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Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark∗

Nora Lüthen† , Stefano Marelli† , and Bruno Sudret†

Abstract. Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method that takes
advantage of the properties of PCE, the sparsity-of-effects principle, and powerful sparse regression
solvers to approximate computer models with many input parameters, relying on only a few model
evaluations. Within the last decade, a large number of algorithms for the computation of sparse
PCE have been published in the applied math and engineering literature. We present an extensive
review of the existing methods and develop a framework for classifying the algorithms. Furthermore,
we conduct a unique benchmark on a selection of methods to identify which approaches work best
in practical applications. Comparing their accuracy on several benchmark models of varying dimen-
sionality and complexity, we find that the choice of sparse regression solver and sampling scheme for
the computation of a sparse PCE surrogate can make a significant difference of up to several orders
of magnitude in the resulting mean-squared error. Different methods seem to be superior in different
regimes of model dimensionality and experimental design size.

Key words. uncertainty quantification, surrogate modelling, sparse regression, sparse polynomial chaos expan-
sions, experimental design

AMS subject classifications. 65C60, 62K20, 62P30

DOI. 10.1137/20M1315774

1. Introduction. Computer modelling is used in nearly every field of science and engineer-
ing. Often, these computer codes model complex phenomena, have many input parameters,
and are expensive to evaluate. In order to explore the behavior of the model under uncertainty
(e.g., uncertainty propagation, parameter calibration from data or sensitivity analysis), many
model runs are required. However, if the model is costly, only a few model evaluations can
be afforded, which often do not suffice for thorough uncertainty quantification. In engineer-
ing and applied sciences, a popular work-around in this situation is to construct a surrogate
model. A surrogate model is a cheap-to-evaluate proxy of the original model, which typically
can be constructed from a relatively small number of model evaluations and approximates
the input-output relation of the original model well. Since the surrogate model is cheap to
evaluate, uncertainty quantification can be performed at a low cost by using the surrogate
model instead of the original model. Therefore, surrogate modelling aims at constructing a
metamodel that provides an accurate approximation to the original model while requiring as
few model evaluations as possible for its construction.

In this article, we focus on nonintrusive regression-based sparse polynomial chaos expan-

∗Received by the editors January 29, 2020; accepted for publication (in revised form) January 24, 2021; published
electronically May 13, 2021.

https://doi.org/10.1137/20M1315774
Funding: This work is part of project Surrogate modelling for stochastic simulators (SAMOS) (grant

200021 175524) funded by the Swiss National Science Foundation.
†Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, 8093 Zürich, Switzerland (luethen@
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A B S T R A C T

Active learning methods have recently surged in the literature due to their ability to solve complex structural
reliability problems within an affordable computational cost. These methods are designed by adaptively build-
ing an inexpensive surrogate of the original limit-state function. Examples of such surrogates include Gaussian
process models which have been adopted in many contributions, the most popular ones being the efficient
global reliability analysis (EGRA) and the active Kriging Monte Carlo simulation (AK-MCS), two milestone
contributions in the field. In this paper, we first conduct a survey of the recent literature, showing that most
of the proposed methods actually span from modifying one or more aspects of the two aforementioned methods.
We then propose a generalized modular framework to build on-the-fly efficient active learning strategies
by combining the following four ingredients or modules: surrogate model, reliability estimation algorithm,
learning function and stopping criterion. Using this framework, we devise 39 strategies for the solution of 20
reliability benchmark problems. The results of this extensive benchmark (more than 12,000 reliability problems
solved) are analyzed under various criteria leading to a synthesized set of recommendations for practitioners.
These may be refined with a priori knowledge about the feature of the problem to solve, i.e. dimensionality
and magnitude of the failure probability. This benchmark has eventually highlighted the importance of using
surrogates in conjunction with sophisticated reliability estimation algorithms as a way to enhance the efficiency
of the latter.

