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Abstract 
Endothelial cells (ECs) form the inner linings of the vasculature, which consists of the 

cardiovascular and lymphatic systems. These two related yet distinct systems play a 

crucial role in maintaining tissue homeostasis. While quiescent in mature vasculature, 

ECs dynamically respond to external cues by migrating and proliferating to create new 

vessels. Importantly, dysregulation of the proliferation-quiescence balance disrupts 

vascular integrity and contributes to the progression of several cardiovascular and 

lymphatic diseases.  

Development and maintenance of EC types and the vasculature are tightly 

controlled by the interplay of various transcription factors (TFs) and signaling 

pathways. Furthermore, studies in the last decades have highlighted the important role 

of metabolism in modulating differentiation into ECs as well as the formation and 

maintenance of a proliferative and quiescent state. Cellular metabolism orchestrates 

the chemical reactions within cells, converting nutrients into energy, building blocks for 

macromolecules, and facilitating waste elimination. This complex network integrates 

environmental and intracellular signals, influencing thereby cellular decisions crucial 

for differentiation and phenotypic formation. So far, studies often focused on specific 

pathways, relying on transcriptomics approaches, or used primarily human umbilical 

vein ECs (HUVECs). However, the previously demonstrated heterogeneity in 

metabolic protein transcript levels among ECs from different tissues emphasizes the 

need to explore tissue-specific cellular metabolic patterns, elucidating the extent of 

variance and its impact on diverse phenotypes and functions.  

The use of untargeted, mass spectrometry-based measurements of proteins 

and metabolites enables a comprehensive investigation into the molecular lifestyles of 

cells across diverse growth states. This approach facilitates the identification of new 

molecular factors, such as metabolic pathways, that potentially mediate the formation 

and maintenance of cellular identities and growth states. The aim of this thesis was to 

explore the metabolic and proteomic diversity of ECs from different tissues and 

vascular beds by using untargeted proteomics and metabolomics and to examine the 

role of the cell type-specific molecular patterns in the formation and maintenance of 

EC identities and states.  

To that end, in chapter 2, we established an experimental workflow to directly 

examine metabolite and protein levels of human dermal lymphatic ECs (HDLECs), 
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human intestinal lymphatic ECs (iLECs), human dermal blood ECs (HDBECs) and 

human umbilical vein ECs (HUVECs) in proliferation and quiescence through 

untargeted metabolomics and proteomics. Our experimental approach, which includes 

mitogen reduction and contact inhibition for quiescence induction, revealed a temporal 

transition from proliferation to quiescence, capturing conserved and cell type-specific 

metabolic and proteomic patterns. Data normalization effectively mitigated batch 

effects, paving the way for an in-depth exploration of molecular patterns defining EC 

phenotypes and the intricate landscape of EC metabolism.  

In chapter 3, we conducted an in-depth analysis of the datasets from chapter 2 

to uncover molecular patterns defining EC identities and states. Distinct proteomic and 

metabolic patterns in quiescence and proliferation were observed in each cell type, 

with some patterns aligning with known markers (e.g., PROX1 in lymphatic ECs). 

Consistent with previous studies, we found shared findings in EC types, such as the 

upregulation of fatty acid oxidation (FAO) in quiescent HUVECs, HDLECs, and iLECs 

or upregulation of branched-chain amino acid catabolism across all quiescent EC 

types. Functional studies in HUVECs and iLECs revealed diverse phenotypic 

alterations following enzyme inhibition, highlighting the importance of metabolic 

pathways for maintaining specific states in different endothelial cell types.  

In chapter 4, we utilized the proteomics dataset to infer the activities of 263 TFs. 

The resulting TF activity patterns exhibited cell type- and state-specific behaviours, 

reflecting the unique characteristics and requirements of each cell type. Additionally, 

we identified TFs with distinct activities between blood endothelial cells (BECs) and 

lymphatic endothelial cells (LECs), including well-established markers of LEC and BEC 

identities. Furthermore, we conducted correlation analyses between TF activities and 

the expression patterns of 14 enzymes targeted for pharmacological inhibition. This 

analysis led to the identification of two new TFs that potentially regulate the expression 

of enzymes crucial for functional migration in both HUVECs and iLECs. 

Overall, this thesis provides a comprehensive description of the unique 

molecular characteristics that define ECs from different tissues and vascular beds. Our 

validation efforts primarily focused on findings related to metabolism, and therefore, 

we believe that our multi-omics dataset holds the potential to uncover additional 

molecular factors involved in the formation and maintenance of specific EC identities 

and states and subsequently the cardiovascular and lymphatic systems. 
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Zusammenfassung 
Endothelzellen bilden die innere Auskleidung des Gefässsystems, welches aus dem 

kardiovaskulären und lymphatischen System besteht. Diese beiden verwandten, aber 

trotzdem unterschiedlichen Systeme spielen eine entscheidende Rolle bei der 

Aufrechterhaltung der Gewebehomöostase. Endothelzellen befinden sich in 

ausgereiften Gefässen im Ruhezustand, reagieren aber dynamisch auf externe 

Signale, indem sie migrieren und sich vermehren, um neue Gefässe zu bilden. Eine 

Dysregulation dieses Gleichgewichts zwischen Proliferation und Ruhezustand stört die 

Gefässintegrität und trägt zur Entwicklung verschiedener kardiovaskulärer und 

lymphatischer Krankheiten bei.  

Die Entwicklung und Aufrechterhaltung von verschiedenen Arten von 

Endothelzellen und des Gefässsystems werden durch das komplexe Zusammenspiel 

verschiedener Transkriptionsfaktoren (TF) und Signalwege engmaschig gesteuert. 

Darüber hinaus haben Studien in den letzten Jahrzehnten die bedeutende Rolle des 

Stoffwechsels bei der Modulation der Differenzierung zu Endothelzellen sowie bei der 

Bildung und Aufrechterhaltung eines proliferativen und ruhenden Zustands 

hervorgehoben. Der zelluläre Stoffwechsel orchestriert die chemischen Reaktionen 

innerhalb von Zellen, wandelt Nährstoffe in Energie um, liefert Bausteine für 

Makromoleküle und ermöglicht die Ausscheidung von Abfallprodukten. Dieses 

komplexe Netzwerk integriert Umwelt- und intrazelluläre Signale und beeinflusst somit 

zelluläre Entscheidungen, die für Differenzierung und phänotypische Ausprägung 

entscheidend sind. Bisher konzentrierten sich Studien oft auf spezifische 

Stoffwechselwege, massen und verwendeten die Menge von Gentranskripten oder 

nutzten hauptsächlich humane Nabelschnurvenen-Endothelzellen (HUVECs). Die in 

Studien gezeigte Heterogenität in den Transkriptspiegeln von metabolischen Proteinen 

zwischen Endothelzellen aus verschiedenen Geweben betont jedoch die 

Notwendigkeit, gewebespezifische Zelluläre Stoffwechselmuster zu erkunden, um den 

Umfang der Variabilität und deren Auswirkungen auf unterschiedliche Phänotypen und 

Funktionen zu verstehen.  

Die Anwendung von nichtzielgerichteten, Massenspektrometrie-basierten 

Messungen von Proteinen und Metaboliten ermöglicht eine umfassende Untersuchung 

der molekularen Lebensweisen von Zellen in verschiedenen Wachstumszuständen. 

Diese Methode erleichtert die Identifizierung neuer molekularer Faktoren, wie 
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metabolischer Wege, die möglicherweise die Bildung und Aufrechterhaltung zellulärer 

Identitäten und Wachstumszustände vermitteln. Folglich war das Ziel dieser Arbeit, die 

metabolische und proteomische Vielfalt von Endothelzellen aus verschiedenen 

Geweben und Gefässbetten zu erforschen und die Rolle der zelltypspezifischen 

molekularen Muster bei der Bildung und Aufrechterhaltung von Wachstumszuständen 

zu untersuchen.  

Zu diesem Zweck haben wir in Kapitel 2 einen experimentellen Aufbau etabliert, 

um direkt die Metabolit- und Proteinmengen von menschlichen dermalen 

lymphatischen Endothelzellen (HDLECs), menschlichen intestinalen lymphatischen 

Endothelzellen (iLECs), menschlichen dermalen Blutendothelzellen (HDBECs) und 

menschlichen Nabelschnurvenen-Endothelzellen (HUVECs) in Proliferation und 

Ruhezustand durch nichtzielgerichtete Metabolomik und Proteomik zu untersuchen. 

Unser experimenteller Aufbau, der Mitogenreduktion und Kontaktinhibition zur 

Ruhezustand-Induktion umfasst, zeigt einen zeitlichen Übergang von der Proliferation 

zur Ruhe über und erfasste konservierte sowie zelltypspezifische metabolische und 

proteomische Muster. Die Datennormalisierung behandelte Batch-Effekte effektiv und 

ebnete den Weg für eine eingehende Erforschung molekularer Muster, die Endothel-

Phänotypen definieren, sowie die komplexe Landschaft des endothelen Stoffwechsels. 

