
ETH Library

ApHMM: Accelerating Profile
Hidden Markov Models for Fast
and Energy-efficient Genome
Analysis

Journal Article

Author(s):
Firtina, Can ; Pillai, Kamlesh; Kalsi, Gurpreet S.; Suresh, Bharathwaj; Cali, Damla Senol; Kim, Jeremie S.; Shahroodi, Taha ;
Cavlak, Meryem Banu; Lindegger, Joël ; Alser, Mohammed; Gómez Luna, Juan ; Subramoney, Sreenivas; Mutlu, Onur 

Publication date:
2024-03

Permanent link:
https://doi.org/10.3929/ethz-b-000663170

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
ACM Transactions on Architecture and Code Optimization 21(1), https://doi.org/10.1145/3632950

Funding acknowledgement:
213084 - Near-Data-Processing Architectures and Algorithms for Metagenomic Analysis (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6548-7863
https://orcid.org/0000-0003-4576-0030
https://orcid.org/0000-0003-2581-8637
https://orcid.org/0000-0002-6514-1571
https://orcid.org/0000-0002-0075-2312
https://doi.org/10.3929/ethz-b-000663170
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632950
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


ApHMM: Accelerating Profile Hidden Markov Models for
Fast and Energy-efficient Genome Analysis

CAN FIRTINA, ETH Zurich, Switzerland

KAMLESH PILLAI, GURPREET S. KALSI, and BHARATHWAJ SURESH, Intel Labs, USA

DAMLA SENOL CALI, Carnegie Mellon University, USA

JEREMIE S. KIM, ETH Zurich, Switzerland

TAHA SHAHROODI, TU Delft, Netherlands

MERYEM BANU CAVLAK, JOËL LINDEGGER, MOHAMMED ALSER, and JUAN GÓMEZ
LUNA, ETH Zurich, Switzerland

SREENIVAS SUBRAMONEY, Intel Labs, USA

ONUR MUTLU, ETH Zurich, Switzerland

Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to
identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences
are represented as graph structures, where states and edges capture modifications (i.e., insertions, deletions,
and substitutions) by assigning probabilities to them. These probabilities are subsequently used to compute
the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and
highly accurate method, utilizes these probabilities to optimize and compute similarity scores. Accurate
computation of these probabilities is essential for the correct identification of sequence similarities. However,
the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only
or hardware-only approaches with fixed pHMM designs. When we analyze state-of-the-art works, we
identify an urgent need for a flexible, high-performance, and energy-efficient hardware-software co-design
to address the major inefficiencies in the Baum-Welch algorithm for pHMMs.

We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce
both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs.
ApHMM employs hardware-software co-design to tackle the major inefficiencies in the Baum-Welch
algorithm by (1) designing flexible hardware to accommodate various pHMM designs, (2) exploiting
predictable data dependency patterns through on-chip memory with memoization techniques, (3) rapidly
filtering out unnecessary computations using a hardware-based filter, and (4) minimizing redundant
computations.

We acknowledge the generous gifts and support provided by our industrial partners: Intel, Google, Huawei, Microsoft,
VMware, and the Semiconductor Research Corporation. This work is also partially supported by the European Union’s
Horizon programme for research and innovation (Grant No. 101047160-BioPIM) and the Swiss National Science Foundation
(SNSF) (Grant No. 200021_213084).
Authors’ addresses: C. Firtina, J. S. Kim, M. Banu Cavlak, J. Lindegger, M. Alser, J. Gómez Luna, and O. Mutlu, ETH
Zurich, Switzerland; e-mails: {can.firtina, jeremie.kim}@safari.ethz.ch, bcavlak@ethz.ch, {joel.lindegger, mohammed.alser,
juan.gomez, onur.mutlu}@safari.ethz.ch; K. Pillai, G. S. Kalsi, B. Suresh, and S. Subramoney, Intel Labs, India; e-mails: {kam-
lesh.r.pillai, gurpreet.s.kalsi, bharathwaj.suresh, sreenivas.subramoney}@intel.com; D. Senol Cali, Carnegie Mellon Univer-
sity, USA; e-mail: dsenol@andrew.cmu.edu; T. Shahroodi, TU Delft, Netherlands; e-mail: t.shahroodi@tudelft.nl.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1544-3566/2024/02-ART19
https://doi.org/10.1145/3632950

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

https://orcid.org/0000-0002-6548-7863
https://orcid.org/0009-0002-2245-6263
https://orcid.org/0009-0000-7018-7585
https://orcid.org/0009-0003-6703-7668
https://orcid.org/0000-0002-3665-6285
https://orcid.org/0000-0001-6153-9008
https://orcid.org/0000-0003-4576-0030
https://orcid.org/0000-0003-4475-6945
https://orcid.org/0000-0003-2581-8637
https://orcid.org/0000-0002-6117-3701
https://orcid.org/0000-0002-6514-1571
https://orcid.org/0000-0001-5372-0173
https://orcid.org/0000-0002-0075-2312
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632950
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632950&domain=pdf&date_stamp=2024-02-15


19:2 C. Firtina et al.

ApHMM achieves substantial speedups of 15.55×–260.03×, 1.83×–5.34×, and 27.97× when compared to
CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms
state-of-the-art CPU implementations in three key bioinformatics applications: (1) error correction, (2) pro-
tein family search, and (3) multiple sequence alignment, by 1.29×–59.94×, 1.03×–1.75×, and 1.03×–1.95×,
respectively, while improving their energy efficiency by 64.24×–115.46×, 1.75×, and 1.96×.

CCS Concepts: • Computer systems organization → Special purpose systems; • Applied computing

→Computational biology; Genomics; Bioinformatics; • Theory of computation→Markov decision

processes;

Additional Key Words and Phrases: Bioinformatics, genomics, profile hidden markov models, the Baum-Welch
Algorithm

ACM Reference Format:

Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, Jeremie S. Kim, Taha
Shahroodi, Meryem Banu Cavlak, Joël Lindegger, Mohammed Alser, Juan Gómez Luna, Sreenivas Subra-
money, and Onur Mutlu. 2024. ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
efficient Genome Analysis. ACM Trans. Arch. Code Optim. 21, 1, Article 19 (February 2024), 29 pages.
https://doi.org/10.1145/3632950

1 INTRODUCTION

Hidden Markov Models (HMMs) are useful for calculating the probability of a sequence of
previously unknown (hidden) events (e.g., the weather condition) given observed events (e.g.,
clothing choice of a person) [1]. To calculate the probability, HMMs use a graph structure where
a sequence of nodes (i.e., states) are visited based on the series of observations with a certain
probability associated when visiting a state from another. HMMs are very efficient in decoding the
continuous and discrete series of events in many applications [2] such as speech recognition [2–8],
text classification [9–13], gesture recognition [14–21], and bioinformatics [22–45]. The graph
structures (i.e., designs) of HMMs are typically tailored for each application, which defines the
roles and probabilities of the states and edges connecting these states, called transitions. One
important special design of HMMs is known as the profile Hidden Markov Model (pHMM)

design [44], which is commonly adopted in bioinformatics [23–25, 27, 32–35, 37–39, 41–43, 45],
malware detection [46–51], and pattern matching [52–57].

Identifying differences between biological sequences (e.g., DNA sequences) is an essential step in
bioinformatics applications to understand the effects of these differences (e.g., genetic variations
and their relations to certain diseases) [58–80]. pHMMs enable efficient and accurate identifica-
tion of differences by comparing sequences to a few graphs that represent a group of sequences
rather than comparing many sequences to each other, which is computationally very costly and
requires special hardware and software optimizations [58, 67, 68, 70]. Figure 1 illustrates a tradi-

tional pHMMs design. A pHMM represents a single (or many) sequence(s) with a graph structure
using states and transitions. There are three types of states for each character of a sequence that a
pHMM graph represents: insertion (I), match or mismatch (M), and deletion (D) states. Each state
accounts for a certain difference or a match between a graph and an input sequence at a partic-
ular position. For example, the I states recognize insertions in an input sequence missing from
the pHMM graph at a position. Many bioinformatics applications use pHMM graphs rather than
directly comparing sequences to avoid the high cost of many sequence comparisons. The applica-
tions that use pHMMs include protein family search [25, 37, 41, 42, 45, 81–83], multiple sequence

alignment (MSA) [25, 32, 33, 35, 38, 39, 43, 51, 84–86], and error correction [23, 24, 27].
To accurately model and compare DNA or protein sequences using pHMMs, assigning accurate

probabilities to states and transitions is essential. pHMMs allow updating these probabilities to
accurately fit the observed biological sequences to the pHMM graph. Probabilities are adjusted

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

https://doi.org/10.1145/3632950


ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:3

Fig. 1. Portion of an example pHMM design that represents a DNA sequence (pHMM Sequence). Differences
between pHMM Sequence and Sequences #1, #2, and #3 are highlighted with their corresponding colors. High-
lighted transitions and states identify each corresponding difference. The states with DNA characters corre-
spond to match or mismatch (M) states, while I and D states correspond to insertion and deletion, respectively.

during the training step. The training step aims to maximize the probability of observing the input
biological sequences in a given pHMM, also known as likelihood maximization. There are several
algorithms that perform such maximization in pHMMs [87–90]. The Baum-Welch algorithm [89]
is commonly used to calculate likelihood maximization [91] as it is highly accurate and scalable
to real-size problems (e.g., large protein families) [88]. The next step is inference, which aims to
identify either (1) the similarity of an input observation sequence to a pHMM graph or (2) the
sequence with the highest similarity to the pHMM graph, which is known as the consensus sequence

of the pHMM graph and used for error correction in biological sequences. Parts of the Baum-Welch
algorithm can be used for calculating the similarity of an input sequence in the inference step.

Despite its advantages, the Baum-Welch algorithm is a computationally expensive method [92,
93] due to the nature of its dynamic programming approach. Several works [33, 94–97] aim to
accelerate either the entire or smaller parts of the Baum-Welch algorithm for HMMs or pHMMs to
mitigate the high computational costs. While these works can improve the performance of execut-
ing the Baum-Welch algorithm, they either (1) provide software-only or hardware-only solutions
for a fixed pHMM design or (2) are completely oblivious to the pHMM design.

To identify the inefficiencies in using pHMMs with the Baum-Welch algorithm, we analyze
the state-of-the-art implementations of three pHMM-based bioinformatics applications: (1) error
correction, (2) protein family search, and (3) multiple sequence alignment (Section 3). We make
six key observations. (1) The Baum-Welch algorithm causes significant computational overhead
in the pHMM applications as it constitutes at least around 50% of the total execution time of these
applications. (2) SIMD-based approaches cannot fully vectorize the floating-point operations. (3) A
significant fraction of floating-point operations is redundant in the training step due to the lack
of a mechanism for reusing the same operations. (4) Existing strategies for filtering out the unnec-
essary (i.e., negligible) states from the computation are costly despite their advantages. (5) The
spatial locality inherent in pHMMs cannot be exploited in generic HMM-based accelerators and
applications as these accelerators and applications are oblivious to the design of HMMs. (6) The
Baum-Welch algorithm is the main source of computational overhead even for the non-genomic
application we evaluate (Section 3). Our observations demonstrate a pressing need for a flexible,
high-performant, and energy-efficient hardware-software co-design to efficiently and effectively
solve these inefficiencies in the Baum-Welch algorithm for pHMMs.

Our goal is to accelerate the Baum-Welch algorithm while eliminating the inefficiencies when
executing the Baum-Welch algorithm for pHMMs. To this end, we propose ApHMM, the first

flexible hardware-software co-designed acceleration framework that can significantly reduce the
computational and energy overheads of the Baum-Welch algorithm for pHMMs. ApHMM is built
on four key mechanisms. First, ApHMM is highly flexible and can use different pHMM designs
to change certain parameter choices to enable the adoption of ApHMM for many pHMM-based
applications. This enables, first, additional support for pHMM-based error correction [23, 24, 27]

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:4 C. Firtina et al.

that traditional pHMM design cannot efficiently and accurately support [27]. Second, ApHMM
exploits the spatial locality that pHMMs provide with the Baum-Welch algorithm by efficiently
utilizing on-chip memories with memoization techniques. Third, ApHMM efficiently eliminates
unnecessary computations with a hardware-based filter design. Fourth, ApHMM avoids redun-
dant floating-point operations by (1) providing a mechanism for efficiently reusing the most
common products of multiplications via lookup tables (LUTs) and (2) identifying pipelining and
broadcasting opportunities where results from certain operations are used in multiple steps in
the Baum-Welch algorithm without additional storage or computational overheads.

