tranco -list.eu/download /%s/1000’

6 % __import__(’requests ’).get(’https ://

tranco -list.eu/top -1m-id’).text

7 ).text.splitlines ()

8 ])

Listing 3.2: Example domain-list Generator based on the Tranco Domain List.

The input generators are executed through the use of the eval() function
prior to starting a new run by the RESTful API. To facilitate the deployment
of the studies, these generators can be defined globally and used for multiple
studies.

3.2.2 Output format

To allow a generalised output result interpretation by the Privacy Observatory
platform, the following format of a JSON object was defined. It consists of two
sections, where one of these sections contains aggregated key-value mappings
describing the overall study statistics, and the other section contains the
mappings for the individual crawled domains. An example JSON object
output is shown in Listing 3.3.

The JSON file was designed to capture generic measurement types, based on
our experiences from the four reimplemented studies, but we envision it to
be as generic as possible. Therefore, we require mandatory fields (aggregated
statistics) but we also optionally support nested structures with individual
results for a specific assessed domain. Both sections of the JSON object
shall use the same keys for the key-value mappings. While the aggregated
statistics value type can be a number or a nested JSON object, which includes
the respective mean, median, and 25/75 percentiles, only scalar measurement
types can be used for the domain result values.

12



3.2. Data interface

1 {

2 "stats":{

3 "wrong_purpose_wellknown":0.034482758620689655 ,

4 "wrong_purpose_majority":0.0,

5 "multiple_purposes":0.4482758620689655 ,

6 "unclassified":0.3793103448275862 ,

7 "undeclared":0.4827586206896552 ,

8 "incorrect_expiry":0.10344827586206896 ,

9 "implicit_consent":0.25925925925925924 ,

10 "ignored_choices":0.0

11 },

12 "doms":{

13 "www.google.com":{

14 "wrong_purpose_wellknown":2,

15 "multiple_purposes":7,

16 "undeclared":18,

17 "incorrect_expiry":1,

18 "wrong_purpose_majority":"None",

19 "unclassified":"None",

20 "implicit_consent":"None",

21 "ignored_choices":"None"

22 },

23 ...

24 }

25 }

Listing 3.3: Example output JSON object

We identify two distinctive web crawling measurement types:

Presence checks are concerned with whether a privacy violation on a web-
site is found, and

Metering checks aim to count specific observations on a website (e.g. how
many trackers were found).

While we replace the Boolean values of presence checks with their 1 / 0

counterparts for generating aggregated statistics (i.e. in the case study
described in Section 2.1.1), we accept the values true / false for the key-
value mappings of the individual domains.
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3.3. Image build & storage

3.3 Image build & storage

All studies must be built as Docker images to enable long-term usage of
their code and the components. Rebuilding Docker images after several
years may not be possible as empirically observed in Section 5.1.2, since
third-party dependencies such as library repositories or specific software
package versions may no longer be available. The individual requirements
for the building process are explained in the below sections.

After completing the build process, the images are pushed to an image
repository, which must be accessible by the worker containers, that con-
trol and orchestrate the execution of the individual studies as explained
in Section 4.1.1. We propose to use the official Docker Image Repository
DockerHub for images that can be open to the public and an internal im-
age repository, such as one hosted at ETH, for images containing sensitive
information, e.g. private API tokens or proprietary content.

3.4 Study deployment

To give the reader an overview of the required components, for preparing
the deployment of a study on the Privacy Observatory, they are highlighted
below. Also, it should illustrate the simplicity of such a deployment.

Docker images

All Docker images, that are used by the study shall be stored in an available
registry, which is accessible by the Worker container. These images can
be built using a Dockerfile, which includes the installation commands for
preparing the Docker execution environment.

docker-compose.yaml

The specific configuration of the Docker images, environmental variables
and the network configuration must be defined in a docker-compose.yaml

file. This configuration also enables differentiating these settings among
containers. This file is directly inserted into the PostgreSQL database through
the Privacy Observatory.

Crontab schedule

In order to configure the requested study repetition schedule, a crontab-style
definition can be made on inserting a study in the Privacy Observatory. Some
example schedules are given in Listing 3.4.
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1 weekly: 0 0 * * 0

2 monthly: 0 0 1 * *

3 quarterly: 0 0 1 */3 *

4 biannually: 0 0 1 */6 *

5 yearly: 0 0 1 1 *

Listing 3.4: Examples of crontab schedules for configuring study repetition.

Optional: key-value.yaml

To describe the individual key-value measurements, that are contained in the
result of a study, an optional key-value.yaml description file can be attached
to the Study Object on the Privacy Observatory.

Optional: Original measurements

The measurements from the published study can be inserted on the platform
to create a reference to the situation at the time when the study was originally
performed.

3.5 Interface assessment

In order to assess the compatibility of the interfaces with new studies, the
LeakyForms paper was chosen after the implementation of the Privacy Ob-
servatory was complete.

As for the other papers, a manager.py script was written to control the study
performance process using the WebDriver of embedded browser binaries,
starting by taking an input.txt file as well as generating a output.txt file
after completing the post-processing.

3.5.1 Study definition

By being able to translate the source code into Docker images which are
orchestrated with a docker-compose.yaml file, we showed that the decision
to have these files as the base definition of a study on the platform was
correct and fits other studies than only the originally reimplemented ones.

3.5.2 Input & Output

Similar to the original studies, the LeakyForms paper also accepted a list of
domains as an input. These domains are then crawled to scan for any leaks
of the user interactions. Thus, designing the input interface as a domain-list
works for this crawler as well without problems.
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On the other hand, the output of the LeakyForms crawler after post-processing
can be modelled on a true/false violation basis per domain, which matches
the expected output format defined above.
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Chapter 4

Platform

In order to facilitate the long-term execution of web analysis studies, we engi-
neered the Privacy Observatory platform, a framework that orchestrates the
start, monitoring, and analysis of web experiments. In the following sections,
we present the components of the platform and security considerations.

4.1 Components

The Privacy Observatory platform consists of the following components:

PostgreSQL Database It stores the results of the performed studies, pro-
cessed on an overall per study and on a per domain statistic.

RESTful API Engine The RESTful API Engine contains the back-end logic
of the Privacy Observatory platform.

Front-End JavaScript App The front-end application allows the user to con-
figure new studies and analyse the results, as well as monitor the health
of the individual workers.

Worker The worker executes studies and pushes the result back to the
RESTful API.

4.1.1 PostgreSQL database

The platform is designed such that the database can be kept on the Post-
greSQL cluster of ETH to ensure long-term support and operability. The
database schema is automatically generated by starting the RESTful API
Engine and using the SQLAlchemy ORM Library. The following relations
are created.
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Users

This database relation contains all users, which have access to the RESTful
API as well as their hashed passwords. In addition to the standard attributes
of the relation, helper functions for password verification and authentication
token generation and checking are implemented as part of the Users object.

Workers

All registered workers are stored within this relation as well as their access
tokens and their last heartbeat date. Using this date, it can be determined if
the worker is still alive and responding. Individual Studys can be assigned
specific Workers with customized execution environments.

Domainsets

Domainsets consist of the above-described domain-list generators, which
can either be static domain-lists or dynamic using Python and are used for
generating the input.txt files.

Studys

Studies are stored in this Studys1 relation together with the corresponding
docker-compose.yaml file, an output format and a crontab-schedule which
can be used to calculate the next execution date.

Runs

Every execution of a Study is stored as a Run object, including the log output
as well as the duration of the execution.