In Kapitel 3 führten wir eine eingehende Analyse der Datensätze aus Kapitel 2 

durch, um die molekularen Muster zu identifizieren, die die Identitäten und Zustände 

von Endothelzellen definieren. Es wurden deutliche proteomische und metabolische 

Muster in Ruhezustand und Proliferation in jeder Zellart beobachtet, wobei einige 

Muster mit bekannten Markern übereinstimmten (z.B. PROX1 in lymphatischen 

Endothelzellen). Konsistent mit früheren Studien fanden wir gemeinsame Befunde in 

verschiedenen Endothelzelltypen, wie die Hochregulation der Fettsäureoxidation 

(FAO) in ruhenden HUVECs, HDLECs und iLECs oder die Hochregulation des Abbaus 

verzweigtkettiger Aminosäuren in allen ruhenden Endothelzelltypen. Funktionelle 

Studien in HUVECs und iLECs zeigten vielfältige phänotypische Veränderungen nach 

Enzyminhibition, was die Bedeutung metabolischer Wege für die Aufrechterhaltung 

spezifischer Zustände in verschiedenen Endothelzellen unterstreicht. 

Im Kapitel 4 nutzten wir den Proteom-Datensatz, um die Aktivitäten von 263 

Transkriptionsfaktoren (TFs) zu erschließen. Die resultierenden TF-Aktivitätsmuster 

zeigten zelltyp- und zustandsspezifisches Verhalten, das die einzigartigen Merkmale 
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und Anforderungen jeder Zellart widerspiegelt. Zusätzlich identifizierten wir TFs mit 

unterschiedlichen Aktivitäten zwischen Blutendothelzellen (BEC) und lymphatischen 

Endothelzellen (LEC), einschließlich etablierter Marker für LEC- und BEC-Identitäten. 

Des Weiteren führten wir Korrelationsanalysen zwischen TF-Aktivitäten und den 

Expressionsmustern von 14 Enzymen durch, die Ziel pharmakologische Hemmung in 

den funktionellen Studienvorgesehen waren. Diese Analyse führte zur Identifikation 

von zwei neuen TFs, die möglicherweise die Expression von Enzymen regulieren, die 

für funktionelle Migration sowohl in HUVECs als auch in iLECs entscheidend sind. 

Insgesamt bietet diese Arbeit eine umfassende Beschreibung der einzigartigen 

molekularen Merkmale, die Endothelzellen aus verschiedenen Geweben und 

Gefäßbetten definieren. Unsere Validierungsbemühungen konzentrierten sich 

hauptsächlich auf Ergebnisse im Zusammenhang mit dem Stoffwechsel, daher 

glauben wir, dass unser Multiomik-Datensatz das Potenzial hat, zusätzliche 

molekulare Faktoren aufzudecken, die an der Bildung und Aufrechterhaltung 

spezifischer endothelen Identitäten und Zustände und darauffolgend dem 

kardiovaskulären und lymphatischen System beteiligt sind. 
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Blood and lymphatic vasculature 

The human body consists of approximately 3*1013 cells that are divided into around 

200 different cell types, which are the basis of the four basic types of tissues1.  The 

cardiovascular and lymphatic systems are parts of the connective tissue and are 

branched networks that run through the entire body and are found in every other tissue 

and organ2,3. These two related systems are both crucial for tissue homeostasis but 

have distinct physiological roles. The blind-ended lymphatic system is involved in fluid 

retention from tissues, immune response, and lipid absorption4–8, whereas the 

cardiovascular system is responsible for oxygen and nutrient transport, removal of 

waste, immune cell circulation, and thermoregulation9. Both blood and lymphatic 

systems are composed of capillaries and larger vessels, which are called collecting 

vessels in the lymphatic system8,9. Endothelial cells (ECs) line up these vessels in both 

networks and in the mature vasculature, ECs are quiescent most of their lifetime10–12. 

However, upon external stimulation through growth factors gradients or hypoxic 

conditions, in a process called (lymph)angiogenesis, ECs are activated and 

differentiate into migratory tip cells and proliferating stalk cells to form new vessels, for 

example to support wound healing or to provide tissues with nutrients and oxygen (Fig. 

1A)13,14. Extensive signalling between tip and stalk cells, especially via Delta-like ligand 

4 (DLL4) and Notch, ensures proper tip and stalk cell behaviour, partly through distinct 

regulation of metabolic activity, and ultimately facilitates vessel formation (Fig. 1B)10. 

Vessel formation is terminated once the tip cells encounter another tip cell or 

blood/lymphatic vessel, nutrient and oxygen levels meeting the demands of the 

tissues, or the decrease in proangiogenic factor levels, which all subsequently lead to 

re-establishment of quiescence in ECs13,15,16. ECs not only line up blood and lymphatic 

vessels as a simple monolayer, but they are also a critical component of vascular 

function. In the cardiovascular system, blood ECs (BECs) fulfil a myriad of functions: 

they regulate the vascular tone, coagulation and thrombosis formation, or recruit 

platelets and leukocytes after vascular injury17. And lymphatic ECs (LECs) are 

connected by intermitted cell-cell button junctions, which enables the entrance of 

lymph in an unidirectional way and of immune cells that travel through lymphatic 

vessels to lymph nodes for antigen presentation and activation of the immune 

response18. 
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Development of blood and lymphatic vasculature 

Development of the cardiovascular and lymphatic systems is a multi-step process 

starting in early embryos, in which mesodermal cells differentiate into angioblasts, the 

endothelial precursor cells (Fig. 1C)19. Angioblasts build the first primitive vascular 

structures, such as the primary plexus and aorta and cardinal veins, a process called 

vasculogenesis13,20. Subsequent formation of more complex vascular structures that 

include arteries, capillaries and veins is termed angiogenesis and is mediated through 

the interplay of different transcription factors (TFs), that control the transcription of a 

defined sets of genes, and signalling pathways13,20,21. The main drivers of 

arteriovenous development are vascular endothelial growth factor (VEGF-A) and 

Notch signalling22. Increased VEGF and Notch signalling initiates adoption of an 

arterial phenotype, while reduced activation of VEGF and COUP-TFII-mediated 

repression of Notch signalling leads to a venous phenotype22–25. Furthermore, distinct 

TFs define BEC identity and thereby support arterial and venous development26. The 

most prominent TFs are, besides COUP-TFII (NR2F2), GATA2, ETV2 and members 

of the HESR (Hey1, Hey2), FOX (FOXC1, FOXC2) and SOX (SOX7, SOX17, SOX18) 

family of transcription factors (Fig. 1B)20,21. Further maturation of blood vessels 

requires the formation of the basal lamina and the recruitment and association of 

pericytes and smooth muscle cells to the vessels, which results in quiescence of 

BECs27.  

The last step in the development of the mature vasculature is lymphangiogenesis, in 

which venous BECs differentiate into lymphatic ECs (LECs) with subsequent lymphatic 

vasculature formation5,20,28–30. The differentiation is governed by SOX18, NR2F2 and 

the master regulator of LEC identity, PROX1 (Fig. 1D)5,20,30–33. PROX1 induces 

expression of LEC-specific markers, like VEGFR3 and integrin α9, that steer the 

migration of LECs along a VEGF-C gradient, the first step in lymphatic capillaries and 

vessels formation5,34. In contrast to VEGF receptor 1 and 2, which mainly regulate 

angiogenesis, lymphangiogenesis is mediated by the LEC-specific VEGF receptor 3 

(VEGFR3)35. Further maturation of lymphatic vessels and the formation of lymphatic 

valves is controlled by the transcription factors GATA2, FOXC2 and NFATC136,37. In 

addition to transcription factor binding, alternative mechanisms of transcriptional 

regulation, such as epigenetic signatures, partially mediated by long-noncoding RNAs, 
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have recently garnered increased attention in research. These mechanisms have been 

demonstrated to play a role in the formation of lymphatic endothelial cell identity38,39.  

 

Figure 1. Overview of vascular organization and development 
(A) Scheme of the formation of novel blood vessels along a growth factor or hypoxia gradient. 
(B) Overview of some of the main regulators of migrating, proliferating and quiescent phenotypes, with special 

emphasis on glycolysis and its activation or repression in certain phenotypes. DLL4 = Delta-like ligand 4, 
VEGF = Vascular endothelial growth factor, VEGFR2 = VEGF receptor 2, FOXO1 = Forkhead box protein 
O1, MYC = MYC proto-oncogene, PFKFB3 = 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, 
KLF2 = Krüppel-like factor 2.  

(C) Development of the cardiovascular system from mesodermal progenitors. ETV2 = ETS variant 
transcription factor 2, FOXC = Forkhead box C, TFs = transcription factors, ETS = E26 transformation-
specific, KLF = Krüppel-like factor, COUP-TFII = COUP transcription factor 2, HESR = Hairy and enhancer 
of split-related, FOX = Forkhead box, SOX = SRY-related HMG-box. 

