mzuriCh ETH Library

RLTube: Reinforcement learning
based deposition path planner
for thin-walled bent tubes with
optionally varying diameter
manufactured by wire-arc additive
manufacturing

Journal Article

Author(s):
Petrik, Jan; Bambach, Markus

Publication date:
2024-07

Permanen t link:
https://doi.org/10.3929/ethz-b-000662505

Rights / license :
Creative Commons Attribution 4.0 International

Originally published in:
Manufacturing Letters 40, https://doi.org/10.1016/j.mfglet.2024.01.007

s generated automatically upon download from the ETH Zurich Research Collection.
e information, please consult the Terms of use.



https://orcid.org/0000-0002-8790-0807
https://doi.org/10.3929/ethz-b-000662505
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mfglet.2024.01.007
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Manufacturing Letters 40 (2024) 31-36

journal homepage: www.elsevier.com/locate/mfglet

Contents lists available at ScienceDirect

Manufacturing Letters

MANUFACTURING

Letters

RLTube: Reinforcement learning based deposition path planner N
for thin-walled bent tubes with optionally varying diameter il
manufactured

by wire-arc additive manufacturing

Jan Petrik *, Markus Bambach

Advanced Manufacturing Laboratory, ETH Zurich, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 18 September 2023

Received in revised form 21 January 2024
Accepted 31 January 2024

Available online 3 February 2024

Keywords:

Wire-arc additive manufacturing
Machine learning

Reinforcement learning

Path planning

Bent tube

their quality.

This study presents RLTube, an algorithm that uses reinforcement learning (RL) to compute the deposi-
tion path for thin-walled bent tubes produced by wire-arc additive manufacturing. Rigid mathematical
rules are used by state-of-the-art methods and the developed Brute Force Approach (BFA) to achieve this
goal. In contrast, RLTube offers greater flexibility, adaptability and efficiency. This RL-based architecture
uses 2D images of bent tubes as input, eliminating the need for additional feature extraction steps. As a
result, RLTube deposition paths outperform BFA in terms of the developed evaluation criteria reflecting

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wire-arc additive manufacturing (WAAM) is an efficient additive
manufacturing method that melts a metal wire using an electric arc
and deposits it layer by layer on a substrate. WAAM offers cus-
tomization, cost-effectiveness, and the ability to produce medium
to large-sized parts with high deposition rates [1,2]. However, it
faces challenges in automated path planning. This study addresses
this issue for bent tubes with variable diameters, importantin indus-
tries like aerospace, marine, oil and gas, and automotive [3,4].

Currently, there are two main methods for deposition path cal-
culation for a bent tube optimizing for different criteria. [5] describe
an algorithm where all the layers are perpendicular to its neutral
axis. Moreover, [6] develop a solution that tries to minimize the
height difference within each layer and demonstrate its suitability
for the case of printing a bent tube from plastic material. Finally,
[7] deal with bent tubes manufactured using WAAM, but rather
than developing a suitable deposition path, the publication focuses
on the shrinkage and distortion analysis and their compensation.

The mentioned state-of-the-art methods have a variety of prob-
lems. First, they have been tried out only on one simple geometry
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of a quarter of a torus. Secondly, they are based only on one opti-
mization criterion. Thirdly, the solutions are based on simple
mathematical rules, that might work only for a limited number
of bent tube geometries and do not represent a robust, widely
applicable technique.

Hence, this study aims to find solutions to the above problems
and challenges via a reinforcement learning approach by answer-
ing the following research questions:

e What is a suitable parameterization of a bent tube with a vari-
able radius for training a reinforcement learning algorithm?

e What parameters should the reward function of the reinforce-
ment learning algorithm contain?

e How to evaluate the quality of the deposition path so that it
serves as a reference for further methods?

o How well does the reinforcement learning approach compare to
the state-of-the-art?

2. Materials and methods
2.1. RLTube

The general workflow of the developed RLTube together with its
parameterisation and agent architecture is visualised in Fig. 1.

2213-8463/© 2024 The Author(s). Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.mfglet.2024.01.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mfglet.2024.01.007
http://creativecommons.org/licenses/by/4.0/
mailto:jpetrik@ethz.ch
https://doi.org/10.1016/j.mfglet.2024.01.007
http://www.sciencedirect.com/science/journal/22138463
http://www.elsevier.com/locate/mfglet

J. Petrik and M. Bambach

3D Model

Input image

Fow
Fow 1}

[

Manufacturing Letters 40 (2024) 31-36

2D Parametrization

(a) 3D Model and its subsequent parametrization in 2D.

CNN Feature

E— Extractor

Action

MLP Head

Value

(b) RLTube workflow including the input image, together with the RLTube agent, which outputs the action i.e. the layer

heights h1 and h2 corresponding to Figure 1(a) as well as the value of the estimated reward achieved by this particular action.