1. Introduction

Structural reliability analysis is a central tool for the design and
assessment of complex engineering systems. Such systems are affected
by uncertainties, which may arise from natural variability in their
physical properties (e.g., material strength, manufacturing tolerances),
operating conditions (e.g., variable loads, environmental conditions) or
simply because of an incomplete or lack of knowledge (e.g., in the
non-destructive assessment of existing structures). Structural reliability
analysis aims at assessing the effects of such uncertainties, by estimat-
ing the associated failure probability with respect to some relevant limit
states. In this paper, we consider a probabilistic setting, in which the
uncertainties are represented through a set of random parameters 𝑿 ∈
𝑿 ⊂ R𝑀 completely defined by their joint probability distribution
function (PDF) 𝑓𝑿 . These parameters represent the state of the system,
which can be evaluated through a so-called performance function
(a.k.a. limit-state function), herein denoted by 𝑔 (𝑿). By convention,
the system is assumed to be in a failure (resp. safe) state when 𝑔 (𝒙) ≤ 0
(resp. 𝑔 (𝒙) > 0). The probability of failure of the system can then be

∗ Corresponding author.
E-mail address: moustapha@ibk.baug.ethz.ch (M. Moustapha).

defined as

𝑃𝑓 = P (𝑔(𝑿) ≤ 0) = ∫𝑓

𝑓𝑿 (𝒙)d𝒙. (1)

This integration over an implicitly defined domain 𝑓 =
{𝒙 ∶ 𝑔 (𝒙) ≤ 0} is not straightforward to solve and has motivated the
development of a rich variety of techniques [1–3]. These techniques
can be broadly grouped in several classes. These include approximation
methods, where the limit-state function is linearized (or otherwise
approximated) around a so-called design point, e.g., the most probable
failure point (MPFP) in a suitably transformed probabilistic input space.
This step allows one to then derive (semi-)analytically an approxi-
mation of the failure probability. This class includes the well-known
first-order and second-order reliability methods (FORM and SORM) [4,
5]. This family, however, is known to suffer severe limitations when
the limit-state function is strongly non linear, or in the presence of
multiple failure modes. A second class of methods, namely that of
simulation techniques, is widely used for the solution of Eq. (1). Monte
Carlo simulation is certainly among the most widely-used methods in

https://doi.org/10.1016/j.strusafe.2021.102174
Received 29 May 2021; Received in revised form 6 November 2021; Accepted 29 November 2021

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 3/25



The UQLab software framework

Physical
Model

Model(s) of the system

Assessment criteria

Probabilistic Input
Model

Quantification of

sources of uncertainty

Analysis

Uncertainty propagation

Random variables Computational model
Moments

Probability of failure

Response PDF

Iteration

▶ Matlab-based high-level language
▶ Complete framework for

uncertainty quantification
▶ BSD license: completely

open-source for both academia
and industry

▶ Approx. 6.8k unique users from
90+ countries

▶ 1500+ combined citations on
Google Scholar since 2014

Continuously developed/updated by the RSUQ Chair @ETH Zurich

Marelli, S. & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom, 2554-2563.
doi:10.3929/ethz-a-010238238
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Our proposal

▶ Unified, standardized, and objective way to evaluate the performance of algorithms against
established standards

▶ Curated database containing datasets, configurations, algorithms, and performance measures
▶ Sets of settings of competitors tailored for specific benchmark case scenarios
▶ Reduce the workload and time investment for researchers
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Ingredients of a benchmark study

▶ Bench cases
▶ Competitors
▶ Performance measures
▶ Post-processing of the results

Additional features
▶ Library
▶ Dispatch of computations (HPC)

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 6/25



Bench cases

P1 P2 P3 P4 P5 P6

E1, A1 E2, A2

6×4 m = 24 m

2
m

1 2 3 4 5 6

7 8 9 10 11
1213

1 2 3 4 5

7 8 9 10 11

2313 15 17 19 21

6

2212 14 16 18 20

w1
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Bench cases

▶ Described by
– a computational model with an associated set of probability distributions, or
– datasets

