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Abstract 
 
Infectious diseases are a major public health burden in low- and middle-income countries 
(LMICs) where 84% of the world’s population live. Antimicrobial treatments, which once 
revolutionized the battle against infectious diseases, are now being threatened by the increasing 
antimicrobial resistance (AMR) among pathogens. Globally, the majority (73%) of 
antimicrobials are consumed by food animals, making them an important reservoir of AMR. 
Increasing evidence shows that AMR determinants and pathogens can be passed from animals 
to humans and cause infections that are difficult – if not impossible – to treat. The crisis of 
AMR is a slow-moving “silent pandemic” that spans decades. In comparison, the COVID-19 
pandemic was an acute health crisis with sudden and far-reaching impacts. Both cases can lead 
to substantial public health consequences if no actions are taken, and this thesis uses geospatial 
and disease dynamics modelling to guide interventions against these two health crises. 
 
Three main objectives are addressed in this thesis. First, we map trends of AMR in food animals 
using geospatial models, in combination with a literature review of point-prevalence surveys 
(PPS) of AMR prevalence. PPS represent an alternative source of information on AMR, in the 
absence of systematic AMR surveillance systems in food animals in most LMICs. Chapter 2.1 
focuses on China, and expands the previous data collection efforts to also include PPS 
conducted in the Chinese language. We predict that eastern China as well as part of central and 
northwestern China are hotspots of AMR. Chapter 3 combines PPS conducted in European 
countries with existing country-level systematic AMR surveillance data, to spatially 
disaggregate AMR prevalence at 10x10 km resolution in Europe. We show that major 
geographic heterogeneities in AMR exist within countries. Finally, Chapter 4 further refines 
maps based on a summary metric of AMR across drug-pathogen combinations used in the 
previous two chapters, and produces maps of AMR for 7 individual antimicrobial classes. 
 
Second, looking into the future, we explore at what locations and for which antimicrobials 
classes should AMR surveillance efforts be targeted, given limited resources available in 
LMICs. In Chapter 2.1, we show that future surveillance efforts of AMR in China could be 
targeted at western and southern China, using an approach that aims at minimizing the 
uncertainty of predicted AMR trends. We show that such an approach is more effective than 
other approaches that may be more commonly applied in practice, such as distributing samples 
randomly across geographic areas, or evenly between administrative units. In Chapter 4, we 
predict the antimicrobials with highest probability of its resistance exceeding 50% in the future. 
We show that in Africa and South America, future surveillance could focus on penicillins or 
tetracyclines; while in Asia, the target antimicrobial classes are penicillins or sulphonamides. 
 
Third, during the COVID-19 pandemic, we explored how local-scale modelling of disease 
dynamics can play a role in the operational aspect of disease management. An online platform 
icumonitoring.ch was built to display hospital surveillance data of COVID-19, and to provide 
projections of COVID-19 occupancy in the intensive care units 3- and 7-days ahead. We show 
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that an integration of local surveillance data with disease dynamics modelling can facilitate 
decision making during a pandemic. 
 
The findings and their policy implications are discussed, along with reflections on the place of 
science and epidemic models in policy making. 
 

Zusammenfassung 
 
Infektionskrankheiten stellen in Ländern mit niedrigem und mittlerem Einkommen, in denen 
84 % der Weltbevölkerung leben, eine große Belastung für die öffentliche Gesundheit dar. 
Antimikrobielle Behandlungen, die einst den Kampf gegen Infektionskrankheiten 
revolutionierten, sind nun durch die zunehmende antimikrobielle Resistenz (AMR) von 
Krankheitserregern bedroht. Weltweit wird die Mehrheit (73 %) der antimikrobiellen Mittel 
von Nutztieren verzehrt, was sie zu einem wichtigen AMR-Reservoir macht. Es gibt immer 
mehr Belege dafür, dass AMR-Determinanten und -Pathogene vom Tier auf den Menschen 
übertragen werden können und Infektionen verursachen, die schwer - wenn nicht gar 
unmöglich - zu behandeln sind. Die AMR-Krise ist eine langsam voranschreitende "stille 
Pandemie", die sich über Jahrzehnte erstreckt. Im Vergleich dazu war die COVID-19-
Pandemie eine akute Gesundheitskrise mit plötzlichen und weitreichenden Auswirkungen. In 
beiden Fällen kann es zu erheblichen Folgen für die öffentliche Gesundheit kommen, wenn 
keine Maßnahmen ergriffen werden. In dieser Arbeit wird die Modellierung von Geodaten und 
Krankheitsdynamik eingesetzt, um Maßnahmen gegen diese beiden Gesundheitskrisen 
anzuleiten. 
 
In dieser Arbeit werden drei Hauptziele verfolgt. Erstens kartieren wir Trends der AMR bei 
Lebensmitteltieren mit Hilfe von räumlichen Modellen in Kombination mit einer 
Literaturübersicht über punktuelle Prävalenzerhebungen (PPS) der AMR-Prävalenz. PPS 
stellen eine alternative Informationsquelle für AMR dar, da es in den meisten LMICs keine 
systematischen AMR-Überwachungssysteme für Nutztiere gibt. Kapitel 2.1 konzentriert sich 
auf China und erweitert die bisherigen Datenerhebungen, um auch chinesischsprachige PPS 
einzubeziehen. Wir gehen davon aus, dass Ostchina sowie Teile Zentral- und Nordwestchinas 
Hotspots für AMR sind. Kapitel 3 kombiniert die in europäischen Ländern durchgeführten PPS 
mit bestehenden systematischen AMR-Überwachungsdaten auf Länderebene, um die AMR-
Prävalenz in Europa mit einer Auflösung von 10x10 km räumlich aufzuschlüsseln. Wir zeigen, 
dass es innerhalb der Länder große geografische Heterogenitäten bei AMR gibt. Kapitel 4 
schließlich verfeinert die Karten auf der Grundlage einer zusammenfassenden Metrik der AMR 
über Arzneimittel-Erreger-Kombinationen, die in den beiden vorangegangenen Kapiteln 
verwendet wurden, und erstellt Karten der AMR für sieben einzelne antimikrobielle Klassen. 
 
Zweitens untersuchen wir mit Blick auf die Zukunft, an welchen Orten und für welche 
Antibiotikaklassen die AMR-Überwachungsbemühungen angesichts der begrenzten 
Ressourcen in LMICs ausgerichtet werden sollten. In Kapitel 2.1 zeigen wir, dass künftige 
AMR-Überwachungsmaßnahmen in China auf West- und Südchina ausgerichtet werden 
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könnten, wobei ein Ansatz verwendet wird, der darauf abzielt, die Unsicherheit der 
vorhergesagten AMR-Trends zu minimieren. Wir zeigen, dass ein solcher Ansatz effektiver ist 
als andere Ansätze, die in der Praxis häufiger angewandt werden, wie z. B. die zufällige 
Verteilung von Proben über geografische Gebiete oder gleichmäßig zwischen 
Verwaltungseinheiten. In Kapitel 4 sagen wir die antimikrobiellen Mittel voraus, bei denen die 
Wahrscheinlichkeit, dass ihre Resistenz in Zukunft 50 % übersteigt, am höchsten ist. Wir 
zeigen, dass sich die künftige Überwachung in Afrika und Südamerika auf Penicilline oder 
Tetracycline konzentrieren könnte, während in Asien Penicilline oder Sulfonamide die 
Zielantimikrobienklassen sind. 
 
Drittens untersuchten wir während der COVID-19-Pandemie, wie die Modellierung der 
Krankheitsdynamik auf lokaler Ebene eine Rolle für den operativen Aspekt des 
Krankheitsmanagements spielen kann. Es wurde eine Online-Plattform icumonitoring.ch 
eingerichtet, um sowohl die Überwachungsdaten von COVID-19 im Krankenhaus anzuzeigen 
als auch Prognosen über die COVID-19-Belegung der Intensivstationen für drei und sieben 
Tage im Voraus zu erstellen. Wir zeigen, dass die Integration von lokalen Überwachungsdaten 
mit der Modellierung der Krankheitsdynamik die Entscheidungsfindung während einer 
Pandemie erleichtern kann. 
 
Die Ergebnisse und ihre Auswirkungen auf die Politik werden erörtert, zusammen mit 
Überlegungen zum Stellenwert von Wissenschaft und Epidemiemodellen in der 
Politikgestaltung.  
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1.1 Burden of infectious diseases 
 
Infectious diseases are a major burden to public health, and leading causes of deaths in low- 
and middle-income countries (LMICs), where 84% of the world’s population live1. In 2019, 
the top 10 causes of deaths in low-income countries included 5 associated with infectious 
diseases (Figure 1A), while in middle-income countries, 2 were associated with infectious 
diseases (Figure 1B)2. 
 

 
 
Figure 1. Top 10 causes of deaths in low-income countries (A) and middle-income countries 
(B) in 2019. Causes of death that are related with infectious diseases are coloured in red. Data 
source: IHME, Global Burden of Disease (2019). 
 
The association between income and burden of infectious diseases is complex and multifaceted. 
First, limited resources in LMICs leads to weaker health systems compared with high-income 
countries: nearly 2 billion people in LMICs do not have access to basic medicines3, and the 
coverage of essential vaccines such as the measles vaccine is much lower in low-income 
countries (66%) than in high-income countries (93%). Second, sanitation facilities are 
comparatively less developed in LMICs, thereby facilitating disease transmission. In 2015, the 
World Health Organization published a report on water, sanitation and hygiene in health 

(A) Low-income countries

(B) Middle-income countries

Deaths related with infectious diseases
Deaths not related with infectious diseases

Deaths (Thousand)

Deaths (Thousand)
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facilities across 54 LMICs, and showed that 35% healthcare facilities did not have water and 
soap for handwashing4. Third, insufficient nutrition and education also increases the 
population’s susceptibility to infectious diseases5. The percentage of stunted children under the 
age of 5 in LMICs is 24.3%, which is 5 times higher than in high-income countries (4.0%)6. 
Fourth, the higher prevalence of extensive and small-sized backyard farming in LMICs leads 
to comparatively more frequent contact between humans and animals than in high-income 
countries, resulting in a higher risk of zoonotic pathogen spillover7. In 2014, work by 
Adamopoulos et al. showed that in the 20% richest countries, nearly 70% of farms had sizes 
bigger than 20 hectares, while in the 20% poorest countries, nearly 70% of farms had sizes 
smaller than 2 hectares, which are often backyard farms8.  
 
Zoonotic diseases account for approximately 26% of the burden of infectious diseases in 
humans in low-income countries9, and are the major contributor to emerging infectious diseases 
(60.3% between 1940 and 2004)10. In 2010, pathogens in animal products were estimated to 
have caused 168 Disability Adjusted Life Years (DALYs) per 100,000 population, including 
non-typhoidal Salmonella enterica, Taenia solium, and Campylobacter spp.11  
 
Infectious diseases are not only a burden for human health, but also for animal health and the 
agricultural economy. A striking recent example was the African swine fever outbreak that 
affected China between 2018 and 2019. This outbreak caused an economic loss amounting to 
0.78% of the country's total gross domestic product, approximately 111 billion USD12. 
Similarly, in 2001, the foot and mouth disease outbreak in the UK led to 7% of all cattle and 
15% of all sheep being culled13. Between 2003 and 2004, the outbreak of highly pathogenic 
avian influenza in Asia led to a loss of 18% of the poultry population in Vietnam and 15% of 
the poultry population in Thailand14. As a result, these outbreaks negatively impacted the 
economy and livelihood of farm workers in countries where animal husbandry is an important 
contributor to the economy. For example, in Thailand – the world’s third largest poultry 
exporter, smallholders used to make up 99% of poultry producers before the 2004 avian 
influenza outbreak15. The outbreak caused a $3 billion USD loss from Thailand’s poultry 
industry, and has made it challenging for smallholders to sustain their businesses, with 
significant movements out of the sector in 2006 and 200716. 
 
1.1.1 Antimicrobial resistance 
 
In the fight against infectious diseases, a major advance was achieved in the beginning of the 
20th century with the discovery and subsequent mass production of antimicrobial drugs, which 
have saved millions of lives. Penicillin, the world’s first mass produced antimicrobial, was 
discovered in 1928 by Alexander Fleming. Followed by Selman Waksman’s systematic study 
of microorganisms as potential sources of antimicrobial agents in the 1930s, multiple drug 
classes were discovered during the Golden Age of antimicrobial discovery from the 1940s to 
the 1970s17. The relatively fast discovery of new antimicrobial classes during this period led to 
a surge of its use both in humans and in animals, which plateaued in high-income countries by 
2000, but continues to increase in LMICs. Between 2000 and 2015, in humans, antimicrobial 
consumption rate decreased slightly by 4% in high-income countries, while it increased by 77% 
in LMICs during the same period18. In animals, antimicrobial consumption continues to 
increase across LMICs, while decreases have been reported in a few high-income countries 
such as Denmark, France, and the US between 2015 and 201719. If the consumption rates 
remain constant, it was projected that global antimicrobial use will increase by 15% between 
2015 and 2030 in humans18, and increase by 11.5 % between 2017 and 2030 in food animals19. 
 



 4 

Under repeated exposure of antimicrobials, microorganisms are able to adapt and evolve to 
withstand the effect of antimicrobial treatment, a phenomenon known as antimicrobial 
resistance (AMR). Although AMR is an ancient and natural phenomenon that results from the 
interaction of microorganisms and their environment, the overuse and misuse of antimicrobials 
by humans and animals is accelerating its development. AMR can occur through four main 
biochemical mechanisms20. First, bacteria can inactivate a drug by modifying or destructing it. 
This is the predominant mechanism of aminoglycoside resistance, with aminoglycoside 
modifying enzymes inactivating the drug. Second, bacteria can limit drug intake through the 
cell wall. The outer membrane of gram-negative bacteria can prevent the influx of 
antimicrobials such as vancomycin. Third, for some antimicrobials able to penetrate the 
bacteria’s membrane, efflux pumps can effectively remove the compound. This is the 
mechanism that makes some bacteria such as E. faecalis intrinsically resistant to compounds 
such as streptogramin A21. Lastly, bacteria can protect or modify the target sites to avoid the 
effect of antimicrobials. For example, a tetracycline resistance determinant Tet(O) interacts 
with the ribosome, and removes the drug from its binding site22. 
 
The danger of rising AMR through inappropriate use of antimicrobials was already highlighted 
by Alexander Fleming close to a century ago. In his Nobel Lecture in 1945, he foresaw that 
“the time may come when penicillin can be bought by anyone in the shops. Then there is the 
danger that the ignorant man may easily underdose himself and by exposing his microbes to 
non-lethal quantities of the drug make them resistant”. Indeed, just 12 years after its discovery, 
resistance to penicillin was reported23. By the late 1960s, more than 80% of Staphylococcus 
aureus strains were found resistant to penicillin24. Increasing resistance has been reported for 
many medically important antimicrobials such as third-generation cephalosporins25 and 
fluoroquinolones26. Figure 1 provides a timeline from when an antimicrobial was introduced to 
when its resistance was detected27. It suggests that evolution of AMR is accelerating over time. 
One important reason behind the acceleration is the increasing detection of resistance 
determinants on mobile genetic elements, making it easier for them to spread through 
horizontal gene transfer. For example, genes encoding New Delhi Metallo-β-lactamase (NDM-
1) carrying resistance to β-lactam antimicrobials is often found on plasmids. It was first 
detected in 2008 in a Swedish patient returning from India, and by 2010, NDM-1 had already 
spread to other countries worldwide, such as China, Canada and Belgium28. Another resistance 
mechanism, plasmid-mediated colistin resistance MCR-1, was first reported in E. coli in 2016, 
with evidence suggesting its origin in food animals due to the use of colistin as feed additives29. 
By 2020, MCR-1 was already reported in more than 70 countries both in humans and in 
animals30. 
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Figure 2. Timeline of antimicrobial introduction (beginnings of the bars) and detection of 
surmised evolved resistance (ends of the bars). This figure was published as Figure 1a in 
Witzany et al. 202027. 
 
1.1.1.1 Antimicrobial use in food animals 
 
Although concerns over AMR are centred around treatment of human infections, the majority 
of antimicrobials are consumed not by humans, but rather by animals raised for food31. In 2017, 
it was estimated that globally, 73% of antimicrobials were used in agriculture, making it an 
important reservoir of AMR. In food animals, antimicrobials are not only used for disease 
treatment, but also as growth promoters and surrogates for insufficient biosafety measures, 
which are crucial for reducing the introduction and spread of infectious diseases. 
 
Like for humans, the use of antimicrobials in food animals started with the purpose of treating 
infections. In the 1930s, synthetic sulphonamides were amongst the first antimicrobials sold 
for veterinary use (e.g. treating mastitis, an inflammatory condition of the udder, in dairy cows) 
32. Simultaneously, at a time of increasing agricultural demand, experiments were carried out 
in food animals to search for feed additives such as vitamins that can decrease the feeding and 
profit ratio. In one of these experiments carried out in the late 1940s, the growth promoting 
effect of antimicrobials was discovered by chance33: the researchers fed waste generated from 
aureomycin production containing vitamin B12 to chickens, and the resulting weight gain far 
exceeded the effect of vitamin B12 alone, and was traced to the antimicrobial leftover in the 
waste. 
 
The promise of producing affordable animal protein in massive amount soon led to the 
popularization of antimicrobial growth promoters in the animal industry. The booming sale of 
the vitamin B12/antimicrobial feed additive profited both the animal industry and the 
pharmaceutical companies, and increasingly more antimicrobial additives were licensed for 
use as growth promoters. Penicillin, oxytetracycline, and chlortetracycline were amongst the 
first licensed growth promoters in many countries including the Netherlands, UK, and France34. 
With antimicrobial feed additives, it was observed that animals grew 5% to 10% faster while 
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consuming 10% less feed35. In the context of animal husbandry, an industry known for its often 
small and fluctuating profitability36, this boost in productivity was significant. This practice 
subsequently spread across continents. South Africa waived the requirement of veterinary 
prescription for many antimicrobials in 1947; Japan licensed antimicrobial feed additives in 
1953; Routine antimicrobial use became common in China in the 1980s34. 
 
Antimicrobials, along with other factors such as the industrialization of agriculture and 
selective breeding, facilitated the intensification of the global animal industry. Chicken 
production, in particular, expanded greatly in the second half of the twentieth century. For 
example, in the UK, antimicrobials helped to decrease the feed-conversion rate in poultry from 
4.2 before the Second World War to 2.4 in 1960, and poultry went from comprising only 1% 
of the total meat consumption in 1950 to comprising 25% of the market in 198035. In Brazil, 
90% of poultry were raised in confined settings by 201037. The global pig industry also 
intensified. A notable example was in China, where the annual pork production increased from 
8 Mt 1978 to more than 50 Mt in 201038. 
 
1.1.1.2 Rising concern over AMR in food animals 
 
Reports of AMR in food animals emerged soon after the growth promoting effect of 
antimicrobials was discovered. In 1951, streptomycin resistance was first reported in turkeys39. 
In the following years, resistance to other antimicrobials such as tetracyclines were also 
reported40. In addition, increasing prevalence of AMR following the introduction of the 
corresponding antimicrobial growth promoters in the market was documented. For example, 
following the introduction of fluoroquinolones in poultry production in Spain in 1993, the 
prevalence of fluoroquinolone resistance in Campylobacter increased sharply from <10% to 
more than 80% in 199641. 
 
Rising AMR in food animals can lead to therapy failure, and thereby negatively impact animal 
health and the agricultural economy. Several antimicrobials that were once first-line choices of 
veterinary medicine are no longer effective against the targeted diseases. For example, in cattle, 
penicillin has been used to treat mastitis caused by S. aureus, as well as pneumonia caused by 
P. multocida and M. haemolytica42. Today, in some regions, high levels of AMR against 
penicillin has made it no longer an empirical first-line choice of treatment for these infections42. 
Finding alternative drugs can be difficult. First, antimicrobials that are more recently developed 
can be more expensive, resulting in increased costs for animal husbandry. Second, some 
alternative drugs, such as fluoroquinolones and third-generation cephalosporins, are critically 
important antimicrobials reserved for human use43. The convergence of these factors has led to 
fewer alternatives for treating certain diseases. For example, swine dysentery is a disease 
caused by B. hyodysenteriae that causes mortality and reduced growth in pigs. Tylosin and 
lincomycin were traditionally used to treat the infection, yet their resistance has become 
widespread44. Resistance to the alternative treatment option, pleuromutilins, has also been 
reported in some farms, making it difficult to control this disease44. 
 
Despite the direct impacts of AMR on animal health and agricultural economy, it was the 
accumulating evidence of AMR’s transmissibility from animals to humans that prompted the 
reforms of agricultural regulations concerning AMR risk. Before the 1950s, scientists had 
widely believed that bacteria were only capable of acquiring resistance through mutation or by 
vertically inheriting resistance genes. In 1965, a Lancet article showed that horizontal transfer 
of AMR genes was possible between bacteria in animal and human populations45. The first 
experiment showing such transmission on farms was conducted by Levy et al. in 197446. In the 
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experiment, tetracycline was added into the feed of chickens that were never previously 
exposed to antimicrobials. Within two weeks, resistant bacteria could be found in the faeces of 
90% chicken fed with tetracyclines. In the next weeks, resistant bacteria also appeared in the 
faeces of people living on the farm, as well as chicken that were not exposed to tetracyclines. 
 
AMR determinants as well as resistant bacteria can be transmitted from animals to humans via 
direct contact47, through handling and consuming contaminated food48, or through indirect 
routes via the environment49. There has been diverging evidence on the fraction of human 
infections attributable to antimicrobial use in animals50. For example, a review of 45 studies on 
AMR transmission of E. coli between animals and humans found that 18% of studies supported 
AMR transmission from animals to humans, 56% suggested transmission without showing 
directionality, while 26% did not support transmission50. The divergence in evidence is partly 
due to differences in the discriminative powers of the molecular typing technique applied. For 
example, whole genome sequencing is able to detect difference at high resolution that cannot 
be captured by traditional methods such as pulsed-field gel electrophoresis51. Future studies 
will need to use high-resolution techniques such as whole genome sequencing, and adopt 
appropriate sampling regimes ensuring good coverage on the geographical and temporal 
dimensions of all AMR reservoirs, in order to draw robust conclusions on the directionality 
and severity of AMR transmission between animals and humans. 
 
Despite challenges in quantifying the number of human infections attributable to animals, 
evidence of AMR transmission is increasingly reported. Methicillin-resistant Staphylococcus 
aureus (MRSA) was one example of concern. MRSA infections were initially mainly acquired 
within hospitals or healthcare facilities. Since the 1990s, community-acquired MRSA began to 
increase, and was followed by the detection of prevalent livestock associated MRSA from the 
nasal swabs of both farm animals and farm workers47. There is growing evidence that livestock 
is an important reservoir of MRSA that can potentially lead to community-wide transmission52. 
 
Evidence of AMR transmission has been reported for other drug-pathogen combinations as 
well. For example, poultry workers were found to be 32 times more likely to carry gentamicin-
resistant E. coli53. Genomic analysis of Klebsiella pneumoniae showed that the strains isolated 
from retail meat and urinary tract infections were closely related, indicating a recent transfer 
of the strains54. The emergence of plasmid-mediated colistin resistance mcr-1 was first reported 
in E. coli in 2016, with evidence suggesting its origin in food animals due to the use of colistin 
as feed additives29. By 2020, mcr-1 was already reported in more than 70 countries both in 
humans and in animals30. 
 
Although rising AMR has been recognized as a leading public health threat for years, until 
recently, little was known about the actual global burden of AMR in either humans or animals. 
There were scattered studies on human incidence and deaths associated with AMR targeted at 
select pathogens (e.g. Escherichia coli and Klebsiella pneumoniae55) and at select locations 
(the European Union56). In 2022, the first comprehensive assessment of global burden of AMR 
in humans was published by Murray et al57. They estimated that 4.95 million deaths were 
associated with AMR, while 1.27 million deaths were attributable to AMR in 201957. If AMR 
would have been included as a single “disease” in the rank of causes of deaths in 2019, it would 
have ranked higher than HIV and malaria58. In comparison, in animals, the knowledge on the 
burden of AMR remains limited, and very heterogeneous across countries. 
 
1.1.2 Impact of the COVID-19 pandemic 
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The crisis of AMR is known as the “silent pandemic”. Though not a disease itself, it is 
increasingly making the treatment of diseases fail. This somewhat abstract concept has 
struggled to gain the global attention it warrants. In comparison, the COVID-19 pandemic with 
its sudden and far-reaching impact on global health, received immediate and comprehensive 
attention from all sectors. 
 
Since the report of the first case in Wuhan, China in December 2019, COVID-19 has spread 
across all continents, and was declared a global pandemic by the World Health Organization 
in March 2020. By October 2023, COVID-19 caused 6.9 million deaths globally59. The 
COVID-19 pandemic also had a profound impact on society and the global economy. More 
than half of students globally were affected by school closures and many workers lost their 
jobs60. Approximately 71 million people were pushed back into extreme poverty in 2020, 
defined as living on less than 1.90 USD per person per day61. Food insecurity also increased: a 
survey in the US showed that the number of food-insecure households with children more than 
doubled after the onset of the pandemic62. In addition, routine childhood vaccination was 
interrupted with a 11% decline in LMICs63. 
 
The trade-off between protecting public health and mitigating the economic and societal costs 
associated with pandemic containment measures was taken differently between countries. 
China for example, prioritized limiting the number of infections and adopted strict lockdown 
measures. Sweden went largely the other direction and adopted a voluntary approach 
promoting social distancing and hygiene. In comparison, Switzerland took an in-between 
position, and adopted the strategy of “flattening the curve”, where measures were implemented 
as necessary to keep hospitals from becoming overwhelmed by patients. 
 
In Switzerland, the first COVID-19 case was reported on February 25, 2020, in the southern 
canton of Ticino which borders Italy. This person possibly got infected while attending an 
event in Italy 10 days earlier. Within two days, COVID-19 cases were also reported in cantons 
Geneva, Graubünden, Zürich, Aargau, and Basel. In response, on February 28, 2020, the Swiss 
government cancelled large gatherings involving more than 1,000 people, including carnivals 
in Bern and Basel. On March 27, a nation-wide partial lockdown was put in place. All gathering 
places, with the exception of those essential for living such as pharmacies and grocery stores, 
were closed. The resulting decrease in COVID-19 cases led the government to gradually 
release the measures from April 16, 2020, following a three-step procedure. First, shops and 
businesses such as beauty salons and day care centres were re-opened. Second, schools and 
other shops were re-opened. Lastly, other places such as higher education institutions and 
libraries were also opened. With mandatory mask wearing and social distancing in place, the 
number of cases remained relatively low between June and September. 
 
The ease in measures saw a rapid increase of COVID-19 cases in October 2020, which marked 
the start of the second wave of infections. In response, the government increased public health 
measures. However, these measures, e.g., limiting public gatherings to 15 people, were less 
strict compared with the first wave. Correspondingly, there were more cases and fatalities 
during the second wave. In January 2021, the government imposed additional measures 
requiring restaurants and other non-essential shops to be closed. In additional, the national 
vaccination campaign was rolled out. COVID-19 cases dropped from 22,523 per week at the 
beginning of January to 754 cases in the middle of June 2021 (source: corona-data.ch). Since 
September 2021, only a valid COVID-19 certificate was required for fully vaccinated people 
with no other restrictions, and almost all restrictions were lifted by February 2022. 
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1.2 Infectious diseases surveillance 
 
The cornerstone for preventing and managing all kinds of infectious diseases is surveillance, 
defined by the World Health Organization as “the systematic ongoing collection, collation and 
analysis of data for public health purposes and the timely dissemination of public health 
information for assessment and public health response as necessary”64. Surveillance can act as 
early warning systems for disease outbreaks, be used to evaluate the impact of interventions, 
and to plan and prioritise public health policies65. 
 
The idea of systematically collecting facts to inform actions may date back to Hippocrates (460 
B.C. – 370 B.C.) who was known as the father of medicine66. However, the first public health 
action related to surveillance was first recorded in the early fourteenth century, when three 
guardians of public health were appointed by the Venetian Republic to detect and exclude ships 
containing people infected with bubonic plague66. Counts of morbidity and mortality have 
traditionally formed the core of surveillance data. In 1685, John Graunt suggested fundamental 
principles of disease surveillance that were centred around disease-specific death counts and 
death rates. In the USA, disease reporting at the national level started in 1850 by publishing 
mortality statistics, and systematic reporting of morbidity followed in 187467. 
 
With the advancement of the quality and capacity of surveillance systems, increasingly diverse 
sources of data other than mortality and morbidity have been incorporated into surveillance of 
infectious diseases. Notable examples include population health and point-prevalence surveys, 
laboratory reports, animal reservoir distribution data, and hospital statistics68. Population health 
surveys use random or stratified sampling techniques to collect data from a representative 
sample of the population, including demographic information, health-related behaviours (e.g., 
smoking, physical activity, diet), and the presence of diseases. These surveys may be conducted 
cross-sectionally – providing a snapshot of health at a specific point in time, or longitudinally 
– tracking changes in health and behaviours over time. While population health surveys are 
typically conducted on large scales and cover a wide range of health-related topics, point-
prevalence surveys (PPS) focus on a specific point in time and are usually on smaller scales. 
PPS are often used to assess the burden of a specific disease or condition within a short 
timeframe. Apart from surveys, laboratory reports facilitate the accurate identification of 
infectious agents causing diseases. Animal reservoir distribution data help assess risks of 
zoonotic disease spillover. Hospital statistics, such as patients’ length of stay in the intensive 
care unit, provide valuable information on the progression of diseases in the most severe stages. 
 
Developments in public health surveillance also extend to the use of geolocated data. The 
earliest presentation of geolocated data were spot maps, which used dots or other symbols to 
visually illustrate the residential or exposure locations of individual cases, and can be 
particularly useful for identifying disease clusters. Examples include yellow fever maps in the 
US in the late 18th century69, and a Cholera spot map in the UK in the mid-19th century70. In 
comparison, thematic maps aggregate data points into predefined geographic units. In the mid-
20th century, thematic maps were used for showing cancer prevalence across counties in the 
UK71. The third type of maps useful for disease mapping was isoline maps, which use 
continuous lines or curves to connect data points on the map. In the mid-20th century, isoline 
maps were used to show the dates of arrival of the Black Death in west and central Europe in 
the 14th century72. Recent decades have seen increasing integration of Geographic Information 
System (GIS) in disease surveillance systems73. For example, in 2021, the Food and Agriculture 
Organization built a web-based global animal disease information system that displays 
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locations of reported diseases such as avian influenza and African swine fever on a global 
map74. During the COVID-19 pandemic, near-real time interactive dashboards and maps 
tracking the spread of the virus, vaccination coverage, and healthcare resource allocation have 
also been widely used to inform the public and policymakers59.  
 
1.2.1 AMR surveillance 
 
Surveillance of AMR for animals has been established for decades in multiple high-income 
countries. In Europe, in 1995, the Danish Integrated Antimicrobial Resistance Monitoring and 
Research Program was the first program to systematically monitor AMR in humans, animals, 
and food. Following this, other countries including Norway, Sweden, and the Netherlands also 
established their national surveillance programs. A European wide AMR surveillance system 
– EARS-Net – was established by the European Commission in 199875. The European Food 
Safety Authority has been publishing yearly report on AMR in zoonotic and indicator bacteria 
from humans, animals and food since 200476. In the US, the National Antimicrobial Resistance 
Monitoring System for Enteric Bacteria was established in 1996. Over time, the system 
expanded from testing only human isolates, to also testing animal and retail meat samples, and 
including whole genome sequencing into the surveillance system77. 
 
In contrast, very few systematic AMR surveillance systems exist in LMICs, including 
Colombia, Thailand, and China. In 2007, Colombia launched an integrated surveillance 
program of AMR78; In 2008, China launched a surveillance program on AMR of animal origin, 
although the database is not currently available to the public; since 2017, Thailand publishes a 
One Health Report on antimicrobial consumption and antimicrobial resistance both in humans 
and animals79. In LMICs, important obstacles for establishing such systems include limited 
government expenditure on public health services, insufficient resources for conducting 
laboratory testing, and lack of proper training for public health staff. AMR surveillance in 
LMICs is also less developed in animals compared with humans. A review identified that only 
25% of the world’s AMR surveillance systems include animal samples for systematic testing80. 
Surveillance of animals essentially evolved from existing programs for humans. It is often 
focused on pathogens potentially transmissible to humans such as methicillin-resistant 
Staphylococcus aureus and extraintestinal pathogenic E. coli, and bacteria that are common 
causes of foodborne diseases such as Salmonella and Campylobacter81. 
 
The lack of information on trends of AMR in food animals in LMICs is an important obstacle 
for planning interventions in places where antimicrobial use may be high. For example, 
evidence suggests that antimicrobials are sold and consumed illegally in the markets in India, 
China, and Vietnam, potentially resulting in high levels of AMR and threatening the 
sustainability of antibiotic use, public health, and food safety. In the absence of publicly 
available systematic surveillance data, point-prevalence surveys (PPS) conducted by 
independent veterinary and public health institutes could serve as an alternative source of 
information, and collectively form event-based surveillance to shed light on patterns of AMR. 
In 2019, I joined a collaborative effort to build a repository of PPS of AMR in food animals in 
LMICs. We launched a platform resistancebank.org to display and collect PPSs of AMR82. 
The data collected in this effort are the basis for my work in Chapter 2 to 4, where I mapped 
the geographic distribution of AMR in LMICs, in China, and in the European Union, and 
developed methods to guide future surveillance of AMR. 
 
1.2.2 COVID-19 surveillance 
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Timely and accurate surveillance played a pivotal role for containing the impact of the COVID-
19 pandemic83. At the beginning of the pandemic when rapid tests for COVID-19 were not 
widely available, hospital-based surveillance was the most reliable source of information on 
the status of the pandemic. It provided important clinical and epidemiological information on 
COVID-19, such as case fatality rates, and admission rate and duration of stay at intensive care 
units (ICUs)84. In addition, when the virus was first introduced in a country, active surveillance 
was often applied to trace close contacts of the infected people, and measures such as 
quarantine was used to avoid the subsequent transmission of COVID-19. As COVID-19 
continued to spread widely across countries, the more widely applied type of surveillance was 
case-based routine surveillance, where cases of COVID-19 cases were reported within 48 hours 
of identification. The reports were the aggregated by institutions such as the World Health 
Organization and made public83. 
 
In Switzerland, measures to contain COVID-19 were less strict in comparison with other 
European countries, hospitals were operating with increased load over long periods, and the 
healthcare systems were challenged by the sudden increase of patients85. Surveillance data from 
hospitals was therefore important in informing policy makers on adjustments of measures to 
make sure that hospital capacities were not exceeded. The Coordinated Sanitary Service in 
Switzerland manages the Information and Operations System (IES system) which collects data 
on the occupancy of over 150 hospitals and emergency departments 
(www.babs.admin.ch/de/aufgabenbabs/ksd/ies.html). The system assists hospitals to record 
their emergency capacities, and can in theory serve as basis to facilitate the transfer of patients 
between hospitals. In preparation of a possible overload of ICUs in hospitals, up to 8,000 
soldiers were made available, including 3,000 in the medical field, to prepare for the allocation 
of additional ICU beds and other medical resources across the country with the help of the IES 
system. 
 
In the IES system, each emergency department uploads twice a day information of the 
following types: hospital beds, ICU beds, intermediate care unit beds, ICU beds equipped with 
extracorporeal membrane oxygenation (ECMO), and ICU beds equipped with mechanical 
ventilation. For each of these types, the following numbers were recorded: the total number of 
beds available, beds currently in use, and beds currently in use for COVID-19 patients. 
 
With the purpose of optimizing the geographic allocation of medical resources, particularly 
doctors and hospital beds, in preparation of potential hospital overload, I collaborated with the 
Swiss Armed Forces to use the IES system to forecast ICU beds occupancy at the hospital 
level. A collaborative effort was established between our research group and other researchers 
from ETH Zurich as well as the Swiss Tropical and Public Health Institute, to utilize a range 
of modelling methodologies for predicting COVID-19 cases in ICUs. I built one of the models 
and generated predictions of COVID-19 cases, based on work of Althaus et al. 
(https://ispmbern.github.io/covid-19/swiss-epidemic-model/), and using epidemiological 
information of COVID-19 estimated by other researchers, such as the biological characters of 
the virus, its transmission routes, and epidemiological parameters such as the incubation period 
and infectivity period86. Although an abundance of disease dynamics models has been 
developed during the pandemic, it is important to note that in such times of emergency, the 
most useful models may not necessarily mean more complex or accurate models, but rather 
those able to generate plausible results in a timely fashion. First, data in the early phase of the 
pandemic is often too limited and uncertain to support the parameterization of complex models. 
Second, an effective model should be one that is ready to support timely decision-making 
before the pandemic reaches a critical stage, rather than one with higher accuracy but in an ad-
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hoc manner. In addition, complex models may suffer from reduced interpretability, leading to 
a lack of clarity in the messages they can provide regarding intervention strategies. 
 
We built a platform icumonitoring.ch to display the current and projected ICU occupancy at 
the regional, cantonal, and hospital levels. From a scientific aspect, I adapted a compartmental 
model to make canton level predictions of COVID-19 cases in ICUs. From an operational 
aspect, I coordinated the platform update twice a week, to inform policy makers on the near-
real-time trends of COVID-19 in hospitals. 
 

1.3 Geospatial and disease dynamics modelling as tools to 
prevent infectious diseases 
 
1.3.1 Exploring the spatial dimension of infectious diseases  
 
Infectious diseases are distributed heterogeneously across regions. The geographic patterns of 
infectious diseases result from the interaction of multiple factors, including their origin, 
transmission pathways, the presence of susceptible populations and disease vectors, and 
climate. For example, Ebola may have originated from African fruit bats, and can be 
transmitted to human through bushmeat activities. Therefore, its distribution is concentrated in 
Sub-Saharan Africa, where the reservoir bat species and bushmeat activities are the most 
important87. In comparison, the occurrence of Salmonellosis is nearly ubiquitous, because 
Salmonella resides in the intestines of farm animals which are widespread across the globe. 
Understanding these distinct geospatial patterns that underlie disease distribution can help 
policy makers design interventions, target resources, and develop effective public health 
strategies. 
 
Investigations of the spatial patterns of infectious diseases, in their early stages, were conducted 
through visual inspections of descriptive maps. Perhaps the oldest such maps with records until 
today was Filippo Arrieta’s maps of the plague in the late 17th century88. The maps showed 
areas that were most affected by the plague and the geographic boundaries of quarantine areas. 
A well-known example in history that explored spatial patterns of cases to uncover disease 
patterns was John Snow’s investigation on cholera deaths in the mid-19th century70. By 
investigating where the cholera cases lived and their sources of drinking water, Snow was able 
to conclude that the contamination originated from a water pump. His investigation led to the 
removal of the handle of that pump, and this intervention successfully ended the cholera 
epidemics. Back then, Snow’s hypothesis of the origin of contamination was confirmed by 
drawing stacks of bars on a map to show the location and number of fatalities. With the 
advancements in geospatial modelling – defined as the application of statistical techniques on 
geolocated data to analyse and predict spatial patterns, geolocated disease surveillance data are 
increasingly used to identify clusters of cases, estimate trends, plan and evaluate interventions, 
and support public health actions89. 
 
Early efforts of geospatial modelling of infectious diseases started in the mid-20th century, and 
focused either on identifying potential risk factors linked with disease occurrence, or on spatial 
clustering. Published in 1966, one of the earliest examples for linking risk factors with animal 
disease was Ollerenshaw’s forecast model, which used climate conditions for predicting acute 
outbreaks of Fasciola hepatica in sheep in Wales90. The model used an index calculated with 
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rainfall and potential evapotranspiration data to categorise disease risk into four groups. In the 
same year, Yeoman also examined the correlation between infestation rates of ticks in farm 
animals and variation of rainfall91. On the side of spatial clustering analysis, in 1973, “spatial 
diffusion” was applied to model a Newcastle disease epidemic92. By 2000, several techniques 
for cluster analysis were developed and used in veterinary epidemiology, including nearest 
neighbour, join count statistics, Moran’s I test, and the Knox test93. One example was the 
application of Moran’s I test to detect clusters of bovine anaplasmosis and babesiosis in Costa 
Rica94. 
 
An important advance that proved successful in combining the contribution of risk factors and 
spatial clustering together for geospatial modelling was Gaussian process regression (GPR). 
GPR was developed in the mid-20th century due to the mining industry's growing interest in 
calculating areal or block averages for ore reserves. In combination with the expansion of 
remotely sensed data of remarkable spatio-temporal resolution, recent decades have seen 
increasing side use of GPR for disease risk mapping, such as for malaria95, African swine 
fever96, and avian influenza97. However, one pitfall of GPR is that the risk factors are combined 
in a linear fashion for predicting disease risk, while disease distribution is known to be driven 
by complex interactions between environmental and anthropogenic factors. 
 
Efforts of disease mapping are increasingly harnessing non-linear algorithms developed in the 
field of species distribution modelling, such as trees98, networks99, and non-parametric models 
such as k-nearest neighbours100. Developed in the 1990s, generalised additive model transforms 
linear models to non-linear models, by using spline functions as the coefficients for the 
model101. The model has high flexibility while also maintaining the interpretability of a linear 
model. Generalised additive models have been used to model meningitis outbreaks102 and 
malaria risk103. Developed in 2008, boosted regression trees is another example of non-linear 
statistical models with improved predictive performance. It harnesses the strengths of both 
regression trees that use recursive binary splits to relate covariates to the response variable, and 
boosting that combines different trees for improved predictions98. Boosted regression trees have 
been used to map the risk of dengue104 and the distribution of malaria vectors105. Artificial 
neural network, another well-known non-linear model, has gained increasing attention since it 
won the ImageNet Large Scale Visual Recognition Challenge in 2012106, and has 
revolutionized the field of artificial intelligence. Inspired by how the human brain functions, it 
uses a layered structure comprising interconnected nodes or neurons to predict complex 
patterns in data. Layers of a neural network are organized into an input layer, one or multiple 
hidden layers, and one output layer. Neurons between the layers are interconnected through 
weights that are trained using iterative optimization processes. Neural network has been used 
for predicting the HIV epidemic107, COVID-19 outbreak108, and monkeypox outbreak109, 
amongst others. 
 
In 2017, Bhatt et al. developed an approach to combine the predictive power of non-linear 
algorithms within GPR (Figure 3). Named Gaussian process stacked generalization, this 
method was shown to improve prediction accuracy of disease mapping, and will be used to 
produce several maps presented in the coming chapters of the thesis. 
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Figure 3. Illustration of geospatial mapping procedure. 
 
The purpose of Gaussian process stacked generalization is to transform geo-referenced (e.g., 
with coordinates; Figure 3A) surveillance data (e.g., cases of diseases) into spatially continuous 
maps of health-related metrics (e.g., risk of diseases; Figure 3D). Here, we consider only the 
situation where disease surveillance data are provided as values at geographic points, as 
opposed to values in geographic areas. The mapping procedure is conducted in two steps. In 
the first step (Figure 3B), a set of risk factors (e.g. temperature) are collected in the format of 
pixel maps as covariates, and values of risk factors are extracted at the locations associated 
with reported disease surveillance data. Multiple non-linear algorithms developed in the field 
of species distribution modelling e.g., boosted regression trees, are then used to quantify the 
relation between risk factors and disease occurrence. Maps of disease risk can then be generated 
by applying the trained statistical models on the maps of risk factors, these comprise the “trend” 
component of our final disease map. 
 
Modelling disease occurrence using only risk factors often does not explain all the variation in 
the data. As Tobler’s law states, “everything is related to everything else, but near things are 
more related than distant things”, also referred to as spatial autocorrelation. Failing to 
incorporate spatial autocorrelation in geospatial modelling can lead to the violation of a key 
assumption in statistical modelling – the independence of residuals. Therefore, the second step 
of Gaussian process stacked generalization is to combine the “trend” component with the 
residual spatial autocorrelation (Figure 3C). A spatial covariance function dependant on the 
geographic distance between two samples is included in the model. The function can be linear, 
exponential, squared-exponential, polynomial, or take other forms of radial basis function. The 
Matern covariance function is a generalization of the Gaussian radial basis function useful for 
spatial modelling110. Here, predictions of disease risk trained with non-linear algorithms are 
used as covariates in the Gaussian process regression, and therefore combines an ensemble of 
model predictions with residual spatial autocorrelation. 
 
The training of Gaussian process models, either through maximum likelihood or Markov chain 
Monte Carlo, can be computationally demanding111. The increasingly larger datasets used for 
disease modelling necessitate efficient approximation approaches to train such models. The 
integrated nested Laplace approximation (INLA) is an effective approximation method for the 
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Bayesian inference of Gaussian process models. INLA can be used for modelling spatial data 
by representing the Matern covariance function as a Gaussian Markov random field and using 
stochastic partial differential equation (SPDE) approach for the inference110. INLA-SPDE has 
been widely used for mapping diseases such as malaria112 and Rift Valley fever113. 
 
1.3.2 Disease dynamics modelling for simulating epidemics in time 
 
Species distribution modelling and Gaussian process regression, as mentioned in the previous 
section, are based on correlations of risk factors and disease occurrence. Their primary function 
is to map disease distribution by delineating the suitability of environmental and anthropogenic 
conditions for the survival and transmission of diseases. However, geospatial models that do 
not reflect mechanisms of disease transmission may not be optimal for predicting disease 
progression. In comparison, in compartmental models, transmission of diseases between 
subsets of the population is explicitly reflected in the model structure. Compartmental models 
are therefore particularly suitable for modelling the temporal dimension of infectious diseases. 
In addition, effects of different containment measures on disease progression can be modelled 
by modifying the relevant transmission parameters in the model, thereby allowing scenario 
analyses to guide policy intervention. 
 
The first compartmental disease dynamics model, known as the Susceptible–Infectious–
Removed (SIR) model, was developed by Kermack and McKendrick in 1927114. The model 
discretizes the population into three compartments based on their states of infection (Figure 
4a): susceptible individuals that can become infected through contact with the infectious 
individuals, infectious individuals that are capable of infecting others, and removed individuals 
who are deceased, have recovered and developed immunity, or are isolated or in quarantine. 
The links between compartments are represented as ordinary differential equations with respect 
to time. Given a specified starting condition of these compartments, the model can simulate 
time series of all compartments. 
 

 
 
Figure 4. The model structures of a basic SIR model (a) and a basic SEIR (b) model. Squares 
represent compartments of the population; S: susceptible individuals, I: infectious individuals, 
E: exposed individuals, R: recovered or deceased individuals. Arrows represent components of 
differential equations that link the compartments together. !: infection rate, ": inverse of the 
average latent time. #: recovery/mortality rate. 
 
The simplest form of an SIR model is represented in Figure 4a. Two fundamental processes of 
disease dynamics are reflected in the model structure. The first process is infection, reflected 
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as a decrease of !$% per unit time in the susceptible compartment that is transferred to the 
infected compartment. Here, !  is the infection rate, defined as the number of susceptible 
individuals that an infective individual infects per time unit. The second process is mortality or 
recovery from the infection, reflected as a decrease of #%  per unit time in the infectious 
compartment that is transferred to the recovered/deceased compartment. SIR models have 
successfully predicted disease dynamics such as measles epidemics115. 
 
However, one important limitation of the SIR model is that it neglects the latent period of an 
infection. Taking this into consideration, the SEIR model has been developed to include an 
additional compartment & – exposed individuals who are infected, but not yet infectious116 
(Figure 4b). When susceptible individuals become infected, they are first transferred into the 
exposed compartment, which are then transferred to the infectious compartment with a rate ", 
calculated as the inverse of the average latent time. The SEIR model was widely used for 
predictions during the COVID-19 pandemic in e.g., India117, Italy118, and Indonesia119. In 
Chapter 5, I will present models that extend the SEIR model to provide short-term forecasts of 
COVID-19 hospitalizations in the intensive care units in Switzerland. 
 

1.4 Thesis structure 
 
In Chapter 2, I conducted a literature review of point-prevalence surveys (PPS) of AMR in 
food animals in China including surveys published in English and Chinese. I applied geospatial 
modelling on this collection of PPS to produce maps of AMR in China. I then investigated a 
topic often overlooked in the field of geospatial modelling – using maps of prediction 
uncertainty to inform field sampling campaigns. I developed a method to optimize the 
geographic allocation of future surveillance efforts, and applied the method on the map of AMR 
in food animals in China, as well as a map of AMR in aquaculture developed in collaboration 
with my colleague Dr. Dan Schar. I showed that surveillance on AMR in farm animals could 
be intensified in southwestern and northeastern China, while surveillance on AMR in 
aquaculture in Asia could be intensified in eastern China and India. 
 
In Chapter 3, together with my colleague Ranya Mulchandani, we conducted literature review 
of PPS on AMR in food animals in European countries. I then produced a map of AMR at 
10x10 km resolution, and adjusted the predictions based on the existing country-level 
systematic AMR surveillance data in Europe. We showed major geographic heterogeneities in 
AMR within countries, which could not otherwise be captured by the data from systematic 
surveillance program that was aggregated at the country level. 
 
In Chapter 4, I further refined maps based on a summary metric of AMR across drug-pathogen 
combinations used in the previous two chapters, and produced maps of AMR for 7 individual 
antimicrobial classes. I then developed a method that used co-resistance patterns between 
antimicrobials, as well as environmental and anthropogenic covariates, to predict the 
antimicrobial with the highest probability of its resistance exceeding a critical level (50%) in 
the future. The predicted antimicrobials could be a “priority antimicrobial” for future 
surveillance. I showed that the priority antimicrobials were penicillins or tetracyclines in most 
locations in Africa and South America, and penicillins or sulphonamides in most locations in 
Asia. 
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Chapter 5 presents the platform icumonitoring.ch that we built to display and project COVID-
19 hospital occupancy in the intensive care units in Switzerland. During the COVID-19 
pandemic, I coordinated the bi-weekly update of contents on the platform. This chapter also 
presents a collaborative work between me and Dr. Riccardo Delli on improving the disease 
dynamics model used for the predictions on icumonitoring.ch. 
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Abstract 
 
The rise of antimicrobial resistance in animals is fueled by the widespread use of veterinary 
antimicrobials. China is the largest global consumer of veterinary antimicrobials – improving 
AMR surveillance strategies in this region could help prioritize intervention and preserve 
antimicrobial efficacy. Here, we mapped AMR rates in pigs, chickens and cattle in China 
using 446 surveys of event-based surveillance between 2000 and 2019 for foodborne 
bacteria, in combination with geospatial models to identify locations where conducting new 
surveys could have the highest benefits. Using maps of uncertainty, we show that eastern 
China currently has the highest AMR rates, and southwestern and northeastern China would 
benefit the most from additional surveillance efforts. Instead of distributing new surveys 
evenly across administrative divisions, using geographically targeted surveillance could 
reduce AMR prediction uncertainty by 2-fold. In a context of competing disease control 
priorities, our findings present a feasible option for optimizing surveillance efforts – and 
slowing the spread of AMR. 
 

