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Abstract. Ice-sheet flow models capable of accurately pro-
jecting their future mass balance constitute tools to improve
flood risk assessment and assist sea-level rise mitigation as-
sociated with enhanced ice discharge. Some processes that
need to be captured, such as grounding-line migration, re-
quire high spatial resolution (under the kilometer scale).
Conventional ice flow models mainly execute on central pro-
cessing units (CPUs), which feature limited parallel process-
ing capabilities and peak memory bandwidth. This may hin-
der model scalability and result in long run times, requiring
significant computational resources. As an alternative, graph-
ics processing units (GPUs) are ideally suited for high spatial
resolution, as the calculations can be performed concurrently
by thousands of threads, processing most of the computa-
tional domain simultaneously. In this study, we combine a
GPU-based approach with the pseudo-transient (PT) method,
an accelerated iterative and matrix-free solution strategy,
and investigate its performance for finite elements and un-
structured meshes with application to two-dimensional (2-
D) models of real glaciers at a regional scale. For both the
Jakobshavn and Pine Island glacier models, the number of
nonlinear PT iterations required to converge a given num-
ber of vertices (N ) scales in the order of O(N1.2) or bet-
ter. We further compare the performance of the PT CUDA
C implementation with a standard finite-element CPU-based
implementation using the price-to-performance metric. The
price of a single Tesla V100 GPU is 1.5 times that of two

Intel Xeon Gold 6140 CPUs. We expect a minimum speedup
of at least 1.5 times to justify the Tesla V100 GPU price to
performance. Our developments result in a GPU-based im-
plementation that achieves this goal with a speedup beyond
1.5 times. This study represents a first step toward lever-
aging GPU processing power, enabling more accurate po-
lar ice discharge predictions. The insights gained will ben-
efit efforts to diminish spatial resolution constraints at higher
computing performance. The higher computing performance
will allow for ensembles of ice-sheet flow simulations to
be run at the continental scale and higher resolution, a pre-
viously challenging task. The advances will further enable
the quantification of model sensitivity to changes in upcom-
ing climate forcings. These findings will significantly benefit
process-oriented sea-level-projection studies over the com-
ing decades.

1 Introduction

Global mean sea level is rising at an average rate of
3.7 mm yr−1, posing a significant threat to coastal communi-
ties and global ecosystems (Hinkel et al., 2014; Kopp et al.,
2016). The increase in ice discharge from the Greenland and
Antarctic ice sheets significantly contributes to sea-level rise.
However, their dynamic response to climate change remains
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a fundamental uncertainty in future projection (Rietbroek
et al., 2016; Chen et al., 2017; IPCC, 2021). While much
progress has been made over the last decades, several crit-
ical physical processes, such as calving and ice-sheet basal
sliding, remain poorly understood (Pattyn and Morlighem,
2020). Existing computational resources limit the spatial res-
olution and simulation time on which continental-scale ice-
sheet models can run. Some processes, such as grounding-
line migration or ice front dynamics, require spatial resolu-
tions in the order of 1 km or smaller (Larour et al., 2012;
Aschwanden et al., 2021; Castleman et al., 2022).

Most numerical models use a solution strategy designed
to target central processing units (CPUs) and shared memory
parallelization. CPUs’ parallel processing capabilities, peak
memory bandwidth, and power consumption remain limiting
factors. It remains to be seen whether high-resolution mod-
eling will become feasible at the continental scale (or ice-
sheet scale). Specifically, complex flow models, such as full-
Stokes models, may remain challenging to employ beyond
the regional scale. Trying to overcome the technical limi-
tations tied to CPU-based computing, graphics processing
units (GPUs) feature interesting capabilities and have been
booming over the past decade (Brædstrup et al., 2014; Häfner
et al., 2021). Developing algorithms and solvers to leverage
GPU computing capabilities has become essential and has re-
sulted in active development within scientific computing and
high-performance computing (HPC) communities.