(D) Development of the lymphatic system from venous vasculature. PROX1 = Prospero homeobox protein 1, 
GATA2 = GATA-binding factor 2, NFATC1 = Nuclear factor of activated T cells 1. 
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Diseases caused by dysfunctional vasculature 

Disturbances or alterations in these fine-tuned developmental and regulatory 

processes lead to endothelial dysfunction and consequently to various vasculature-

related diseases17,40. Dysfunctional blood endothelium negatively impacts vascular 

tone, promoting the emergence of cardio- and cerebrovascular diseases such as 

hypertension, atherosclerosis, coronary artery disease and stroke17. Dysregulation of 

lymphatic homeostasis causes the development of various diseases throughout the 

body, for example lymphedema, inflammatory diseases of the skin (dermatitis) or 

inflammatory bowel disease8,41–43. Even though the mechanisms of EC development 

are well-understood, the causes of dysfunctional endothelial cells promoting disease 

progression are sometimes enigmatic and not just explainable through mutations in 

EC-shaping signalling molecules or TFs. Some diseases or disease-supporting 

dysfunctional vasculatures, however, can be caused by extrinsic factors or aberrant 

metabolism.  

A classic example of a disease caused by mutations as well as extrinsic factors is 

lymphedema. It is a disease arising from impaired lymphatic drainage that leads to 

tissue swelling, inflammation and fibrosis, which substantially impairs function of the 

affected organ. The prevalence is high, it affects up to 250 million people 

worldwide41,42. Lymphedema is divided into two subgroups, primary and secondary 

lymphedema. Primary lymphedema is a hereditary disease caused by genetic 

mutations in genes like VEGFR3 or FOXC2 that drive lymphatic vessel development 

and maturation36,42. Primary lymphedema affects around 1 in 6’000 individuals. The 

vast majority of lymphedema cases, however, are secondary lymphedema cases, 

which are caused by extrinsic factors, such as filariasis, cancer-related treatments, 

traumas, surgery or obesity, which all damage or obstruct previously healthy lymphatic 

vessels42. The exact causes of secondary lymphedema are still being investigated, but 

a preliminary study showed that the synergistic interaction of specific single nucleotide 

polymorphisms (SNPs) in VEGFR3 and FOXC2 potentially supports the progression 

of secondary lymphedema44. Additionally, extensive research over the last years 

displays the pivotal role of metabolism to support normal EC functions and 

consequently suggests that metabolism and metabolic alterations are causative or 

supportive of vascular diseases, potentially also in secondary lymphedema45–47. 

Understanding the metabolic patterns that underlie health and diseased states in 
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endothelial cells is therefore beneficial for development of novel therapies. Indeed, 

Garcia-Caballero et al. demonstrated in a study that ketone bodies induce 

lymphangiogenesis and improve lymphatic vessel function in mice, alleviating 

symptoms of a human lymphedema-mimicking ablation of lymphatic vessels in mice 

tails48. The effect of aberrant metabolism in BECs is also demonstrated in a recent 

study by Zhang et al49. They showed that enhanced serine biosynthesis in tumour 

BECs stimulates BEC overgrowth via increased glycolysis and nucleotide 

biosynthesis, leading to decreased perfusion of and lower oxygen levels in the tumour 

and reduced T cell infiltration, altogether promoting tumour growth49. Inhibition of 

serine biosynthesis prunes the vasculature, improves T cell infiltration, and 

consequently inhibits tumour growth.  

Endothelial cell metabolism 

Endothelial cells exhibit high phenotypic plasticity, as they are mostly quiescent in their 

lifetime but can immediately switch to a proliferative state to form novel vessels. Recent 

studies attributed an essential role to metabolism to provide the bioenergetic and 

metabolic means of establishing and maintaining different growth states as well as 

lymphatic identity (Table 1)50–60. For example, PROX1 is the master regulator of LEC 

differentiation and accomplishes lymphatic identity formation and lymphangiogenesis 

through rewiring metabolism, specifically through upregulation of fatty acid β-oxidation 

(FAO), which then alters epigenetic regulation of lymphatic gene expression58. In brief, 

by increasing the expression of the mitochondrial fatty acid transporter CPT1α and 

subsequent increased FAO, acetyl-CoA levels rise and serve as acetate source for 

enhanced histone acetylation of lymphatic genes by PROX1 and the histone 

acetyltransferase p300. The expression of lymphatic genes leads to differentiation into 

and proliferation of LECs, the first steps in lymphangiogenesis. As a consequence, 

CPT1α knockdown impairs lymphangiogenesis through FAO inhibition, an effect that 

was shown to be reversible in vitro by acetate supplementation58. Besides this prime 

example of upregulated FAO for lymphangiogenesis, other metabolic pathways or 

reactions have been described to play a pivotal role in proliferating and quiescent ECs 

(Table 1). Many of the described pathways, such as glycolysis, tricarboxylic acid (TCA) 

cycle and pentose phosphate pathway (PPP), are part of central carbon metabolism 

(CCM), which is the most fundamental metabolic process in living cells to sustain 
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cellular bioenergetic balance and metabolic precursor levels needed for cellular 

survival and growth61.  

Glycolysis  

Glycolysis is a highly conserved pathway in many different organisms that converts 

glucose into pyruvate, forming the energy-providing molecule adenosine triphosphate 

(ATP) and reduced nicotinamide adenine dinucleotide (NADH). ATP provides chemical 

energy and is thus essential for cells to run many biological processes. In glycolysis, 

for each molecule of glucose, 2 molecules of ATP are generated, compared to 36 

molecules in aerobic respiration via oxidative phosphorylation (OXPHOS). 

Nevertheless, endothelial cells (blood and lymphatic) form most of their ATP via 

glycolysis50. This is even more surprising for BECs, because they have almost 

unlimited access to nutrients and oxygen from the blood. ATP generation via glycolysis 

offers three advantages, though: first, production of reactive oxygen species (ROS) is 

reduced, thereby decreasing the chances that excessive ROS levels damage proteins, 

lipids and nucleic acids62. Second, independence from oxygen to produce ATP enables 

BECs to sprout into tissues that have low oxygen levels. And third, larger amounts of 

oxygen can be transferred to surrounding tissue. Proliferating and quiescent ECs rely 

on glycolysis for ATP production, but it is less active in quiescence due to lower 

expression of glycolytic genes54,57. In detail, increase of glycolytic flux in proliferation 

is mediated by VEGF signalling, while higher activity of FOXO1, Notch signalling and 

Krüppel-like factor 2 (KLF2), a TF responding to laminar shear stress experienced by 

quiescent ECs in the mature vasculature, reduces glycolytic flux in quiescence50,53,54,63. 

FOXO1 suppresses glycolysis through inhibition of MYC, a known enhancer of 

glycolysis, while KLF2 reduces glycolysis partly by transcriptional repression of the 

glycolysis-activator 6-phosphofruco-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) 

and the glycolysis enzymes hexokinase-2 (HK2) and phosphofructokinase 1 

(PFK1)54,63. VEGF signalling on the other hand upregulates PFKFB3 expression which 

increases glycolytic flux. As a consequence, inhibition of PFKFB3 reduces growth and 

migration of ECs, while overexpression of PFKFB3 without additional angiogenic 

signalling enhances tip-cell behaviour and vessel sprouting, demonstrating the 

importance of metabolism to facilitate certain phenotypes and cellular functions50. 

Furthermore, under glucose-restricted conditions, for example during vascularization 

in nutrient-deprived tissues, glycolysis of migrating and proliferating ECs is fuelled by 



General Introduction 

16 
 

degradation of internal glycogen storages that provides glucose64. Besides growth-

state dependent global up- or downregulation of glycolytic flux in ECs, it was 

demonstrated that pyruvate kinase (PK), the enzyme that catalyses the conversion of 

phosphoenolpyruvate to pyruvate, supports the formation and maintenance of 

proliferation and quiescence as well65. The M2 isoform (PKM2) is almost exclusively 

expressed in ECs and plays a fundamental role in cell cycle progression and vascular 

integrity in a metabolism-independent way. PKM2 suppresses the cell cycle inhibitor 

p53 in proliferation and the NF-kB-induced expression of angiopoietin-2 in quiescence. 

This illustrates how enzymes in the central metabolic pathways of endothelial cells 

(ECs) contribute to the formation and maintenance of both blood and lymphatic 

vessels, revealing previously unknown mechanisms associated with these enzymes.   

Pentose phosphate pathway 

Glycolysis is not only used to generate ATP, but it also contributes to the formation of 

a variety of different metabolites by fuelling other metabolic pathways, such as the PPP. 