Introduction 
 
Antimicrobials are used in agriculture as disease treatments, prophylactically to prevent 
infections in healthy animals, and to increase productivity 1. However, the routine use of 
antimicrobials as surrogates for good hygiene practices on farms 2,3 is driving a rise in 
antimicrobial resistance (AMR), with increasingly serious consequences for animal health 1,4, 
and potentially human health 5,6.  
 
Globally, 73% of antimicrobials are used in animals 7, with China being the largest consumer 
of antimicrobials in absolute terms (41,967 tons in 2017) and the second largest consumer in 
relative terms with 200 milligram used per kilogram of animal (mg/kg)8 (Supplementary 
Figure 1A, 1B). In comparison, Denmark and the Netherlands use respectively 39 mg/Kg, 
and 56 mg/Kg 9 – while maintaining a productive livestock sector. Multiple factors may 
contribute to antimicrobial overuse in China. Meat production has grown by 560% since 1979 
(FAOSTAT, http://www.fao.org/faostat/en/#data/QL ), which could have made farmers 
reliant on antimicrobials to prevent infections. Veterinary antimicrobials are reportedly 
accessible without prescriptions 10 and are sold at low prices in comparison to other countries 
11. As in many other low- and middle-income countries (LMICs) 12,13, farmers predominantly 
obtain antimicrobials from local drug stores where vendors also provide medical advice 
without veterinary training 10,14. Additionally, enforcing the existing regulations 10 on the 
compounds authorized in animals, or the recently announced ban on growth promoters 15 
remain a formidable challenge in a country where 360 million people are active in agriculture 
(World Bank, https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS). In the last 5 years, 
China has reported multiple first emergence of resistance genes to last-resort antimicrobials 
such as colistin and tigecycline 16,17 and a recent global analysis suggested that China may 
have become one of the largest hotspots of resistance among LMICs 4, ranking 8th in relative 
terms, and 1st in absolute terms, for animal-associated burden of AMR amongst LMICs 
(Supplementary Figure 1D, 1E).  
 
In high-income countries, epidemiological evidence collected by surveillance systems guides 
AMR responses and provides a baseline for evaluating policy targets. The US Food and Drug 
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Administration collects meat samples from retail and slaughterhouses to monitor AMR levels 
(https://www.fda.gov/animal-veterinary/antimicrobial-resistance/national-antimicrobial-
resistance-monitoring-system); the European Food Safety Authority (EFSA, 
https://www.efsa.europa.eu/en/topics/topic/antimicrobial-resistance) serves a comparable role 
by amalgamating the surveillance efforts of its member states. To the best of our knowledge, 
the majority of LMICs – including China – either lack systematic surveillance systems or do 
not publicly report data from animal AMR surveillance4. Despite these challenges, China 
could act as a leader for guiding the international response to AMR – because its domestic 
policies may have far-reaching benefits for neighboring countries, and its numerous trading 
partners 18.  
 
Point-prevalence surveys (PPS) published independently by veterinarians constitute an 
alternative source for documenting AMR trends (Criscuolo et al. submitted) – and inferences 
can be made to map AMR using a large collection of PPS4. However, adapting this approach 
to the Chinese context requires building a critical mass of PPS, including surveys in Chinese 
to train geospatial models. Accurate maps of disease prevalence have been generated 19–22, but 
few used the associated uncertainty maps to inform field sampling campaigns 23,24. In 
particular, as prediction uncertainty grows with distance from existing surveys, an uncertainty 
map can help identify the location where conducting new surveys could be most valuable to 
improve the confidence level of a prevalence map. Repeating this process iteratively can 
guide long-term surveillance efforts. 
 
Here, we used event-based surveillance data to map trends in AMR in animals and associated 
uncertainty levels. We identify regions where future surveillance efforts could be intensified 
to reduce uncertainty on the geographic distribution of AMR in China. In a context of 
competing disease control priorities, our approach helps optimally target the limited resources 
dedicated to event-based surveillance of AMR.   
 

Results 
 
Data 
 
We identified 446 point-prevalence surveys (PPS) reporting antimicrobial resistance (AMR) 
in food animals in China between 2000 and 2019 (Supplementary Text S1). This corresponds 
to one survey per 470,177 tons of food animals annually (28th rank amongst low- and middle-
income countries (LMICs); Supplementary Figure 1C). We collected data on four common 
indicator bacteria: Escherichia coli (184 PPS), nontyphoidal Salmonella spp. (131 PPS), 
Staphylococcus aureus (131 PPS), and Campylobacter spp. (33 PPS). The 446 PPS included 
6,295 resistance rates. We defined a composite metric of AMR to summarize trends in 
resistance across multiple drugs, and bacteria. For each survey, we calculated the proportion 
of antimicrobial compounds with resistance higher than 50% (P50; Supplementary Figure 2). 
 
Temporal trends 
 
In pigs, between 2000 and 2019, P50 increased significantly in E. coli (+59%), Salmonella 
(+148%), and S. aureus (+85%) (Figure 1A, 1B, 1C). In contrast, in chicken, P50 was stable 
in E. coli, Salmonella, and S. aureus, with mean P50 of 60%, 42%, and 37%, respectively 
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(Figure 1D, 1E, 1F). In cattle, P50 increased significantly in E. coli (+167%; Figure 1G), and 
was stable in Salmonella and S. aureus, with mean P50 of 23% and 31%, respectively (Figure 
1H, 1I). 
 

 
Fig. 1: Antimicrobial resistance between 2000 and 2019. a–i, P50 values for pigs (a–c), 
chicken (d–f) and cattle (g–i), showing resistance to E. coli (a,d,g), Salmonella (b,e,h) and S. 
aureus (c,f,i). Mean refers to the mean P50 value of all surveys. C1 is the coefficient 
associated with the temporal trend in a logistic regression model weighted by log10-
transformed sample size in each survey. Shaded areas indicate 95% confidence intervals. 
***P < 0.001; **P < 0.01; *P < 0.05. Nsurveys is the number of surveys and Nrates is the total 
number of resistance rates reported in the surveys. Surveys conducted at multiple locations in 
the same publication are considered multiple surveys. 
 
Prevalence of resistance across antimicrobial classes 
 
For each drug-bacteria-animal combination, we estimated the prevalence of resistance (R%), 
and calculated the center of mass of the probability density distribution of the prevalence of 
resistance across PPS (Methods; Figure 2). Prevalence of resistance of tetracyclines, 
sulfonamides, and penicillins was high across all tested bacterial species between 2010 and 
2019 (R% > 25%). In comparison, prevalence of resistance has remained at low levels in 
polymyxins and cephalosporins (R% < 10% for at least one bacterial species tested in one 
animal species). For all antimicrobial classes, prevalence of resistance in E. coli in chicken 
and pigs increased after 2010, except tetracyclines with already high prevalence of resistance 
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(R% > 90%) in pigs before 2010. In Salmonella, increase in the prevalence of resistance after 
2010 was observed in penicillins in chicken, as well as in sulfonamides, penicillins, and 
tetracyclines in pigs. 
 

 
Fig. 2: Prevalence of resistance per antimicrobial class. a–c, Resistance to E. coli in 
chicken, pigs and cattle (a), to Salmonella in chicken and pigs (b) and to S. aureus in cattle 
(c). In each panel, the x axis represents resistance rates and the y axis represents the 
probability density. The area under the curve between two resistance rates represents the 
probability that resistance rates fall within the interval. N, number of resistance rates used to 
calculate the density distribution. Dashed lines represent the centre of mass of each 
distribution. 
 
 
The prevalence of resistance in E. coli was higher than Salmonella for all antimicrobial 
classes (Figure 2A, 2B). Across drug classes, the prevalence of resistance in E. coli was 18% 
higher than the prevalence of resistance in Salmonella in chicken, and 16% higher than the 
prevalence of resistance in Salmonella in pigs. Prevalence of resistance for individual 
antimicrobial classes differed between chicken and pigs. For E. coli, cephalosporins and 
quinolones had respectively 20% and 27% higher prevalence of resistance in chicken 
compared with pigs, while prevalence of resistance in other antimicrobial classes differed by 
< 6% between chicken and pigs (Figure 2A). For Salmonella, quinolones had 25% higher 
prevalence of resistance in chicken compared to pigs, while for other antimicrobial classes, 
the difference in the prevalence of resistance between chicken and pigs was smaller than 
12%. (Figure 2B). This comparison was largely influenced by the relative abundance of 
serotypes of Salmonella in different animal hosts (Supplementary Figure 3). However, an in-
depth investigation on its influence on resistance trends was challenged by the fact that 70% 
of the surveys on Salmonella (93 out of 131 surveys) did not report the prevalence of 
resistance broken down by serotypes. 
 
Geographic Distribution of Resistance 
 
We used a geospatial model (Supplementary Text S2) to map P50 at 10 Km resolution, and 
combined information from PPS with environmental and anthropogenic covariates 
(Supplementary Table 1). Hotspots of AMR – regions where more than 40% of drugs have 
resistance levels above 50% (P50 > 40%) – were found in 1) eastern China in the areas of 
Heilongjiang, western Jilin, western Liaoning, southern Hebei, Shandong, eastern Jiangsu, 
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southern Anhui, Fujian and Taiwan, 2) central China in the areas of northern Shaanxi, central 
Hunan and southeastern Sichuan, and 3) the northwestern Xinjiang Uyghur Autonomous 
Region (Figure 3). Low levels of AMR (P50 < 30%) were found in Tibet Autonomous 
Region, northwestern Sichuan, and southern Guangxi (Figure 3). We measured the 
association between P50 and covariates, using the decrease in area under the receiver 
operator curve (AUC) by sequential permutation of each covariate (Supplementary Text S2). 
The most important covariates associated with P50 values were: the travel times to cities 25 (-
16% AUC), the minimum monthly temperature 26 (-15% AUC), and cattle population density 
27 (-13% AUC; Supplementary Figure 4). 
 

 
Fig. 3: Geographic distribution of antimicrobial resistance. Colour shading represents the 
P50 level. 
 
Optimal location for future event-based surveillance efforts 
 
We identified the locations of 50 hypothetical surveys to be conducted in China such that 
these would minimize uncertainty on the current map of AMR. The uncertainty was 
quantified using a map of “necessity for additional surveillance” (($) – the product of the 
kriging variance (a metric of interpolation uncertainty) and the population density (Methods). 
The 50 locations for the hypothetical surveys were identified such as to minimize the mean of 
($! across all pixels ) in the ($ map. 
 
We compared four approaches to distribute hypothetical future surveys (Methods): first a 
‘greedy’ approach that tested all possible locations for new surveys but was associated with 
high computational cost. Second, an “overlap approach” based on mutual zones of exclusions 
for consecutive surveys to be conducted. This approach was a computational approximation 
to the greedy approach. Third, an ‘administrative’ approach where surveys were distributed 
equally across administrative divisions. These three approaches were compared with a “null 
model” consisting of randomly distributing 50 surveys across China. The greedy ‘optimal’ 
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approach achieved the greatest reduction of the mean necessity for additional surveillance 
(NS) (Figure 4B, dark red). The greedy approach reduced NS by 56% more than the null 
model (Figure 4B, blue). However, the greedy approach was associated with a considerable 
computational burden (Figure 4C, 4.5 × 10" CPU minutes). The overlap approach reduced 
the mean NS by 44% more than the null model (Figure 4B, blue), thus achieving near-optimal 
reduction of NS, but with a considerably lower computational burden than the greedy 
approach. The overlap approach also outcompeted the administrative approach (Figure 4B, 
green): it reduced the mean NS by 104% more than if surveys had been distributed equally 
between administrative divisions. 
 
 

 
Fig. 4: Predicted locations for future surveys. a, Predicted optimal locations for future 
surveys using the ‘overlap approach’. The background colour represents the ‘necessity for 
additional surveillance’ (NS): the product of the kriging variance and animal population 
density (standardized from 0 to 1). b, Reduction in the mean NS with 50 hypothetical 
additional surveys. The 50 additional survey locations were identified using the greedy 
approach (dark red), the overlap approach (red), the administrative approach (green) and the 
random approach (blue). c, Total central processing unit time for computing the four 
approaches (log10 scaled). 
 
 
The overlap approach predicted locations for a large number of new surveys in the southwest 
(21/50 surveys) and northeast (11/50 surveys) of China. The surveys were predominantly 
distributed in Yunnan Province (10 surveys), Tibet Autonomous Region (9 surveys), 
Xinjiang Uyghur Autonomous Region (7 surveys), and Heilongjiang Province (5 surveys) 
(Figure 4A). These locations were determined using animal population densities as the metric 
of exposure (Methods). Additionally, we calculated the locations by province for individual 
animal species, respectively (Supplementary Figure 5). The locations were mainly distributed 
in Yunnan and Heilongjiang (exposure by chicken or pigs), and in Tibet Autonomous Region 
(exposure by cattle). If human population was considered to determine exposure 
(Supplementary Figure 6), then the locations predicted by the overlap approach to conduct 
new surveys were mainly distributed in Heilongjiang Province (8 surveys), Xinjiang Uyghur 
Autonomous Region (8 surveys), Yunnan province (7 surveys), and Inner Mongolia 
Autonomous Region (5 surveys). 
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Discussion 
 
We identified geographical gaps in event-based surveillance of food animal AMR in China, 
using a map of AMR derived from 446 PPS, and its associated map of uncertainty, 
identifying where surveillance scale-up would be the most valuable to reduce uncertainties in 
the current trends of AMR. 
 
Trends of AMR across animals and bacteria 
 
Between 2000 and 2019, in pigs, P50 doubled in Escherichia coli, Salmonella, and 
Staphylococcus aureus. This increase in AMR occurred in a period of considerable 
intensification of pig production in China, and the number of pigs slaughtered in China 
increased by 45% 28. Traditional backyard systems were gradually replaced by large-scale 
intensive farms to support the growing domestic demand for pork 29. However, as in other 
countries currently transitioning from extensive to intensive farming, improvements in 
biosecurity may have lagged behind improvements in productivity 30. Future improvements in 
biosecurity may reduce farmers’ dependency on antimicrobials for disease prevention, and 
have potentially indirect benefits for managing AMR in the long-term. Future biosecurity 
improvements can reduce the risk of diseases introduction through strict hygiene 
requirements for personnel who enter the farms, appropriate carcass management, and 
reducing the spread of diseases inside the premises through establishing pig compartments, 
and regular cleaning and disinfection 31. 
 
Between 2000 and 2019, in chicken, P50 remained stable in E. coli, Salmonella, and S. 
aureus, albeit at high levels. In 2000, P50 in E. coli, Salmonella, and S. aureus in chicken 
were already at 58%, 48%, and 56%, respectively, double the levels of resistance in pigs 
(35%, 15%, and 30%). This suggests that the intensification process (and the routine use of 
antimicrobials for production) occurred earlier and faster in the poultry sector than for pigs 32. 
Excessive use of quinolones (e.g. norfloxacin and ofloxacin) and cephalosporins (e.g. 
ceftriaxone) in chicken 10 may have caused much higher resistance rates of these two 
antimicrobial classes in chicken, compared with pigs (Figure 2). Our analysis suggests that 
the antimicrobials that maintained low prevalence of resistance in chicken are expensive and 
are seldom available on the Chinese market (Supplementary Text S3), impeding overuse and 
also preventing the further AMR increases. 
 
Prevalence of resistance for E. coli were higher than for Salmonella in pigs and chicken 
(Figure 2), possibly influenced by commensal E. coli being associated with lower resistance 
levels than pathogenic E.coli 33. However, due to the non-systematic nature of the PPS 
sampling schemes (event-based surveillance), disentangling how resistance rates differ 
between bacteria exhibiting commensal or pathogenic behavior remains challenging. We 
attempted to mitigate this potential bias by focusing our analysis exclusively on bacteria 
isolated from healthy animals.  
 
Resistance levels (P50) in cattle were lower than in chicken and pigs (Figure 1). However, 
P50 in E. coli grew by 81% between 2000 and 2019, while globally the P50 in cattle was 
stable over the same period 4. This may be associated with the increasing demand for cattle 
product in China – cow milk production increased by 261% from 2000 to 2019 28. Despite 
this rapid expansion, the current per capita consumption of dairy products in China is still 
only one fifth of the dairy consumption in the US and the EU 28 – leaving room for further 



 33 

expansion. Thus, a window of opportunity may exist at the current stage to slow the rise of 
AMR in cattle, while resistance rates are still low (22% in E. coli) – and immediate action 
could help secure a sustainable dairy intensification. 
 
Improved maps of AMR in China 
 
Currently, AMR levels in animals are the highest in the east (43%), moderately high in the 
northwest (40%), and lowest in the southwest (34%; Figure 3). These geographical trends are 
in agreement (Pearson correlation coefficient 0.48 ) with the previous attempts to map AMR 
in China 4. However, the present map is considerably more robust because it is exclusively 
based on surveys conducted in China (446 surveys, including 318 publications in Chinese). In 
comparison, previous maps were produced with just 101 surveys from China supplemented 
by surveys from other LMICs 4. The revised maps of AMR help identify hotspots of AMR 
(Figure 3) where intervention could be targeted immediately as part of domestic policies 34. 
Travel time to cities was the factor with the highest influence on resistance levels 25. The 
clustering of intensive farms in major consumption centers during industrialization 35, and the 
ease of access to drug stores in peri-urban areas 10,36 may drive AMR level upwards37. High 
AMR levels were also associated with high minimal monthly temperature 26 – high 
temperatures may lead to increased stress and conflicts among animals, with risk of animal 
injuries requiring antimicrobial treatment 38.  
 
Key locations for conducting event-based surveillance 
 
Amongst LMICs, China ranks 28th for the number of surveys in event-based surveillance per 
kilogram of food animals (population corrected units of food animals; PCU), and 36th for the 
number of surveys per PCU relative to average resistance level (P50) per country 
(Supplementary Figure 1). We identified locations where additional surveys on AMR in 
animals could be conducted in the future to minimize uncertainty associated with the 
geographical trends in AMR – representing a gain in information given the resources spent on 
event-based surveillance. Current patterns resulting from event-based surveillance are “sub-
optimal” as surveys are clustered around veterinary institutes, mainly in the east 
(Supplementary Figure 7), where sampling to investigate AMR in their vicinity is easier 
(Supplementary Text S4) – and may have contributed to geographical information gaps on 
AMR trends in the southwest and northeast. Cross-provincial efforts between institutes are 
needed to coordinate future event-based surveillance efforts into these regions, which may be 
far from existing institutes, but where the gain in information by additional surveys would be 
the highest. 
 
Our approach for assigning future surveys works by minimizing an index of “need for 
additional surveillance (NS)” based on a map of AMR (China for this example). However, 
testing exhaustively all possible location for future surveys (“greedy approach”) incurs 
considerable computational cost. We developed an ‘overlap approach’ which is a rapidly 
implementable approximation of a greedy approach. The overlap approach achieved 93% of 
the reduction of the uncertainty in AMR trends achieved by the greedy approach, albeit using 
just 15% of total computation time required by the greedy approach (Methods). This not only 
makes the approach faster but also applicable with limited computational resources, and was 
developed in the context of event-based surveillance, which was abundant in China with 446 
PPS and served as a proof of concept. However, the approach could also be used with 
systematic surveillance data or in other countries with event-based surveillance. In addition, 
the ‘overlap approach’ is flexible with respect to exposure. In this analysis we used animal 
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densities as metric of exposure, but this variable could easily be substituted by other criteria 
that are relevant for epidemiological or environmental assessments.  
 
Limitations and Future Directions 
 
Although steps are taken (Supplementary Text S1) to ensure comparability between surveys, 
there remain potential sources of bias in variations in the accuracy of susceptibility testing. 
These include potential difference in laboratory equipment, and compliance to analysis 
protocols across regions in China. The World Health Organization assesses the quality of 
antimicrobial susceptibility testing across countries 39, but to the best of our knowledge, such 
within-country assessment is not currently available to account for laboratory practices that 
could lead to variations in the accuracy of susceptibility testing. These sources of 
experimental variation between surveys may influence the accuracy of the spatial distribution 
of P50. Inherent to event-based surveillance, a subjective summary metric “P50” was used in 
the absence of publicly available systematic surveillance data. P50 could be affected by the 
different antimicrobials subject to susceptibility testing in each survey. The potential bias was 
reduced by using the drug-bacteria combinations recommended by the WHO Advisory Group 
on Integrated Surveillance of Antimicrobial Resistance40 to calculate P50. Insufficient and 
irregular geographic coverage of data points may affect the accuracy of the estimations of 
model parameters. The risk of local overfitting is attenuated by using spatial cross-validation 
in the models. Finally, future mapping efforts could integrate surveys on AMR in 
aquaculture, because aquatic animals are important food animals in China, with at least 20 
antimicrobials involved in their production 41. Complementary to phenotypic resistance, 
AMR surveillance could be expanded to include genomics data, through metagenomic 
analysis of wastewater 42 from farms, although issues about harmonization remain an active 
field of analysis (Pires et al. submitted). In addition, the current analysis was focused on 
exploring the potential benefits of conducting additional PPS. Future analysis could be 
expanded to encompass variations in the costs associated with PPS. These costs may involve 
accessing the predicted locations, human resources, sampling and laboratory expenses, and 
coordination between institutes. Incorporating these cost considerations into the analysis will 
contribute to the development of a more comprehensive strategy for the allocation of 
resources to PPS. 
 
The health challenges that China currently faces are multifaceted and burdensome, both in 
humans (e.g. COVID-19 43), and in food animals (e.g. African Swine Fever 44). With limited 
resources to allocate between competing priorities for disease surveillance, our approach 
identifies locations where conducting new surveys of AMR in animals could have the highest 
benefits, particularly in southwestern and northeastern China. Timely policy intervention 
could curb AMR in China, as illustrated by the significant reduction in colistin resistance 
after the colistin withdrawal policy 45. Our analysis helps to optimally deploy the limited 
resources dedicated to event-based surveillance of AMR – improving chances for successful 
intervention for curbing AMR development and providing data to inform policy. 
 

Methods 
 
Data 
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We reviewed point-prevalence surveys (PPS) reporting rates of antimicrobial resistance 
(AMR) in healthy animals, and animal food products in China between 2000 and 2019 
(Supplementary Text S1). We focused on three common food animal species, including 
chicken, pigs, and cattle. Here, dairy cattle and meat cattle were pooled in this study, in 
consistency with the categorization adopted in the maps of livestock created by the Food and 
Agriculture Organization27. The review focused on four common foodborne bacteria: 
Escherichia coli, nontyphoidal Salmonella, Staphylococcus aureus and Campylobacter. We 
recorded resistance rates reported in PPS, defined as the percentage of isolates tested resistant 
to an antimicrobial compound. In addition, we extracted the anatomical therapeutic chemical 
classification codes of the drugs tested, the year of publication, the guidelines used for 
susceptibility testing, the latitude and longitude of sampling sites, the number of samples 
collected, and the host animals. We recorded sample types for each survey, including live 
animals, slaughtered animals, animal products, and fecal samples. Each sample was taken 
from one animal or animal product. These sample types were pooled in the current analysis. 
10,747 rates of AMR were extracted from 446 surveys (Supplementary Figure 8), including 
318 surveys from China’s National Knowledge Infrastructure (CNKI), the leading Chinese-
language academic search engine. All data extracted in the review are available at 
https://resistancebank.org. 
 
Two steps were taken to ensure comparability of the resistance rates extracted from the 
surveys. First, the panel of drug-bacteria combinations extracted from each survey was that 
recommended for susceptibility testing by the WHO Advisory Group on Integrated 
Surveillance of Antimicrobial Resistance (AGISAR) 40. This resulted in the extraction of 
6,295 resistance rates for 76 drug-bacteria combinations. Second, resistance rates were 
harmonized using a methodology4 accounting for potential variations in the clinical 
breakpoints used for antimicrobial susceptibility testing (Supplementary Text S1). There are 
two major families of methods used for susceptibility testing in this dataset -diffusion 
methods (e.g. disc diffusion) and dilution methods (e.g. broth dilution). Previous works have 
shown good agreement between the two approaches in measuring resistance in foodborne 
bacteria4,46. For each family of methods, variations of breakpoints may result from differences 
between laboratory guidelines systems (European Committee on Antimicrobial Susceptibility 
Testing; EUCAST vs Clinical and Laboratory Standards Institute; CLSI), or from variations 
over time of clinical breakpoints within a laboratory guidelines system (CLSI or EUCAST). 
Here, we accounted for both situations using distributions of minimum inhibitory 
concentrations, and inhibition zones obtained from eucast.org (Supplementary Text S1). 
 
Trends in Antimicrobial Resistance 
 
We defined a composite metric of AMR to summarize trends in resistance across multiple 
drugs and bacterial species. For each survey, we calculated the proportion of antimicrobial 
compounds with resistance higher than 50% (P50). For each animal-bacteria combination, we 
assessed the significance of the temporal trends of P50 between 2000 to 2019 using a logistic 
regression model, weighted by the log10 transformed number of samples in each survey. 
 
For each bacteria-drug (antimicrobial class) combination, we estimated prevalence of 
resistance by calculating a curve of the distribution of resistance rates across all surveys 
(Figure 2). The analysis was conducted for surveys published between 2000 and 2009, and 
between 2010 and 2019, respectively. The distribution was estimated at 100 equally spaced 
intervals from resistance rates of 0% to 100%, using kernel density estimation. We used the 
center of mass of the density distribution to estimate prevalence of resistance. The calculation 
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was conducted for six animal-bacteria combinations. This included E. coli in chicken, pigs 
and cattle, as well as Salmonella in chicken and pigs, and S. aureus in cattle. The remaining 
animal-bacteria combinations were excluded due to limited sample size, only represented in 
32 out of 446 PPS. The analysis was restricted to antimicrobial classes represented by at least 
10 resistance rates. In addition, we estimated the association between resistance rates and the 
ease of obtaining antimicrobials from the market, using data from online stores 
(Supplementary Text S3). 
 
Geospatial modelling 
 
We interpolated P50 values from the survey locations to create a map of P50 at a resolution 
of 10 x 10 Km across China. The approach followed a two-step procedure 47: In step 1, three 
‘child models’ were trained using four-fold spatial cross validation to quantify the relation 
between P50 and environmental and anthropogenic covariates (Supplementary Text S2; 
Supplementary Table 1). In step 2, the predictions of the child models were stacked using 
universal kriging (Supplementary Text S2). This approach combined the ability of the child 
models to capture interactions and non-linear relationships between P50 and environmental 
and anthropogenic covariates, as well as the ability to account for spatial-autocorrelation in 
the distribution of P50. 
 
The outputs of the two-step procedure were: a map of P50 (Figure 3), and a map of 
uncertainty on the P50 predictions (Supplementary Figure 9, Supplementary Text S2). The 
overall accuracy of the geospatial model was evaluated using the area under the receiver 
operator curve (AUC). The contribution of each covariate was evaluated by permuting 
sequentially all covariates, and calculating the reduction in AUC compared with a full model 
including all covariates (Supplementary Figure 4). The administrative boundaries used in all 
maps were obtained from the Global Administrative Areas database (http://www.gadm.org). 
 
Identifying (optimal) locations for future surveys on AMR 
 
We identified the locations of 50 hypothetical new surveys – the rounded average number of 
surveys conducted per year (54 surveys/year) between 2014 and 2019 in China. The location 
of each new survey was determined recursively such that it minimized the overall uncertainty 
levels on the geographical trends in AMR across the country. This process took into account 
the locations of existing surveys, as well as the location of each additional hypothetical 
survey. The objective of this approach was to maximize gain in information about AMR 
given the resource invested in conducting surveys. 
 
The map of uncertainty consisted of the variance in the child model predictions 
01#(3#$% , 3&'(()*+&, , 3--..) (step 1) across 10 Monte Carlo simulations, and the kriging 
variance 01#/ (step 2): 
 

01#01023 = 01#(3#$% , 3&'(()*+&, , 3--..) + 01#/ 
 
In this study, the location of hypothetical surveys was solely based on 01#/, instead of the 
sum of both terms. This approach was preferred, because including both terms would have 
required to hypothesize P50 values associated with the surveys to be conducted in the future, 
adding an additional source of uncertainty that cannot be quantified. In any case, the 
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uncertainty attributable to 01#/ was 4.1 times of  01#(3#$% , 3&'(()*+&, , 3--..) 
(Supplementary Text S2). 
 
The allocation of new surveys was based on a map of “necessity for additional surveillance” 
(($), defined as: 
 

($ = 01#/ ∙ 9 
 
Where 01#/ reflected the uncertainty of the spatial interpolation, and 9 is log10 transformed 
population density of humans 48, animals27 in total, as well as in chicken, pigs, and cattle, 
separately, which reflected exposure (Supplementary Figure 10). Here, animal population 
density was calculated as the sum of population corrected units (PCU) of pigs, chicken and 
cattle, using methods described in Van Boeckel et al. 2017 7. We adjusted the values of 9, 
such that its density distribution equals that of 01#/. Concretely, for each pixel i, we 
calculated the quantile of 9) on the map of 9, and replaced the value by the corresponding 
value of 01#/ at the same quantile. 01#/ and 9 were both standardized to range [0,1], thus 
given each term equal weight in the need for surveillance. 
 
Four approaches were used to distribute 50 surveys across China based on the map of ($. 
The reduction in uncertainty on AMR level associated with each of the four spatial 
configurations of the hypothetical surveys was evaluated, by calculating the reduction in the 
mean values of ($ across 7,857 possible pixels on the map of China.  
 
First, we used a “greedy” approach where all possible locations for additional surveys were 
tested. Concretely, the first hypothetical survey was placed at each of the 7,857 possible pixel 
locations, and a revised map of ($(56	89:;<=) was calculated for each of the placements. The 
survey was eventually placed in the pixel that led to the largest reduction in ($(56	89:;<=). 
The map of ($ was then revised to account for the reduction in uncertainty in the 
neighborhood of the new survey. The process was repeated recursively for the next 
hypothetical surveys (2nd -50th). This approach, by definition, yields the optimal set of 
locations to reduce uncertainty, but it also bears a considerable computational burden, 
because every possible location is tested ((?!@<38= 7,857) by the geospatial model for each 
hypothetical survey. 
 
The second approach developed was a computational approximation to the greedy approach, 
hereafter referred to as the ‘overlap approach’. This approach exploits a key feature of the 
kriging procedure: the decrease of the kriging variance (01#/) with increasing proximity to 
existing survey locations. Each additional survey reduces the variance of the geospatial 
model at its own location, but also in its surrounding area (Supplementary Figure 11). The 
‘overlap approach’ selects an optimal set of locations that reflect a compromise between high 
local ($ and distance to other surveys. It iteratively selects new locations based on the 
highest local ($ penalized by the degree of overlap between the hypothetical new surveys 
and existing surveys (Supplementary Figure 12). The first survey was placed at the location 
:?, ;? with the highest local	($ (Supplementary Figure 12, Part 1). Then, the value of ($ at 
each pixel location :! , ;! was recalculated as (Supplementary Figure 12, Part 2): 
 

($(56	89:;<=)	A!,C! = ($A!,C! × (1 −
>?@#A1B	1#@1

	C@)DℎF>#ℎ>>G	1#@1	) 
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Where the neighborhood area was the circular area of decreased kriging variance around a 
new survey, and its radius was the distance until which ($ decreased due to this new survey; 
“Overlap area” is the shared area of the neighborhoods of location :?, ;? and of location 
:! , ;!. The radius of the neighborhood was determined using a sensitivity analysis, optimized 
by approximate Bayesian computation (sequential Monte Carlo) 49 (ABC-SMC; 
Supplementary Text S5). The optimal neighborhood radius was chosen such as it minimizes 
reduction in ($ across all pixels.  The procedure (Supplementary Figure 12, Part 1 and Part 
2) was repeated recursively for the hypothetical surveys (2nd -50th). 
 
 
The third approach tested consisted of distributing surveys equally between provinces, to 
reflect a common approach to disease surveillance based on equal allocation of resources 
between administrative entities. Here, 22 provinces with the highest human population were 
assigned 2 surveys, and the remaining 6 provinces were assigned one survey per province. 
The exact location of each survey was randomly selected inside a province. Finally, all 
approaches were compared with the fourth approach (the random approach) as a ‘null-
model’, in which the 50 hypothetical surveys were located randomly across the country 
without any geographic weighting criteria. The reduction in ($ associated with the third and 
fourth approach, which was compared to the greedy approach and overlap approach, was the 
average over 50 simulations. 
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Abstract 
 
Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in 
aquatic animals—the fastest growing food animal sector globally—AMR trends are seldom 
documented, particularly in Asia, which contributes two-thirds of global food fish production. 
Here, we present a systematic review and meta-analysis of 749 point prevalence surveys 
reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 
articles published in 2000–2019. We find concerning levels of resistance to medically 
important antimicrobials in foodborne pathogens. In aquaculture, the percentage of 
antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% 
[95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased 
from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer 
resolution, finding resistance hotspots along Asia’s major river systems and coastal waters of 
China and India. Regions benefitting most from future surveillance efforts are eastern China 
and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform 
aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally. 
 

Introduction 
 
Aquaculture and fisheries contribute a growing share of nutrition for the global population1. 
Aquatic animals provide 20% of animal protein to the human diet for over 40% of the world, 
with consumption growth outpacing rates for all other sources of animal protein combined1. 
Driven by increasing demand, global fish production is experiencing rapid growth. From 1960 
to 2018, aquatic animal production for human consumption increased from 21.8 to 156.4 
million tons1,2. Asia contributes the largest share—69% in 2018—with China alone 
representing 35% of global production1. 
 
As capture fisheries production has plateaued since the early 1990s, aquaculture production 
has risen commensurate with global demand and now accounts for the majority (52%) of 
aquatic food animal production with continued expansion expected through 20301. Growth in 
cultured aquatic animals averaged 5.3% annually since 2001 with select countries—notably 
Indonesia and Bangladesh—exceeding 9% annual growth. 
 
The rapid growth in animal protein production has been facilitated by a transition from 
extensive to intensive farming, which in terrestrial food animal sectors has historically been 
accompanied by the increasing use of antimicrobials3,4. As a result of this global shift in animal 
production, and growing demand for animal-source foods, the terrestrial and aquatic food 
animal production industries have emerged as the largest consumer by volume (73.7% and 
5.7%, respectively) of antimicrobials globally3,4,5. In aquaculture, some species of fish, such as 
catfish, are associated with antimicrobial use rates per kilogram that exceed those in terrestrial 
animals and humans5. 

https://www.nature.com/articles/s41467-021-25655-8#ref-CR1
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Antimicrobial use exerts selective pressures driving antimicrobial resistance. In terrestrial 
animals, a growing body of evidence has linked AMR with productivity loss and resistant 
infections carrying harmful consequences to animal and human health6,7,8,9. In aquaculture and 
fisheries—although more limited than in terrestrial animals—the evidence concerning 
antimicrobial resistance has also expanded over the last decade10,11,12,13. Documenting the 
movement of resistance determinants in aquatic settings presents challenges, and the body of 
evidence from which to draw conclusions on antimicrobial resistance transference between 
aquatic animals and humans remains very limited. Yet the aquatic food animal supply chain 
may be an under-appreciated route for transmission of antimicrobial-resistant bacteria and 
resistance genes from aquatic animals and their environment to humans14,15,16,17,18. Mobile 
genetic elements carrying resistance genes of human clinical significance have been associated 
with aquaculture and the aquatic environment14,18,19. Aquatic food animal supply chains are 
highly globalized1, facilitating the distribution of locally generated resistance at a global 
scale20,21. In addition, compared with other animal source foods, aquatic animal products are 
more likely to be consumed raw, increasing the risk of pathogen transmission. 
 
Rising AMR rates are expected to disproportionately affect low-income and middle-income 
countries, jeopardizing development gains in vulnerable communities, widening economic 
inequality, and contributing to a rise in extreme poverty by 203022. And resistance in pathogens 
of production significance may reduce treatment options in commercial aquaculture, with 
potential implications for food security and nutrition13,23,24. 
 
Strengthening surveillance to guide AMR interventions is a challenge across sectors. This 
challenge is particularly acute in the aquaculture and fisheries industry. Presently, even the 
most heavily consumed aquatic animals globally—freshwater and marine fish—are generally 
not subject to systematic foodborne pathogen surveillance. Point prevalence surveys provide 
evidence at discrete geographic and temporal scales and have been used to characterize the 
global distribution and burden of infectious disease in humans25 and AMR in terrestrial 
animals26. These surveys may serve as a surrogate in the absence of routine, systematic 
surveillance, collectively providing a mosaic portrait of antimicrobial resistance trends. 
Enhanced documentation of AMR trends could then inform targeted surveillance programs and 
interventions in the world’s most productive aquaculture and fisheries region20,23,27. 
 
Here, we summarize current evidence on AMR in aquatic food animals in Asia using a 
systematic review of point prevalence surveys. We map AMR levels at 10 km resolution, 
provide a baseline to monitor future AMR trends, and identify regions where future 
surveillance efforts should be prioritized. 
 

Results 
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The systematic review identified 749 point prevalence surveys reporting antimicrobial 
resistance rates in aquatic food animals in Asia published between 2000 and 2019. We 
extracted 12,698 resistance rates representing 11,289 isolates and 45 bacterial genera 
(Supplementary Figs. S1 and S2; Supplementary Data 1). Eastern Asia accounted for 50.6% 
(n = 379) of surveys; Western and Southern Asia, 30.7% (n = 230); and South-eastern Asia, 
18.7% (n = 140). China, India, and Turkey together contributed nearly two-thirds of all point 
prevalence surveys across Asia. China alone represented 37.9% (n = 284) of surveys, a fraction 
that expanded over the last decade. India and Turkey each contributed 12.5% (n = 94) of 
surveys (Supplementary Figs. S3–S5). 
 
AMR trends from aquaculture and wild-caught fisheries 
 
Between 2000 and 2018, the percentage of antimicrobial compounds with resistance exceeding 
50% (P50) in each survey plateaued in cultured aquatic animals at 33% [95% confidence 
interval (CI) 28 to 37%], and decreased sharply in wild-caught aquatic animals from 52% [95% 
CI 39 to 65%] to 22% [95% CI 14 to 30%] (p = 0.003) (Fig. 1). Across all years, the median 
P50 of surveys from cultured aquatic animals (31%; n = 558) was lower than surveys from 
wild-caught aquatic animals (44%; n = 81) (p = 0.059) (Supplementary Fig. S7). 
 

 
 

Fig. 1: Annual trends in the proportion of drugs with resistance greater than 50% (P50) 
in each survey. (a) P50 for cultured aquatic animals (n = 558); and (b) wild-caught aquatic 
animals (n = 81). The horizontal box lines represent the first quartile, the median, and the 
third quartile. Whiskers denote the range of points within the first quartile −1.5× the 
interquartile range and the third quartile +1.5× the interquartile range. Each survey is 
represented by a dot with horizontal jitter for visibility. Regression lines are fitted using 
generalized linear models, with a solid line indicating statistical significance (p = 0.003); 95% 
confidence intervals are shown in shaded areas. 
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AMR profiles in foodborne pathogens 
 
The five most frequently isolated bacteria genera identified in our review—
Vibrio, Aeromonas, Streptococcus, Edwardsiella, and Escherichia (E.coli)—together 
accounted for 68.5% of surveys. Vibrio spp. (n = 191) and Aeromonas spp. (n = 174) 
contributed nearly half of all surveys. 
 
In foodborne pathogens, we calculated the pooled prevalence of resistance from individual 
pathogen-drug resistance rates (see “Methods” section). Amongst these foodborne pathogens, 
resistance was highest to penicillins (60.4%), macrolides (34.2%), sulfonamides (32.9%), and 
tetracyclines (21.5%) (Fig. 2). Although highly variable, mean resistance rates to the highest 
priority critically important antimicrobials for human medicine28 were highest for macrolides 
(34.2%, 95% CI 33 to 35%) followed by third-generation and fourth-generation cephalosporins 
(17.5%, 95% CI 17 to 18%) and quinolones (16.2%, 95% CI 15 to 17%). Mean resistance to 
third-generation cephalosporins in E.coli was 27.1% (95% CI 25 to 29%) across surveys. 
Resistance to compounds in the reserve group of last-resort antimicrobials for human 
medicine29 varied by pathogen: fosfomycin resistance in E.coli was 10.3% (95% CI 6 to 14%); 
polymyxin B resistance in E.coli was 19.4% (95% CI 7 to 32%), in Vibrio spp. was 39.1% 
(95% CI 33 to 44%) and in Aeromonasspp. was 71.5% (95% CI 67 to 76%); and colistin 
resistance in E.coli was 5.2% (95% CI 2 to 8%), in Vibrio spp. was 42.7% (95% CI 38 to 47%) 
and in Aeromonas spp. was 51.5% (95% CI 46 to 57%). In Gram-negative bacteria across all 
surveys, the mean colistin resistance was 41.3% (95% CI 39 to 44%). 
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Fig. 2: Antimicrobial resistance in foodborne pathogens isolated from aquatic animals in 
Asia. Gray bars represent 95% proportion confidence intervals. Resistance is shown for 
pathogen-drug combinations recommended for susceptibility testing (Supplementary Table S1) 
and with 10 or more isolates tested. (For drug acronyms, see Supplementary Note 2). 
 
Mean foodborne pathogen resistance to carbapenems was low (2.8%, 95% CI 2 to 4%), with 
the exception of Aeromonas spp. In Aeromonas spp. across all regions, carbapenem resistance 
increased from 5.1% (95% CI 2 to 8%) before 2010 to 51.1% (95% CI 43 to 60%) after 2010 
(p < 0.0001). Aeromonas spp. in Western and Southern Asia exhibited elevated resistance 
compared with other subregions, particularly in samples originating from freshwater and 
marine fish. In these aquatic food animals across all years, mean carbapenem resistance 
in Aeromonas spp. was 40.3% (95% CI 33 to 48%), aztreonam resistance was 56.6% (95% CI 
46 to 67%), and mean resistance to third-generation and fourth-generation cephalosporins was 
69.6% (95% CI 65 to 75%). 
 
Geography of resistance 
 
Predicted hotspots (P50 > 0.5) of multi-drug resistance in freshwater environments included 
eastern Turkey; southern India—particularly the wetlands of coastal Kerala, Tamil Nadu, and 
Andhra Pradesh; the Yangtze River in China, both along its upper reaches and at Poyang Lake; 
and the lower reaches of the Mekong River and its delta in southern Cambodia and Vietnam. 
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Low P50 (<0.1) was predicted in peri-urban Guangzhou in southern China and in South Korea 
and Japan (Fig. 3). The interpolation of resistance in this study is associated with uncertainty. 
Variability in the geolocation of surveys, in covariates, and in estimates of resistance contribute 
to this uncertainty, which is captured with a 95% confidence interval map on P50 predictions 
(Supplementary Fig. S18). Uncertainty in P50 predictions was high (95% CI > 0.5) in South 
Korea and Japan. 
 

 
 
Fig. 3: Geographic distribution of antimicrobial resistance in freshwater environments in 
Asia. The proportion of antimicrobial compounds in each survey with resistance higher than 
50% (P50) at continental scale (a); eastern Turkey (b); southern India (c); Yangtze River 
drainage basin in China (d); and the Mekong River delta (e). 
 
We identified the locations of 50 hypothetical surveys to be conducted in Asia that would 
maximize information gained over the current map of AMR in freshwater environments. Future 
survey locations were optimized using a “need for surveillance” index, calculated as the 
uncertainty in AMR weighted to areas where resistance is likely to have the greatest impact on 
human health and the aquaculture industry (see “Methods” section). The majority of future 
surveys were projected in China (56%) and India (16%), with the highest tier of prioritization 
distributed predominantly in central and eastern China, western and central India, and along 
the Indo-Gangetic Plain (Fig. 4). Indonesia accounted for the third-highest number of surveys 
to be conducted in the future (12%). 
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Fig. 4: Future survey locations prioritized to reduce uncertainty in antimicrobial 
resistance in freshwater environments in Asia. The background color gradient (blue) 
represents weighted uncertainty in multi-drug resistance (see “Methods” section). An initial set 
of 50 future surveys optimized to reduce uncertainty in multi-drug resistance is displayed (red). 
 
In marine environments, predicted multi-drug resistance was highest along northeastern China 
on the Yellow and East China Seas; eastern Hainan Island waters in southern China; the coastal 
waters of central Vietnam on the South China Sea; southern India coastal waters on the Arabian 
Sea and the Bay of Bengal between southern India and northern Sri Lanka; and the eastern 
Mediterranean Sea on the coast of Lebanon. The coastal waters of Thailand and Malaysia on 
the Gulf of Thailand and Thailand’s coastal waters on the Andaman Sea carried lower P50 
predicted values (<0.3) (Fig. 5). 
 

 
Fig. 5: Antimicrobial resistance in marine environments in Asia. Transparency reflects low 
survey density; areas of higher relative survey density are represented by increased opacity. 
 



 49 

Discussion 
 
We reviewed and mapped antimicrobial resistance in aquatic food animals in Asia during a 
period of substantial industry growth. Our findings indicate that between 2000 and 2018, 
antimicrobial resistance in bacteria from cultured aquatic food animals was stable (33%) while 
the resistance from wild-caught aquatic food animals decreased sharply (52% to 22%). These 
trends represent currently available evidence from point prevalence surveys, which serve as a 
surrogate in the absence of systematic surveillance and should be interpreted cautiously. 
Structured, systematic surveillance will be imperative to document trends in multi-drug 
resistance at the sub-national level in the future. 
 
Our results are consistent with an analysis of antimicrobial resistance in aquaculture-derived 
bacteria from forty countries, nearly half of which in Asia, which identified a global mean 
multi-antibiotic resistance index of .25, and a higher index (>.35) in low-income and middle-
income countries in Asia27. Although antimicrobial use in surveys from cultured animals was 
most frequently unspecified, in the limited surveys that recorded whether on-farm 
antimicrobials were either used or not used (n = 63; 11%), use was associated with higher multi-
drug resistance than the absence of use (p < .001) (Supplementary Fig. S8). The combined 
effect of multi-source antimicrobial introduction15 and persistence30,31 in aquaculture waters 
and sediments may present a consistent selective pressure facilitating the maintenance of an 
elevated level of antimicrobial resistance. 
 
Declining resistance observed in bacteria from wild-caught aquatic animals could be associated 
with reduced human and livestock fecal pollution exposure in wild-caught animals over time. 
Anthropogenic influences such as human and livestock fecal pollution have been positively 
associated with antimicrobial resistance gene frequency32,33 , and in these surveys, we observed 
a negative correlation between multi-drug resistance and the World Bank basic sanitation 
index34 (Supplementary Fig. S9). In addition, surveys from the first half of the study period 
held a significantly higher proportion of diseased animals than those from the latter half, and 
disease was positively associated with resistance (Supplementary Fig. S10). Importantly, these 
findings must be considered in the context of relatively scarce point prevalence surveys 
(11%, n = 81) attributable to capture fisheries. Other contributions—including improved 
wastewater management and regulatory action—cannot be ruled out and future studies will be 
valuable in documenting resistance trends and their influencing factors in capture fisheries. 
 
Temporal trends in P50 rates reflect resistance across multiple bacteria, aquatic animal species, 
production contexts, and subregions in Asia. Production dynamics, antimicrobial exposure 
intensity, and regulatory standards, amongst other factors, may be highly variable by location 
and at timescales shorter than the duration of our analysis. Consequently, these trends may not 
capture more granular country-level resistance profiles in select pathogen species from specific 
aquatic animal production settings (Supplementary Fig. S11). 
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Amongst foodborne pathogens, we observed a concerning dual-threat profile, marked by high 
rates of resistance to first-line antimicrobial classes and, for Vibrio and Aeromonas spp., 
moderate to high rates of resistance to antimicrobial classes of last-resort reserved for treatment 
of multi-drug resistant pathogens. 
 
In Western and Southern Asia, Aeromonas spp. isolates exhibit high rates of resistance to 
tetracyclines, sulfonamides, aminoglycosides, monobactams, carbapenems, and 
cephalosporins, which, together with moderate resistance to fluoroquinolones, suggests 
therapeutic options for management of invasive or non-self-limiting Aeromonas infections 
may already be restricted in this subregion as compared with lower resistance profiles reported 
outside of Asia35,36. High rates of carbapenem resistance from Aeromonas spp. were also 
identified in this subregion. Aeromonas spp. produce inducible metallo-beta-lactamases, are 
inherently resistant to ampicillin, amoxicillin-clavulanate, and cefazolin, and are known to 
express a carbapenemase encoding gene (cphA) the significance of which remains unknown37. 
Recent work identified the fish pathogen Aeromonas allosaccharophila as the origin of mobile 
cephalosporinase genes, which confer resistance to beta-lactams, and may be associated with 
aquaculture antimicrobial use38. While beta-lactam antimicrobials are utilized in aquaculture5,39 
, to the best of our knowledge, carbapenems are not used. Elevated carbapenem resistance 
identified in Western and Southern Asia may reflect inducible resistance under high 
environmental exposure to beta-lactam antimicrobials in this subregion, and, taken together 
with increasing carbapenem resistance in Aeromonas spp. recently reported from other 
regions40,41 , may warrant further investigation. 
 
Although variable by subregion and foodborne pathogen, high rates of resistance to third-
generation and fourth-generation cephalosporins were also observed. These findings are 
consistent with trends identified in terrestrial animal production26. Ceftriaxone, Ceftazidime, 
and Cefotaxime resistance in E.coli across subregions was 27.1% (95% CI 25 to 29%), but 
approached 40% in Western and Southern Asia and exceeded 50% in South-eastern Asia, 
suggesting that resistance to third-generation cephalosporins is established in at least some 
members of Enterobacteriaceae in Asia. Notably, resistance in E.coli must be interpreted in the 
context of human and terrestrial animal fecal pollution and may represent the serial 
accumulation of antimicrobial resistance genes as has been observed in some human pathogens 
such as Shigella42. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae 
capable of hydrolyzing third-generation cephalosporins are recognized as a serious threat to 
human health43. Our finding confirms reports44,45 of an existing pool of ESBL genes that may 
be plasmid encoded46 and raises the prospect of horizontal gene transfer conferring broader 
resistance within and across diverse bacterial genera with the consequent loss of this critically 
important collection of cephalosporins. 
 
Elevated colistin resistance in Gram-negative bacteria from aquatic animals observed in this 
study mirrored high rates identified in terrestrial animals in Asia over a similar study period26. 
Colistin resistance across a breadth of bacterial genera in Asia may reflect both intrinsic and 
acquired resistance mechanisms. Intrinsic resistance to polymyxins in Gram-negative bacteria 
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has been documented47. The possibility that a proportion of the colistin resistance identified is 
acquired cannot be ruled out, particularly through plasmid-mediated transfer amongst members 
of the Enterobacteriaceae family48. Such resistance may be attributable to the prolific use of 
colistin and other polymyxins in the region, which is only recently evolving through national 
regulatory action, and the possible recruitment of mcr-family mobile resistance determinants, 
their broad dissemination through horizontal gene transfer, and the wide distribution potential 
of aquatic environments14,48,49. Indeed, the distribution mechanics of AMR in aquatic systems 
under differing hydrological conditions is an expanding area of research that holds the promise 
of contributing to an enhanced understanding of AMR risk across compartments50. 
Previous work has shown that bacterial foodborne disease attributable to aquatic animal 
consumption contributes a non-negligible burden to human morbidity51,52. In this context, the 
high rates of resistance to multiple classes of critically important antimicrobials in aquatic 
animal foodborne pathogens in our study raise urgent concerns regarding both therapeutic 
efficacy of first-line antimicrobials and the further erosion of last-resort therapeutic options for 
multi-drug resistant infections resulting in severe disease. 
 