Domains

Domain objects get automatically generated once a measurement for a spe-
cific domain of a study execution needs to be stored. Together with the
WebApp, the functionality to display the measurements of a specific domain
is provided.

Measurements

Collected measurements of every run are stored in the form of key-value
pairs, and optionally a foreign key to a Domain object. In case this foreign
key is set to null, the corresponding measurement is an aggregated statistic
over the full execution of the Study.

1The misspelt term Studys was chosen on purpose, to avoid needing procedural platform
routines to have special conjugation to access objects.
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4.1.2 RESTful API engine

The RESTful API engine is based on Flask and contains the primary logic
routines for the Privacy Observatory. The WebApp and the workers use the
RESTful API to access the database as well as to load and store information.
The individual core features of the RESTful API are explained in the following
paragraphs.

Documentation

All RESTful API endpoints are documented in a static-served JSON file,
which gets interpreted by Swagger and visualised on the "/docs" endpoint.
Besides the visualisation that can be seen in Fig. 4.1, Swagger also provides
an interactive request editor, which accelerates the development work of
systems talking to the RESTful API.

Figure 4.1: Swagger documentation of the RESTful API.
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Authentication

After a fresh initialisation of the database, no users exist in the Users relation.
In order to allow the creation of Users over the RESTful API, all routes (except
the JWT-generation endpoint) can be executed unauthenticated, as long as
no Users exist in the database. There are no fine-grained user permissions
integrated into the API endpoints for the sake of simplicity. These could be
added without any problems at a later point.

HTTP Basic Authentication: After the first user is created, all subsequent
RESTful API calls need to be performed authenticated by using the HTTP
Basic Authentication.

JSON Web Tokens: Since storing the user password in plaintext inside
of a JavaScript application is dangerous (due to cross-site scripting attacks),
there exists a RESTful API endpoint to generate a JWT, which can be used
to authenticate with the application instead of a username using the HTTP
Basic Authentication.

Worker Token: On registering a new worker, a RESTful API access token is
generated and returned, which needs to be stored for further use and passed
as an environment flag to the worker. This token cannot be retrieved at a
later point in time due to preventing worker impersonation.

4.1.3 Front-end JavaScript WebApp

In order to provide a simple administration on the Privacy Observatory
platform, a front-end JavaScript WebApp was developed, which uses the
RESTful API for processing any actions a user performs on it. Through this
API-first approach, it can be ensured, that all interactions of the platform can
also be accessed programmatically using the RESTful API directly. In this
section, we present the views implemented in the WebApp and used for the
procedural visualisation of database content.

Authentication

Authentication is handled as explained in Section 4.1.2. The user first provides
his username/email and password as input for the initial login form, which
can be found in Fig. 4.2. Afterwards, the WebApp fetches the JWT token and
stores it in a session cookie.
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Figure 4.2: WebApp login form of the Privacy Observatory.

Domain View (Website Lookup)

Users are able to use the platform to not only review the long-term results of
individual studies but also to search for specific domains and get detected
violations and other measurements across multiple studies displayed, as
shown in Fig. 4.3.

Object Class Views

In case the RESTful API returns an array of objects as an outer parent element,
the Object Class View is rendered. An example of this view can be seen
in Fig. 4.4, which visualises multiple entries of a specific database relation.
The views of the different object classes are generated procedurally, with
the column names for the main table automatically being extracted from the
RESTful API response. This allows changing the RESTful API without the
need to modify the WebApp.

A static settings JavaScript object can be used to specify fine-grained
properties of the attributes of the object classes. These can be descriptions or
attribute configurations, like multiline mode or hidden input fields, as it is
done with the Users Object Class, where the password input field shall be
displayed in the user-edit view but not in the user-read view.

Edit Modal: By clicking on the edit button on a table row, a specific entity
can be edited. Similar to the procedural generation of the main table, the
input fields and the labels of the edit modal are created automatically based
on the RESTful API.

Besides input fields that expect a simple string value, different attribute
namings modify the generation process in the following way:
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4.1. Components

Figure 4.3: The cloudflare.net domain lookup on the Privacy Observatory.

1. First, it is checked if it contains an id, which would indicate that it is a
foreign key to another relation. If this is the case, the foreign relations
database is loaded and the name attribute is displayed. In the case the
attribute is not null, its value is used to mark the correct foreign entity
as selected.

2. If the attribute name contains num , this indicates that it is a counter of
a relational database entity by key reference (e.g. num measurements:
the total number of performed measurements). Thus, this value is then
marked as read-only. These numbers are also displayed on the entity
page as statistic widgets instead of standard text in the card table.

3. In case the naming contains is , the attribute is interpreted as a state
variable set by the platform and is then marked as read-only (e.g.
is alive: whether or not the worker is alive).

4. As a last edge case, if the name contains date, it is a date field
of an entity set by the platform and thus also set to read-only (e.g.
last scan date: the date on which the last scan was performed).
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Figure 4.4: Object Class View of Users.

Object Entity View

When the RESTful API returns a dictionary as the outer parent element, the
Object Entity View is rendered as shown in Fig. 4.5, which visualises a single
entry of a database table as well as all linked information. Similar to the
Object Class View with its Edit Modals, the Object Entity View is procedurally
generated. In comparison to the Object Class View, it additionally displays
widgets for attributes with the num prefix and a graphical representation of
results over time, rendered using the Plotly.js library for dictionary attributes,
containing datetime elements.

4.1.4 Worker

Workers are used to control and manage the execution of studies. They use
the RESTful API to get the next job to perform, trigger its associated domain-
list generator, and pass its result to the study. After the study execution
finishes, the results are transferred back to the RESTful API for storage.

A worker needs to send regular heartbeats for the worker itself as well as
for the study it is performing. Since it needs to be able to create Docker
containers for performing measurement studies, it needs to be launched on a
system in the form of a privileged Docker container. By using environment
flags, the worker can be configured with the hostname of the RESTful API
service as well as its designated authentication token.
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Figure 4.5: Object Entity View of a specific Study.

Study Scheduler

Designing schedulers on continuous scanning platforms poses a huge chal-
lenge regarding prioritisation and error-handling of crawling jobs, especially
in the case of long-running jobs, when there can be overlaps in the execution
periods (i.e. an old job takes longer than when its next execution should
start).

We wanted to be able to specify the repetitive crawling interval of the studies
in the crontab format. Since querying the database for the next study to
perform ordered by a crontab format is not supported in PostgreSQL, we de-
cided to cache the next execution date at the time of creation or modification
of the study, when a new crontab string is supplied.

In case the worker calls the /jobs/next RESTful API endpoint to get a new
job to execute, the API scans all studies and returns those, which have an old
heartbeat date, either because they completed already a while ago or be-
cause their worker was terminated. Then, it matches the found studies to find
jobs, which are scheduled to run next regarding their precomputed schedul-
ing time (based on the crontab string) or those, which did not complete yet
(i.e. the old complete time is None or smaller than the scan time).
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Handling input and output

As described in Section 3.2, the input and output of a study are exchanged
through the use of two text files. Our first approach was to mount a volume
map from the worker Docker container to the study Docker container, but this
is not supported by Docker. The solution was to mount the /opt/input.txt

and /opt/output.txt files inside the worker Docker container, in order
to allow it to interact with these files. This poses a limit of one worker
container per host system, since otherwise, there would be a conflict by
multiple workers controlling the same input and output documents (i.e.
/opt/input.txt and /opt/output.txt).