The traditional way of solving the partial differential
equations governing ice-sheet flow, employing, e.g., finite-
element analysis, may represent a challenge to leverage GPU
acceleration efficiently. Handling unstructured grid geome-
tries and having global-to-local indexing patterns may signif-
icantly hinder efficient memory transfers and optimal band-
width utilization. Räss et al. (2020) proposed an alternative
approach by reformulating the flow equations in the form of
pseudo-transient (PT) updates. The PT method augments the
time-independent governing ice-sheet flow equation by phys-
ically motivated pseudo-time-dependent terms. The added
pseudo-time τ terms turn the initial time-independent ellip-
tic equations into a parabolic form, allowing for an explicit
iterative pseudo-time integration to reach a steady state and,
thus, the solution of the initial elliptic problem. The explicit
pseudo-time integration scheme eliminates the need for the
expensive direct–iterative type of solvers, making the pro-
posed approach matrix-free and attractive for various parallel
computing approaches (Frankel, 1950; Poliakov et al., 1993;
Kelley and Liao, 2013). Räss et al. (2020) introduced this
method specifically targeting GPU computing to enable the
development of high-spatial-resolution full-Stokes ice-sheet
flow solvers in two dimensions (2-D) and three dimensions
(3-D), respectively, on uniform grids (Räss et al., 2020). The
approach unveils a promising solution strategy, but the finite-
difference discretization on uniform and structured grids and
the idealized test cases represent actual limitations.

Here, we build upon work from previous studies (Räss
et al., 2019, 2020) on the accelerated PT method for finite-
difference discretization on uniform, structured grids and
extend it to finite-element discretization and unstructured
meshes. We developed a CUDA C implementation of the PT
depth-integrated Shallow-Shelf Approximation (SSA) and
applied it to regional-scale glaciers, Pine Island Glacier and
Jakobshavn Isbræ, in West Antarctica and Greenland, respec-
tively. We compare the PT CUDA C implementation with
a more standard finite-element CPU-based implementation
available within the Ice-sheet and Sea-level System Model
(ISSM). Our comparison uses the same mesh, model equa-
tions, and boundary conditions. In Sect. 2, we present the
mathematical reformulation of the 2-D SSA momentum bal-
ance equations to incorporate the additional pseudo-transient
terms needed for the PT method. We provide the weak for-
mulation and discuss the spatial discretization. Section 3 de-
scribes the numerical experiments conducted, chosen glacier
model configurations, hardware implementation, and perfor-
mance assessment metrics. In Sects. 4 and 5, we illustrate
the method’s performance and conclude on future research
directions.

2 Methods

2.1 Mathematical formulation of the 2-D SSA model

We employ the SSA (MacAyeal, 1989) formulation to solve
the momentum balance equation:

∇ · (2Hµε̇SSA)= ρgH∇s+α2v , (1)

where the 2-D SSA strain rate ε̇SSA is defined as

ε̇SSA =

 2 ∂vx
∂x
+
∂vy
∂y

∂vx
∂y

∂vx
∂y

2 ∂vy
∂y
+
∂vx
∂x

 . (2)

The terms vx and vy represent the respective x and y ice ve-
locity components,H is the ice thickness, ρ is the ice density,
g is the gravitational acceleration, s is the glacier’s upper sur-
face z coordinate, and α2v is the basal friction term. The ice
viscosity µ follows Glen’s flow law (Glen, 1955):

µ=
B

2 ε̇(n−1)/n
e

, (3)

where B is ice rigidity, ε̇e is the effective strain rate, and n=
3 is Glen’s power-law exponent. We regularize the strain-
rate-dependent viscosity formulation in the numerical imple-
mentation by capping it at 1× 105 to address the singular-
ity arising in regions of the computational domain where the
strain rate tends toward zero.