▶ Example: Borehole model for surrogate modeling

f(X) =
2πTu(Hu − Hl)

ln
(

r
rw

)(
1 + 2LTu

ln
(

r
rw

)
r2

wKw

+ Tu
Tl

) Variable Description Distribution Statistics
rw Radius of borehole (m) Normal µrw = 0.10, σ2

rw
= 0.0161812

r Radius of influence (m) Lognormal µr = 7.71, σr = 1.0056
Tu Transmissivity of upper aquifer (m2 /yr) Uniform Tu ∼ U(63070, 115600)
Hu Potentiometric head of upper aquifer (m) Uniform Hu ∼ U(990, 1110)
Tl Transmissivity of lower aquifer (m2 /yr) Uniform Tl ∼ U(63.1, 116)
Hl Potentiometric head of lower aquifer (m) Uniform Hl ∼ U(700, 820)
L Length of borehole (m) Uniform L ∼ U(1120, 1680)
Kw Hydraulic conductivity of borehole (m/yr) Uniform Kw ∼ U(9855, 12045)

sample No. rw r Tu Hu Tl Hl L Kw f(X)
1 0.096852 3778.2 90956 1106.2 104.3 733.72 1410.1 11336 87.913
2 0.078719 3186 97448 1053.8 85.501 752.81 1648.4 10488 37.185
3 0.10404 354.06 84482 1029 67.905 763.26 1477.1 11326 68.951
4 0.09882 501.17 1.0614e5 1002.7 77.196 754.89 1656.3 11377 52.024
...

...
...

...
...

...
...

...
...

...
N 0.1083 1392.1 1.0081e5 1063.3 71.228 805.04 1254.8 10004 75.399
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Competitors

Potential competitors for benchmarking
▶ Metamodels
▶ Reliability analysis
▶ Classifiers
▶ Samplers
▶ [Robust] Optimization algorithms
▶ Bayesian inference/inversion
▶ [Sensitivity analysis (specific measures, such as ANOVA)]
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Competitors
Metamodels

▶ Configuration parameters:
– Metamodel family
– Smoothness

(degree/covariance)
– Sparsity
– Optimization algorithms
– Adaptivity

▶ Example: Kriging
– Correlation families

(exponential/Matern/...)
– Optimization algorithms

(BFGS, GA)
– Regression vs

interpolation
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Performance measures

Why are performance measures computed?
▶ Comparing different algorithms
▶ Assessing accuracy and precision of the

algorithm
▶ Improving algorithm development

Typical performance measures
▶ Accuracy prediction (e.g., RMSE, MAE, or Rˆ2)
▶ Convergence analysis (e.g., probability of failure

or reliability index)
▶ Computational efficiency (costs)
▶ Robustness (e.g., by cross-validation)
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Analysis, and aggregating & post-processing results

Let’s run the benchmarking analysis!
▶ Assemble all combinations of bench cases and competitors
▶ Run the competitors to obtain performance measures

What should be included in post-processing?
▶ Brief overview of the analysis
▶ Aggregating results
▶ Book-keeping / Interactive results
▶ Ranking
▶ Graphical representation of results

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 11/25



Library

Purpose of the library
▶ To provide a curated, standardized, and comprehensive collection of benchmark cases,

settings, and results for evaluating and comparing the performance of newly implemented
algorithms

What should be stored in the library?
▶ Bench case inputs: Input data for benchmark cases
▶ Competitor settings: Settings used by previously analyzed competitors during benchmark

analysis
▶ Unified benchmark results: Exhaustive collection of benchmark results
▶ Curated competitor settings: Specified sets of settings for competitors, tailored for specific

benchmark cases

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 12/25
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Demo No. 1
Run the live demo in MATLAB
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Demo No. 1
Initialization

Goal: Initialize UQLab and the Benchmark module using the Metamodel benchmark type

%% 1 - INITIALIZE UQLAB
%
% Clear all variables from the workspace ,
% set the random number generator for reproducible results ,
% and initialize the UQLab framework :
clear , clc
rng (100 , 'twister ')
uqlab

%% 2 - SETUP THE SURROGATE MODELLING BENCHMARK
%
% Select the benchmark tool and the benchmark type case :
BOpts .Type = 'Benchmark ';
BOpts . BenchmarkType = 'Metamodel ';