Docker-outside-of-Docker

To run Docker inside of a Docker container, we follow the Docker-outside-
of-Docker approach, for which the worker container needs to run privi-
leged and has the Docker socket of the host system mounted. The used
docker-compose.yaml file can be seen in Listing 4.1.

1 version: "3.4"

2 services:

3 worker:

4 image: docker_worker

5 restart: always

6 privileged: true

7 environment:

8 # always use prefix of http :// or https ://

9 api_host: http :// example.com/api

10 api_tkn: XXXXXXXXXXXXXXXXXXXXX

11 network_mode: "host"

12 volumes:

13 - /opt/input.txt:/opt/input.txt

14 - /opt/output.txt:/opt/output.txt

15 - /var/run/docker.sock:/var/run/docker.sock

Listing 4.1: Privileged docker-compose.yaml file of the worker

In comparison, there also exists the Docker-in-Docker approach, which can be
used to spawn Docker containers, which are invisible on the host system and
thus are more strictly isolated from the host system. The downside is, that
a special docker:dind image must be used, which is a fully containerised
Docker system, which does not support docker-compose.yaml. It also causes
problems with Linux Security Modules (LSM) and has many other unwanted
side effects.
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Execution environment

Dabrowski et al. [12] as well as Urban et al. [19, 20], and Yang et al. [21] clearly
showed, that different legislations like the GDPR can have a direct influence
on the delivered content from a website, depending on the geolocation of
the visitor. It is therefore crucial, that a specific study needs to be able to
be executed by a specific worker of the Privacy Observatory, located in a
predefined geolocation or having a prepared execution environment with
preinstalled VPN Docker networks, to perform, for instance, GDPR-related
studies from within the EU territory. The different execution environments
can also be shared on one worker for different studies. We therefore provide
the feature to link a study to a designated worker.

4.2 Platform deployment

There are ready to use docker-compose.yaml.template files for the api, the
webapp and the worker, which just need to be renamed to
docker-compose.yaml for local deployment. Instead of cloning the com-
plete Git repository for each deployment, the individual containers can also
be started by directly referencing the images hosted on DockerHub.

4.2.1 Centralized observatory

As a main requirement, the server on which the Privacy Observatory is
running needs to be contactable by proposed future worker networks and
locations. In our case with a deployment at ETH Zurich, where a centralized
PostgreSQL database cluster is used, only the docker-compose.yaml file of
the RESTful API needs to be modified accordingly.

Reverse proxy

In order to serve both the RESTful API and the WebApp HTTP endpoints
on the same external IP / hostname, an Nginx reverse proxy is set up on an
ETH Cloud Server, which forwards the webroot directory "/" to the internal
port 8000 and the "/api" to the internal port 5000 on which the RESTful API
is listening. This way, any multi-port communication errors, like security
features such as Cross-origin resource sharing (CORS), can be prevented.
Using URL rewriting, we do not need to perform any changes on the defined
routes in the source code of the RESTful API.

Also, a Web Application Firewall (WAF) is integrated into the reverse proxy
using the mod security2 Nginx module, which offers an out-of-the-box
protection for well-known exploits.

2https://docs.nginx.com/nginx-waf/
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4.2.2 Worker

As mentioned above, the data interface files shall be mounted inside the
worker container. Additionally, the user shall make sure the referenced
Docker Image repositories are available without login. Otherwise, the login
credentials shall be mounted inside the worker container for authentication
during study orchestrating.

Using the provided docker-compose.yaml in Listing 4.1, the worker image
can be pulled and started. Whilst the host server, on which the worker
container remains, is also able to run Docker for different experiments, it is
not recommended due to performance constraints as well as unwanted input
and output file manipulations.

4.3 Security considerations

Since the RESTful API acts as a central component which distributes scanning
jobs, several security considerations are made, which are highlighted in the
following.

4.3.1 Adversary model

The RESTful API is built primarily to be hosted on the internal network of
ETH. GDPR-related scanning activities require workers located at a university
within the EU to be able to record privacy-driven behaviour of websites. The
API has therefore been designed and hardened for internet exposure, as the
API might get exposed on the external perimeter to facilitate geo-distributed
study performance over different universities.

4.3.2 User authentication

The user authenticates with the web application through the use of a user-
name/email and a password. The provided password can in theory be used
for authenticating any RESTful API requests in the form of HTTP Basic
Authentication, which the user has permission to perform.

To not have to store the plaintext password of the user in the client-side
JavaScript of the browser, the application only uses the provided password
for an initial "/users/token" RESTful API request. This then offers a JWT
to the web application as a result, which shall be used for further requests.
This JWT is generated based on an application secret, which can be defined
through an environment variable specific to each platform deployment.
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4.3.3 Remote code execution

Concerning the worker, a remote code execution risk was identified, through
the injection of custom Python code as domain-list generators, which allows
in theory a fully adversarial take-over of the RESTful API docker container by
placing a reverse shell on it. Since only authenticated users can insert Python
code, which is then executed to grep the newest domain-lists as inputs for
the studies, this risk was accepted.
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Chapter 5

Empirical observations

In this chapter, we present our findings based on reproducing the selected
studies. Namely, we first discuss the common issues we faced, followed
by the evaluation of the reproduction process using the criteria defined by
Demir et al. [4].

5.1 Reproducibility issues

We discovered several reappearing issues while reimplementing past studies
in Docker. To prevent these issues, we formulated the following implementa-
tion principles (P1-P6) that need to be closely followed in future studies to
facilitate long-term reproducibility.

5.1.1 P1: Dockerfile vs. Docker image

One of the design choices in Privacy Observatory design was to store the
studies as either Dockerfiles or Docker images. While Dockerfiles offer more
flexibility in modifying the experiment, over time the required resources
might not be available anymore rendering the build impossible. Based on
our reimplementation of the CookieHunter study, we found that deprecated
packages are often very unstable in case they need to be reinstalled in order to
reproduce a study. If Docker images are used, this problem can be mitigated
completely and a more stable storage of the execution environment can be
guaranteed.

We therefore recommend publishing Docker images on a public repository
(such as DockerHub) and optionally also releasing the Dockerfile to enable
future modifications.
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5.1.2 P2: External dependencies

As we experienced with the CookieHunter, Google’s API for Gmail authen-
tication was changed completely. Therefore, we were unable to get the old
study to work without completely rewriting the old Python version 2 module
of the googleapiclient.

We recommend designing the study framework with as few external depen-
dencies as possible and in case email verification is needed, containerise these
auxiliary services as well.

5.1.3 P3: Unstable browser binaries

We observed websites detecting the used browser version. Using old and no
longer supported browser versions increases the probability of triggering bot
detection mechanisms and thus blocking the crawler’s ability to scan certain
websites. This limits the representativeness of studies, which are based on
such web measurements. We therefore aim to upgrade the used browser
binaries by the reimplemented studies to their newest counterpart.

We discovered that besides browsers’ constantly changing web-render func-
tionalities, their API was also often unstable. These changes in the API lead
to incompatibility between older libraries and new versions of the browser.
Thus, an automated method of downloading the newest browser binary
when starting the Docker image or building the image cannot guarantee
that experiments work (in the better case) or that the measurements are not
biased. We therefore had to accept the limitation of using older browser
versions. Additionally, the binaries of old browser versions are sometimes
unavailable, which requires the authors of the study to archive the required
version themselves.

The safest possible and recommended approach to ensure reliability is to
copy the browser binary directly from local storage to the Docker image and
not rely on available download mirrors.