As boundary conditions, we apply water pressure at the
ice front 0σ and nonhomogeneous Dirichlet boundary con-
ditions 0u on the other boundaries (based on observed veloc-
ity).
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2.2 Mathematical reformulation of the 2-D SSA model
to incorporate the PT method

The solution to the SSA ice flow problem is commonly
achieved by discretizing Eq. (1) using the finite-element or
finite-difference method. The discretized problem can be
solved using a direct, direct–iterative, or iterative approach.
Robust matrix-based direct-type solvers exhibit significant
scaling limitations restricting their applicability when con-
sidering high-resolution or 3-D configurations. Iterative solv-
ing approaches allow one to circumvent most scaling lim-
itations. However, they may encounter convergence issues
for suboptimally conditioned, stiff, or highly nonlinear prob-
lems, resulting in the non-tractable growth of the iteration
count. Thus, one challenge is to prevent the iteration count
from growing exponentially. We propose the accelerated
pseudo-transient (PT) method as an alternative approach.
The method augments the steady-state viscous flow (Eq. 1)
by adding the usually ignored transient term, which can be
further used to integrate the equations in pseudo-time τ ,
seeking an implicit solution once the steady state is reached,
i.e., when τ →∞.

Building upon work from previous studies (Omlin et al.,
2018; Duretz et al., 2019; Räss et al., 2019, 2020, 2022),
we reformulate the 2-D SSA steady-state momentum bal-
ance equations into a transient diffusion-like formulation for
flow velocities vx,y by incorporating the usually omitted time
derivative.

∇ · (2Hµε̇SSA)− ρgH∇s−α
2v = ρH

∂v

∂τ
(4)

The velocity–time derivatives represent physically motivated
expressions that we can further use to iteratively reach a
steady state, which provides the solution of the original
time-independent equations. As we are only interested in
the steady-state here, transient processes evolve in numeri-
cal time or pseudo-time τ :

ρH
∂vx

∂τ
= Rx ,

ρH
∂vy

∂τ
= Ry , (5)

where Rx and Ry correspond to the right-hand-side expres-
sions of Eq. (1) and define the residuals of the original SSA
equations for which we are seeking a solution. We define the
transient pseudo-time step 1τ as a field variable (that is spa-
tially variable) chosen to minimize the number of nonlinear
PT iterations.

2.3 Pseudo-time-stepping method

Here, we advance in numerical pseudo-time using a forward
Euler pseudo-time-stepping method. We choose our time
derivative by approximating the transient diffusive system for

both vx and vy :

ρH
∂vx

∂τ
=
∂

∂x

(
4Hµ

∂vx

∂x

)
,

ρH
∂vy

∂τ
=
∂

∂y

(
4Hµ

∂vy

∂y

)
, (6)

where one recognizes the diffusive variables vx,y and the ef-
fective dynamic viscosity 4µ/ρ as a diffusion coefficient.
Using the analogy of a diffusive process, we can define a CFL
(Courant–Friedrichs–Lewy)-like stability criterion for the PT
iterative scheme. The explicit CFL-stability-based time step
for viscous flow is given by the following:

1τmax = ρ
1x2

4µ(1+µb)× ndim
, (7)

where 1x represents the grid spacing, µb is the numerical
bulk ice viscosity, and ndim = 2.1,4.1, and 6.1 in 1-D, 2-D,
and 3-D, respectively.

2.4 Viscosity continuation

We implement a continuation on the nonlinear strain-rate-
dependent effective viscosity µeff to avoid the iterative solu-
tion process diverging, as strain-rate values may not satisfy
the momentum balance at the beginning of the iterative pro-
cess and may, thus, be far from equilibrium. At every pseudo-
time step, the effective viscosity µeff is updated in the loga-
rithmic space:

µeff = exp
(
θµ log(µ)+ (1− θµ) log(µold

eff

)
, (8)

where the scalar 10−2 < θµ < 1 is selected such that we pro-
vide sufficient time to relax the nonlinear viscosity at the start
of the pseudo-iterative loop.

2.5 Acceleration owing to damping

The major limitation of this simple first-order, or Picard-type,
iterative approach resides in the poor iteration count scaling
with increased numerical resolution. The number of itera-
tions needed to converge for a given problem for N number
of grid points involved in the computation scales in the order
of O(N2).