To evaluate ApHMM, we (1) design a flexible hardware-software co-designed accelerator and
(2) implement our software optimizations on GPUs. We evaluate the performance and energy ef-
ficiency of ApHMM for executing (1) the Baum-Welch algorithm and (2) several pHMM-based
applications and compare ApHMM to the corresponding CPU, GPU, and FPGA baselines. First,
our extensive evaluations show that ApHMM provides significant (1) speedup for executing the
Baum-Welch algorithm by 15.55×–260.03× (CPU), 1.83×–5.34× (GPU), and 27.97× (FPGA) and
(2) energy efficiency by 2474.09× (CPU) and 896.70×–2622.94× (GPU). Second, ApHMM improves
the overall runtime of three pHMM-based applications, error correction, protein family search,
and MSA, by 1.29×–59.94×, 1.03×–1.75×, and 1.03×–1.95× and reduces their overall energy con-
sumption by 64.24×–115.46×, 1.75×, and 1.96× over their state-of-the-art CPU, GPU, and FPGA
implementations, respectively. We make the following key contributions:

— We introduce ApHMM, the first flexible hardware-software co-designed framework to
accelerate pHMMs. We show that our framework can be used for at least three bioinformat-
ics applications: (1) error correction, (2) protein family search, and (3) multiple sequence
alignment.

— We provide ApHMM-GPU, the first GPU implementation of the Baum-Welch algorithm for
pHMMs, which includes our software optimizations.

— We identify key inefficiencies in the state-of-the-art pHMM applications and provide new
mechanisms with efficient hardware and software optimizations to significantly reduce the
computational and energy overheads of the Baum-Welch algorithm for pHMMs.

— We show that ApHMM provides significant speedups and energy reductions for executing
the Baum-Welch algorithm compared to the CPU, GPU, and FPGA implementations, while
ApHMM-GPU performs better than the state-of-the-art GPU implementation.

— We provide the source code of our software optimizations, ApHMM-GPU, as imple-
mented in an error correction application. The source code is available at https://github.
com/CMU-SAFARI/ApHMM-GPU.

2 BACKGROUND

2.1 Profile Hidden Markov Models (pHMMs)

High-level Overview. Figure 1 shows the traditional structure of pHMMs. pHMMs represent a
sequence or a group of sequences using a certain graph structure with a fixed number of nodes for
every character of represented sequences. Visiting nodes, called states, via directed edges, called
transitions, are associated with probabilities to identify differences at any position between the
represented sequences and other sequences. States emit one of the characters from the defined al-
phabet of the biological sequence (e.g., A, C, T, and G in DNA sequences) with a certain probability.
Transitions preserve the correct order of the represented sequences and allow making modifica-
tions to these sequences. We explain the detailed structure of pHMMs in Supplemental Section 1.

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

https://github.com/CMU-SAFARI/ApHMM-GPU


ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:5

2.2 Baum-Welch Algorithm

The probabilities associated with transitions and states are essential for identifying similarities
between sequences. The Baum-Welch algorithm provides a set of equations to update and use
these probabilities accurately. To calculate the similarity score of input observation sequences
in a pHMM graph, the Baum-Welch algorithm [89] solves an expectation-maximization prob-
lem [98–101], where the expectation step calculates the statistical values based on an input se-
quence to train the probabilities of pHMMs. To this end, the algorithm performs the expectation-
maximization based on an observation sequence S for the pHMM graph G(V ,A) in three steps:
(1) forward calculation, (2) backward calculation, and (3) parameter updates.

Forward Calculation. The goal of the forward calculation is to compute the probability of
observing sequence S when we compare it with the sequence SG that the pHMM graph G(V ,A)
represents. Equation (1) shows the calculation of the forward value Ft (i) of state vi for character
S[t]. The forward value, Ft (i), represents the likelihood of emitting the character S[t] at position t
of S in statevi given that all previous characters S[1 . . . t−1] are emitted by following an unknown
path forward that leads to state vi . Ft (i) is calculated for all states vi ∈ V and for all characters
of S . Although t represents the position of the character of S , we use the timestamp term for t for
the remainder of this article. To represent transition and emission probabilities, we use the α ji and
eS [t ](vi ) notations as we define in Supplemental Section ??:

Ft (i) =
∑

j ∈V

Ft−1(j)α jieS [t ](vi ) i ∈ V , 1 < t ≤ nS . (1)

Backward Calculation. The goal of the backward calculation is to compute the probability of
observing sequence S when we compare S and SG from their last characters to the first charac-
ters. Equation (2) shows the calculation of the backward value Bt (i) of state vi for character S[t].
The backward value, Bt (i), represents the likelihood of emitting S[t] in state vi given that all fur-
ther characters S[t + 1 . . .nS ] are emitted by following an unknown path backwards (i.e., taking
transitions in reverse order). Bt (i) is calculated for all states vi ∈ V and for all characters of S :

Bt (i) =
∑

j ∈V

Bt+1(j)αi jeS [t+1](vj ) i ∈ V , 1 ≤ t < nS . (2)

Parameter Updates. The Baum-Welch algorithm uses the values that the forward and back-
ward calculations generate for the observation sequence S to update the emission and transition
probabilities in G(V ,A). The parameter update procedure maximizes the similarity score of S
in G(V ,A). This procedure updates the parameters shown in Equations (3) and (4). The special
[S[t] = X ] notation in Equation (4) is a conditional variable such that the variable returns 1 if the
character X matches with the character S[t] and returns 0 otherwise:

α∗
i j =

∑nS−1
t=1 αi jeS [t+1](vj )Ft (i)Bt+1(j)

∑nS−1
t=1

∑
x ∈V αixeS [t+1](vx )Ft (i)Bt+1(x)

∀αi j ∈ A, (3)

e∗X (vi ) =

∑nS

t=1 Ft (i)Bt (i)[S[t] = X ]
∑nS

t=1 Ft (i)Bt (i)
∀X ∈ Σ,∀i ∈ V . (4)

2.3 Use Cases of Profile HMMs

Error Correction. The goal of error correction is to locate the erroneous parts in DNA or genome
sequences and replace these parts with more reliable sequences [102–107] to enable more accurate
genome analysis (e.g., read mapping and genome assembly). Apollo [24] is a recent error correction
algorithm that takes an assembly sequence and a set of reads as input to correct the errors in an
assembly. Apollo constructs a pHMM graph for an assembly sequence to correct the errors in two

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:6 C. Firtina et al.

Fig. 2. Percentage of the total execution time for the three steps of the Baum-Welch algorithm

steps: (1) training and (2) inference. First, to correct erroneous parts in an assembly, Apollo uses
reads as observations to train the pHMM graph with the Baum-Welch algorithm. Second, Apollo
uses the Viterbi algorithm [108] to identify the consensus sequence from the trained pHMM, which
translates into the corrected assembly sequence. Apollo uses a slightly modified design of pHMMs
to avoid certain limitations associated with traditional pHMMs when generating the consensus
sequences [92, 93]. The modified design avoids loops in the insertion states and uses transitions to
account for deletions instead of deletion states. These modifications allow the pHMM-based error
correction applications [23, 24, 27] to construct more accurate consensus sequences from pHMMs.

Protein Family Search. Classifying protein sequences into families is widely used to analyze
the potential functions of the proteins of interest [109–114]. The protein family search finds the
family of the protein sequence in existing protein databases. A pHMM usually represents one
protein family in the database to avoid searching for many individual sequences. The protein
sequence can then be assigned to a protein family based on the similarity score of the protein
when compared to a pHMM in a database. This approach is used to search protein sequences in
the Pfam database [115], where the HMMER [33] software suite is used to build HMMs and assign
query sequences to the best fitting Pfam family. Similar to the Pfam database, HMMER’s protein
family search tool is integrated into the European Bioinformatics Institute (EBI) website
as a web tool. The same approach is also used in several other important applications, such as
classifying many genomic sequences into potential viral families [116].

Multiple Sequence Alignment. MSA detects the differences between several biological
sequences. Dynamic programming algorithms can optimally find differences between genomic
sequences, but the complexity of these algorithms increases drastically with the number of
sequences [117, 118]. To mitigate these computational problems, heuristic algorithms are used
to obtain an approximate yet computationally efficient solution for multiple alignments of
genomic sequences. pHMM-based approaches provide an efficient solution for MSA [119]. The
pHMM approaches, such as hmmalign [33], assign likelihoods to all possible combinations of
differences between sequences to calculate the pairwise similarity scores using forward and
backward calculations or other optimization methods (e.g., particle swarm optimization [120]).
pHMM-based MSA approaches are mainly useful to avoid making redundant comparisons as a
sequence can be compared to a pHMM graph, similar to the protein family search.

3 MOTIVATION AND GOAL

3.1 Sources of Inefficiencies

To identify and understand the performance overheads of state-of-the-art pHMM-based applica-
tions, we thoroughly analyze existing tools for the three use cases of pHMM: (1) Apollo [24] for
error correction, (2) hmmsearch [33] for protein family search, and (3) hmmalign [33] for MSA.
We make six key observations based on our profiling with Intel VTune [121] and gprof [122].

Observation 1: The Baum-Welch Algorithm causes significant computational overhead.

Figure 2 shows the percentage of the execution time of all three steps in the Baum-Welch algorithm

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:7

for the three bioinformatics applications. We find that the Baum-Welch algorithm causes signifi-
cant performance overhead for all three applications as the algorithm constitutes from 45.76% up
to 98.57% of the total CPU execution time. Our profiling shows that these applications are mainly
compute-bound. Forward and Backward calculations are the common steps in all three applica-
tions, whereas the Parameter Updates step is executed only for error correction. This is because
protein family search and MSA use the Forward and Backward calculations mainly for scoring be-
tween a sequence and a pHMM graph as part of inference. We do not include the cost of training
for these applications as it is executed only once or a few times, such that the cost of training is in-
significant compared to the frequently executed inference. However, the nature of error correction
requires frequently performing both training and inference for every input sequence such that the
cost of training is substantial for this application. As a result, accelerating the entire Baum-Welch
algorithm is key for improving the end-to-end performance of the applications.

Observation 2: SIMD-based tools on CPU and GPUs provide suboptimal vectorization.

The Baum-Welch algorithm involves frequent floating-point multiplications and additions. To
resolve performance issues, several CPU-based tools (e.g., hmmalign) use SIMD instructions.
However, these tools exhibit poor SIMD utilization due to inadequate port utilization and low
vector capacity usage (below 50%). This suggests that CPU-based optimizations for floating-point
operations, such as SIMD instructions, provide limited computational benefits for the Baum-Welch
algorithm. We further investigate if the SIMD utilization in GPUs exhibits similar low utilization.
To observe this, we profile our GPU work, ApHMM-GPU, to execute the two main kernels in the
application: Forward and Backward calculations. We observe that the Forward calculation suffers
from low SIMD utilization (i.e., percentage of active threads per warp) of around 50%, while
the SIMD utilization of Backward calculation is usually close to 100%. The GPU implementation
iterates over all the states that have a connection to the state that the thread is working on.
However, the number of states to iterate can substantially be different per thread during Forward
calculation as insertion and match states have a largely different number of incoming states, which
is not the case in Backward calculation. This imbalance causes high warp divergence during
Forward calculation, reducing the SIMD utilization.

Observation 3: A significant portion of floating-point operations is redundant. We ob-
serve that the same multiplications are repeatedly executed in the training step, because certain
floating-point values associated with transition and emission probabilities are mainly constant
during training in error correction. Our profiling analysis with VTune shows that these redundant
computations constitute around 22.7% of the overall execution time when using the Baum-Welch
algorithm for training in error correction.

Observation 4: Filtering the states is costly despite its advantages. The Baum-Welch al-
gorithm requires performing many operations for a large number of states. These operations are
repeated in many iterations, and the number of states can grow with each iteration. There are
several approaches to keep the state space (i.e., number of states) near-constant to improve the
performance or the space efficiency of the Baum-Welch algorithm [24, 27, 123–127]. A simple ap-
proach is to pick the best-n states that provide the highest scores in each iteration while the rest
of the states are ignored in the next iteration, known as filtering [27]. Figure 3 shows the relation
between the filter size (i.e., the number of states picked as best-n states), the overall runtime of the
Baum-Welch algorithm, and its corresponding accuracy. Although the filtering approach is useful
for reducing the runtime without significantly degrading the overall accuracy of the Baum-Welch
algorithm, such an approach requires extra computations (e.g., sorting) to pick the best-n states.
We find that such a filtering approach incurs substantial performance costs by constituting around
8.5% of the overall execution time in the training step.

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:8 C. Firtina et al.