5.1.4 P4: Garbage collection

During the reimplementation of the AnymIP study, we identified a resource
leak in the implementation caused by opening a new virtual display for
every visited website without closing it. This leads to an error, where the
maximal number of subprocesses is reached by spawning too many of these
virtual display objects. Increasing the ulimit inside of the Docker containers
would only postpone the resource drain instead of addressing the cause. We
therefore fixed the code to recycle the virtual display objects for the crawls
and ensured that the Chrome driver is properly stopped and recreated after
a successful domain crawl.
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This highlighted the importance of proper garbage collection, even if a study
is implemented using a programming language with automated memory
management such as Python. Thus it is recommended to test the code for
any obvious memory leaks or orphan processes.

5.1.5 P5: Certificate expiry

The OmniCrawl paper revealed an unexpected problem stemming from en-
crypted communication between individual components of the container,
with enabled certificate validation. Since these certificates often get gener-
ated during the installation of tools like mitmproxy1, they have an expiry
date, after which they get revoked and new certificates must be generated.
Normally, a user would then need to import these manually into browsers
like Firefox, but since Docker does not have a virtual display enabled, we
only observe [ssl client socket impl.cc] handshake failed errors.

It is recommended to disable any SSL certificate validation mechanisms tak-
ing place. In case this cannot be achieved, a repetitive certificate reimport has
to be installed within the Docker container, for example in the manager.py

script. The commands in Listing 5.1 can be used to import new mitmproxy
certificates into Chrome and Firefox.

1 # Chrome and OS -wide

2 curl http :// mitm.it/cert/pem --output /usr/local/

share/ca -certificates/mitmproxy -ca-cert.crt &&

update -ca -certificates

3

4 # Firefox

5 certutil -A -n "MITM CA" -d sql:profiles/firefox86/ -

t "C,C,C" -f "ROOT" -i ~/. mitmproxy/mitmproxy -ca.

pem

Listing 5.1: Bash commands for importing a new certificate into Chrome and Firefox.

5.1.6 P6: Reimplementation guidance

To provide a measurement for reimplementation criteria C14 which is con-
cerned with the documentation of post-processing steps, we document the
communication with study authors required to reproduce their study in case
the README files do not exist or the available instructions are insufficient.
Namely, we report the number of emails that we needed to exchange with
the authors to address the incomplete documentation or bugs observed.

1https://mitmproxy.org/
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Table 5.1: Observed violations of the reimplementation principles by the scoped studies. In
case a principle has no observed violation marked in the table, it was detected during our
reimplementation work.

Principles P1 P2 P3 P4 P5 P6
CookieBlock 7

CookieHunter 7 7

Omnicrawl 7 7

AnymIP 7

LeakyForms 7

We required no communication with the original authors of AnymIP since
we have reimplemented the study from scratch. The communication with
the CookieBlock authors is also not quantified, as one of the authors is
the supervisor of this thesis, such that he was addressing observed issues
directly. We needed to exchange a total of five emails with the authors from
OmniCrawl, to get the post-processing scripts running. While we got in touch
with the author of the LeakyForms paper regarding missing post-processing
documentation and obvious errors in the code, their insights did not provide
the resolution we were seeking.

It is recommended to not neglect the importance of documenting the post-
processing steps to enable reproducibility of the results.

5.1.7 Individual studies

In the following sections, we dive into the individual problems that we
experienced during the reimplementation process of the selected case studies.
An additional overview of the violated principles by the papers can be found
in Table 5.1.

CookieBlock

The first study we reimplemented, CookieBlock, had a clean and nice source
code as an artefact. The containerisation efforts were straightforward and the
available post-processing scripts gave us the idea of a centralized manager.py

file for performing the full processes. Originally we planned to perform the
pipeline stages of a study performed by the Privacy Observatory following
the microservice principle, using a centralised controlling manager.py com-
ponent, such as complex data processing could fit into one Docker container.
Using our approach, the full study can be performed using one Docker image
instead of raising the complexity by introducing pipelined processing steps.
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CookieHunter

In contrast to CookieBlock, the CookieHunter source code artefact contains
scripts in both Python versions 2 and 3. Furthermore, they employ an
old and deprecated python2-google-api for the interactions with Google
as an identity provider (Single-Sign-On, SSO). Since the successor of this
deprecated plugin completely changed the interface, many code segments of
the CookieHunter crawler needed to be rewritten. This circumstance together
with other deprecated software packages and interference between scripts in
various versions of Python led to an abortion of the reimplementation.

OmniCrawl

The OmniCrawl study consists of 22 non-virtual machines, including mobile
device platforms. However, the demonstration virtual machine, which was
published as part of the artefact, only contained the environment for Chrome
and Firefox browsers.

We thus decided to containerise this virtual machine and further extend the
functionality by the respective interface-compatible Brave and Tor Browser
binaries.

After reverse engineering the missing and undocumented shared library
objects that were missing on the Vanilla Ubuntu 18.04 and the undocu-
mented NodeJS version that we could determine by extracting it from the
GitHub repository history, it required extensive efforts to figure out that the
[ssl client socket impl.cc] handshake failed error was originating
from expired mitmproxy certificates as explained in Section 5.1.5.

The source code of the crawler, which received the Artifact Award at the
PETS 2022 conference consisted of a combination of Java and Python scripts.
Therefore, as the post-processing and analysis scripts were not part of the
original artefact, the award did not take their quality into account. The
processing was separated into multiple code snippets that required manual
intermediate steps rather than a full batch script. We only got our hands on
them after contacting the original authors and receiving further support from
them to get the scripts working.
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AnymIP

As explained in Section 2.1.1, we completely wrote the source code of the
reimplementation of the AnymIP paper. In contrast to the original study,
we used selenium-wire combined with a virtual Xvfb display instead of
the Chrome DevTools to capture the performed requests and search for the
specific patterns identifying a misconfiguration of Google Analytics and
therefore a privacy violation. Even though the Chrome DevTools provide an
improved bot detection evasion,2 we decided to use the selenium-wire library
due to multiple known bugs with the Chrome DevTools inside Docker at the
time the paper was reimplemented.

LeakyForms

As described in Section 3.5, the LeakyForms reimplementation was used to
validate the interfaces of the Privacy Observatory after the development of the
platform was finished. Based on the publicly available source code and the
well-documented GitHub repositories, we estimated the reimplementation
efforts to be feasible.

We observed that the source code from the LeakyForms repositories was
never tested, as multiple npm packages were missing when following the
installation guide, which prevented the crawler from working and resulted
in errors. Fortunately, other GitHub users reported these issues and found
the missing npm install error-stack-parser package as they explained
in an unanswered GitHub issue,3 which is over 18 months old by the time
of writing this thesis. This demonstrates that many crawling code bases are
completely abandoned after a study has been completed.

We observed multiple further issues. First, the installation guide missed
multiple shared library objects. Second, the Chrome browser was con-
figured to run without sandboxing, which forbids execution by the root
user. Thus, the researchers executed their scripts in user space. To fix
that, the source code had to be extended with an additional argument
when assembling the run-time arguments passed to the framework pup-
peteer handling the browser. Third, the Python packages for the post-
processing were missing in the requirements.txt file for easy installation
and needed to be reverse-engineered. Fourth, the code referenced files, such
as categories dict.pickle, which were missing completely. This demon-
strates that the source code artefacts were not tested once.

Executing the LeakyForms study on our platform required rewriting the
entire leak-detection algorithm contained in the post-processing analysis.