To address this limitation, we consider a second-order
method, referred to as the second-order Richardson method,
as introduced by Frankel (1950). This approach allows us to
aggressively reduce the number of iterations to the number of
grid points, making the method scale as≈O(N1.2). Optimal
scaling can be achieved by realizing that the PT framework’s
diffusion type of updates readily provided can be divided into
two wave-like update steps. Transitioning from diffusion to
wave-like pseudo-physics exhibits two main advantages: (i)
the wave-like time step limit is a function of 1x instead
of 1x2; (ii) it is possible to turn the wave equation into a
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damped wave equation. The latter permits one to find opti-
mal tuning parameters to achieve optimal damping, resulting
in fast convergence. Let us assume the following diffusion-
like update step, reported here for the x direction only:

ρH
∂vx

∂τ
=
∂

∂x
4Hµ

∂vx

∂x
. (9)

The above expression results in the following update rule:

vx = v
old
x +

1τD

ρH

(
∂

∂x
4Hµ

∂vx

∂x

)
, (10)

where 1τD ≈1x
2/(4µ/ρ)/4.1 is the diffusion-like time

step limit. This system can be separated into a residual as-
signment Ax and the velocity update vx :

Ax =
1
ρH

(
∂

∂x
4Hµ

∂vx

∂x

)
, (11)

vx = v
old
x +1τDAx . (12)

Converting Eq. (11) into an update rule using a step size of
(1− γ ),

Ax = A
old
x (1− γ )+

1
ρH

(
∂

∂x
4Hµ

∂vx

∂x

)
, (13)

turns the system composed of Eqs. (12) and (13) into a
damped wave equation similar to what was suggested by
Frankel (1950). Ideal convergence can be reached upon se-
lecting the appropriate damping parameter γ . To maintain
solution stability, we include relaxation θv:

vx = v
old
x + θv1τDAx, (14)

where 0< γ < 1 and 0< θv < 1.
Alternative and complementary details about the PT ac-

celeration can be found in Räss et al. (2019), Duretz et al.
(2019), and Räss et al. (2020), while an in-depth analysis is
provided in Räss et al. (2022).

2.6 Weak formulation and finite-element discretization

Using the PT method, the equations to solve are as referenced
in Eq. (4):

ρH
∂v

∂τ
=∇ · 2Hµε̇SSA− ρgH∇s−α

2v . (15)

The weak form of the equation, assuming homogeneous
Dirichlet conditions along all model boundaries for simplic-
ity, reads: ∀w ∈H1 (�),∫
�

ρH
∂v

∂τ
·wd�+

∫
�

2Hµε̇SSA · ∇w d�=

∫
�

− ρgH∇s ·w−α2v ·w d� , (16)

Figure 1. PT iterative algorithm for unstructured meshes applied to
solve 2-D SSA momentum balance equations.

where H1 (�) is the space of square-integrable functions
whose first derivatives are also square integrable.

Once discretized using the finite-element method, the ma-
trix system to solve reads:

MV̇ +KV = F , (17)

where M is the mass matrix, K is the stiffness matrix, F is
the right-hand-side or load vector, and V is the vector of ice
velocity.

Geosci. Model Dev., 17, 899–909, 2024 https://doi.org/10.5194/gmd-17-899-2024



A. Sandip et al.: FastIceFlo v2.0 903

We can compute V̇ by solving

V̇'M−1
L (−KV+F ) , (18)

where ML stands for the lumped mass matrix that permits
one to avoid the resolution of a matrix system.

Hence, we have an explicit expression of the time deriva-
tive of the ice velocity for each vertex of the mesh:

v̇xi =
1

ρHmLi

−∫
�

(
4Hµ

∂vx

∂x
+ 2Hµ

∂vy

∂y

)
∂ϕi

∂x

+

(
Hµ

∂vx

∂y
+Hµ

∂vy

∂x

)
∂ϕi

∂y
d�

+

∫
�

− ρgH
∂s

∂x
ϕi −α

2vxϕi d�

 , (19)

v̇yi =
1

ρHmLi

−∫
�

(
4Hµ

∂vy

∂y
+ 2Hµ

∂vx

∂x

)
∂ϕi

∂y

+

(
Hµ

∂vx

∂y
+Hµ

∂vy

∂x

)
∂ϕi

∂x
d�

+

∫
�

− ρgH
∂s

∂y
ϕi −α

2vyϕid�

 , (20)

where mLi is the component number i along the diagonal of
the lumped mass matrix ML.