Fig. 3. Effect of the filter size on the runtime and the accuracy of the Baum-Welch algorithm

Fig. 4. Data dependency in pHMMs and HMMs

Observation 5: HMM accelerators are suboptimal for accelerating pHMMs. Generic
HMMs do not require constraints on the connection between states (i.e., transitions) and the
number of states. pHMMs are a special case for HMMs where transitions are predefined, and
the number of states is determined based on the sequence that a pHMM graph represents. These
design choices in HMMs and pHMMs affect the data dependency patterns when executing the
Baum-Welch Algorithm. Figure 4 shows an example of the data dependency patterns in pHMMs
and HMMs when executing the Baum-Welch algorithm. We observe that although HMMs and
pHMMs provide similar temporal locality (e.g., only the values from the previous iteration are
used), pHMMs provide better spatial locality with their constrained design. This observation
suggests that HMM-based accelerators cannot fully exploit the spatial locality that pHMMs
provide as they are oblivious to the design of pHMMs.

Observation 6: Non-genomics pHMM-based applications also suffer from the computa-

tional overhead of the Baum-Welch algorithm. Among many non-genomics pHMM-based im-
plementations [46–57], we analyze the available CPU implementation of a recent pattern-matching
application that uses pHMMs [52]. Our initial analysis shows that almost the entire execution time
(98%) of this application is spent on the Forward calculation, and it takes significantly longer to
execute a relatively small dataset compared to the bioinformatics applications.

Many applications use either the entire or parts of the Baum-Welch algorithm for training the
probabilities of HMMs and pHMMs [23–25, 27, 33, 37, 38, 40–42, 46, 47, 50–53, 55, 128]. However,
due to computational inefficiencies, the Baum-Welch algorithm can result in significant perfor-
mance overheads on these applications. Solving the inefficiencies in the Baum-Welch algorithm is
mainly important for services that frequently use these applications, such as the EBI website using
HMMER for searching protein sequences in protein databases [129]. Based on the latest report in
2018, there have been more than 28 million HMMER queries on the EBI website within two years
(2016–2017) [130]. These queries execute parts of the Baum-Welch algorithm more than 38,000
times daily. Such frequent usage leads to significant waste in compute cycles and energy due to
the inefficiencies in the Baum-Welch algorithm.

While the Baum-Welch algorithm is computationally intensive and can consume a significant
portion of the runtime and energy in various applications, these applications are often run
multiple times as part of routine analyses or when new data becomes available. For error

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:9

Fig. 5. Overview of ApHMM

correction, the assembly of a particular genome can be reconstructed and corrected multiple
times if additional sequencing data for the genome becomes available or if the tools used in the
assembly construction pipeline are updated or replaced. For the protein family search and the
multiple sequence alignment, protein sequencing data is frequently used multiple times due to
regular updates in databases like the Pfam database [115, 131]. These updates can generate new
insights [132], such as more accurate reannotation of genes in assemblies [133]. This frequent use
of sequenced data can make using the Baum-Welch algorithm a time and energy-consuming pro-
cess in the overall sequencing data analysis pipeline. Improving the efficiency of the Baum-Welch
algorithm can significantly reduce both the compute cycles and energy consumption, especially
in use cases where sequencing data is used multiple times.

3.2 Goal

Based on our observations, we find that we need to have a specialized, flexible, high-performant,
and energy-efficient design to 1 support different pHMM designs with specialized compute units
for each step in the Baum-Welch algorithm, 2 eliminate redundant operations by enabling effi-
cient reuse of the common multiplication products, 3 exploit spatiotemporal locality in on-chip
memory, and 4 perform efficient filtering. Such a design has the potential to significantly reduce
the computational and energy overhead of the applications that use the Baum-Welch algorithm in
pHMMs. Unfortunately, software- or hardware-only solutions cannot solve these inefficiencies eas-
ily. There is a pressing need to develop a hardware-software co-designed and flexible acceleration
framework for several pHMM-based applications that use the Baum-Welch algorithm.

In this work, our goal is to reduce computational and energy overheads of pHMMs-based ap-
plications that use the Baum-Welch algorithm with a flexible, high-performance, energy-efficient
hardware-software co-designed acceleration framework. To this end, we propose ApHMM, the
first highly flexible, high-performance, and energy-efficient accelerator that can support different
pHMM designs to accelerate wide-range pHMM-based applications.

4 APHMM DESIGN

4.1 Microarchitecture Overview

ApHMM provides a flexible, high-performant, and energy-efficient hardware-software co-
designed acceleration framework for calculating each step in the Baum-Welch algorithm. Figure 5
shows the main flow of ApHMM when executing the Baum-Welch algorithm for pHMMs. To ex-
ploit the massive parallelism that DNA and protein sequences provide, ApHMM processes many

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:10 C. Firtina et al.

sequences in parallel using multiple copies of hardware units called ApHMM Cores. Each ApHMM
core aims to accelerate the Baum-Welch algorithm for pHMMs. An ApHMM core contains two
main blocks: (1) Control Block and (2) Compute Block. Control Block provides efficient on- and
off-chip synchronization and communication with CPU, DRAM, and L2/L1 cache. Compute Block
efficiently and effectively performs each step in the Baum-Welch algorithm: (1) Forward calcu-
lation, (2) Backward calculation, and (3) Parameter Updates with respect to their corresponding
equations in Section 2.2.

ApHMM starts when the CPU loads necessary data to memory and sends the parameters to
ApHMM 1 . ApHMM uses the parameters to decide on the pHMM design (i.e., either traditional
pHMM design or modified design for error correction) and steps to execute in the Baum-Welch
algorithm. The parameters related to design are sent to Compute Block so that each Compute
Block can efficiently make proper state connections 2 . For each character in the input sequence
that we aim to calculate the similarity score, Compute Block performs (1) Forward, (2) Backward,
(3) and Parameter Updates steps. ApHMM enables disabling the calculation of Backward and
Parameter Updates steps if they are not needed for an application. ApHMM iterates over the
entire input sequence to fully perform the Forward calculation with respect to Equation (1) 3 .
ApHMM then re-iterates each character on the input sequence character-by-character to perform
the Backward calculations for each timestamp t with respect to Equation (2) (i.e., step-by-step)

4.1 . ApHMM updates emission 4.2 and transition probabilities 4.3 as the Backward values are
calculated in each timestamp.

4.2 Control Block

Control Block is responsible for managing the input and output flow of the compute section effi-
ciently and correctly by issuing both memory requests and proper commands to Compute Block to
configure for the next set of operations (e.g., the forward calculation for the next character of the
sequence S). Figure 5 shows three main units in Control Block: (1) Parameters, (2) Data Control,
and (3) Histogram Filter.

Parameters. Control Block contains the parameters of pHMM and the Baum-Welch algorithm.
These parameters define (1) pHMM design (i.e., either the traditional design or modified design
for error correction) and (2) steps to execute in the Baum-Welch algorithm as ApHMM allows
disabling the calculation of Backward or Parameter Updates steps.
Data Control. To ensure the correct, efficient, and synchronized data flow, ApHMM uses Data

Control to (1) arbitrate among the read and write clients and (2) pipeline the read and write
requests to the memory and other units in the accelerator (e.g., Histogram Filter). Data control
is the main memory management unit for issuing a read request to L1 cache to obtain (1) each
input sequence S , (2) corresponding pHMM graph (i.e., G(V ,A)), (3) corresponding parameters
and coefficients from the previous timestamp (e.g., Forward coefficients from timestamp t − 1 as
shown in Equation (1)). Data Control collects and controls the write requests from various clients
to ensure data is synchronized.
Histogram Filter. The filtering approach is beneficial for eliminating unnecessary (i.e., neg-

ligible) states from Forward and Backward calculations without significantly compromising accu-
racy (Section 3). The challenge in implementing a straightforward filtering mechanism lies in
performing sorting in hardware, which is difficult to achieve efficiently. Our key idea is to replace
the sorting mechanism with a histogram-based filter, allowing values to be placed into different
bins based on their Forward or Backward values. This offers quick and approximate identification
of necessary states (i.e., states with the best values until the filter is full) based on their bin locations.
To enable such a binning mechanism, we employ a flexible histogram-based filtering mechanism
in the ApHMM on-chip memory.

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:11

Fig. 6. (a) Overall structure of a Histogram Filter. (b) Effect of the Histogram Filter approach in ApHMM
for different sequence lengths.

Figure 6(a) shows the overall structure of our Histogram Filter. The filter categorizes states
into bins based on their Forward or Backward values at the current execution timestamp in three
steps. First, Histogram Filter divides the [0, 1] range into n bins, with each bin corresponding
to a specific range of Forward or Backward values. The range for each bin is 1/n. We empirically
chose 16 bins, ensuring a range of 1/16 = 0.0625, to maintain the same accuracy when the filter size
is 500 (Figure 3). For simplicity, we use 0.06 as the range value in Figure 6(a), with the maximum
value in each bin’s range displayed under Max. Value.

Second, the Histogram Filter assigns addresses to states such that all states with Forward or
Backward values within the same range fall into the same memory block. This addressing mecha-
nism employs a base and offset strategy, where the base represents the start of the memory block
for a specific range of values, and the offset is the pointer to the next free memory region within
the memory block. This base and offset strategy allows ApHMM to discard unnecessary states
efficiently, as their addresses are known without sorting.

Third, to identify the addresses of unnecessary states, the Histogram Filter accumulates the
count of states in each bin, starting with the bin with the largest Max. Value (i.e., 1.00). When the
overall state count exceeds the filter size (e.g., 500), the remaining bins are assumed to contain
only unnecessary states. The Histogram Filter can find all the necessary states that a filtering
technique with a sorting mechanism finds, albeit with the cost of including states beyond the
predetermined filter size, as the accumulated state count in the last bin can exceed the filter count.
While it is possible to perform additional computations in the last bin to prevent exceeding the
filter size, we leave such optimization for future work.

To build a flexible framework for various applications, The microarchitecture is configurable to
vary the number of bins (n) based on the application and the average sequence length. We recom-
mend conducting an empirical analysis before determining this range for a particular application,
as it may vary significantly.

ApHMM offers the option to disable the filtering mechanism if the application does not neces-
sitate a filter operation for more optimal computations. Figure 6(b) shows the normalized runtime
of ApHMM with and without using a filter for varying sequence lengths. We observe that the per-
formance significantly improves when the filtering mechanism is enabled, especially for longer se-
quences. This can be primarily attributed to the fact that the number of states requiring processing
at the subsequent timestamp can exponentially increase, as each state typically has more than one
transition, potentially leading to an exponential increase in states at each subsequent timestamp.
As the sequence length grows, such an exponential increase can adversely affect the application,
which can be significantly mitigated without compromising accuracy through a filtering approach.

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:12 C. Firtina et al.

Fig. 7. Overview of a Compute Block. Red arrows show on- and off-chip memory requests.

4.3 Compute Block

Figure 7 shows the overall structure of a Compute Block, which is responsible for performing
core compute operations of each step in the Baum-Welch algorithm (Figure 5) based on the
configuration set by the Control Block via Index Control 1 . A Compute Block contains two
major units: (1) a unit for calculating Forward (Equation (1)) and Backward (Equation (2))
values 2 and updating transition probabilities (Equation (3)) 3.1 , and (2) a unit for updating the

emission probabilities (Equation (4)) 3.2 . Each unit performs the corresponding calculations in
the Baum-Welch algorithm.

Forward and Backward Calculations. Our goal is to calculate the forward and backward
values for all states in a pHMM graph G(V ,A), as shown in Equations (1) and (2), respectively. To
calculate the Forward or Backward value of a state i at a timestamp t , ApHMM uses Processing

Engines (PEs). Since pHMMs may require processing hundreds to thousands of states to process
at a time, ApHMM includes many PEs and groups them into PE Groups. Each PE is responsible for
calculating the Forward and Backward values of a state vi per timestamp t . Our key challenge is
to balance the utilization of the compute units with available memory bandwidth. We discuss this
trade-off between the number of PEs and memory bandwidth in Section 4.4. To efficiently calculate
the Forward and Backward values, PE performs two main operations.

First, PE uses the parallel four lanes in Dot Product Tree and Accumulator to perform multiple
multiply and accumulation operations in parallel, where the final summation is calculated in the
Reduction Tree. This design enables efficient multiplication and summation of values from pre-
vious timestamps (i.e., Ft−1(j) or Bt+1(j)). Second, to avoid redundant multiplications of transition
and emission probabilities, the key idea in PEs is to efficiently enable the reuse of the products of
these common multiplications. To achieve this, our key mechanism stores these common products
in lookup tables (LUTs) in each PE while enabling efficient retrievals of the common products.
We store these products as these values can be preset (i.e., fixed) before the training step starts and
frequently used during training while causing high computational overheads.