2https://www.zenrows.com/blog/selenium-avoid-bot-detection
3https://github.com/leaky-forms/leaky-forms-crawler/issues/1
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5.2 Reimplementation criteria

As introduced in Section 2.1, one aim of this study was to determine the
positive effects of publishing a study on the Privacy Observatory using the
containerisation approach. The containers in combination with the usage
of the Privacy Observatory implicitly fulfil most of the reimplementation
criteria as stated by Demir et al. [4], without any additional documentation
or efforts. Not implicitly satisfied are criteria C3, C8, C10, and C16-C18, as
they need further documentation and discussions to be made, which are not
directly related to the technical implementation of a study. As summarised
in Table A.6, by following our generic containerised approach and using the
Privacy Observatory platform, every reimplemented study improved with at
least implicitly satisfying three additional criteria compared to the original
analysis depicted in Tables A.2 to A.5.

The specific descriptions of the criteria are given in Table A.1 and the assess-
ment of the original studies under these criteria are shown in the Appendix
in Tables A.2 to A.5. In the following section, we discuss 12 satisfied of a
total of 18 possible criteria.

5.2.1 Dataset

The following reimplementation criteria were categorized as Dataset criteria
by Demir et al. They are concerned with the description and the scope of the
targets the study was performed on.

C1: State analysed sites

The first criteria of Demir et al. is satisfied, as the domain-list generator
definitions are stored on the Privacy Observatory as Domainset objects, and
can therefore also be investigated.

C2: State analysed pages

Satisfied, as through the execution and thus the concretisation of a domain-
list generator, the input.txt can be rendered, which is getting passed to the
associated studies and stored.

C4: Perform multiple measurements

Satisfied, as by defining a crontab frequency when creating a new study on
the Privacy Observatory, the automatic regular repetition of a study can be
automatically registered for execution.
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5.2.2 Experiment design (building the crawler)

This category is concerned with concrete specifications about the deployed
technology stack of the crawler. As this is precisely specified when writing
a Dockerfile and building the Docker image, many of these criteria can be
fulfilled implicitly.

C5: Name crawling tech.

Satisfied, since the individually installed components of the crawling engine
can be extracted from inspecting the specific layers of the Docker image, as
shown in Fig. 5.1. This can be extracted from a Docker image using the
docker history --no-trunc command. Additionally, if the Dockerfile is
also preserved beside the Docker image, the individual build commands are
easier to read than extracting Docker image layers.

Figure 5.1: Optimized layers of the AnymIP Docker image containing environment variable
definitions and system configuration instructions, automatically extracted and visualised by
DockerHub.

C6: State adjustments to crawling tech.

Satisfied, similar to C5, the inspection of the Docker image layers reveals all
of the performed adjustments to the crawling technology stack.
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C7: Describe extensions to crawling tech.

Satisfied, since again with the help of layer inspection of the Docker images,
extensions of the crawling technology stack are fully specified.

C9: Used crawler is publicly available

Satisfied, as the default process of deploying a new study on the Pri-
vacy Observatory is by pushing the built Docker images to DockerHub
and referencing this publicly available Docker image repository in the
docker-compose.yaml file, which is uploaded to the platform.

5.2.3 Experiment design (experiment env.)

Compared with the previous category, this class of criteria focuses on the
accurate description of the study execution environment.

C11: Describe crawling strategy

Satisfied, as it was explained in Section 3.1, the module requirements control
and command all crawling executions of the study and thus also define the
used crawling strategy.

C12: Document a crawl’s location

Satisfied, as the geo-location or VPN configuration of the specific worker,
which is linked to a study, can be investigated in the specifications on the
Privacy Observatory platform.

C13: State browser adjustments

Satisfied, since the precise configuration and browser profiles can be directly
extracted from the layers of the Docker images.

C14: Describe data processing pipeline

Satisfied, as it was explained in Section 3.1, the module requirements include
the automation of all post-processing scripts, that need to be performed
in order to generate the final measurement outputs of a study. Thus, all
post-processing steps are also included in the layers of a Docker image.

5.2.4 Evaluation

Opposed to the above criteria, most criteria in this category are connected to
work involving interpretation of the study and can therefore not be automated
or directly fulfilled.
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5.2. Reimplementation criteria

C15: Make results openly available

Satisfied, as the raw measurement results of each study run can be viewed
on the Privacy Observatory platform and aggregated values can be traced
back to the individual measurement of each targeted domain.
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Chapter 6

Long-term analysis

The studies which we were able to successfully reimplement on the Privacy
Observatory platform, were conducted in a regular interval over a period
of several weeks. The insights gained during this process are summarised
in this chapter, and we also include an analysis of variance over crawls to
report the representatives of single-point-in-time measurement.

Since the Privacy Observatory infrastructure in the ETH Cloud was only
production-ready in the last few weeks of this thesis, the following measure-
ments were collected using small sample sizes of the first 200 domains from
the current Tranco list (auto-pulled by domain-list generators). Also, it was
executed on a more lightweight setup of the Privacy Observatory located
on a workstation. Thus, these results shall be primarily regarded as proof
of concept of the platform. Additionally, in multiple instances, bug hunting
was still performed, while collecting repetitive measurements.

6.1 CookieBlock

We were able to reimplement all of the original measurements of the Cook-
ieBlock paper, which allows a full comparison of the performance of our
modified source code. This study reports eight measurements (with seven of
these being privacy violations) and we include also one statistical variable in
the following list of observations.

• perc cmp found: Websites on which a consent management platform is
detected.

• unclassified: Websites, which do not specify the purpose of some of
their cookies.

• undeclared: Websites, which do not declare some of their cookies in
the cookie banner.
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6.1. CookieBlock

• incorrect expiry: Websites with cookies expiring at least 50.0% longer
than declared.

• ignored choices: Websites with cookies set despite negative consent.

• implicit consent: Websites with cookies set prior to user’s consent.

• multiple purpose: Websites with cookies labelled for different or con-
tradictory purposes.

• worng purpose majority: Websites with misdeclared cookies based on
cross-reference between scanner websites.

• wrong purpose wellknown: Websites with misdeclared cookies based
on a library of well-known cookies.

Table 6.1 summarises the aggregated results of the reimplementation from
2023 of the original cookie analysis crawler from 2021 and each number
indicates the percentage of websites on which a violation was detected.
While most of the results are similar, the wrong purpose majority as well
as the multiple purpose numbers show significant differences compared
to the original values. Whereas the wrong purpose majority can be led
back to a mismatching threshold value in relation to the crawled dataset,
the discrepancy of the multiple purpose could not be traced back to any
technological issues of the reimplementation.

Table 6.1: Measurement results from the original and reimplemented CookieBlock study.

2021 2023.07 2023.08 2023.09 2023.10
Unclassified 25.4% 12.5% 12.5% 12.5% 12.5%
Undeclared 82.5% 87.5% 75.0% 87.5% 100.0%
Incorrect Expiry 15.5% 33.3% 25.0% 33.3% 33.3%
Ignored Choices 21.3% 12.5% 12.5% 0.0% 0.0%
Implicit Consent 69.7% 80.0% 87.5% 100.0% 100.0%
Multiple Purpose 2.3% 62.5% 50.0% 66.6% 66.6%
Wrong Purpose Majority 30.9% 0.0% 0.0% 0.0% 0.0%
Wrong Purpose Wellknown 8.2% 33.3% 25.0% 33.3% 33.3%
Percentage CMP Found 3.5% 4.0% 3.0% 3.0% 3.0%
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6.2 OmniCrawl

As part of their PETS 2022 publication, this study released an artefact contain-
ing the code of the original crawler on GitHub. However, as result processing
was done manually, the delivered post-processing source code only contained
Jupyter notebooks. We thus expanded the capabilities of the code for the
Brave and Tor browsers.