For every nonlinear PT iteration, we compute the rate of
change in velocity v̇ and the explicit CFL-stability-based
time step 1τ . We then deploy the reformulated 2-D SSA
momentum balance equations to update ice velocity v fol-
lowed by ice viscosity µeff. We iterate in pseudo-time until
the stopping criterion is met (Fig. 1).

3 Numerical experiments

3.1 Glacier model configurations

To test the performance of the PT method beyond simple ide-
alized geometries, we apply it to two regional-scale glaciers:
Jakobshavn Isbræ, in Western Greenland, and Pine Island
Glacier, in West Antarctica (Fig. 2). For Jakobshavn Isbræ,
we rely on BedMachine Greenland v4 (Morlighem et al.,
2017) and also invert for basal friction to infer the basal
boundary conditions. Note that the inversion is run on the
Ice-sheet and Sea-level System Model (ISSM), using a stan-
dard approach (Larour et al., 2012). For Pine Island Glacier,
we initialize the ice geometry using BedMachine Antarctica
v2 (Morlighem et al., 2020) and infer the friction coefficient
using surface velocities derived from satellite interferometry
(Rignot et al., 2011).

Figure 2. Glacier model configurations: observed surface velocities
(in m yr−1) interpolated on a uniform mesh. Panels (a) and (b) cor-
respond to Jakobshavn Isbræ and Pine Island Glacier, respectively.

3.2 Hardware implementation

We developed a CUDA C implementation to solve the SSA
equations using the PT approach on unstructured meshes.
We choose a stopping criterion of ||vold

−v||∞ < 10 m yr−1.
The software solves the 2-D SSA momentum balance equa-
tions on a single GPU. We use an NVIDIA Tesla V100
SXM2 GPU with 16 GB (gigabytes) of device RAM and an
NVIDIA A100 SXM4 with 80 GB of device RAM. We com-
pare the PT implementation’s results on a Tesla V100 GPU
with ISSM’s “standard” CPU implementation using a con-
jugate gradient (CG) iterative solver. We used a 64-bit 18-
core Intel Xeon Gold 6140 processor for the CPU compari-
son, with 192 GB of RAM available. We perform multicore
Message Passing Interface (MPI)-parallelized ice-sheet flow
simulations on two CPUs, with all 36 cores enabled (Larour
et al., 2012; Habbal et al., 2017). All simulations use double-
precision arithmetic computations.

3.3 Performance assessment metrics

To investigate the PT CUDA C implementation for unstruc-
tured meshes, we report the number of vertices (or grid size)
and the corresponding number of nonlinear PT iterations
needed to meet the stopping criterion. We employ the com-
putational time required to reach convergence as a proxy to
assess and compare the performance of the PT CUDA C with
the ISSM CG CPU implementation. We make sure to ex-
clude all pre- and post-processing steps from the timing. We
quantify the relative performance of the CPU and GPU im-
plementations as the speedup (S), given by the following:

S =
tCPU

tGPU
. (21)

The PT method employed to solve the nonlinear momen-
tum balance equations results in a memory-bound algorithm
(Räss et al., 2020); therefore, the wall time depends on the
memory throughput. In addition to the speedup, we employ
the effective memory throughput metric to assess the perfor-
mance of the PT CUDA C implementation developed in this

https://doi.org/10.5194/gmd-17-899-2024 Geosci. Model Dev., 17, 899–909, 2024
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Figure 3. Performance assessment of the PT CUDA C implemen-
tation for unstructured meshes.

study (Räss et al., 2020, 2022), which is defined as follows:

Teff =
nn niter nIO np

10243 tniter

, (22)

where nn represents the total number of vertices, niter is a
given number of PT iterations, np is the arithmetic precision,
tniter is the time taken to complete niter iterations, and nIO is
the minimal number of nonredundant memory accesses (read
and write operations). The number of read and write opera-
tions needed for this study would be eight: update vx , vy , and
nonlinear viscosity arrays for every PT iteration, in addition
to reading the basal friction coefficient and the masks.