Our key challenge is to design minimal but effective LUTs to avoid area and energy overheads
associated with LUTs without compromising the computational efficiency LUTs provide. To this

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:13

end, we analyze error correction, protein family search, and multiple sequence alignment imple-
mentations. We observe that (1) redundant multiplications are frequent only during training and
(2) the alphabet size of the biological sequence significantly determines the number of common
products (i.e., 4 in DNA and 20 in proteins). Since error correction is mainly bottlenecked during
the training step, we focus on the DNA alphabet and the pHMM design that error correction uses.
We identify that each state uses (1) at most 4 different emission probabilities (i.e., DNA letters) and
(2) on average 7 different transitions. This results in 28 different combinations of emission and
transition probabilities. To enable slightly better flexibility, we assume 9 different transitions and
include 36 entries in LUTs.

The key benefit is LUTs provide ApHMM with a bandwidth reduction of up to 66% per PE while
avoiding redundant computations. ApHMM is flexible such that it enables disabling the use of
LUTs and instead performing the actual multiplication of transition and emission probabilities (TE
MUL unit in Figure 7).

Updating the Transition Probabilities. Our goal is to update the transition probabilities of
all the states, as shown in Equation (3). To achieve this, we design the Update Transition (UT)

compute unit and tightly couple it with PEs, as shown in Figure 7. Each UT efficiently calculates
the denominator and numerator in Equation (3) for a state vi . UTs include three key mechanisms.

First, to enable efficient broadcasting of common values between the Backward calculation and
Parameter Updates steps, ApHMM connects PEs with UTs for updating transitions. Each PE in a PE
Group is broadcasted with the same previously calculated Ft (i) or Bt+1(j) values from the previous
timestamp for calculating the Ft+1(j) or Bt (i) values, respectively. The incoming red arrows in
Figure 7 show the flow of these Forward and Backward values in PEs and UTs. The calculation of
Ft+1(j) involves a summation over all states i as shown in Equation (1). The Ft (i) term is common
to the calculation of Ft+1(j) for all states j and hence can be broadcasted. Similarly, the calculation
of Bt (i) involves a summation over all states j (Equation (2)). The Bt+1(j) term is common to the
calculation of Bt (i) for all states i and hence can be broadcasted. This key design choice exploits
the broadcast opportunities available within the common multiplications in the Baum-Welch
equations.

Second, ApHMM cores are designed to directly consume the broadcasted Backward values
when updating the emission and transition probabilities to reduce the bandwidth and storage
requirements. We exploit the broadcasting opportunities, because we observe that Backward
values do not need to be fully computed, and they can be directly consumed when updating the
transitions and emission probabilities while the Backward values are broadcasted in the current
timestamp. ApHMM updates emission and transition probabilities step-by-step as Backward
values are calculated, a hardware-software optimization we call the partial compute approach.
It is worth noting that ApHMM fully computes and stores the Forward values before updating
the emission and transition probabilities. The key benefits of combining broadcasting with the
partial compute approach are (1) decoupling hardware scaling from bandwidth requirements and
(2) reducing the bandwidth requirement by 4× (i.e., 32 bits/cycle instead of 128 bits/cycle).

Third, to exploit the spatiotemporal locality in pHMMs, we utilize on-chip memory in UTs
with memoization techniques that allow us to store the recent transition calculations. We observe
from Equation (3) that transition update is calculated using the values of states connected to
each other. Since the connections are predefined and provide spatial locality (Figure 4), our key

idea is to memoize the calculation of all the numerators from the same i to different states by
storing these numerators in the same memory space. This enables us to process the same state
i in different timestamps within the same PE to reduce the data movement overhead within
ApHMM. To this end, we use an 8 KB on-chip memory (Transition Scratchpad) to store and
reuse the result of the numerator of Equation (3). Since we store the numerators that contribute

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:14 C. Firtina et al.

to all the transitions of a state i within the same memory space, we perform the final division
in Equation (3) by using the values in the Transition Scratchpad. We use an 8 KB memory
as this enables us to store 256 different numerators from any state i to any other state j. We
observe that pHMMs have 3–12 distinct transitions per state. Thus, 8 KB storage enables us
to operate on at least 20 different states within the same PE. The memoization technique

allows (1) skipping redundant data movement and (2) reducing the bandwidth requirement by 2×
per UT.

Updating the Emission Probabilities. Our goal is to update the emission probabilities of all
the states, as shown in Equation (4). To achieve this, we use the Update Emission (UE) unit, as
shown in Figure 7, which includes three smaller units: (1) Calculate Emission Numerator, (2) Cal-
culate Emission Denominator, and (3) Division & Update Emission. UE performs the numerator
and denominator computations in parallel as they are independent of each other, which includes
a summation of the products Ft (i)Bt (i). These Ft (i) and Bt (i) values are used to update both the
transition and emission probabilities, as shown in Equation (3). To reduce redundant computations,
our key design choice is to use the Ft (i) and Bt (i) values as broadcasted in the transition update
step since these values are also used for updating the emission probabilities. Thus, we broadcast
these values to UEs through Write Selectors, as shown in Figure 7.

An ApHMM core writes and reads both the numerator and denominator values to L1 cache to
update the emission probabilities. The results of the division operations and the posterior emission
probabilities (i.e., e∗

X
(vi ) in Equation (4)) are written back to L1 cache after processing each read

sequence S . If we assume that the number of characters in an alphabet Σ is nΣ (e.g., nΣ = 4 for DNA
letters), then ApHMM stores nΣ many different numerators for each state of the graph as emission
probability may differ per character for each state. Our microarchitecture design is flexible such
that it allows defining nΣ as a parameter.

4.4 Hardware Configuration Choice

Our goal is to identify the ideal number of memory ports and PEs for better scaling ApHMM with
many cores. We identify the number of memory ports and their dependency on the hardware scal-
ing in four steps. First, ApHMM requires one input memory port for reading the input sequence to
update the probabilities in a pHMM graph. Second, updating the transition probabilities requires
3 memory ports: (1) reading the forward value from L1, (2) reading the transition, and (3) emission
probabilities if using the LUTs is disabled (Section 4.3). Since these ports are shared across each
PE, the number of PEs and memory bandwidth per port determines the utilization of these
memory ports. Third, ApHMM requires 4 memory ports to update the emission probabilities for
(1) calculating the numerator and (2) denominator in Equation (4), (3) reading the forward from
Write Selectors, and (4) writing the output. These memory ports are independent of the impact
of the number of PEs in a single ApHMM core. Fourth, ApHMM does not require additional
memory ports for each step in the Baum-Welch algorithm due to the broadcasting feature of
ApHMM (Section 4.3). Instead, computing these steps depends on (1) memory bandwidth per port,
which determines the number of multiplications and accumulations in parallel in a PE, and (2) the
number of processing engines (PEs). We conclude that the overall requirement for a ApHMM core
is eight memory ports with the same bandwidth per port.

Figure 8 shows the scaling capabilities of ApHMM with the number of PEs and sequence length
to decide (1) the overall number of PEs and (2) the longest chunk size for the best acceleration. First,
to decide the overall number of PEs to use in ApHMM, in Figure 8(a), we show the acceleration
speedup while scaling ApHMM with the number of PEs and bandwidth per memory port, where
we keep the number of memory ports fixed to 8. We observe that a linear trend of increase in
acceleration is possible until the number of PEs reaches 64, where the rate of acceleration starts

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:15

Fig. 8. (a) Acceleration scaling with the number of PEs. (b) Compute cycle acceleration when calculating the
transition probabilities with the increased number of PEs. (c) Increase in the execution time with respect to
the sequence (chunk) lengths. The data points are for sequence lengths 150, 650, and 1,000, respectively. The
linear trend shows the expected linear increase in execution time, and the real runtime shows the actual
runtimes.

declining. We explore the reason for such a trend in Figure 8(b). We find that the acceleration on
the transition step starts settling down as the number of PEs grows due to memory port limitation
that reduces parallel data read from memory per PE, eventually resulting in the underutilization
of resources. Second, We conclude that the acceleration trend we observe in Figure 8(a) is mainly
due to the scaling impact on the forward and backward calculation when the number of PEs is
greater than 64 where 8 memory ports start becoming the bottleneck.

In our design, the choice of memory bandwidth influences the number of PE Groups and PEs,
given a constant number of memory ports. While our hardware can scale to accommodate higher
bandwidths, we opt for a 16-bytes/cycle bandwidth. This design choice aligns with the 128-bit line
size of our L1 cache, allowing us to operate on four single-precision floating-point values (32-bit)
across 4 PEs simultaneously. To fully utilize all 64 PEs, as discussed earlier, we employ 16 PE Groups
(64 PEs = 4 PEs × 16 PE Groups).

Second, to identify the optimal chunk size (i.e., sequence length) that ensures a near-linear
increase in execution time with increasing sequence length, we examine the execution time of
the Baum-Welch algorithm for chunk sizes of 150, 650, and 1,000 bases, as shown in Figure 8(c).
We observe a linear increase in execution time with chunk sizes up to approximately 650 bases.
Beyond this point, the execution time begins to increase non-linearly. This non-linear scaling
is primarily due to the increased cache space requirements for storing certain parameters (e.g.,
emission values), as shown in Supplemental Figure S1. This increased cache pressure leads to
more data accesses from the upper levels of the memory hierarchy. ApHMM can maintain a linear
trend in execution time for longer sequences by either increasing the L1 and L2 cache capacities
or utilizing higher-bandwidth memories to mitigate the data movement overheads. We provide
further details regarding the data distribution and memory layout in Supplemental Section S2.

We conclude that the memory ports and chunk size primarily constrain the acceleration speedup
of ApHMM, as the PEs start to be underutilized due to increased data movement overheads. To
further enhance the acceleration with ApHMM, optimizing the utilization of PEs by minimizing
these overheads is crucial.

Number of ApHMM Cores. We show our methodology for choosing the ideal number of cores
in ApHMM for accelerating the applications. Figure 9 shows the speedup of three bioinformatics
applications when using single, 2, 4, and 8 cores in ApHMM. We divide the entire execution time
of the applications into three stages: (1) the CPU execution of the application that does not use
the Baum-Welch execution, (2) the Baum-Welch execution accelerated using ApHMM, and (3) and
the overhead mainly caused due to data movements. Our analysis incorporates the estimated off-

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

fig:l1_data_distribution
subsec:datadistribution


19:16 C. Firtina et al.

Fig. 9. Normalized runtimes of multi-core ApHMM compared to the single-core ApHMM (ApHMM-1).

Table 1. Microarchitecture Configuration

Memory Memory BW (Bytes/cycle): 16, Memory Ports (#): 8
L1 Cache Size: 128 KB

Processing PEs (#): 64, Multipliers per PE (#): 4, Adders per PE (#): 4
Engine Memory per PE: 8, Update Transitions (#): 64, Update Emissions (#): 4

and on-chip data movement overhead. We observe that using four cores in ApHMM provides the
best speedup overall. This is because the applications provide smaller rooms for acceleration for
two reasons. First, the remaining CPU part of the application becomes the bottleneck in the entire
execution of the application due to the significant acceleration of the Baum-Welch execution using
ApHMM. Second, the data movement overhead starts causing more latency than the benefits of
further accelerating the Baum-Welch algorithm by increasing the number of cores. This suggests
ApHMM is bounded by the data movement overhead when scaling it to a larger number of cores,
and there is still room for improving the performance of ApHMM by placing ApHMM inside or
near the memory (e.g., high-bandwidth memories) to reduce the data movement overheads that
limit scaling ApHMM to many cores. Based on our observations, we use a four-core ApHMM to
achieve the best overall performance (see Supplemental Section S3 for the execution flow of the
system with multiple cores in ApHMM).

5 EVALUATION

We evaluate our acceleration framework, ApHMM, for three use cases: (1) error correction, (2) pro-
tein family search, and (3) MSA. We compare our results with the CPU, GPU, and FPGA implemen-
tations of the use cases.