• desktop-firefox86-d firefox86: Number of third-party advertising
and tracking requests performed on page-load on Firefox.

• desktop-chrome88-d chrome88: Number of third-party advertising
and tracking requests performed on page-load on Chrome.

• desktop-brave21-d brave21: Number of third-party advertising and
tracking requests performed on page-load on Brave.

• desktop-tor-d tor: Number of third-party advertising and tracking
requests performed on page-load on Tor.

The measurements originating from the reimplemented and containerised
OmniCrawl study are shown in Table 6.2, which are given as absolute num-
bers in contrast to the measurement results of the previous study. The
number of recorded third-party advertising and tracking requests on Firefox
and Chrome stayed in the same range as in the original paper. A significantly
higher number of these requests were measured for the Tor browser, and
while no data relating to the desktop version of Tor were provided, the
ones for the mobile setup were included in the OmniCrawl paper. Addi-
tionally, the paper traces this high number of requests back to the design
of Tor. Tor was developed with the goal of users having the exact same
fingerprint. As a result, the Tor browser does not include any advertisement
or tracking-blocking features.

Table 6.2: Comparison of the original crawl with the reproduced and extended study crawler of
OmniCrawl.

2021 2023.08 2023.09 2023.10
Firefox 20.0 31.4 20.4 17.8
Chrome 15.0 12.2 12.4 14.9
Brave No data 17.2 13.3 17.4
Tor No data 31.4 20.4 37.0
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6.3 AnymIP

Since the entire code basis was rewritten for the reimplementation as we were
not able to get hold of the original source code, we extracted measurements
from the paper that we set as a target for recrawling.

• ga detected: Google Analytics is detected in the HTTP requests of the
domain

• no ip anonymization: The detected Google Analytics requests do not
use IP anonymization

In comparison to the reimplemented studies above, only one crawling mea-
surement is contained in the original paper, which is the percentage of web-
sites on which this specific Google Analytics misconfiguration was identified.
Whilst 13% of the crawled websites use Google Analytics, 7% of all analysed
websites contain a privacy violation regarding the non-anonymisation of
IP addresses of website visitors as shown in Table 6.3. As this number is
substantially lower than the value from 2019, this can be led back to only
crawling the first 200 domains of the Tranco list, which often indicates a
higher degree of compliance with legal requirements.

Table 6.3: Reimplemented AnymIP Study results of repetitive measurements.

2019 2023.07 2023.08 2023.09 2023.10
GA Detected No data 13.0% 17.5% 16.0% 13.0%
No IP Anonymization 12.7% 5.7% 7.0% 6.0% 7.0%
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6.4 LeakyForms

As mentioned in Section 5.1.7, we needed to rewrite the leak detection post-
processing module in order to gain results from the crawler after fixing
multiple errors in the source code. Thus, the results were expected to be
significantly different from the original measurements.

Whilst the post-processing scripts of this study generate four different types
of leaks besides url leaks, and post leaks, the LeakyForms paper only
provides us with one original measurement value, which is the percentage of
websites, which contained any types of leaks.

• generic leak: Websites that contain any type of leak that we were able
to detect.

Table 6.4 shows a significant deviation from the 2023 generic leaks mea-
surement value regarding the original value of 2021. Besides being related to
the fact that only popular domains were scanned, which do not use dubious
practices such as leaks in the forms to gather additional information, the
experienced deviation can also be caused by our replacement of the original
detection algorithm. Even if we made efforts to identify Base64 leak detec-
tions as well as HTML URL Encoding, there remains a possibility of leaks in
other unsupported formats.

Table 6.4: Original and reimplemented LeakyForms measurement results.

2021 2023
Generic Leaks 3.0% 1.5%
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Chapter 7

Discussion

In this chapter, we provide guidance for future application of our Privacy
Observatory platform. We also discuss the limitations of the platform and
the ethical implications of our work.

7.1 Ethics

We identify three types of risks stemming from empirical privacy research of
websites: risk of incurring costs on website operators, legal risks stemming
from trespassing regulations, and reputation harm caused to websites. We
discuss these risks in detail below.

Most privacy-focused web crawlers, especially the ones we reimplemented
in this thesis, only create negligible traffic on visited websites, which was
also noted by Demir et al. [4]. The major financial impact is caused by seeing
ads that drain the budget of companies which are paying for advertisements
through providers like Google Ads. Since every domain is only visited a
concrete number of times per study run, we accept these minor issues.

Concerning the legal perspective, we assessed various legal frameworks
and determined that our research complies with laws pertaining to fraud,
trespass, or breach of contract.

Finally, the most considerable risk stems from reputation harm. Given that
we are not authors of the reproduced studies, we cannot guarantee that their
results are not falsely accusing websites of privacy violations. This risk must
therefore be thoroughly assessed, ideally by an institutional ethics review,
prior to publicly disclosing our results at a per-site level. We therefore release
only aggregated results in this thesis, and the Privacy Observatory platform
remains accessible only to authenticated users we limit to people directly
involved in the project.
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7.2 Limitations

We identified several limitations of the platform that could not be corrected
due to technical, conceptual, or simple time constraints. They may however
be improved or fully eliminated in future releases of the platform.

7.2.1 Long-term stateful crawls

Due to the approach of using Docker images for storing the base configu-
ration, all modifications to the browser profiles, including its history and
cookies, are disregarded after the completion of a full study run. Thus,
long-term stateful crawls, which for example want to observe the influence of
returning to the same website after several months, are not feasible using the
Privacy Observatory and would require a storage-intensive Docker container
export and archiving or a shared network storage mount on all workers.

7.2.2 Host per worker

In order to make the deployment of study workers as easy as possible,
it was decided to design those as Docker images as well, which can be
launched through a standardised docker-compose.yaml file with the Docker
socket mounted inside the container for Docker control, as explained in
Section 4.2.2. Whilst this design would, in theory, allow multiple Docker
socket operators (workers) on the same node, as these do not interfere with
each other, isolated data interfaces for input and output turned out to be
more difficult than anticipated, since the workers are Docker containers itself
and cannot simultaneously mount input.txt and output.txt files. Like
this, the only option was to define an absolute path in the root file system
which gets mapped inside of the worker container as well as in the containers
of the executed studies.

Since this absolute path is hard-coded inside the docker-compose.yaml files
of the individual studies and no dynamic variable system have yet been
introduced to the Privacy Observatory, there can not be two worker containers
running on the same host, since they would overwrite their respective input
and output files.

In the future, this limitation could be tackled, as explained above, by introduc-
ing placeholders in the docker-compose.yaml files, which are stored inside
the study objects on the platform, and get replaced by the individual worker
IDs. Then again, the workers would need to be mapped to the individual
paths of their respective data interface files, which raises the complexity
when deploying workers on new hosts.
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7.2.3 Distributed / parallel studies

Due to the fact, that in the process of executing a study, a
docker-compose.yaml file is taken and given to a worker as a command
sequence, it is not possible, to create a setup with multiple Docker workers
working distributed on the same study with the current concept. The same
applies to the Docker built-in scaling feature, which can only be achieved
by defining a service multiple times in the docker-compose.yaml file at the
time of writing this thesis.