Moreover, the layer height between hi and hg is linearly interpolated. Finally, FoW stands for field of view and was set to

128x128 pixels (the green one is the actual one, while the red one is the previous one).

Reinforcement Learning Algorithm Architecture

Input

(1,128, 640)

CNN Feature Extractor

Conv2D(5, 16), ReLU(),
Linear(16, 32), ReLU(),
Linear(32, 64), ReLU(),
Linear(64, 128), ReLU()
Flatten()
Linear(5376,512)
Linear (512, 128)

Training parameters

Actor
Linear(128, 64), ReLU(), K Epochs: 15
Linear(64, 64), ReLU(), Learning rate: 3e-4

64, 64), ReLU(),
64, 36), Softmax()

Linear
Linear

C1, C2 coeeficients: 0.5, 0.01
Clipping parameter: 0.2

oo Q. S in e |

Discount factor: 0.99

Critic

Linear(128, 64), ReLU(),
Linear(64, 64), ReLU(),
Linear(64, 64), ReLU(),
Linear(64, 1)

Horizon T: 512
Actions: 36

State: 1x128x640
Minibatch size: 128

(¢) Architecture of the developed RLTube agent consisting of CNN Feature Extractor and MLP Head (see Figure 1(b)) as well

as the training parameters used to train it. The state (1, 128, 640) means that the actual and 4 previous FoW s are taken as

concatenated input (5x128=640).

Fig. 1. Visualization of the 3D model and its 2D parametrization together with the RLTube workflow and the architecture of its agent.

The reward function, which the agent tries to maximize is com-

posed as follows:

e Penalization for the difference between the angle of the layer to
the tangent of the middle contour (marked as alpha in Fig. 1 and
90 degrees. This is because the layers should be ideally perpen-

dicular to the contours.

e Penalization for difference between h; and hs,.

e Reward when there is no difference between layer heights hy, h,
in layer n and n + 1. The goal is to find a deposition path where
the agent does not need to change process parameters frequently.

e Reward when the difference between the normalized distances
of the inner and outer contours from the current layer n + 1 to
the end is smaller than from the previous layer n. This reward is
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designed to minimize the difference between the two normal-
ized lengths of the two contours and, in the case of Fig. 1, forces
the agent to output a larger h; than h,.

e Reward if the normalized length of the outer contour is greater
than the inner contour and at the same time h; is greater than
h,. The same applies analogically to the inner contour.

2.2. Deposition path evaluation criteria

Each deposition path is evaluated based on the following
criteria:

1. The average difference between the alpha angle and 90 degrees

for all proposed layers (the closer to O degrees the better).

2. The difference between h; and h; in one layer averaged over all

layers (the lower the better).

3. The number of changes of h; and h, between two consecutive
layers divided by the total number of layers (the lower the
better).

. The average height of one layer (the higher the better).

5. The remaining outer contour length from the last layer to the

end of the bent tube (the lower the better).

6. The remaining inner contour length from the last layer to the

end of the bent tube (the lower the better).

7. Total number of layers within the proposed deposition path

(the lower the better).

I

2.3. Brute force approach

The brute force approach was programmed to enable RLTube
to be compared with another method. This algorithm searches
for the optimal h; and h; by dividing the inner and outer contour
into the same number of pieces with a value from 0.5 to 3mm
and a step of 0.5. All these proposals are evaluated based on
the above-mentioned criteria and the best value of h; and h,
forming the final deposition path is selected. It is important to
highlight that the most important selection criteria are the min-
imum remaining lengths of the inner and outer contours,
because deposition paths with these minimised lengths propose
deposition for the largest part of the geometry, which is the
basic requirement to be at least theoretically able to print a
geometry.

3. Results

Fig. 2 shows the deposition paths proposed by RLTube and BFA
for tubes 1 and 2, on which the RLTube was developed and
finetuned.

The overall results of the tubes shown in Fig. 2 based on the
evaluation criteria are presented in Table 1.

In addition, the fabrication of tubes like the ones shown in Fig. 3
can be accomplished by following the deposition paths proposed
by developed and finetuned RLTube. To identify suitable process
parameters, specifically welding speed and wire feed rate, based
on the layer heights h; and h, as determined by the RLTube agent,
the Process parameters setter detailed in [8] can be used.