Hotspots of AMR in freshwater environments were predicted along several of the region’s 
great river systems, including the Yangtze River, and the estuaries of the Mekong and Nile 
Rivers. Low rates of AMR were predicted in Japan and South Korea. In these countries, the 
predictions were associated with high uncertainty (Supplementary Fig. S18). In our freshwater 
data set, South Korea contributed 2.4% of surveys and there were no surveys from Japan. 
Consequently, predictions in these two countries should be interpreted cautiously, requiring 
validation through additional surveillance. However, low rates of AMR could indicate less 
influence from human and livestock fecal pollution. Low AMR may also reflect comparatively 
lower rates of integrated livestock-aquaculture farming, enhanced environmental pollution 
regulatory capacities, and a heightened awareness of antimicrobial stewardship principles in 
these countries. Low AMR in the peri-urban environment of Guangzhou in southern China was 
unexpected considering the comparatively dense human population, prevalence of integrated 
livestock-aquaculture farming systems, and broad agricultural and human connectivity with the 
aquatic environment in Guangdong Province14. Future work will be important to corroborate 
these findings and identify factors that have the potential to moderate multi-drug resistance. 
 
We identify 50 hypothetical future survey locations prioritized to maximize the knowledge 
gained over the current map of resistance from freshwater in Asia. Weighting the uncertainty 
in predicted resistance by the product of human population density and inland aquaculture 
production prioritizes future surveillance effort to locations where potential multi-drug 
resistance exposure risk and impact on human health and the aquaculture industry may be most 
significant (Supplementary Note 4). China and India together account for 72% of future 
surveys, reflecting their comparatively high population density and predominant role 
globally—first and second, respectively—in inland aquaculture production2. Our approach is 
scalable to individual country contexts and presents an opportunity to fill national or sub-
national knowledge gaps and inform interventions and stewardship under resource-limited 
settings by maximizing information gained through targeted surveillance. 
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In marine coastal environments, the highest rates of AMR were identified in northeastern China 
on the Yellow and East China Seas; southern China and central Vietnam on the South China 
Sea; southern India on the Arabian Sea and the Bay of Bengal between southern India and 
northern Sri Lanka; and the eastern Mediterranean Sea on the coast of Lebanon. Lower AMR 
rates were observed along Thailand and Malaysian coastal waters both on the Gulf of Thailand 
and the Andaman Sea. Aquaculture production has been correlated with aminoglycoside 
resistance gene abundance along estuarine waters of coastal China53. High rates of AMR in 
waters also identified as carrying the highest potential for marine aquaculture productivity54, 
such as the coastal waters of Hainan Island on the South China Sea, may help prioritize 
surveillance in an industry poised for substantial growth. However, marine predicted values 
should be interpreted with caution, given the comparatively limited availability of marine 
surveys overall (n = 322) and an absence of surveys from countries such as Indonesia with 
sizeable marine aquaculture and nearshore marine fisheries industries. 
 
As with any modeling study, our analyses come with limitations. First, point prevalence 
surveys, although numerous in the study (n = 749), present an inherent challenge to 
standardization of data from susceptibility testing that are subject to variability in 
methodologies and protocols resulting in uncertainties55. Second, the resistance across species 
within bacterial genera can vary markedly. Our analyses of drug resistance were conducted at 
the bacterial genera level—the most granular level at which complete data were available. 
Although analysis of trends at the bacterial species level may be valuable in context-specific 
settings, the aim of our study was rather to document temporal trends over twenty years in Asia 
across a broad range of bacteria. Third, our study includes samples originating from both 
healthy and diseased animals. An over-representation of samples from diseased animals 
associated with treatment failure could present a bias toward higher resistance rates56. Indeed, 
samples from diseased animals had higher median P50 values than samples from healthy 
animals. However, any influence on resistance across the study is likely moderated by a 
balanced mix between healthy (42%) and diseased (58%) animal samples from the surveys and 
our treatment of intermediately susceptible isolates as susceptible in our analysis. As drug 
tolerance precedes clinical resistance57, it is possible that our results underestimate non-
susceptibility. Fourth, the volume of data is currently insufficient to map AMR across different 
study periods using spatio-temporal interpolation methods. Overall, there was an increasing 
volume of surveys conducted in recent years (Supplementary Fig. S4). However, when 
evaluated by time series that most closely partitions each of the cultured and wild-caught data 
sets in half (cultured: 2000 to 2010 vs. 2011 to 2018; and wild-caught: 2000 to 2009 vs. 2010 
to 2016), the directionality of the regressions remained unchanged, suggesting the increasing 
volume of surveys does not influence the temporal trends in P50. Fifth, due to the contiguous 
relationship between aquatic animals and their environmental waters, the interpretation of 
resistance in commensal isolates such as E.coli must be contextualized as indicative of human 
and livestock fecal contamination32, either in origin waters or through post-harvest 
contamination. While characterizing the origin of selective pressures driving resistance is 
critical to risk mitigation at source, our study documents elevated resistance in bacteria from 
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aquatic animals intended for human consumption—irrespective of origin—and can thus be 
interpreted as a risk to human health from contact with or consumption of aquatic animals and 
their products. Finally, it is notable that no surveys were available from Indonesia, despite 
contributing nearly 10% of global aquatic animal production. Vietnam—the fourth largest 
global producer of cultured fish1—represented less than 3% of all surveys. An absence of 
surveys from Myanmar and Laos also illustrates gaps in understanding antimicrobial resistance 
in aquatic food animals in Asia. Despite our broad search parameters, surveys conducted in 
these countries and which were either not identified in our search or not available for review 
could potentially influence our findings. Similarly, in the absence of systematic surveillance, 
reliance on passive surveillance data presents variability in survey coverage, which could 
introduce bias, as well as uncertainty in survey geolocation, adding potential uncertainty to 
predictive models (Supplementary Fig. S18. Our study addresses this uneven geographic 
representation of point prevalence surveys by identifying—on an objective basis—sub-regions 
in Asia that would benefit most from further surveillance efforts. Such future surveillance will 
be essential to an enhanced and refined understanding of resistance trends in Asia. 
 
This study identified elevated rates of antimicrobial resistance in bacteria isolated from aquatic 
animals intended for human consumption in Asia. A growing aquatic food animal production 
industry may serve as an important pathway for transmission of resistance along the food chain 
with potential consequences for human health. 
 
A scale-up of an antimicrobial resistance surveillance architecture for aquatic food animals is 
urgently needed to fill gaps in AMR trends at national and sub-national levels. Our findings 
help direct the prioritization of this future surveillance effort and provide a foundation for 
establishing time-bound, measurable targets for reducing antimicrobial resistance58,59. The 
spatial profile of antimicrobial resistance presented here should inform planning for sustainable 
development of a high-growth aquaculture industry, critical to feeding an expanding global 
population54,60 while balancing the imperative for healthy freshwater and marine environments, 
and the preservation of antimicrobial efficacy for future generations. 
 

Methods 
 
Literature review 
 
We searched PubMed, Web of Science, Scopus, the China National Knowledge Infrastructure 
database, and grey literature repositories (AGRIS, CGIAR FISH, IFPRI, WorldFish) for point 
prevalence surveys (PPS) of phenotypic antimicrobial resistance in bacteria isolated from 
aquatic animals for human consumption in Asia. The search identified surveys published 
between January 1, 2000, and September 30, 2019, with samples originating from cultured or 
wild-caught aquatic animals or their products for human consumption. Reviews and meta-
analyses were excluded, as were studies with samples originated from bivalve molluscs or 
ornamental fish (Supplementary Note 1; Supplementary Data 2). The literature search and 
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systematic review were guided by the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) statement and research synthesis norms61 (Supplementary 
Table S4). 
 
Data extraction 
 
Collected data included study details (record identifier, author, year of publication, country), 
sampling details (latitude and longitude of sample collection, sampling dates, animal species, 
and whether cultured or wild-caught, number and origin of samples [skin; tissue; intestinal 
contents; or lesion] collected, health status of animal, history of antimicrobial use), and 
susceptibility testing details (bacterial genera, species, and strain, number of isolates subjected 
to antimicrobial susceptibility testing, susceptibility testing method, breakpoints and guidelines 
used, drug class, compound, resistance rate) (Supplementary Note 2). Where data was missing 
or required clarifications, the corresponding author was contacted by email. A total of 44 emails 
were sent requesting clarification, and 15 responses were received (34% response rate). 
Records were excluded when no response could be provided by the authors, and unclear data 
precluded further analysis. 
 
There were 104 unique species or groups of species represented in our dataset. To facilitate 
analysis, species were aggregated into six species groups (Supplementary Fig. S12) reflective 
of aquatic animal and type of aquatic environment: marine fish, freshwater fish, brackish water 
fish, shrimp, and a mixed group of aquatic animals spanning these groups and for which 
resistance rates could not be disaggregated. The remaining species were pooled into a sixth 
group that included other crustaceans (crab), cephalopods (squid), gastropod molluscs 
(abalone), amphibians (frogs and salamanders), echinoderms (sea cucumbers and sea urchins), 
and reptiles (turtles). 
 
We analyzed antimicrobial resistance in surveys at the bacterial genera level. This level of 
taxonomy was completely available (no missing entries) in our database, whereas the more 
granular bacterial species and strain level data were either not consistently provided or could 
not be disaggregated (143 surveys; 19%). 
 
Temporal trends 
 
We used the percentage of antimicrobial compounds in each survey with resistance rates 
exceeding 50% (P50) as a summary metric of multi-drug resistance. The P50 metric was used 
in the analysis of temporal trends and for geospatial modeling. We compared P50 with two 
additional metrics: P30 (calculated as the percentage of antimicrobial compounds in each 
survey with resistance exceeding 30%) and mean resistance (calculated as the total number of 
resistant isolates divided by the number of isolates * the number of antibiotics tested in each 
survey). Across all surveys, there is a positive correlation between P50 and mean resistance 
(Pearson’s correlation coefficient = 0.9596) (Supplementary Note 3; Supplementary Fig. S19). 
Temporal trends in the P50 for each survey from cultured and wild-caught aquatic food animals 
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were analyzed using generalized linear model regressions with quasibinomial error distribution 
weighted by the log of the number of isolates in each survey subjected to susceptibility testing. 
Root mean square error (RMSE) was used to evaluate the goodness of fit for the temporal 
trends regression models. RMSE indicated model fits were moderate (RMSEcultured = 0.223; and 
RMSEwild caught = 0.235), consistent with both the scattered nature and scarcity of the data. The 
95% confidence intervals were generated as the fitted values +/− 1.96 * standard error of the 
fitted value. 
 
One-way analysis of variance (ANOVA) tests conducted on arcsine transformed P50 values 
were used to analyze the significance of the difference in mean P50 between survey 
characteristic groups, including culture or wild-caught, history of antimicrobial use, and health 
status of aquatic animals sampled (Supplementary Figs. S7, S8, and S10). Fisher’s exact test 
was used to compare prevalence between two-time points. 
 
AMR in foodborne pathogens 
 
We calculated the pooled prevalence of resistance from individual pathogen-drug resistance 
rates to report resistance in foodborne pathogens. Analysis of resistance in foodborne 
pathogens of aquatic animal origin (Vibrio spp., Streptococcus spp. and Aeromonas spp.) was 
guided by antimicrobial compounds of relevance for therapeutic use in human clinical settings. 
We also analyzed resistance in E.coli as a marker of potential human and terrestrial animal 
influence. Resistance rates were calculated for these pathogens from samples originating from 
marine fish, freshwater fish, and shrimp groups using The Clinical and Laboratory Standards 
Institute (CLSI M45 and M100) and WHO Advisory Group on Integrated Surveillance of 
Antimicrobial Resistance (AGISAR)62 pathogen-drug susceptibility testing guidelines 
(Supplementary Table S1). The 95% confidence interval was calculated on the resistance 
proportions. 
 
Geospatial modeling 
 
We mapped antimicrobial resistance in freshwater and marine environments at a resolution of 
0.08333 decimal degrees, or approximately 10 km at the equator, by interpolating P50 values 
between point prevalence surveys. In freshwater environments, a two-step procedure was used, 
in which we first trained multiple child models, and subsequently stacked predictions from 
these models for universal kriging. Stacked generalization ensemble approaches have been 
used to model population-level health metrics63, and previous work64 has demonstrated that 
stacking models improve prediction accuracy compared with individual predictive models. The 
two-step procedure captures both the relationship between P50 and environmental and 
anthropogenic covariates, as well as spatial autocorrelation in the distribution of P50. This 
approach has recently been used to model the distribution of AMR in terrestrial animals in low-
income and middle-income countries26. Although there is an inevitable trade-off in improved 
accuracy at the expense of reduced model interpretability, we chose an ensemble approach for 
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prediction accuracy as the focus of our study was to produce the best possible maps of AMR 
rather than risk factor identification. 
In total, 500 surveys were used to map AMR in freshwater environments. Where surveys did 
not provide precise sampling coordinates, we assigned coordinates at random within a 
geographic uncertainty range associated with the given sampling location. The uncertainty 
range was calculated as the mean of the distance in kilometers in the X and Y directions from 
the centroid to the boundaries of the smallest available administrative unit or place name 
provided in the survey. We used a random binarization procedure to transform the P50 values 
into presence (P50 = 1) and absence (P50 = 0) of resistance. We then generated and distributed 
pseudo-absence points to provide additional covariate values not associated with presence 
(P50 = 0) using stratified random sampling proportional to the human population density to 
account for potential P50 observation bias in more densely populated areas. Pseudo-absence 
points were sampled within a geographic radius of 20 to 500 km from presence points 
(Supplementary Note 4). 
 
In the first step, environmental and anthropogenic covariates relevant to the freshwater 
environment were used to train three child models to quantify the association between P50 and 
these covariates. The 13 covariates were: accessibility to cities; gross domestic product; 
irrigated land percentage; minimum monthly temperature; terrestrial livestock P50; terrestrial 
livestock antimicrobial use; human population density; and population densities of cattle, pigs 
raised intensively, pigs raised semi-intensively, pigs raised extensively, chickens raised 
intensively, and chickens raised extensively (Supplementary Fig. S13 and Table S2). Child 
models included boosted regression trees (BRT)65; least absolute shrinkage and selection 
operator applied to logistic regression (LASSO-GLM)66; and overlapped grouped LASSO 
penalties for General Additive Models selection (LASSO-GAM)67 (Supplementary Fig. S14). 
BRT models have demonstrated good predictive performance in handling non-linear 
relationships and interactions amongst a diverse set of covariates and have been frequently 
used to model disease distribution25,65 ,68 ,69. By generating and combining a collection of models 
(decision trees) in a sequential stepwise fashion, boosting reduces both bias and variance while 
protecting against model overfitting. In addition, BRT models are insensitive to outliers65. 
LASSO regression models—here applied to GLM and GAM—facilitate efficient covariate 
selection by shrinking some regression coefficients and setting others with minor contributions 
to zero. These features enable a robust selection of covariates, reducing model complexity and 
strengthening predictive performance. Child models were fitted using three-fold spatial cross-
validation aligned to the Asia sub-regions in our study (Supplementary Fig. S13). This cross-
validation procedure takes observations from the training and validation sets which are 
geographically independent, guarding against overfitting and selection of models with poor 
capacity to predict to new areas68. Models were bootstrapped 10 times to account for variability 
introduced in the geographic assignment, the random binarization of P50 values, and the 
stratified random sampling of pseudo-absence points. The mean value of the area under the 
receiver operator characteristic curve (AUC) for all bootstraps was used to evaluate model 
predictive ability. 
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In the second step, predictions from child models were stacked and used as covariates for 
universal kriging. We fit a Matern variogram at a maximum distance of 500 km, which is where 
the semi-variogram attained the range. The kriging procedure was weighted by the number of 
isolates at each location. The output of the kriging procedure was a map of predicted freshwater 
resistance levels, as well as a map of kriging variance quantifying the spatial interpolation 
uncertainty (Supplementary Fig. S17). We also produced a “need for surveillance” index map 
for use in identifying optimal locations for future surveys, calculated as the kriging variance 
(uncertainty) weighted by the product of human population density70 and inland aquaculture 
production volume2 (described below). We further quantified uncertainty in the interpolation 
of P50 values by generating a map of the 95% confidence interval on the predicted P50 values 
(Supplementary Note 4; Supplementary Fig. S18). 
 
In marine environments, a root mean square error (RMSE)-weighted ensemble model was used 
to map AMR. In contrast to the freshwater model, no association between marine covariates 
and P50 was identified, and we interpolate P50 values using survey coordinates in the marine 
AMR map. Surveys from inland freshwater sites were excluded. Wild-caught marine animals 
sampled at land-based post-harvest sites were randomly assigned coordinates to open ocean 
within a radius of .54 to 81 nautical miles (1 to 150 km) from their nearest coastal location 
(Supplementary Fig. S15). The marine data set consisted of two groups of surveys: (i) surveys 
from animals sampled at land-based post-harvest sites randomly assigned to open ocean; and 
(ii) surveys originating from marine, coastal marine, brackish water, and coastal brackish water 
sampling locations (Supplementary Note 4). 
 
This marine data set (n = 322) was used to produce inverse distance weighted, natural neighbor, 
and ordinary kriging models. These models were subsequently stacked and weighted according 
to their root mean square error to capture the fit and variance of each model in the final 
ensemble model. The weights were taken as the inverse of the RMSE of each constituent model 
divided by the sum of RMSE for all models and expressed as their relative proportion in the 
final RMSE-weighted marine AMR ensemble model (Supplementary Table S3). A 
transparency function was added proportionally to the spatial kernel density of surveys at a 
bandwidth of 8.333 decimal degrees to reflect the density of the geographic distribution of 
surveys contributing to the final marine P50 map. 
 
Optimizing locations for future surveillance 
 
We used the “need for surveillance” index map for freshwater AMR to identify locations for 
50 hypothetical surveys—the rounded mean number of annual surveys between 2010 and 
2019—that could be conducted across Asia next year. The “need for surveillance” index was 
calculated as the product of the uncertainty from the spatial interpolation, human population 
density70, and inland aquaculture production volume2. Human population and aquaculture 
production terms were standardized to range between 0 and 1 to give equal importance in 
determining the locations of future surveys. This function weights the necessity for surveillance 
to locations where the potential exposure risk and impact of AMR is greatest on the aquaculture 

https://www.nature.com/articles/s41467-021-25655-8#ref-CR70
https://www.nature.com/articles/s41467-021-25655-8#ref-CR2
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industry and human health—via local consumption71 and the cyclical exchange of resistant 
bacteria and their determinants across humans, aquaculture, and the aquatic environment. 
We followed an approach proposed by Zhao et al.72 that exploits a key feature associated with 
each additional survey conducted, reducing the uncertainty of the geospatial model in its 
surrounding area. The survey locations were optimized to reduce uncertainty as quantified 
through the “need for surveillance” index, thereby maximizing information gained for each 
successive survey (Supplementary Note 4). 
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Abstract 
In Europe, systematic national surveillance of antimicrobial resistance (AMR) in food-
producing animals has been conducted for decades; however, geographic distribution within 
countries remains unknown. To determine distribution within Europe, we combined 33,802 
country-level AMR prevalence estimates with 2,849 local AMR prevalence estimates from 209 
point prevalence surveys across 31 countries. We produced geospatial models of AMR 
prevalence in Escherichia coli, nontyphoidal Salmonella, and Campylobacter for cattle, pigs, 
and poultry. We summarized AMR trends by using the proportion of tested antimicrobial 
compounds with resistance >50% and generated predictive maps at 10 × 10 km resolution that 
disaggregated AMR prevalence. For E. coli, predicted prevalence rates were highest in 
southern Romania and southern/eastern Italy; for Salmonella, southern Hungary and central 
Poland; and for Campylobacter, throughout Spain. Our findings suggest that AMR distribution 
is heterogeneous within countries and that surveillance data from below the country level could 
help with prioritizing resources to reduce AMR. 

Introduction 
 
Antimicrobial resistance (AMR) is a substantial threat to the health of humans and animals. 
Among humans, in 2019 an estimated 1.27 million deaths were associated with bacterial 
AMR1. Among food-producing animals (i.e., animals that are used for or produce food items 
for human consumption), estimates of global AMR burden are still lacking. However, recent 
work has suggested that among common indicator bacteria of food-producing animals in low- 
and middle-income countries, the proportion of antimicrobials with resistance >50% increased 
from 12%–15% in 2000 to 34%–41% in 20182, an increase that may have harmful 
consequences for humans3. Moreover, the loss of treatment effectiveness in animals is a long-
term threat for animal production and the millions of persons who rely on raising animals for 
subsistence4,5. Therefore, monitoring AMR in food-producing animals has become a global 
priority for effective prevention strategies. 
 
Since 2009, the European Food Safety Authority (EFSA) has led a harmonized surveillance 
system for AMR in food-producing animals and products6. The system includes AMR 
prevalence estimates for Escherichia coli, nontyphoidal Salmonella, 
and Campylobacter among cattle and pigs (odd years) and chickens and turkeys (even years)7. 
Data collected by EFSA have been instrumental for monitoring AMR and for guiding policy 
decisions in the European Union (e.g., the 2018 ban on prophylactic use of antimicrobials in 
animals8). The efforts to document AMR have also enabled comparison between countries in 
Europe by estimating prevalence of AMR at the national level. However, recent works have 
shown that resistance levels in humans and animals can vary at a fine spatial scale, and 
accumulation of resistance genes in those areas may create geographic hotspots for AMR2,9. 
Identifying geographic hotspots of AMR within countries could help with targeting 
interventions against AMR, such as improved farm biosecurity and targeted surveillance, 
where they might have the greatest benefits10,11,12. 
  
In that context, point prevalence surveys (PPSs) of AMR among food-producing animals, with 
data points collected at individual geographic locations, provide an opportunity to supplement 
the national estimates of AMR assembled by EFSA2. The resulting mapped predictions could 
be used to help design regional antibiotic stewardship campaigns or target local investment in 
farm biosecurity12. However, generating robust predictions of AMR pose at least 3 challenges. 
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First, comparisons need to be made between the resistance trends inferred from PPSs and 
EFSA; second, subnational predictions should reflect resistance levels reported by EFSA at the 
national level; and third, an appropriate geospatial modeling approach must be developed to 
combine data collected at different spatial scales. 
 
In this study, we disaggregated trends in AMR prevalence of E. coli, nontyphoidal Salmonella, 
and Campylobacter among cattle, pigs, and poultry. We used stacked geospatial models that 
supplement data from EFSA with individual PPSs to map predictions of AMR prevalence at a 
resolution of 10 × 10 km for 31 countries in Europe. 

Results 
EFSA surveillance 
 
At the country level, EFSA data for 2009–2020 provided 33,802 AMR prevalence estimates 
(resulting in 2,996 P50s). The data were for E. coli, nontyphoidal Salmonella, C. coli, and C. 
jejuni in cattle, pigs, and poultry across 31 countries in Europe.  
 
PPSs 
 
At the local level, for 2000–2021 we identified 209 PPSs, which provided 2,849 AMR 
prevalence estimates (resulting in 368 P50s). The data were for E. coli, 
nontyphoidal Salmonella, and Campylobacter in food-producing animals and derived products 
from 21 countries in Europe. In terms of AMR prevalence, E. coli accounted for 
44.4%, Salmonella for 34.2%, and Campylobacter for 21.4%. Poultry accounted for 
approximately half of the AMR prevalence (n = 1,429, 50.2%), followed by pigs (28.1%) and 
cattle (21.8%). One third of the sample types tested were meat (34.7%, n = 988), followed by 
fecal samples (23.4%). Across the countries included in the analysis, geographic coverage was 
on average 4.21 PPSs (interquartile range 0–11.7)/100,000 km2. Half of the PPSs identified 
were from the combination of Spain (20.5%), Italy (18.7%), and Germany (10.5%) (Figure 1). 
The average number of PPSs published by year increased from 3 during 2000–2005 to 14 
during 2015–2021 (Figure 1, panel B).  
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Figure 1. Data from study of predictive mapping for antimicrobial resistance of Escherichia 
coli, Salmonella, and Campylobacterin food-producing animals, Europe, 2000–2021. A) 
Geographic distribution of point prevalence surveys (PPSs). B) Number of PPSs published per 
year. Additional information is provided in the Appendix.  
 
Comparison of PPS and EFSA 
 
AMR prevalence estimates varied considerably between data sources and country. For 2018–
2020, Greece, Poland, and Germany accounted for more than double the national average P50 
calculated from PPS data compared with P50s calculated from EFSA (Table 1). Conversely, 
the national average P50 calculated from PPS data from Portugal and Switzerland was <30% 
lower than that calculated from EFSA.  
 

Country Mean P50 
from PPS 

Mean P50 
from EFSA 

PPS and EFSA 
P50 ratio 

Poland 0.64 0.26 2.47 
Germany 0.60 0.25 2.42 
Greece 0.39 0.19 2.02 
Spain 0.39 0.24 1.67 
Belgium 0.29 0.21 1.34 
Romania 0.31 0.28 1.10 
Italy 0.23 0.25 0.92 
Switzerland 0.17 0.22 0.77 
Portugal 0.18 0.32 0.57 

 
*EFSA, European Food Safety Authority; PPS, point prevalence surveys; P50, >50% 
antimicrobial resistance. 
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Table 1. Three-year mean of proportion of antimicrobial drugs with >50% resistance from PPS 
and EFSA data and ratios of P50 for countries reporting to both data sources, Europe, 2018–
2020* 
 
The highest resistance prevalence estimates were for tetracycline (57.9%–36.4%), ampicillin 
(58.6%–34.9%), ciprofloxacin (64.6%–13.1%), and nalidixic acid (60.9%–25.5%). The 
difference in mean P50 between PPSs and EFSA data ranged from 15.2% to −17.4% 
for Salmonella and from 19.1% to −7.96% for E. coli. For Campylobacter, systematically 
higher prevalence estimates were obtained from PPSs; differences ranged from 12.1% to 0.78% 
(Figure 2). 
 

 
 
Figure 2. Mean prevalence for antimicrobial class and bacteria combinations, split by data 
source, Europe, 2009–2020. A) Escherichia coli; B) Salmonella; C) Campylobacter. AMP, 
ampicillin; CAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin; CST, colistin; CTX, 
clavulanic acid; EFAS, European Food Safety Authority; FOX, cefoxitin; GEN, gentamicin; 
IPM, imipenem; NAL, nalidixic acid; PPS, point prevalence survey; STR, streptomycin; TET, 
tetracycline. 
 
Geospatial modelling 
 
We mapped predicted P50s at 10 × 10 km resolution for each of the 3 bacteria across Europe 
(Figure 3). In the final models, the predicted P50 values ranged from 0 to 79% for E. coli, 0 to 
40% for Salmonella, and 0 to 100% for Campylobacter (Figure 3, panel A; prediction 
uncertainty, Appendix Figure 3, panel A). P50 cutoffs for hotspots of AMR (calculated as the 
top 95% of the values on the map) were 0.43 for E. coli, 0.23 for Salmonella, and 0.60 
for Campylobacter. AMR hotspots for E. coli were predicted to be located in southern 
Romania (Muntenia, Dobrogea) and southern and eastern Italy (Sicily, Emilia-Romagna, 
Apulia); and for Salmonella, predicted hotspots were in southern Hungary, northern Italy, and 
central Poland. More than 90% of hotspot areas for Campylobacter were predicted to be 
throughout mainland Spain (Figure 3, panel B). 
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Figure 3. Mapping of predicted P50s and hotspot areas for antimicrobial resistance 
of Escherichia coli, Salmonella, and Campylobacter, Europe. A) Predicted proportions of 
antimicrobials with P50 at 10 × 10 km resolution per bacteria. B) Antimicrobial resistance 
hotspots (light blue) in eastern Europe, Italy, and Spain. Cutoffs: E. coli, 0.43; Salmonella, 
0.23; Campylobacter, 0.6 (95% percentile). P50, >50% antimicrobial resistance. 
 
For E. coli, the highest geographic variations in predicted P50 levels were in Romania (13% 
pixel-level SDs), Bulgaria (11%), Greece 1(2%), and Italy (11%). For Campylobacter, the 
highest geographic variations in P50 were in France (10%) and Germany 
(10%; Appendix Figure 4, panel C). No countries had high spatial variations in predicted P50s 
for Salmonella. Cold spots for all 3 bacteria were identified in Sweden, Norway, Finland, and 
Iceland (data not shown). Spatial variations of P50 for countries containing coldspots were 
small, with pixel-level standard deviations of 3.2% (E. coli), 0.9% (Salmonella), and 1.0% 
(Campylobacter). Restricting PPS by year and antimicrobial bacteria combinations resulted in 
little difference (mean Pearson correlation coefficient 0.992; mean absolute error 0.932%) to 
the overall model predictions (Appendix Table 4). In addition, we found little difference when 
P50 was calculated by antimicrobial class rather than individual compound (Pearson 
correlation coefficient 0.995, mean absolute error 0.66%) (Appendix Table 4, Figure 4). 
Importance of environmental covariates to the models varied by organism (Appendix Table 5). 
For E. coli and Salmonella, the covariate with highest importance was the percentage of tree 
coverage (∆AUC 0.106 for E. coli and 0.078 for Salmonella). For Campylobacter, the 
covariate with highest importance was antimicrobial use in animals (∆AUC 0.037), closely 
followed by yearly average of minimum monthly temperature (∆AUC 0.034).  
 
In 9 of the 31 countries in Europe, >50% of cattle, pigs, or poultry are estimated to be raised in 
the predicted AMR hotspot areas (Table 2). For instance, 93% of poultry in Spain, 90% of 
poultry in Greece, and 97% of poultry and 92% of pigs in Cyprus are raised in AMR hotspots. 
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Organism, 
country 

Cattle 
(%) 

Pigs 
(%) 

Poultry 
(%) 

E. coli 
France 0 0 0 
Germany 0 0 0 
Spain 2.1 2.3 1.8 
Bulgaria 34.4 51.5 57.8 
Cyprus 33.8 68.9 68.5 
Greece 39.4 57.9 35.5 
Romania 34.8 77.5 57.8 
Salmonella 
France 0 0 0 
Germany 0 0 0 
Spain 8.8 28.2 24.8 
Cyprus 51.8 91.6 96.6 
Hungary 63.5 64.7 80.6 
Italy 52.0 70.2 64.0 
Poland 21.6 66.0 74.3 
Romania 17.0 65.2 45.0 
Campylobacter 
France 0.5 4.6 6.2 
Germany 1.8 14.9 23.2 
Spain 32.3 87.9 93.0 
Cyprus 26.0 44.9 66.3 
Greece 10.9 58.4 90.3 
Portugal 22.1 74.9 88.0 

*Antimicrobial resistance for Escherichia coli, nontyphoidal Salmonella, and Campylobacter. 
 
Table 2. Percentages of food-producing animals raised in each country that fall within an 
antimicrobial resistance hotspot area (95th percentile per organism) for France, Germany, 
Spain, and countries in which organism percentage >50% for >1 animal species*   

Discussion 
In this study, we geographically disaggregated AMR prevalence for E. coli, 
nontyphoidal Salmonella, and Campylobacter reported among food-producing animals across 
Europe by supplementing national EFSA data with subnational PPS data to produce maps of 
estimated AMR prevalence. For multiple countries, such as Italy, Romania, and Poland, rather 
than consistently high countrywide AMR levels, in our final model we predicted specific 
geographic hotspots of high AMR prevalence that may coexist within regions of lower AMR 
prevalence in the same countries. In specific regions, countries in which AMR seems to be 
consistently high may have made more progress against AMR than previously thought (with 
only some, rather than all, areas containing high levels) by interpretation of EFSA data or 
nationally published reports. Further improvements could be made in those countries by 
targeting interventions (e.g., improved farm biosecurity and targeted surveillance in hotspots 
where AMR levels remain high). In contrast, largely diffuse and geographically uniform (low) 
countrywide AMR prevalence was found in countries with low AMR levels (e.g., Sweden, 
Norway, and Iceland); uncertainty in these predictions were higher for Campylobacter than 
for E. coli and Salmonella. 
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For all 3 bacteria studied, AMR prevalence was substantially lower in Norway, Sweden, 
Denmark, and Switzerland than the average for Europe. Those countries were among the first 
to establish animal AMR surveillance (i.e., DANMAP in Denmark in 199525) and have now 
integrated surveillance of zoonotic bacteria in humans and animals. For several decades, they 
have been guiding national and international control strategies. For instance, in the 1990s, 
increased prevalence of vancomycin-resistant enterococci reported by DANMAP was 
instrumental to banning use of antimicrobial drugs for growth promotion in livestock25. 
 
In contrast, countries in which a high proportion of food-producing animals are raised in areas 
predicted as hotspots of resistance by our study are Cyprus, Portugal, and Spain. In 2018, one 
fifth (20.8%) of the pigs in the European Union were reared in Spain26, where 88% of its pigs 
were predicted to be raised in geographic hotspots of Campylobacter resistance, primarily in 
Aragon and Catalonia. However, that finding was not the case for other high-density pig 
regions such as Brittany (France), northwest Germany (Lower Saxony and North Rhine-
Westphalia), and Denmark27. Those findings suggest that high AMR is not necessarily 
associated with high animal densities but possibly with other drivers such as farming practices, 
biosecurity measures, and antimicrobial use28. 
   
Across Europe, the highest prevalence of resistance in our models was reported for 
antimicrobial drugs commonly used in animal production: tetracyclines, quinolones, 
penicillins, and aminoglycosides (gentamicin and streptomycin). Of particular concern were 
the compounds considered critically important antimicrobials for human medicine29 and for 
which AMR prevalence was predicted to be >50% (ampicillin in E. coli [58.6%] and 
ciprofloxacin in Campylobacter [64.6%]).  
 
In our study, estimates of P50 for Salmonella were much lower than those for E. 
coli and Campylobacter, which could potentially be attributed to the success of targets imposed 
by the European Union (e.g., reducing Salmonella prevalence in poultry over the past 
decade30). In addition, several countries had already implemented Salmonella control strategies 
before European Union–wide initiatives. For instance, in the 1970s, the United Kingdom set 
up national AMR surveillance for Salmonella, and in 1969, France had similar initiatives 
for Salmonella and E. coli25. Switzerland also implemented a stringent control program 
for Salmonella Enteritidis in 199331, more than a decade earlier than the first European Union–
wide initiative30.  
 
When we compared estimates of resistance (P50) derived from PPS and EFSA data, the average 
P50 from PPSs seemed to more closely match national EFSA prevalence values in some 
countries more than in others. For instance, in Spain and Italy, the ratios of P50 inferred from 
PPS and EFSA data were close to 1 over the past 3 years. One reason may be the higher number 
of PPSs from these countries (17 in Spain and 13 in Italy), which average out closer to the 
EFSA values. In contrast, in countries with P50 ratios >2 or <0.8 (Poland, Germany, Greece, 
Portugal) inferred from PPS and EFSA data, only 1–4 studies have been conducted in the past 
3 years. Therefore, although smaller sample sizes may be insufficient for comparing national 
averages (PPS vs. EFSA) they may still represent subnational heterogeneity in AMR not 
observed in the national average from EFSA. A higher coverage of PPSs may further improve 
the confidence in subnational model predictions.  
 
Among the limitations of our modeling study, the first is that our literature search for PPSs 
published in Europe during 2000–2021 resulted in a mere 209 PPSs that were associated with 



 71 

geographic information. In contrast, for the same period, 446 PPSs with geographic 
information were published in China12. Torres et al. also assembled AMR studies of food-
producing animals during 1957–2018; however, of the 510 papers from Europe identified, the 
breakdown of their surveys corresponding to our search criteria was not available in open 
access32. Thus, the limited number of surveys that satisfied our inclusion criteria, particularly 
the reporting of geographic information, precluded mapping AMR prevalence for individual 
drug/bacteria combinations or animal species. 
 
Second, with regard to using PPSs for regional estimations, differences in sampling strategy 
and sample sizes may affect the comparability of surveys and potentially explain why 
prevalence calculated from PPSs was in some instances higher than the prevalence estimates 
reported by EFSA. In particular, targeted sampling for bacteria that probably have high-
resistance profiles, such as extended-spectrum beta lactamase–producing E. coli33, could lead 
to comparatively higher AMR in PPS data than in the general population, which are more likely 
to be observed with the EFSA sampling scheme. In terms of microbiology, the set of tested 
antimicrobials differed between PPSs, which necessitated use of a composite metric. In 
addition, there were some transparency issues in terms of which methods or breakpoints were 
used (i.e., assumptions had to be made in the case of missing data [such as guideline year] and 
in the harmonization approach used for PPSs that used different guidelines, which may have 
led to some unintended bias), as well as a diversity of breakpoints used. Despite attempts to 
reduce variability between surveys, some variability may still exist and therefore efforts should 
be made to develop standardized protocols in the future, such as for all PPSs to shift to using 
ECOFF values and to release raw data. The creation of a consensus breakpoint table that could 
be used by all would also greatly assist with the comparability of those data and reduce the 
need for such adjustments. Because most studies reported only sampling location or region by 
name rather than specific coordinates, coordinates and size of region were estimated (and may 
not always represent the location of the farms where the animals were raised), which may have 
led to further uncertainty in our models.  
 
Third, because of the limited number of PPSs, as well as their heterogenous distribution across 
the study period, incorporating the temporal dimension into the modeling framework remains 
challenging at this stage. Therefore, countries that have had considerably reduced AMR levels 
since 2009, such as the Netherlands34, may be associated with higher AMR prevalence in our 
maps than that in the latest reports. However, as the number of surveys grows in the future, 
other spatio-temporal approaches, such as the Integrated Nested Laplace Approximation35, 
could be used to account for not only spatial but also temporal variations in AMR prevalence 
extracted from PPSs. 
 
Last, because of the static framework of geospatial modeling, it was not possible to incorporate 
all relevant data. That limitation may have a dynamic effect on AMR prevalence estimates, 
notably animal movement. 
 
In conclusion, high-resolution maps that predict subnational hotspots can help support targeted 
resource allocation and control strategies for reducing AMR burden. Such strategies could 
include improving farm biosecurity and targeted surveillance. The accuracy of these maps 
could be gradually improved in the future should countries routinely report geographic location 
data along with microbiological sampling results. 
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Methods 
EFSA data collection 
 
We reviewed annual EFSA reports published during 2011–202213. We extracted country-level 
data on AMR prevalence (2009–2020), focusing on the percentage resistance to antimicrobials 
against E. coli, Salmonella, Campylobacter coli, and Campylobacter jejuni. We extracted 
information on country, year of isolation, animal type (cattle, pigs, chickens, turkeys), sample 
origin (slaughtered animal, living animal, or meat), bacteria, species, number of samples, 
antimicrobial tested, and resistance prevalence. We followed European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) guidelines to assess microbiological 
resistance and used microdilution methods and epidemiologic cutoff (ECOFF) values14. We 
retained only antimicrobial/bacteria combinations recommended by the World Health 
Organization Advisory Group on Integrated Surveillance of Antimicrobial Resistance15 for 
antimicrobial susceptibility testing (Appendix Table 1). 
 
PPS data collection 
 
We systematically reviewed PPSs (Appendix) reporting AMR prevalence at individual 
locations in Europe (Appendix Figure 1). We searched PubMed, Web of Science, and Scopus 
for PPSs reporting AMR prevalence for E. coli, nontyphoidal Salmonella, 
and Campylobacter in healthy cattle, pigs, and poultry (combined data for chickens, turkeys, 
or other poultry), as well as their products (meat and dairy) in Europe during 2000–2021. 
Environmental samples (e.g., water, soil) were not included. We also extracted information on 
the geographic location of the PPS (Appendix), the year the PPS was conducted, the year the 
bacteria was isolated (but not species identification methods used), sample types collected 
(cecal, cloacal, lymph, or fecal samples taken from living animals, slaughtered animals, dairy 
products, or meat), animal species, number of samples collected and tested, susceptibility 
testing guidelines used, and susceptibility guidelines used for resistance interpretation. 
Duplicated surveys, i.e. surveys analysing data that were previously published, were removed 
from the collection. 
 
We assessed microbiological resistance across PPSs by using different methods (disk diffusion 
vs. broth dilution), guidelines (Clinical and Laboratory Standards Institute 
[https://www.clsi.org] 52%, EUCAST 29%, other 14.6%) and cutoffs (clinical break points vs. 
ECOFFs15). We attempted to account for these differences by using a harmonization approach 
developed by Van Boeckel et al.2 (Appendix). We calibrated data from PPSs by using 
antimicrobial susceptibility testing, guidelines, and breakpoints reported in each study to match 
those of EUCAST guidelines each year, to enable comparison between those data and data 
reported by EFSA. As with EFSA data, we retained only antimicrobial/bacteria combinations 
recommended by the World Health Organization Advisory Group on Integrated Surveillance 
of Antimicrobial Resistance15. In addition, for our analysis we retained only countries that 
reported to EFSA and that had reported >50 samples during the study period. All prevalence 
estimates extracted from PPS are available at resistancebank.org (https://resistancebank.org)16.  
 
Comparative analysis of data sources 
 
We used the proportion of antimicrobials with >50% resistance (P50s) to summarize trends in 
resistance across each drug/bacteria combination, as in previous works2,12,17; all P50s can be 

https://www.clsi.org/
https://resistancebank.org/
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recalculated by using the data available at resistancebank.org. To assess the difference in AMR 
prevalence between PPS and EFSA data, as well as the implications that that could have for 
geospatial modeling, we compared the average P50 in countries reporting at >1 PPS and to 
EFSA during 2018–2020 (Appendix Table 3). A ratio <1 indicated a lower 3-year mean P50 
using PPS data, and a ratio >2 meant a more than double 3-year mean P50 from PPS data 
compared with EFSA data.  
 
Geospatial modelling of P50 
 
We mapped predicted subnational antimicrobial resistance in food-producing animals at a 
resolution of 0.08333 decimal degrees, corresponding to ≈10 km at the equator. To create the 
map, we used a 3-step procedure (Appendix Figure 2). 
 
In the first step, we trained 3 child models (one of the individual models that are combined to 
form the final model) to quantify the relationship between P50 and a set of 9 environmental 
and anthropogenic covariates (Appendix Table 2). We selected those covariates because of 
their suspected association with AMR in animals2,12,17,18,19. The models used for the first step 
were boosted regression trees20; LASSO (least absolute shrinkage and selection operator) 
applied to logistic regression21; and overlapped grouped LASSO penalties for General Additive 
Models selection (A. Chouldechova, unpub. data, https://arxiv.org/abs/1506.03850). We 
calculated the importance of each covariate by comparing the areas under the receiver operator 
curve (AUCs) between a full model that contained all covariates and a model without each 
covariate. To evaluate the relative importance of each covariate to the full model, we repeated 
the procedure sequentially (Appendix Table 5).  
 
We weighted all models by the number of isolates tested in each survey and conducted 10 
Monto Carlo simulations on the models to account for the variation introduced by 
transformation of prevalence estimates into binary variables. The models were trained by using 
4-fold spatial cross-validation to prevent overfitting and ensure generalization in geographic 
regions poorly represented in the training dataset. We defined the 4 spatial folds by using a k-
means clustering algorithm22. The algorithm clustered the surveys according to their spatial 
distances and partitioned them into 4 spatially disjointed sets with equal sizes (Appendix). No 
predictions were made in urban settlements; there were areas defined as artificial surfaces in 
GlobCover 200923. We conducted sensitivity analyses by restricting PPSs to 2009–2020 only 
(to match EFSA reporting period), to 6 or 7 of the most common antimicrobial/bacteria 
combinations only, and to P50 calculated by class (rather than compound) (Appendix).   
 
In the second step, we ensembled predictions from the 3 models according to the models’ 
predictive ability, assessed by using the AUC. We calculated the resulting map of P50 as the 
mean of the 3 model predictions weighted by their AUC values. We calculated the associated 
map of prediction uncertainty as the SD of predicted P50 values from the 10 Monte Carlo 
simulations (Appendix Figure 4, panel A).  
 
In the third step, we adjusted the P50 predictions in each country, using P50 values calculated 
from EFSA reports. Concretely, we multiplied P50 values in each pixel by the ratio of country-
level P50 as reported by EFSA and the mean P50 of all pixels across each country as predicted 
by the geospatial model. That step ensured that the country-level mean of P50 values 
corresponded to reports from EFSA while preserving geographic variations in AMR levels 
within each country. To assess the variations in P50 values within each country, we calculated 
country-level SDs of P50s (Appendix Figure 4, panel C). 

https://arxiv.org/abs/1506.03850
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Last, we created the predictive maps of AMR hotspots for each organism. The threshold value 
for a pixel to be classified as a hotspot corresponded to the 95th percentile of all P50 values 
across the map and varied for each organism (Appendix Figure 4, panel B). We obtained 
estimated animal densities associated with those areas from Gilbert et al.24. Using those 
estimates, for each country we calculated the percentage of each animal species living in the 
hotspot areas.  
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Abstract 
Antimicrobial resistance (AMR) in food animals is a growing threat to animal health and 
potentially to human health. In resource-limited settings, allocating resources to address 
AMR can be guided with maps. Here, we mapped AMR prevalence in 7 antimicrobials in 
Escherichia coli and nontyphoidal Salmonella species across low- and middle-income 
countries (LIMCs), using 1088 point-prevalence surveys in combination with a geospatial 
model. Hotspots of AMR were predicted in China, India, Brazil, Chile, and part of central 
Asia and southeastern Africa. The highest resistance prevalence was for tetracycline (59% for 
E. coli and 54% for nontyphoidal Salmonella, average across LMICs) and lowest for 
cefotaxime (33% and 19%). We also identified the antimicrobial with the highest probability 
of resistance exceeding critical levels (50%) in the future (1.7–12.4 years) for each 10 x 10 
km pixel on the map. In Africa and South America, 78% locations were associated with 
extended-spectrum penicillins or tetracyclines crossing 50% resistance in the future. In 
contrast, in Asia, 77% locations were associated with extended-spectrum penicillins or 
sulphonamides. Our maps highlight diverging geographic trends of AMR prevalence across 
antimicrobial classes, and can be used to target AMR surveillance in AMR hotspots for 
priority antimicrobial classes. 

Introduction 
 
Antimicrobials are life-saving drugs used to treat infections in humans. However, the majority 
(73%) of antimicrobials sold globally are used in animals raised for food1. In animals, 
antimicrobials are used for treatment but also as surrogates for good hygiene practices and to 
increase productivity on farm in some regions of the world2. Antimicrobials have facilitated 
the intensification of animal farming, and enabled meeting a growing demand for animal 
proteins worldwide. From 2000 to 2020, In Brazil and China – the largest exporter and importer 
of meat among low- and middle- income countries (LMICs), meat production has grown by 
89% and 23% respectively3. However, in LMICs, during the same period, the percentage of 
antimicrobials with prevalence of resistance higher than 50%4 rose from 15% to 41% in 
chicken, and from 13% to 34% in pigs, with important consequences for animal health, and 
potentially for human health5,6.  
 
In high-income settings such as the US7, Canada8, and the EU countries9, animal AMR has 
been the focus of systematic surveillance for decades. Surveillance data have supported policies 
that helped limiting the use of certain classes of antimicrobials in animals (e.g. third-generation 
cephalosporins such as ceftiofur8). However, in LMICs, systematic surveillance remains at best 
nascent, and point prevalence surveys (PPS) have been used as surrogates to systematic 
surveillance to infer regional trends in AMR in animals10. Thus far, these attempts at 
documenting trends in AMR using PPS relied on summary metrics such as the fraction of 
antimicrobials tested in a survey with prevalence of resistance higher than 50% (P50). For 
LMICs, trends in AMR have not yet been disaggregated for individual antimicrobial-bacteria 
combinations. This is a major limitation for potentially taking targeted actions on individual 
antimicrobial classes. One such action was the 2005 ban of fluoroquinolones in poultry in the 
United States that was supported by surveillance data of fluoroquinolone-resistant 
Campylobacter11. For humans, systematic reviews – including in LMICs – helped estimate the 
global burden of AMR for 88 individual antimicrobial-bacteria combinations12. Conducting a 
symmetrical exercise for animals would enable a more targeted approach to the management 
of AMR in animals, and also comparison with patterns of AMR in humans13. 
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The World Health Organization’s list of Medically Important Antimicrobials (MIA)14 is a 
natural starting point for developing drug-specific guidelines for surveillance of AMR in 
animals, and define priorities for actions. However, the MIA list does not explicitly account 
for considerable geographic variations of AMR levels within countries such as Kenya, China, 
Thailand where subsistence farming and industrial farming co-exist, and where access to 
veterinary services varies considerably between regions. In regions with high AMR levels, first 
line antimicrobials for disease treatment may have lost efficacy. Having the ability to predict 
which antimicrobials will cross critical resistance levels in the future could help assess the risk 
of antimicrobial resistant infections acquired from animal sources, as well as strengthening 
local surveillance effort. To the best of our knowledge, there are currently no maps that 
prioritize antimicrobial classes for surveillance in animals based on local epidemiological 
patterns of AMR. This is largely due to the lack of fine-grained geographic information on 
AMR prevalence for individual antimicrobial-bacteria combinations in systematic surveillance 
systems. PPS conducted at individual locations provide a unique opportunity for supplementing 
these efforts, and mapping priority antimicrobials for AMR surveillance. However, several 
challenges must be addressed to transform data extracted from event-based surveillance (PPS) 
into actionable epidemiological information. Firstly, combinations of antimicrobial-bacteria 
vary between PPS, and a panel of combinations that are abundantly represented across PPS 
must be selected to ensure comparability. Secondly, not only local environmental and 
anthropogenic covariates but also patterns of co-resistance between antimicrobials observed in 
PPS15,16 can be informative of the future resistance profiles, but an appropriate computational 
framework must be developed to transform these statistical associations into predictions of 
classes of antimicrobials that will reach critical resistance levels. 
 
In this study, we used 1,088 PPS to map, at 10x10 kilometer resolution, the prevalence of 
resistance to 7 antimicrobials in E. coli and nontyphoidal Salmonella species in food animals. 
We combined the maps of resistance prevalence with environmental and anthropogenic 
covariates as well as patterns of co-resistance to predict, in each location, which antimicrobials 
had the highest probability of exceeding critical levels of resistance (10%, 25% or 50%) in the 
near future. Our output is a global map displaying fine-scale variations of these drugs that will 
reach critical resistance levels, and could serve a basis to refine AMR surveillance efforts 
across regions.  
 