This limitation could potentially be solved by letting a user define multiple
docker-compose.yaml files per study and modifying the queuing system,
such that it respects the dependencies within an individual study related to a
multiple of these command files. This not only raises the level of complexity
of the job scheduler but also introduces new issues regarding worker timings
(i.e. one worker would need to serve a database as long as the other workers
are actively using the database).

7.3 Future work

Besides the above-mentioned mitigations of the identified limitations of the
Privacy Observatory, we propose the following improvements in future work.

7.3.1 Mobile platforms

Cassel et al. [15] highlighted in the OmniCrawl paper that different mea-
surements performed on desktop systems as well as on mobile devices often
exhibit large discrepancies.

Even though implementing mobile-based studies in a containerised An-
droid container was outside of the scope of this thesis, proof of concept
was performed with Docker images based on Android.1 Besides the typical
challenges highlighted in Chapter 5, the same approaches could be used by
having a Chrome WebDriver2 to navigate websites and perform measure-
ments. On the downside, the full communication would need to be routed
through the Android Debug Bridge (adb), which has been proved unstable
for long-term running observations in the past.

1https://github.com/budtmo/docker-android
2https://chromedriver.chromium.org/getting-started/getting-started—android

46



7.3. Future work

7.3.2 (Very) Long-term analysis

Even though the studies on the Privacy Observatory only carried out repet-
itive crawls and measurements for a few months, we are already able to
recognise clear trends with the baseline of the measured values in the original
papers. Although we tried to keep it as similar as possible, the containerisa-
tion itself changed the execution environment.

Even after this thesis, the Privacy Observatory can continue analysing the
measurement results from the studies over several years. The freeze effect
of the Docker images and the guaranteed constant execution environments
would enable the recognition of trends even more precisely, especially in
combination with automatically generated ranked domain-lists using the
domain-list generators. An analysis of the platform’s long-term measurement
results could therefore reveal new information about the privacy status on
the internet. It can measure the influence of new regulations, significant fines
issued for non-compliance, or new privacy technologies.
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Chapter 8

Conclusion

In this master thesis report, we introduced a practical approach of enabling
long-term reproducibility of internet privacy studies as well as implemented
the Privacy Observatory platform as an orchestrator, to facilitate long-term
regular crawls and measurements.

We selected five influential studies to reimplement using our proposed
containerised approach through the use of Docker images, a standardised
input and output interface, and a central controller to perform the web
measurements and post-processing steps fully autonomously. Demir et al. [4]
defined a total of 18 reimplementation criteria, which form the theoretical
requirements of web measurement study reproducibility. We evaluate the
compliance of our five selected studies with these criteria and highlight the
implicit fulfilment of these criteria by following our containerisation method.

Additionally, we state a total of six practical principles, based on discovered
reappearing issues while reimplementing, that shall be closely followed in
future studies to facilitate long-term reproducibility of the studies at a later
point in time by another research group.

After having built these reimplemented studies as Docker images, we regis-
tered them on the Privacy Observatory and performed regular study runs.
This enables us to observe long-term trends regarding compliance with
privacy regulations in a constant and immutable execution environment.
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Appendix A

Appendix

A.1 Reimplementation criteria

The Table A.1 contains the descriptions of the reimplementation criteria
stated by Demir et al. [4], whilst assessments of the original papers can be
found in Tables A.2 to A.5. Additionally, the criteria, which are implicitly
satisfied by following our generic containerised approach and using the
Privacy Observatory platform are summarised in Table A.6.
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A.1. Reimplementation criteria

Table A.1: Description of the reimplementation criteria according to Demir et al. [4].

Category
Criterion
ID

Description

Dataset

C1
State analysed sites: States used dataset, toplist, or user
clickstreams, including version.

C2
State analysed pages: Offers a .csv or comparable with
all analysed pages (i.e. distinct URLs).

C3
State site or page selection: Discusses the selection pro-
cess of analysed sites.

C4
Perform multiple measurements: Discuss which pages
are analysed in consecutive measurement runs, if appro-
priate.

Experiment
Design
(Building
the
Crawler)

C5
Name crawling tech.: Describes the used crawling tech-
nology (e.g. OpenWPM).

C6
State adjustments to crawling tech.: States which technol-
ogy features were used and/or (slightly) adjusted.

C7
Describe extensions to crawling tech.: Describes which
features were developed to conduct, if any.

C8
State bot detection evasion approach: Discusses which
means were taken that the crawler was not detected, if
necessary.

C9
Used crawler is publicly available: Provides the crawler
in a public location.

C10
Mimic user interaction: Describes how the user interac-
tion was implemented, if applicable.

Experiment
Design (Ex-
periment
Env.)

C11
Describe crawling strategy: Describes which crawling
strategy was used (e.g. stateless vs. stateful).

C12
Document a crawl’s location: States from which loca-
tion(s) the study was conducted.

C13
State browser adjustments: Discusses properties of the
browser (e.g. user agent, version, used extensions).

C14
Describe data processing pipeline: Describes the data
processing steps in detail.

Evaluation

C15
Make results openly available: Authors provide the (raw)
measurement results.

C16
Provide a result/success overview: Describes the out-
come of the measurement process on a higher level.

C17 Limitations: Discusses the limitations of the experiment.

C18
Ethical discussion: Discusses ethical implications of the
experiment (e.g. exploiting vulnerabilities).
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Table A.2: Reimplementation criteria assessment of the CookieBlock paper.

Criterion ID CookieBlock

C1
3

Tranco ranking [32] of May 5th, 2021

C2
3

https://tranco-list.eu/list/P63J/full
C3 7

C4

3

For each domain, after arriving on the landing page, the crawler
detects which CMP is actively present on the site. Then, the set
of declared cookies is extracted. If this proceeds without error, the
subsequent steps are intended to trigger the creation of cookies in
the browser. First, the crawler consents to all cookie purposes in
the cookie banner using the Consent-O-Matic extension [27, 39].
This is required, as otherwise, the lack of consent would prevent
cookies from being created. Afterwards, the browser visits random
links leading to subpages of the domain, scrolling down to the
bottom of each page and performing random cursor movements for
each subpage. Urban et al. [51] reported that browsing subpages
increases the number of observed cookies up to 36%. As a trade-off
between crawling speed and the amount of collected data, we visit
ten randomly selected subpages for each site.

C5
3

OpenWPM
C6 7

C7
3

Extended to handle data extraction from the CMPs.

C8

3

The probability with which advertising cookies will evade detection
can be identified using the recall metric of the advertising class. The
potential to break essential functionality on websites can be found in
the recall of the necessary category. The closer either performance
metric is to 1 or the lower the privacy threat, respectively, the less
likely a website is to break.

C9
3

https://karelkubicek.github.io/post/cookieblock

C10

3

Afterwards, the browser visits random links leading to subpages
of the domain, scrolling down to the bottom of each page and
performing random cursor movements for each subpage.

C11 7
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Criterion ID CookieBlock

C12

3

Our scan was performed on an AWS EC2 server instance located
in Germany, with 32 vCPUs, 64 GB of RAM, and a 10 Gigabit
connection. Special care was taken to perform the scan from within
an EU country, as previous works have shown that there is significant
geographic discrimination with regards to GDPR enforcement.

C13

3

Note that while CookieBlock imitates the behavior of a CMP, it is
not intended to interact with or remove the cookie banners shown
on websites. This function is already fulfilled by existing browser
extensions, such as Consent-O-Matic [27], which can be used in
conjunction with CookieBlock. CookieBlock also does not act as a
replacement for the cookie banner in the legal sense, and its use is
not a justification for websites to skip the gathering of user consent.