4 Results and discussion

To investigate the performance of the PT CUDA C imple-
mentation on unstructured meshes, we report the number of
vertices (or grid size) and the corresponding number of non-
linear PT iterations needed to meet the stopping criterion
(Fig. 3). For both the Jakobshavn and Pine Island glacier
models, the number of nonlinear PT iterations required to
converge for a given number of vertices (N ) scales in the
order of ≈O(N1.2) or better. We chose the damping param-
eter γ , nonlinear viscosity relaxation scalar θµ, and transient
pseudo-time step1τ to maintain the linear scaling described
above; optimal parameter values are listed in the Appendix
(Table A1). We observed an exception at ∼ 3× 107 degrees
of freedom (DoFs) for the Pine Island Glacier model; opti-
mal parameter values are unidentifiable. We will further in-
vestigate the convergence for the Pine Island Glacier model
at ∼ 3×107 DoFs. Among the two glacier models chosen in
this study, for a given number of vertices (N ), Jakobshavn
Isbræ resulted in faster convergence rates, which we attribute
to differences in scale and bed topography and the nonlinear-
ity of the problem (Fig. 4).

We further compare the performance of the PT CUDA
C implementation with a standard finite-element CPU-based
implementation using the price-to-performance metric. The
price of a single Tesla V100 GPU is 1.5 times that of two

Figure 4. Residual error evolution of the PT CUDA C implementa-
tion for unstructured meshes.

Figure 5. Performance comparison of the PT Tesla V100 imple-
mentation with the CPU implementation employing wall time (or
computational time to reach convergence). Note that wall time does
not include pre- and post-processing steps.

Intel Xeon Gold 6140 CPU processors. 1 We expect a mini-
mum speedup of at least 1.5 times to justify the Tesla V100
GPU price to performance. We recorded the computational
time to reach convergence for the ISSM CG CPU and the
PT GPU solver implementations (Fig. 5) for up to 2× 107

DoFs. Across glacier configurations, we report a speedup of
>1.5 times on the Tesla V100 GPU. We report a speedup
of approximately 7 times at ∼ 1× 106 DoFs for the Jakob-
shavn glacier model. This larger speedup at ∼ 1× 106 DoFs
indicates the PT GPU implementation’s suitability to develop
high-spatial-resolution ice-sheet flow models. We report an
exception for the Jakobshavn glacier model at 2× 107 DoFs
(speedup of 0.28 times). We suggest that readers compare the
speedup results reported in this study (Table 1) with other
parallelization strategies.

The PT method applied to solve nonlinear momentum bal-
ance equations is a memory-bound algorithm, as described in
Sect. 3.3. The profiling results on the Tesla V100 GPU indi-
cate an up to 85 % increase in the device’s available mem-

1Intel Xeon Gold 6140 processor specification sheet:
https://ark.intel.com/content/www/us/en/ark/products/120485/
intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
(last access: 31 December 2023).

Geosci. Model Dev., 17, 899–909, 2024 https://doi.org/10.5194/gmd-17-899-2024

https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html


A. Sandip et al.: FastIceFlo v2.0 905

Table 1. Performance comparison of the PT Tesla V100 implemen-
tation with the CPU implementation employing speedup S.