Glycolysis-derived glucose 6-phosphate (G6P) is converted by glucose-6-phosphate 

dehydrogenase (G6PD) into 6-phospho-glucono-1,5-lactone, which is the first and 

rate-limiting step of the PPP. The PPP is mainly involved in the regeneration of the 

cofactor NADPH from its oxidized version NADP+ and provides ribose for nucleotide 

biosynthesis. NADPH is needed to run anabolic and redox reactions and for the 

synthesis of nitric oxide (NO), a signalling molecule produced by endothelial nitric oxide 

synthases (eNOS) from arginine, that plays an important role in promoting migration 

and angiogenesis of BECs, but also in the regulation of the vascular tone66–69. 

Consequently, increased flux through the PPP has been shown to limit accumulation 

of ROS and provides building blocks for nucleotide biosynthesis needed by 

hyperproliferative ECs in cancer70,71.  

TCA cycle and fatty acid β-oxidation 

The TCA cycle is a set of oxidative reactions and a central hub for anabolic and 

catabolic reactions, redox regulation, signalling and energy production from carbon-

containing molecules derived from various sources, such as pyruvate from glycolysis, 

acetyl-CoA from FAO, propionyl-CoA from branched chain amino acid breakdown or 

α-ketoglutarate from glutaminolysis72. In proliferating ECs, the role of the TCA cycle is 

not primarily to contribute to energy generation or for redox homeostasis but for de 
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novo nucleotide synthesis for DNA replication through biosynthesis of the nucleotide 

precursor, aspartate, a process which is dependent on acetyl-CoA influx into TCA cycle 

from FAO51. In contrast, quiescent ECs use FAO and the TCA cycle to maintain redox 

homeostasis57. Quiescent BECs reside in a high-oxygen microenvironment and long-

term exposure to ROS leads to cardiovascular dysfunction62. Nevertheless, a base 

level of ROS is crucial for migration and angiogenesis of BECs, through mediating the 

increased expression of VEGF73–75. Therefore, balanced redox control is crucial to 

avoid unwanted damage but still providing enough ROS to maintain proper cellular 

functions. In quiescent ECs, increased FAO through upregulation of fatty acyl 

transporter CPT1α and other enzymes in FAO leads to higher levels of acetyl-CoA that 

enter the TCA cycle. Two of the TCA cycle intermediates, isocitrate and malate, are 

substrates of isocitrate dehydrogenase (IDH2) and malic enzyme (ME3), respectively, 

two enzymes that produce NADPH and that were shown to be higher expressed in 

quiescent ECs as well. NADPH is used by glutathione reductase to reduce glutathione, 

which in turn functions as substrate of glutathione peroxidase, an enzyme that clears 

intracellular ROS and thus protects quiescent ECs from excessive ROS levels57. 

Interestingly, EC quiescence is tightly connected to increased FAO, as it was 

demonstrated that overexpression of quiescence-inducing FOXO1 leads to an 

increase of FAO54,57. Furthermore, whether FAO is used for nucleotide production in 

proliferating ECs or redox homeostasis in quiescent ECs seems to be partly regulated 

through quiescence-promoting Notch57. A consequence of disturbed CPT1α function 

in vivo is vascular leakage and hyperpermeability, which can be reversed through 

acetate treatment in mice57. CPT1α is not only a key player in blood ECs but also in 

lymphatic ECs, where it facilitates the transition from venous BECs to LECs and 

sustains TCA intermediates for nucleotide biosynthesis in proliferation58. Intriguingly, 

lymphangiogenesis defects caused by inhibition of FAO can be rescued by acetate 

supplementation. Furthermore, besides FAO, also ketone body oxidation was shown 

to promote lymphangiogenesis48. Ketone bodies are metabolites produced in and 

secreted from the liver and yield a total of 22 ATPs per ketone body. They are an 

important energy source for different organs in times of low carbohydrate intake. 

Providing additional ketone bodies, thereby fuelling the TCA cycle through ketone body 

oxidation, increases LEC proliferation48. Even more surprising, feeding mice a 

ketogenic diet, which is a low-carbohydrate, high-fat diet resulting in increased 

circulating ketone bodies, promotes LEC proliferation and lymphangiogenesis.  
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  Table 1. Overview of cell type- and state-dependent use of metabolic pathways in ECs. The upper table is mostly 
based on studies with blood endothelial cells, the lower table contains lymphatic endothelial cell-specific metabolic 
patterns that support phenotypes. 
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Oxidative phosphorylation 

In many cell types, OXPHOS is the predominant pathway to generate ATP. NADH is 

formed in glycolysis and the TCA cycle, and its electrons used by the electron transport 

chain (ETC), a series of complexes in the mitochondria, to generate a proton gradient 

that facilitates ATP synthesis via ATP synthase. Inhibition of OXPHOS impairs EC 

proliferation and vascular development76,77. However, the cause of the consequences 

that OXPHOS inhibition brings along in ECs is not a lack of ATP (most ATP is produced 

in glycolysis) but the diminished recycling of NADH to NAD+, which consequently 

impairs the flux in the TCA cycle76. Ectopic expression of NADH oxidases, that 

regenerate NAD+, rescues proliferation of ECs through increase of aspartate levels 

arising from normalized flux in the TCA cycle. Mitochondrial respiration does not only 

regulate BEC proliferation, but also LEC differentiation. Ma et al. demonstrated that 

deletion of complex III interferes with lymphatic vasculature development78. 

Specifically, deletion of complex III increases succinate, fumarate and 2-

hydroxyglutarate levels, metabolites that inhibit α-ketoglutarate-dependent 

dioxygenases in demethylase complexes. This leads to reduced epigenetic 

modifications and subsequent reduced expression of PROX1 and VEGFR3, 

demonstrating a feedback loop in which complex III activity, driven by differentiation 

and metabolic cues, regulates the expression of LEC identity-shaping factors.  

Lipid metabolism  

Besides their contribution to EC proliferation and quiescence via FAO, lipids are part 

of some other processes that support proliferation and migration of ECs. Phospholipids 

are an integral part of the plasma membrane and their composition in the plasma 

membrane directly affects migration through altered membrane fluidity and subsequent 

capacity to form filopodia79. Phospholipids also function as signalling molecules, for 

example in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway80. This 

pathway has been shown to regulate the expression of angiogenic factors, like NO and 

angiopoietins, and contributes to the formation of blood vessels during 

development81,82. Proliferation of ECs is also reduced upon inhibition of fatty acid 

synthase (FASN)83. This is caused by elevated levels of malonyl-CoA, the substrate of 

FASN, which leads to malonylation and decreased activity of the mitogenic factor 

mTOR. Furthermore, FASN is needed for eNOS palmitoylation, which ensures 
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membrane localization into caveolae, where sources of arginine and 

tetrahydrobiopterine (BH4) are met to produce nitric oxide (NO)84.    

Amino acid metabolism 

The two most studied amino acid pathways in ECs are serine and glycine biosynthesis 

and glutamine and asparagine metabolism. Glutamine is heavily consumed in vitro by 

ECs in order to replenish TCA cycle intermediates, a process called anaplerosis, which 

has been observed in many different cell types52,60,85. Glutamine plays a central role in 

different metabolic processes: through anaplerosis, it facilitates a functioning TCA 

cycle, and the resulting increased citrate levels drive de novo lipid biosynthesis86; it is 

essential for biosynthesis of nucleotides, non-essential amino acids (NEAA) and 

glutathione87; and glutamate, the product of glutamine hydrolysis, is a central hub for 

nitrogen and carbon needed for amino acid biosynthesis87. It has been shown that 

insufficient glutamine metabolism in BECs impairs anaplerosis, macromolecule 

production and redox homeostasis but not energy production, and consequently 

reduces proliferation but not migration52,60. Moreover, it was shown that asparagine 

synthetase, which converts glutamine and aspartate to asparagine and glutamate, is 

needed because of its role in biosynthesis of NEAA. The consequences of asparagine 

synthetase inhibition cannot be rescued through asparagine and glutamine 

supplementation and lead to impaired sprouting capacity. Glutamine is not only taken 

up from the environment but can be produced from glutamate by glutamine synthetase 

(GS). However, even in glutamine-scarce conditions, ECs only produce small amounts 

of glutamine59. GS is instead used as palmitoyl transferase in ECs, and as such, GS 

palmitoylates RhoJ, which is a Rho GTPase that regulates the assembly of 

cytoskeleton proteins and thus EC migration.  