Results 
 
Trends of AMR 
 
The mean prevalence of resistance weighted by the number of samples in each PPS, in E. coli 
and nontyphoidal Salmonella, was respectively 59% (n = 745) and 54% (n = 597) for 
tetracycline (TET), 57% (n = 779) and 46% (n = 632) for ampicillin (AMP), 45% (n = 649) 
and 36% (n = 501) for sulfamethoxazole-trimethoprim (SXT), 35% (n = 656) and 26% (n = 
553) for chloramphenicol (CHL), 30% (n = 796) and 26% (n = 624) for ciprofloxacin (CIP), 
28% (n = 882) and 23% (n = 650) for gentamicin (GEN), and 33% (n = 446) and 19% (n = 
334) for cefotaxime (CTX). Between 2000 and 2019, changes in the prevalence of resistance 
were +12% (TET), +33% (AMP), +19% (SXT), +20% (CHL), +16% (CIP), +11% (GEN), 
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and +37% (CTX) (Figure 1). The temporal increases of resistance were significant (p < 0.05) 
for all antimicrobials apart from TET. 
 
Prevalence of resistance was investigated in poultry in 52% (n = 570) of PPS, in cattle in 
38% (n = 409) of PPS, and in pigs in 28% (n = 303) of PPS. Prevalence of resistance 
increased significantly for AMP, CHL, CIP, and CTX for poultry, and for AMP, SXT, CHL, 
CIP, GEN, and CTX for pigs (Supplementary Figures 1 to 2). However, temporal trends of 
resistance were not significant for any antimicrobial classes for cattle (Supplementary Figures 
3). 
 

  
Figure 1. Temporal trends of the prevalence of resistance in low- and middle-income 
countries for ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime 
(CTX), gentamicin (GEN), sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). 
Transparency levels of the red colors are proportional to the number of surveys published 
each year. The 25th and 75th percentiles are represented by the lower and upper limits of 
each box, and the median value is marked with a horizontal line. Lengths of whiskers are 1.5 
times the inter-quartile ranges, and values outside of this range are shown as individual 
points. Logistic regression is used to fit temporal trends of resistance prevalence. Solid lines 
represent significant temporal trends (p < 0.05; AMP: p = 0.00000043, CHL: p = 0.00057, 
CIP: p = 0.0043, CTX: p = 0.00000023, GEN: p = 0.023, SXT: p = 0.0050), and dashed lines 
represent nonsignificant trends (TET: p = 0.061). No adjustments are made for multiple 
comparisons. The 95% confidence intervals of the estimated temporal trends are shown in the 
grey areas. 
 
We used ensemble geospatial modelling to map the prevalence of resistance to 7 
antimicrobials in E. coli and nontyphoidal Salmonella in animals (Methods). In E. coli, 
resistance hotspots defined as N50 ≥ 3 were predicted in southern and eastern China, central 
Asia, northern India, northern Brazil, and Chile (Figure 2h). In nontyphoidal Salmonella, 
resistance hotspots were predicted in northeastern China (Figure 3d). Maps of resistance 
using other cutoff values (N20 and N35) were shown in Supplementary Figure 7. Northern 
and eastern Brazil was also resistance hotspots for AMP resistance in E. coli (Figure 2b). 
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Northeastern China was resistance hotspots for SXT and GEN resistance in E. coli, as well as 
CHL, CIP, and GEN resistance in nontyphoidal Salmonella (Figure 2c, 2f, 3d, 3e, 3f). 
Uncertainty of the predictions was the highest for CTX resistance in nontyphoidal Salmonella 
and the lowest for TET resistance in nontyphoidal Salmonella –standard deviation of 
predictions across all pixels on the map was on average 19.9% and 4.5%, respectively 
(Supplementary Figures 8 and 9). 
 

 
 
 
Figure 2. Geographic distribution of antimicrobial resistance in E. coli in low- and middle-
income countries between 2000 and 2019 (median year 2015). Prevalence of resistance (Prev. 
Res.) for tetracycline (a), ampicillin (b), sulfamethoxazole-trimethoprim (c), chloramphenicol 
(d), ciprofloxacin (e), gentamicin (f), cefotaxime (g). Overall resistance level across 
antimicrobials measured using the number of antimicrobials (out of 7) with resistance higher 
than 50% (N50; h) (See Supplementary Figure 7 for maps generated using cutoff values other 
than 50%). Maps of resistance prevalence for the 7 antimicrobials are available on 
resistancebank.org. 
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Figure 3. Geographic distribution of antimicrobial resistance in nontyphoidal Salmonella in 
low- and middle-income countries between 2000 and 2019 (median year 2015). Prevalence of 
resistance (Prev. Res.) for tetracycline (a), ampicillin (b), sulfamethoxazole-trimethoprim (c), 
chloramphenicol (d), ciprofloxacin (e), gentamicin (f), cefotaxime (g). Overall resistance 
level across antimicrobials measured using the number of antimicrobials (out of 7) with 
resistance higher than 50% (N50; h) (See Supplementary Figure 7 for maps generated using 
cutoff values other than 50%). Maps of resistance prevalence for the 7 antimicrobials are 
available on resistancebank.org. 
 
 
Mapping priority antimicrobials for AMR surveillance – where and for which 
antimicrobial class will resistance prevalence exceed critical levels in the 
future? 
 
We used risk factors (Supplementary Table 3) associated with the locations of each resistance 
profile reported in PPS, in combination with histories of acquisition of resistance phenotypes, 
to map which antimicrobials had the highest probability of its resistance prevalence 
exceeding critical levels (10%, 25% or 50%) in the future (Methods). This resulted in global 
maps of ‘priority antimicrobials’ for AMR surveillance. Using 50% as the critical level of 
resistance prevalence, the predicted priority antimicrobials were TET or AMP in 78% 
locations In Africa and South America (Figure 4a). In contrast, in Asia, 77% locations were 
associated with AMP or SXT, because resistance to TET has already exceeded 50% in the 
vast majority of locations (83%). Concretely, SXT was the priority antimicrobial in 
northeastern India, southern and northeastern China, southern Brazil, Turkey, and Iran; AMP 
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was the priority antimicrobial in northern and western China, Mongolia, and western India. In 
southern and eastern China, CHL was the predicted priority antimicrobial. Predictions of 
GEN and CTX having the highest probability of exceeding 50% resistance were not frequent 
(0.02%) and scattered in Asia and South America. The uncertainty associated with the 
predicted priority antimicrobials was on average 12% across all pixels (Figure 4b), and was 
high (> 40%) in parts of western Brazil, South Sudan and North Korea. The percentage of 
pixels with high uncertainty (> 40%) for each country was calculated in Supplementary Table 
11. We estimated the time for resistance prevalence to exceed 50%, for the predicted priority 
antimicrobial in each 10 x 10 km pixel (Supplementary Figure 10). Across locations where 
AMP was the predicted priority antimicrobial (Supplementary Figure 10b), the average time 
weighted by animals’ biomass was 1.7 years, while for CIP the average time was 12.4 years 
(see Supplementary Table 4 for the average estimated time for each antimicrobial class). 
Maps of priority antimicrobials using 10% and 25% as critical levels of resistance prevalence 
are shown in Supplementary Figure 7. 
 

 
 
Figure 4. Geographic distribution of priority antimicrobials. a Geographic distribution of 
antimicrobials with the highest probability of their resistance prevalence exceeding 50% in 
the future in low- and middle-income countries. TET: tetracycline; AMP: ampicillin; SXT: 
sulfamethoxazole-trimethoprim; CHL: chloramphenicol; CIP: ciprofloxacin; GEN: 
gentamicin; CTX: cefotaxime. b Estimated uncertainty of the predictions shown in panel a, 
introduced by the imputation of missing resistance prevalence in the input dataset. Blues 
shades indicate the proportion of Monte Carlo simulations of imputed datasets, which 
generated different predictions compared with panel a (Methods). 
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We assessed the accuracy of the predicted priority antimicrobials using spatial cross-
validation (Methods) and calculated the area under the receiver operating characteristic curve 
(AUC) for predicting the probability of resistance prevalence exceeding 50% for each 
antimicrobial. The AUCs ranged from 0.880 to 0.994 between antimicrobials. We calculated 
the influence of each covariate for explaining the divergence in prediction accuracy by 
sequentially excluding these covariates from the models, and calculated the loss in AUC. Co-
resistance patterns had the highest influence on predicting resistance to all antimicrobials, 
with ΔAUC ranging from 0.224 to 0.494. In contrast, environmental and anthropogenic 
covariates had limited added value for predicting whether resistance exceeds 50% in TET and 
AMP (ΔAUC 0.002 and -0.003), yet they increased prediction accuracy for other 
antimicrobials (ΔAUC ranging from 0.109 to 0.416). Covariates that were most frequently 
associated with the probability of resistance prevalence exceeding 50% were antimicrobial 
use, pesticide application rate, tri-annual cycles of precipitation, and amplitudes of night land 
surface temperature (Supplementary Table 5).  
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Discussion 
 
In this study, we mapped the distribution of resistance prevalence for 7 antimicrobials in E. 
coli and nontyphoidal Salmonella in food animals in low- and middle-income countries. We 
mapped the antimicrobials with the highest probability of their resistance prevalence 
exceeding critical levels (10%, 25% or 50%) in the future. 
  
Geographic distribution of AMR 
 
The predicted maps of AMR based on the number of antimicrobials with resistance higher 
than 50% (N50) were consistent with previous global estimates of AMR in Van Boeckel & 
Pires et al. 2019. This consistency can be partly attributed to the incorporation of a subset of 
PPS used in Van Boeckel & Pires et al. 2019 into the present analysis (Supplementary 
Information). In both analyses, China, Turkey, Iran, India and Brazil were identified as 
hotspots of AMR. However, the previous authors estimated trends of AMR for four 
pathogens combined. Our analysis was conducted for E. coli and nontyphoidal Salmonella 
separately, and ensured comparability for monitoring AMR trends by including data on 7 
drugs each representing a medically important class of antimicrobials. Our choice of proxies 
was also in line with other global surveillance initiatives, such as the Global Tricycle 
Surveillance that uses ESBL-producing E. coli as the proxy17. 
 
In this analysis, we showed that the geographic distribution of AMR varied depending on the 
bacteria considered. For example, Iran was resistance hotspots of extended-spectrum 
penicillins and amphenicols resistance in E. coli but not in nontyphoidal Salmonella. On 
average, E. coli had higher prevalence of resistance compared with nontyphoidal Salmonella 
for all antimicrobials. We also showed that the geographic distribution of AMR varied 
depending on the classes of antimicrobials considered. For example, in either E. coli or 
nontyphoidal Salmonella, northeastern China was identified as resistance hotspots for all 
antimicrobials except tetracyclines and extended-spectrum penicillins. These two classes of 
antimicrobials have already reached high levels of resistance globally, leaving the 
preservation of the other antimicrobials of particular importance. Therefore, this region may 
need intensified policy intervention to contain AMR. Despite variations of AMR trends 
between antimicrobials, there were also consistencies on their geographic distributions. For 
example, Africa had consistently lower AMR prevalence compared the rest of the world for 
all antimicrobials, possibly because it consumes the least amount of veterinary antimicrobials 
compared with the rest of the world 18. 
 
The 7 antimicrobial classes included in the analysis are the most frequently cited classes 
across 1,088 point prevalence survey, and are important for treating infectious diseases in 
food animals. For example, tetracycline is widely used for treating Mycoplasma in chicken19, 
gentamicin is used for treating Pseudomonas aeruginosa infections20, and third- and fourth-
generation cephalosporins are used for treating cattle mastitis20. Therefore, rising resistance 
levels in these drugs may lead to therapy failure, and thereby negatively impact animal health 
and the agricultural economy. Measures to contain AMR in the identified hotspot regions will 
need to be focused on reducing antimicrobial use as well as strengthening biosecurity in 
farms. Enforcing a regulation with a cap of 50 milligram antimicrobial used per kilogram of 
food animal products was estimated to reduce global antimicrobial consumption by 64%1. 
However, major investment on the surveillance of antimicrobial use is needed for such 
regulations to be effective. Improving biosecurity in farms may reduce the reliance on 
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antimicrobials for keeping the animals healthy. Measures to improve biosecurity include 
stricter hygienic control on farm entry and better separation between compartments in the 
farm, and can be facilitated by risk-based quantitative tools21. 
 
Priority antimicrobials for AMR surveillance 
 
We developed a computational approach (Methods), to map priority antimicrobials for 
surveillance that incorporates dependencies on local risk factors such as antimicrobial use and 
animal density, as well as history of acquisition of resistance phenotypes in one location. This 
approach uses spatial variations of resistance profiles of multiple drugs to infer which 
antimicrobial has the highest probability of its resistance prevalence exceeding critical levels 
(10%, 25% or 50%) in the future. If 50% was considered the critical level of resistance 
prevalence, in regions with currently low resistance levels (N50 = 0 or 1), tetracyclines and 
extended-spectrum penicillins were the most frequently predicted antimicrobials with their 
resistance prevalence exceeding 50% in the future. Predictions of these two antimicrobial 
classes were based primarily on patterns of co-resistance between antimicrobials, with little 
influence from environmental and anthropogenic covariates. This suggested that such 
patterns were universal across regions with low AMR, with the following possible reasons. 
Firstly, tetracyclines are among the cheapest and most accessible antimicrobials globally22. 
Secondly, tetracycline and ampicillin were discovered the earliest among the 7 antimicrobials 
included in the analyses. Their routine application for growth promotion in farms started as 
early as in the 1950s23. These factors may make them drugs of choice for application in food 
animals in regions with limited budgets and where their resistance has not yet been 
established24. 
 
In contrast, in regions with high AMR levels (N50 ≥ 2), sulfonamides and amphenicols were 
the antimicrobials with the highest probability that their prevalence of resistance will exceed 
50% in the future. For amphenicols, the predictions were in eastern and southern China, 
where resistance to tetracyclines, extended-spectrum penicillins, and sulfonamides were 
already above 50%. In China, despite chloramphenicol being banned for use in food animals 
since 2002 and other amphenicols being banned as growth promoters in 2020, increases in 
the prevalence of resistance to chloramphenicol25 and florfenicol26 continued to be observed 
years after the restrictions took place. The increases may be caused by the continued use of 
the drugs despite changes in regulation, or by co-selection of their resistance (e.g., associated 
with class 1 integrons) due to the use of other drugs such as dihydrostreptomycin and 
trimethoprim27. Our predictions suggested that future surveillance on use of amphenicols and 
its resistance could be intensified in these regions to better understand mechanisms 
underlying these trends. 
 
Environmental and anthropogenic covariates were predictive of the priority antimicrobials for 
AMR surveillance, particularly in regions associated with high levels of AMR. Population 
densities of animals were influential covariates, possibly because commonly applied 
antimicrobials differ between animal species28. Therefore, the difference in antimicrobial use 
across animal species may lead to difference in AMR. Temperature may affect the prevalence 
of animal injuries and therefore the frequency of (preventive) drug application29. 
 
We estimated the time it may take for resistance prevalence of the predicted priority 
antimicrobials to exceed a critical level. For locations where tetracyclines, extended-spectrum 
penicillins or cephalosporins were the predicted priority antimicrobials, the average time for 
resistance to reach 50% across locations was below 7 years. Given that the median year of 
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publication of the PPS was 2015, this implies that resistance may have already exceeded 50% 
now at these locations. For locations where amphenicols or quinolones were the predicted 
priority antimicrobials, their prevalence of resistance was estimated to exceed 50% in 2026 
and 2027 on average across locations. However, the temporal trends of AMR used for 
estimating the time was based on data across low- and middle-income countries, and may 
differ depending on the geographic region. Estimating separate trends for each region is 
challenged by the limited amount of data in America and Africa countries, with large 
uncertainty associated with the estimated coefficients (Supplementary Table 2). Future work 
may be able to make region-specific projections of AMR as the number of PPS published 
each year steadily increases and more data becomes available. 
 
Our prediction of priority antimicrobials was based on surveys conducted exclusively on 
commensal E. coli and nontyphoidal Salmonella from healthy animals, and the majority of 
surveys used human clinical breakpoints to determine resistance phenotype. However, our 
approach could also be adapted to databases of AMR of other animal pathogens using 
veterinary clinical breakpoints, to help inform veterinarians on possible treatment options in 
regions of high AMR levels. 
 
Co-resistance between antimicrobials 
 
Across surveys (n=1,088), resistance prevalence was significantly correlated between 
antimicrobials. All correlations were positive, a finding consistent with studies that 
interpreted collateral resistance using Markov network30. However, these observations were 
based on resistance profiles at the population level, rather than at the strain level where a 
diversity of both collateral resistance and sensitivity have been shown in silico31 and in 
vitro32. Our results based on the amalgamation of PPS suggested that, at the population level, 
higher resistance in one drug is consistently associated with higher resistance in other drugs. 
 
The highest correlations of resistance between antimicrobials were observed for 
sulfamethoxazole-trimethoprim and chloramphenicol, and for sulfamethoxazole-trimethoprim 
and tetracycline. One reason could be the co-location of several resistance genes on the same 
genetic element. For example, in E.coli isolated from pigs, chloramphenicol resistance gene 
cmlA was found on large plasmids that were linked to sulphonamide resistance genes sul1 or 
sul333. In addition, animals may often be exposed simultaneously to tetracyclines and 
sulfonamides, as these are antimicrobials the most frequently used in food animals18.  
 
Limitations 
 
As with any modelling study, our analysis comes with limitations. Firstly, predictive maps, as 
well as the imputation of missing resistance prevalence for modelling priority antimicrobials 
introduces uncertainty. The number of imputations was highest for cefotaxime – its resistance 
prevalence was missing in half (51%) of the surveys. However, the uncertainty of the missing 
values was captured by the high standard deviation (24%) of the multiple imputed values for 
cefotaxime. We attempted to quantify the uncertainty by combining Monte Carlo simulations 
of the imputed input datasets, and the variance of the Bayesian posterior predictive 
distribution for each simulation (Methods). Secondly, due to the limited number of surveys 
reporting resistance prevalence for individual antimicrobial-bacteria combinations, mapped 
predictions of AMR were restricted to 7 drugs and 2 bacteria. These drugs were amongst the 
most frequently used antimicrobial classes and the most frequently cited classes across 1,088 
point prevalence surveys. Additionally, predictions of nontyphoidal Salmonella were not 
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disaggregated for individual serovars. However, this is in consistency with Murrey et al. 2022 
who mapped AMR in humans12. The limited number of surveys available also made it 
challenging to conduct spatio-temporal modelling, and we pooled together surveys from all 
years for AMR mapping. As the number of point prevalence surveys34 published each year is 
growing, future efforts to map AMR may incorporate more antimicrobial-bacteria 
combinations and investigate both spatial and temporal effects on AMR maps, while insuring 
statistical robustness in the extrapolations. Thirdly, the maps of priority antimicrobials were 
built under the assumption that resistance prevalence will increase at the same rate as in the 
past 20 years, implying that the drivers behind AMR - including policies regulating 
antimicrobial use (AMU) - will remain unchanged in the near future. However, due to 
temporal changes in these policies – e.g. a 30% decline in antimicrobial use in Thailand from 
2017 to 201918, the drivers behind AMR patterns may change in the future. Our predictions 
were intended to show how resistance may evolve without interventions on AMU policies, 
for the purpose of guiding such interventions. Fourthly, due to the lack of a systematic 
inventory of country-specific regulations on antimicrobial use, we did not explicitly include 
these regulations as covariates. For example, ciprofloxacin is banned in poultry in the US11, 
but not in China35. However, the regulations were implicitly considered in the modelling 
process, with the inclusion of AMU in 2013 and 2020 for each antimicrobial class as 
covariates. In 2013, Maron and colleagues reviewed restrictions on antimicrobial use in food 
animals36. However, to the best of our knowledge, an up-to-date global database on 
antimicrobial use policies has not been conducted. Fifthly, we dichotomized resistance 
prevalence using 50% threshold to define priority antimicrobials for AMR surveillance. We 
conducted sensitivity analysis by mapping priority antimicrobials using other thresholds 
(10% and 25%) as well. However, the choice of thresholds is dependent on multiple factors 
and in its nature subjective. 
 
The maps of AMR produced in this study helps outline priorities for action. Firstly, in AMR 
hotspots – including China, Iran, India, Brazil and Chile, measures should be taken to further 
ongoing efforts to reduce antimicrobial use in food animals. Secondly, our analyses showed 
how AMR for 7 medically important antimicrobials may evolve in the future, without policy 
interventions. This could provide a baseline scenario where revisions of AMR policy could 
be based. Thirdly, the 3rd Global High-Level Ministerial Conference on AMR has set out a 
global target to reduce antimicrobials used in agrifood systems by 30-50% by 2030. Our 
maps could serve as a reference for more targeted measures aimed at specific antimicrobial 
classes in their corresponding hotspot regions of resistance. Possible measures include stricter 
regulations and on-farm monitoring on antimicrobial use, targeted awareness campaigns 
among veterinarians and farmers, as well as investments on improving farm hygiene to 
reduce dependence on antimicrobials. 
 

Methods 
 
This analysis is structured in five steps (Figure 5a-e): a) collection and extraction of 
epidemiological information from point prevalence surveys (PPS); b) mapping distribution of 
resistance prevalence using three machine learning models; c) ensembling predictions using 
Gaussian process stacked generalization; d) mapping priority antimicrobials for surveillance; 
and e) estimating prediction uncertainty of maps generated in steps c and d. The literature 
review was conducted using Zotero (version 5.0.96.2) and Microsoft Excel (version 16.53), 
and all data analysis was conducted using R (version 4.1.1). 
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Figure 5. Modelling framework. a Collect point prevalence surveys. b Map distribution of 
resistance prevalence using three machine learning models: boosted regression trees (BRT), 
LASSO logistic regression (LASSO), feed-forward neural network (NNR). c Ensemble 
predictions using Gaussian process stacked generalization. d Map priority antimicrobials for 
surveillance. e Estimate prediction uncertainty of maps generated in steps c and d. 
 
Data collection and imputation 
 
We extracted 1,088 point prevalence surveys on AMR of E. coli and nontyphoidal 
Salmonella in healthy food animals across low- and middle-income countries (LMICs) across 
two decades between 2000 and 2019 (Supplementary Table 3). These surveys were collected 
through three rounds of literature review of four databases (PubMed, Scopus, ISI Web of 
Science, and China National Knowledge Infrastructure). The process of data extraction is 
explained in detail in the Supplementary Information section “Literature review and data 
extraction”. These surveys were conducted on major food animal species including cattle 
(n=409), pigs (n=303), poultry (n=570), sheep (n=89), horse (n=2), and goat (n=2). The 
animal samples used to determine resistance prevalence were taken from their meat (34% of 
total resistance prevalence), swabs from living animals on farm or in wet markets (32%), 
food products such as milk and eggs (16%), swabs from slaughtered animals (9%), and fecal 
samples on farm (7%). 
 
In each survey, we extracted information on resistance prevalence, method used for antibiotic 
susceptibility testing (AST), guideline document used for performing AST, breakpoints used 
for assessing AST results, sample origin, number of animal samples and bacterial isolates, as 
well as the geographic location and time of the survey. The majority (91%) of the studies 
used the performance standards for antimicrobial susceptibility testing developed by the 
Clinical and Laboratory Standards Institute (CLSI) or the European Committee for 
Antimicrobial Susceptibility Testing (EUCAST). Each performance standards set breakpoints 
to classify resistance phenotypes, which are updated annually. These variations in 
breakpoints were adjusted using methods developed by Van Boeckel and colleagues4, to 
maximize comparability between surveys. 
 
For this analysis, we focused on 7 antimicrobial drugs: tetracycline (TET), ampicillin (AMP), 
sulfamethoxazole-trimethoprim (SXT), chloramphenicol (CHL), ciprofloxacin (CIP), 
gentamicin (GEN), and cefotaxime (CTX). The resistance prevalences of these drugs were 
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the most frequently reported for their individual antimicrobial classes in the collected surveys 
(Supplementary Table 6), and therefore ensured robustness in comparisons made between 
surveys. These antimicrobial classes were all classified as critically important in veterinary 
medicine20, and were also classified as either critically important or highly important for 
human medicine14. For each of the 7 drugs, we used all PPS that reported its resistance 
prevalence individually to map its distribution, with methods explained in the next sector. 
However, the subsequent prediction of priority antimicrobials requires complete resistance 
profiles with resistance prevalence of all 7 drugs. Therefore, 806 PPS that reported resistance 
prevalence of at least 4 out of these 7 drugs were included for this part of analysis. For the 
unreported antimicrobials, we imputed their resistance prevalence based on correlations 
between antimicrobials, using multivariate imputation by chained equations37 (MICE; 
Supplementary Methods; Figure 5a). The MICE algorithm imputed plausible values for 21% 
out of 9,877 antimicrobial resistance prevalence estimates in these surveys, while also 
providing a mechanism for integrating the uncertainty of imputation in the following 
analysis, as explained in section “Uncertainty”.  
 
Trends of AMR for each antimicrobial class 
 
We used logistic regression models to estimate temporal trends of resistance prevalence 
between 2000 and 2019 for each antimicrobial. For TET and AMP, we removed one outlier 
(DOI of PPS: 10.1264/jsme2.2000.173) out of 758 PPS reporting resistance for TET and 797 
PPS reporting resistance for AMP, to ensure that the assumption of linearity between the logit 
of dependent variable and the independent variable was met based on results of Box-Tidwell 
test. 
 
We mapped the distribution of the prevalence of resistance for each antimicrobial at 10x10 
kilometer resolution using Gaussian process stacked generalization, an ensemble approach of 
multiple models. This approach has been shown to increase prediction accuracy for disease 
mapping compared with other methods such as Gaussian process regression38. This mapping 
procedure comprised two steps (Figure 5b, 5c). In the first step, we trained three ‘child 
models’ to predict resistance prevalence based on a set of environmental and anthropogenic 
covariates, such as total antimicrobial use in 2013 and 2020, animal population density, and 
temperature (Supplementary Table 3; Supplementary Method). For each antimicrobial class, 
we also included the quantities (kg) used in 202018 disaggregated at 10x10 kilometer 
resolution as a covariate. This was calculated by disaggregating the total antimicrobial use 
per country proportionally to the distribution of animals’ biomass in 202018. Animals’ 
biomass was calculated as the population correction units of food animals in 2020, using 
methods described in Van Boeckel et al. 201539. In the second step, the child model 
predictions were stacked using Gaussian process regression, fitted using the integrated nested 
Laplace approximations (INLA)40 (Supplementary Methods). This second step allowed to 
simultaneously capture the influence of environmental and anthropogenic covariates, as well 
as the residual spatial correlation.  
 
For each antimicrobial, we defined resistance hotspots as regions with resistance prevalence 
higher than the 95% percentile of all pixels on the map. We combined the drug-level 
resistance maps using summary metrics for the overall AMR level – N10, N25, or N50: the 
number of antimicrobials (out of 7) with resistance prevalence higher than 10%, 25% or 50% 
in each pixel. For the summary AMR level across antimicrobial classes, resistance hotspots 
were defined as regions with N50 ≥ 3. 
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Mapping priority antimicrobials for AMR surveillance 
 
Priority antimicrobials for AMR surveillance were defined as antimicrobials that have the 
highest probability of their resistance prevalence exceeding a critical level (defined as 10%, 
25% or 50%) in the near future. Here, we assumed that prevalence of resistance will continue 
to increase in the future, based on temporal trends of AMR between 2000 and 2019. We 
developed an approach to predict priority antimicrobials at each 10x10 kilometer pixel, based 
on local risk factors as well as patterns of co-resistance in PPS. In the following, we explain 
the modelling process using 50% as the critical resistance level, while similar procedures 
were followed for the other cutoff values of resistance prevalence (10% or 25%). We 
illustrate the model formulation, with the following example of a pixel with N50=4 (Figure 
6). 
 

 
 

 
Figure 6. LASSO logistic regression model to predict the probability that resistance 
prevalence of ciprofloxacin (CIP) will exceed 50% in the future, in pixels with predicted 
resistance profile (rp) of [1,1,1,1,0,0,0] (rp0) in 2015. a Resistance profile in 2015. b 
Subsequent resistance profiles in the near future. c Determine whether prevalence of 
resistance to CIP is above 50%. d Covariates, including (i) the proportion of point prevalence 
surveys reporting the resistance profile in which resistance prevalence of ciprofloxacin 
exceeds 50% (rp1), out of all alternative antimicrobials (gentamicin in rp2, and cefotaxime in 
rp3), (ii) the number of antimicrobials with resistance above 50% (N50) in the predicted 
resistance profile in 2015 (rp0), (iii) the percentage of antimicrobial use (kg) of ciprofloxacin, 
and (iv) a set of environmental and anthropogenic covariates. TET: tetracycline; AMP: 
ampicillin; SXT: sulfamethoxazole-trimethoprim; CHL: chloramphenicol; CIP: 
ciprofloxacin; GEN: gentamicin; CTX: cefotaxime. 
 
Firstly, we binarized the resistance profile in 2015 for a given pixel (e.g. TET 70%, AMP 
75%, SXT 60%, CHL 55%, CIP 40%, GEN 30%, and CTX 30%) by reclassifying the 
antimicrobials with resistance higher than 50% as 1, and the opposite as 0, such that the 
resistance profile for the 7 drugs considered in this analysis was: [1,1,1,1,0,0,0] (Figure 6a). 
Secondly, for each of the three antimicrobials classified as 0 (e.g. CIP, GEN, CTX), we 
predicted whether their resistance prevalence will exceed 50% as a binary response variable 
(Figure 6c), using covariates extracted from the collected surveys (Figure 6d). The model 
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considers future scenarios where only one additional antimicrobial will exceed 50% 
resistance (Figure 6b). The model was constructed using least absolute shrinkage and 
selection operator (LASSO) applied to logistic regression. Using CIP as an example, its 
resistance prevalence exceeds 50% in resistance profile rp1, while it is absent in resistance 
profiles rp2 and rp3 (Figure 6b, 6c). The covariates used to predict its presence and absence 
included two components. The first component considers patterns of co-resistance between 
antimicrobials, implying that probabilities of occurrence vary between resistance profiles. 
This variation is captured by using the proportion of surveys recording rp1 out of all surveys 
recording rp1, rp2 or rp3 as a covariate (Figure 6d.i). Patterns of co-resistance also implies 
that the development of resistance of CIP is dependent on resistance of other antimicrobials. 
This dependence is captured by using the number of antimicrobials with resistance higher 
than 50% in the resistance profile in 2015 as a covariate (Figure 6d.ii). The second 
component of covariates includes risk factors for predicting the development of resistance. 
This includes the percentage of CIP use (kg) out of all three antimicrobials at the location of 
the survey (Figure 6d.iii), as well as a set of environmental and anthropogenic covariates 
associated with the locations of the surveys, such as total antimicrobial use in 2013 and 2020, 
temperature, and animal density (Figure 6d.iv; Supplementary Table 3). 
 
The above example was based on the current resistance profile rp0 (Figure 6a). For CIP, there 
were in total 64 permutations of current resistance profiles – all six antimicrobials apart from 
CIP could have resistance of 0 or 1. A complete model for CIP was trained by including all 
permutations in the procedure described in Figure 6. This model was then applied to each 
pixel on the map where resistance to CIP has not yet exceeded 50%, to generate the 
probability that it will exceed 50% in the future. Similarly, the probabilities for the other 
antimicrobials were generated. Finally, at each pixel, we mapped the antimicrobial with the 
highest probability of its resistance prevalence exceeding 50% in the future. 
 
The accuracy of the models for each antimicrobial was quantified by calculating the area 
under the receiver operating characteristic curve (AUC) using four-fold spatial cross 
validation4. The predictive capacity of the model came from two components of the 
covariates. The first component was based on co-resistance between drugs (Figure 6d.i and 
Figure 6d.ii). The second component was environmental and anthropogenic covariates 
associated with resistance to individual drugs (Figure 6d.iii and Figure 6d.iv). We quantified 
the relative contribution of these two covariate components to the model prediction accuracy, 
by calculating the drop in AUC following the withdrawal of each covariates compared with a 
full model including all covariates. 
 
Furthermore, based on predictions of the priority antimicrobial for AMR surveillance at each 
10x10 km pixel (Figure 6), we estimated the time it takes for resistance prevalence of this 
antimicrobial to reach 50% in the future (Supplementary Figure 16). Concretely, we extracted 
the current resistance prevalence estimated at each pixel, and calculated the time difference 
from the current resistance prevalence (Supplementary Figure 16, time point a) until it 
reaches 50% (Supplementary Figure 16, time point b), using the corresponding regression 
models fitted in section “Trends of AMR for each antimicrobial class”. 
 
Uncertainty 
 
The uncertainty of the mapped predictions of resistance prevalence (Figure 5c) was 
calculated as the variance of the posterior predictive distribution for each map. The 
uncertainty of the mapped priority antimicrobials was calculated in two steps. Firstly, we 
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generated 15 Monte Carlo simulations of imputed datasets of resistance prevalence, to 
incorporate the uncertainty introduced by imputation in the following analyses. Secondly, 
using the imputed datasets, we generated 15 maps of priority antimicrobials. We quantified 
its uncertainty by calculating – at each pixel - the proportion of maps that generated different 
predictions of antimicrobials as compared with the final map: 
 
Uncertainty = 	D"#$%	'()*	+(,,-.-/)	$.-+(0)(1/%

E
 (1) 
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the COVID-19 pandemic 
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Abstract 
 
In Switzerland, the COVID-19 epidemic is progressively slowing down owing to ‘social 
distancing’ measures introduced by the Federal Council on March 16th. However, the gradual 
ease of these measures may initiate a second epidemic wave, for which length and intensity are 
difficult to anticipate. In this context, hospitals must prepare for a potential increase of patient 
admissions with acute respiratory distress syndrome in intensive care units. Here, we introduce 
icumonitoring.ch, a platform providing hospital-level projections for intensive care unit 
occupancy. We combined current data on the number of beds and ventilators with canton-level 
projections of COVID-19 cases from two S-E-I-R models. We disaggregated epidemic 
projection in each hospital in Switzerland for the number of COVID-19 cases, hospitalizations, 
hospitalizations in ICU, and ventilators in use. The platform is updated every 3-4 days and can 
incorporate projections from other modelling teams to inform decision makers with a range of 
epidemic scenarios for future hospital occupancy. 

Introduction 
 
The COVID-19 epidemic currently affecting Switzerland seems to progressively slow down. 
The inflection point of the epidemic curve of deaths1 was passed on 06.04.2020, and thus far, 
the number of COVID-19 cases with acute respiratory distress syndrome (ARDS) needing an 
intensive care unit (ICU) admission or mechanical ventilation has not exceeded the ad hoc 
increase in ICU bed capacity and ventilator availability. However, the gradual ease of the 
lockdown measures that have been in place since 17.03.20202 may initiate a second epidemic 
wave. As in other countries, there is currently considerable uncertainty about the true 
prevalence3,4 of COVID-19 in the Swiss population, and thus also about whether the country 
might achieve herd-immunity and if so, when. The absence of specific therapies against the 
SARS-CoV-2 virus responsible for COVID-19 and the difficulty to anticipate the effect of 
lifting lockdown measures on movement intensity5, and future infection rates6 further 
contribute to this uncertainty. In this context, hospitals must prepare for a potential secondary 
increase in ICU admissions of unknown magnitude and duration. 
 
Since the onset of the COVID-19 outbreak, disease modelers have tried to anticipate the 
trajectory of the COVID-19 epidemic in Switzerland. Some have focused on long-term policies 
at the national scale7,8,9 while others focused on capturing and forecasting the dynamics of 
COVID-19 in individual Cantons6. For forecasting COVID-19 cases, disease dynamics 
modelling is a particularly useful approach. Its model structures capture the intricate 
transmission dynamics of the disease between groups of individuals, categorized by their 
infection status such as being susceptible, infected, or recovered. This enables real-time 
adaptation of model parameters to reflect changes in the traits of the virus, such as its 
contagiousness and severity, as well as changes in public health measures impacting 
transmission dynamics. It also allows for scenario analysis, enabling researchers to explore the 
potential impact of different interventions, such as social distancing measures or vaccination 
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campaigns. However, thus far, little attention has been placed on generating forecasts at the 
spatial level where most intervention can take place: hospitals, and specifically ICUs. During 
the same period, hospitals, health care facilities, government agencies, and the Swiss Armed 
Forces have reacted to the COVID-19 outbreak on a day-to-day basis. For example, their 
actions consisted in expanding bed capacities10, building stocks of personal protection 
equipment11, or dispatching medical troops in support of hospitals12. Their actions have been 
guided by multiple surveillance efforts conducted in parallel by federal and cantonal authorities 
and professional health care societies. Amongst these is the IES system managed by the 
Coordinated Sanitary Service (CCS). This system should provide bi-daily reports of the 
occupancy of emergency departments and hospital beds across the country. However, its use 
as a monitoring platform during the COVID-19 outbreak has proven difficult, due to slow, 
incomplete, and uneven reporting across hospitals. On 14.03.2020, just 15 hospitals did 
effectively report their bed occupancy, as compared with 156 hospitals on the 03.05.2020, after 
several measures were taken by the CCS in collaboration with the Swiss Society of Intensive 
Care Medicine (SSICM). In the coming weeks, resources available to attend to COVID-19 
patients with ARDS will need to be optimally deployed (within and between ICU) to minimize 
the risk of overflow. 
 
At least three challenges must be addressed to generate reliable hospital-level projections that 
could help ICU managers to anticipate the need for additional resources. First, the IES system 
needs to be accurately and regularly documented. Second, projections from national and 
cantonal epidemic models must be downscaled at the hospital-level by making reasonable 
assumptions that reflect the situation experienced by clinicians. Third, the output of epidemic 
models must be summarized and rapidly transferred to clinicians in a format that is 
straightforward to inform management decisions in hospitals. 
 
Addressing the first challenge belongs to individual hospitals, which should ensure and control 
accuracy of IES collected data: models can inform decisions, but only reliable data can help 
modelers helping hospitals. For the second challenge, tools from the field of spatial analysis 
can be used to disaggregate information generated in polygons (Cantons) to individual 
hospitals (latitude/longitude coordinates) while accounting for the respective ‘catchment areas’ 
of these hospitals. These approaches have been used extensively in spatial epidemiology to 
study the treatment-seeking behavior of HIV patients on antiretroviral therapy13, the allocation 
of bed nets against malaria14, and access to emergency maternal care15. For the third challenge, 
the recent development of web-based applications enables a rapid display and update of model 
outputs using a simple web-browser. In particular, Shiny apps give users the possibility to 
query regions/hospitals interactively, and thus represent an improvement from static maps in 
‘one-off’ publications. 
 
Here, we introduce icumonitoring.ch a platform of ICU bed occupancy forecasting for 
individual hospitals in Switzerland based on projections from two Canton-level epidemic 
models. Our framework is flexible, and projections from other modeling groups can be 
integrated using a ‘forecast template’. Due to confidentiality reasons, this article only presents 
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aggregated results at the Canton-level. Access to projections for individual hospitals in 
icumonitoring.ch are available upon request to the communicating author; the password will 
be automatically issued for ICU healthcare workers. 

Methods 
Data 
 
Time series of hospitalization in intensive care units (ICU) in Switzerland as reported in the 
IES system were provided by the Swiss Armed Forces. This dataset consists in reports of ICU 
bed occupancy for COVID19 and non-COVID19 patients in adults, and children. This 
database, which is updated twice a day, reports the number of patients in ICU beds, and the 
number of these beds equipped with ventilators. The number of Extracorporeal Membrane 
Oxygenation (ECMO) is comprised in the number of beds with ventilators. Importantly, this 
database contains an estimate of the number of SSMIC-certified ICU beds, as well as the 
number of ad hoc beds since the start of the COVDI19 outbreak. In some hospitals, the number 
of COVID-19 patients entered in the IES system was higher than the number total number of 
patients. Similarly, in some hospitals the number of ventilated COVID-19 patients was higher 
than the total numbers of COVID-19 patients. As these situations are de facto impossible, we 
assumed that the person who entered the data points considered COVID-19 not to be part of 
the pool of all patients, which it should. These inputs were corrected such as if the number of 
COVID-19 patients was higher than the total number of patients then the total number of 
patients was calculated as the sum the number of COVID-19 patients reported and the number 
of patients reported. If the number of ventilated COVID-19 patients was higher than the number 
of COVID-19 patients then the number or COVID-19 patients was calculated as the sum of the 
number of COVID-19 patients reported, and the number of ventilated COVID-19 patients 
reported. For hospitals that did not report on 03.05.2020, we used numbers (beds, patients, 
ventilators) provided for the last date of reporting available. 
 
Near real-time data on ICU length of stay, mortality has been collected using the RIsk 
Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry, a 
collaborative effort with the participation of a majority of the Swiss ICUs to provide a basis 
for decision support during the ongoing public health crisis. The registry was deemed exempt 
from the need for additional ethics approval and patient informed consent by the ethics 
committee of the University of Zurich (KEK 2020-00322, ClinicalTrials.gov Identifier: 
NCT04357275). The data were collected using a secure REDCap infrastructure provided by 
the Swiss Society of Intensive Care Medicine. As of 03.05.2020, 68.5% of critically ill patients 
with COVID-19 admitted to an ICU in Switzerland have entered the registry had already been 
dismissed from the ICU or have died. 
 
This analysis accounts for ‘patient disappearance’ from the IES system in Ticino (131 patients 
on 28.03.2020) at Clinica Luganese Moncucco and Ospedale Regionale di Lugano (42 patients 
on 01.04.2020), as well as in Vaud (148 patients on 25.03.2020) at Hôpital Riviera-Chablais, 
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Centre hospitalier de Rennaz. These institutions seem to have either stopped reporting or 
transferred all of their patients on the dates mentioned above. In these hospitals, patients were 
removed from the IES system and did not reappear in other hospitals in the Canton. Media 
sources referred to only a very small number of patients from Ticino that were hosted in the 
German-speaking part of the country. We have attempted to gather information from ‘Clinica 
Luganese Moncucco’, but they declined to answer our questions regarding the number of 
patients in their ICU. We accounted for ‘patient disappearance’ by creating a ‘Hospital X’ in 
the two Cantons concerned. This adjustment is meant as a way to account for all active acute 
COVID-19 cases. 
 
Epidemic forecasting 
 
CZ Model (adapted from Althaus et al.). We used an S-E-I-R model developed by Althaus and 
colleagues8 (accessed April 24th, 2020) to model epidemics of COVID-19 in Swiss Cantons. 
The model assumed constant uncontrolled transmission until the soft lockdown measures on 
17.03.202016. The basic reproduction number and the reduction in transmission after the soft 
lockdown were estimated using a maximum likelihood framework. Following the 
announcement from the Federal Council to ease lockdown measures from the 27th of April17, 
the model assumes that contact would resume to 50% of their pre-lock level form that date.  
The model was fitted to the reported numbers of deaths in 18 Cantons, where enough data on 
times series of death was available for parameter inference. The inference was done using 
Maximum Likelihood with the Nelder & Mead algorithm implemented in the function optim 
in the R statistical Software.The number of deaths until 28.04.2020 per Canton was retrieved 
at 21:00, 02.05.2020 from OpenZH1. The number of deaths on 03.05.2020 was incomplete and 
subject to future modifications and was therefore not used for the epidemic modeling. For each 
Canton, the model predictions included five categories: infected cases (IF), hospitalized cases 
(HS), ICU cases (IC), immune cases (IM), and death cases (DE). Infected cases were calculated 
as the sum of exposed cases, infectious cases, hospitalized cases, and ICU cases. In the 
remaining eight cantons (AI, GL, JU, NW, OW, SH, UR, ZG), models could not be fitted due 
to the lower number of deaths. There we calculated the model predictions in proportion to the 
number of COVID-19 cases reported in each of these Canton, in the last eight days. The model 
predictions in each Canton were adjusted, such that they summed up to the model predictions 
at the national level. The final outcome of the epidemic model prediction was an estimation of 
the number of IF, HS, IC, IM, and DE for each day in each Canton, as well as the 95% 
confidence intervals of the predictions. 
 
The equations used in the CZ model are listed below, with the descriptions and values of the 
notations in Table 1, and the descriptions of compartments listed in Table 2: 
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Table 1. Parameters descriptions, and values in CZ model. 
*Obtained for patients (n=382) included in the RISC-19-ICU registry supported by Swiss 
Society of Intensive Care Medicine (https://www.sgi-ssmi.ch). 
Parameters Description Value 

 Basic reproduction number fitted 
 Percentage of  after lockdown fitted 

 Serial interval 1/2.6 days [18] 

 Duration from onset of symptoms to hospitalization 1/5 days [19] 

 Initial hospitalization 1/6 days [19] 

 Additional days of hospitalization until recovery/death 1/10 days [19] 

 Additional days in ICU until recovery 1/11.2 days* 

 Additional days in ICU until death 1/10.5 days* 
 Rate of  admission of infected 3.5%4,5 [20, 21] 

 Hospitalized cases requiring critical care in ICU 30% [19] 

 Death outside of ICU 35%6 [8] 

 Death rate from ICU 23%* 

 
 
Table 2. States variables in model CZ, and model BT (epidemic compartments). 
Variable (model CZ) Variable (BT model) Description 
S S Susceptible 
E E Exposed 
I I  Infected 
H  H1 + H2 Hospitalized patients 
- H1 Initial hospitalization until transfer to ICU 
- H2 Addit. hospitalization until recovery/death 
U U ICU patients 
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D D deaths 
R R Recovered 
C C cumulative number of infected 
- P infected but not yet hospitalized  
 
BT model. The second model used was an extended SEIR model which additionally includes 
the hospitalized and ICU patients. In the BT model, people who are infected by the virus are 
assumed to develop symptoms in 2 to 3 days but may be infectious in the community for 
another 2 to 3 days, adding up to a generation time of between 4 to 6 days (Ganyani et al. 
assumes 5.2 days). People who become sick are hospitalized at a proportion ranging between 
1% to 15%, where they are isolated, and thus are considered as non-infectious to the 
community. People who are admitted to the hospital are assumed to stay at the ward for 6-18 
days, and an additional 2-11 days if they need to stay in the ICU, which is the case for 30-80% 
of hospitalized patients. The death rate in the ICU is assumed to be between 30-80%. The effect 
of the lockdown is assumed to vary between 60-80%. We assume a combined probability of 
positive diagnosis and detection for the infected patients to make use of the reported case data, 
and this probability varies between 0.05 to 0.35 (5%-35% of the total infected). Four different 
time series (number of daily deaths, number of daily reported cases, number of people at the 
hospital ward, and number of people at the ICU, obtained from OpenZH1) are used 
simultaneously to do the model fitting for each Canton separately. We used Hamiltonian 
Markov Chain Monte Carlo (MCMC) for model inference, as implemented in RStan22. 
Hundred chains with random initial parameter vectors are used with 10,000 jumps in total. The 
first 5000 jumps were considered for the ‘burn in period’, we used Geweke statistics on each 
chain to assess convergence, and chains were thinned with a sampling rate of 100 samples. As 
for the CZ model, the change in contact patterns resulting from the lockdown measures 
(16.03.2020), and their subsequent release (27.04.2020) are accounted for through a parameter 
reducing infection rates rlock. This parameter varied across Cantons from 0.57 (SZ) to 0.76 (BL) 
during the lockdown period (17.03.2020 – 27.04.2020). 
 
To calculate the time series output of the fitting, we include the mean values of the posterior 
distributions of 50% of the chains with the best likelihood output among the ones which have 
converged. Chains that haven't converged are omitted and not used in the analysis. Due to the 
high dimensionality of the parameter space, we used a mixed sampling approach: first, we 
determine the likelihood of each chain among the chains that have converged. Second, we 
sample from the posterior distributions of these chains proportional to the mean likelihood 
value they have converged to. Confidence intervals of the results are calculated for each time 
point over the population outputs. By allowing model parameters to vary in between these 
ranges, we have more freedom to fit our model to the number of daily deaths, number of people 
in the hospital ward, and the number of ICU patients simultaneously, in a Canton specific 
manner. This is especially important due to the differences in the treatment and ICU transfer 
policies of different Cantons and hospitals. As an example, restricting the ICU length of stay 
to a value that is necessarily smaller or larger than the length of hospital ward stay might not 
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apply for all Cantons in question. For both models, the number of hospitalizations on 
03.05.2020 was estimated by back-casting from the model's output. 
 
The equations used in BT model are listed as following, with the descriptions and values of the 
notations in Table 3, and the descriptions of compartments listed in Table 2: 
 

 

 

 

 

 

 

 

 

 
 
Table 3. Parameters descriptions, and values in BT model. All parameters fitted (except N). 
Parameters Description Value 

 Basic reproduction number 2-3 
 Time-dependent reduction in infectiousness 60-80% 

 Incubation period 1/2-3 days 
 Duration of infection of I  1/2-3 days 

 Duration of hospital ward stay 1/6-18 days 
 Duration of  stay 1/2-11 days 
 Rate of direct  admission of infected 1-15% 

 Transfer rate from  to  30-80% 
 Death rate from  30-80% 
 Diagnosis rate 5-35% 

N Population size by canton fixed 
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Fig. 1. Canton-level fit of epidemic model CZ and BT in Vaud on 03.05.2020. Black shades 
describe 95% confidence interval, red dots are ICU occupancy as reported in the IES systems, 
and blue dots are ICU occupancy as reported by OpenZH. The BT model is fitted to deaths and 
ICU occupancy times series from OpenZH, while the CZ models is fitted only to deaths. 
 
Uncertainty and forecasting capacities 
 
For the CZ model, we simulated 10,000 R0 and kappa values, from a multivariate normal 
distribution with mean values equal to the fitted values of R0 and kappa, and a covariance 
matrix estimated from the maximum likelihood estimation. The confidence interval for 
predictions in each canton was estimated, with the 2.5% and 97.5% quantiles of the 10,000 
predictions. The mean values of the cantonal predictions in the CZ model were adjusted, by 
multiplying with an adjustment ratio, such that they sum up to the model predictions at the 
national level. The upper and lower bounds of confidence intervals for each canton were 
adjusted, by multiplying with the same adjustment ratio that were applied to the mean values 
of model predictions in each canton. For the BT model, similarly, confidence intervals were 
calculated using the converged MCMC parameter estimates (posteriors) and extracting the 
2.5% and 97.5% quantiles of the predictions generated with these parameters’ values. 
 
Confidence intervals at the hospital-level were estimate from the cantonal-level 95% CI in a 
two-step procedure. First, we calculate the percentage of deviation between the upper/lower 
bound of the 95% CI and the mean number of cases, hospitalization, ICU hospitalizations, and 
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deaths. Second these percentages of deviation were applied to the estimates of the same outputs 
downscaled at the hospital level based on population density and travel times (next section).  
For example, a hospital where 10 ICU beds were projected to be occupied and that is located 
in a Canton where the total number of ICU bed was 100 [95% CI 90-120] would have a 95% 
CI between 9 and 12 beds. 
 
The ability of our epidemic models to temporal projections 4 days ahead – the update frequency 
of icumonitoring.ch- was evaluated at the cantonal level by comparing projections and 
observations for the number of deaths and COVID-19 patients in ICU on the 03.04.2020 using 
a model calibrated on the 29.05.2020. The metrics used to evaluate the accuracy of projections 
the number of deaths, and the number of ICU cases were the spearman correlation coefficient 
between projections, and observations, as well as the average percentage deviation between 
projections and observation across Cantons. 
 