4. Discussion

It was found that the most efficient way to parameterize a
bent tube with a potentially varying diameter is to project it into
2D and extract inner and outer contours. This approach saves
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memory by avoiding the use of a 3D representation in reinforce-
ment learning. However, it is suitable only when 2D projection
preserves geometric information. Inner and outer contours can
be divided into discrete parts, serving as layer heights, ranging
from 0.5 to 3 mm with 0.5 mm increments. This choice offers flex-
ibility to the RLTube agent, balancing speed and deposition paths.
Training times are typically one to two hours, ensuring effective
results. These training times were influenced by the smaller
diameters of the bent tubes (20 to 60mm). Larger bent tubes
are likely to demand longer training times. Importantly, deposi-
tion paths for these tubes can be obtained by adding extra depo-
sition layers, positioned between the original inner and outer
contour points of neighbouring layers. However, it is crucial to
maintain a minimum layer height of 0.5mm and a maximum of
3 mm.

A vital element in the development of the RLTube algorithm is
its reward function. This function guides the reinforcement
learning agent by rewarding desirable actions and penalising
undesirable ones. RLTube’s reward function penalises when the
layer is not perpendicular to the neutral axis, different heights
within one layer, and encourages consistent heights across mul-
tiple layers. It also incentivises minimising the difference in the
remaining length of the inner and outer contours. Furthermore,
it is possible to fine-tune the weighting of various components
within the reward function to achieve optimal outcomes in speci-
fic geometries of bent tubes. Finally, while this information pro-
vides rich feedback for optimisation, it can be confusing due to
conflicting incentives and may have limited applicability in some
scenarios.

In addition to developing RLTube, this work introduces a com-
prehensive evaluative scheme, which encompasses multiple crite-
ria: the average deviation of the alpha angle from 90 degrees,
emphasizing alignment; the average difference in layer heights
to gauge consistency; the frequency of height changes normalized
by the total number of layers, favoring smoother paths; the aver-
age layer height for deposition speed; remaining lengths of inner
and outer contours, indicating coverage; and the total number of
layers for efficiency. These criteria collectively form a robust
framework for assessing and comparing deposition paths, ulti-
mately leading to improved comparability among different studies
dealing with this topic.

As discussed in the previous paragraph, comparing the RLTube
with other methods in the field is challenging due to the lack of
a clear evaluation framework and the field’s underdevelopment.
To establish a baseline, BFA was developed, which is compared
with RLTube in Table 1. The comparison of the ultimate geometric
and microstructural characteristics of samples produced using
RLTube and BFA deposition paths depends on the specific input
geometry. For example, RLTube reduces the number of layers by
around 30% in the case of Tube 1, potentially leading to quicker
build times and higher cost-effectiveness compared to BFA (see
Fig. 2(c)). Nonetheless, this increased efficiency may come at the
expense of surface smoothness and microstructural uniformity
which might be better when the BFA path is followed (see Fig. 2
(e)). Conversely, for Tube 2, both methods propose nearly identical
numbers of layers (see Figs. 2(d), 2(f)). However, as seen in Table 1,
particularly in the average deviation of the alpha angle from 90
degrees, RLTube demonstrates significantly better performance
than BFA. This can lead to better final structural integrity and stress
distribution of a fabricated specimen if the RLTube path is fol-
lowed. Therefore, the choice of deposition path should be made
on an individual basis depending on the specific application
scenario.
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Table 1
Evaluation of RLTube based on the evaluation criteria described in SubSection 2.2 and its comparison with the brute force
approach (see Section 2.3).

Tube n. 1 Tube n. 2

RLTube BFA RLTube BFA
Crit. 1 0.5 3.29 0.2 12.2
Crit. 2 0.8 0.5 0.9 1
Crit. 3 24 0 20 0
Crit. 4 25 1.1 1.7 2
Crit. 5 0.8 0.4 13 0.8
Crit. 6 0.5 1.01 0.9 1.9
Crit. 7 49 70 63 64

(a) 3D model of a printed sample 1 with R=150 mm (b) 3D model of a printed sample 2 with R=314 mm,
and =100 mm. Z1=100mm and @2=50 mm.

(c) Printed sample 1. (d) Printed sample 2.

Fig. 3. 3D Models as well as the printed samples. Fig. 3(a) shows a bent tube where the radius is 150mm and the diameter 100 mm. Moreover, the bent tube visualized in
Fig. 3(b) has a radius of 314mm and diameters of 100 and 50mm [7].

5. Conclusions e Introduction of a novel method to parameterize bent tubes,

which enhances memory efficiency by utilizing a 2D projection.

This publication introduced RLTube, an innovative reinforce- e Establishment of a detailed set of evaluation criteria for com-

ment learning algorithm developed for formulating the deposition paring and assessing deposition paths, addressing the existing

path in wire-arc additive manufacturing of bent tubes. need for standardized measures in the field of manufacturing
The main contributions of the work are as follows: research.
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e Development of RLTube, an RL-based path planner for bent
tubes produced by wire-arc additive manufacturing, with better
performance against evaluation criteria compared to a brute-
force approach (see Table 1) and bigger flexibility and adapt-
ability than state-of-the-art.
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