Phosphoglycerate dehydrogenase (PHGDH) is the first and rate-controlling step 

in de novo biosynthesis of serine and glycine, but it also maintains mass balance within 

central carbon metabolism88. It has been shown that serine biosynthesis through 

PHGDH is necessary for heme production, a co-factor in different metabolic complexes 

like, nitric oxide synthase, catalases and complex III and IV of the electron transport 

chain. Inhibition of PHGDH in BECs causes oxidative stress mainly through impaired 

ETC activity and partly through decreased glutathione and NADPH synthesis56. Yet, 

because serine supplementation does not rescue PHGDH inhibition, the cause of EC 

impairment could also be the disruption of the mass balance in central carbon 
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metabolism. Furthermore, a recent study attributed an important role of PHGDH in the 

formation of dysfunctional vasculature in glioblastoma, which leads to impaired 

perfusion and decreased oxygen levels and T cell infiltration49. Increased activity of 

PHGDH in tumour BECs enhances glycolysis and nucleotide biosynthesis, leading to 

BEC overgrowth. Reducing the activity of PHGDH through genetic or pharmacological 

measures prunes the vasculature and improves T cell infiltration and consequently 

CAR T-cell therapy. Both nucleotide and glycine synthesis from serine is routed through 

one-carbon (1C) metabolism. This suggests that 1C metabolism is an essential hub for 

EC proliferation and migration. Besides glutamine and serine metabolism, the relevant 

role of proline metabolism in endothelial migration has gotten some attention recently. 

Biosynthesis of proline and hydroxyproline, two major components of collagen, 

supports collagen biosynthesis and modification in the extracellular matrix. Decreased 

levels of proline and hydroxyproline were shown to impair EC migration through 

disturbed endothelial basal lamina deposition and mechanotransduction89,90. The role 

of arginine in the production of NO by eNOS, needed for migration, angiogenesis and 

regulation of vascular tone, should be mentioned as well91. However, besides the role 

of NO in endothelial homeostasis, the roles of the urea cycle itself and of arginine as 

substrate for NO production, have not gotten a lot of attention in research in recent 

years.   

Missing pieces in EC metabolism research 

Over the past decades, extensive research revealed the diverse metabolic lifestyles 

underlying and shaping different EC identities and states. However, there are several 

shortcomings in these studies. First, most studies so far focused on the role of a 

handful of central metabolic pathways like glycolysis, FAO, OXPHOS or glutamine and 

serine metabolism, and their role in a specific growth state or cell type. Many studies 

are performed with human umbilical vein ECs (HUVECs), a model cell type for BECs, 

and the metabolic lifestyle of LECs remains understudied. The environment of LECs 

is, in comparison to BECs, low on oxygen and nutrients and high in lipids and 

lipoproteins, and therefore the metabolic patterns underlying LEC identities and states 

are likely diverging from the metabolic patterns in BECs. Indeed, recent transcriptomics 

studies of murine endothelial cells provided an overview of organ-specific 

transcriptomes of ECs, showing a heterogeneity in metabolic transcript levels between 

ECs from different tissues and between ECs from different vascular beds within a 
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single tissue89,92–95. Hence, an investigation that analyzes ECs from distinct vascular 

beds and tissues within the same experimental framework would be valuable for 

enhancing our understanding of the extent of metabolic variability among various EC 

types. 

Second, most studies use either a targeted approach to study EC metabolism, 

e.g. measuring uptake and secretion rates of a couple of metabolites and abundances 

of metabolites in certain metabolic pathways, or they measure global transcript level 

changes (transcriptomics). Although transcriptomics is a widely applied and straight-

forward technique to determine transcript level changes, it is only a proxy for the actual 

abundances of proteins or the metabolic activity of cells. These limitations can be 

overcome by employing metabolomics and proteomics measurements, where the 

abundances of metabolites and proteins are directly assessed rather than inferred from 

transcriptomics data. Additionally, untargeted metabolomics and proteomics 

approaches nowadays result in measured abundances of thousands of metabolites 

and proteins, providing the foundation to generate a comprehensive picture of the 

metabolic lifestyle of mammalian cells, including endothelial cells. Untargeted 

proteomics data can be further used to infer activities of transcription factors, which is 

useful to study the transcriptional regulation that form the metabolic patterns in the 

different EC identities and states. 

And lastly, most studies are static, i.e. they analyse proliferation or quiescence 

but do not contain information about the temporal heterogeneity in metabolism of 

different ECs when they transition from proliferation into quiescence or vice versa. For 

example, a study with non-malignant murine pro-B lymphocytes demonstrated diverse 

metabolic and proteomic patterns underlying the transition from quiescence to 

proliferation96. Considering the known growth state-specific metabolic patterns of ECs, 

we expect that the metabolic and proteomic patterns governing the transition between 

growth states in ECs can provide valuable insights into the establishment of a 

proliferative and quiescent state. 

Methods to study metabolite levels  

The metabolome is the entirety of metabolites in a system, for example of all 

metabolites in a cell (intracellular metabolome), in the blood (blood metabolome) or in 

the environment of a cell (extracellular metabolome). Metabolomics is the study of the 



General Introduction 

23 
 

metabolome and is commonly performed on mass spectrometry (MS) or nuclear 

magnetic resonance (NMR) platforms. Metabolomics measurements are divided into 

targeted and untargeted metabolomics. Targeted metabolomics is applied to determine 

the levels of specific metabolites in a sample, whereas untargeted metabolomics 

strives to determine the global metabolic profile of a sample97. Metabolomics 

measurements can either be quantitative or semi-quantitative. Quantitative analysis 

includes the use of dilution curves of specific metabolites, so-called standards, in order 

to quantify levels of these metabolites in a sample. Semi-quantitative analysis on the 

other hand does not include standards and aims to compare the measured levels of 

metabolites between two samples, resulting in relative changes between two samples, 

for example control vs. perturbation.  

Targeted metabolomics is often applied to address very specific biological 

questions or hypotheses, thereby focusing on a handful of chemically well-

characterized metabolites98. Most commonly, targeted metabolomics is performed by 

gas chromatography-coupled mass spectrometry (GC-MS) and liquid 

chromatography-coupled mass spectrometry (LC-MS), depending on the chemical 

type of the targets. For example, GC-MS is well suited for amino and organic acids, 

sugars and fatty acids. In contrast, LC-MS is a softer method that preserves molecular 

ions and is preferred in dynamic experiments99. Independent of the analytical platform 

used, the biggest advantage of targeted metabolomics is the quantification of the 

absolute concentrations of the targeted metabolites. By coupling MS to 

chromatography, it is as well able to distinguish between isomers. However, 

chromatography gradients are usually long and result in low sample throughput. 

Additionally, the targeted metabolites must be known beforehand, which limits 

coverage.   

Untargeted metabolomics is the unbiased measurement of all metabolites 

present in a biological sample97,100. LC-MS is the most frequently used platform for 

untargeted metabolomics measurements. Another approach is flow injection analysis 

(FIA-MS), in which the chromatographic separation of metabolites is dropped and the 

samples directly injected into the mass spectrometer101. This technique enables a high 

throughput, yet still accurate, profiling of thousands of metabolites with concentrations 

over a range of 3 orders of magnitude in complex samples. Isomer identification and 

discrimination are the biggest limitations of FIA-MS. Nonetheless, FIA-MS provides 

valuable information on which metabolic processes are affected by a perturbation or 
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phenotype and thus supports the design of targeted follow-up measurements or 

validation experiments. In untargeted metabolomics measurements, accurate masses, 

isotopic patterns and retention times from LC-MS are compared with databases, such 

as the Kyoto Encyclopedia of Genes and Genomes (KEGG) or the Human Metabolome 

Database (HMDB), to annotate metabolites. Additional fragmentation of metabolites in 

a mass spectrometer (LC-MS/MS) can facilitate the identification of unknown 

metabolites, or metabolites that have similar masses and retention times. FIA-MS is a 

semi-quantitative approach when used without standards, therefore lacking the ability 

to quantify the absolute concentrations of metabolites. Another disadvantage of 

untargeted, high-throughput metabolomics is the introduction of unwanted variation in 

form of experimental variation, temporal drifts or batch effects. These effects must be 

removed through normalization techniques in order to ensure unbiased determination 

of biological variance102.  

Altogether, metabolite levels can be measured in a targeted or untargeted way, 

and both approaches offer advantages, disadvantages and challenges. Targeted 

metabolomics is preferred for the quantification of a defined set of metabolites, while 

untargeted metabolomics provides the opportunity to measure the semi-quantitative 

abundance of thousands of metabolites simultaneously, thereby facilitating the 

comprehensive description of metabolic lifestyles of different biological systems. 

Methods to study protein levels and transcription factor 
activities 

The proteome is the entirety of proteins in a biological system and proteomics is the 

study of the proteome. Like most metabolomics experiments, proteomics is performed 

on LC-MS platforms, enabling the quantification of either target proteins (targeted 

proteomics) or thousands of proteins simultaneously (untargeted proteomics)103,104. To 

generate a comprehensive description of the protein expression patterns that underlie 

cellular identities and states, untargeted proteomics is thus the preferred method. 

Nowadays, the most common untargeted proteomics methods use the so-called 

bottom-up approach, in which proteins are extracted and enzymatically digested before 

LC-MS/MS measurements. As a result, not the proteins themselves are measured in 

the mass spectrometer but protein-specific peptides105,106. Through mapping of the 

mass spectra of each peptide to in silico generated mass spectra, the identities and 
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relative abundances of proteins can be inferred104. The advantage of this method is 

the high coverage of the protein space, however, with the downside that low abundant 

proteins might not be measured, resulting in decreased sensitivity. Nonetheless, like in 

untargeted metabolomics, this is a powerful method to study the molecular processes 

underlying the formation and maintenance of specific phenotypes.  