5.1 Evaluation Methodology

We use the configurations shown in Table 1 to implement the ApHMM design described in
Section 4 in SystemVerilog. We carry out synthesis using Synopsys Design Compiler [134]
in a typical 28 nm process technology node at 1 GHz clock frequency with tightly integrated
on-chip memory (1 GHz) to extract the logic area and power numbers. We develop an analytical
model to extract performance and area numbers for a scale-up configuration of ApHMM. We
use four ApHMM cores in our evaluation (Section 4.4). We account for an additional 5% of
cycles to compensate for the arbitration across memory ports. These extra cycles estimate the
cycles for synchronously loading data from DRAM to L2 memory of a single ApHMM core
and asynchronous accesses to DRAM when more data needs to be from DRAM for a core (e.g.,
Forward calculation may not fit the L2 memory).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

subsec:sysmapping


ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:17

We use the CUDA library [135] (version 11.6) to provide a GPU implementation of the soft-
ware optimizations described in Section 4 for executing the Baum-Welch algorithm. Our GPU im-
plementation, ApHMM-GPU, uses the pHMM design designed for error correction, implements
LUTs (Section 4.3) as shared memory, and uses buffers to arbitrate between current and previous
Forward/Backward calculations to reflect the software optimizations of ApHMM in GPUs. We
integrate our GPU implementation with a pHMM-based error correction tool, Apollo [24], to eval-
uate the GPU implementation. Our GPU implementation is the first GPU implementation of the
Baum-Welch algorithm for profile Hidden Markov models.

We use gprof [122] to profile the baseline CPU implementations of the use cases on the AMD
EPYC 7742 processor (2.26 GHz, 7 nm process) with single- and multi-threaded settings. We use
the CUDA library and nvidia-smi to capture the runtime and power usage of ApHMM-GPU on
NVIDIA A100 and NVIDIA Titan V GPUs, respectively.

We compare ApHMM with the CPU, GPU, and FPGA implementations of the Baum-Welch
algorithm and use cases in terms of execution time and energy consumption. To evaluate the
Baum-Welch algorithm, we execute the algorithm in Apollo [24] and calculate the average
execution time and energy consumption of a single execution of the Baum-Welch algorithm. To
evaluate the end-to-end execution time and energy consumption of error correction, protein
family search, and multiple sequence alignment, we use Apollo [24], hmmsearch [33], and
hmmalign [33]. We replace their implementation of the Baum-Welch algorithm with ApHMM
when collecting the results of the end-to-end executions of the use cases accelerated using
ApHMM. When available, we compare the use cases that we accelerate using ApHMM to their
corresponding CPU, GPU, and FPGA implementations. For the GPU implementations, we use
both ApHMM-GPU and HMM_cuda [96]. For the FPGA implementation, we use the FPGA Divide

and Conquer (D&C) accelerator proposed for the Baum-Welch algorithm [95]. When evaluating
the FPGA accelerator, we ignore the data movement overhead and estimate the acceleration based
on the speedup provided by the earlier work. We acknowledge that the performance and energy
comparisons can be attributed to both platform differences and architectural optimizations,
especially when comparing ApHMM with the FPGA accelerator. Although our evaluations lack
comparisons in the equivalent platforms for FPGAs, we still believe that our evaluations provide
valuable insights regarding the benefits of our ASIC implementation compared to the FPGA
work.

In terms of accuracy, we ensure the accuracy of our results by faithfully implementing all the
equations of the Baum-Welch algorithm and rigorously testing their output during our ASIC de-
sign. The only exception is the Histogram Filter, where we introduce a binning approach to
include all the states a sorting-based software implementation would include, ensuring at least the
same minimum accuracy as the original software implementation. Our accuracy evaluation shows
that the histogram filter approach usually leads to better accuracy than the sorting approach, with
a minimal accuracy difference within a +/−0.2% range. To reproduce the output for comparison
purposes, we provide the source code of our software optimizations in the GPU implementation

of ApHMM (ApHMM-GPU).
Data Set. To evaluate the error correction use case, we prepare the input data that Apollo re-

quires: (1) assembly and (2) read mapping to the assembly. To construct the assembly and map
reads to the assembly, we use reads from a real sample that includes overall 163,482 reads of Es-

cherichia coli (E. coli) genome sequenced using PacBio sequencing technology with the average
read length of 5,128 bases. The accession code of this sample is SAMN06173305. Of 163,482 reads,
we randomly select 10,000 sequencing reads for our evaluation. We use minimap2 [136] and mini-
asm [137] to (1) find overlapping reads and (2) construct the assembly from these overlapping
reads, respectively. To find the read mappings to the assembly, we use minimap2 to map the same

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:18 C. Firtina et al.

reads to the assembly that we generate using these reads. We provide these inputs to Apollo for
correcting errors in the assembly we construct.

To evaluate the protein family search, we use the protein sequences from a commonly studied
protein family, Mitochondrial carrier (PF00153), which includes 214,393 sequences with an
average length of 94.2. We use these sequences to search for similar protein families from the
entire Pfam database [115] that includes 19,632 pHMMs. To achieve this, the hmmsearch [33]
tool performs the Forward and Backward calculations to find similarities between pHMMs and
sequences.

To evaluate the multiple sequence alignment, we use 1,140,478 protein sequences from pro-
tein families Mitochondrial carrier (PF00153), Zinc finger (PF00096), bacterial binding protein-
dependent transport systems (PF00528), and ATP-binding cassette transporter (PF00005). We align
these sequences to the pHMM graph of the Mitochondrial carrier protein family. To achieve this,
the hmmalign [33] tool performs the Forward and Backward calculations to find similarities be-
tween a single pHMM graph and sequences.

Data Set Justification. In our study, we carefully chose our datasets for overhead analysis and
evaluation. We believe these datasets are comprehensive and relevant to guide our ASIC design and
to evaluate ApHMM with other systems for several reasons. First, our datasets cover various use
cases with various sequence lengths (i.e., an average read length of 5,168 and an average protein
sequence length of 94.2) and alphabet sizes (4 in DNA and 20 in proteins). This diversity ensures
that our results are not skewed toward a specific use case or dataset.

Second, for error correction, we use a real-world sample of the E. coli genome, a commonly
studied bacterial genome. The overall length of randomly selected 10,000 E. coli reads is around
50,000,000 bases (the average length of a single read is 5,168). This ensures that these reads cover
the entire E. coli genome around 10 times (i.e., 10× depth of coverage), which ensures that the
Baum-Welch algorithm is executed by performing error correction on the entire genome multiple
times without focusing on the specific regions of the genome to avoid potential bias that can be
caused on particular regions. For the multiple sequence alignment and the protein family search,
we use the most commonly studied protein families as these protein families are among the top
20 families with the largest number of protein sequence alignments,1 ensuring the relevance and
applicability of our work. The bottleneck analysis was conducted on a subset of these datasets,
demonstrating that our design is not overfitting to a specific dataset.

Third, the Baum-Welch algorithm operates on a sub-region of the pHMM graph, the size
of which is determined by the sequence length or chunk size, whichever is shorter. Thus, the
complexity of a single Baum-Welch execution on this sub-region is determined mainly based on
the sequence length and the alphabet size, regardless of the overall genome size or the sequence
lengths larger than the chunk size. In our case, we cover all these cases: (1) the pHMM subgraph
is determined based on the sequence length (around 90 bases) as it is shorter than the chunk
size (up to 1,000 bases) in the protein family search and the multiple sequence alignment (2) the
length of the pHMM subgraph is determined by the chunk size in error correction as the sequence
length is usually larger (around 10,000 bases) than the chunk size, and (3) different alphabet sizes
in DNA and protein.

Fourth, for overhead analysis, we discuss in Section 3.1, we ensure our design is not overfitting to
a specific dataset by using a subset of these datasets for each use case. The overhead was measured
by taking the geometric mean across different runs to further ensure the robustness of our design.
Since our ASIC design is mainly influenced based on the observations we make in our overhead
analysis and to maximize the performance improvement for the applications mainly bottlenecked

1Top 20 protein families can be found at http://pfam-legacy.xfam.org/family/browse?browse=top%20twenty

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

http://pfam-legacy.xfam.org/family/browse?browse=top%20twenty


ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:19

Table 2. Area and Power Breakdown of ApHMM

Module Name Area (mm2) Power (mW)

Control Block 0.011 134.4
64 Processing Engines (PEs) 1.333 304.2
64 Update Transitions (UTs) 5.097 0.8
4 Update Emissions (UEs) 0.094 70.4
Overall 6.536 509.8

128 KB L1-Memory 0.632 100

Fig. 10. (a) Normalized speedups of each step in the Baum-Welch algorithm over single-threaded CPU (CPU-
1). (b) Energy reductions compared to the CPU-1 implementation of the Baum-Welch algorithm and three
pHMM-based applications.

by the Baum-Welch algorithm (i.e., error correction), we believe the comprehensiveness of our
data set choice and the overhead analysis enable us improving the robustness of our accelerator
across a wide range of potentially many other use cases other than the use cases we evaluate in
this work.

5.2 Area and Power

Table 2 shows the area breakup of the major modules in ApHMM. For the area overhead, we find
that the UT units take up most of the total area (77.98%). This is mainly because UTs consist of
several complex units, such as a multiplexer, division pipeline, and local memory. For the power
consumption, Control Block and PEs contribute to almost the entire power consumption (86%)
due to the frequent memory accesses these blocks make. Overall, aApHMM core incurs an area
overhead of 6.5 mm2 in 28 nm with a power cost of 0.509 W.

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:20 C. Firtina et al.

Table 3. Speedup of Each Optimization Over CPU

Optimization Speedup (×)
Histogram Filter 1.07
LUTs 2.48
Broadcasting and Partial Compute 3.39
Memoization 1.69
Overall 15.20

5.3 Accelerating the Baum-Welch Algorithm

Figure 10 shows the performance and energy improvements of ApHMM for executing the
Baum-Welch algorithm. Based on these results, we make six key observations. First, we observe
that ApHMM is 15.55×–260.03×, 1.83×–5.34×, and 27.97× faster than the CPU, GPU, and FPGA
implementations of the Baum-Welch algorithm, respectively. Although our evaluations do not
directly compare the state-of-the-art FPGA work with the potential FPGA implementation of
ApHMM, we believe the performance benefits that ApHMM provides arise not only from the
differences in the platform and architecture but also from the optimizations we provide, which
are absent in the existing FPGA work. We believe the benefits of these optimizations on the same
platform can partly be observed when comparing ApHMM-GPU with the state-of-the-art GPU
accelerator. Second, ApHMM reduces the energy consumption for calculating the Baum-Welch
algorithm by 2474.09× and 896.70×–2622.94× compared to the single-threaded CPU and GPU
implementations, respectively. These speedups and reduction in energy consumption show the
combined benefits of our software-hardware optimizations. Third, the parameter update step is
the most time-consuming step for the CPU and the GPU implementations, while ApHMM takes
the most time in the forward calculation step. The reason for such a trend shift is that ApHMM
reads and writes to L2 Cache and DRAM more frequently during the forward calculation than the
other steps, as ApHMM requires the forward calculation step to be fully completed and stored in
the memory before moving to the next steps as we explain in Section 4.3. Fourth, we observe that
ApHMM-GPU performs better than HMM_cuda by 2.02× on average. HMM_cuda executes the
Baum-Welch algorithm on any type of hidden Markov model without a special focus on pHMMs.
As we develop our optimizations based on pHMMs, ApHMM-GPU can take advantage of these
optimizations for more efficient execution. Fifth, both ApHMM-GPU and HMM_cuda provide bet-
ter performance for the Forward calculation than ApHMM. We believe the GPU implementations
are a better candidate for applications that execute only the Forward calculations as ApHMM
targets, providing the best performance for the complete Baum-Welch algorithm. Sixth, the
GPU implementations provide a limited speedup over the multi-threaded CPU implementations
mainly because of frequent access to the host for synchronization and sorting (e.g., the filtering
mechanism). These required accesses from GPU to host can be minimized with a specialized
hardware design, as we propose in ApHMM for performing the filtering mechanism. We conclude
that ApHMM provides substantial improvements, especially when we combine speedups and
energy reductions for executing the complete Baum-Welch algorithm compared to the CPU and
GPU implementations, which makes it a better candidate to accelerate the applications that use
the Baum-Welch algorithm than the CPU, GPU, and FPGA implementations.