C14
3

Observed violations
C15 7

C16
3

6 Observed violations

C17
3

7 Limitations
C18 7
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Table A.3: Reimplementation criteria assessment of the CookieHunter
paper.

Criterion ID CookieHunter

C1
3

Alexa Top 1 million (09/14/2017)

C2
Undoc.
(Top-1K hand-picked / Top-1K randomly selected / Any-rank ran-
domly selected)

C3 7

C4

3

The crawl starts at the landing page and goes to a depth of 2 – we opt
for a more shallow crawl to reduce the crawl’s duration and enable
our large-scale study. Our framework collects all links included in
each page that point to the same domain, and subsequently visits
and inspects them. This step prioritizes links that contain an account-
related keyword (e.g. signin, register etc.) and follows a breadth-first
search (BFS) approach. If both types of forms are yet to be found,
the final step is to collect the first 30 links from the homepage and
inspect them, excluding previously-visited URLs. This is based on
the intuition that such pages are typically easily accessible to users
and not hidden behind multiple menus, and are usually at the top
of the page.

C5
3

Selenium + Chrome and Firefox WebDrivers
C6 7

C7

3

Develop XDriver, a custom browser automation tool designed for
security-oriented tasks that offers improved fault-tolerance during
prolonged black-box interactions with web apps. XDriver is built on
top of Selenium and the official Chrome and Firefox WebDrivers.

C8 7

C9 7
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Criterion ID CookieHunter

C10

3

For each URL, we iterate over the candidate SSO elements and
click them. We prioritize elements that are displayed, based on
the intuition that sites are usually upfront about the available login
options. For displayed elements we use Selenium’s click method,
effectively replicating a user’s action. For hidden elements we refrain
from trying to make those elements appear, which would involve
clicking over other elements and potentially leading to unintended
behavior and considerably increasing the process’ duration. Instead,
we try to trigger their onClick method via JavaScript. While this
is generally effective, in some cases the candidate element is an
outer wrapper element (e.g. a div-tag which contains an a-tag), and
clicking it via JavaScript will not trigger SSO.

C11

3

Specifically, it launches a new browser instance, reloads the cur-
rent browser profile to maintain state and updates its own object
reference with that of the new one, so as to transparently update all
references of the driver held by the framework modules.

C12 7

C13 7

C14
3

EXPERIMENTAL EVALUATION
C15 7

C16
3

4 EXPERIMENTAL EVALUATION
C17 7

C18
3

Captchas ethical discussion
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Table A.4: Reimplementation criteria assessment of the OmniCrawl paper.

Criterion ID OmniCrawl

C1
3

Tranco website ranking

C2
3

https://tranco-list.eu/list/4ZWX
C3 7

C4 7

C5
3

Mitmproxy
C6 7

C7
3

Inject scripts to instrument JavaScript APIs.

C8

3

We use custom scripts instead of Selenium [15], a web automation
tool widely used by previous work [8, 33, 43], because websites may
be able to detect the use of Selenium via the existence of modified
JavaScript properties [88].

C9
3

https://github.com/OmniCrawl

C10
3

We include one version of Chrome that scrolls down the page in the
last 45 seconds of a site visit.

C11

3

A browser profile is a set of cookies and local storage representing a
user’s client-side state. Like prior work [43], we built a seed profile
for each browser and reset the browser state to it before each website
visit so that the order of website visits does not affect the data we
collect.

C12
3

We collected data from two different locations: the United States, in
North America (NA), and Taiwan, in Asia (AS).

C13

3

However, the emulation in that work was limited to changing desk-
top Firefox to use the User-Agent string and screen resolution of
mobile Firefox. Other modifications were not implemented, e.g. sen-
sor API results were not spoofed, although they are often used to
fingerprint mobile devices.

C14
3

Results
C15 7

C16
3

4 Results
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Criterion ID OmniCrawl
C17 7

C18 7
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Table A.5: Reimplementation criteria assessment of the AnymIP paper.

Criterion ID AnymIP

C1
7

German Wikipedia, filtered on the Top-Level Domain (TLD) .de
C2 7

C3 7

C4 7

C5
3

Chromium browser + DevTools protocol

C6
3

We modify the user agent to hide that Chromium was running
headless.

C7 7

C8 7

C9 7

C10
3

We also scroll the page for a random amount in short random
intervals, since additional GA requests might be sent on site usage.

C11 7

C12 7

C13 7

C14
3

Methodology
C15 7

C16
3

5 Results

C17
3

7.4 Limitations

C18
3

4.8 Ethical Considerations
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Table A.6: Implicitly satisfied reimplementation criteria by following a
containerised approach and using the Privacy Observatory platform.

Criterion ID Generic Privacy Observatory Study

C1
3

Domain-list Generator definition

C2
3

Domainlist Generator conretisation
C3 Not implicitly sat.

C4
3

Multiple repetitions of a study are automatically performed, based
on the selected crontab frequency.

C5
3

Installed crawling components can be extracted from the Docker
image layers.

C6
3

Customised configuration steps can be extracted from Docker image
layers.

C7
3

Additional extensions can be extracted from the Docker image layers.
C8 Not implicitly sat.

C9
3

If DockerHub is used (as is the default), the full Docker images and
thus also the crawler is publicly available.

C10 Not implicitly sat.

C11
3

By using Docker images, the full crawler is automatically reset after
each study run.

C12
3

The location or VPN configuration of the linked worker.

C13
3

Configurations of crawling components can be extracted from the
Docker image layers.

C14
3

The post-processing steps are directly included in the study contain-
ers.

C15
3

The raw results of each study run can be investigated down to the
individual domains.

C16 Not implicitly sat.
C17 Not implicitly sat.
C18 Not implicitly sat.
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A.2 Code base artifact

We decided to publish the code bases of this thesis as artefacts on GitHub as
well as the individual images of the reimplemented studies on DockerHub.
In the following, we provide the description of each published artefact as
well as the link to the repositories.

A.2.1 Privacy Observatory - GitHub repository

The source code of the components of the Privacy Observatory can be found
on the following GitHub repository in different subfolders.

• https://github.com/PatriceKast/privacy-observatory

Each of the components is also fully containerised and can be started either
by using the individual docker-compose.yaml.template files, contained in
the specific folders, or by using the global docker-compose.yaml.template
file, included in the root directory of the repository. These template files need
to be copied and the correct environment variables need to be set.

A.2.2 Reimplemented studies - DockerHub image repository

The successfully reimplemented studies can be found on the individual
DockerHub repositories, which are publicly available:

• https://hub.docker.com/repository/docker/kastpatrice/

cookieblock

• https://hub.docker.com/repository/docker/kastpatrice/

omnicrawl

• https://hub.docker.com/repository/docker/kastpatrice/anymip

• https://hub.docker.com/repository/docker/kastpatrice/

leakyforms

All of these Docker images follow the generic interface requirements and prin-
ciples defined in Section 3.1. In order to run them, the docker-compose.yaml

file in Listing A.1 can be used to handle input and output and it can be
started using the command docker-compose up --force-recreate.
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A.2. Code base artifact

1 version: "3.4"

2 services:

3 leakyforms:

4 image: leakyforms:latest

5 build:

6 dockerfile: Dockerfile

7 context: ./

8 volumes:

9 - /opt/input.txt:/opt/leakyforms/input.txt

10 - /opt/output.txt:/opt/leakyforms/output.txt

Listing A.1: docker-compose.yaml file for running a containerised study following the generic
interface definition
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