Many transcription factors are only present in low numbers in cells1. Their 

presence is often measured by quantitative polymerase chain reaction (qPCR) or RNA 

sequencing (RNAseq). These two techniques are very sensitive and identify already 

the presence of few TF transcripts in a biological sample. However, the sole presence 

of TF transcripts does not provide information whether the TFs are active in the cells. 

Since TFs regulate the expression of a defined set of genes, their activities can be 

inferred computationally from untargeted omics datasets, such as transcriptomics and 

untargeted proteomics. To that end, Garcia-Alonso et al. generated a collection of 

human TF-target interactions, which not only contains the interactions but also different 

confidence levels of the interactions, and whether it is an activating or repressing 

interaction107. The TF-target collection in combination with a transcriptomics or 

proteomics dataset lays the fundament of computational methods that infer TF 

activities108. These computational methods enable the identification of active TFs in a 

specific phenotype, without having to go through transcriptional or protein expression 

level changes manually. Yet, these methods are solely computational and may 

generate false positive results; thus, validation experiments are essential to evaluate 

the accuracy of TF activity inference. 

Aims and outline of the thesis 

Recent advances in endothelial cell (EC) research highlight the significant role of 

metabolism in the formation and maintenance of EC identities and states, and 

consequently to support or impair healthy vasculature. We expect that the metabolic 

and proteomic patterns governing distinct EC identities and states are diverse and 

contingent on the roles and microenvironments of the respective EC types. To advance 

our understanding of the extend of metabolic variability across EC types, our goal was 

to generate a comprehensive description of the molecular patterns in four different EC 

types through direct measurements of metabolite and protein abundances. To that end, 

we set out to characterize the two BEC types human dermal BECs (HDBECs), human 

umbilical vein ECs (HUVECs) and the two LEC types human dermal LECs (HDLECs) 
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and intestinal LECs (iLECs), across proliferative and quiescent states by combining 

untargeted proteomics and metabolomics approaches. We then deployed the 

untargeted proteomics dataset to infer TF activities and used the TF activities dataset 

to determine the transcriptional regulatory networks that shape EC identities and states 

in vitro. 

In chapter 2, we developed an experimental framework to study metabolite and 

protein levels of HDBECs, HUVECs, HDLECs and iLECs in proliferation, quiescence 

and the transition between the two states. We grew the four EC types for 10 days in 

similar conditions and determined the fraction of proliferating and quiescent cells by 

measuring de novo DNA synthesis. We could show that mitogen reduction in the 

growth medium and contact inhibition induces a strong quiescent state across the four 

EC types. We then performed untargeted measurements of extra- and intracellular 

metabolites and of intracellular proteins every 24 hours. Cell type-specific temporal 

metabolic and proteomic patterns are unchanged after data normalization and serve 

as a valuable resource for conducting further in-depth investigations into the molecular 

patterns that define EC identities and states. 

In chapter 3, we used the datasets generated in chapter 2 and examined the 

molecular patterns that underlie EC identities and states. We observed distinct and 

general proteomic and metabolic patterns in quiescence and proliferation in each cell 

type. Some of these patterns recapitulate previous described markers or processes 

that are specific to a cell type or state. Additionally, we noted that certain findings from 

earlier studies at the transcript level and in specific cell types were consistent with our 

observations in the tested EC types. Furthermore, functional studies in HUVECs and 

iLECs exhibited diverse phenotypic alterations following inhibition of enzymes in 

metabolic pathways, such as heme biosynthesis, glutamate metabolism, fatty acid and 

nucleotide synthesis, indicating the diverging importance of certain metabolic 

pathways to maintain a specific state by different endothelial cell types.    

In chapter 4, we used the proteomics dataset to infer the activities of 263 TFs. 

The resulting TF activity patterns show cell type- and state specific behaviour. 

However, we were also able to extract TFs whose activities are fundamentally different 

between BECs and LECs, including well-known markers of LEC and BEC identities. In 

addition, we correlated TF activities with expression patterns of 14 enzymes that were 
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targets of pharmacological inhibition and propose two new TFs that potentially regulate 

expression of enzymes necessary for functioning migration in HUVECs and iLECs. 
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Additional projects 

I contributed to the following, published projects, which are not a part of this thesis. 

The list is not definitive as it does not include unpublished work: 

• Cherkaoui, S., Durot S. et al. A functional analysis of 180 cancer cell lines 

reveals conserved intrinsic metabolic programs. Mol. Syst. Biol. 18, 1–15 

(2022). 

Contribution: Performed 13C flux analysis and metabolomics/lipidomics 

measurements.  

 

• González-Loyola, A. et al. FOXC2 controls adult lymphatic endothelial 

specialization, function, and gut lymphatic barrier preventing multiorgan failure. 

Sci. Adv. 7, (2021). 

Contribution: Metabolomics measurements of plasma samples, data analysis 

and visualisation. 

 

• Bernier-Latmani, J. et al. ADAMTS18+ villus tip telocytes maintain a polarized 

VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal 

blood vessels. Nat. Commun. 13, 1–17 (2022). 

Contribution: Metabolomics measurements of plasma samples, data analysis 

and visualisation. 

 

• González-Loyola, A. et al. c-MAF coordinates enterocyte zonation and nutrient 

uptake transcriptional programs. J. Exp. Med. 219, (2022). 

Contribution: Metabolomics measurements of plasma samples, data analysis 

and visualisation. 
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Abstract 

The cardiovascular and lymphatic systems are networks of endothelial cells (ECs) and 

are crucial for tissue homeostasis. Mostly quiescent in the mature vasculature, ECs 

can proliferate again to form new vessels and disruptions in this process leads to 

vasculature-related diseases. Here, we aimed to develop a workflow that allows us to 

study and better understand the complexity and diversity of molecular patterns that 

underlie a proliferative and quiescent state. To that end, we developed an experimental 

workflow in which two blood and two lymphatic EC types proliferate and subsequently 

transition into quiescence. We performed untargeted extra- and intracellular 

metabolomics and proteomics with samples taken every 24 hours, allowing us to 

generate a comprehensive description of the dynamic molecular patterns in different 

proliferative states. We could show that with the applied normalization techniques for 

metabolomics and proteomics data, we conserve biological information like the 

expression of LEC- and BEC-specific marker proteins as well as markers of 

proliferation. Furthermore, we observed that metabolic pathway dynamics is inversed 

when quiescent cells are reseeded and proliferate again, confirming that we capture 

the relevant metabolic information in the transition from proliferation to quiescence and 

vice versa. Thus, the generated multi-omics datasets will be a valuable resource for 

data-driven analysis in the next chapters.  

 

Introduction 

Endothelial cells (ECs) line up the cardiovascular and lymphatic systems, two systems 

that are crucial for tissue homeostasis1,2. ECs remain quiescent in the mature 

vasculature but migrate and proliferate in order to form new vessels upon external 

stimulation and subsequently become quiescent again3–5. Several diseases of the 

cardiovascular and lymphatic system emerge from malfunctioning ECs, for example if 

there is a disruption of the proliferation-quiescence balance6,7. In recent years, studies 

showed that metabolism plays a pivotal role in the formation and maintenance of a 

proliferating and quiescent state8–13. Moreover, there is a heterogeneity in metabolic 

proteins transcript levels between ECs from different tissues and vascular beds14,15. 

Therefore, it is important to study tissue- and vascular bed-dependent cellular 
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metabolic patterns in order to understand the extend of the metabolic variance 

between ECs and the impact of it on different phenotypes and cellular functions.  

Cellular metabolism describes all the chemical reactions happening inside a cell 

that are needed to convert food into an available form of energy to run cellular 

processes, to provide building blocks for macromolecules and for waste elimination. 

Moreover, metabolism plays a major role in integrating environmental and intracellular 

signals and thus supporting cellular decision processes crucial for differentiation and 

formation of phenotypes of various mammalian cell types, including ECs8,13,16–19. There 

are different ways to measure or infer cellular metabolism. A technique that directly 

measures metabolite abundances is mass spectrometry-based untargeted 

metabolomics. It enables a comprehensive measurement of metabolite abundances in 

a sample, like intracellular metabolomes or supernatants of cell culture, and hence 

provides the opportunity to study the metabolic patterns that underlie cellular 

phenotypes20. With label-free quantitative (LFQ) proteomics, the quantities of 

thousands of proteins are determined simultaneously, including metabolic enzymes21. 