Geographic downscaling of epidemic projections in hospital 
 
In each hospital, we estimated the bed occupancy on 02.05.2020 as the sum of:  (i) the number 
of beds in use by non-COVID-19 patients, which was assumed to be stable since 29.04.2020, 
(ii) the number of ICU beds in use by COVID-19 patients that were admitted before 03.05.2020 
that remained in the ICU by 06.05.2020, and (iii) the number of new COVID-19 patients who 
required a bed in an ICU between 03.04.2020 and 06.05.2020. For (ii), we assumed an 
exponential survival function with a discharge rate equal to: α x LOSdeaths + (1-α) x LOSrecovered, 
where α is the mortality rate of COVID-19 patients in ICU (0.23), LOSdeaths is the length of stay 
for deceased COVID-19 patients (10.5 days), and LOSrecovered is the length of stay of patients 
that recover (11.2 days). For (iii), we spatially disaggregated the total number of ICU cases 
projected by Canton (see epidemic forecasting) minus (ii). Each future COVID-19 patient 
requiring care in an ICU (iii) was assigned a latitude and longitude in each Canton via stratified 
random sampling inside the corresponding Canton. The weighting factor for the stratification 
was population density. Each case was assigned to the ‘nearest’ hospital, measured in travel 
time (minutes). We used a friction surface23 to estimate travel times to hospitals. Based on each 
location, each case was assigned to a nearby hospital using a gravity model. The probability of 
having attended a hospital from any given pixel was given by: log10(ICU beds)/(travel timepixel-

>H), for hospital ‘H’. Each patient was assigned to the hospital with the higher probability of 
attendance.  This process was repeated 10 times through Monte Carlo simulations. The hospital 
that was selected with the highest frequency across the 10 simulations was designated as the 
hospital likely attended by a patient in the future. The number of patients on ventilators on 
03.05.2020 was estimated by applying the current rate of ventilation of COVID-19 patients in 
an ICU (76%) to the future number of COVID-19 patients admitted in an ICU. 
 
Online platform 
 
All epidemic model outputs at the cantonal- and hospital-level are uploaded to an online 
platform icumonitoring.ch twice per week Sunday and Thursday evening. The platform is a 

file:///C:/Users/zhaoc/Dropbox/swiss_covid19/manuscript/icumonitoring.ch
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‘Shiny’24 interactive application developed in the open-access R programming language25 
inside the RStudio Environment. In addition, we used JavaScript actions and CSS code to 
adjust aesthetic features of the platform into a dashboard. In its current version, 
icumonitoring.ch relies on the following dependencies: aws.s3 (0.3.21), grDevices (3.6.3), 
htmlwidgets (1.5.1), leaflet (2.0.3), RColorBrewer (1.1-2), readr (1.3.1), rgdal (1.4-4), shiny 
(1.4.0.2), shinydashboard (0.7.1), shinyjs (1.1), and tidyverse (1.3.0). icumonitoring.ch is 
hosted on a password-protected shinyapps.io server. The databases and model outputs 
displayed on the platform are stored on an encrypted storage service of ETH Zürich (polybox). 

Results 
 
As of 03.04.2020, the number of patients requiring an ICU bed in Switzerland was 713. This 
estimate is below the effective ad hoc ICU bed capacity in Switzerland (1,275). The number 
of patients requiring ICU beds (for COVID-19 and non-COVID-19 causes) is decreasing and 
unlikely to exceed the effective capacity in the next week. By 06.05.2020, we project that the 
need for ICU beds could range between 739 [CI 95% 669 - 871] (model CZ) and 761 [CI 95% 
541 - 1164] (model BT). As of 03.05.2020, 367 patients were ventilated in ICU, out of 1,064 
ventilators available. Assuming a ventilation rate of 76% for ICU COVID-19 patients, as 
reported on 03.05.2020, the number of ventilators required by 06.05.2020 could be 398 [CI 
95% 365 - 466] (CZ model) or 416 [CI 95% 295 - 658] (BT model). 
 
For the number of COVID-19 ICU cases, on 03.05.2020, the correlation between projections 
(4 days ahead) and observations by canton was 0.62, and 0.86 for the CZ and BT model 
respectively. The percentage deviation between projection and observation for the number 
COVID-19 ICU cases was   --16.7% for the CZ and -14.4% for the BT model. For the number 
of deaths, on 03.05.2020, the correlation between projections (4 days ahead) and observations 
by canton was 0.99 for the CZ and the BT. The percentage deviation between projection and 
observation for the number of deaths was +2.14% for the CZ model and -0.4% for the BT 
model. 
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Fig 2. Canton-level ICU occupancy, colors in other Cantons indicate ICU bed occupancy 
compared to the number of beds in service. Pop-up windows indicate the situation in the 
Canton of Bern as reported in icumonitoring.ch for 03.05.2020 and projected for 06.05.2020.  
 

 
Fig 3. Hospitals with ICU (yellow), and without ICU (grey). bed occupancy in individual 
hospitals set to 0 artificially but available upon request to the corresponding author (bottom). 
 
Icumonitoring.ch disaggregates these findings by Canton, and by hospital. It is an interactive 
web application that displays Intensive Care Units (ICU) occupancy. Each geographic element 
(i. e. hospitals or cantons) can be interrogated via a pop-up window. The pop-up window shows 
the number of deaths attributed to COVID-19; the number of estimated COVID-19 infections 



 109 

(Cases); the number of ventilators available and used; the number of COVID-19 patients in 
ICU, and beds available; the total number of COVID-19 patients hospitalized (including ICU). 
Projections for these quantities are available 3-4 days in advance (02.05.2020) and re-calibrated 
every 3-4 days based on epidemic data. At the cantonal level, the pop-up window also provides 
a visual of the epidemic model fit to the time series of deaths in each Canton. The data presented 
in this article are aggregated at the Canton-level, but access to hospital-level information is 
available to healthcare workers upon request to the communicating author. icumonitoring.ch 
also provides a comparative summary of current and future bed occupancy, ventilators 
occupancy, and hospitalizations in each canton. 
 

 
Fig 4. Projection for ICU bed occupancy on 06.05.2020 ranked by Regions and Cantons 
(model CZ). 
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Table 4. On 06.05.2020, the number of hospitalizations, and ICU hospitalizations for COVID-
19 was projected to grow in 5 cantons and decline in 21 Cantons compared to 03.05.2020. On 
03.05.2020, the number of ICU hospitalizations was projected to grow in 7 cantons and decline 
in 19 Cantons compared to 03.05.2020. On 03.05.2020 the number of ventilators needed was 
projected to grow in 6 cantons and decline in 20 Cantons compared to 03.05.2020. 
 
 COVID-19 COVID-19 ICU Beds ICU Beds ICU Beds Ventilators Ventilators Ventilators 
Canton Hospitalizations Hospitalizations In service In use projected In service In use projected 
 03.05.2020 06.05.2020 03.05.2020 03.05.2020 06.05.2020 03.05.2020 03.05.2020 06.05.2020 
AG 39 36 57 28 29 56 15 16 
AI 0 0 0 0 0 0 0 0 
AR 2 0 10 2 0 6 2 1 
BE 47 39 118 52 51 104 17 19 
BL 5 5 14 7 8 6 1 2 
BS 13 9 52 34 32 28 12 10 
FR 12 10 24 14 14 24 8 7 
GE 62 28 84 80 55 82 33 21 
GL 31 35 9 5 10 4 2 5 
GR 9 3 26 15 10 23 9 4 
JU 7 3 8 5 1 8 3 1 
LU 14 3 66 49 39 55 19 13 
NE 9 8 13 4 5 13 3 3 
NW 1 1 6 3 3 6 0 0 
OW 1 1 0 0 0 0 0 0 
SG 11 10 55 32 33 49 9 9 
SH 3 1 8 6 4 5 4 2 
SO 14 11 18 11 9 14 7 4 
SZ 14 15 11 7 10 6 1 3 
TG 15 10 42 13 9 42 7 4 
TI 57 30 93 44 26 90 28 9 
UR 3 4 6 3 4 2 0 1 
VD 74 53 119 74 69 112 34 31 
VS 33 30 31 17 21 31 13 15 
ZG 3 3 10 3 3 8 1 1 
ZH 35 18 395 205 193 290 139 131 

Discussion 
 
icumonitoring.ch is a tool to support decision-makers anticipate ICU occupancy during the 
COVID-19 outbreak. Ultimately, its goal is to prevent hospital overflow26,27, such as in Italy or 
Spain by projecting when capacities may need to be expanded, or the transfer of patients has 
to be considered such as in France28. Conversely, this tool can also be used to progressively 
reduce costly expansion of nominal hospital capacities29 and request for additional medical 
staff30. 
 
The accuracy of the projections available in icumoniroting.ch relies on epidemic models, but 
also on the completeness of the data reported in the IES system. In normal times, the IES system 
is seldom maintained, without apparent consequences. However, these are not normal times. 
While acknowledging that healthcare workers face unprecedented demand in the clinic, we 
urge them to maintain the IES system up-to-date as to help us helping them. This may require 
additional personnel/training. The ‘epidemiology community’ would welcome a display of 
leadership from the competent authorities in empowering hospital managers with the 
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appropriate resources to maintain the IES. What cannot be measured cannot be managed, let 
alone projected in the future. 
 
As with any modeling study, the projection presented in icumonitoring.ch comes with a series 
of limitations. The development of icumonitoring.ch started on 10.04.2020 and remains a 
‘work-in-progress’. In particular, the following adjustments will be considered in the future. 
First, the number of non-ICU beds in hospitals reported in the IES system remains inaccurate 
(personal communication) and is therefore not displayed on the platform at this stage. Second, 
the two epidemic models used for projection do not yet account for the age structure of the 
population. Given the strong dependency of the case- fatality rate of COVID-19 on age31, this 
would need to be included in a future iteration of our models. Third, the epidemic model used 
here show deviations between projection (4 days ahead) and observations for a given day. For 
the projections of the number of deaths – on which both models are fitted – these deviations 
are minimal (~2%). However, for the number of the number of COVID-19 case requiring ICU 
beds – 16.7% for the CZ model, and -14.4% for the BT model, respectively. The BT thus model 
slightly outperform the CZ model. From a hospital management perspective, the 
underestimation of the number of ICU cases by both models could make our projections seen 
as a conservative minimal threshold for hospital managers to consider before downscaling the 
ad-hoc capacities currently in place. The reasons for the underestimation of the capacity may 
be associated with current estimate of the length of stay in ICU. Here we attempted to include 
the most up-to-date estimates of LOS from the RISC-19-ICU registry to which >30 Swiss ICU 
units are contributing. However, it should be acknowledged that 31.5% of patients with acute 
COVID-19 are still currently in ICU and may have longer than average LOS due to the severity 
of their infections. This may artificially decrease the LOS used in this analysis which are 
calculated from patients that have already been discharged or are deceased. Similarly, another 
potential source of bias for LOS in the ICU in is the limitation of therapy due to a patient's 
wishes. These decisions do not necessarily correlate to disease severity but could be motivated 
by a patient's previous health status, advance directive, or substitute directives. Fourth, the 
geographic downscaling is based on population density. We thus implicitly make the 
hypothesis that a future patient is equally likely to have contracted the disease in cities or in 
rural settings. This may lead to an underestimation of the clustering of cases in cities where 
contact rates may be higher than in the countryside. Fourth, uncertainty in epidemic model lies 
in the ability to infer transmission parameters but also the intrinsic formulation of a model in 
different epidemic compartments32. Here we attempt to address this concern by using two 
epidemic models with different inference methods, and compartmental structures as to capture 
the uncertainty inherent to the model structure. The objective of our platform is also to include 
projection from other modelling group with a forecast template such as to allow further 
comparison between models that may have radically different structure, such as agent-based 
model9.33. The authors would also welcome suggestions from the intensive medicine 
community for relevant parameters to be added to icumonitoring.ch that can help guide hospital 
management decisions. 
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Abstract 
Anticipating intensive care unit (ICU) occupancy is critical in supporting decision makers to 
impose (or relax) measures that mitigate COVID-19 transmission. Mechanistic approaches 
such as Susceptible-Infected-Recovered (SIR) models have traditionally been used to achieve 
this objective. However, formulating such models is challenged by the necessity to formulate 
equations for plausible causal mechanisms between the intensity of COVID-19 transmission 
and external epidemic drivers such as temperature, and the stringency of non-pharmaceutical 
interventions. Here, we combined a neural network model (NN) with a Susceptible-Exposed-
Infected-Recovered model (SEIR) in a hybrid model and attempted to increase the prediction 
accuracy of existing models used to forecast ICU occupancy. Between 1st of October, 2020 - 
1st of July, 2021, the hybrid model improved performances of the SEIR model at different 
geographical levels. At a national level, the hybrid model improved, prediction accuracy (i.e., 
mean absolute error) by 74%. At the cantonal and hospital levels, the reduction on the 
forecast’s mean absolute error were 46% and 50%, respectively. Our findings illustrate those 
predictions from hybrid model can be used to anticipate occupancy in ICU, and support the 
decision-making for lifesaving actions such as the transfer of patients and dispatching of 
medical personnel and ventilators.  

Introduction 
On March 11th, 2020, the World Health Organization (WHO) declared the COVID-19 
pandemic an international health emergency1. Since then, COVID-19 has caused infections in 
millions of people2, with a substantial proportion of infections (e.g. 9-11%3) requiring 
hospitalization in intensive care units (ICU). In multiple countries, demand of ICU beds 
exceeded bed availability4,5,6, leading to excess mortality of COVID-19 patients as well as 
backlogs of patients for other pathologies that require hospitalization in ICU7,8,9. Monitoring 
and anticipating ICU occupancy has become critical to support decision-makers to impose (or 
relax) non-pharmaceutical interventions that can help mitigate the transmission of COVID-
19, and thereby reduce its impact on healthcare systems. 
 
Mathematical models have been used extensively to anticipate the evolution of epidemic 
indicators, including the occupancy of ICU10,11,12,13. In particular, two families of 
mathematical models have been predominantly used: 1) mechanistic models (MMs), 
including Susceptible-Infected-Recovered (SIR) models14 and their extensions into agent-
based models15, as well as, 2) statistical approaches16, including machine learning (ML) 
models17. Each family of model present advantages and disadvantages: MMs typically consist 
of differential equation systems that reflect biological mechanisms that govern the dynamic 
of infections. The parameters of these equations usually have a biological meaning (i.e., an 
infectious period) and therefore can be used for predictions outside of their calibration space 
(i.e., scenario analysis). However, for MM, accounting for the causal mechanisms between 
ICU occupancy and environmental covariates (e.g. changes in environmental conditions)18,19 
comes at the cost of additional parameters to be estimated in a differential equations system. 
In contrast, ML models seek to establish statistical associations between response variables 
and potential covariates without making assumptions about potential biological 
mechanisms20; however, because ML models are based on statistical associations and not 
causation, their validity is bound to their calibration space, and every prediction outside such 
a space can lead to inconsistent results21,22. Therefore, the combination of MMs and ML 
models in “hybrid models” has been explored in a variety of fields21,22,23 (e.g., earth systems, 
climate science, biology, hydrology, etc.), and have showed promising results for improving 
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prediction accuracy20 from MM models. One of the most common configurations for a hybrid 
model is known as “residuals modelling”, and is of particular interest when the MM 
formulation may be too limited to capture complex associations between a response variable 
and its covariates23. Concretely, this configuration consists of using a MM to capture the 
overall temporal trend of a temporally autocorrelated process while letting the ML model 
compensate for any residual error that is potentially associated with external drivers of the 
process of interest. Neural Networks (NN) are one of the most commonly used ML models in 
this framework due to their ability to implicitly capture nonlinearities and interactions24. MMs 
have been coupled with NNs in different fields, thereby improving performances of the 
corresponding MMs: for example, Chu et al.25 improved prediction accuracy of a MM to 
simulates performances of a centrifugal compressor; Lee et al.26 also improved prediction 
accuracy of a MM to simulate the operations of a waste-water treatment plant; Thompson and 
Kramer22 used a NN to model a fed-batch penicillin fermentation reaction. Thus far, multiple 
works have shown how hybrid models can be used to predict the evolution of the COVID-19 
epidemic27,28,29; however, to the best of our knowledge, these works did not implement the 
configuration of residual modelling using a NNs as a ML model.  
 
In this study, we developed a hybrid model based on the residual modelling configuration 
aimed at increasing the prediction accuracy of an SEIR model (Susceptible-Exposed-
Infected-Recovered) across spatial scales for producing short-term (3- and 7-days ahead) 
predictions of ICU occupancy. The accuracy of the modelling framework was tested in 
Switzerland, where data on ICU occupancy were available at different geographical levels 
(i.e., national, cantonal, hospital). Finally, we also downscale predictions of the hybrid model 
at the hospital-level to support hospital management actions. 

Methods 
2.1. Mechanistic model (MM) 
 
We used the SEIR model described in Zhao et al.30. to simulate the dynamics of occupancy of 
ICU from the 6th of November 2020 until 1st of July 2021. This model was expanded to 
include the impact of vaccination campaigns31. This period included three epidemic phases: 
phase 1, from the lockdown (19th of October, 2020) until the start of second-dose 
vaccinations (15th of January, 2021); phase 2, from the start of second-dose vaccinations until 
the relaxation (14th of April, 2021); and phase 3, from the relaxation until 1st of July, 2021. 
The phases are reported in Fig S1 in the Supplementary Information (SI).  

! =
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G%YZ(T)
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G[(T)
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GY(T)
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Where S (Susceptible), E (Exposed), I (Infected), P (infected but not yet hospitalized), H (= 
H1 + H2, Hospitalized), ICU, D (Death), R (Recovered), and C (Cumulative Infected) are the 
model variables; R0 the basic reproduction number, c the vaccination rate, and k the 
reduction/increase in transmission rate after a non-pharmaceutical intervention is 
introduced/relaxed. Parameter values and their meanings are reported in Table 1. Daily 
vaccination rates were obtained from the public dashboard of the Swiss Federal Office of 
Public Health32. 
 
Table 1. Model parameters of the SEIR model (adapted from Zhao et al.30).  

Parameter Description Value 
QF Basic reproduction number Estimated 
\ Percentage of QF  Estimated 
c Vaccination rate Estimated 
", S Serial interval 1/2.6 days33 

W6 Duration from onset of symptoms to hospitalization 1/5 days34 

WG Initial hospitalization 1/6 days34 

WH Additional days of hospitalization until recovery/death 1/10 days34 

WI Additional days in ICU until recovery 1/13.1 days * 

W" Additional days in ICU until death 1/12.7 days * 

V6 Rate of X admission of infected 0.016135 

VG Hospitalized cases requiring critical care in ICU 30%34 

VH Death outside of ICU 35%36 

VI Death rate from ICU 22%* 

* Obtained for patients (n = 382) included in the RISC-19-ICU registry supported by Swiss 
Society of Intensive Care Medicine (https://www.sgi-ssmi.ch). 
 
 
2.2. Machine learning model 
 
2.2.1. Model structure  
 
We used a feed-forward NN with a single hidden layer37,38 to predict the residuals (V0̂5∆0)) of 
the SEIR model (Fig. 1). This choice was based on two properties that make this type of NN 
suitable for our purpose: first the ability to account for nonlinearities and interactions 
between response variables and covariates24,39. Second, ability of NN models to be trained on 
relatively small datasets that is comparatively higher than for other ML models such as deep 
neural networks40. 
 
Covariates (section 2.2.2.) were introduced in the NN with a lag corresponding to the 
maximum correlation with the response variable via cross-correlation. In particular, the lag of 
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t - ∆T, ..., t – 42 was explored among the possibilities, with 42 days as the minimum value. 
An additional covariate, e0, was also added to account for the autoregressive nature of 
process. 
 
The NN formulation was: 
 V0̂5∆0 	=	 	a bWF +∑ WK

L
KM6 ∙ 	adWFK +	eK%fgh (1) 

Where ∆T was set to 3 or 7 days; w0 is the intercept of the output layer, and w0j the intercept of 
jth hidden node; wj is the weight (also known as parameter) associated with the connection 
from the jth hidden node to the output layer, and wj

T is the vector of weights associated with 
the connection to the jth hidden node; G is the Rectified Linear Unit (ReLU) activation 
function; x is the vector of covariates. The size of the of the hidden layer, determined by the 
number of hidden nodes, was optimized together with other hyperparameters. Specifically, 
hyperparameters are different from parameters: parameters are learned during model training, 
while hyperparameters need to be optimized externally to model training (see section 2.3.). 
 

 
 
Fig 1. Configuration of the hybrid model. The hybrid model combines a mechanistic model 
(SEIR) with a machine learning model (Neural Network). 
 
2.2.2. Covariates 
 
These covariates were used to predict ICU occupancy : i) the number of COVID-19 cases; ii) 
the number of COVID-19 cases associated with the Alpha variant (better known as UK 
variant); iii) the level of non-pharmaceutical interventions (e.g., school closures, workplace 
closures, and travel bans) as identified by the Containment and Health Index (i.e., a subindex 
of the Stringency Index41); and iv) the mean daily air temperature. 
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Table 2. List of covariates.  
 
Name Source Reference 

COVID-19 cases Open Swiss Government data set42  
Proportion of COVID-19 
cases associated to the 
Alpha variant 

Github repository43 

Index of Containment and 
Health  Github repository44 

Mean environmental 
temperature opendata.swiss45 

 
 
2.3. Model training and performance evaluation 
 
We adopted a temporal cross-validation scheme46 similar to the one used by Vollmer et al29. 
This scheme (Fig 2) allowed us to train and evaluate the performance of the hybrid model 
multiple times (n = 85 for the prediction at 3-days and n = 36 for the prediction at 7-days) 
over the simulated period. 
 
The scheme works as follows: 
First, the time series is divided in three successive time windows: the training set, validation 
set, and test set (Fig 2). The training and the validation sets are used for the optimization of 
the parameters of the SEIR model (one 	\, the reduction applied to R0, estimated separately 
for of the 3 phases), as well as the optimization of hyperparameters of the NN (i.e., the 
number of nodes in the hidden layer, learning rate, and dropout rate). A training-validation 
split of 90%/10% is adopted. The initial training and validation set included data from the 8th 
of October, 2020 until the 6th of November, 2020, in order to meet a minimum amount of data 
for model training.  
 
Second, the performance of the trained model is evaluated on the test set using the mean 
absolute error. The test set consisted of n = ∆T values, with ∆T equals to 3 and 7 for the 
predictions at 3- and 7-days ahead, respectively. 
 
Third, the training-validation set is expanded to include the test set of the previous iteration.  
 
At the end of the iterative validation scheme, the overall performance of each model is 
estimated using the average MAE across iterations on the successive test sets (average MAE 
on red block for iteration 1 to n Fig. 2).   
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Fig 2. Temporal cross-validation scheme. ∆t was set to 3 and 7 days for the predictions at 3 
and 7 days ahead, respectively.   
 
In step 2, the optimization of the SEIR model was performed using maximum likelihood 
(Nelder and Mead algorithm47) on the complete training-validation set; residuals of the SEIR 
model are then calculated. The optimization of the hyperparameters of the NN was done as 
follows: a sampling space of 100 combinations of hyperparameters was generated using a 
Latin Hypercube48. A back-propagation algorithm (based on gradient descent) was used as a 
learning algorithm to modify the values of the weights and obtain the best matches possible 
between the true and estimated values of the residuals of the SEIR model in the training set. 
The mean absolute error (MAE) was used as fitting criteria on the validation set, and an early 
stopping mechanism was applied to stop the learning algorithm if the MAE did not achieve a 
decrease of 5 units within 100 epochs (i.e., number of iterations that the learning algorithm 
worked through the training set). The largest number of possible epochs was set to 4,000. We 
accounted for the stochastic nature of the optimization by repeating the simulation 10 times 
for each combination of hyperparameters. For each set of 10 simulations, we calculated the 
mean and standard deviation of the MAE in the validation set. The combination of 
hyperparameters that generated the minimum mean MAE in the validation set was selected as 
optimal for the NN.  
 
Performance evaluation was evaluated on the test set as follows: i) predictions of the SEIR 
model (%YZi 05∆0)) were based on the parameters inferred in the training-validation set 
(extrapolation); ii) predictions of the NN (V0̂5∆0)) were obtained after training a NN with the 
optimal combination of hyperparameters on both the training and validation set; iii) the sum 
of the two contributions (%YZi 05∆0) +	V0̂5∆0)) was compared with the observed ICU 
occupancy. Confidence intervals for the NN were generated using the standard deviation 
calculated on the validation set, while they were obtained as described in Zhao et al. for the 
SEIR model30, with the 2.5% and 97.5% quantiles of the 10,000 predictions. 
Furthermore, the predictions (and accuracy evaluated via the MAE) of the hybrid model were 
compared to that of the SEIR and NN model independently.  
 
2.4. Downscaling at hospital level  
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Model predictions were obtained at the national- and cantonal-level, and from the cantonal-
level downscaled to the hospital-level. Particularly, cantonal-level predictions were 
downscaled based on the percentage of occupancy of ICU beds in each hospital, calculated as 
moving average of the past ∆T days. The ICU occupancy data of Swiss hospitals were 
provided daily by the Coordinated Sanitary Service of the Swiss Armed Forces, and refer to 
the number of ICU beds occupied by COVID-19 patients. The canton of Zurich was selected 
for model testing, since it is the most populated Canton in Switzerland with 15 hospitals with 
ICU. 
 
2.5. Importance of covariates  
 
We determined the relative importance of each covariate in making predictions for the hybrid 
model. Concretely, we computed a Deviation metric (2) between the MAE of the full model 
including n=5 covariates with that of a reduced model with n=1 covariates49. The Deviation 
was calculated on the test set at the end of each epidemic phase. The procedure was repeated 
n=5 times excluding one covariate at a time. The Deviation (%) was calculated as follows: 

 [@?)1T)>C = 	,'N2345634	78439*	,'N:599	78439
,'N:599	78439

f	100  (2) 

A positive Deviation signifies that the excluded covariate was important for the model. 
Specifically, a positive Deviation corresponds to a decreased accuracy of the reduced model 
compared to the accuracy of the full model that included all covariates.   
 

Results 
 
3.1. Model comparison 
 
We compared 3 types of epidemic models (i.e., SEIR, NN and hybrid,) to predict short-term 
(3 and 7 days ahead) ICU occupancy at the national- and cantonal-level. Fig 3 shows the 3-
day predictions at the national-level from the three models (a), and with its associated MAE 
calculated on the test set (b).  
 
During phase 1 (19th of October, 2020 - 15th of January, 2021) the hybrid model (average 
MAE = 19 beds) outperformed both the NN (average MAE = 27 beds) and the SEIR model 
(average MAE = 78 beds). During phase 2 (15th of January, 2021 - 14th of April, 2021), the 
hybrid model remained the most accurate model (average MAE = 16 beds), although the 
performance of the NN (average MAE = 21 beds) and the SEIR model (average MAE = 59 
beds) improved in comparison with phase 1. 
 
During phase 3 (14th of April, 2021 - 1st of July, 2021), the hybrid model (average MAE = 19 
beds) was slightly outcompeted by the NN (average MAE = 13 beds); while the SEIR model 
was associated with the worse performances (average MAE = 125 beds). Fig S1 in 
Supporting Information (SI) showed predictions at 7-days ahead and its corresponding MAE.  
Predictions 3-days ahead (Fig S2) were then downscaled from the cantonal-level to the 
hospital-level. Results for a medium-sized hospital, as well as the biggest hospital in the 
canton of Zurich are shown in Fig 4. At the hospital-level, the hybrid model outperformed the 
SEIR model for both the medium-sized hospital (average MAEhybrid = 1.2 beds, average 
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MAESEIR= 2.2 beds) and largest hospital (average MAEhybrid = 3.1 beds, average MAESEIR= 6.2 
beds) in the canton of Zurich. In comparison, the NN model performed on average as good as 
the hybrid model for both hospitals. Similar to the national-level scenario, the highest average 
MAE for the SEIR model was observed during phase 3, during which the SEIR model was 
not capable of capturing the occupancy increase of ICU that occurred two months after the 
start of vaccination (15th of January, 2021). 
 
 

 
Fig 3. Model predictions of intensive care bed occupancy at the national-level. a) 
Predictions 3-days ahead of intensive occupancy at the national-level for the three models 
(shaded areas represent 95% confident intervals); b) corresponding Mean Absolute Error 
(MAE) calculated on test data.  
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Fig 4. Model predictions of intensive care bed occupancy at the hospital-level. Prediction 
at the hospital-level for a medium-sized hospital (a) and the largest hospital (b) in the canton 
of Zurich. 
 
3.2. Relative importance of covariates 
 
The relative importance of covariates during each of the three phases is reported in Fig 5. In 
phase 1, a negative Deviation (marked with an asterisk in the Figure) was observed for a 
majority of the covariates (i.e., COVID-19 cases, proportion of COVID-19 cases associated 
to the alpha variant, Index of Containment and Health, and mean environmental temperature), 
meaning that their exclusion from the full model improved prediction accuracy. Conversely, 
the autoregressive covariate was important for making predictions, with Deviations equal to 
92% and 66% for the hybrid and NN model, respectively. In phase 3, all of the covariates 
were informative; in this last phase, the NN predictions were more affected by the exclusion 
of covariates in comparison to the hybrid model. The average Deviation was 230% and 53%, 
for the NN and hybrid model, respectively. 
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Fig 5. Covariance importance for each phase. An asterisk represents a negative Deviation.  
 

Discussion 
 
4.1. Prediction accuracy  
 
In this study, we showed increased prediction accuracy of ICU occupancy using a hybrid 
model combining a SEIR and a NN model. The model developed here could help guide 
interventions against future COVID-19 epidemics. At a national-level, during phase 1 (19th of 
October, 2020 - 15th of January, 2021) the overestimation of ICU occupancy by the SEIR 
model could be associated with its intrinsic nature to predict exponential growth at the 
beginning of a new wave. In contrast, the SEIR model underestimated the ICU occupancy 
during phase 3 (14th of April, 2021 - 1st of July, 2021). This could be explained by the fact 
that the model lacks important covariates such as temperature, which may have been 
responsible of an increase of cases during the winter and thus for an increased  ICU 
occupancy. For the NN model, its worst performance was observed during phase 1, where 
abrupt oscillations occurred. These oscillations could be attributed to the short time series 
available for model training at that stage, thereby compromising model training and limiting 
predictive performance. This interpretation is supported by the fact that the prediction 
accuracy of the NN model improved during phase 2 (15th of January, 2021 - 14th of April, 
2021) and 3 (14th of April, 2021 - 1st of July, 2021), when longer time series became available 
for model training. 
   



 126 

At the national- and cantonal-levels, the SEIR model was unable to capture the increase in 
ICU occupancy that occurred two months after the beginning of the second-dose vaccination 
campaign. The causal mechanisms behind this trend remains unclear, but may be associated 
with other drivers such new variants (e.g., Delta variant) that are not incorporated in the SEIR 
model. In contrast, the hybrid and NN model could capture this trend, suggesting that both 
models succeeded in learning potential non-linear relationships between covariates and 
occupancy of ICU.  
 
4.2. Relative importance of covariates  
 
The fact that the relative importance of each covariate for our models changed between 
phases has multiple possible interpretations. The first is that a covariate is important for 
making predictions during one phase, while it is not important for another phase. For 
example, the proportion of the Alpha variant was not informative during phase 1 when its 
prevalence was < 10% of the total confirmed COVID-19 cases, while it was informative 
during phase 3, when its prevalence was > 50% of the total confirmed Covid-19 cases. The 
second reason could be associated to the length of the time series. For example, the model 
had limited data for training during phase 1, while the amount of data tripled for phase 3. 
This could have caused the full model (i.e., with 5 covariates) to perform worse than the 
reduced model (i.e., with 1-5 covariates)50,51, leading to negative Deviation. 
 
During phase 1, the autoregressive term was the only informative covariate, meaning that the 
models behaved similarly to an Automatic Regressive Integrated Moving Average (ARIMA) 
model. Furthermore, on average, the Deviation associated with the hybrid model was always 
lower than the one associated to the NN. This means that the hybrid model was more robust 
in the exclusion of a specific covariate compared to the NN.  
 
4.3. Possible applications and limitations  
 
In Switzerland, a number of studies have focussed on providing long-term (>2 weeks)52,53,54 
and short-term (<2 weeks)36 predictions using MMs. Predictions have predominantly on the 
national scale; while many of the lifesaving actions (e.g., transfer of patients) need to be 
planned at the cantonal- (provincial-level) or hospital-level. In this study, we attempted to 
increase the prediction accuracy of a SEIR model by coupling it with a NN, generating a so-
called hybrid model. Among all the possible ways to combine a MM with a ML model, we 
opted for a configuration called residual modelling. In particular, we used a SEIR model for 
predicting occupancy of ICU beds under future scenarios at different geographical levels 
(national, cantonal, and hospital) in Switzerland; we trained a NN to supplement these 
predictions using the information embedded in covariates (temperature, etc.). This modelling 
framework could be applied in other geographic regions for which a MM (e.g., of the SIR 
family), and spatially explicit covariates are available. Specifically, different extension of the 
SIR model14 can be used, from simple examples (like the SEIR used in this study), to 
increasingly complex frameworks such as SIDARTHE12. As for the ML model, we used a 
feed-forward NN with a single hidden (see section 2.2.1.). However, alternative formulations 
could have been chosen. For example, Maher Ala’raj et al.27 coupled an ARIMA model, a 
very popular ML model for time series forecasting with a SEIRD model; Watson et al.17 
embedded a Bayesian time series model and a random forest algorithm within a SIRD model; 
Rahmadani and Lee28 combined a deep-learning algorithm with a SEIR model. 
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As with any modelling study, our analysis also comes with limitations. For example, training 
of the NN is often computationally intensive and the selection of optimal hyperparameters is 
based on empirical rules such as try-and-error approaches46. In this study, the optimization of 
hyperparameters required a significant effort in terms of computational cost. Specifically, all 
simulations were run in parallel on ETH High Performance Computing facilities (Euler 
cluster)55, requiring, on average, 1 minute per simulation on one CPU, and thus 15 CPU 
minutes for each iteration running simultaneously on 15 CPU cores. We optimized three 
hyperparameters, namely the number of nodes in the hidden layer, learning rate, and dropout 
rate; however, other hyperparameters such as the type of activation function, the number of 
batches, the number of epochs, etc., could also have been subjected to optimization. 
Furthermore, other type of search algorithms such as the sequential model-based optimization 
(SMBO, also known as Bayesian optimization)56 could have been explored. Another 
drawback of the residual modelling configuration is the inability to enforce real-world 
constraints (e.g., ICU beds ³ 0), since the residuals are modelled instead of based on the 
actual ICU occupancy. One possible alternative could be to combine the SEIR model and the 
NN in series. In this case, the NN estimates intermediate variables to be used in the SEIR 
model, although it would impose structural changes on the SEIR model based on the 
variables selected, which may be challenging to implement. 
 
As for the downscaling at the hospital-level, we used a simple method based on the moving 
average to downscale predictions at the cantonal-level (see section 2.4.), demonstrating a 
satisfactory degree of accuracy in hospitals in the Canton of Zurich. However, this method 
requires the availability of ICU beds at the hospital-level, which is not always the case. 
Consequently, more complex methods could be tested. In particular, Zhao et al.30 presented a 
method to distribute ICU patients based on travel time from the location of the patient to the 
hospital. In the future, our modelling framework can be updated as growing knowledge is 
gained on the covariates associated with the spread of COVID-19. For example, new 
covariates such as other virus variants and mobility patterns in different regions (e.g., people 
coming in and out of Switzerland) could be included to improve predictions. Lastly, the 
framework could be applied to improve predictions of other infectious diseases, for which a 
MM already exists. 
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6.1 Summary of findings 
 
In this thesis, we map trends in AMR in food animals, and develop novel approaches to guide 
future surveillance efforts. We also present our contributions to inform decision-making in near 
real-time during the COVID-19 pandemic in Switzerland.  
 
In Chapter 2.1, we focus on China, the world’s largest consumer of veterinary antimicrobials. 
Our work builds up on efforts to review PPS to map AMR in LMICs in 20191, which we 
considerably expanded to include publications in the Chinese language. This results in a three-
fold increase in our database of PPS that was used to create an improved map of AMR. We 
show that between 2000 and 2019, in China, AMR in pigs underwent the biggest increase by 
+59% in E. coli, +148% in Salmonella and +85% in S. aureus. In comparison, AMR in chicken 
has plateaued, albeit at high levels: the proportion of antimicrobials with resistance higher than 
50% was 60% in E. coli, 42% in Salmonella, and 37% in S. aureus. Furthermore, we show that 
hotspots of AMR are currently concentrated in eastern China (e.g., eastern Jiangsu Province), 
and part of central and northwestern China (e.g., southeastern Sichuan, and Xinjiang Uyghur 
Autonomous Region). 
 
In Chapter 3, we focus on Europe where national-level systematic surveillance of AMR has 
existed for decades. We use PPS for supplementing AMR trends at finer spatial scale within 
countries. For multiple countries with relatively high country-level AMR prevalence, such as 
Italy and Romania, we show that rather than having consistently high AMR throughout the 
country, specific regions in southern Romania and southern/eastern Italy are AMR hotspots. 
Interventions to reduce AMR could be targeted in these areas as a priority. 
 
In Chapter 4, we refine and disaggregate the index of AMR introduced by Van Boeckel and 
Pires et al.1 that are used to summarize trends in AMR in Chapter 2 and Chapter 3. Instead, we 
focus on characterizing resistance prevalence for individual drug-bacteria combinations. We 
select 7 drugs each from a different antimicrobial class of medical importance, and map their 
AMR prevalence in E. coli and Salmonella at global scale. We show that AMR levels are higher 
in E. coli than in Salmonella for all antimicrobial classes. We also show that patterns of AMR 
vary between antimicrobials. For example, northeastern China is predicted as a resistance 
hotspot for sulphonamides and aminoglycoside in E. coli, while northern and eastern Brazil are 
resistance hotpots for penicillins in E. coli. 
 
In Chapter 2 and Chapter 4, we also investigate how resources can be optimally deployed for 
future AMR surveillance. In Chapter 2.1, we show that future AMR surveillance could be 
targeted at southwestern and northeastern China, using a computational approach aimed at 
minimizing the uncertainty of mapped AMR predictions. We show that instead of distributing 
surveys evenly across administrative divisions, our geographically targeted approach of 
surveillance could reduce AMR prediction uncertainty by 2-fold. This approach is used in 
Chapter 2.2 on PPS of AMR in aquaculture in Asia, and suggests that eastern China and India 
could benefit the most from a scale-up of surveillance efforts in aquaculture in the future. In 
Chapter 4, we use patterns of co-resistance in combination with local environmental and 
anthropogenic covariates, to predict which antimicrobial has the highest probability of its 
resistance exceeding critical levels (e.g. 50%) in the future. In the majority of locations in 
Africa and South America, future surveillance could be targeted at penicillins or tetracyclines; 
while in Asia, the target antimicrobial classes are penicillins or sulphonamides. 
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In Chapter 5, we move from large-scale risk mapping to local-scale disease dynamics 
modelling for the operational management of epidemics. During the COVID-19 pandemic, we 
built an online platform icumonitoring.ch to anticipate hospital occupancy in the intensive care 
units 3- and 7-days ahead. These near real-time predictions were provided to authorities 
(Federal Office of Public Health, Armed Forces, hospitals) to help optimally allocate medical 
resources, including doctors and hospital beds, in preparation for potential hospital overload. 

6.2 Global initiatives on AMR 
 
AMR is a global issue with far-reaching impacts across sectors including human health, 
terrestrial food animal production, aquaculture, and the environment. Therefore, the effective 
containment of AMR can only be achieved through collective and multisectoral endeavours. 
Globally, several organizations have launched initiatives dedicated to addressing AMR in their 
respective sectors. 
 
In the human sector, the World Health Organization launched the Global Antimicrobial 
Resistance and Use Surveillance System (GLASS) in 20152. The programme conducts 
surveillance on AMR in bacteria causing infections in humans, and provides annual estimates 
of AMR prevalence per country, categorised by infectious syndromes, bacterial pathogens, and 
antimicrobial classes. Since 2020, GLASS also started surveillance on human antimicrobial 
consumption. By the end of 2022, 127 countries, territories and areas are involved in GLASS. 
In 2022, Murray et al. moved beyond surveillance of AMR prevalence, and combined it with 
disease incidence data to estimate the burden of AMR to human health3. 
 
In the environment sector, Hendriksen et al. used untreated sewage samples across countries to 
monitor the abundance and diversity of AMR genes4. Metagenomic analyses were conducted 
to characterise the resistome of bacteria that were mainly of faecal and environmental origin. 
Although this approach suffers from the limitation that the presence of AMR genes is not 
necessarily linked to actual expression of a resistant phenotype, it represents a flexible and 
affordable approach to survey resistance genes LMICs. However, to the best of our knowledge, 
there is an absence of systematic reporting of AMR in the environment sector with a dedicated 
system akin to GLASS for the human sector. One significant challenge is the considerable 
variability in the methods and targets adopted in different environmental monitoring programs 
of AMR. Therefore, ongoing collaborative efforts5 need to be strengthened to establish a 
standardized framework for methods and quality control in this sector. 
 
In the food animal sector, since 2016, the World Organisation for Animal Health has been 
collecting country-level antimicrobial use data on a voluntary basis. However, these data are 
aggregated at the regional level upon public release6. In 2018, the World Health Organization 
launched a One Health Module, incorporating AMR surveillance in the food animal sector. 
However, the scope of this surveillance is limited on extended-spectrum beta-lactamase 
(ESBL)-E. coli in poultry. In 2019, we produced the first global map of AMR prevalence at 
10x10 km resolution across LMICs. The map was based on an amalgamation of PPS between 
2000 and 20191. We further improved our estimations of AMR in this thesis. In Chapter 2.1, 
we improved the mapped predictions of AMR in China; In Chapter 3, we disaggregated the 
overall trends of AMR across LMICs into trends for 7 antimicrobial classes of medical 
importance; In Chapter 2.2, we extended the mapping exercise to the aquaculture sector. These 
maps contribute to a more comprehensive overview of AMR across sectors. However, our 
maps did not quantify the burden of animal disease attributable to AMR, compared with the 
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work of Murray et al. in the human sector. With the rollout of the Global Burden of Animal 
Diseases project in 2018, a comprehensive overview of animal disease incidences will 
hopefully be made available in the near future7. By combining these disease data with our 
estimates of AMR prevalence, we may be able to map the burden of AMR for animal health in 
the future. 

6.3 Policy implications 
 
6.3.1 Priorities for intervention 
 
The use of antimicrobials is a double-edged sword. Antimicrobials can be used to treat 
infections in animals, which not only safeguards their well-being but also has a positive effect 
on neighbouring animals and the livelihood of those who rely on livestock for subsistence. 
However, this practice also fuels the rise of AMR, making future treatments less effective. 
Adding to this problem is the shrinking global supply of new antimicrobial drugs, with only 4 
new classes of antimicrobials developed between 1970 and 20108. Consequently, the problem 
of AMR can be seen as a common goods challenge, where individual consumption generates 
externalities affecting the community as a whole. In light of these insights, and drawing from 
the findings presented in this thesis, two key priorities for policy interventions are outlined 
below. 
 
Global challenges need global coordination 
 
First, as with other externalities of global importance such as climate change, international 
collaboration is key for containing AMR. Woolhouse et al. called for the establishment of an 
intergovernmental panel on antimicrobial resistance (IPAMR), akin to the existing 
Intergovernmental Panel on Climate Change (IPCC)9. They argued that such a panel should 
identify key knowledge gaps and assess short- and long-term feasible solutions to reduce AMR. 
A well-defined road map can then be designed with internationally agreed and evidence-based 
targets of reduced antimicrobial use and subsequently contained AMR levels. As an analogy 
to how IPCC bases its target of reaching net zero carbon emission in 2050 on past temperature 
measurement and models of future climate, our maps of AMR in food animals could serve as 
a first set of evidence base for designing targets and intervention strategies for an IPAMR. We 
aim to revise our AMR maps on a regular basis, to incorporate the most up-to-date evidence 
on AMR trends. This can help policymakers to assess where we stand as compared to our 
targets, in a similar way that climate change models are adjusted regularly to update the 
likelihood of meeting previously set targets. 
 
An IPAMR could use our maps of AMR to identify where future surveillance could be 
prioritized. Currently, there are no PPS available in countries such as Mongolia and 
Kazakhstan. AMR prevalence in these regions were estimated based on geospatial models 
trained using PPS data from other countries such as China and India. An IPAMR could 
coordinate efforts across countries to conduct surveillance in regions with a lack of AMR data. 
In addition, an IPAMR could help address a significant limitation of the current amalgamation 
of PPS – the differences in sampling and antimicrobial susceptibility testing methodologies 
between surveys. It could help improve the quality of future surveillance data, by encouraging 
countries to adopt a harmonized and systematic surveillance approach such as the one we 
developed with resistancebank.org. 
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In addition, we provided a concrete and computationally feasible method for an IPAMR to 
optimize its allocation of AMR surveys. This method was described in detail in Chapter 2.1, 
where we used the map of prediction uncertainty to identify the locations where conducting 
new surveys could be most valuable to improve the confidence level of a prevalence map. We 
used AMR in China as a case study, and showed that compared with distributing new surveys 
evenly across administrative divisions, our method could reduce AMR prediction uncertainty 
by two-fold. However, for the effective rollout of harmonized surveillance across LMICs in 
the future, international assistance from high-income countries will also be necessary, as many 
locations without data are also locations with limited resources available. 
 
A targeted approach for policy intervention 
 
Second, we identified hotspots of AMR across LMICs, which may carry the highest negative 
externalities and call for targeted interventions to reduce both antimicrobial use and AMR. A 
previous literature review identified three main methods10 for taking externalities of AMR into 
account. These methods include regulatory measures, levies or taxes on antimicrobial usage, 
and the allocation of trade permits or licenses for antimicrobial utilization. Currently, only 
regulatory measures are adopted to reduce antimicrobial use. In several high-income countries, 
such regulations have been implemented for decades. For example, Scandinavian countries 
were the first to initiate restrictions on agricultural antimicrobial use11. In Sweden, farmers 
petitioned to ban all antimicrobial growth promoters, which took effect in 1986. In Denmark, 
farmers voluntarily stopped using avoparcin and it was officially banned by the government in 
1995. The European Union member states also banned four commonly used antimicrobial 
growth promoters in 1998, and eventually banned all antimicrobial growth promoters in 2006. 
Other high-income countries also followed. For example, the US banned fluoroquinolones in 
poultry production in 2005, and banned all antimicrobial growth promoters in 2017. These 
regulations have proven successful in decreasing AMR in animals for some antimicrobial 
classes. For example, in Denmark, the ban of cephalosporin use in pig production in 2010 led 
to a decrease in the prevalence of cephalosporinase-producing E. coli from 11.8% to 3.6% 
within a year12. In Canada, the withdrawal of ceftiofur in chicken in 2005 led to a decrease in 
its resistance in Salmonella for both chicken and humans13. Similarly, another study in Canada 
found that AMR in chicken declined by 6% - 38% after decreasing antimicrobial use14.  
 
In comparison, in LMICs, changes in regulations to limit antimicrobial use and contain AMR 
in animals have been slow. First, while meat consumption in many high-income countries have 
plateaued, it continues to grow in LMICs15, driving expansions of antimicrobial-dependent 
intensive farming systems. Second, the transformation of food animal systems towards less 
antimicrobial dependency requires significant investment on improving biosecurity measures, 
hygiene, and animal welfare to prevent loss of productivity. LMICs lack resources to support 
such transformation. Currently, global funders such as the Fleming Fund spend the most of 
their resources on strengthening surveillance and AMR workforces in LMICs16. Our 
predictions of AMR hotspots can provide funders with targets for investing in the 
transformation of agricultural systems. Engagement with potential funders can be established 
through a direct communication of our results with them, clearly summarizing the research 
findings and potential benefits of their adoption in practice. 
 
In addition to restricting antimicrobial use, policy interventions can be implemented to 
incentivize the development of novel antimicrobials. These interventions may include both 
“push” and “pull” economic incentives for producers. On the "push" side, financial support, 
grants, and subsidies can be provided to research institutions and pharmaceutical companies 
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engaged in antimicrobial development. This investment can help offset the high costs and 
risks associated with early-stage research and development, encouraging entities to invest in 
ground-breaking projects. On the “pull” side, governments or international bodies can offer 
financial rewards, market exclusivity, or advanced purchase commitments for successful 
antimicrobial products. These incentives aim to attract producers by ensuring a return on 
investment and a viable market for their developed antimicrobials. By combining both push 
and pull mechanisms, policymakers can establish a supportive system that encourages 
innovation, research, and production of urgently needed antimicrobial solutions. This dual-
pronged strategy seeks to address economic barriers and stimulate sustained efforts in the 
fight against AMR. 
 
6.3.2 The utility of science and modelling in assisting decision-making 
 
“Following the science” vs. “Choosing the science that fits” 
 
In this thesis, we combined scientific data with models to assist decision-making during 
pandemics, and to anticipate actions that could reduce AMR on a global level. Throughout 
history, science has played a pivotal role in shaping policy decisions. A notable example was 
the formation of Montreal Protocol, based on scientific evidence linking the depletion of the 
ozone layer to the use of chemicals such as chlorofluorocarbons. The Montreal Protocol led to 
the phase-out of nearly 99% of ozone-depleting substances, and subsequently notable recovery 
of the protective ozone layer17. However, when science meets politics, it is not always science 
that is being followed as other factors intervene in decision-making. For example, in the fight 
against infectious diseases, lockdowns are clearly one of the most effective measures to reduce 
disease transmission. However, the cost of lockdowns is not merely a reduction in economic 
activities. In LMICs such as India with great occupational vulnerability, it could mean lives 
lost due to starvation18. 
 
The complex interaction between science and politics was highlighted during the COVID-19 
pandemic. The acute and sudden outbreak of COVID-19 drew immediate attention from all 
sectors, including the scientific community. Within days of the pandemic onset, there was a 
dramatic increase of scientific publications regarding the sources, transmission routes and 
interventions of COVID-19, with sometimes contradictory conclusions. This was somehow 
anticipated by the scientific community because science, by nature, is an iterative process that 
evolves through correcting itself, often slowly. This iterative nature of science – particularly 
during early phases of a pandemic – comes with large uncertainties, and can sometimes be used 
by politicians to cherry-pick evidence that supports an agenda. As Stevens pointed out, in the 
case of disease dynamics modelling, “small changes in the assumptions made by the modellers 
can have large effects on their estimates and implications.”19 With multiple models present, a 
government may cherry-pick results that support their narrative. This raises an important 
question: what determines the degree to which science is followed by policymakers? 
 