Breakdown of the optimizations benefits. Table 3 shows the performance improvements
that each ApHMM optimization contributes for executing the Baum-Welch algorithm given the
single-core hardware configuration we discuss in Section 4.4 compared to the CPU baseline of
the Baum-Welch algorithm. We estimate the speedup of Histogram Filter by eliminating the
sorting mechanism from filtering while considering the overhead of redundant states included

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:21

Fig. 11. Speedups over the single-threaded CPU implementations. In the protein family search, we compare
ApHMM with each CPU thread separately.

in Histogram Filter. For other optimizations, we conservatively estimate the performance
speedups by considering the memory bandwidth reductions that each optimization provides, as
discussed in Section 4, and the relation between acceleration speedup and the memory bandwidth
requirements (Figure 8). We make five key observations. First, we find almost all optimizations
contribute significantly to reducing the overall execution time of the Baum-Welch algorithm.
Although Histogram Filter provides a limited speedup, this is because it constitutes around
8.5% of the overall execution time (Observation 4 in Section 3.1). Second, the tight coupling of
the broadcasting and the partial compute approach provides the most significant speedups by
avoiding a large number of useless data movements with significant memory bandwidth reduc-
tions. Third, the speedup from LUTs is mainly achieved by eliminating many single-precision
floating-point operations, causing around 22.7% of the total execution time (Observation 3
in Section 3.1). Fourth, the speedups with the memoization technique are purely achieved by
significantly reducing the data movement latency when frequently calculating the transition
probabilities. Fifth, we find that the memoization and the partial compute optimizations are
utilized only in the training step, and the LUTs can be useful when the alphabet size is small (e.g.,
4 in DNAs) due to storage limitations, which is usually the case when the Baum-Welch algorithm
is used mainly for inference with the protein sequencing data. Although these benefits cannot
be fully utilized in such cases, the remaining optimizations still provide a significant speedup up
to 3.63×. We conclude that our optimizations achieve significant speedups for various use cases,
from training with DNA sequencing data to inferring with protein sequencing data, allowing the
acceleration of many applications that use the Baum-Welch algorithm with pHMMs.

5.4 Use Case 1: Error Correction

Figures 11 and 10 show the end-to-end execution time and energy reduction results for error cor-
rection, respectively. We make four key observations. First, we observe that ApHMM is 2.66×–
59.94×, 1.29×–2.09×, and 7.21× faster than the CPU, GPU, and FPGA implementations of Apollo,
respectively. Second, ApHMM reduces the energy consumption by 64.24× and 71.28×–115.46×
compared to the single-threaded CPU and GPU implementations. These two observations are in
line with the observations we make in Section 5.3 as well as the motivation results we describe
in Section 3: Apollo is mainly bounded by the Baum-Welch algorithm, and ApHMM accelerates
the Baum-Welch algorithm significantly, providing significant performance improvements and en-
ergy reductions for error correction. We conclude that ApHMM significantly improves the energy

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:22 C. Firtina et al.

efficiency and performance of the error correction mainly because the Baum-Welch algorithm con-
stitutes a large portion of the entire use case.

5.5 Use Case 2: Protein Family Search

Our goal is to evaluate the performance and energy consumption of ApHMM for the protein family
search use case, as shown in Figures 11 and 10, respectively. We make three key observations. First,
we observe that ApHMM provides speedup by 1.61×–1.75×, and 1.03× compared to the CPU and
FPGA implementations. Second, ApHMM is 1.75× more energy efficient than the single-threaded
CPU implementation. The speedup ratio that ApHMM provides is lower in the protein family
search than error correction, because (1) ApHMM accelerates a smaller portion of the protein
family search (45.76%) than error correction (98.57%), and (2) the protein alphabet size (20) is much
larger than the DNA alphabet size (4), which increases the DRAM access overhead of ApHMM
by 12.5%. Due to the smaller portion that ApHMM accelerates and increased memory accesses,
it is expected that ApHMM provides lower performance improvements and energy reductions
compared to the error correction use case. Third, ApHMM can provide better speedup compared
to the multi-threaded CPU as a large portion of the parts that ApHMM does not accelerate can
still be executed in parallel using the same amount of threads, as shown in Figure 11. We conclude
that ApHMM improves the performance and energy efficiency for the protein family search, while
there is a smaller room for acceleration compared to the error correction.

5.6 Use Case 3: Multiple Sequence Alignment

Our goal is to evaluate the ApHMM’s end-to-end performance and energy consumption for the
MSA, as shown in Figures 11 and 10, respectively. We make three key observations. First, we
observe that ApHMM performs 1.95× and 1.03× better than the CPU and FPGA implementations,
while ApHMM is 1.96× more energy efficient than the CPU implementation of MSA. We note that
the hmmalign tool does not provide the multi-threaded CPU implementation for MSA. ApHMM
provides better speedup for MSA than the protein family search, because MSA performs more
forward and backward calculations (51.44%) than the protein search use case (45.76%), as shown in
Figure 2. Third, ApHMM provides slightly better performance than the existing FPGA accelerator
(FPGA D&C) in all applications, even though we ignore the data movement overhead of FPGA
D&C, which suggests that ApHMM may perform much better than FPGA D&C in real systems.
We conclude that ApHMM improves the performance and energy efficiency of the MSA use case
better than the protein family search.

6 RELATED WORK

To our knowledge, this is the first work that provides a flexible and hardware-software co-designed
acceleration framework to efficiently and effectively execute the complete Baum-Welch algorithm
for pHMMs. In this section, we explain previous attempts to accelerate HMMs. Previous works [22,
29, 33, 94–97, 138–147] mainly focus on specific algorithms and designs of HMMs to accelerate the
HMM-based applications. Several works [138, 143–147] propose FPGA- or GPU-based accelerators
for pHMMs to accelerate a different algorithm used in the inference step for pHMMs. A group of
previous works [29, 94, 97, 139] accelerates the Forward calculation based on the HMM designs
different than pHMMs for FPGAs and supercomputers. HMM_cuda [96] uses GPUs to accelerate
the Baum-Welch algorithm for any HMM design. ApHMM differs from all of these works as it
accelerates the entire Baum-Welch algorithm on pHMMs for more optimized performance, while
these works are oblivious to the pHMM design when accelerating the Baum-Welch algorithm.

A related design choice to pHMMs is Pair HMMs. Pair HMMs are useful for identifying
differences between DNA and protein sequences. To identify differences, Pair HMMs use states

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:23

to represent a certain scoring function (e.g., affine gap penalty) or variation type (i.e., insertion,
deletion, mismatch, or match) by typically using only one state for each score or difference. This
makes Pair HMMs a good candidate for generalizing pairwise sequence comparisons as they can
compare pairs of sequences while being oblivious to any sequence. Unlike pHMMs, Pair HMMs
are not built to represent sequences. Thus, Pair HMMs cannot (1) compare a sequence to a group
of sequences and (2) perform error correction. Pair HMMs mainly target variant calling and
sequence alignment problems in bioinformatics. There is a large body of work that accelerates
Pair HMMs [22, 29, 94, 139–142]. ApHMM differs from these works as its hardware-software
co-design is optimized for pHMMs.

7 CONCLUSION

We propose ApHMM, the first hardware-software co-design framework that accelerates the ex-
ecution of the entire Baum-Welch algorithm for pHMMs. ApHMM particularly accelerates the
Baum-Welch algorithm as it causes a significant computational overhead for important bioinfor-
matics applications. ApHMM proposes several hardware-software optimizations to efficiently and
effectively execute the Baum-Welch algorithm for pHMMs. The hardware-software co-design of
ApHMM provides significant performance improvements and energy reductions compared to CPU,
GPU, and FPGAs, as ApHMM minimizes redundant computations and data movement overhead
for executing the Baum-Welch algorithm. We hope that ApHMM enables further future work by
accelerating the remaining steps used with pHMMs (e.g., Viterbi decoding) based on the optimiza-
tions we provide in ApHMM.

ACKNOWLEDGMENTS

We thank the SAFARI group members and Intel Labs for feedback and the stimulating intellectual
environment.

REFERENCES

[1] Sean R. Eddy. 2004. What is a hidden Markov model? Nat. Biotechnol. 22 (Oct. 2004), 1315–1316.

[2] Bhavya Mor, Sunita Garhwal, and Ajay Kumar. 2021. A systematic review of hidden Markov models and their appli-
cations. Arch. Comput. Methods Eng. (2021).

[3] Mohammed Kyari Mustafa, Tony Allen, and Kofi Appiah. 2019. A comparative review of dynamic neural networks
and hidden Markov model methods for mobile on-device speech recognition. Neural. Comput. Appl. (2019).

[4] Shuiyang Mao, Dehua Tao, Guangyan Zhang, P. C. Ching, and Tan Lee. 2019. Revisiting hidden Markov models for
speech emotion recognition. In Proceedings of the ICASSP.

[5] Mohamed Hamidi, Hassan Satori, Ouissam Zealouk, Khalid Satori, and Naouar Laaidi. 2018. Interactive voice re-
sponse server voice network administration using hidden Markov model speech recognition system. In Proceedings

of the WorldS4.

[6] Chao Xue. 2018. A novel english speech recognition approach based on hidden Markov model. In Proceedings of the

ICVRIS.

[7] Longfei Li, Yong Zhao, Dongmei Jiang, Yanning Zhang, Fengna Wang, Isabel Gonzalez, Enescu Valentin, and Hichem
Sahli. 2013. Hybrid deep neural networkhidden Markov model (DNN-HMM)-based speech emotion recognition. In
Proceedings of the ACII.

[8] Ibrahim Patel and Y. Srinivasa Rao. 2010. Speech recognition using hidden Markov model with MFCC-subband tech-
nique. In Proceedings of the ITC.

[9] Zarmeen Nasim and Sayeed Ghani. 2020. Sentiment analysis on Urdu Tweets using Markov chains. SN Comput. Sci.

(2020).

[10] Mangi Kang, Jaelim Ahn, and Kichun Lee. 2018. Opinion mining using ensemble text hidden Markov models for text
classification. Expert Syst. Appl. (2018).

[11] Hossein Zeinali, Hossein Sameti, Lukas Burget, and Jan Honza Cernocky. 2017. Text-dependent speaker verification
based on i-vectors, Neural Networks and Hidden Markov Models. Comput. Speech Lang. (2017).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:24 C. Firtina et al.

[12] Irfan Ahmad, Sabri A. Mahmoud, and Gernot A. Fink. 2016. Open-vocabulary recognition of machine-printed Arabic
text using hidden Markov models. Pattern Recognit. (2016).

[13] A. Seara Vieira, E. L. Iglesias, and L. Borrajo. 2014. T-HMM: A novel biomedical text classifier based on hidden Markov
models. In Proceedings of the PACBB.

[14] Bruna S. Moreira, Angelo Perkusich, and Saulo O. D. Luiz. 2020. An acoustic sensing gesture recognition system
design based on a hidden Markov model. Sensors (2020).

[15] Keshav Sinha, Rashmi Kumari, Annu Priya, and Partha Paul. 2019. A computer vision-based gesture recognition
using hidden Markov model. In Innovations in Soft Computing and Information Technology. Springer.

[16] Markus Haid, Bernhard Budaker, Markus Geiger, Daniel Husfeldt, Marie Hartmann, and Nick Berezowski. 2019.
Inertial-based gesture recognition for artificial intelligent cockpit control using hidden Markov models. In Proceed-

ings of the ICCE.

[17] Alina Delia Calin. 2016. Gesture recognition on kinect time series data using dynamic time warping and hidden
Markov models. In Proceedings of the SYNASC.

[18] Nachiket Deo, Akshay Rangesh, and Mohan Trivedi. 2016. In-vehicle hand gesture recognition using hidden Markov
models. In Proceedings of the ITSC.

[19] Greg Malysa, Dan Wang, Lorin Netsch, and Murtaza Ali. 2016. Hidden Markov model-based gesture recognition with
FMCW radar. In Proceedings of the GlobalSIP.

[20] Nhan Nguyen-Duc-Thanh, Sungyoung Lee, and Donghan Kim. 2012. Two-stage hidden Markov model in gesture
recognition for human robot interaction. Int. J. Adv. Robot. Syst. (2012).

[21] Rajat Shrivastava. 2013. A hidden Markov model based dynamic hand gesture recognition system using OpenCV. In
Proceedings of the IACC.

[22] Xiao Wu, Arun Subramaniyan, Zhehong Wang, Satish Narayanasamy, Reetu Das, and David Blaauw. 2020. 17.3
GCUPS pruning-based pair-hidden-Markov-model accelerator for next-generation DNA sequencing. In Proceedings

of the VLSI.

[23] Hu Lanyue, Chen Jianhua, Wang Rongshu, Lu Zhiwen, and Hou Bin. 2020. A 5 read hybrid error correction algorithm
based on segmented pHMM. In Proceedings of the ICMCCE.

[24] Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A Ercument Cicek, Can Alkan, and Onur Mutlu.
2020. Apollo: A sequencing-technology-independent, scalable and accurate assembly polishing algorithm. Bioinform.

(2020).

[25] Martin Steinegger, Markus Meier, Milot Mirdita, Harald Vöhringer, Stephan J. Haunsberger, and Johannes Söding.
2019. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform. (2019).

[26] Ioannis A. Tamposis, Konstantinos D. Tsirigos, Margarita C. Theodoropoulou, Panagiota I. Kontou, and Pantelis G.
Bagos. 2019. Semi-supervised learning of Hidden Markov Models for biological sequence analysis. Bioinform. (2019).