Jakobshavn Isbræ Speedup Pine Island Speedup
DoFs S Glacier DoFs S

88 458 3.6 28 920 3.73
329 362 11.68 71 292 15.30
787 542 2.64 139 578 1.73
1 335 458 7.37 2 221 410 1.5
21 328 514 0.299

Figure 6. Performance assessment of the PT CUDA C imple-
mentation across GPU architectures employing effective memory
throughput.

ory resources utilization with the increase in DoFs. This fur-
ther confirms the memory-bounded nature of the implemen-
tation. To assess the performance of the memory-bound PT
CUDA C implementation, we employ the effective memory
throughput metric defined in Sect. 3.3. We report the effec-
tive memory throughput to DoFs for the PT CUDA C single-
GPU implementation (Fig. 6). We observe a significant drop
in effective memory throughput on both GPU architectures
at DoFs>×107, which explains the drop in the speedup. We
attribute the drop partly to the nonoptimal global memory ac-
cess patterns reported in the L1TEX and L2 cache. We iden-
tify excessive nonlocal data access patterns in the ice stiff-
ness and strain-rate computations, which involve accessing
element-to-vertex connectivities and vice versa. For optimal
or fully coalesced global memory access patterns, the threads
in a warp must access the same relative address. We are in-
vestigating techniques to reduce the mesh non-localities and
allow for coalesced global accesses.

We report a peak memory throughput for the NVIDIA
Tesla V100 and A100 GPUs of 785 and 1536 GB s−1, re-
spectively. The peak memory throughput reflects the max-
imal memory transfer rates for performing memory copy-
only operations. It represents the hardware performance limit
in a memory-bound regime. Across glacier model configura-
tions for the DoFs chosen in this study, the PT CUDA C im-
plementation achieves a maximum of 23 and 58 GB s−1 for
the NVIDIA Tesla V100 and A100 GPUs, respectively. The

measured memory throughput is in the order of 500 GB s−1,
as reported by the NVIDIA Nsight Compute profiling tool
2022.2 on the NVIDIA Tesla V100. The measured mem-
ory throughput values reflect that we efficiently saturate the
memory bandwidth. In contrast, the lower effective memory
throughput values indicate that some of the memory accesses
are redundant and could be further optimized.

Minimizing the memory footprint is critical when assess-
ing the performance of memory-bounded algorithms, further
speedups, and increased ability to solve large-scale problems.
Due to insufficient memory at 1× 108 DoFs for the Pine Is-
land Glacier model configuration, we could neither execute
the standard CPU solver on four 18-core Intel Xeon Gold
6140 processors and 3 TB of RAM nor the PT GPU imple-
mentation on the Tesla V100 GPU architecture. However, we
could implement PT GPU on a single A100 SXM4 featuring
80 GB of device RAM. Thus, we could further confirm the
necessity to keep the memory footprint minimal for models
targeting high spatial resolution.

In this study, we tested up to an estimated 2× 107 DoFs
needed to maintain a spatial resolution of ∼ 1 km or better
in grounding-line regions for Antarctic and Greenland-wide
ice flow models. Future studies may involve extending the
PT CUDA C implementation from (i) the regional scale to
the ice-sheet scale and from (ii) a 2-D SSA to a 3-D Blatter–
Pattyn higher-order (HO) approximation. Extending the PT
CUDA C implementation to the ice-sheet scale will require
the user to carefully choose the damping parameter γ , non-
linear viscosity relaxation scalar θµ, and transient pseudo-
time step1τ . The shared elliptical nature of the 2-D SSA and
3-D HO formulations and corresponding partial differential-
equation-based models (Gilbarg and Trudinger, 1977; Tezaur
et al., 2015) suggests the PT method’s ability to solve the 3-D
HO momentum balance applied to unstructured meshes. The
overarching goal is to diminish spatial resolution constraints
at higher computing performance to improve predictions of
ice-sheet evolution.