Utility of science and epidemic models in policy making 
 
First, it should be emphasized that the robustness of the scientific evidence itself is one of the 
bases for its acceptance in policymaking. An example is the contribution of human activities 
to climate change, where its evidence has been so thoroughly investigated that a dispute would 
today be beyond reasonable. AMR is also an example where a growing body of evidence has 
shown a link between its development and the use of antimicrobials. Therefore, based on 
scientific evidence, interventions to cut antimicrobial use have been implemented in several 
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high-income countries. For example, Denmark banned the use of cephalosporin in pig 
production in 2010. This intervention successfully led to a decrease in the prevalence of 
cephalosporinase-producing E. coli from 11.8% to 3.6% within a year12. 
 
Second and perhaps of greater importance, the timescale at which decisions need to be made 
could affect the importance given to scientific evidence in the decision-making process. In this 
context, my PhD work on both COVID-19 and AMR was a privileged opportunity to observe 
contrasting situations in how scientific evidence is used (or not) by decision makers. For acute 
crisis like the COVID-19 pandemic, countries have taken largely different approaches towards 
pandemic control, from strict measures in New Zealand to voluntary social distancing in 
Sweden. In Sweden's case, the central role played by the Public Health Agency in guiding the 
country's response to the COVID-19 pandemic contributed largely to its comparatively relaxed 
approach. The variations in approaches across countries seem to have been primarily political 
or cultural, rather than scientific since all countries had access to the same scientific evidence 
but nevertheless followed different policies. Furthermore, in the case of Switzerland, the 
scientific evidence that my colleagues and I contributed to generate – upon request from 
authorities – was not always followed. Sometimes this came with negative consequences such 
as the second wave of the COVID-19 epidemic in September and October 2020, which was 
characterized by high excess mortality20. In contrast, AMR is a health crisis that spans decades. 
Our experience suggests that scientific evidence for such longer-term challenges tends to draw 
greater attention from decision makers. In particular, the output of our work on AMR has been 
requested by international funders, such as the Fleming Fund, to inform their efforts. Two 
factors may contribute to the differences in the utility of scientific evidence during acute vs 
non-acute crises. First, non-acute crises often lack highly visible and immediate consequences 
that demand immediate action. This relative absence of immediate pressure creates an 
environment for open discussion, allowing science to play a more influential role in shaping 
decisions and policies. Second, in the context of non-acute crises, a temporal disconnect exists 
between decision-making and accountability. In countries with regular elections, decision 
makers who base their actions on scientific evidence for long-term challenges like AMR might 
no longer be in office when the consequences of their decisions become visible. This situation 
may make them more willing to embrace the risk associated with uncertain outcomes guided 
by scientific recommendations.  
 
Although science may play a more prominent role in shaping policy interventions for enduring 
crises like AMR, the lack of data remains an important obstacle for drawing clear conclusions. 
For example, only 42 countries publicly report their antimicrobial use in food animals; national 
surveillance data of AMR in food animals are mostly only publicly available in high-income 
countries. While such limitations may be perceived as preventing modelling exercises to even 
be pursued, we argue that modelling in such situations can play a dual role in guiding 
policymaking. First, it provides a summary of available evidence to raise public awareness on 
the health crisis of AMR. For example, our maps of AMR provide a visual representation that 
is easier for the public to grasp the extent of its spread and impact. It can also raise awareness 
among the scientific community to push this research forward. Second, the uncertainties 
associated with AMR estimates might incentivize governments to disclose previously withheld 
surveillance data to challenge output from models such as those presented in this thesis. This 
is especially relevant when predicted AMR levels exceed the recorded surveillance data, as 
governments would be motivated to make the data public. 
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6.4 Future directions and limitations 

 
 
Figure 1. Directions for future research of AMR. 
 
6.4.1 Trends of AMR under different future scenarios 
 
In this thesis, we used species distribution modelling and Gaussian process stacked 
generalization to map AMR distribution. The models quantified the relationship between AMR 
and environmental covariates as well as anthropogenetic covariates to inform patterns of AMR 
prevalence. Covariates that are shown to contribute the most to the distribution of AMR include 
travel time to cities, population density of animals, and temperature. The predictive power of 
these covariates on AMR may be due to their indirect influence on antimicrobial use: locations 
closer to cities may have easier access to antimicrobials, thereby encouraging the overuse of 
antimicrobials. For example, in Thailand, Huber et al. showed that pig farms with AMR E. coli 
were located closer to drugstores, compared with farms without AMR E. coli21. High densities 
of animals can result in more antimicrobial use if per-animal usage is stable; higher temperature 
can lead to more animal injuries that require antimicrobial treatment22. In addition, the 
influence of animal density on AMR can be related to farm management practices such as poor 
sanitation and overcrowding among intensive farms, which contribute to AMR transmission. 
 
Based on the relationship between covariates and AMR that were trained by our geospatial 
models, future scenarios with changes in the values of one or more of these covariates can be 
modelled to produce future trajectories of AMR prevalence. For example, the Third Global 
High-Level Ministerial Conference on Antimicrobial Resistance set the goal to reduce 
antimicrobial use in agriculture by 30% to 50% by 2030. We can analyse the potential impact 
of achieving this goal by projecting the corresponding reduction in AMR. Furthermore, a 
previous study explored the effect of rising temperature on AMR in humans23, and such 
analysis can be extended to animals. By combining the reduction in antimicrobial use with 
climate change scenarios, we can evaluate their collective effects on the future trajectories of 
AMR. 
 
In addition, trajectories of AMR may differ between high-income countries and LMICs, under 
the same future scenarios. This is due to differences in the effect of environmental and 
anthropogenic covariates on AMR. For example, the practice of intensive farming may have a 
greater influence on antimicrobial use in LMICs than in high-income countries. The reason 
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behind is that intensive farming may require higher standards of biosafety measures and 
veterinary services to keep animals healthy due to comparatively higher stocking densities. 
LMICs have less resources to meet such standards, leading to more dependence on 
antimicrobial use. A comparative analysis of AMR trajectories between high-income countries 
and LMICs can assist policymakers in fine-tuning their strategies for managing and mitigating 
AMR. With more data available in the future, it may also be possible to run the scenario 
analyses by country or antimicrobial classes, potentially generating more detailed insights on 
AMR containment strategies. 
 
6.4.2 Integrating the temporal dimension into AMR prevalence mapping 
 
The analyses presented throughout Chapter 2 to Chapter 4 were focused on the spatial 
dimension of AMR. Our current model formula included effects of covariates and a spatial 
random effect, and was trained using data collected between 2000 and 2019. Therefore, an 
important limitation of our approach is that by collapsing all years of data together to guarantee 
statistical power of the spatial interpolation, we did not consider the temporal variations of 
AMR. This may potentially lead to an overestimation of AMR in regions where data have been 
collected in more recent years, and an underestimation of AMR in regions where data were 
older. However, incorporating a temporal random effect into the modelling framework will 
significantly increase model complexity, and is currently challenged by the limited amount of 
data available (n=1,088). With the steady increase of PPS conducted each year1, future work 
may be able to develop a spatio-temporal model using Integrated Nested Laplace 
Approximation with Stochastic Partial Differential Equations. Such models will not only 
improve the accuracy of AMR prevalence maps, but also capture temporal trends of AMR at a 
fine spatial resolution.  
 
6.4.3 Capturing spatial uncertainties  
 
The accuracy of our modelled AMR distribution is dependent, amongst other factors, upon the 
amount and spatial coverage of PPS. Several improvements can be made in these regards. First, 
as the number of PPS steadily increases each year1, the species distribution models will be 
better able to learn the non-linear and complex relations between the covariates and risk of 
AMR. Second, a majority of PPS do not report exact coordinates where animal samples are 
collected, but rather the administrative unit such as cities24, with varying degrees of accuracy 
in the administrative unit reported (state, district, city, village, farm, etc.). This leads to varying 
degrees of uncertainty of the assigned locations of the data points, which further influences the 
extracted covariate values at the corresponding locations. In the methods used throughout 
Chapters 2 and 4, we used the geographic centroid of the reported administrative unit as the 
location. Future efforts will need to incorporate the uncertainty of assigned locations to better 
assess the robustness of the resulting maps. For example, Monte Carlo simulations can be 
conducted over areas of the administrative units, to generate multiple maps from each 
simulation. The uncertainty of locations can then be estimated through variations of the mapped 
values across the simulations. 
 
Covariates used to train the model also play a pivotal role for the accuracy of the results. Among 
the covariates used for predicting AMR, antimicrobial use is expected to have the highest 
importance. However, results throughout Chapters 2 and 4 showed that this covariate was not 
identified as contributing significantly to the modelled outputs. One important underlying 
reason is the lack of reported data on antimicrobial use in food animals. In 2020, only 42 
countries reported antimicrobial use in food animals25. Mulchandani et al. extrapolated these 
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data to other countries and produced maps of antimicrobial use, which we used in this thesis to 
predict AMR25. However, this limited amount of data inevitably results in uncertainty in the 
mapped antimicrobial use. Data from more countries are needed to better characterize the 
relation between antimicrobial use and AMR at a global scale. In addition, the accuracy of our 
species distribution models for mapping AMR is moderate, compared with higher prediction 
accuracy for vector-borne diseases that are more explicitly linked to the environmental 
conditions: the mean area under the curve (AUC) statistic calculated using cross validation was 
0.66 in Chapter 2.1, as compared with 0.82 for a map of Zika virus risk26 and 0.72 for a map of 
dengue risk26. This indicates that future work may need to include additional socio-economic 
covariates with potentially greater impact on AMR, and at a finer spatial resolution. 
 
Apart from covariates, our models also include spatial random effects in a Bayesian 
framework27. The spatial effect results in increased similarity of AMR levels in locations that 
are closed to each other. Consequently, the bigger the spatial effect, the smoother the map tends 
to be. It is therefore essential that this term does not over-smooth the map and mask finer-scale 
patterns, and that the priors of the covariance function are properly set based on existing 
evidence. Future work will need to conduct sensitivity analysis on how prior knowledge of the 
spatial random effect changes the resulting spatial patterns of AMR. 
 
Conclusions 
 
This thesis lays the foundation for estimating trends of AMR in food animals worldwide, 
serving as a starting point for its ongoing and iterative refinements in the future. A successful 
precedent for such iterative improvements on global disease mapping was set by the Malaria 
Atlas Project (MAP). Since its reception nearly two decades ago, the project has produced 
multiple updated global maps of malaria risk. In just seven years, MAP achieved collaboration 
with the World Health Organization, and it continues to expand its reach with the addition of 
new partner countries with endemic malaria. Our AMR mapping project started in 2019, with 
the production of the first global map of AMR in food animals in LMICs. Given the ongoing 
rise in meat consumption in LMICs and the looming threat of AMR to both animal and human 
health, we hope to see our AMR mapping projects grow and assist decision makers to safeguard 
the effectiveness of life-saving antimicrobials.  
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S1. Literature Review and Data Harmonization 7 

We searched for veterinary literature reporting antimicrobial resistance (AMR) rates in 8 

China on three international databases (PubMed, Scopus, and ISI Web of Science), as 9 

well as the leading Chinese-language academic search engine – China’s National 10 

Knowledge Infrastructure (CNKI). We focused on four common indicator pathogens: 11 

Escherichia coli, nontyphoidal Salmonella spp., Staphylococcus aureus, and 12 

Campylobacter spp. The search was conducted on March 11, 2020, and included all 13 

studies published between 2000 and 2019. The search query used the generic structure: 14 

 15 

(Resistance) AND (Bacterial Species) AND (Animals and Sample types) 16 

 17 

The key words used on CNKI was as follows, with all possible combinations of drugs, 18 

pathogens, and animals: (‘抗生素’ + ‘抗菌’ + ‘兽药’ + ‘兽用药’ + ‘兽用抗生素’ + ‘用19 

药’ + ‘抗微生物’) AND TI = (escherichia + (E*coli) + coliform + salmonella + 20 

enterococcus + enterococci + VRE + (E*faecalis) + (E*faecium) + (S*aureus) + 21 

staphylococcus + MRSA + MSSA + campylobacter + (C*jejuni) + (C*coli) + ‘埃希菌’ + 22 

‘大肠杆菌’ + ‘大肠菌’ + ‘沙门氏菌’ + ‘肠球菌’ + ‘葡萄球菌’ + ‘弯曲杆菌’ + ‘弯曲菌23 

’ + ‘曲状杆菌’) AND TI = (‘动物’ + ‘食物’ + ‘牛’ + ‘鸡’ + ‘猪’ + ‘肉’ + ‘奶’ + ‘蛋’ + ‘24 

食用’). The full search query used in the advanced search functionality was: (TI = key 25 
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words) OR (KY = key words) OR (AB = key words), where TI, KY, and AB stand for 26 

title, keywords, and abstract, respectively. 27 

 28 

The key words used on PubMed, Scopus, and ISI Web of Science was as follows: 29 

(antibiotic resistance OR antimicrobial resistance OR resistance OR susceptibility OR 30 

antibiogram OR antibiotic susceptibility testing OR antibiotic OR antimicrobial OR 31 

antibacterial ) AND (Escherichia OR E. coli OR coliform OR salmonella OR salmonella 32 

spp. OR enterococcus OR enterococcus spp. OR enterococci OR VRE OR E. faecalis OR 33 

E. faecium OR S. aureus OR staphylococcus OR Staphylococcus spp. OR MRSA OR 34 

MSSA OR campylobacter OR campylobacter spp. OR C. jejuni OR C. coli) AND 35 

(animal OR food OR food producing OR farm OR farm animal OR meat OR cow OR 36 

cattle OR beef OR bovine OR buffalo OR pig OR piggeries OR pork OR chicken OR 37 

flock OR broiler OR layer OR egg OR poultry OR avian OR milk OR dairy OR cheese) 38 

AND (China). On PubMed, the key words were directly used as the full search query. On 39 

Scopus, the full search query was specified as TS = (key words), where TS stands for 40 

search topic. On ISI Web of Science, the full search query was specified as TITLE-ABS-41 

KEY = (key words), TITLE-ABS-KEY stands for title, abstract and key words. 42 

 43 

From CNKI, the literature search resulted in 8,481 documents in Chinese being 44 

identified. Abstracts were screened manually. We removed reviews, meta-analysis, and 45 

publications that did not report resistance rates such as experiments on antimicrobial 46 

effect of traditional Chinese medicine, and retained 1,080 publications as potentially 47 

relevant point prevalence surveys (PPS) to read in full. Among these, we excluded: 48 
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manuscripts characterizing a defined set of strains not derived from PPS (strain surveys), 49 

surveys on diseased animals, surveys in which samples were pooled between host 50 

species, or resistance rates were pooled between pathogens, and studies without 51 

information on sampling locations. We further excluded PPS focusing on animals with 52 

small sample sizes, such as sheep and camel. Finally, 4,023 antimicrobial resistance rates 53 

were extracted from 318 PPS for drug-pathogens combinations recommended for 54 

susceptibility testing by the WHO AGISAR consortium 1. Amongst the publications 55 

published in Chinese, we listed the institutions most frequently associated with the 56 

publications, as well as their geographic location (Table S2). 57 

 58 

From PubMed, Scopus, and ISI Web of Science, 101 PPS conducted in China between 59 

2000 and 2018 were extracted by Van Boeckel & Pires et al 2, including 1,817 60 

antimicrobial resistance rates. An additional search for PPS in China published in 2019 61 

was conducted on March 11, 2020. The literature search identified 1,136 documents 62 

published in 2019. Abstracts were screened manually. We retained 91 publications as 63 

potentially relevant point prevalence surveys (PPSs), and read in full. Finally, 455 64 

antimicrobial resistance rates were extracted from 27 PPS published in 2019. In total, 65 

2,272 resistance rates were extracted from 128 PPS published in English from 2000 to 66 

2019, and were combined with 4,023 resistance rates extracted from 318 PPS published 67 

in Chinese, to build a consolidated database of 6,295 resistance rates that was used for 68 

geospatial mapping. The average prevalence of E. coli, Salmonella, S. aureus and 69 

Campylobacter in samples of food animals across all PPS were 60%, 23%, 22% and 70 

27%, respectively. 71 
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 72 

We associated clinical breakpoint values with each resistance rates reported in the 73 

surveys. Among the 446 PPS, only 126 reported breakpoint values directly in the 74 

publication. However, 382 PPS mentioned guidelines used for susceptibility testing. The 75 

overwhelming majority (369; 83%) of PPSs conducted in China used guidelines from 76 

Clinical & Laboratory Standards Institute (CLSI) for susceptibility testing. Therefore, for 77 

surveys that did not mention the guidelines that were used, it was assumed to be CLSI. 78 

Among the PPS that reported which guidelines were used, 291 also mentioned the year of 79 

the guideline. The average lag between the year of guideline used, and the publication 80 

date of a survey was 4 years. Therefore, for surveys that did not report the year of the 81 

guidelines, we used the CLSI guidelines 4 years prior to the publication date of the 82 

surveys. After a set of guidelines were associated to each surveys, we used a 83 

methodology 2 to harmonize resistance rates. This approach accounts for differences in 84 

the types of susceptibility testing method used, as well as potential temporal variation in 85 

breakpoints values. 86 

 87 

Following the harmonization of resistance rates, we summarized resistance levels in each 88 

PPS by calculating the proportion of antimicrobial compounds with resistance higher 89 

than 50% (P50). The mean P50 across all PPSs was 39.8%, and the standard deviation of 90 

the P50 distribution was ±29.5%. We then conducted a robustness check to ensure that 91 

the number of surveys for which data were extracted (n=446) would allow to make 92 

inference on the mean value of P50 across China. Concretely, we calculated the 93 
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minimum number of PPSs needed to obtain a confidence interval within ±5% of the 94 

estimated mean P50. We used a non-parametric Monte Carlo sampling scheme:   95 

 96 

Step 1. We generated values of P50 for 78,181,840 hypothetical farms, the total number 97 

of farms in 2018 for chicken (30,170,356), pigs (37,746,624) and cattle (10,264,860) in 98 

China. The number of farms was obtained from the China Animal Husbandry and 99 

Veterinary Yearbook 20183. In the next steps, this distribution of P50 values was called 100 

the farm distribution.  101 

 102 

Step 2. We drew n values from the farm distribution, and calculated the mean P50 value. 103 

We repeated the operation 10,000 times. These distributions of P50 values were called 104 

the survey distribution. 105 

 106 

Step 3. We calculated the 95% confidence interval on the survey distribution of n P50 107 

values. 108 

 109 

Step 2 and step 3 were repeated iteratively, and n increased by +1 at each iteration until 110 

the confidence internal on the mean P50 of the survey distribution was within ±5% of the 111 

estimated mean P50 (39.8%). The resulting minimum number of surveys that satisfied 112 

this condition was n=133 PPS. The dataset assembled amounted to 446 surveys and thus 113 

exceed the minimal number of surveys to make inferences of mean P50 value within the 114 

±5% confidence interval.   115 

 116 
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S2. Geospatial Modelling 117 

We interpolated P50 values from the survey locations to create a map of P50 at a 118 

resolution of 10 x 10 Km across China. The approach followed a two-step procedure 4. In 119 

the first step, three “child models” were trained to quantify the relation between P50 and 120 

environmental and anthropogenic covariates (Table S1; Supplementary Figure 13). In the 121 

second step, we used universal kriging to stack predictions from the three child models. 122 

Stacking has been shown to improve accuracy of disease maps 5. The second step 123 

simultaneously account for the influence of covariates on P50 and the spatial 124 

autocorrelation of P50. 125 

 126 

Step 1. Training child models 127 

We identified 10 covariates such as antimicrobial use in animals and travel time to cities 128 

(Table S1; Supplementary Figure 13) to train child models. All covariates were log10-129 

transformed and resampled from their original resolution to 0.0833 decimal degrees (10 130 

kilometers at the equator). Three child models used were: boosted regression trees 6 131 

(BRT), least absolute shrinkage and selection operator applied to logistic regression 7 132 

(LASSO-GLM), and feed-forward neural network implemented in Keras 8 (FFNN). 133 

 134 

For the BRT model, we used a tree complexity of three, learning rate of 0.0005 and 50 135 

initial trees. For feed-forward neural network, we used the adaptive moment estimation 136 

(adam) optimizer, and rectified linear unit (relu) activation for the hidden layer, and a 137 

sigmoid activation function for the output layer. We used random search to optimize the 138 

hyperparameters for the neural network. Concretely, we sampled 1,000 combinations of 139 
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dropout rate, learning rate, and the number of neurons. The combination of 140 

hyperparameters that generated the highest area under the ROC curve (AUC) was 141 

retained to train the feed-forward neural network. The final model had one hidden layer 142 

of 13 neurons, a dropout rate of 0.5 and a learning rate of 0.07. 143 

 144 

P50 values were transformed into presence/absence as input into all child models, using a 145 

random binarization procedure: All P50 values were replicated five times, and compared 146 

with one random number between zero and one. If the P50 value was higher than the 147 

random number, then it was categorized as presence; alternatively, it was categorized as 148 

absence. Additionally, pseudo-absences (P50 = 0) were sampled within 20 to 1,000 km 149 

from presences, using stratified random sampling proportional to the log10 of the 150 

population density outside urban areas. This provided the models additional covariate 151 

values that were not associated with presences. Four-fold spatial cross validation was 152 

used to train all child models. Concretely, we defined four folds using k-means clustering 153 

on the latitudes and longitudes of sampling locations (Supplementary Figure 14). Spatial 154 

sorting bias (SSB) was negligible (mean SSB = 0.9941). Each model was run four times, 155 

each time using data from one fold as testing set, and data from the other three folds as 156 

training set. Spatial cross-validation repented local overfitting, and ensured extrapolation 157 

accuracy outside training regions. Stratified sampling of pseudoabsences and random 158 

binarization of P50 were bootstrapped 10 times using Monte Carlo simulations. The 159 

average over these 10 simulations was the final predictions of each child model 160 

(Supplementary Figure 15). The accuracies of all child models were:  AUCBRT = 0.65, 161 

AUCLASSO-GLM = 0.68, AUCFFNN = 0.66.  162 
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 163 

Step 2. Universal kriging 164 

In the second step, we used universal kriging to stack predictions from three child 165 

models: 166 

 167 

𝒁(𝒙) = 𝝁(𝑃𝐵𝑅𝑇(𝑥), 𝑃𝐿𝐴𝑆𝑆𝑂−𝐺𝐿𝑀(𝑥), 𝑃𝐹𝐹𝑁𝑁(𝑥)) + 𝒀(𝒙) 168 

 169 

Where 𝒁(𝒙) is the predicted P50 value at location 𝑥; 170 

𝝁(𝑃𝐵𝑅𝑇(𝑥), 𝑃𝐿𝐴𝑆𝑆𝑂−𝐺𝐿𝑀(𝑥), 𝑃𝐹𝐹𝑁𝑁(𝑥)) are a linear combination of the predictions of the 171 

child models; 𝒀(𝒙) is the model residual, which is spatially autocorrelated. A Matern 172 

semi-variogram model with a maximum range of 800 km was fitted. The spatial weight 173 

of each survey in the kriging prediction was proportional to the number of biological 174 

samples recovered in each survey. Duplicated coordinates, due to multiple surveys 175 

conducted at the same location, were randomly redistributed within a radius of 1km of 176 

the sampling sites, multiplied by log10 transformed sample size to reflect greater spatial 177 

range of large surveys. Predictions below 0 or above 1 were replaced with 0 and 1, 178 

respectively, such that all kriging predictions were bounded within that interval. 179 

 180 

Uncertainty of P50 predictions  181 

We produced a map of uncertainty associated with the spatial predictions of P50. This 182 

map consisted of two sources of variability and was given by: 183 

 184 

𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑎𝑟(𝑃𝐵𝑅𝑇, 𝑃𝐿𝐴𝑆𝑆𝑂−𝐺𝐿𝑀, 𝑃𝐹𝐹𝑁𝑁) + 𝑉𝑎𝑟𝐾 185 
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 186 

Where, 𝑉𝑎𝑟(𝑃𝐵𝑅𝑇, 𝑃𝐿𝐴𝑆𝑆𝑂−𝐺𝐿𝑀, 𝑃𝐹𝐹𝑁𝑁) was the variance of the predictions of each child 187 

model across 10 Monte Carlo simulations, and 𝑉𝑎𝑟𝐾 was the kriging variance of the 188 

interpolation procedure. 𝑉𝑎𝑟𝐾 was calculated as follows: first, the kriging variance was 189 

obtained from an ordinary kriging on the residuals of the stacked child model predictions, 190 

in order to subtract the part of variance attributed to estimating the trend in universal 191 

kriging, and to obtain the variance attributable to the spatial interpolation procedure. 192 

Second, the kriging variance was standardized such that it equaled zero at the locations of 193 

observation. The percentage of 𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 attributable to 𝑉𝑎𝑟𝐾 was 80.3% across all pixels. 194 

 195 

S3. Economic factors associated with antimicrobial resistance rates 196 

We estimated the association between resistance rates and the ease of obtaining 197 

antimicrobials from the market. The latter is estimated using the price and market 198 

availability of individual antimicrobials. We used price estimates from online stores as a 199 

general proxy for antimicrobial prices., because drug prices from offline stores were 200 

challenging to estimate. Besides, the co-existence of these two sales channels in the same 201 

market suggests that their prices could not fundamentally differ. We searched for prices of 202 

products of each antimicrobial class on the Alibaba platform (1688.com; the major e-203 

wholesale market in China) on 10 December 2019. For each antimicrobial, we extracted 204 

the prices (CNY/kg) from the three online retailers with the highest sales volume in the 205 

previous month (Yuan/kg), and the highest number of online retailers (Table S3). These 206 

two variables were used as proxies for price, and market availability in China. We fitted a 207 
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linear mixed-effects model to resistance rates recorded in all PPS, using price and market 208 

availability as covariates, and PPS as random effect. 209 

 210 

Antimicrobials with lower price and higher market availability were associated with higher 211 

resistance rates (p < 0.05). A decrease of 112 CHY/Kg (approximately 16 USD/Kg) in 212 

price, and an increase of 19 online retailers selling the antimicrobials were associated with 213 

an increase of 1% resistance. 214 

 215 

S4. Existence of convenience sampling for PPS?  216 

We tested whether veterinary institutes conducted surveys on AMR following 217 

convenience sampling, i.e. the tendency to collect samples in nearby location instead of 218 

following a stratified random sampling proportional to animal population densities. 219 

Concretely, we extracted locations of the institutes associated with the last authors of the 220 

437 surveys. First, we calculated the distance between each sampling location and the 221 

institute conducting the survey. Second, we tested a scenario of sampling proportional to 222 

animal densities, where 437 locations were sampled weighted by the population corrected 223 

units (PCU) of food animals. We assigned each of the 437 locations to the closest 224 

institute, and calculated the distances between each sampling location and institute. We 225 

then compared the distances between the locations and the institutes under the assumed 226 

scenario of sampling proportional to animal density, with the distances between the 227 

actual sampling locations and the institutes, using a t-test. The sampling procedure for the 228 

stratified random sampling was repeated 50 times using Monte Carlo simulations for 229 

locations. 230 
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 231 

The distances identified by stratified random sampling were significantly larger (+84 km; 232 

+78%; t-test < 0.05) than the actual distances (107 km) between the actual sampling 233 

locations and veterinary institutes who led the surveys (Supplementary Figure 16). This 234 

suggests that a large number of surveys have been conducted by convenience sampling. 235 

 236 

S5. Identifying (optimal) locations for future surveys on AMR 237 

We predicted the locations of 50 hypothetical new surveys, such that the sum of uncertainty 238 

in trends in AMR for all pixels across China was minimized. Uncertainty levels were 239 

represented by a map of “necessity for additional surveillance” (𝑁𝑆), defined as: 240 

𝑁𝑆 = 𝑉𝑎𝑟𝐾 ∙ 𝑊 241 

Where 𝑉𝑎𝑟𝐾 was the kriging variance of the geospatial model which reflected the 242 

uncertainty of the spatial interpolation, and 𝑊 is log10 transformed population density of 243 

animals 9 or humans 10 which reflected exposure. The population density of animals used 244 

here was the sum of population corrected units of chicken, pigs, and cattle, calculated 245 

using the method described in Van Boeckel and colleagues 11. 246 

 247 

We used four approaches to identify optimal locations for future surveys across China 248 

(Materials and Methods). For the efficient implementations of these approaches, the 249 

resolution of the map of 𝑁𝑆 was increased to 40 x 40 km. This resulted in a map of 250 

20,976 pixels (114 x 184), including 7,857 pixels with positive 𝑁𝑆 values. 251 

 252 
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For the “overlap approach” (Materials and Methods; Supplementary Figure 12), the size 253 

of a new survey’s neighborhood area was optimized using approximate Bayesian 254 

computation based on sequential Monte Carlo 12 (ABC-SMC). Concretely, the 255 

neighborhood area was considered a circle with radius r (km). Priors of r were set as a 256 

uniform distribution between 50 km and 150 km. r was sampled 50 times per step. The 257 

average 𝑁𝑆 across 7,857 pixels was calculated for each sampled r value, and its medium 258 

in each step was set as the upper limit for the acceptance criteria in the following step. 259 

The optimization procedure proceeded until the convergence tolerance was met, i.e., the 260 

decrease in average 𝑁𝑆 in the last step was less than 0.5% of the total decrease in average 261 

𝑁𝑆 after all previous steps, or until a maximum of 10 steps were run. The radius size (r) 262 

of 114.1 km yielded an optimal reduction in average 𝑁𝑆, if human population was 263 

considered to determine exposure; The radius size (r) of 161.4 km yielded an optimal 264 

reduction in average 𝑁𝑆, if animal population was considered to determine exposure. 265 

 266 

  267 
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Supplementary Figures 268 

 269 
Supplementary Figure 1. Country-level antimicrobial use (A), antimicrobial use per 270 

kilogram of food animal, number of available surveys per kilogram of food animal (C), 271 

antimicrobial resistance level measured using metric “P50” (D), antimicrobial resistance 272 

burden calculated as the product of P50 and total weight of food animals (E), and number 273 

of available surveys per kilogram of food animal per P50 (F). Data was extracted from 274 

Van Boeckel et al 201711, Tiseo et al 202013, and Van Boeckel & Pires et al 20192.  275 
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 276 

Supplementary Figure 2. Example of the calculation of P50, the proportion of 277 

antimicrobial compounds with resistance higher than 50%. The two panels show 278 

resistance rates of 9 antimicrobial compounds in two hypothetical surveys. The dashed 279 

line indicates the resistance rate of 50%. In “hypothetical survey 1”, 6 out of 9 280 

antimicrobial compounds have resistance rates higher than 50%, resulting in P50 = 6/9 = 281 

67%; in “hypothetical survey 2”, 2 out of 9 antimicrobial compounds have resistance 282 

rates higher than 50%, resulting in P50 = 22%. 283 
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 285 

Supplementary Figure 3. Proportion of antimicrobials with resistance rates higher than 286 

50% (P50) in Salmonella serotypes. For P50 in chicken and pigs separately, 5 serotypes 287 

with the highest number of resistance rates recorded from all available surveys were 288 

shown. Colors represent the number of isolates used to calculate the P50. 289 

 290 
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 292 

 293 

Supplementary Figure 4. Importance of covariates in the prediction of P50 was assessed 294 

using the decrease in AUC by sequential permutation of each covariate. The covariate 295 

with the largest predictive power, and thus associated with the largest decrease in AUC 296 

was the travel time to cities of more than 50,000 people. Minimum monthly temperature 297 

and antimicrobial use also showed moderated importance. 298 

  299 
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 300 

Supplementary Figure 5. Number of surveys assigned in each province in China, using 301 

the overlap approach weighted by the population corrected units of cattle, chicken, and 302 

pigs, respectively. 303 

 304 

  305 
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 306 

 307 

 308 

Supplementary Figure 6. Predicted optimal locations for future surveys using the 309 

“overlap approach” weighted by human population density. The background color 310 

represents the “necessity for additional surveillance” (𝑁𝑆): the product of the kriging 311 

variance and animal population density (standardized from 0 to 1).  312 

  313 
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 314 

 315 

Supplementary Figure 7.  Locations of surveys. PPS extracted from China National 316 

Knowledge Infrastructure (CNKI; red); Point prevalence surveys (PPS) obtained from 2 317 

(blue), with extended literature review to include all PPS published in 2019 (SI Appendix 318 

S1). Locations of 10 veterinary institutes (green) most frequently associated with 319 

studies retrieved from CNKI search engine with the keywords “animal + antimicrobial + 320 

resistance” (“动物 抗生素 耐药性”) (SI Appendix S1; Table S2). 321 

 322 
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 323 

Supplementary Figure 8. Procedure of Literature Review. Number of resistance rates 324 

(nrates), and point-prevalence surveys (nPPS) identified, exclusion criteria, and records used 325 

for mapping antimicrobial resistance. PPS in China extracted from international search 326 

engines were a subset of the collection in Van Boeckel & Pires et al 20192. AGISAR = 327 

Advisory Group on Integrated Surveillance of Antimicrobial Resistance. 328 

  329 
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 330 

Supplementary Figure 9. Uncertainty in P50 predictions. Variance in the predicted P50 331 

values across China. 332 

  333 
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 334 

Supplementary Figure 10. Geographic distribution of population density of humans 335 

(left) and animals (right), log10 transformed. 336 

  337 
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 338 

Supplementary Figure 11. (A) Locations of 50 future surveys as predicted by the greedy 339 

approach (Materials and Methods), if animal population was considered to determine 340 

exposure. (B) The 50 pixels with the 50 highest values of 𝑁𝑆 (necessity for surveillance; 341 

Materials and Methods). 342 

  343 
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 344 

 345 

Supplementary Figure 12. Procedure of the overlap approach to identify optimal 346 

locations for 50 hypothetical additional surveys. Red circle indicates the neighborhood 347 

area of a new survey located at 𝑋𝑝, 𝑌𝑝. 𝑁𝑆 (“necessity for additional surveillance”) is 348 

calculated as the product of the kriging variance and human population density 349 

(standardized from 0 to 1). 350 

  351 
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 352 

Supplementary Figure 13. Environmental and anthropogenic covariates used for 353 

training the child models (log10 scaled). Predicted antimicrobial use in animals (use), 354 

travel time to cities of more than 50,000 people (acc), yearly average of minimum 355 

monthly temperature (tmp), percentage of pixel area irrigated (irg), population densities 356 

of extensively raised pigs (PgExt), intensively raised pigs (PgInt), extensively raised 357 

chicken (ChExt), intensively raised chicken (ChInt), Cattle (Ca), and percentage are 358 

covered in vegetation (veg). 359 

  360 
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 361 

Supplementary Figure 14. Geographic distribution of presence and pseudo-absence. 362 

Points in four regions (represented in four colors) were used for the K-fold spatial cross-363 

validation procedure of the child models. 364 

  365 
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 366 

Supplementary Figure 15. Distribution of P50 obtained from three child models using 367 

environmental covariates. A: boosted regression trees. B: Logistic regression with 368 

LASSO regularization. C: Feed-forward neural network.  369 
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 370 

Supplementary Figure 16. The distribution of log10 transformed distance (meter) 371 

between institutes and their sampling locations, under a scenario that sampling is 372 

conducted proportional to animal density, as compared with sampling locations in reality. 373 

  374 
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Supplementary Tables 375 

Supplementary Table 1. Environmental and anthropogenic covariates used for training 376 

the child models. 377 

 378 

Acronym Name Year Original Source 379 
   Resolution  380 

use Antimicrobial use 2013 0.083333 Van Boeckel et al 2017 11 381 
 in animals  decimal degrees http://science.sciencemag.org/content/357/6358/1350.full 382 
 383 
acc Travel time 2015 30-arcsec Weiss et al 2018 14 384 
 to cities  resolution https://www.map.ox.ac.uk/accessibility_to_cities/. 385 
 386 
tmp Yearly average 1970- 2.5 minutes Worldclim 15 387 
 of minimum 2000  http://worldclim.org/version2 388 
 monthly temperature    389 
 390 
irg Percentage 2005 0.083333 Global Map of Irrigation Areas (Siebert et al., 2013) 391 
 irrigated areas  decimal degrees http://www.fao.org/nr/water/aquastat/ 392 
    irrigationmap/index10.stm 393 
 394 
ChExt Population density  2013 0.083333 Gridded Livestock of the World v3 9 395 
ChInt pigs, chicken,  decimal degrees https://dataverse.harvard.edu/dataverse/glw 396 
PgExt and cattle, (extensive 397 
PgInt vs intensive 398 
Ca systems) 399 
 400 
veg Percentage of 2013 0.008333 https://earthenginepartners.appspot.com/science-2013- 401 
 Tree Coverage   decimal degrees global-forest/download_v1.2.html 17 402 
 403 

 404 

  405 

http://science.sciencemag.org/content/357/6358/1350.full
https://www.map.ox.ac.uk/accessibility_to_cities/
http://www.fao.org/nr/water/aquastat/
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Supplementary Table 2. Research institutes most frequently associated with studies 406 

retrieved from CNKI search engine (www.cnki.net; accessed 11 March 2020) with the 407 

keywords “animal+antimicrobial+resistance” (“动物 抗生素 耐药性”). 408 

 409 

Institution Province Number of studies 410 

Sichuan Agricultural University Sichuan 75 411 

Huazhong Agricultural University Hubei 71 412 

Nanjing Agricultural University Jiangsu 57 413 

Shandong Agricultural University Shandong 55 414 

Jilin University Jilin 54 415 

Northwest A&F University Shaanxi 52 416 

Yangzhou University Jiangsu 49 417 

China Agricultural University Beijing 47 418 

Northeast Agricultural University Heilongjiang 44 419 

South China Agricultural University Guangdong 37 420 

 421 

  422 

http://www.cnki.net/
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Supplementary Table 3. Prices of antimicrobial from the three online retailers with the 423 

highest sales volume, and the number of online retailers selling each antimicrobial on 424 

Alibaba (1688.com; accessed 10 December 2019).  425 

 426 

Antimicrobial Chinese Name  Price_1 Price_2 Price_3 Average Price Number of  427 
Searched on Alibaba      Online Retailers  428 

Ampicillin 氨苄西林 380 260 180 273 68 429 

Amoxicillin 阿莫西林 205 100 200 168 295 430 

Sulfamonomethoxine 磺胺间甲氧嘧啶 315 210 295 273 261 431 

Sulfamethoxazole 磺胺甲恶唑 180 128 100 136 177 432 

Trimethoprim 甲氧苄啶 118 245 190 184 333 433 

Sulfadiazine 磺胺嘧啶 140 160 200 167 542 434 

Trimethoprim 甲氧苄啶 118 205 200 174 216 435 

Oxacillin 苯唑西林 600 580 600 593 10 436 

Sulfamethoxazole-Trimethoprim 新诺明 145 220 210 192 237 437 

Nalidixic acid 萘啶酸 NA NA NA NA 20 438 

Chloramphenicol 氯霉素 185 230 270 228 330 439 

Tetracycline 四环素 170 180 180 177 313 440 

Sulfafurazole/ Sulfisoxazole 磺胺异恶唑 NA NA NA NA 26 441 

Penicillin 青霉素 130 110 120 120 886 442 

Cefotaxime 头孢噻肟 600 520 500 540 122 443 

Ciprofloxacin 环丙沙星 190 160 180 177 81 444 

Doxycycline 强力霉素 530 380 520 477 425 445 

Gentamicin 庆大霉素 360 850 680 630 323 446 

Gentamicin 庆大霉素 360 850 680 630 184 447 

Clindamycin 克林霉素 490 298 330 373 93 448 

Ceftazidime 头孢他啶 900 1100 1000 1000 38 449 

Erythromycin 红霉素 480 550 440 490 361 450 

Nitrofurantoin 呋喃妥因 600 NA NA 600 20 451 

Ceftriaxone 头孢曲松钠 500 420 380 433 69 452 
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Cefepime 头孢吡肟 NA NA NA NA 12 453 

Cefoxitin 头孢西丁 500 NA NA 500 14 454 

Azithromycin 阿奇霉素 709 950 700 786 25 455 

eptomycin 链霉素 220 180 190 197 348 456 

Rifampicin 利福平 360 800 960 707 22 457 

Colistin 粘菌素 420 140 100 220 216  458 

Meropenem 美罗培南 NA NA NA NA 16 459 

Imipenem 亚胺培南 NA NA NA NA 0 460 

Tigecycline 替加环素 400 300 NA 350 7 461 

Vancomycin 万古霉素 6000 6000 5500 5833 117 462 

  463 
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Supplementary Note 1: Systematic Review and Literature Search 
 
A systematic review of the literature was conducted to identify point prevalence surveys (PPS) of 
phenotypic antimicrobial resistance inclusive of the period January 1, 2000 through September 30, 2019. 
Eligibility criteria included: PPS of antimicrobial resistance in bacterial pathogens of production 
significance or aquatic animal-associated bacterial zoonoses; PPS with samples originating from cultured 
or wild caught aquatic animals or their products; PPS conducted in Asia from 2000 to 2019. Target 
bacterial pathogens were defined according to OIE Aquatic Animal Health Code1 and the FAO List of 
Important Bacterial Diseases in Aquaculture, and included: Aerococcus, Aeromonas, Chlamydia, 
Clostridium, Edwardsiella, Enterobacterium, Escherichia coli, Flavobacterium, Francisella, 
Hepatobacter, Lactococcus, Mycobacterium, Nocardia, Photobacterium, Piscirickettsia, Pseudomonas, 
Renibacterium, Streptococcus, Vibrio, and Yersinia. 
 
Exclusion criteria included: reviews; meta-analyses; strain surveys describing individual strain 
characteristics not associated with a PPS; data from an experimental protocol not associated with a PPS; 
PPS with samples originating from bivalve molluscs; PPS with samples originating from ornamental fish; 
and PPS where no source or methodology for derivation of data was provided. We assessed data quality 
in our search, excluding records where resistance rates were unclear or missing; no geographic 
information on survey location was provided; samples originated from imported products; or samples 
were not clearly identified as originating from an aquatic animal or animal product. 
 
The literature search was conducted across four databases (PubMed, Web of Science, Scopus, China 
National Knowledge Infrastructure) and grey literature repositories (AGRIS, CGIAR FISH, IFPRI, 
WorldFish). The Russian Science Citation Index and Korean Journal Database (KCI) were included in the 
Web of Science search. The search was conducted through September 2019 without restriction as to 
language, and records in English, Turkish, Japanese, Korean, Thai, and Chinese were identified and 
screened. The systematic review was not registered. The literature search and systematic review were 
guided by the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement 
and research synthesis norms2 (Table S4). 
 
Search strategies were tailored to individual databases to achieve optimal search sensitivity and 
specificity guided by the following general formula: 
 
(Resistance) AND (Bacteria species) AND (Aquaculture/fisheries/aquatic animals) AND 
(Country/region) 
 
The full search queries were: 
PubMed: (Resistance OR "antibiotic resistance" OR "antimicrobial resistance") AND ("Escherichia coli" 
OR "E. coli" OR *vibrio* OR Photobacterium OR Aeromonas* OR Edwardsiell* OR Yersinia OR 
Pseudomonas* OR  Flavobacter* OR Piscirickettsia OR Hepatobacter OR Francisella OR Chlamydia OR 
Mycobacter* OR Nocardia OR Streptococc* OR Lactococc* OR Aerococc* OR Renibacter* OR 
Clostridium OR Enterobacterium) AND (aquaculture OR aquatic OR *fish* OR shellfish OR marine OR 
freshwater OR carp OR catfish OR prawn OR salmon OR shrimp OR tilapia OR trout) AND (Asia OR 
"Southeast Asia" OR "South Asia" OR "East Asia" OR Mekong OR Afghanistan OR "American Samoa" 
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OR Bahrain OR Bangladesh OR Bhutan OR "Brunei Darussalam" OR Cambodia OR China OR "Chinese 
Taipei" OR "Cook Islands" OR "Democratic People's Republic of Korea" OR Fiji OR "French Polynesia" 
OR Guam OR "Hong Kong" OR India OR Indonesia OR Iran OR Iraq OR Jordan OR Kiribati OR Korea 
OR Kuwait OR "Lao People's Democratic Republic" OR Lao OR Laos OR Lebanon OR Macau OR 
Malaysia OR Maldives OR "Marshall Islands" OR Micronesia OR Mongolia OR Myanmar OR Nauru 
OR Nepal OR "New Caledonia" OR Niue OR "Norfolk Island" OR "Northern Mariana Islands" OR 
Oman OR Pakistan OR Philippines OR Palau OR Palestine OR "Papua New Guinea" OR "Pitcairn 
Islands" OR Qatar OR Samoa OR "Saudi Arabia" OR Singapore OR "Solomon Islands" OR "Sri Lanka" 
OR "Syrian Arab Republic" OR Taiwan OR Thailand OR Timor-Leste OR Tokelau OR Tonga OR 
Turkey OR Tuvalu OR "United Arab Emirates" OR Vanuatu OR "Viet Nam" OR Vietnam OR "Wallis 
and Futuna Islands" OR Yemen) 
 
Web of Science [All Databases, inclusive of Russian Science Citation Index and Korean Journal Database 
(KCI)]: TOPIC: (Resistance OR "antibiotic resistance" OR "antimicrobial resistance") AND TOPIC: 
("Escherichia coli" OR "E. coli" OR *vibrio* OR Photobacterium OR Aeromonas* OR Edwardsiell* OR 
Yersinia OR Pseudomonas* OR Flavobacter* OR Piscirickettsia OR Hepatobacter OR Francisella OR 
Chlamydia OR Mycobacter* OR Nocardia OR Streptococc* OR Lactococc* OR Aerococc* OR 
Renibacter* OR Clostridium OR Enterobacterium) AND TOPIC: (aquaculture OR aquatic OR *fish* OR 
shellfish OR marine OR freshwater OR carp OR catfish OR prawn OR salmon OR shrimp OR tilapia OR 
trout) AND TOPIC: (Asia OR "Southeast Asia" OR "South Asia" OR "East Asia" OR Mekong OR 
Afghanistan OR "American Samoa" OR Bahrain OR Bangladesh OR Bhutan OR "Brunei Darussalam" 
OR Cambodia OR China OR "Chinese Taipei" OR "Cook Islands" OR "Democratic People's Republic of 
Korea" OR Fiji OR "French Polynesia" OR Guam OR "Hong Kong" OR India OR Indonesia OR Iran OR 
Iraq OR Jordan OR Kiribati OR Korea OR Kuwait OR "Lao People's Democratic Republic" OR Lao OR 
Laos OR Lebanon OR Macau OR Malaysia OR Maldives OR "Marshall Islands" OR Micronesia OR 
Mongolia OR Myanmar OR Nauru OR Nepal OR "New Caledonia" OR Niue OR "Norfolk Island" OR 
"Northern Mariana Islands" OR Oman OR Pakistan OR Philippines OR Palau OR Palestine OR "Papua 
New Guinea" OR "Pitcairn Islands" OR Qatar OR Samoa OR "Saudi Arabia" OR Singapore OR 
"Solomon Islands" OR "Sri Lanka" OR "Syrian Arab Republic" OR Taiwan OR Thailand OR Timor-
Leste OR Tokelau OR Tonga OR Turkey OR Tuvalu OR "United Arab Emirates" OR Vanuatu OR "Viet 
Nam" OR Vietnam OR "Wallis and Futuna Islands" OR Yemen) 
 
Scopus: TITLE-ABS-KEY (resistance  OR  "antibiotic resistance"  OR  "antimicrobial resistance")  AND  
TITLE-ABS-KEY ("Escherichia coli"  OR  "E. coli"  OR  *vibrio*  OR  photobacterium  OR  
aeromonas*  OR  edwardsiell*  OR  yersinia  OR  pseudomonas*  OR  flavobacter*  OR  piscirickettsia  
OR  hepatobacter  OR  francisella  OR  chlamydia  OR  mycobacter*  OR  nocardia  OR  streptococc*  
OR  lactococc*  OR  aerococc*  OR  renibacter*  OR  clostridium  OR  enterobacterium)  AND  TITLE-
ABS-KEY (aquaculture  OR  aquatic  OR  *fish*  OR  shellfish  OR  marine  OR  freshwater  OR  carp  
OR  catfish  OR  prawn  OR  salmon  OR  shrimp  OR  tilapia  OR  trout)  AND  TITLE-ABS-KEY (Asia  
OR  "Southeast Asia"  OR  "South Asia"  OR  "East Asia"  OR  mekong  OR  afghanistan  OR  
"American Samoa"  OR  bahrain  OR  bangladesh  OR  bhutan  OR  "Brunei Darussalam"  OR  cambodia  
OR  china  OR  "Chinese Taipei"  OR  "Cook Islands"  OR  "Democratic People's Republic of Korea"  
OR  fiji  OR  "French Polynesia"  OR  guam  OR  "Hong Kong"  OR  india  OR  indonesia  OR  iran  OR  
iraq  OR  jordan  OR  kiribati  OR  korea  OR  kuwait  OR  "Lao People's Democratic Republic"  OR  lao  
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OR  laos  OR  lebanon  OR  macau  OR  malaysia  OR  maldives  OR  "Marshall Islands"  OR  
micronesia  OR  mongolia  OR  myanmar  OR  nauru  OR  nepal  OR  "New Caledonia"  OR  niue  OR  
"Norfolk Island"  OR  "Northern Mariana Islands"  OR  oman  OR  pakistan  OR  philippines  OR  palau  
OR  palestine  OR  "Papua New Guinea"  OR  "Pitcairn Islands"  OR  qatar  OR  samoa  OR  "Saudi 
Arabia"  OR  singapore  OR  "Solomon Islands"  OR  "Sri Lanka"  OR  "Syrian Arab Republic"  OR  
taiwan  OR  thailand  OR  timor-leste  OR  tokelau  OR  tonga  OR  turkey  OR  tuvalu  OR  "United Arab 
Emirates"  OR  vanuatu  OR  "Viet Nam"  OR  vietnam  OR  "Wallis and Futuna Islands"  OR  yemen) 
 
CNKI: TI = (‘抗生素’ + ‘抗菌’ + ‘兽药’ + ‘兽用药’ + ‘兽用抗生素’ + ‘用药’ + ‘抗微生物’) AND TI = 
(escherichia + (E*coli) + coliform + vibrio + Photobacterium + Aeromonas + Edwardsiella + 
Edwardsiellosis + Yersinia + Pseudomonas + Flavobacter + Piscirickettsia + Hepatobacter + Francisella + 
Chlamydia + Mycobacter + Nocardia + Streptococcus + Lactococcus + Aerococcus + Renibacterium + 
Clostridium + Enterobacterium + ‘大肠菌’ + ‘埃希菌’ + ‘弧菌’ + ‘光细菌’ + ‘气单胞菌’  + ‘埃德华氏

菌’ + ‘耶尔森氏菌’ + ‘假单胞菌’ + ‘黄杆菌’ + ‘立克次氏体’ + ‘肝杆菌’ + ‘弗朗西菌’ + ‘衣原体’ + ‘

分枝杆菌’ + ‘诺卡氏菌’ + ‘链球菌’ + ‘乳球菌’ + ‘空气球菌’ + ‘肾菌’ + ‘梭菌’ + ‘肠杆菌’) AND TI = 

(‘水产’ + ‘鱼’ + ‘渔’ + ‘贝’ + ‘海’ + ‘淡水’ + ‘鲤’ + ‘虾’ + ‘鲑’ + ‘罗非’ + ‘鳟’)) OR (KY = (‘抗生素’ + 

‘抗菌’ + ‘兽药’ + ‘兽用药’ + ‘兽用抗生素’ + ‘用药’ + ‘抗微生物’) AND KY = (escherichia + 
(E*coli) + coliform + vibrio + Photobacterium + Aeromonas + Edwardsiella + Edwardsiellosis + 
Yersinia + Pseudomonas + Flavobacter + Piscirickettsia + Hepatobacter + Francisella + Chlamydia + 
Mycobacter + Nocardia + Streptococcus + Lactococcus + Aerococcus + Renibacterium + Clostridium + 
Enterobacterium + ‘大肠菌’ + ‘埃希菌’ + ‘弧菌’ + ‘光细菌’ + ‘气单胞菌’  + ‘埃德华氏菌’ + ‘耶尔森

氏菌’ + ‘假单胞菌’ + ‘黄杆菌’ + ‘立克次氏体’ + ‘肝杆菌’ + ‘弗朗西菌’ + ‘衣原体’ + ‘分枝杆菌’ + ‘

诺卡氏菌’ + ‘链球菌’ + ‘乳球菌’ + ‘空气球菌’ + ‘肾菌’ + ‘梭菌’ + ‘肠杆菌’) AND KY = (‘水产’ + ‘

鱼’ + ‘渔’ + ‘贝’ + ‘海’ + ‘淡水’ + ‘鲤’ + ‘虾’ + ‘鲑’ + ‘罗非’ + ‘鳟’)) OR (AB = (‘抗生素’ + ‘抗菌’ + ‘

兽药’ + ‘兽用药’ + ‘兽用抗生素’ + ‘用药’ + ‘抗微生物’) AND AB = (escherichia + (E*coli) + 
coliform + vibrio + Photobacterium + Aeromonas + Edwardsiella + Edwardsiellosis + 
Yersinia + Pseudomonas + Flavobacter + Piscirickettsia + Hepatobacter + Francisella + Chlamydia + 
Mycobacter + Nocardia + Streptococcus + Lactococcus + Aerococcus + Renibacterium + Clostridium + 
Enterobacterium + ‘大肠菌’ + ‘埃希菌’ + ‘弧菌’ + ‘光细菌’ + ‘气单胞菌’  + ‘埃德华氏菌’ + ‘耶尔森

氏菌’ + ‘假单胞菌’ + ‘黄杆菌’ + ‘立克次氏体’ + ‘肝杆菌’ + ‘弗朗西菌’ + ‘衣原体’ + ‘分枝杆菌’ + ‘

诺卡氏菌’ + ‘链球菌’ + ‘乳球菌’ + ‘空气球菌’ + ‘肾菌’ + ‘梭菌’ + ‘肠杆菌’) AND AB = (‘水产’ + ‘

鱼’ + ‘渔’ + ‘贝’ + ‘海’ + ‘淡水’ + ‘鲤’ + ‘虾’ + ‘鲑’ + ‘罗非’ + ‘鳟’)) 
 
Grey literature searches: 
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AGRIS: (Resistance OR "antibiotic resistance" OR "antimicrobial resistance") AND (bacteria species) 
AND (aquaculture OR aquatic OR fish OR shellfish OR marine OR freshwater OR fish spp.) AND (Asia 
OR "Southeast Asia" OR "South Asia" OR "East Asia" OR Mekong) 
 
CGIAR FISH: Resistance OR "antibiotic resistance" OR "antimicrobial resistance" 
 
IFPRI: Resistance OR "antibiotic resistance" OR "antimicrobial resistance" 
 
WorldFish: (Resistance OR "antibiotic resistance" OR "antimicrobial resistance”) AND (Asia OR 
"Southeast Asia" OR "South Asia" OR "East Asia" OR Mekong) 
 
The literature search identified 5,804 unique records screened by titles and abstracts. Of these records, 
1,131 full text articles were assessed for eligibility, and 343 records yielding 749 point prevalence surveys 
were included in the data analysis (Fig. S1). 
 