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 14/25



Demo No. 1
Bench case: Ishigami function

Goal: Bench case #1 with 3 different experimental designs (30, 50, and 70 samples) and 10 different
replications (by using a user-defined input and model)

%% 3 - BENCH CASES
%% 3.1 - ISHIGAMI FUNCTION
BOpts . BenchCases (1).Name = 'Ishigami function ';
%% 3.1.1 - COMPUTATIONAL MODEL
BOpts . BenchCases (1). Model . mFile = 'uq_ishigami ';

%% 3.1.2 - PROBABILISTIC INPUT MODEL
for ii = 1:3

IshigamiInput . Marginals (ii).Type = 'Uniform ';
IshigamiInput . Marginals (ii). Parameters = [-pi pi ];

end
BOpts . BenchCases (1). Input = IshigamiInput ;

%% 3.1.3 - EXPERIMENTAL DESIGN AND VALIDATION SETS
NSamples = [30 , 50, 70];
Replications = 10;
BOpts . BenchCases (1). ExpDesigns = struct ('NSamples ', num2cell ( NSamples ), ...

'Replications ', Replications );
BOpts . BenchCases (1). ValidationSet . NSamples = 1e4;

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 15/25



Demo No. 1
Bench case: Borehole function

Goal: Bench case #2 with 3 different experimental designs (30, 50, and 70 samples) and 10 different
replications (by using UQLab-defined input and model)

%% 3.2 - BOREHOLE FUNCTION
uq_BoreholeInputModel ;
BOpts . BenchCases (2).Name = 'Borehole function ';

%% 3.2.1 - COMPUTATIONAL MODEL
BOpts . BenchCases (2). Model = myModel ;

%% 3.2.2 - PROBABILISTIC INPUT MODEL
BOpts . BenchCases (2). Input = myInput ;

%% 3.2.3 - EXPERIMENTAL DESIGN AND VALIDATION SETS
NSamples = [30 , 50, 70];
Replications = 10;
BOpts . BenchCases (2). ExpDesigns = struct ('NSamples ', num2cell ( NSamples ), ...

'Replications ', Replications );
BOpts . BenchCases (2). ValidationSet . NSamples = 1e4;
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Demo No. 1
Competitors: PCE, Kriging

Goal: Set up PCE and Kriging competitors with (almost) default options

%% 4 - COMPETITORS

%% 4.1 PCE
PCEMetaOpts .Type = 'MetaModel ';
PCEMetaOpts . MetaType = 'PCE ';
PCEMetaOpts . Degree = 1:15;
PCEMetaOpts . Method = 'LARS ';

BOpts . Competitors (1). MetaOpts = PCEMetaOpts ;
BOpts . Competitors (1).Name = 'PCE (LARS , d =1:15) ';

%% 4.2 Kriging
KrigingMetaOpts .Type = 'Metamodel ';
KrigingMetaOpts . MetaType = 'Kriging ';
KrigingMetaOpts .Corr. Family = 'Exponential ';

BOpts . Competitors (2). MetaOpts = KrigingMetaOpts ;
BOpts . Competitors (2).Name = 'Ordinary Kriging ( Exponential corr. family )';
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Demo No. 1
Run and post-process the analysis

%% 5 - GENERATE AND RUN THE BENCHMARK
myBenchmark = uq_createAnalysis ( BOpts );

%% 6 - POSTPROCESSING
% Print a summary of the resulting analysis
uq_print ( myBenchmark )

% Create a graphical representation of the results
uq_display ( myBenchmark , 'full ')

%% 7 - STORING BENCHMARKING ANALYSIS DATA
uq_saveToLibrary ( myBenchmark ,'myNewFancyLibrary .mat ')
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Demo No. 1
Results
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Demo No. 2: Post-processing of a real benchmark
Run the live demo in MATLAB
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Demo No. 2: Post-processing of a real benchmark
Bench cases

Bench case Dimension Experimental designs
(samples)

Validation set
(samples)

Ishigami function 3 30, 50, 70, 90, 120, 150, 200 100 000
Borehole function 8 50, 100, 150, 200, 250, 300 100 000
Damped oscillator 8 100, 150, 200, 250, 300, 350, 400 100 000
Wingweight function 10 100, 150, 200, 250, 300 100 000
Truss model 10 100, 150, 200, 250, 300 100 000