[27] Can Firtina, Ziv Bar-Joseph, Can Alkan, and A Ercument Cicek. 2018. Hercules: A profile HMM-based hybrid error
correction algorithm for long reads. NAR (2018).

[28] Xiaole Yin, Xiao-Tao Jiang, Benli Chai, Liguan Li, Ying Yang, James R. Cole, James M. Tiedje, and Tong Zhang. 2018.
ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization
and quantification of antibiotic resistance genes in environmental metagenomes. Bioinform. (2018).

[29] Sitao Huang, Gowthami Jayashri Manikandan, Anand Ramachandran, Kyle Rupnow, Wen-mei W. Hwu, and Deming
Chen. 2017. Hardware acceleration of the pair-HMM algorithm for DNA variant calling. In Proceedings of the FPGA.

[30] Vagheesh Narasimhan, Petr Danecek, Aylwyn Scally, Yali Xue, Chris Tyler-Smith, and Richard Durbin. 2016. BCFtool-
s/RoH: A hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioin-

form. (2016).

[31] Lei Zhang, Yu-Fang Pei, Xiaoying Fu, Yong Lin, Yu-Ping Wang, and Hong-Wen Deng. 2014. FISH: Fast and accurate
diploid genotype imputation via segmental hidden Markov model. Bioinform. (2014).

[32] Travis J. Wheeler, Jody Clements, Sean R. Eddy, Robert Hubley, Thomas A. Jones, Jerzy Jurka, Arian F. A. Smit, and
Robert D. Finn. 2012. Dfam: A database of repetitive DNA based on profile hidden Markov models. NAR (2012).

[33] Sean R. Eddy. 2011. Accelerated profile HMM searches. PLoS Comput. Biol. (2011).

[34] Byung-Jun Yoon. 2009. Hidden Markov models and their applications in biological sequence analysis. Curr. Genomics

(2009).

[35] Martin Madera. 2008. Profile comparer: A program for scoring and aligning profile hidden Markov models. Bioinform.

(2008).

[36] Kuo-ching Liang, Xiaodong Wang, and Dimitris Anastassiou. 2007. Bayesian basecalling for DNA sequence analysis
using hidden Markov models. IEEE TCBB (2007).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:25

[37] Torben Friedrich, Birgit Pils, Thomas Dandekar, Jörg Schultz, and Tobias Müller. 2006. Modelling interaction sites in
protein domains with interaction profile hidden Markov models. Bioinform. (2006).

[38] Nikolaos G. Sgourakis, Pantelis G. Bagos, Panagiotis K. Papasaikas, and Stavros J. Hamodrakas. 2005. A method
for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models. BMC

Bioinform. (2005).

[39] Robert C. Edgar and K. Sjolander. 2004. COACH: Profile-profile alignment of protein families using hidden Markov
models. Bioinform. (2004).

[40] Petros Boufounos, Sameh El-Difrawy, and Dan Ehrlich. 2004. Basecalling using hidden Markov models. J. Frank. Inst.

(2004).

[41] Zemin Zhang and William I. Wood. 2003. A profile hidden Markov model for signal peptides generated by HMMER.
Bioinform. (2003).

[42] Alex Bateman, Ewan Birney, Lorenzo Cerruti, Richard Durbin, Laurence Etwiller, Sean R. Eddy, Sam Griffiths-Jones,
Kevin L. Howe, Mhairi Marshall, and Erik L.L. Sonnhammer. 2002. The PFAM protein families database. NAR (2002).

[43] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biological Sequence Analysis. Cambridge
University Press.

[44] Sean R. Eddy. 1998. Profile hidden Markov models. Bioinform. (1998).

[45] Pierre Baldi, Yves Chauvin, Tim Hunkapiller, and M. A. McClure. 1994. Hidden Markov models of biological primary
sequence information. Proc. Natl. Acad. Sci. U.S.A. (1994).

[46] Muhammad Ali, Monem Hamid, Jacob Jasser, Joachim Lerman, Samod Shetty, and Fabio Di Troia. 2022. Profile hidden
Markov model malware detection and API call obfuscation. In Proceedings of the ICISSP.

[47] Satheesh Kumar Sasidharan and Ciza Thomas. 2021. ProDroidAn Android malware detection framework based on
profile hidden Markov model. PMC (2021).

[48] Xiaolei Liu, Zhongliu Zhuo, Xiaojiang Du, Xiaosong Zhang, Qingxin Zhu, and Mohsen Guizani. 2019. Adversarial
attacks against profile HMM website fingerprinting detection model. Cogn. Syst. Res. (2019).

[49] Ramandika Pranamulia, Yudistira Asnar, and Riza Satria Perdana. 2017. Profile hidden Markov model for malware
classification usage of system call sequence for malware classification. In Proceedings of the ICoDSE.

[50] Saradha Ravi, N. Balakrishnan, and Bharath Venkatesh. 2013. Behavior-based Malware analysis using profile hidden
Markov models. In Proceedings of the SECRYPT.

[51] Srilatha Attaluri, Scott McGhee, and Mark Stamp. 2009. Profile hidden Markov models and metamorphic virus de-
tection. J. Comput. Virol. (2009).

[52] A. B. Riddell. 2022. Reliable editions from unreliable components: Estimating ebooks from print editions using profile
hidden Markov models. In Proceedings of the JCDL.

[53] Ioannis Kazantzidis, Francisco Florez-Revuelta, and Jean-Christophe Nebel. 2018. Profile hidden Markov models for
foreground object modelling. In Proceedings of the ICIP.

[54] Ismaïl Saadi, Feng Liu, Ahmed Mustafa, Jacques Teller, and Mario Cools. 2016. A framework to identify housing
location patterns using profile hidden Markov Models. Adv. Sci. Lett (2016).

[55] Wenwen Ding, Kai Liu, Fei Cheng, Huan Shi, and Baijian Zhang. 2015. Skeleton-based human action recognition
with profile hidden Markov models. In Proceedings of the CCCV.

[56] Feng Liu, Davy Janssens, JianXun Cui, Geert Wets, and Mario Cools. 2015. Characterizing activity sequences using
profile Hidden Markov Models. Expert Syst. Appl. (2015).

[57] Yan Liu, Pei-Yun Hsueh, Jennifer Lai, Mirweis Sangin, Marc-Antoine Nussli, and Pierre Dillenbourg. 2009. Who is
the expert? Analyzing gaze data to predict expertise level in collaborative applications. In Proceedings of the ICME.

[58] Onur Mutlu and Can Firtina. 2023. Accelerating genome analysis via algorithm-architecture co-design. In Proceedings

of the DAC.

[59] Can Firtina, Melina Soysal, Joël Lindegger, and Onur Mutlu. 2023. RawHash2: Accurate and fast mapping of raw
nanopore signals using a hash-based seeding mechanism. arXiv: 2309.05771. Retrieved from https://arxiv.org/abs/
2309.05771

[60] Joël Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad Sadrosadati, Mohammed Alser, and Onur Mutlu. 2023.
RawAlign: Accurate, fast, and scalable raw nanopore signal mapping via combining seeding and alignment. arXiv:
2310.05037. Retrieved from https://arxiv.org/abs/2310.05037

[61] Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, and Onur
Mutlu. 2023. RawHash: Enabling fast and accurate real-time analysis of raw nanopore signals for large genomes.
Bioinform. (2023).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

https://arxiv.org/abs/2309.05771
https://arxiv.org/abs/2310.05037


19:26 C. Firtina et al.

[62] Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can
Alkan, and Onur Mutlu. 2023. AirLift: A fast and comprehensive technique for remapping alignments between ref-
erence genomes. In Proceedings of the APBC.

[63] Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha Shahroodi, Nika Mansouri Ghiasi,
Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, and Onur Mutlu. 2023. BLEND: A fast, memory-efficient
and accurate mechanism to find fuzzy seed matches in genome analysis. NARGAB (2023).

[64] Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan, and Onur Mutlu. 2022. FastRemap:
A tool for quickly remapping reads between genome assemblies. Bioinform. (2022).

[65] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna,
and Onur Mutlu. 2022. From molecules to genomic variations: Accelerating genome analysis via intelligent algo-
rithms and architectures. CSBJ (2022).

[66] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali,
Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser,
and Onur Mutlu. 2022. GenStore: A high-performance in-storage processing system for genome sequence analysis.
In Proceedings of the ASPLOS.

[67] Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lindegger, Zülal Bingöl, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina,
Meryem Banu Cavlak, Jeremie Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gómez-Luna, Nour Almadhoun
Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu. 2022. SeGraM: A
universal hardware accelerator for genomic sequence-to-graph and sequence-to-sequence mapping. In Proceedings

of the ISCA.

[68] Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Ta-
egyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex
Zelikovsky, Can Alkan, Onur Mutlu, and Serghei Mangul. 2021. Technology dictates algorithms: Recent develop-
ments in read alignment. Genome Biol. (2021).

[69] Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Diamantopoulos Diamantopoulos, Juan Gómez-Luna, Henk
Corporaal, and Onur Mutlu. 2021. FPGA-based near-memory acceleration of modern data-intensive applications.
IEEE Micro (2021).

[70] Mohammed Alser, Zulal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu. 2020.
Accelerating genome analysis: A primer on an ongoing journey. IEEE Micro (2020).

[71] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan, and Onur Mutlu. 2020. SneakySnake: A fast and
accurate universal genome pre-alignment filter for CPUs, GPUs and FPGAs. Bioinform. (2020).

[72] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2020. PIM-aligner: A processing-in-MRAM platform for
biological sequence alignment. In Proceedings of the DATE.

[73] Sneha D. Goenka, Yatish Turakhia, Benedict Paten, and Mark Horowitz. 2020. SegAlign: A scalable GPU-based whole
genome aligner. In Proceedings of the SC20.

[74] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata
Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Norion, Allison Scibisz, Sreeni-
vas Subramoneyon, Can Alkan, Saugata Ghose, and Onur Mutlu. 2020. GenASM: A high-performance, low-power
approximate string matching acceleration framework for genome sequence analysis. In Proceedings of the MICRO.

[75] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan Stutsman, Edouard Giacomin, Hari Kambalasub-
ramanyam, and Pierre-Emmanuel Gaillardon. 2019. GenCache: Leveraging in-cache operators for efficient sequence
alignment. In Proceedings of the MICRO.

[76] Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu. 2019. Nanopore sequencing technol-
ogy and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.
Brief. Bioinform. (2019).

[77] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan. 2019. Shouji: A fast and efficient
pre-alignment filter for sequence alignment. Bioinformatics (2019).

[78] Yatish Turakhia, Gill Bejerano, and William J. Dally. 2018. Darwin: A genomics co-processor provides up to 15,000X
acceleration on long read assembly. In Proceedings of the ASPLOS.

[79] Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu. 2018. GRIM-filter: Fast seed location filtering in DNA read mapping using
processing-in-memory technologies. BMC Genomics (2018).

[80] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu, and Can Alkan. 2017. GateKeeper: A new
hardware architecture for accelerating pre-alignment in DNA short read mapping. Bioinformatics (2017).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:27

[81] Johannes Söding, Andreas Biegert, and Andrei N. Lupas. 2005. The HHpred interactive server for protein homology
detection and structure prediction. NAR (2005).

[82] Robert D. Finn, Jaina Mistry, John Tate, Penny Coggill, Andreas Heger, Joanne E. Pollington, O. Luke Gavin, Prasad
Gunasekaran, Goran Ceric, Kristoffer Forslund, Liisa Holm, Erik L. L. Sonnhammer, Sean R. Eddy, and Alex Bateman.
2010. The Pfam protein families database. NAR (2010).

[83] Martin Madera and Julian Gough. 2002. A comparison of profile hidden Markov model procedures for remote ho-
mology detection. NAR (2002).

[84] Sudipta Mulia, Debahuti Mishra, and Tanushree Jena. 2012. Profile HMM based multiple sequence alignment for
DNA sequences. Procedia Eng. (2012).

[85] Jimin Pei and Nick V. Grishin. 2007. PROMALS: Towards accurate multiple sequence alignments of distantly related
proteins. Bioinformatics (2007).

[86] Robert C. Edgar and Kimmen Sjölander. 2003. SATCHMO: Sequence alignment and tree construction using hidden
Markov models. Bioinformatics (2003).

[87] Vahid Rezaei, Hamid Pezeshk, and Horacio Pérez-Sa’nchez. 2013. Generalized Baum-Welch algorithm based on the
similarity between sequences. PLoS ONE (2013).