Supplementary Note 2: Data Extraction 
 
Data extraction was performed according to the following protocols to generate the database used for 
analysis. Data was extracted using Google Sheets and Microsoft Excel (version 16.51). The protocols are 
adapted from Resistancebank3, adjusted for the contexts and characteristics of PPS conducted from 
aquatic animals and settings. The data extracted from each record included the Direct Object Identifier 
(DOI), author, year of publication, country, latitude and longitude of sample collection, derivation of 
lat/long coordinates, location type of sample origin, sampling dates, animal species sampled and whether 
cultured or wild caught, sample type collected, health status of animal, history of antimicrobial use, 
pathogen and strain, number of samples collected, number of isolates subjected to antimicrobial 
susceptibility testing (AST), AST method, breakpoints and guidelines used, drug class, compound, 
resistance rate, and author contact details. 
 
The complete database legend is available on the Zenodo public repository (doi: 
10.5281/zenodo.4609884)4. 
 
The following broad antibiotic classes were included in the database: PEN (Penicillins), CEP 
(Cephalosporins), MON (Monobactams), CAR (Carbapenems), AMI (Aminoglycosides), QUI 
(Quinolones), AMP (Amphenicols), TET (Tetracyclines), SUL (Sulfonamides), MAC (Macrolides), 
Glycopeptides (GLY), POL (Polymyxins), and OTH (Others).  
 
Antimicrobial compounds used for susceptibility testing were designated by a 3-letter code and the 
Anatomical Therapeutic Chemical (ATC) Classification code designation 
(https://www.whocc.no/atc_ddd_index/ or https://www.whocc.no/atcvet/atcvet_index/). ATC-Code 
starting with J0 stand for antibiotics for human systemic use while QJ01for veterinary use. For antibiotics 
without attributed ATC codes, a pseudo-code was constructed by using the ATC code of the molecular 
classification (5 or 6 characters for human and veterinary antibiotics, respectively) and adding the first 
character of the compound’s name separated by a - (e.g. Sarafloxacin – J01MA-S). Some ATC codes are 
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provided for mixture of compounds (e.g. J01RA01 for penicillins in combination with other 
antibacterials). Active ingredients’ names were reported when commercial drugs were used. 
 
The antibiotics found across all studies are the following (3 letter code, ATC-code): Amoxicillin-
Clavulanic Acid (AMC, J01CR02); Ticarcillin-Clavulanic acid (TIM, J01CR03); Piperacillin-Tazobactam 
(PIT, J01CR05); Ampicillin-Sulbactam (SAM, J01CR01); Ampicillin (AMP, J01CA01); Amoxicillin 
(AMX, J01CA04); Amoxicillin-Sulbactam (AMS, J01CR02); Azlocillin (AZL, J01CA09); Ticarcillin 
(TIC, J01CA13); Cloxacillin (CLO, J01CF02); Oxacillin (OXA, J01CF04); Piperacillin (PIP, J01CA12); 
Flucloxacillin (FLU, J01CF05); Carbenicillin (CAR, J01CA03); Methicillin (MET, J01CF03); Penicillin 
(PEN, J01CE01); Mezocillin (MEZ, J01CA10); Ceftriaxone (CRO, J01DD04); Ceftazidime (CAZ, 
J01DD02); Cefalexin (CLX, J01DB01); Cefotaxime (CTX, J01DD01); Cefepime (FEP, J01DE01); 
Cefoxitin (FOX, J01DC01); Cefalotin (CFL, J01DB03); Ceftiofur (CFU, QJ01DD90); Cefuroxime 
(CXM, J01DC02); Cefpodoxime (CPD, J01DD13); Cefazolin (CFZ, J01DB04); Cefixime (CFM, 
J01DD08); Cefamandole (CMD, J01DC03); Cefoperazone (CFP, J01DD12); Moxalactam (MOX, 
J01DD06); Cefradine (CFR, J01DB09); Sulbactam-CFP (SFP, J01DD62); Ceftizoxime (CZM, 
J01DD07); Cephaloridine (CLD, J01DB02); CAZ-Clavulanic Acid (CAC, J01DD52); Cefotiam (CFT, 
J01DC07); Cefpimizole (CPM, J01DC-C); Cefminox (CMX, J01DC12); Cefaclor (CFC, J01DC04); 
Cefadroxil (CFR, J01DB05); Aztreonam (ATM, J01DF01); Imipenem (IPM, J01DH51); Ertapenem 
(ERT, J01DH03); Meropenem (MEM, J01DH02); Kanamycin (KAN, J01GB04); Gentamicin (GEN, 
J01GB03 ); Neomycin (NEO, J01GB05); Streptomycin (STR, J01GA01); Amikacin (AMK, J01GB06); 
Tobramycin (TOB, J01GB01); Apramycin (APR, QA07AA92); Netilmicin (NET, J01GB07); 
Spectinomycin (SPT, J01XX04); Fleroxacin (FLR, J01MA08); Enoxacin (ENO, J01MA04); 
Ciprofloxacin (CIP, J01MA02); Nalidixic acid (NAL, J01MB02); Pipemidic acid (PIM, J01MB04); 
Enrofloxacin (ENR, QJ01MA90); Norfloxacin (NOR, J01MA06); Ofloxacin (OFX, J01MA01); Oxolinic 
Acid (OXO, J01MB05); Flumequine (FLQ, J01MB07); Moxifloxacin (MXF, J01MA14); Levofloxacin 
(LVX, J01MA12); Pefloxacin (PEF, J01MA03); Marbofloxacin (MRB, QJ01MA93); Gatifloxacin (GAT, 
S01AE0E); Lomefloxacin (LOM, J01MA07); Danofloxacin (DAN, QJ01MA92); Sarafloxacin (SAR, 
J01MA-S); Chloramphenicol (CHL, J01BA01); Florfenicol (FFC, QJ01BA90); Thiamphenicol (TFC, 
J01BA02); Tetracycline (TET, J01AA07); Oxytetracycline (OXT, J01AA06); Doxycycline (DOX, 
J01AA02); Minocycline (MIN, J01AA08); Chlortetracycline (CTE, J01AA03); Sulfamethoxazole-
Trimethoprim (SXT, J01EE01); Sulfamethoxazole (SMZ, J01EC01); Sulfafurazole or Sulfisoxazole 
(SOX, J01EB05); Sulfadiazine (SUD, J01EE-S); Sulfonamides (SSS, J01E); Trimethoprim-Sulfadiazine 
(TDZ, QJ01EW10); Trimethoprim (TMP, J01EA01); Sulfamonomethoxine (SMN, QJ01EQ18); 
Kitasamycin (KIT, QJ01FA93); Erythromycin (ERY, J01FA01); Oleandomycin (OLD, J01FA05); 
Lincomycin (LIN, J01FF02); Clindamycin (CLI, J01FF01); Clarithromycin (CLR, J01FA09); Tylosin 
(TYL, QJ01FA90); Azithromycin (AZM, J01FA10); Spiramycin (SPI, J01FA02); Tilmicosin (TIL, 
QJ01FA91); Roxithromycin (ROX, J01FA06); Midecamycin (MID, J01FA03); Vancomycin (VAN, 
J01XA01); Teicoplanin (TEC, J01XA02); Polymyxin B (PMB, J01XB02); Colistin (CST, J01XB01); 
Linezolid (LIZ, J01XX08); Nitrofurantoin (NIT, J01XE01); Nitrofurazone (NFZ, D08AF01); Bleomycin 
(BLM, L01DC01); Rifampicin (RIF, J04AB02); Bacitracin (BAC, J01XX10); Fosfomycin (FOF, 
J01XX01); Fusidic acid (FUS, J01XC01); Metronidazole (MTD, J01XD01); Pristinamycin (PRI, 
J01FG01); Furazolidone (FRZ, QJ01XE90); Novobiocin (NOV, QJ01XX95); Bicyclomycin (BCM, J01-
B); Virginiamycin (VRG, D06AX10). 
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The median of the interval between mid-point of sampling dates and year of publication—set to mid-point 
of year (e.g. July 2nd)—was calculated for all records where such details were given. In records where 
sampling dates were not provided, the estimated sampling dates were then calculated by subtracting the 
median interval in days from the publication date. 
 
For records requiring clarification or with missing data, corresponding authors were contacted. A total of 
44 emails were sent requesting clarification, and 15 responses were received. Records were excluded 
when no response was received and missing or unclear data precluded further analysis. 
 
Asia sub-regions and their corresponding countries and territories were defined according to United 
Nations classifications (https://unstats.un.org/unsd/methodology/m49/) (Fig. S3), with modification to 
merge Western Asia and Southern Asia into a single region for analysis. 
 
There were 104 unique species or groups of species represented in our dataset. To facilitate analysis, 
species were aggregated into six groups reflective of aquatic animal and type of aquatic environment: 
marine fish, freshwater fish, brackish water fish, shrimp, and a mixed group where aquatic animal species 
sampled spanned categories and for which resistance rates were not disaggregated. The remaining species 
were pooled into a sixth group that included other crustaceans (crab), cephalopods (squid), gastropod 
molluscs (abalone), amphibians (frogs and salamanders), echinoderms (sea cucumbers and sea urchins), 
and reptiles (turtles). 
 
Supplementary Note 3: Data Analysis 
 
The percentage of antimicrobial compounds in each survey with resistance exceeding 50% was calculated 
(P50). With the exception of select Aeromonas and Flavobacterium spp. pathogens of primarily cold 
water salmonid species5, the majority of aquatic animal pathogens have neither standard interpretive 
criteria for susceptibility testing nor clinical breakpoints to guide therapeutic interventions in aquatic 
animals. In the absence of standard interpretive criteria, surveys frequently used human clinical 
breakpoints when available, either at the bacterial species, genera or family level. Therefore, the P50 is 
best used as an index of multi-drug resistance rather than indicative of expected therapeutic outcomes in 
aquatic animals. 
 
Analysis of Antimicrobial Resistance Trends Across All Bacteria Isolated from Aquatic Food Animals 
 
The P50 metric was used in the analysis of temporal trends and for geospatial modeling. We compared 
P50 with two additional metrics: P30 (calculated as the percentage of antimicrobial compounds in each 
survey with resistance exceeding 30%) and mean resistance (calculated as the total number of resistant 
isolates divided by the number of isolates * the number of antibiotics tested in each survey). Across all 
surveys, there is a positive correlation between P50 and mean resistance (Pearson’s correlation coefficient 
= 0.9596). In cultured animals, P50 (RMSE =0.223 ; coefficient = 0.004; p = 0.633) and Mean (RMSE 
=0.207 ; coefficient = 0.002 ; p = 0.758) were comparable with a positive coefficient slope, whereas for 
P30 (RMSE =0.235 ; coefficient = -0.012; p = 0.158) the slope is negative. In wild caught animals, the 
Mean model fit improved (RMSE = 0.176; coefficient = -0.065; p = 0.002) when compared with P50 
(RMSE = 0.235; coefficient = -0.085; p = 0.003) and P30 metrics (RMSE = 0.262; coefficient = -0.106; p 
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= 0.001), however the directionality of the trends is consistent and remain statistically significant across 
all metrics (Fig. S19). We use P50 as an index of multi-drug resistance to document the temporal and 
geographic trends in resistance in bacteria of aquatic animal origin intended for human consumption. 
 
Temporal trends were analyzed by fitting regression lines using generalized linear models with 
quasibinomial error distribution weighted by the log of the number of isolates in each survey subjected to 
susceptibility testing in order to reflect uncertainty in surveys with a limited number of isolates. Root 
mean square error (RMSE) was used to evaluate goodness of fit for the temporal trends regression 
models. RMSE indicated model fits were moderate (RMSEcultured = 0.223; and RMSEwild caught = 0.235), 
consistent with both the scattered nature and scarcity of the data. The 95% confidence intervals were 
generated as the fitted values +/- 1.96 * standard error of the fitted value. 
 
One-way analysis of variance (ANOVA) tests were used to analyze the significance of the difference in 
mean P50 across all surveys when comparing samples from (i) cultured and wild caught aquatic animals; 
(ii) animals with or without history of antimicrobial use prior to sampling; and (iii) diseased and healthy 
aquatic animals. One-way ANOVA tests were conducted on arcsine transformed P50 values to normalize 
the distributions of these proportions. The distributions of the residuals were checked visually using 
histograms and q-q plots and with the Shapiro-Wilk normality test. Homogeneity of variance between 
groups was confirmed using a Bartlett test and by examining residual plots. 
 
Analysis of Antimicrobial Resistance in Foodborne Pathogens Isolated from Aquatic Animals 
 
The pooled prevalence of resistance was calculated from individual pathogen-drug resistance rates to 
report resistance in foodborne pathogens specifically (Vibrio spp., E.coli, Streptococcus spp. and 
Aeromonas spp.). We analyzed antimicrobial resistance in surveys at the bacterial genera level. This level 
of taxonomy was completely available (no missing entries) in our database, whereas the more granular 
bacterial species and strain level data were either not consistently provided or could not be disaggregated 
(143 surveys; 19%). In 2019, the U.S. FDA National Antimicrobial Resistance Monitoring System 
(NARMS) initiated a pilot surveillance program for pathogens from seafood6. This NARMS pilot study 
design targets Vibrio, Aeromonas and Enterococcus spp. reported at the genera level. Analysis of 
resistance in foodborne bacteria of aquatic animal origin was guided by antimicrobial compounds of 
relevance for therapeutic use in human clinical settings. Resistance rates were calculated for Vibrio spp., 
E.coli, Streptococcus spp. and Aeromonas spp. from samples originating from marine fish, freshwater 
fish, and shrimp groups using The Clinical & Laboratory Standards Institute (CLSI M45 and M100) and 
WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) pathogen-drug 
susceptibility testing guidelines (Table S1). The 95% confidence interval was calculated for the 
population proportion. 
 
Supplementary Note 4: Geospatial modeling 
 
P50 values from point prevalence surveys were interpolated to map AMR in freshwater and marine 
environments at a resolution of 0.0833 decimal degrees, or approximately 10 km at the equator.  
 
Freshwater Protocol 
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Using a two-step procedure, we first trained multiple child models, and subsequently stacked model 
predictions for universal kriging. This stacked generalization ensemble modeling approach has been used 
to model population level health metrics7 as well as the distribution of AMR in terrestrial animals3. Such 
approaches have been shown to improve overall predictive accuracy when compared with individual 
models8. 
 
The freshwater data set was replicated five times to expand values for modeling. Each survey was 
randomly redistributed within a discrete uncertainty range in kilometers defined as the mean of the 
uncertainty boundaries around the X and Y coordinates for the smallest available administrative unit or 
place name provided in the survey. In practice, the uncertainty range for a survey where precise sampling 
coordinates were provided was zero, and such surveys (n=43) were therefore not redistributed. P50 values 
from the expanded data set were first transformed into presence or absence of resistance using random 
binarization, where P50 values were compared with a random number between zero and one and 
classified as presence if they exceed this number or absence if they fell below this number. Next, pseudo-
absence points were generated and distributed to provide additional covariate values that were not 
associated with presences (P50 = 0). Pseudo-absence points were sampled within a radius of 20 to 500 km 
from presence points using stratified random sampling proportional to the human population density to 
account for potential P50 observation bias in more densely populated areas. Child models contained equal 
numbers of true presence versus absences (true absence + pseudo absences) as balanced data sets have 
been shown to enhance predictive accuracy of spatial models9. 
 
In the first step, we trained three classes of child models: boosted regression trees (BRT)10; least absolute 
shrinkage and selection operator applied to logistic regression (LASSO-GLM)11; and overlapped grouped 
LASSO penalties for General Additive Models selection (LASSO-GAM)12. Models were trained to 
quantify the association between P50 and a set of environmental and anthropogenic covariates relevant to 
the freshwater environment (Fig. S13 and Table S2). Covariates were log10-transformed and resampled 
from their original resolution to 0.0833 decimal degrees. 
 
Prior to model fitting, spatial sorting bias (SSB) was calculated to determine whether mean distance 
between sets of points and their nearest reference points for the training and validation data sets for each 
spatial fold differed13. The SSB approached one (SSB = .95), indicating negligible bias. The BRT model 
was fit using a tree complexity of two, a learning rate of 0.0001, and a step size of 60, controlling 
interactions between variables, the weights of each individual tree in the final model, and the number of 
trees added at each cycle, respectively. All child models were fit using three-fold spatial cross validation 
to prevent local overfitting and bootstrapped 10 times to account for variability introduced in the 
redistribution of surveys according to their geographic uncertainty range; in the random binarization of 
P50 values; and in the stratified random sampling of pseudo-absence points. For all child models, the 
modified UN Asia sub-regions served as the three cross validation regions: Eastern Asia; Western and 
Southern Asia; and South-eastern Asia. Model predictive accuracy was evaluated by taking the mean 
value of the area under the receiver operator characteristic curve (AUC) for all bootstrap runs. The BRT 
AUC = 0.60, LASSO-GLM AUC = 0.57, and LASSO-GAM AUC = 0.56. The distribution of relative 
influence10 for each covariate across all bootstraps was used to evaluate the contribution of covariates in 
the BRT models (Fig. S16). 
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In the second step, predictions from child models were stacked and used as covariates for universal 
kriging of P50 values between survey locations. Duplicate coordinates from surveys conducted at the 
same location were randomly redistributed within 1 km of the survey coordinates, weighted by the log10 
of the number of isolates in the survey to reflect broader geographic range from larger surveys. We fit a 
Matern variogram with a cutoff of 500 km, which is where the semi-variogram attained the range. The 
kriging procedure was weighted by the number of isolates at each location. 
 
We quantified spatial uncertainty in our P50 map, producing a 95% confidence interval on the predicted 
values (Fig. S18). We first calculated the standard deviation in predictions in each pixel in each child 
model. Next, we calculated a standardized kriging variance such that variance was zero at the location of 
observations (Fig. S17). These were used to produce the 95% confidence interval map on the predictions 
as follows: 
 

95%	%& = 1.96	 ×	(-.(/!"#	, /%&''()*%+ , /%&''()*&+) +	√456,) 
 
Where /!"#	, /%&''()*%+ , /%&''()*&+ are the P50 predicted values from each child model and VarK is 
the standardized kriging variance after stacking. 
 
Predictions were masked to freshwater using a hybrid of the Global Lakes and Wetlands Database14, the 
HydroSHEDS lakes database15 of freshwater lakes with surface area greater than 10 hectares, and the 
HydroSHEDS rivers database16 of rivers with long-term average discharge greater than 10 m3/s. 
 
Marine Protocol 
 
A root mean square error (RMSE)-weighted ensemble model was used to map AMR in marine 
environments. In the marine model, P50 values from inland freshwater surveys were excluded. Surveys 
from wild caught marine animals sampled at land based post-harvest sites were randomly assigned 
coordinates to open ocean within a radius of .54 to 81 nautical miles (1 to 150 km) from their nearest 
coastal location. This range captures a distance intended to include the largest distribution of both 
artisanal and industrial fishing fleets in Asia, and falls within the 200 nautical mile distance from 
coastline exclusive economic zones for which countries retain rights to explore their marine resources. 
The marine data set consisted of these surveys combined with surveys originating from marine, coastal 
marine, brackish water, and coastal brackish water sampling locations, which were randomly distributed 
within 1 km radius from their original sampling location to avoid duplicate coordinates. Coastal marine 
surveys with land based coordinates were redistributed to their nearest coastline. 
 
The combined marine data set was then used to interpolate P50 using only the sampling coordinates as 
covariates. Inverse distance weighted, natural neighbor, and ordinary kriging models were produced. In 
the natural neighbor model, the maximum number of neighbor locations was set to eight and the inverse 
distance power set to one. In the ordinary kriging model, we fit a Matern variogram model with a 
maximum range of 2,000 km. The kriging procedure was weighted by the number of isolates subjected to 
antimicrobial susceptibility testing in each survey to capture uncertainty associated with surveys with a 
limited number of isolates.  
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We then stacked the models and weighted their P50 predictions according to their root mean square error 
(RMSE) to capture the fit and variance of each model in the final ensemble model. The weights were 
taken as the inverse of the RMSE of each constituent model divided by the sum of RMSE for all models, 
and expressed as their relative proportion in the final RMSE-weighted marine AMR ensemble model 
(Table S3). A transparency function was added proportional to the spatial kernel density of surveys to 
reflect geographic distribution of surveys contributing to the final marine P50 map. The spatial kernel 
density was calculated at a distance bandwidth of 8.333 decimal degrees (approximately 1000 km at the 
equator), which is where the variogram of the surveys leveled or reached range. 
 
Optimizing Locations for Future Surveillance 
 
We identified the locations for 50 hypothetical surveys that could be conducted across Asia in the next 
year, aimed at maximizing the information gained from future AMR surveillance in freshwater 
aquaculture. Future survey locations were identified using a map of “need for surveillance” (78), defined 
as: 
 

78 =	456, ∙ :- ∙ :. 
 
Where 456, represents kriging variance; and :- and :. are human population density and inland 
aquaculture production, respectively. These terms weight the necessity for surveillance by those areas 
where AMR is likely to have the greatest impact on human health and the aquaculture industry. All three 
terms were standardized to range [0,1], thus given equal weights in determining the need for surveillance. 
 
We applied the approach proposed by Zhao et al. (submitted) that maximizes information gain in 
determining each successive survey location. First, we identified the pixel location with the highest value 
on the map of 78—denoted as ;/, </—as the first survey location. Then the value of 78 at each pixel 
location ;0 , <0 was recalculated as 
 

78(23	456789)	;!,=! = 78;!,=! × (1 −
overlap	area

	neighborhood	area	) 

 
Where the “neighborhood area” consists of all pixels within the distance of decreased NS to a new survey, 
represented as a circular area with radius dist. “Overlap area” is the overlapped neighborhood areas 
between location ;/, </ and ;0 , <0. Each additional survey location was then placed successively at the 
pixel location with highest value on the recalculated map of 78 until all surveys were assigned. 
 
The radius dist of the neighborhood area was optimized using a sensitivity analysis, through approximate 
Bayesian computation (sequential Monte Carlo)17, such that the sum of all pixel values on the map of 78  
was minimized after all survey locations were assigned and added in the kriging model. The priors of dist 
were a uniform distribution between 50 km and 500 km. 
 
Data analysis was conducted in R version 3.6.3. 
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Fig. S1. Systematic review2 and meta-analysis of antimicrobial resistance point prevalence surveys 
in aquatic animals. *Exclusion criteria for CNKI search records are not reflected in individual criteria 
totals.  
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Fig. S2. Pathogens represented in resistance surveys in aquatic animals. 
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Fig. S3. Asia sub-regions from which the point prevalence surveys originate. Sub-regions are defined 
according to the United Nations "Standard Country or Area Codes for Statistical Use", with Western Asia 
and Southern Asia merged. 
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Fig. S4. Resistance surveys conducted in aquatic animals. Countries constituting each sub-region 
(Eastern Asia: CHN, HKG, JPN, KOR, TWN; Western and Southern Asia: BGD, IND, IRN, KWT, LBN, 
PAK, SAU, TUR; South-eastern Asia: KHM, MYS, PHL, SGP, THA, VNM) are represented by their 
International Organization for Standardization country codes. Year of publication is shown. 
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Fig. S5. Countries conducting resistance surveys in aquatic animals. Countries are represented by 
their International Organization for Standardization country codes. Year of publication is shown. 
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Fig. S6.  Proportion of drugs with resistance higher than 50% (P50) in each point prevalence survey 
in Asia. P50 is shown from all aquatic animal species from all aquatic environments. 
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Fig. S7. Distribution of P50 for cultured and wild caught aquatic animals. The horizontal box lines 

represent the first quartile, the median, and the third quartile. Whiskers denote the range of points within 

the first quartile − 1.5× the interquartile range and the third quartile + 1.5× the interquartile range. n = 639 

individual point prevalence surveys. One-way ANOVA p=.059 
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Fig. S8. Distribution of P50 from surveys in cultured aquatic animals in which history of 

antimicrobial use prior to sampling was recorded. Analysis is limited to surveys that explicitly 

identified that antimicrobials were (“yes”) or were not (“no”) applied to the sampled animals prior to 

sampling (n = 63 individual point prevalence surveys). The horizontal box lines represent the first 

quartile, the median, and the third quartile. Whiskers denote the range of points within the first 

quartile − 1.5× the interquartile range and the third quartile + 1.5× the interquartile range. One-way 

ANOVA p=2E-04. 
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Fig. S9. P50 correlation with World Bank basic sanitation index18. The correlation is shown for 

surveys from wild caught aquatic animals in both freshwater and marine environments (n = 80). The 

horizontal box lines represent the first quartile, the median, and the third quartile. Whiskers denote the 

range of points within the first quartile − 1.5× the interquartile range and the third quartile + 1.5× the 

interquartile range. Regression line is fitted using a generalized linear model with a solid line indicating 

statistical significance (p=0.024). 
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Fig. S10. Distribution of P50 from diseased and healthy animals. The horizontal box lines represent 

the first quartile, the median, and the third quartile. Whiskers denote the range of points within the first 

quartile − 1.5× the interquartile range and the third quartile + 1.5× the interquartile range. n = 684 

individual point prevalence surveys. One-way ANOVA p=6.05E-05. 
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Fig. S11. Annual P50 trends for select pathogen-animal-country pairings. (a) Surveys of Yersinia 

spp. sampled from trout in Turkey (n = 23; p=.049); (b) Surveys of Edwardsiella spp. sampled from 

catfish in Vietnam (n = 9; p=.388); and (c) Surveys of Enterobacteriaceae sampled from fish in India (n = 

24; p=.751). The horizontal box lines represent the first quartile, the median, and the third quartile. 

Whiskers denote the range of points within the first quartile − 1.5× the interquartile range and the third 

quartile + 1.5× the interquartile range. Each survey is represented by a dot with horizontal jitter for 

visibility. Regression lines are fit using generalized linear model regressions, with a solid line in panel (a) 

indicating statistical significance (p=.049); 95% confidence intervals are shown in shaded areas. 
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Fig. S12. Species groups represented in resistance surveys from aquatic animals. Year of publication 
is shown. 
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Fig. S13. Freshwater environmental and anthropogenic covariates used to train child models. All 

covariates are log10 scaled. Accessibility to cities (acc); gross domestic product (gdp); irrigated land 

percentage (irg); minimum monthly temperature (tmp); terrestrial livestock P50 (tamr); terrestrial 

livestock antimicrobial use (tamu); human population density (pop); and population densities of cattle 

(ca), pigs raised in intensively (PgInd), pigs raised semi-intensively (PgInt), pigs raised extensively 

(PgExt), chickens raised intensively (ChInt), and chickens raised extensively (ChExt). (See Table S2 for 

details) 
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Fig. S14. Freshwater predicted P50 maps for each child model trained to environmental and 

anthropogenic covariates. Child models are boosted regression trees (BRT); least absolute shrinkage 

and selection operator applied to logistic regression (LASSO-GLM); and overlapped grouped LASSO 

penalties for General Additive Models selection (LASSO-GAM). 
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Fig. S15. Redistribution of surveys in (A) freshwater and (B) marine models. Freshwater surveys 

without precise sampling coordinates were redistributed at random within a geographic uncertainty range 

of the smallest available administrative unit. Surveys were redistributed on each of 10 bootstrap runs; a 

single bootstrap run is displayed. In some instances, given sampling locations (blue) are superimposed 

where multiple surveys were conducted at the same location. In the marine model (B), only post-harvest 

surveys were redistributed to open water (Supplementary Note 4, Marine Protocol) and are displayed. 
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Fig. S16. Relative influence of covariates on resistance in freshwater boosted regression tree (BRT) 

model. Distributions of relative influence for each covariate in freshwater BRT models across 10 

bootstrap runs (n = 10; for acronyms, see Supplementary Table S2). Coefficients after regularization from 

LASSO-GLM models were assigned as positive or negative for each covariate in each run. Positive, 

negative, and null associations with resistance for each covariate reflect the mean value of bootstrap runs 

where the coefficients were positive exceeding 30%, where the coefficients were negative, and where the 

coefficients were positive but in less than 30% of runs, respectively. The vertical box lines represent the 

first quartile, the median, and the third quartile. Whiskers denote the range of points within the first 

quartile − 1.5× the interquartile range and the third quartile + 1.5× the interquartile range. No positive 

associations (coefficients positive exceeding 30%) were identified. 
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Fig. S17. Standardized kriging variance (spatial interpolation uncertainty) on P50 predictions in 

freshwater environments. Variance is standardized such that it equals zero at the location of 

observations. 
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Fig. S19. Annual trends in multi-drug resistance. Surveys from cultured aquatic animals (top row, n = 

558); surveys from wild caught aquatic animals (bottom row, n = 81). (a,b) the proportion of drugs with 

resistance greater than 50% (P50) in each survey; (c,d) mean resistance calculated as resistant isolates 

divided by the number of isolates * number of antibiotics tested in each survey; and (e,f) the proportion of 

drugs with resistance greater than 30% (P30) in each survey. The horizontal box lines represent the first 

quartile, the median, and the third quartile. Whiskers denote the range of points within the first 

quartile − 1.5× the interquartile range and the third quartile + 1.5× the interquartile range. Each survey is 

represented by a dot with horizontal jitter for visibility. Regression lines are fit using generalized linear 

model regressions, with a solid line indicating statistical significance ((b) p=0.003; (d) p=0.002; (f) 

p=0.001); 95% confidence intervals are shown in shaded areas. Goodness of fit is assessed using root 

mean square error (RMSE).  
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Table S1. Antimicrobial classes and corresponding compounds recommended by The Clinical & 
Laboratory Standards Institute (CLSI) for susceptibility testing of Aeromonas (M45)19, Streptococcus 
(M100)20, and Vibrio (M45), and by the WHO Advisory Group on Integrated Surveillance of 
Antimicrobial Resistance (AGISAR) for E. coli.21 *Compounds not represented in the dataset. 
 

Antimicrobial 
Class 

Aeromonas spp. E. coli Streptococcus 
spp. (β-

Hemolytic 
/Viridans) 

Vibrio spp. 

Aminoglycosides  Amikacin 
Gentamicin 

Gentamicin   Amikacin 
Gentamicin 

Amphenicols Chloramphenicol Chloramphenicol Chloramphenicol Chloramphenicol 
Carbapenems Ertapenem 

Imipenem 
Meropenem 

Imipenem 
Meropenem 

Ertapenem 
Meropenem 

Imipenem 
Meropenem 

Cephalosporins Cefepime 
Cefotaxime 
Cefoxitin 

Ceftazidime 
Ceftriaxone 
Cefuroxime 

Cefepime 
Cefotaxime 
Cefoxitin 

Ceftazidime 
Ceftriaxone 

 

Cefepime 
Cefotaxime 
Ceftaroline* 
Ceftriaxone 

Cefazolin 
Cefepime 

Cefotaxime 
Cefoxitin 

Ceftazidime 
Cefuroxime 

Glycopeptides    Vancomycin  
Glycylcyclines  

 
 Tigecycline*   

Lincosamides    Clindamycin  
Lipopeptides    Daptomycin*  
Macrolides  Azithromycin           Azithromycin 

Clarithromycin 
Erythromycin 

Azithromycin           

Monobactams Aztreonam    
Nitrofurans   Nitrofurantoin   

Oxazolidinones   Linezolid  
Penicillins Piperacillin-

Tazobactam 
Amoxicillin 
Ampicillin 

Temocillin* 

Ampicillin 
Penicillin          

Amoxicillin-
Clavulanic Acid 

Ampicillin 
Ampicillin-
Sulbactam 
Piperacillin 
Piperacillin-
Tazobactam 

Polymyxins   Colistin   
Quinolones Ciprofloxacin 

Levofloxacin 
Ciprofloxacin 
Nalidixic acid 

Pefloxacin 

Levofloxacin 
Ofloxacin 

Ciprofloxacin 
Levofloxacin 

Ofloxacin 
Sulfonamides and 

dihydrofolate 
reductase 
inhibitors 

Sulfamethoxazole-
Trimethoprim 

Sulfamethoxazole 
Sulfamethoxazole-

Trimethoprim 
Sulfamonomethoxine 

Sulfisoxazole 
Sulfonamides 
Trimethoprim 

 Sulfadiazine 
Sulfamethoxazole 
Sulfamethoxazole-

Trimethoprim 
Sulfamonomethoxine 

Sulfisoxazole 
Sulfonamides 
Trimethoprim 
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Trimethoprim-
Sulfadiazine 

Tetracyclines Tetracycline Tetracycline Tetracycline Doxycycline 
Tetracycline 
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Table S2. Freshwater environmental and anthropogenic covariates used to train child models. 
 

Name Acronym Year Resolution Source 

Accessibility 
to Cities 

acc 2015 30 arc 
second 

Weiss D et al. Accessibility to Cities 
https://malariaatlas.org/research-
project/accessibility_to_cities/ 

Gross 
Domestic 
Product 

gdp 2010 30 arc 
second 

World Bank 
https://datacatalog.worldbank.org/dataset/gross-domestic-
product-2010 

Irrigated Land 
Percentage 

irg 2005 0.083333 
decimal 
degrees 

Siebert S et al. Global Map of Irrigation Areas 
http://www.fao.org/aquastat/en/geospatial-
information/global-maps-irrigated-areas/latest-version 

Minimum 
Monthly 
Temperature 

tmp 2020 2.5 
minutes 

WorldClim  
https://www.worldclim.org/data/worldclim21.html 

Terrestrial 
Livestock P50 

amr 2018 0.083333 
decimal 
degrees  

Van Boeckel T et al. 
https://resistancebank.org 

Terrestrial 
Livestock 
AMU 

amu 2017 0.083333 
decimal 
degrees  

Van Boeckel T et al. 

Human 
Population 
Density 

pop 2020 2.5 
minutes 

Center for International Earth Science Information Network 
- CIESIN - Columbia University. 2018. Gridded Population 
of the World, Version 4 (GPWv4): Population Density, 
Revision 11. 
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-
population-density-rev11 

Terrestrial 
Livestock 
Production 

Ca 
PgInd 
PgInt 
PgExt 
ChInt 
ChExt 

2010 0.083333 
decimal 
degrees  
 

Robinson TP et al. Global distribution of ruminant livestock 
production systems V5 (5 minutes of arc) 
 
Gilbert M et al. Global distribution of chickens and pigs 
raised in extensive, semi-intensive and intensive systems in 
2010 (5 minutes of arc) 
 
http://www.fao.org/livestock-systems/production-
systems/en/ 

 
Table S3. Root mean square error (RMSE) weightings in the marine ensemble model. Weights are 
calculated as the inverse of the RMSE of each constituent model divided by the sum of RMSE for all 
models [Weights = 	1 (NO8P0/∑ NO8P>

0?3 0)⁄ ], and expressed as their relative proportion. 
 
 RMSE Model weights 
Inverse distance weighted 0.2359776 31.7 
Natural neighbor 0.2255336 33.2 
Ordinary kriging 0.2131811 35.1 
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Table S4. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 main 
checklist. 
 

Topic No. Item Location where item 
is reported 

TITLE    

Title 1 Identify the report as a systematic review.  Introduction, Line 105 

ABSTRACT    

Abstract 2 See the PRISMA 2020 for Abstracts checklist  

INTRODUCTION    

Rationale 3 Describe the rationale for the review in the 
context of existing knowledge.  

Line 94-108 

Objectives 4 Provide an explicit statement of the 
objective(s) or question(s) the review 
addresses. 

Line 105-106 

METHODS    

Eligibility criteria 5 Specify the inclusion and exclusion criteria for 
the review and how studies were grouped for 
the syntheses. 

Line 392-396; SI Line 
33-45 

Information 
sources 

6 Specify all databases, registers, websites, 
organisations, reference lists and other 
sources searched or consulted to identify 
studies. Specify the date when each source 
was last searched or consulted. 

Line 389-391; SI Line 
50-55 

Search strategy 7 Present the full search strategies for all 
databases, registers and websites, including 
any filters and limits used. 

SI Line 65-161 

Selection process 8 Specify the methods used to decide whether 
a study met the inclusion criteria of the 
review, including how many reviewers 
screened each record and each report 
retrieved, whether they worked 
independently, and if applicable, details of 
automation tools used in the process. 

SI Line 45-48 

Data collection 
process 

9 Specify the methods used to collect data from 
reports, including how many reviewers 
collected data from each report, whether they 
worked independently, any processes for 
obtaining or confirming data from study 
investigators, and if applicable, details of 
automation tools used in the process.  

Line 400-411; SI Line 
167-180; legend 
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Topic No. Item Location where item 
is reported 

Data items 10a List and define all outcomes for which data 
were sought. Specify whether all results that 
were compatible with each outcome domain 
in each study were sought (e.g. for all 
measures, time points, analyses), and if not, 
the methods used to decide which results to 
collect. 

Line 400-411; SI Line 
167-180; legend 

 10b List and define all other variables for which 
data were sought (e.g. participant and 
intervention characteristics, funding sources). 
Describe any assumptions made about any 
missing or unclear information. 

Line 407-411; SI Line 
238-245; legend 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of 
bias in the included studies, including details 
of the tool(s) used, how many reviewers 
assessed each study and whether they 
worked independently, and if applicable, 
details of automation tools used in the 
process.  

SI Line 45-48 

Effect measures 12 Specify for each outcome the effect 
measure(s) (e.g. risk ratio, mean difference) 
used in the synthesis or presentation of 
results. 

Line 428-430; 452-
453 

Synthesis 
methods 

13a Describe the processes used to decide which 
studies were eligible for each synthesis (e.g. 
tabulating the study intervention 
characteristics and comparing against the 
planned groups for each synthesis (item 5)). 

Line 391-394 

 13b Describe any methods required to prepare 
the data for presentation or synthesis, such 
as handling of missing summary statistics, or 
data conversions. 

Line 413-425 

13c Describe any methods used to tabulate or 
visually display results of individual studies 
and syntheses. 

Line 436-443; 452-
453 

13d Describe any methods used to synthesize 
results and provide a rationale for the 
choice(s). If meta-analysis was performed, 
describe the model(s), method(s) to identify 
the presence and extent of statistical 
heterogeneity, and software package(s) used. 

Line 436-440; 445-
453; SI Line 259-321; 

458 

13e Describe any methods used to explore 
possible causes of heterogeneity among 
study results (e.g. subgroup analysis, meta-
regression). 

Line 436-441 
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Topic No. Item Location where item 
is reported 

13f Describe any sensitivity analyses conducted 
to assess robustness of the synthesized 
results. 

Line 430-435; 348-
351; SI Line 272-283 

Reporting bias 
assessment 

14 Describe any methods used to assess risk of 
bias due to missing results in a synthesis 
(arising from reporting biases). 

Line 407-411; SI Line 
45-48 

Certainty 
assessment 

15 Describe any methods used to assess 
certainty (or confidence) in the body of 
evidence for an outcome. 

Line 441-443;461; 
522-524 

RESULTS    

Study selection 16a Describe the results of the search and 
selection process, from the number of records 
identified in the search to the number of 
studies included in the review, ideally using a 
flow diagram. 

Line 112-113; SI Line 
163-165; Fig. S1 

 16b Cite studies that might appear to meet the 
inclusion criteria, but which were excluded, 
and explain why they were excluded. 

Supplementary data 
2; Fig. S1 

Study 
characteristics 

17 Cite each included study and present its 
characteristics. 

Supplementary data 2 

Risk of bias in 
studies 

18 Present assessments of risk of bias for each 
included study. 

At 
screening/eligibility; 

Fig. S1 

Results of 
individual studies 

19 For all outcomes, present, for each study: (a) 
summary statistics for each group (where 
appropriate) and (b) an effect estimate and 
its precision (e.g. confidence/credible 
interval), ideally using structured tables or 
plots. 

Supplementary data 
1; Fig. 1; Fig. 2 

Results of 
syntheses 

20a For each synthesis, briefly summarise the 
characteristics and risk of bias among 
contributing studies. 

Line 112-119 

 20b Present results of all statistical syntheses 
conducted. If meta-analysis was done, 
present for each the summary estimate and 
its precision (e.g. confidence/credible 
interval) and measures of statistical 
heterogeneity. If comparing groups, describe 
the direction of the effect. 

Line 121-157 

20c Present results of all investigations of possible 
causes of heterogeneity among study results. 

Line 439-441 

20d Present results of all sensitivity analyses 
conducted to assess the robustness of the 
synthesized results. 

SI Line 272-283; Fig. 
S19 
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Topic No. Item Location where item 
is reported 

Reporting biases 21 Present assessments of risk of bias due to 
missing results (arising from reporting 
biases) for each synthesis assessed. 

Line 112-119; 359-
366 

Certainty of 
evidence 

22 Present assessments of certainty (or 
confidence) in the body of evidence for each 
outcome assessed. 

Line 122-157; 168-
169; Fig. 1; Fig. 2; 

Fig. S18 

DISCUSSION    

Discussion 23a Provide a general interpretation of the results 
in the context of other evidence. 

Line 191-203 

 23b Discuss any limitations of the evidence 
included in the review. 

Line 330-362 

23c Discuss any limitations of the review 
processes used. 

Line 363-366 

23d Discuss implications of the results for 
practice, policy, and future research. 

Line 372-384 

OTHER 
INFORMATION 

   

Registration and 
protocol 

24a Provide registration information for the 
review, including register name and 
registration number, or state that the review 
was not registered.  

SI Line 55 

 24b Indicate where the review protocol can be 
accessed, or state that a protocol was not 
prepared. 

SI Line 179-180 

24c Describe and explain any amendments to 
information provided at registration or in the 
protocol. 

n/a 

Support 25 Describe sources of financial or non-financial 
support for the review, and the role of the 
funders or sponsors in the review. 

Line 729-731 

Competing 
interests 

26 Declare any competing interests of review 
authors. 

Line 738-739 

Availability of 
data, code and 
other materials 

27 Report which of the following are publicly 
available and where they can be found: 
template data collection forms; data 
extracted from included studies; data used 
for all analyses; analytic code; any other 
materials used in the review. 

Supplementary data 
1; Line 564-570 
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Methods 

Literature Review 

We conducted a systematic literature review on antimicrobial resistance (AMR) 

prevalence in livestock and livestock products in Europe (Figure S1). We used three databases: 

PubMed, ISI Web of Science, and Scopus. Our original search focused on four pathogens 

commonly found in animals and their products: Escherichia coli, Staphylococcus aureus, 

Campylobacter spp., and non-typhoidal Salmonella spp. The searches were conducted at 

different time periods between May 2019 and January 2022, and included studies published 

between 2000 and 2021.  

The general format for our literature queries was: 

(Resistance) AND (Bacterial Species) AND (Animal/Sample Type) AND (Country). 

The key words used for the literature review on PubMed, ISI Web of Science, and 

Scopus were: ("antibiotic resistance" OR "antimicrobial resistance" OR resistance OR 

resistencia OR "resistencia aos antibioticos" OR resistencia OR "resistencia a antibioticos" OR 

susceptibility OR susceptibilidade OR suscetibilidade OR antibiogram OR “antibiotic 

susceptibility testing” OR antibacteriano OR antibiotic OR antimicrobial OR antibiotic OR 

antibacterial OR antimicrobiano OR antibiograma OR antibiotic) AND (Escherichia OR “E. 

coli” OR coliform OR salmonella OR “salmonella spp.” OR “S. aureus” OR staphylococcus 

OR “Staphylococcus spp.” OR “MRSA” OR “MSSA” OR campylobacter OR “campylobacter 

spp.” OR “C. jejuni” OR “C. coli”) AND (animal OR food OR “food producing” OR meat OR 

cow OR cattle OR beef OR bovine OR buffalo OR pig OR piggeries OR pork OR “chicken” 

OR “flock” OR “broiler” OR “layer” OR “egg” OR “poultry” OR “avian” OR milk OR dairy 

OR cheese) AND (France OR Spain OR Netherlands OR Denmark OR Sweden OR Italy OR 

Greece OR Germany OR French OR Spanish OR Dutch OR Danish OR Swedish OR Italian 

OR Greek OR German OR Norway OR Norwegian OR Finland OR Finnish OR Poland OR 
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Polish OR “United Kingdom” OR England OR English OR Romania OR Romanian OR 

Bulgaria OR Bulgarian OR Iceland OR Icelandic OR Hungary or Hungarian OR Portugal OR 

Portuguese OR Austria OR Austrian OR Czechia OR “Czech Republic” OR Czechian OR 

Ireland OR Irish OR Lithuania OR Lithuanian OR Latvia OR Latvian OR Croatia OR Croatian 

OR Slovakia OR Slovakian OR Estonia OR Estonian OR Switzerland OR Swiss OR Moldova 

OR Moldovan OR Belgium OR Belgian OR “North Macedonia” OR Macedonia OR 

Macedonian OR Slovenia OR Slovenian OR Cyprus OR Luxembourg OR Malta OR Maltese). 

In PubMed, this query was put directly into the search bar. On Scopus, this search was 

conducted using TS=(key words given above), where TS stands for our search topic. In the ISI 

Web of Science, the search was conducted using TITLE-ABS-KEY=(key words given above).  

Here, TITLE-ABS-KEY stands for title, abstract, and key words. 

In PubMed, Scopus, and ISI Web of Science, an initial search on eight European 

countries (Italy, Germany, the Netherlands, Spain, France, Greece, Denmark, and Sweden) was 

conducted on January 7, 2020, for Point Prevalence Survey (PPS) published between 2000 and 

2019. These searches yielded 14,445 results. Titles and abstracts were screened manually. After 

removing duplications, reviews, meta-analyses, book chapters, and papers irrelevant to our 

topic of interest, we had 1,265 potentially relevant manuscripts. At this point, papers were read 

and removed if geographic data was unavailable, no antimicrobial susceptibility testing was 

performed, the study focused on sick animals, the survey focused on animals at the country-

wide level, results were pooled between different animal species or sample types, or resistance 

prevalences were pooled between different pathogen types.  From these, 191 papers were 

extracted, yielding 4853 resistance estimates. 

Next, in PubMed, Scopus, and ISI Web of Science, a search for the remaining European 

countries was conducted on April 23, 2020, for PPS published between 2000 and 2019. This 

search yielded 54,591 results. Titles and abstracts were screened in the same manner as the first 
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search, and the same non-relevant results were removed. After this step, we had 745 potentially 

relevant manuscripts. From these, 98 were extracted, yielding 1567 resistance prevalences. 

In PubMed, Scopus, and ISI Web of Science, a search for all European countries was 

conducted on January 7, 2021, for PPS published in 2020. This search yielded 6,005 results. 

Titles and abstracts were reviewed in the same manner as the previous two searches, and the 

same non-relevant results were removed. After this step, we had 253 potentially relevant 

manuscripts. From these, 34 were extracted, yielding 783 resistance prevalences.  

A final literature search (identical to that of January 7, 2021) was run on January 10, 

2022, to identify all PPS published in 2021. This search yielded an additional 6,598 results. As 

outlined previously, all the same steps for title and abstract screening were followed, leaving 

110 potentially relevant manuscripts. Of these, 22 were extracted, yielding 606 resistance 

prevalences.  Overall, this gave 345 papers with 7,809 resistance estimates of any antibiotic-

pathogen combination.  

As there was no mandated or routine reporting of Staphylococcus aureus to EFSA 

(there was only limited voluntary reporting of MRSA from 5 countries in 2018 and 6 countries 

in 2019) AMR estimates for S. aureus were subsequently excluded. Additionally, only 

countries reporting to EFSA were retained. The final number of manuscripts was 209. 