50 replications 1 replication
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Demo No. 2: Post-processing of a real benchmark
Competitors

No. Competitor Names Number of Hyperparameters

1 PCE (LARS) 3
2 PCE (OMP) 3
3 PCE (SP) 3
4 Ordinary Kriging 4
5 Kriging with a linear trend 4
6 PCK 7
7 XGBoost (sklearn Python module) 8
8 Multi-Layer Perceptron (torch Python module) 10
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Demo No. 2: Post-processing of a real benchmark
Results in MATLAB
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Summary

We propose a flexible framework to fairly and efficiently compare the performance of surrogate models:

▶ Selection of benchmark cases
▶ Selection of competitors
▶ Natively enabling replications
▶ Standardized performance measures
▶ Integration of data from third-party packages
▶ Archiving through open-source libraries of pre-computed performances
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Next steps

▶ Finalizing the current state (external competitors called by the benchmark module, asynchronous
computation, etc.)

▶ Release the software into UQLab Version 2.2, scheduled for late Q2, 2024
▶ After populating the benchmark library, open access to contributors from different fields to cater

to a larger audience
▶ Extend benchmarking functionality to different types of analysis (e.g., Bayesian calibration,

sensitivity analysis, optimization, etc.)
▶ Post a public challenge for datasets and algorithms on our online community UQWorld , which

counts hundreds of users from different fields of applied science and engineering

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 24/25
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Questions?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your
attention!

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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Live demo No. 1: Results
Benchmark analysis info
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Live demo No. 1: Results
Benchmark analysis post-processing: uq_print
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Live demo No. 1: Results
Benchmark analysis post-processing: uq_print, filtering
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Live demo No. 1: Results
Benchmark analysis post-processing: uq_print, filtering
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Live demo No. 1: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 1: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 2: Bench cases
Ishigami function B1

The analytic expression:
Y (x) = sin(x1) + 7 sin2(x2) + 0.1x4

3 sin(x1) (1)

▶ 3 independent random variables
X = {X1, X2, X3}

▶ Inputs are modelled by uniform distributions
in the cube X ∈ [−π, π]3

Number of Samples Replications

Exp. Designs 30, 50, 70, 90, 120, 150, 200 50

Validation set 100 000 1
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Live demo No. 2: Bench cases
Borehole Function B2

The analytic expression:

f(X) = 2πTu(Hu − Hl)
ln(r/rw)(1 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

)
(2)

▶ 8 independent random variables
X = {rw, r, Tu, Hu, Tl, Hl, L, Kw}a

▶ Inputs are modeled by normal (rw),
lognormal (r), and uniform distributions (Tu,
Hu, Tl, Hl, L, Kw)

awhere rw : Radius of borehole, r: Radius of influence, Tu:
Transmissivity of upper aquifer, Hu: Potentiometric head of upper aquifer,
Tl : Transmissivity of lower aquifer, Hl : Potentiometric head of lower aquifer,
L: Length of borehole, Kw : Hydraulic conductivity of borehole.

Number of Samples Replications

Exp. Designs 50, 100, 150, 200, 250, 300 50

Validation set 100 000 1
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Live demo No. 2: Bench cases
Damped Oscillator Function B3

Model:

▶ 8 independent lognormal distributed random
variables
X = {mp, ms, kp, ks, ζp, ζs, S0, Fs}a

awhere mp : Primary mass, ms : Secondary mass, kp : Primary spring
stiffness, ks: Secondary spring stiffness, ζp: Primary damping ratio, ζs:
Secondary damping ratio, S0: Intensity of the white noise, Fs : Force
capacity of the secondary spring.