By mapping the quantities of enzymes on the metabolic network, one can infer which 

metabolic pathways play an important role in a certain phenotype. However, activities 

of metabolic fluxes are not only dependent on enzyme quantities but also on enzyme 

activities and regulation, limiting the interpretability of proteomics results. A very similar 

approach with the same limitation is transcriptomics, in which the abundances of gene 

transcripts are determined and subsequently as well mapped onto the metabolic 

network to infer usage of metabolic pathways.        

The limitations of most studies on EC metabolism so far are that they either 

focus on very few specific metabolic pathways, especially in central carbon 

metabolism, and that they use transcriptomics approaches to infer metabolic activities 

or that they are done only on human umbilical vein ECs (HUVECs). These limitations 

confine the understanding of the true complexity of metabolic variability between 

different EC types and states. So, our goal was to obtain an experimental setup to 

study metabolism of ECs from different tissues and vascular beds in a proliferating and 

quiescent state directly through untargeted metabolomics and proteomics. To that end, 

we used contact inhibition and mitogen reduction to induce quiescence, measured the 

fraction of quiescent cells and performed extra- and intracellular untargeted 

metabolomics and proteomics every 24 hours. In our experimental setup, most cells 

are proliferating after 2 days and undergo transition into quiescence, thereafter, 
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reaching a mostly quiescent state on day 5. We applied data normalization on 

metabolomics and proteomics data to account for batch effects and could show that 

cell-specific temporal metabolic and proteomic patterns are conserved. With this 

dataset at hand, we will be able to study molecular patterns that define EC phenotypes 

and to examine the complexity of EC metabolism.  

 

Results 

Contact inhibition and mitogen reduction induces a strong quiescent 
state in endothelial cells 

We aimed to develop a workflow that enables us to study the molecular patterns that 

underlie a proliferative and quiescent state of representable endothelial cell (EC) types. 

We chose the four endothelial cell types human umbilical vein endothelial cells 

(HUVEC), human dermal blood endothelial cells (HDBEC), human dermal lymhatic 

endothelial cells (HDLEC) and intestinal lymphatic endothelial cells (iLEC). Using these 

four cell types, we can study the fundamental differences between blood and lymphatic 

vessel derived ECs, as well as the difference between ECs from the same vascular 

beds but from different tissues.  

 The first goal was to identify conditions that allow to obtain populations of either 

quiescent or proliferating cells. Quiescence can be induced in vitro by growing cells to 

full confluence (Fig. 1A)13,22. Additionally, we tested two different growth media to 

assess whether the amount of specific growth factors (GF) influences growth and 

quiescence induction. One medium was the standard growth medium for endothelial 

cells, endothelial growth medium 2 (EGM-2), the other medium was a 1/1 (v/v) mix of 

EGM-2 with medium 199 (M199). In the EGM-2/M199 growth medium, fibroblast GF 

(FGF), vascular endothelial GF (VEGF), epidermal GF (EGF) and insulin-like GF (IGF) 

that are part of EGM-2, are thus reduced by 50%. We first seeded HUVECs at a density 

of 20’000 cells/cm2 with either of the two growth media and assessed growth dynamics 

with automated time-lapse microscopy. We found no significant effect of the two media 

on growth (Fig. 1B). Next, we wanted to determine the fraction of proliferating cells 

after each day of growing the cells for 10 days in the same plate. To that end, we added 

10µM of the DNA synthesis monitoring probe ethynyl-2’-deoxyuridine (EdU) 24 hours 

before each time point and measured the fraction of EdU-positive cells, a proxy for 
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proliferation, on a cell analyzer23. We observed a significant increase of EdU-negative, 

thus quiescent cells, at day 4 to day 10 for HUVECs that grew in EGM-2/M199 medium 

compared to EGM-2 medium only (Fig. 1C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Contact inhibition and mitogen reduction induces a strong quiescent state in endothelial cells. 
(A) Experimental setup. n = 3 replicates per day and cell line for each measurement. 
(B) Growth curves of HUVECs in EGM-2 only or EGM-2/M199 medium. 
(C) Fraction of EdU-negative, quiescent HUVECs grown in EGM-2 only or EGM-2/M199 medium. 
(D) Growth curves of all EC types in EGM-2/M199 medium. 
(E) Fraction of EdU-negative, quiescent cells in all EC types grown in EGM-2/M199 medium. 
(F) Growth curves of iLECs in the normal setup and when reseeded after 10 days grown in the same vessel. 
(G) Fraction of EdU-negative, quiescent iLECs in the normal setup as well as 24 and 48 hours after reseeding.
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We performed the same growth measurements and EdU incorporation assay 

with EGM-2/M199 medium with the other three cell types. Due to different sizes of the 

cell types and some variations in the segmentation of the microscopy pictures, the 

starting confluence varied between 15% for iLECs and 40% for HDBECs (Fig. 1D). All 

cell types reached full confluence after 60 to 80 hours. The fraction of quiescent cells 

increased in all four cell types after day 2, the strongest in iLECs and HDLECs, in which 

more than 95% of cells were quiescent after day 5 (Fig. 1E). The effect was less 

prominent in HDBECs, but they still reached 67% quiescent cells after 5 days. One 

reason for the slightly lower fraction of quiescent cells in HDBECs, and to a lesser 

extent in HUVECs, is that they started to grow in 3D (Suppl. Fig. 1). Taken together, 

contact inhibition and a reduction of specific growth factors leads to strong induction of 

quiescence in all four cell types.  

Given that almost 100% of iLECs were quiescent after 10 days, we wondered 

whether the cells were indeed only quiescent and would therefore start growing again 

when seeded at a lower confluence. Upon reseeding of cells grown for 10 days in the 

same plate, we observed an immediate resumption of growth (Fig. 1F). Furthermore, 

the fraction of quiescent cells of reseeded iLECs reduced from almost 100% to around 

15% 48 hours post-reseeding, indicating that these cells have the capacity to 

proliferate again even when kept in quiescence for as long as 10 days (Fig. 1G). 

 

An experimental setup to measure uptake and secretion rates of 
extracellular metabolites 

Extracellular metabolomics is a useful tool to infer general metabolic activity of cells. 

We developed a setup in which supernatant samples are taken over 24 hours and can 

be used in a linear regression to determine uptake and secretion rates of metabolites 

(Fig. 2A). To that end, we exchanged growth medium every 24 hours, took samples of 

cellular supernatants between each medium exchange (0 hours, 2 hours, 22 hours and 

24 hours after exchange) and conducted mass spectrometry-based, untargeted 

metabolomics measurements, resulting in the annotation of 521 metabolites in all 

samples (Fig. 2A)24. Mass spectrometry-based metabolomics is a very sensitive 

technique and underlies temporal variation that leads to batch effects. Such temporal 

batch effects were observed in our extracellular metabolomics dataset because the 
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samples from the different EC types were analyzed at different days (Fig. 2B). We 

applied a moving median-based temporal drift normalization to remove batch effects, 

making sure that the temporal metabolic diversity within a cell type is not affected (Fig. 

2C, 2D). High reproducibility between biological replicates after normalization was 

highlighted by the median coefficient of variation of 9.7% between biological replicates 

(Fig. 2E). The presented workflow for extracellular metabolomics provides dynamic 

uptake and secretion data with high intra-sample reproducibility, and preliminary 

results showed that we are indeed able to capture cell state- and type-specific uptake 

and secretion patterns (Fig. 2C, 2D).  
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Figure 2. An experimental setup to systematically study uptake and secretion rates of extracellular 
metabolites. 

(A) Experimental setup to determine uptake and secretion rates of metabolites. n = 6, 3 biological and 2 
technical replicates per day and cell line for each measurement. 

(B) Principal component analysis (PCA) of the raw extracellular metabolomics data. 
(C) PCA of the data after moving median normalization to correct for temporal batch effects. 
(D) PCA of day 1 and day 2 HUVEC samples illustrates the cell-specific temporal variability in the data. 
(E) Distribution of coefficients of variations between the three biological replicates. 

 

ECs exhibit state-dependent, reversible intracellular metabolic 
patterns  

On top of the general metabolic activity of cells, we aimed to analyse intracellular 

metabolomes to deepen our understanding of which metabolic features support the 

transition into and maintenance of EC quiescence. Therefore, we performed mass 

spectrometry-based, untargeted metabolomics of intracellular metabolites that were 

extracted every 24 hours in all four cell types24. By using an untargeted measurement, 

we were able to annotate 1413 metabolites across all cell types. Just as in the 

extracellular metabolomics experiments, intracellular metabolomics data exhibited 

temporal batch effects because these samples were also measured at different days 

(Fig. 3A). We applied again a moving median-based temporal drift normalization to 

remove temporal trends, followed by a mean normalization to account for biomass 

differences at the time of metabolite extraction. The resulting dataset did not show 

batch effects anymore (Fig. 3B). Moreover, the temporal metabolic patterns within a 

cell type were still conserved, and the variance between biological replicates is minimal 

(median CV = 3.1%) (Fig. 3C, 3D).  