 

Geographic localization of point prevalence surveys  

 Only PPS that reported geographic information were included in the study. The 

extracted information was recorded in “name_of_location” and “level_of_uncertainty” 

variables.  

• “Name_of_location” contains the name(s) of the most precise location information 

available in the article. Where more than one location was reported, both names were 

recorded.  
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• “Level_of_uncertainty” contains the administrative level at which the sampling was 

performed (see Legend on resistancebank.org for full details). These data were then 

used to determine “Ycoord” and “Xcoord” variables.  

• These data were then used to determine “Ycoord” and “Xcoord” variables. There were 

two ways in which these were generated: 

1. Samples taken from across an area/province – the centroid of the province was 

obtained.  

2. Several sampling points across an area/region – the middle point of all the sampling 

points was taken. This can be identified using variable “name_of_location” where more 

than one name is recorded.  

Example: 

DOI: 10.1155/2009/456573 
Extract 1 from paper: “C. jejuni isolates were selected from a prevalence study of 
thermophilic campylobacters in livestock carried out in the Basque Country (Northern Spain)” 
Extract 2 from paper: “…isolates were selected on the basis of isolation source (host, farm, 
and flock). Hence, the 72 isolates analysed by broth microdilution included 19 isolates from 
12 poultry farms (18 flocks), 25 from dairy sheep (21 farms), and 28 isolates from cattle (14 
beef cattle and 11 dairy cattle farms)” 
Interpretation: Tested a specific subset of isolates from across Basque.  
Level of uncertainty: Province  
Name of location: Basque County  
X/Y Coordinates: taken from the centroid of the Basque province. 
 
 
Harmonization of antimicrobial resistance rates 

 The two most frequently used systems for antimicrobial susceptibility testing (AST) 

are Clinical and Laboratory Standards Institute (CLSI) and European Committee for 

Antimicrobial Susceptibility Testing (EUCAST). Each system uses breakpoints to classify 

susceptible and resistant phenotypes; these values are updated annually. Therefore, adjustment 

for breakpoint variation over time is essential.  
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In this study, we found 96% of records reported the guidelines used, while 72% of these 

records also reported the year of the guidelines used. The majority of records reported CLSI 

(52%), followed by EUCAST (29%), despite all studies originating from the European region. 

4.4% of records did not report a guideline, and these records were excluded from subsequent 

analysis. The remaining records reported a mix of guidelines used in mentioned surveillance 

systems (e.g., DANMAP, NARMS, BSAC etc). For records where the guideline was reported, 

but no specific year, a date four years prior was assumed as this was the median lag between 

publication date of the survey and year of the guidelines. These assumptions were applied to 

maximise the amount of data retained for subsequent analyses. 

The same harmonization procedure was then applied to all records as outlined in Van 

Boeckel & Pires, Science, 2019. This harmonization procedure resulted in 9% of records (262 

out of 2888) being revised.  

To assess the impact of using CBPs rather than ECOFFs, we changed the breakpoints 

used to ECOFFs rather than CBP, which resulted in 11% of the calculated P50s changing. Of 

these 38 P50s, the average absolute change was 18.9%. For these P50s, the majority (n=35) 

became larger, while five became smaller. Therefore, ~90% of the calculated P50s would 

remain the same if the breakpoints were changed, and the absolute change would be relatively 

small.  

 

Desk review of national reports 

We conducted a desk review of European countries to identify national reports that 

contain information on AMR in food-producing animals (Table S7). The contents of the reports 

were compared with EFSA, to determine if there was any further relevant data contained within 

these reports. Due to the limited additional data, with low comparability, these data were not 

extracted for this study.  
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Geospatial modelling of P50 

During the first step, the P50 values (proportions) were transformed into presence and 

absence of resistance using a random binarization procedure. Concretely, each P50 value was 

duplicated 5 times, and compared with a random number between 0 and 1. P50 values higher 

than the random number were classified as presence of resistance, otherwise the values were 

classified as absence of resistance.  

 

Sensitivity analyses and covariate importance 

Sensitivity analyses were conducted by (a) restricting PPS to the same period as EFSA 

(2009-2020), (b) restricting to the six/seven most common drug-bug combinations and (c) by 

calculating P50 by class of drug rather than individual compound. For analysis (b), for E. coli 

and Salmonella the seven drugs included were: TET, AMP, SXT, CHL, CIP, GEN, CTX. The 

six most common drugs for Campylobacter were AMP, STR, GEN, CIP, TET, ERY.  

The importance of covariates was calculated by sequentially removing each covariate 

from the modelling procedure and comparing the changes in the mean AUC across 10 Monte 

Carlo simulations.    
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Results  
 
Descriptive analysis 

A total of 81,639 records were identified from the literature search (Figure S1). 

Following de-duplication, title, abstract and subsequent full paper screen, a total of 209 studies 

with geographic information had data extracted. From 209 PPS where geographic information 

was reported, 2,849 AMR estimates were extracted, providing 368 P50s.  

From the EFSA reports, 2,996 P50s at country-level (33,802 AMR estimates) were 

calculated from data collected between 2009 and 2020. The numbers of countries reporting to 

EFSA each year ranged from 23 in 2009, 20 in 2011, to 31 countries reporting annually from 

2015 onwards.  
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Figures 

Figure S1: PRISMA Flow Diagram 
 
Figure S2: Geospatial modelling framework 

Figure S3: (a) Prediction uncertainty calculated from the variation of predicted P50 values 
across the ten bootstraps (b) Hotspot map for 31 countries (light blue indicates hotspot areas, 
the top 95% percentile) (c) Standard deviation in P50 estimates per country 
 
Figure S4: Sensitivity analyses of geospatial modelling for (a) date restriction to 2009-2020 
only (b) 6-7 most common drug-bug combinations and (c) P50 by class of drug rather than 
individual compound.  
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Tables 

Table S1: Suggested antimicrobials, by bacteria, for inclusion for antimicrobial susceptibility 
testing (AST) for surveillance of AMR in foodborne bacteria1.  
 

Antimicrobial classes Salmonella, E. coli Campylobacter 

Aminoglycosides Gentamicin Gentamicin 
Streptomycin 

Amphenicols Chloramphenicol  
Carbapenems Imipenem 

Meropenem 
 

Cephalosporins II Cefoxitin  
Cephalosporins III Cefatoxime (or Ceftriaxone) 

Ceftazidime 
 

Cephalosporins IV Cefepime  

Glycopeptides   
Glycylcyclines Tigecycline  
Lincosamides  Clindamycin 

Lipopeptides   
Macrolides Azithromycin Erythromycin* 

Nitrofurans Nitrofurantoin  
Oxaxolidinones   
Penicillins Ampicillin 

Amoxicillin 
Temocillin 

Ampicillin 

Polymyxins Colistin  

Quinolones Ciprofloxacin 
Nalidixic acid 
Pefloxacin^ 

Ciprofloxacin 
Nalidixic acid  

Rifamycins   
Streptogramins   

Sulfonamides Sulfisoxazole#  
Tetracyclines Tetracycline Tetracycline~ 
Trimethoprim Trimethoprim  

Antimicrobials italicized are second priority 
* Resistance towards erythromycin reflects azithromycin resistance 
^ To screen for ciprofloxacin resistance in Salmonella spp. when disk diffusion is used.  
# Trimethoprim-sulfamethoxazole can be used instead of using sulfisoxazole or trimethoprim alone 
~ Doxycycline may be used instead of tetracycline 
 

 
1 World Health Organization, “Integrated surveillance of antimicrobial resistance in foodborne bacteria: 
application of a one health approach: guidance from the WHO Advisory Group on Integrated Surveillance of 
Antimicrobial Resistance (AGISAR),” World Health Organization, Geneva, 2017 
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Table S2: Environmental and anthropogenic covariates use to train child models 
 

Name Acronym Year Original 
Resolution  

Source Unit 

Travel time 
to cities  

acc 2015 
 

30-arcsec 
resolution 
 

Weiss et al 2018 (1) 
https://www.map.ox.ac.uk/accessibility_to_cities/. 

minute 

Antimicrobial 
use in 
animals  

use 2013 0.083333 
decimal 
degrees 
 

Van Boeckel et al 2017 (2) 
http://science.sciencemag.org/content/357/6358/1350.full 

Log10[(mg/pixel)+1] 

Yearly 
average of 
minimum 
monthly 
temperature  

tmp 1970-
2000 

2.5 
minutes 
 

Worldclim (3) 
http://worldclim.org/version2 

°C * 10 

Percentage 
irrigated 
areas  

irg 2015 0.083333 
decimal 
degrees 
 

Global Map of Irrigation Areas (GMIA) (4) 
https://zenodo.org/record/6886564#.YuZ1HS8RpN0 

% 

Population 
density of 
cattle, 
chickens, 
pigs, and 
sheep (GLW 
version 4) 

ca_v4 
ch_v4 
pg_v4 
sh_v4 
 

2015 0.083333 
decimal 
degrees 

Gridded Livestock of the World v4 (5) 
(https://www.nature.com/articles/sdata2018227) 
 

Log10[(Heads/pixel) 
+1] 

Percentage of 
tree coverage  

veg 2013 0.008333 
decimal 
degrees  

Hansen et al 2013 (6) 
https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.2.html 

% 

 
 
 
1.  D. J. Weiss, et al., A global map of travel time to cities to assess inequalities in accessibility 
in 2015. Nature 553, 333–336 (2018). 
2.  T. P. Van Boeckel, et al., Global trends in antimicrobial use in food animals. Proceedings of 
the National Academy of Sciences 112, 5649–5654 (2015). 
3.  S. E. Fick, R. J. Hijmans, WorldClim 2: new 1‐km spatial resolution climate surfaces for 
global land areas. International journal of climatology 37, 4302–4315 (2017). 
4.  S. Siebert, et al., Development and validation of the global map of irrigation areas (2005). 
5.  Gilbert, M., Nicolas, G., Cinardi, G. et al. Global distribution data for cattle, buffaloes, 
horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 5, 180227 (2018). 
https://doi.org/10.1038/sdata.2018.227 
6.  M. C. Hansen, et al., High-resolution global maps of 21st-century forest cover change. 
science 342, 850–853 (2013). 
 
  

https://www.nature.com/articles/sdata2018227
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
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Table S3: Absolute difference between resistance prevalence for antimicrobials by data source 
(point prevalence survey (PPS) vs European Food Safety Authority (EFSA)) between 2018 and 
2020, and their WHO designation of antimicrobial importance*.  
 

  E. coli Salmonella Campylobacter WHO Grouping 
AMP 19.11 8.27 - Critically important 
CAZ 10.41 - - Critically important 
CHL 7.51 15.2 - Highly important 
CIP -0.02 -17.4 1.71 Critically important 
CST 10.66 3.41 - Critically important 
CTX 10.41 1.87 - Critically important 
ERY - - 12.1 Critically important 
FOX -7.96 - - Highly important 

GEN 9.09 0.96 7.66 Critically important 

IPM 5.53 - - Critically important 
NAL 8.7 -2.35 0.78 Critically important 
STR - - 4.99 Critically important 
TET 16.07 3.81 1.87 Highly important 

 

*A ratio <1 indicated a lower 3-year mean P50 using PPS data, and a ratio >2 meant a more 
than double 3-year mean P50 from PPS data compared to EFSA.  
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 Table S4: Comparison between maps produced using all extracted data, maps produced using 
restricted number of drugs, maps produced when P50 is calculated by class of drug (rather than 
individual compound), and maps produced using only surveys published between 2009 and 
2020. Mae: mean absolute error; Cor: Pearson correlation coefficient.  
 

 E. coli Salmonella Campylobacter 
(a) Restricted by year (2009-2020)    

No. of surveys 123 66 74 
Mae 0.85% 0.75% 1.4% 
Cor 0.994 0.986 0.995 

(b) Restricted pathogen-antimicrobial combinations    
No. of surveys 153 97 111 

Mae 1.5% 0.46% 0.63% 
Cor 0.984 0.994 0.999 

(c) P50 calculated at class level    
No. of surveys 156 99 113 

Mae 1.0% 0.5% 0.49% 
Cor 0.992 0.993 0.999 

 
 
 
 
Table S5: Importance of covariates for mapping the distribution of AMR, indicating mean 
AUC of the full model, and the decrease in mean AUC after each covariate was removed from 
the modelling procedure.  
 

 E. coli Salmonella Campylobacter 
Full model 0.635 0.606 0.536 
Travel time to cities 0.03 0.001 0.02 
Antimicrobial use in animals 0.019 0.037 0.037 
Yearly average of minimum monthly temperature 0.033 0.042 0.034 
Percentage irrigated areas 0.016 0.034 0.027 
Population density of cattle 0.024 0.036 0.023 
Population density of chicken 0.025 0.041 0.023 
Population density of pigs 0.017 0.03 0.032 
Population density of sheep 0.03 0.029 0.032 
Percentage of tree coverage 0.106 0.078 0.024 
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Table S6: Desk review of European countries reporting AMR in zoonotic and foodborne bacteria (2007-2020)  
 

 Country EU 
Member 
State 

Reporting 
to EFSA* 

PPS 
extracted^  

National level integrated surveillance2 
Comparison of report content & frequency of data reporting compared to EFSA reports 

1 Albania  ✔   

2 Austria ✔ ✔ ✔  

3 Belgium ✔ ✔ ✔  

4 Bulgaria ✔ ✔ ✔  

5 Cyprus ✔ ✔   

6 Czech Republic  ✔ ✔ ✔  

7 Denmark ✔ ✔ ✔  ✔ DANMAP (Last accessed 21 Feb 2022). Established 1995. 
Pathogen & animal types: 

• Salmonella Typhimurium (pig) 
• Salmonella Derby (pig) 
• Campylobacter jejuni (chicken, cow) 
• E. coli (chicken, cattle) 

Reporting content: 
Same pathogens & animal types are reported to EFSA each year, with the same sample 
sizes.  
Additional data available: 
Last published report contains 2020 data. 

8 Estonia ✔ ✔ ✔  

 
2 R. Schrijver , M. Stijntjes and J. Rodríguez-Baño, “Review of antimicrobial resistance surveillance programmes in livestock and meat in EU 
with focus on humans,” Clinical Microbiology and Infection, vol. 24, no. 6, pp. 577-590, 2018.  

https://www.danmap.org/about-danmap


 15 

9 Finland ✔ ✔ ✔ ✔ FINRES-VET (Last accessed 21 Feb 2022) 
Pathogen & animal types: 

• Campylobacter jejuni (chicken, cow) 
• Salmonella spp. (pooled animal types) 

Reporting content: 
Report less in report than to EFSA. 
Additional data available: 
Last published report contains 2020 data.  

10 France ✔ ✔ ✔ ✔ ONERBA (Last accessed 21 Feb 2022) 
Pathogen & animal types  

• E. coli (cattle, turkeys, pig) 
Reporting content: 
Only report mandatory data (e.g., in 2018 only reported on turkeys & chickens, and for the 
requested sample size). The ONERBA published report in 2018 contains larger samples 
sizes & contain additional data on pigs. 
Additional data available: 
Last published report only contains 2018 data, however historical reports contain 
additional animal types & larger sample sizes compared to EFSA. 

11 Greece ✔ ✔ ✔  
12 Germany ✔ ✔ ✔ ? GERMAP (no report publicly available since 2015)  
13 Croatia ✔ ✔   
14 Hungary ✔ ✔ ✔  
15 Iceland  ✔   
16 Ireland ✔ ✔ ✔  
17 Italy ✔ ✔ ✔  
18 Lithuania ✔ ✔   
19 Luxembourg ✔ ✔   
20 Latvia ✔ ✔   

https://www.ruokavirasto.fi/en/farmers/animal-husbandry/animal-medication/monitoring-of-antibiotic-resistance/
http://onerba.org/
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21 Malta ✔ ✔   
22 The Netherlands ✔ ✔ ✔ ✔ MARAN (NETHMAP) (Last accessed 21 Feb 2022) 

Pathogen & animal types:  
• Salmonella spp. (pooled animal types) 
• E. coli (pigs, chicken, cow, turkey) 

Reporting content: 
Only trends reported in prose. Data not in an extractable format.  
Additional data available: 
N/A – no extractable data available. 

23 Norway  ✔  ✔NORM-VET (Last accessed 21 Feb 2022) 
Pathogen & animal types 

• Salmonella spp., but animals are pooled 
• Campylobacter jejuni and Campylobacter coli (chicken, turkey, pigs)  
• E. coli (chicken, turkey, cattle, pigs, goats)  

Reporting content: 
Animal types differ year-on-year, in-line with EFSA requirements; report same sample 
sizes.  
E.g., in 2020, reported E. coli in chicken and turkeys while in 2019, reported E.coli in 
cattle and pig.  
Additional data available: 
Last published report contains 2020 data.  

24 Poland ✔ ✔ ✔  
25 Portugal ✔ ✔ ✔  
- Republic of North 

Macedonia 
 ✔  Excluded from geospatial analysis due to small numbers in EFSA data. 

26 Spain ✔ ✔ ✔  

https://www.wur.nl/en/Research-Results/Research-Institutes/Bioveterinary-Research/In-the-spotlight/Antibiotic-resistance/MARAN-reports.htm
https://www.vetinst.no/overvaking/antibiotikaresistens-norm-vet
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27 Sweden ✔ ✔ ✔ ✔ SVARM (Report - SWEDRES) (Last accessed 21 Feb 2022) 
Pathogen & animal types: 

• ESBL-producing E.coli (chicken) (no AST) 
• Salmonella spp. (pooled animals) 
• Campylobacter jejuni (chicken) and coli (pig) 

Reporting content: 
Report Campylobacter in-line with EFSA requirements. 
Additional data available: 
Last published report contains 2020 data. 

28 Switzerland  ✔ ✔ ARC-Vet (Last accessed 21 April 2022) 
Pathogen & animal types 

• E. coli (pig, cattle) 
• Campylobacter coli (pig) 

Reporting content 
- 
Additional data available 
Last published report contains 2019 data.  

29 Slovenia ✔ ✔   
30 Slovakia ✔ ✔ ✔  
31 The United 

Kingdom 
✔ ✔ ✔ ✔ VARSS 

Pathogen & animal types: 
• E. coli (chicken, turkey, pigs) 
• Salmonella (chicken, turkey) 
• Campylobacter jejuni (chicken, turkey) 

Reporting content: 
Animal types & pathogen in-line with EFSA requirements, with same sample size.  
Additional data available: 
Last published report contains 2020 data. 

https://www.sva.se/en/our-topics/antibiotics/svarm-resistance-monitoring/
https://www.gov.uk/government/publications/veterinary-antimicrobial-resistance-and-sales-surveillance-2020
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*Last published report in April 2022 contains data from 2019/2020 
^Where at least one PPS extracted per country, either published or data collected between 2000 and 2021 
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Supplementary Methods 
 
Literature review and data extraction 
 
We searched for point-prevalence surveys (PPS) published between 2000 and 2019 reporting 
antimicrobial resistance in healthy food animals in low- and middle-income countries, 
focusing on Escherichia coli and nontyphoidal Salmonella spp.. The literature search was 
conducted in three rounds from four databases - PubMed, Scopus, ISI Web of Science, and 
China National Knowledge Infrastructure. The first round was conducted on 28.03.2019 from 
the first three aforementioned databases, and extracted data from all papers published 
between January 2000 and December 2018. The extracted data and details of literature review 
were published in Van Boeckel and Pires et al. 2019. The second round of literature search 
was conducted on 11.03.2020 from all four databases, and included surveys published 
between January 2000 and December 2019 exclusively for China. The extracted data and 
details of literature review were published in Zhao et al. 2020. The third round of literature 
search was conducted on 12.01.2022 from the first three aforementioned databases, and 
included all papers published between January 2019 and December 2019 in low- and middle-
income countries apart from China. The search queries used for the third round of literature 
review was the same as in Van Boeckel and Pires et al. 2019. 
 
All three rounds of literature review were conducted with the following procedure 
(Supplementary Table 1). First, we screened in total 44,325 titles and abstracts, and excluded 
40,702 non-PPS publications. We read 3,623 manuscripts in full, and excluded strain surveys, 
surveys on diseased animals, surveys conducted on a mixture of animal species, surveys 
without subnational geographic information, and other non-PPS surveys. After the exclusion, 
there were 1,360 PPS suitable for AMR mapping purposes. We further excluded animal 
species with small sample sizes such as camel and buffalo, and excluded drug-pathogen 
combinations not considered in this analysis such as Campylobacter and erythromycin. After 
the exclusion, 1,088 PPS that reported resistance prevalence in Escherichia coli and 
nontyphoidal Salmonella spp to 7 antimicrobials (listed in Methods section) were retained for 
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the analyses. All data used in the current analyses are available in the supplementary file, and 
can also be downloaded at https://resistancebank.org. 
 
Antimicrobial susceptibility testing in the PPS was conducted using either diffusion methods 
or dilution methods. The majority of PPS used diffusion methods, including disk diffusion 
(79%) and E-test (0.2%). The rest of PPS used dilution methods, including broth dilution 
(14%), agar dilution (5%), and automated devices such as VITEK2 (2%). Among the PPS, 
there was no systematic difference in the measurements between these two families of 
methods1. In each PPS, antimicrobial susceptibility testing results are compared with 
breakpoints to determine resistance, which are provided by laboratory guidelines and revised 
annually. Only 18% of records reported the breakpoints used. However, the majority (93%) 
of PPS mentioned the name of laboratory guidelines used, and 66% among these also 
mentioned the year of the guideline. The guidelines mentioned by the PPS included 
guidelines published by the Clinical & Laboratory Standards Institute (96%), the European 
Committee on Antimicrobial Susceptibility Testing (3%), and the French Society of 
Microbiology (1%). We adjusted for variations of breakpoints used between surveys, using a 
method developed by Van Boeckel and Pires et al. 2019 in section “Harmonization of 
Antimicrobial Resistance Rates” in the Supplementary Material of the reference publication1. 
The adjustment resulted in 635 (2%) resistance prevalence being revised. 
 
 
Imputation of missing data on resistance prevalence for mapping priority antimicrobials 
 
Missing resistance prevalence data in the point-prevalence surveys were imputed using 
Multivariate Imputation by Chained Equations (MICE)2. Using MICE, a set of plausible 
values for the missing resistance prevalence could be inferred from the distribution of 
reported resistance prevalence data, using specified imputation models. The prediction 
accuracy of three imputation models were compared: Bayesian linear regression (BLR), 
LASSO regression (LASSO-GLM), and feed-forward neural network (NN). For NN, we 
selected the optimal combination of hyperparameters, by comparing the root-mean-square 
error (RMSE) of the imputed values created using NN models with 500 different 
hyperparameters. These hyperparameters were drawn randomly from the following ranges: 
the number of nodes of the hidden layer between 1 to 272, dropout rate between 0.2 and 0.8, 
and learning rate between 0.00001 and 0.1. The lowest value of RMSE was generated with 
145 nodes on the hidden layer, a dropout rate of 0.4, and a learning rate of 0.0001. 
 
The comparison of imputation methods was conducted as following. First, we selected a 
subset of 272 surveys, which contained no missing values of resistance prevalence for the 7 
antimicrobials listed in the Methods section. Second, we conducted 50 Monto Carlo 
simulations to estimate the accuracy of each imputation method. Concretely, for each 
simulation, we randomly removed 2 out of 7 reported antimicrobial resistance prevalence in 
each survey, and conducted 4-fold spatial cross validation to impute these deleted values 
back. These 4 spatial folds were determined based on the continents of the survey locations: 
America, Africa, western Asia, and eastern Asia. Finally, we compared the RMSE of the 
imputed missing values of each fold for all Monto Carlo simulations, by running MICE with 
different imputation methods. The prediction accuracy of LASSO-GLM (RMSE 26.6) 
outperformed BLR (RMSE 28.7) and NN (RMSE 27.0). Additionally, adding an ad-hoc step 
of predictive mean matching, and including additional covariates in the imputation process 
did not improve the prediction accuracy. 
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We conducted imputation on a subset of 806 PPS that reported at least 4 out of the 7 drugs. 
These PPS contained 1,411 resistance profiles – some PPS reported resistance profiles for 
multiple animal species or for multiple sample types. Using MICE combined with LASSO-
GLM, we imputed 2,117 (21%) missing values out of 9,877 resistance prevalence. The 
number of imputed resistance prevalence was 720 for cefotaxime (51%), 375 (27%) for 
sulfamethoxazole-trimethoprim, 306 (22%) for chloramphenicol, 202 (14%) for ampicillin, 
196 (14%) for tetracycline, 195 (14%) for ciprofloxacin, and 123 (9%) for gentamicin. We 
conducted 10 multiple imputations, each with 25 iterations. 
 
Mapping resistance prevalence for each antimicrobial 
 
We mapped the prevalence of resistance for each antimicrobial using Gaussian process 
stacked generalization3. The mapping procedure included two steps. In the first step, we 
trained three ‘child models’ to predict resistance prevalence based a set of environmental and 
anthropogenic covariates (Supplementary Table 3). For each antimicrobial, we also included 
its estimated amount of use divided by the estimated biomass of food animals in 20204 as a 
covariate in the corresponding child models. The child models included boosted regression 
trees5 (BRT), least absolute shrinkage and selection operator applied to linear regression6 
(LASSO-GLM), and feed-forward neural network implemented in Keras7 (FFNN). The 
models were trained using four-fold spatial-cross validation (Supplementary Figure 15). For 
the BRT model, we applied a tree complexity of 3 with 50 initial trees, a learning rate of 
0.0005, and a step size of 50. For the NN model, we applied one hidden layer with 31 nodes, 
a dropout rate of 0.49 and a learning rate of 0.01, using adaptive moment estimation 
optimizer, and the rectified linear activation function for each layer. 
 
In the second step, the child model predictions were stacked using Gaussian process 
regression, fitted using the integrated nested Laplace approximations (INLA)8. This second 
step allowed to simultaneously capture the influence of environmental and anthropogenic 
covariates, as well as the residual spatial correlation. INLA is a deterministic method for 
Bayesian inference in latent Gaussian modelling, and is comparatively faster than other 
inference methods such as Markov chain Monte Carlo. The INLA formula included the child 
model predictions of resistance prevalence as fixed effects, and the spatial autocorrelation as 
a random effect. The coefficients of the fixed effects were constrained between 0 and 1, such 
that the coefficients approximately sum to one3. The residual spatial correlation was modelled 
as a Gaussian Markov random field (GMRF) with a Matern covariance function. The prior of 
the range for the covariance function was set at 4.06 decimal degrees, or roughly 487 km at 
equator, based on previous work on spatial correlation of AMR9. We constructed the mesh – 
on which the GMRF representation was built – using a cutoff of 0.005 decimal degrees, a 
maximum edge of 1 and 4 decimal degrees, an offset of 0.25 and 1.5 decimal degrees, for the 
inner domain and outer extension respectively. 
 
 
 
 
  



Supplementary Figures 
 

 
Supplementary Figure 1. Chicken: temporal trends of the prevalence of resistance, for 
ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), 
gentamicin (GEN), sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid 
lines represent significant temporal trends (p < 0.05), and dashed lines represent 
nonsignificant trends. Transparency levels of the red colors were proportional to the number 
of surveys published each year. Temporal trends were significant (p value < 0.05) for AMP, 
CHL, CIP, and CTX. 
  



 

 
Supplementary Figure 2. Pigs: temporal trends of the prevalence of resistance, for ampicillin 
(AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), gentamicin (GEN), 
sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid lines represent 
significant temporal trends (p < 0.05), and dashed lines represent nonsignificant trends. 
Transparency levels of the red colors were proportional to the number of surveys published 
each year. Temporal trends were significant (p value < 0.05) for all antimicrobials except 
TET. 
  



 
Supplementary Figure 3. Cattle: temporal trends of the prevalence of resistance, for 
ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), 
gentamicin (GEN), sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid 
lines represent significant temporal trends (p < 0.05), and dashed lines represent 
nonsignificant trends. Transparency levels of the red colors were proportional to the number 
of surveys published each year. Temporal trends were not significant (p > 0.05) for all 
antimicrobials. 
 
  



 
Supplementary Figure 4. Asia: temporal trends of the prevalence of resistance for ampicillin 
(AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), gentamicin (GEN), 
sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid lines represent 
significant temporal trends (p < 0.05), and dashed lines represent nonsignificant trends. 
Transparency levels of the red colors were proportional to the number of surveys published 
each year. Temporal trends were significant (p < 0.05) for AMP, CHL, CIP, and CTX. 
 
 
  



 
Supplementary Figure 5. Africa: temporal trends of the prevalence of resistance for 
ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), 
gentamicin (GEN), sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid 
lines represent significant temporal trends (p < 0.05), and dashed lines represent 
nonsignificant trends. Transparency levels of the red colors were proportional to the number 
of surveys published each year. Temporal trends were significant (p < 0.05) for TET and 
AMP. 
 
 
 
 
  



 
Supplementary Figure 6. America: temporal trends of the prevalence of resistance for 
ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), 
gentamicin (GEN), sulfamethoxazole-trimethoprim (SXT), and tetracycline (TET). Solid 
lines represent significant temporal trends (p < 0.05), and dashed lines represent 
nonsignificant trends. Transparency levels of the red colors were proportional to the number 
of surveys published each year. Temporal trends were significant (p < 0.05) for CTX. 
 
 
 
 
 
  



 
Supplementary Figure 7. The number of antimicrobials (out of 7) with resistance higher than 
10% (N10: A, B), 25% (N25: C, D) and 50% (N50: E, F) in E. coli and Salmonella. 
  



 
Supplementary Figure 8. Uncertainty of the predictions of resistance prevalence in E. coli, for 
tetracycline (TET), ampicillin (AMP), sulfamethoxazole-trimethoprim (SXT), 
chloramphenicol (CHL), ciprofloxacin (CIP), gentamicin (GEN), and cefotaxime (CTX). 
Shades of blue indicates the standard deviation on the predictions of resistance prevalence for 
each antimicrobial. 
 



 
Supplementary Figure 9. Uncertainty of the predictions of resistance prevalence in 
Salmonella, for tetracycline (TET), ampicillin (AMP), sulfamethoxazole-trimethoprim 
(SXT), chloramphenicol (CHL), ciprofloxacin (CIP), gentamicin (GEN), and cefotaxime 
(CTX). Shades of blue indicates the standard deviation on the predictions of resistance 
prevalence for each antimicrobial. 
  



 
 
Supplementary Figure 10. Estimated time (years) that it takes for the prevalence of resistance 
to exceed 50% (A), for the predicted antimicrobial with the highest probability of its 
resistance prevalence exceeding 50% in the future (B). 
  



 

 
Supplementary Figure 11. Geographic distribution of antimicrobials with the highest 
probability of their resistance prevalence exceeding critical levels (A: 20%; B: 35%; C: 50%) 
in the future. TET: tetracycline; AMP: ampicillin; SXT: sulfamethoxazole-trimethoprim; 
CHL: chloramphenicol; CIP: ciprofloxacin; GEN: gentamicin; CTX: cefotaxime. 
 
 
  



 
Supplementary Figure 12. Correlation coefficients between prevalence of antimicrobial 
resistance for 7 antimicrobial classes across 1,015 point prevalence surveys from food 
animals. Circle sizes are proportional to sample sizes. 
  



 
Supplementary Figure 13. Geographic locations of point-prevalence surveys reporting 
resistance prevalence of E. coli and Salmonella isolated from poultry (A), pigs (B), and cattle 
(C). Sizes of the circle were in proportion to the log10 transformed sample sizes of each 
survey. Colors of the circles represented the prevalence of resistance reported in each survey. 
 
  



 

 
Supplementary Figure 14. Geographic locations of point-prevalence surveys reporting 
resistance prevalence of E. coli and Salmonella. Sizes of the circle were in proportion to the 
log10 transformed sample sizes of each survey. Colors of the circles represented the number 
of bacterial isolates used to test the prevalence of resistance in each survey. The average 
number of isolates in each survey was 71 in Africa, 98 in America, and 94 in Asia. 
  



 
 
Supplementary Figure 15. Distribution of spatial folds used for the four-fold spatial cross-
validation procedure of the child models. 
  



Supplementary Table 1. Extraction of point prevalence surveys (PPS) of antimicrobial 
resistance in E. coli and Salmonella, and exclusion criteria. 
 
Exclusion Criteria Literature 

Review Round 
#1 

Literature 
Review Round 
#2 

Literature 
Review Round 
#3  

nhits = 32,030 nhits = 8,481 nhits = 3,814 
Reviews, meta-analysis, and 
other non-PPS studies 

 - 30,038  - 7,401  - 3,263 
 

nscreened = 1,992 nscreened = 1,080 nscreened = 551 
Strain Surveys NA -115 -33 
Diseased Animals NA -164 -21 
Mixed Samples NA -97 -92 
No Geographic Data NA -13 -54 
Others NA -370 -238  

nPPS = 926 nPPS = 321 nPPS = 113 
Small Species Sample Size -25 -6 -4 
Drug-Pathogen Combinations 
Not Considered 

-156 -45 -36 
 

nPPS_used = 745 nPPS_used = 270 nPPS_used = 73 
 
 
  



Supplementary Table 2. Coefficients associated with logistic regressions on temporal trends 
of resistance prevalence for Africa, Asia and America. Significant (p < 0.05) coefficient 
values are shown in bold. 
 
 

 All Africa (n = 1,673) Asia (n = 6,148) America (1,023) 
 estimate standard 

error estimate standard 
error estimate standard 

error estimate standard 
error 

TET 0.027 0.014 0.07 0.033 0.016 0.018 -0.017 0.043 
AMP 0.074 0.015 0.088 0.034 0.063 0.018 0.087 0.047 
SXT 0.045 0.016 0.064 0.037 0.029 0.019 0.071 0.053 
CHL 0.058 0.017 0.036 0.046 0.078 0.02 -0.024 0.059 
CIP 0.051 0.018 0.081 0.054 0.046 0.02 0.076 0.063 
GEN 0.037 0.016 0.035 0.053 0.031 0.018 0.118 0.061 
CTX 0.155 0.03 0.109 0.059 0.148 0.037 0.319 0.107 

 
 
  



 
Supplementary Table 3. Environmental and anthropogenic covariates. 
 

Name Acronym Year  Original Source Unit 
   Resolution 
Travel time  acc 2015 30-arcsec Weiss et al 2018 10 minute 
to cities   resolution https://www.map.ox.ac.uk/accessibility_to_cities/.  
 
Antimicrobial use_2013 2013 0.083333 Van Boeckel et al 2017 11 Log10[(mg/pixel)+1] 
use in   decimal http://science.sciencemag.org/content/357/6358/1350.full  
animals 2013   degrees   
 
Antimicrobial use_2020 2020 0.083333 Mulchandani et al 20234 Log10[(mg/pixel)+1] 
use in   decimal https://journals.plos.org/globalpublichealth/article?id=10.1371/journal.pgph.0001305  
animals 2020   degrees   
 
Yearly tmp 1970- 2.5 minutes Worldclim 12 °C * 10 
average of  2000  http://worldclim.org/version2 
minimum 
monthly 
temperature 
 
Percentage irg 2005 0.083333 Global Map of Irrigation Areas (GMIA) 13 % 
Irrigated   decimal http://www.fao.org/aquastat/en/geospatial-information/ 
areas   degrees global-maps-irrigated-areas/latest-version/    
 
Population ca_v4 2015 0.083333 Gridded Livestock of the World v4  Log10[(Heads/pixel) 
density of ch_v4  decimal https://www.nature.com/articles/sdata2018227 +1] 
cattle, pg_v4  degrees   
chickens, sh_v4 
pigs, and 
sheep 
 
Percentage of veg 2013 0.083333 Hansen et al 2013 14 % 
tree coverage   decimal https://earthenginepartners.appspot.com/science-2013-global-  
   degrees forest/download_v1.2.html  
 
Average pest 2015 0.083333 PEST-CHEMGRIDS 15 kg/ha per year 
pesticide   decimal https://sedac.ciesin.columbia.edu/data/set/ferman-v1-pest-chemgrids  
application   degrees 
rate 
 
Atmospheric amm 2008- 0.01 decimal Van Damme et al 2018 16 1016 molecules cm−2 
ammonia  2016 degrees https://www.nature.com/articles/s41586-018-0747-1 

 
Gross gdp 2005 1 G-Econ 17 Billion US dollars 
Domestic   decimal https://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4  
Product   degrees 
(GDP) in 
Purchasing 
Power Parity 
 
Fourier wd1920 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
of   degrees 
Precipitation 
 
Fourier wd1903 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients of  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
Middle Infra-red   degrees 
 
Fourier wd1914 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
of   degrees 
Normalised 
Difference 
Vegetation 
Index 
 
Fourier wd1915 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
of   degrees 
Enhanced 
Vegetation 

https://www.map.ox.ac.uk/accessibility_to_cities/
http://science.sciencemag.org/content/357/6358/1350.full
http://www.fao.org/aquastat/en/geospatial-information/
https://www.nature.com/articles/sdata2018227
https://earthenginepartners.appspot.com/science-2013-global-
https://sedac.ciesin.columbia.edu/data/set/ferman-v1-pest-chemgrids
https://www.nature.com/articles/s41586-018-0747-1
https://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4


Index 
 
Fourier wd1907 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
of   degrees 
Day Land  
Surface  
Temperature 
 
Fourier wd1908 2001- 0.0083333 Scharlemann et al 2008 18 NA 
coefficients  2019 decimal https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001408 
of Night Land   degrees 
Surface  
Temperature    
 
 

 
 

 
 



Supplementary Table 4. The average estimated time for resistance prevalence to exceed 50% 
across all pixels on the map, for each antimicrobial class and weighted by the distribution of 
animals’ biomass. 
 
Antimicrobial Time for resistance prevalence  
Class to exceed 50% (years) 
Tetracyclines 5.1 
Penicillins 1.7 
Sulfonamides 7.1 
Amphenicols 10.8 
Quinolones 12.4 
Aminoglycosides NA 
Cephalosporins 4.1 
  



Supplementary Table 5. Coefficients of LASSO regressions predicting the possibility that 
resistance prevalence of an antimicrobial will exceed 50% in the future, given the preceding 
resistance profile. The antimicrobials included cefotaxime (CTX), sulfamethoxazole-
trimethoprim (SXT), chloramphenicol (CHL), tetracycline (TET), ampicillin (AMP), 
ciprofloxacin (CIP), and gentamicin (GEN). Proportion_PPS: the proportion of point 
prevalence surveys reporting an increased resistance prevalence to over 50% for an 
antimicrobial, out of all alternative antimicrobials; Proportion_AMU: the proportion of usage 
(kg) of an antimicrobial out of all alternative antimicrobials; N50: the number of 
antimicrobials with resistance above 50% in the preceding resistance profile. The 
abbreviations of the other covariates are explained in Supplementary Table 3. Covariates for 
which coefficients were 0 for all antimicrobials were removed from the table.  
 
 TET AMP SXT CHL CIP GEN CTX 
(Intercept) -7.63 -2.921 -3.624 -5.311 -4.069 -4.183 -3.628 
proportion_PPS 19.36 5.497 2.151 1.734 -0.96 -0.915 -1.215 
proportion_AMU 0 0 0.346 0 0 0 0 
N50 0.013 0.364 0.936 1.103 1 0.934 0.989 
use_2020 0 0 0 0.079 0 0 -0.045 
use_2013 0 0 0.01 0.004 -0.007 0 -0.215 
ch_v4 0 0 0 0 0 0 -0.076 
sh_v4 0 0 -0.022 0 0 0.039 0 
Pest 0 0 0.002 0 0 -0.013 -0.001 
amm 0 0 0 -0.004 0 0 0.056 
gdp 0 0 0 0.058 0 0 -0.134 
wd1920a0 0 0 0 0 -0.121 0 0 
wd1920a3 -0.096 0 0 0 0 0 0 
wd1920d2 0 0 0 -0.014 0.117 0 0 
wd1920d3 0 0.11 -0.079 -0.057 0 0 0 
wd1920dd 0 0 0 0 0.035 0 0 
wd1920mn 0 -0.066 0 0.003 0 0 0 
wd1920vr 0 0 0 0.016 0 0 0 
wg1903a1 0 0 0 -0.095 0 0 0 
wg1903a2 0 0 0 0 0.027 0 0 
wg1903d3 0 0 0 0 0.084 0 0 
wg1903dd 0 0 0 0 -0.176 0 0 
wg1903mn 0 0.17 -0.073 0 0 0 0 
wg1903vr 0 0 0 0 0 0 0.054 
wg1907a0 0 0.134 0 0 0 0 0 
wg1907a2 0 0 0 -0.026 0 0.002 0 
wg1907a3 0 0 0 0 0 0.091 0 
wg1907d2 0 0 -0.072 0 0 0 0 
wg1907d3 0 -0.002 0 0.008 0 0 0 
wg1907mn 0 0 -0.083 0 0 0 0 
wg1908a2 0 0 0 0 0 0.176 0 
wg1908a3 0 0 0.08 0.099 0 0 -0.307 
wg1908d2 0 0 0 -0.058 0 0 0 
wg1914da 0 0 0 0 0 0.102 0.004 
wg1914dd 0 0 0 -1.562 0 0 2.818 
wg1914mx 0 0 0 -0.163 0 0 0 
wg1914vr 0 0 0 0 0.119 0 0 



wg1915a2 0.03 0 0 -0.059 0 0 0 
wg1915d1 -0.051 0 0 0 0 0 0 
wg1915d3 0.086 0 0 0 0 0 0 
  



Supplementary Table 6. The top 20 antimicrobial compounds with reported resistance 
prevalence and the corresponding antimicrobial classes in point prevalence surveys. 
 
Antimicrobial Number of Antimicrobial 
Compound Reported Resistance Class 
 Prevalence 
Gentamicin 1,452 Aminoglycosides 
Ampicillin 1,347 Penicillins 
Ciprofloxacin 1,345 Quinolones 
Tetracycline 1,271 Tetracyclines 
Chloramphenicol 1,133 Amphenicols 
Sulfamethoxazole- 1,068 Sulfonamides 
Trimethoprim 
Streptomycin 937 Aminoglycosides 
Nalidixic acid 852 Quinolones 
Cefotaxime 726 Cephalosporins 
Amikacin 688 Aminoglycosides 
Kanamycin 664 Aminoglycosides 
Amoxicillin- 614 Penicillins 
Clavulanic acid 
Ceftriaxone 521 Cephalosporins 
Enrofloxacin 473 Quinolones 
Ceftazidime 456 Cephalosporins 
Amoxicillin 454 Penicillins 
Norfloxacin 449 Quinolones 
Cefalotin 351 Cephalosporins 
Colistin 330 Polymixins 
  



Supplementary Table 7. Estimated parameters of the fitted INLA models predicting the 
geographic distribution of resistance prevalence of each antimicrobial. The table showed the 
mean value and standard deviation for the range of the spatial random effect, and the 
coefficients of three child models. The antimicrobials included cefotaxime (CTX), 
sulfamethoxazole-trimethoprim (SXT), chloramphenicol (CHL), tetracycline (TET), 
ampicillin (AMP), ciprofloxacin (CIP), and gentamicin (GEN).  
 
 CTX SXT CHL TET AMP CIP GEN 
range.mean 3.39 5.65 3.82 3.25 2.4 4.52 3.35 
range.sd 1.58 1.31 1.47 1.57 1.52 3.92 1.5 
beta_BRT.mean 0.47 0.36 0.38 0.25 0.29 0.34 0.45 
beta_BRT.sd 0.06 0.06 0.05 0.05 0.04 0.04 0.06 
beta_LASSO.mean 0.4 0.41 0.37 0.39 0.42 0.32 0.36 
beta_LASSO.sd 0.06 0.05 0.05 0.04 0.05 0.04 0.05 
beta_NNR.mean 0.41 0.31 0.36 0.37 0.35 0.43 0.39 
beta_NNR.sd 0.06 0.04 0.05 0.05 0.05 0.05 0.05 

 
  



Supplementary Table 8. Common resistance profiles in point prevalence surveys, with 2, 3, 
and 4 antimicrobials with resistance higher than 50% (N50). The total number of surveys for 
each N50 category, and the number of surveys reporting each resistance profile were shown 
in the brackets.  
 
Number of antimicrobials  Resistance profiles 
with resistance higher than 50%  
 
N50 = 2 TET-AMP (n=97) 
(n = 201) TET-SXT (n=45) 
 
N50 = 3 TET-AMP-SXT (n=60) 
(n = 161) TET-SXT-CHL (n=25) 
 TET-AMP-CIP (n=17) 
 TET-AMP-CTX (n=14) 
 
N50 = 4 TET-AMP-SXT-CHL (n=66) 
(n = 138) TET-AMP-SXT-CIP (n=12) 
 TET-SXT-CHL-GEN (n=11) 
 TET-AMP-SXT-CTX (n=8) 
 
  



Supplementary Table 9. Number of point-prevalence surveys conducted on chicken, pigs, and 
cattle in each year. 
 

Year Chicken Pigs Cattle 
2000 1 0 1 
2001 0 0 1 
2002 2 2 2 
2003 10 4 6 
2004 0 0 5 
2005 2 1 2 
2006 6 3 6 
2007 12 4 11 
2008 11 12 14 
2009 12 8 11 
2010 31 14 18 
2011 17 16 22 
2012 50 12 19 
2013 33 16 34 
2014 63 38 46 
2015 56 32 42 
2016 85 31 33 
2017 70 39 60 
2018 50 31 41 
2019 59 40 35 

 
 
 
  



Supplementary Table 10. Number of point-prevalence surveys conducted on chicken, pigs, 
and cattle in each country. 
 

Country 
ISO3 Chicken Pigs Cattle 
AGO 1 1 1 
BFA 2 1 2 
BWA 1 1 3 
CMR 1 0 0 
DZA 8 0 2 
EGY 17 0 12 
ETH 11 2 26 
GAB 1 0 0 
GHA 3 0 2 
GMB 1 0 0 
KEN 5 2 2 
MAR 6 0 4 
NAM 0 0 1 
NGA 16 4 10 
SDN 0 0 2 
SEN 1 0 1 
TCD 1 0 0 
TUN 13 0 8 
TZA 3 1 7 
UGA 4 2 3 
ZAF 5 6 10 
ZMB 1 0 2 
ZWE 2 0 1 
RWA 1 0 0 
IND 84 20 93 
BGD 36 0 11 
NPL 8 1 1 
BTN 1 1 0 
PAK 10 0 4 
IRN 33 0 21 
IRQ 6 0 2 
ISR 2 0 2 
LBN 3 1 4 
QAT 1 0 0 
OMN 1 0 0 
JOR 0 0 3 
SAU 2 0 1 
TUR 11 0 8 
ARG 5 8 5 
BOL 1 0 0 
BRA 28 13 27 
COL 1 1 4 
ECU 6 0 0 
PER 2 1 1 
VEN 1 1 2 



CHL 0 0 3 
CRI 1 0 0 
MEX 6 5 15 
GRD 2 0 0 
LCA 0 0 0 
JAM 1 0 0 
CHN 169 186 75 
IDN 3 0 5 

KHM 2 3 0 
LAO 0 2 2 
MYS 6 2 4 
MMR 1 0 0 
PHL 1 3 0 
SGP 1 0 0 
THA 14 26 10 
VNM 14 9 7 
LKA 1 0 0 
KWT 1 0 0 
PRY 1 0 0 

 
 
  



Supplementary Table 11. The percentage of 10 x 10 km pixels in each country where the 
uncertainty of the predicted priority antimicrobial is higher than 0.4. 
 

Country 
ISO3 

Percentage of 
pixels with 
uncertainty > 
0.4 

Country 
ISO3 

Percentage of 
pixels with 
uncertainty > 
0.4 

Country 
ISO3 

Percentage of 
pixels with 
uncertainty > 
0.4 

AFG 0.210069 GNB 0.164634 PAK 0.082604 

AGO 0.030731 GNQ 0 PAN 0.109756 

ARE 0.152968 GTM 0.103553 PER 0.141867 

ARG 0.032319 GUY 0.120746 PHL 0.159052 

ARM 0.148741 HND 0.034509 PRI 0.064103 

AZE 0.059736 HTI 0.086806 PRK 0.766391 

BDI 0.068729 IDN 0.142597 PRY 0.031902 

BEN 0.081277 IND 0.071204 PSX 0.383721 

BFA 0.059798 IRN 0.131975 QAT 0.163934 

BGD 0.023966 IRQ 0.08467 RWA 0.0625 

BLZ 0.073643 ISR 0.343333 SAH 1 

BOL 0.068859 JAM 0.089431 SAU 0.039423 

BRA 0.092262 JOR 0.032558 SDN 0.213807 

BRN 0.16129 KAB 0.055046 SDS 0.347961 

BTN 0.039623 KAS 1 SEN 0.033037 

BWA 0.002074 KAZ 0.064847 SGP 1 

CAF 0.064724 KEN 0.018052 SLE 0.285542 

CHL 0.120278 KGZ 0.159517 SLV 0.057613 

CHN 0.119058 KHM 0.091589 SLO 0.15408 

CIV 0.049419 KWT 0.081448 SOM 0.05876 

CMR 0.047654 LAO 0.059844 SUR 0.110259 

CNM 0.333333 LBN 0.086331 SWZ 0.40708 

COD 0.079909 LBR 0.016187 SYR 0.034994 

COG 0.14932 LBY 0.019029 TCD 0.019425 

COL 0.16678 LKA 0.087649 TGO 0.161919 

CRI 0.1198 LSO 0.779412 THA 0.089627 

CUB 0.130506 MAR 0.069437 TJK 0.112322 

CYN 0.566667 MDG 0.095638 TKM 0.026463 

CYP 0.352941 MEX 0.067058 TLS 0.108974 

DJI 0.4375 MLI 0.066136 TTO 0.212766 

DOM 0.062609 MMR 0.102656 TUN 0.031632 

DZA 0.027011 MNG 0.094879 TUR 0.084819 

ECU 0.1261 MOZ 0.055876 TWN 0.129841 

EGY 0.030746 MRT 0.032622 TZA 0.093735 

ERI 0.011065 MWI 0.097397 UGA 0.090836 

ESB 0 MYS 0.107326 URY 0.093725 

ETH 0.034781 NAM 0.016376 UZB 0.098051 

GAB 0.026928 NER 0.025251 VEN 0.086985 



GEO 0.136406 NGA 0.100411 VNM 0.120401 

GHA 0.050751 NIC 0.063336 YEM 0.020265 

GIN 0.140271 NPL 0.059487 ZAF 0.039901 

GMB 0.210084 OMN 0.119071 ZMB 0.088797 
    

ZWE 0.017105 
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3. Results  

 

 
Fig S1. a) Predictions 7-days ahead of intensive occupancy at the national-level for the three 

models (shaded areas represent 95% confident intervals); b) corresponding Mean Absolute 

Error (MAE) calculated on test data.  

 



 

Fig S2. a) Predictions 3-days ahead of intensive occupancy at cantonal level (canton of Zurich) 

for the three models (shaded areas represent 95% confident intervals); b) corresponding Mean 

Absolute Error (MAE) calculated on test data.  

 

 

 