Number of Samples Replications

Exp. Designs 100, 150, 200, 250, 300, 350, 400 50

Validation set 100 000 1
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Live demo No. 2: Bench cases
Wing weight function B4

The analytic expression:

f(X) =0.035S0.758
w W 0.0035

fw

(
A

cos2 (Λ)

)0.6

q0.006

× λ0.04
(

100tc

cos (Λ)

)−0.3

(NzWdg)0.49 + SwWp

(3)

▶ 10 independent uniform distributed random
variables
X = {Sw, Wfw, A, Λ, q, λ, tc, Nz, Wdg, Wp}a

awhere Sw : Wing area (ft2), Wfw : Weight of fuel in the wing (lb), A:
Aspect ratio, Λ: Quarter-chord sweep (degrees), q: Dynamic pressure at
cruise (lb/ft2), λ: Taper ratio, tc: Aerofoil thickness to chord ratio, Nz :
Ultimate load factor, Wdg : Flight design gross weight (lb), Wp: Paint
weight (lb/ft2).

Number of Samples Replications

Exp. Designs 100, 150, 200, 250, 300 50

Validation set 100 000 1
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Live demo No. 2: Bench cases
Truss model B5

Model:
P1 P2 P3 P4 P5 P6

E1, A1 E2, A2

6×4 m = 24 m

2
m

1 2 3 4 5 6

7 8 9 10 11
1213

1 2 3 4 5

7 8 9 10 11

2313 15 17 19 21

6

2212 14 16 18 20

w1

▶ 10 independent random variables
X = {E1, E2, A1, A2, P1, P2, P3, P4, P5, P6}a

▶ Inputs are modeled by lognormal
(E1, E2, A1, A2) and Gumbel distributions
(Pi, i = 1, . . . , 6)

awhere A1, A2 : Cross-sectional areas, E1, E2 : Young’s moduli,
Pi, i = 1, . . . , 6: applied loads.

Number of Samples Replications

Exp. Designs 100, 150, 200, 250, 300 50

Validation set 100 000 1
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Live demo No. 2: Competitors
UQLab

PCE
▶ Regression solvers: LARS C1 , OMP C2 ,

and SP C3

▶ Degree adaptivity: p ∈ [1, 15] with early stop
based on ϵLOO

▶ q-norm truncation: [0, 75, 1]
Kriging

▶ ordinary C4 and with linear trend C5

▶ Correlation family: Matérn-5/2
▶ Correlation type: Ellipsoidal
▶ HGA optimizer

Sequential PC-Kriging C6

▶ Kriging
– ordinary Kriging
– Correlation family: Matérn-5/2
– Correlation type: Ellipsoidal
– HGA optimizer

▶ PCE
– Regression solver: LARS
– Degree: 3
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Live demo No. 2: Competitors
External

XGBoost C7

▶ sklearn Python module
▶ gamma: 3.4 · 10−7

▶ learning_rate: 0.13
▶ max_depth: 3
▶ min_child_weight: 1
▶ n_estimators: 900
▶ reg_alpha: 5.7 · 10−4

▶ reg_lambda: 1.2
▶ subsample: 0.8

Multi-Layer Perceptron (MLP) C8

▶ torch Python module
▶ lr: 5 · 10−4

▶ max_epochs: 100
▶ batch_size: 256
▶ optimizer_name: adamw
▶ lr_scheduler: False
▶ es_patience: 40
▶ lr_patience: 30
▶ module__n_layers: 4
▶ module__d_layers: 1024
▶ module__dropout: 0.2
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Live demo results: Example 2
Benchmark analysis post-processing: uq_print
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_print (240 aggregated combinations)
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_filterBenchmark
RawResults_ishigami = uq_filterBenchmark ( RawResults , 'Ishigami function ');
AggregatedResults_ishigami = uq_aggregateResults ( RawResults_ishigami ,'mean ')

SIAM UQ24 – February 29, 2024 Adéla Hlobilová 17/25



Live demo No. 2: Results
Benchmark analysis post-processing: uq_filterBenchmark
RawResults_ishigami_kriging = uq_filterBenchmark ( RawResults , ...

{'Ishigami function ','kriging '},'-intersection ');
AggregatedResults_ishigami_kriging = uq_aggregateResults (...

RawResults_ishigami_kriging ,'mean ')
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 2: Results
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Live demo No. 2: Results
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_display
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Live demo No. 2: Results
Benchmark analysis post-processing: uq_display
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