5 Conclusions

Recent studies have implemented techniques that keep com-
putational resources manageable at the ice-sheet scale while
increasing the spatial resolution dynamically in areas where
the grounding lines migrate during prognostic simulations
(Cornford et al., 2013; Goelzer et al., 2017). In terms of
computer memory footprint and execution time, the compu-
tational cost associated with solving the momentum balance
equations to predict the ice velocity and pressure represents
one of the primary bottlenecks (Jouvet et al., 2022). This pre-
liminary study introduces a PT solver, applied to unstruc-
tured meshes, that leverages the GPU computing power to
alleviate this bottleneck. Coupling the GPU-based ice veloc-
ity and pressure simulations with CPU-based ice thickness
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and temperature simulations can provide an enhanced bal-
ance between speed and predictive performance.

This study aimed to investigate the PT CUDA C imple-
mentation for unstructured meshes and its application to the
2-D SSA model formulation. For both the Jakobshavn and
Pine Island glacier models, the number of nonlinear PT it-
erations required to converge for a given number of vertices
(N ) scales in the order of ≈O(N1.2) or better. We observed
an exception at 3× 107 degrees of freedom (DoFs) for the
Pine Island Glacier model; optimal solver parameters are
unidentifiable. We further compare the performance of the
PT CUDA C implementation with a standard finite-element
CPU-based implementation using the price-to-performance
metric. We justify the GPU implementation in the price-to-
performance metric for up to million-grid-point spatial reso-
lutions.

In addition to the price-to-performance metric, we prelim-
inary investigated the power consumption. The power con-
sumption of the PT GPU implementation was measured us-
ing the NVIDIA System Management Interface 460.32.03.
For the range of DoFs tested, the power usage for both glacier
configurations to meet the stopping criterion was 38± 1 W.
The power consumption measurement for the CPU imple-
mentation was taken from the hardware specification sheet:
thermal design power. For a 64-bit 18-core Intel Xeon Gold
6140 processor, the thermal design power is 140 W.2 We ex-
ecuted the CPU-based multicore MPI-parallelized ice-sheet
flow simulations on two CPUs, with all 36 cores enabled,
and we chose the power consumption to be 280 W. This is a
first-order estimate. Thus, the power consumption of the PT
GPU implementation was approximately one-seventh of the
traditional CPU implementation for the test cases chosen in
this study. We will investigate this further.

This study represents a first step toward leveraging GPU
processing power, enabling more accurate polar ice discharge
predictions. The insights gained will benefit efforts to dimin-
ish spatial resolution constraints at higher computing perfor-
mance. The higher computing performance will allow users
to run ensembles of ice-sheet flow simulations at the conti-
nental scale and higher resolution, a previously challenging
task. The advances will further enable the quantification of
model sensitivity to changes in upcoming climate forcings.
These findings will significantly benefit process-oriented
sea-level-projection studies over the coming decades.

2Intel Xeon Gold 6140 processor specification sheet:
https://ark.intel.com/content/www/us/en/ark/products/120485/
intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
(last access: 31 December 2023).
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Appendix A

Table A1. Optimal combination of damping parameter γ , nonlinear viscosity relaxation scalar θµ, and relaxation θv to maintain the linear
scaling and solution stability for the glacier model configurations and DoFs listed.

Jakobshavn Isbræ γ θv θµ Pine Island γ θv θµ
DoFs Glacier DoFs

88 458 0.98 0.99 3× 10−2 28 920 0.98 0.6 1× 10−1

329 362 0.987 0.98 7× 10−2 71 292 0.99 0.49 8× 10−2

787 542 0.99 0.99 1× 10−1 139 578 0.991 0.99 2× 10−2

1 335 458 0.992 0.999 1× 10−1 2 221 410 0.998 0.995 1× 10−2

21 328 514 0.998 0.999 1× 10−1

Code and data availability. The current version of FastIceFlo
is available for download from GitHub at https://github.com/
AnjaliSandip/FastIceFlo (last access: 18 September 2023) un-
der the MIT license. The exact version of the model used
to produce the results used in this paper is archived on Zen-
odo (https://doi.org/10.5281/zenodo.8356351, Sandip et al., 2023)
along with the input data and scripts to run the model and produce
the plots for all of the simulations presented in this paper. The PT
CUDA C implementation runs on a CUDA-capable GPU device.
The research data are presented in the paper.
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