[88] Steven J. Lewis, Alpan Raval, and John E. Angus. 2008. Bayesian monte carlo estimation for profile hidden Markov
models. Math. Comput. Model. (2008).

[89] Leonard E. Baum. 1972. An inequality and associated maximization technique in statistical estimation of probabilistic
functions of a Markov process. Inequalities (1972).

[90] Steven L. Scott. 2002. Bayesian methods for hidden Markov models. JASA (2002).

[91] Yves Boussemart, Jonathan Las Fargeas, Mary L. Cummings, and Nicholas Roy. 2009. Comparing learning techniques
for hidden Markov models of human supervisory control behavior. In Proceedings of the I@A.

[92] Rune B. Lyngsø and Christian N. S. Pedersen. 2002. The consensus string problem and the complexity of comparing
hidden Markov models. JCSS (2002).

[93] Robel Y. Kahsay, Guoli Wang, Guang Gao, Li Liao, and Roland Dunbrack. 2005. Quasi-consensus-based comparison
of profile hidden Markov models for protein sequences. Bioinformatics (2005).

[94] Shanshan Ren, Vlad-Mihai Sima, and Zaid Al-Ars. 2015. FPGA acceleration of the pair-HMMs forward algorithm for
DNA sequence analysis. In Proceedings of the BIBM.

[95] M. Pietras and P. Klęsk. 2017. FPGA implementation of logarithmic versions of Baum-Welch and Viterbi algorithms
for reduced precision hidden Markov models. B Pol. Acad. Sci.-Tech. (2017).

[96] Leiming Yu, Yash Ukidave, and David Kaeli. 2014. GPU-accelerated HMM for speech recognition. In Proceedings of

the ICPADS.

[97] Stefania-Iuliana Soiman, Ionela Rusu, and Stefan-Gheorghe Pentiuc. 2014. A parallel accelerated approach of HMM
Forward Algorithm for IBM Roadrunner clusters. In Proceedings of the DAS.

[98] T. K. Moon. 1996. The expectation-maximization algorithm. IEEE Signal Process. Mag. (1996).

[99] Amirhossein Tavanaei and Anthony S. Maida. 2018. Training a hidden Markov model with a bayesian spiking neural
network. J. Signal Process. Syst. (2018).

[100] David Volent Lindberg and Dario Grana. 2015. Petro-elastic log-facies classification using the expectationmaximiza-
tion algorithm and hidden Markov models. Math. Geosci. (2015).

[101] Aliaksandr Hubin. 2019. An adaptive simulated annealing EM algorithm for inference on non-homogeneous hidden
Markov models. In Proceedings of the AIIPCC.

[102] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. 2017. Fast and accurate de novo genome assembly from
long uncorrected reads. Genome Res. (2017).

[103] Jiang Hu, Junpeng Fan, Zongyi Sun, and Shanlin Liu. 2020. NextPolish: A fast and efficient genome polishing tool
for long-read assembly. Bioinformatics (2020).

[104] Neng Huang, Fan Nie, Peng Ni, Feng Luo, Xin Gao, and Jianxin Wang. 2021. NeuralPolish: A novel Nanopore polish-
ing method based on alignment matrix construction and orthogonal Bi-GRU Networks. Bioinformatics (2021).

[105] Bruce J. Walker, Thomas Abeel, Terrance Shea, Margaret Priest, Amr Abouelliel, Sharadha Sakthikumar, Christina A.
Cuomo, Qiandong Zeng, Jennifer Wortman, Sarah K. Young, and Ashlee M. Earl. 2014. Pilon: An integrated tool for
comprehensive microbial variant detection and genome assembly improvement. PLoS ONE (2014).

[106] Aleksey V. Zimin and Steven L. Salzberg. 2020. The genome polishing tool POLCA makes fast and accurate correc-
tions in genome assemblies. PLoS Comput. Biol. (2020).

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.



19:28 C. Firtina et al.

[107] Chen-Shan Chin, David H. Alexander, Patrick Marks, Aaron A. Klammer, James Drake, Cheryl Heiner, Alicia Clum,
Alex Copeland, John Huddleston, Evan E. Eichler, Stephen W. Turner, and Jonas Korlach. 2013. Nonhybrid, finished
microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods (2013).

[108] A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE

Trans. Inf. (1967).

[109] Nicola J. Mulder and Rolf Apweiler. 2001. Tools and resources for identifying protein families, domains and motifs.
Genome Biol. (2001).

[110] Matt Jeffryes and Alex Bateman. 2018. Rapid identification of novel protein families using similarity searches.
F1000Research (2018).

[111] Seokjun Seo, Minsik Oh, Youngjune Park, and Sun Kim. 2018. DeepFam: Deep learning based alignment-free method
for protein family modeling and prediction. Bioinformatics (2018).

[112] R. Vicedomini, J.P. Bouly, E. Laine, A. Falciatore, and A. Carbone. 2022. Multiple profile models extract features from
protein sequence data and resolve functional diversity of very different protein families. Mol. Biol. Evol. (2022).

[113] Pablo Turjanski and Diego U. Ferreiro. 2018. On the natural structure of amino acid patterns in families of protein
sequences. J. Phys. Chem. B. (2018).

[114] Maxwell L. Bileschi, David Belanger, Drew H. Bryant, Theo Sanderson, Brandon Carter, D. Sculley, Alex Bateman,
Mark A. DePristo, and Lucy J. Colwell. 2022. Using deep learning to annotate the protein universe. Nat. Biotechnol.

(2022).

[115] Jaina Mistry, Sara Chuguransky, Lowri Williams, Matloob Qureshi, Gustavo A. Salazar, Erik L. L. Sonnhammer, Silvio
C. E. Tosatto, Lisanna Paladin, Shriya Raj, Lorna J. Richardson, Robert D. Finn, and Alex Bateman. 2021. Pfam: The
protein families database in 2021. NAR (2021).

[116] Peter Skewes-Cox, Thomas J. Sharpton, Katherine S. Pollard, and Joseph L. DeRisi. 2014. Profile hidden Markov
models for the detection of viruses within metagenomic Sequence Data. PLoS ONE (2014).

[117] Winfried Just. 2001. Computational complexity of multiple sequence alignment with SP-score. J. Comput. Biol. (2001).

[118] Lusheng Wang and Tao Jiang. 1994. On the complexity of multiple sequence alignment. J. Comput. Biol. (1994).

[119] Biswanath Chowdhury and Gautam Garai. 2017. A review on multiple sequence alignment from the perspective of
genetic algorithm. Genomics (2017).

[120] Qing Zhan, Nan Wang, Shuilin Jin, Renjie Tan, Qinghua Jiang, and Yadong Wang. 2019. ProbPFP: A multiple sequence
alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition
function. BMC Bioinform. (2019).

[121] Intel. 2022. Vtune Profiler. Retrieved from https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtu
ne-profiler.html

[122] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. 2004. Gprof: A call graph execution profiler. SIGPLAN

Not. (2004).

[123] Bonnie Kirkpatrick and Kay Kirkpatrick. 2012. Optimal state-space reduction for pedigree hidden Markov models.
arXiv: 1202.2468. Retrieved from https://arxiv.org/abs/1202.2468

[124] István Miklós and Irmtraud M. Meyer. 2005. A linear memory algorithm for Baum-Welch training. BMC Bioinform.

(2005).

[125] J.Alicia Grice, Richard Hughey, and Don Speck. 1997. Reduced space sequence alignment. Bioinformatics (1997).

[126] Raymond Wheeler and Richard Hughey. 2000. Optimizing reduced-space sequence analysis. Bioinformatics (2000).

[127] C. Tarnas and R. Hughey. 1998. Reduced space hidden Markov model training. Bioinformatics (1998).

[128] Pei Chen, Rui Liu, Yongjun Li, and Luonan Chen. 2016. Detecting critical state before phase transition of complex
biological systems by hidden Markov model. Bioinformatics (2016).

[129] Fábio Madeira, Young mi Park, Joon Lee, Nicola Buso, Tamer Gur, Nandana Madhusoodanan, Prasad Basutkar, Adrian
R. N. Tivey, Simon C. Potter, Robert D. Finn, and Rodrigo Lopez. 2019. The EMBL-EBI search and sequence analysis
tools APIs in 2019. NAR (2019).

[130] Simon C. Potter, Aurélien Luciani, Sean R. Eddy, Youngmi Park, Rodrigo Lopez, and Robert D. Finn. 2018. HMMER
web server: 2018 update. NAR (2018).

[131] Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R. Eddy, Aurélien Luciani, Simon C. Potter, Matloob Qureshi, Lorna J.
Richardson, Gustavo A. Salazar, Alfredo Smart, Erik L. L. Sonnhammer, Layla Hirsh, Lisanna Paladin, Damiano
Piovesan, Silvio C. E. Tosatto, and Robert D. Finn. 2019. The Pfam protein families database in 2019. NAR (2019).

[132] Wenjun Li, Kathleen R. O’Neill, Daniel H. Haft, Michael DiCuccio, Vyacheslav Chetvernin, Azat Badretdin, George
Coulouris, Farideh Chitsaz, Myra K. Derbyshire, A Scott Durkin, Noreen R. Gonzales, Marc Gwadz, Christopher J.
Lanczycki, James S. Song, Narmada Thanki, Jiyao Wang, Roxanne A. Yamashita, Mingzhang Yang, Chanjuan Zheng,

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://arxiv.org/abs/1202.2468


ApHMM: Accelerating pHMMs for Fast and Energy-efficient Genome Analysis 19:29

Aron Marchler-Bauer, and Françoise Thibaud-Nissen. 2021. RefSeq: Expanding the Prokaryotic genome annotation
pipeline reach with protein family model curation. NAR (2021).

[133] Hernan A. Lorenzi, Daniela Puiu, Jason R. Miller, Lauren M. Brinkac, Paolo Amedeo, Neil Hall, and Elisabet V. Caler.
2010. New assembly, reannotation and analysis of the entamoeba histolytica genome reveal new genomic features
and protein content information. PLoS Negl. Trop. Dis. (2010).

[134] Synopsys. 2016. Design Compiler (Version L-2016.03-SP2). (Mar. 2016).

[135] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable parallel programming with CUDA: Is
CUDA the parallel programming model that application developers have been waiting for? Queue (2008).

[136] Heng Li. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (2018).

[137] Heng Li. 2016. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics

(2016).

[138] Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, and Fayez Gebali. 2016. Reconfigurable hardware accelerator for
profile hidden Markov models. Arab J. Sci. Eng. (2016).

[139] Enliang Li, Subho S. Banerjee, Sitao Huang, Ravishankar K. Iyer, and Deming Chen. 2021. Improved GPU implemen-
tations of the pair-HMM forward algorithm for DNA sequence alignment. In Proceedings of the ICCD.

[140] Rick Wertenbroek and Yann Thoma. 2019. Acceleration of the pair-HMM forward algorithm on FPGA with cloud
integration for GATK. In Proceedings of the BIBM.

[141] Subho S. Banerjee, Mohamed el Hadedy, Ching Y. Tan, Zbigniew T. Kalbarczyk, Steve Lumetta, and Ravishankar K.
Iyer. 2017. On accelerating pair-HMM computations in programmable hardware. In Proceedings of the FPL.

[142] Xiao Wu, Arun Subramaniyan, Zhehong Wang, Satish Narayanasamy, Reetuparna Das, and David Blaauw. 2021.
A high-throughput pruning-based pair-hidden-Markov-model hardware accelerator for next-generation DNA se-
quencing. IEEE Solid-State Circ. Lett. (2021).

[143] Hanyu Jiang, Narayan Ganesan, and Yu-Dong Yao. 2018. CUDAMPF++: A proactive resource exhaustion scheme for
accelerating homologous sequence search on CUDA-enabled GPU. IEEE TPDS (2018).

[144] Saddam Quirem, Fahian Ahmed, and Byeong Kil Lee. 2011. CUDA acceleration of P7Viterbi algorithm in HMMER
3.0. In Proceedings of the IPCCC.

[145] Steven Derrien and Patrice Quinton. 2008. Hardware acceleration of HMMER on FPGAs. J. Signal Process. Syst. (2008).

[146] Tim Oliver, Leow Yuan Yeow, and Bertil Schmidt. 2007. High performance database searching with HMMer on FPGAs.
In Proceedings of the IPDPS.

[147] Tim Oliver, Leow Yuan Yeow, and Bertil Schmidt. 2008. Integrating FPGA acceleration into HMMer. Parallel Comput.

(2008).

Received 19 August 2022; revised 1 June 2023; accepted 6 October 2023

ACM Trans. Arch. Code Optim., Vol. 21, No. 1, Article 19. Publication date: February 2024.