While iLECs that transit from proliferation to quiescence exhibited various 

temporal metabolic patterns, it remained unclear when and what kind of metabolic 

patterns would appear when cells go from quiescence to proliferation. Thus, we 

conducted metabolomics measurements of iLECs that were grown to quiescence for 

10 days and reseeded at 20’000 cells/cm2. Briefly, we reseeded iLECs and extracted 

intracellular metabolites every 2 hours from seeding to 12 hours post-seeding and 

every 6 hours after that until 48 hours post-seeding and analyzed the extracted 

metabolomes as in the time-series experiments. While there was no clear metabolic 

distinction of samples between 2 up to 18 hours in the principal component analysis, 

later time point samples started to distinguish themselves from the early samples (Fig. 

3E). We then performed a differential analysis between all samples and the 2 hours 

samples with subsequent pathway enrichment analysis to infer the metabolic pathway 
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usage over time and compared it with the normal time-series experiment. Interestingly, 

reseeded iLECs showed inversed metabolic profiles to the time-series experiment, 

which means that the same metabolic pathways play an important, yet inversed role in 

supporting transition into and out of quiescence, respectively (Suppl. Fig. 2). To 

summarize, untargeted metabolomics measurements with subsequent data 

normalization resulted in a comprehensive dataset that allows us to study metabolic 

patterns in proliferating, quiescent and transiting ECs. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. ECs exhibit state-dependent, reversible intracellular metabolic patterns.  

(A) PCA of the raw intracellular metabolomics data. . n = 6, 3 biological and 2 technical replicates per day and 
cell line for each measurement. 

(B) PCA of the data after moving median normalization to correct for temporal batch effects and mean 
normalization to correct for biomass differences at the time of sampling. 

(C) PCA of iLECs samples illustrates the cell-specific temporal variability in the data. 
(D) Distribution of coefficients of variations between the three biological replicates. 
(E) PCA of reseeded iLECs.  
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Label-free quantitative proteomics workflow to study protein 
expression patterns in different cell types and states 

Label-free quantitative proteomics is a technique to measure the quantities of 

thousands of proteins simultaneously. Hence, it is a convenient tool to study the 

proteomic patterns that define cell type identities and states in our screen. We 

performed label-free quantitative proteomics on all cell types at each day between day 

2 and day 7, when cells undergo the transition from proliferation to quiescence. To that 

end, we seeded the cells at a density of 20’000 cells/cm2, lysed them in 8M urea buffer 

with subsequent sonication, reduced and alkylated the proteins and trypsinized and 

desalted them (Fig. 4A)25,26. The resulting peptides were measured by LC-MS/MS, in 

which the peptides were first separated by a 90 minutes gradient on a C18 column and 

subsequently analyzed on an orbitrap mass spectrometer using a data-independent 

analysis (DIA) approach (Fig. 4A)27. The resulting raw files were converted to mzML 

files via MSConvert and were subjected to a neural network-based DIA processing 

software called DIA-NN, which enabled the identification and quantification of proteins 

in our samples (Fig. 4A)28,29. Finally, protein intensities were normalized using the 

normalization procedure maxLFQ21. This is an important step as it ensures comparable 

quantities of proteins between the cell types and days and within biological replicates 

(Fig. 4B, 4C).  

The final dataset contained 7894 protein groups that were discovered at a 1% 

protein group-level false discovery rate cut-off. Principal component analysis of all 

samples showed distinction between blood and lymphatic endothelial cells after 

normalization (Fig. 4D). Moreover, we checked if cell type and state specific marker 

proteins showed an expected expression pattern. Indeed, the LEC- and BEC-specific 

markers LYVE1 and STAT6, respectively, had clear expression patterns in either cell 

types (Fig. 4E)30,31. Furthermore, Marker Of Proliferation Ki-67 (MKI67) and 

proliferating cell nuclear antigen (PCNA), two markers of proliferation, were 

consistently lower expressed in quiescent cells (Fig. 4F)32,33.  

In our full dataset, 3333 proteins were detected in all samples. It is common to 

perform data imputation for missing values in gene expression or sequencing 

experiments. We wondered whether data imputation might help to fill missing values 

in our dataset. Thus, we applied a random forest-based imputation method to fill the 

missing intensities in the remaining 4561 proteins for which the measured data was 
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incomplete34. Generally, the imputed values were on the lower scale of intensities 

(Suppl. Fig. 3A). However, when looking at cell type-specific markers, for example 

PROX1 for LECs and STAT6 for BECs, data imputation created intensity values for 

these proteins, even though they are most likely not expressed in the respective cell 

types (Suppl. Fig. 3B, 3C). We therefore moved on with the original dataset without 

imputation. Taken together, these results show that with the applied measurement and 

data processing steps, we were able to create a comprehensive protein expression 

dataset enabling us to compare expression patterns within and between cell types and 

states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Label-free quantitative proteomics workflow to study protein expression patterns in different cell 
types and states. 

(A) Workflow of label-free quantitative proteomics. n = 3 biological replicates per day and cell line for each 
measurement. 

(B) Z-scored intensities of protein groups before (left panel) and after (right panel) maxLFQ normalization. 
(C) Distribution of coefficients of variations between the three biological replicates before (left panel) and after 

(right panel) maxLFQ normalization. 
(D) PCA of z-scored proteomics dataset. 
(E) Intensities of the LEC marker LYVE1 and BEC marker STAT6. 
(F) Intensities of the proliferation markers MKI67 and PCNA. 
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Discussion 

The presented experimental workflow allows us to study the molecular patterns that 

define endothelial cell types and states. Using the exact same experimental setup for 

four endothelial cell types and subsequent normalization techniques applied on the 

metabolomics and proteomics data, we generated a further resource that enables us 

to not only study the molecular patterns in each cell type individually but make them 

comparable between the cell types to distill cell type-specific molecular peculiarities. 

This is a further step towards understanding EC biology and helps us to assess the 

diversity of metabolism and protein levels among endothelial cells from different tissues 

and vascular beds.  

Although all cell types were mostly proliferating at day 2 and quiescent at day 5 

in our screen, induction of quiescence seemed to be a bit stronger in LECs compared 

to BECs, which was also reflected in the slightly higher expression of the proliferation 

markers MKI67 and PCNA in BECs after day 5. However, the dynamics of the transition 

from proliferation into quiescence followed the same pattern in the four cell types and 

therefore the experimental setup proved to be useful, nevertheless. In vivo, upon 

activation, quiescent endothelial cells start to migrate and proliferate and build new 

vessels 35. It is consequently important to examine the phenotype and molecular 

patterns when quiescent cells start to proliferate again. From all ECs, iLECs have the 

highest fraction of quiescent cells throughout day 5 to day 10 and are most suitable to 

study the phenotype and metabolic patterns when reseeded. We found that they 

immediately started to grow again, resulting in a high fraction of proliferating cells 48 

hours post-seeding and metabolic patterns that were inverse to the contact inhibition 

setup. This result showed us that either setup can be used to study proliferation and 

quiescence of endothelial cells.  

Batch effects in metabolomics measurements are a common problem and can 

have multiple reasons 36. The extra- and intracellular metabolomics samples in our 

screen showed batch effects. Since we used the exact experimental setup for each 

cell type, these batch effects are most likely due to temporal reasons. The applied 

moving median-based normalization approach is a simple and gentle, yet effective 

method to correct for temporal batch effects. Additionally, we performed a mean 

normalization on intracellular metabolomics samples. This is again a gentle 

normalization method to account for biomass differences. By using these two 
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normalization methods, we made sure that the temporal metabolic variance within a 

cell type was conserved, which was indeed the case and important for further data 

analysis.  

Compared to metabolomics, sample preparation in proteomics is more complex 

and includes many more steps that are prone for errors. Even though we normalized 

for protein concentrations before trypsination, we observed batch effects in the 

proteomics samples, likely arising from the last steps of sample preparation (C18 

desalting), from the LC-MS/MS measurements and biological origin (biomass 

differences). By applying maxLFQ normalization, we could diminish these effects and 

improve reproducibility between biological replicates. As with the metabolomics 

samples, temporal proteomic variance within cell types was still conserved, both at the 

global level, as seen in the PCA, and for expected individual proteins, such as the 

proliferation markers MKI67 and PCNA. MaxLFQ normalization also conserved cell 

type-specific information, like LEC-specific LYVE1 and BEC-specific STAT6 

expression. Interestingly, LYVE1 expression increased in LECs over time. LYVE1 is a 

characteristic molecular feature of capillary LECs 30. Hence, increased expression of 

LYVE1 suggests that LECs that are grown in vitro acquire a capillary-like molecular 

phenotype only after transition into quiescence. Accordingly, for in vitro experiments 

with LECs that should have capillary-like molecular patterns, it might be advisable to 

perform experiments on LECs that have been in culture for at least 4 days.  

There are several limitations that must be kept in mind using this experimental 

setup. Although we observed metabolic and proteomic diversity between the cell types, 

growing ECs in monoculture in a defined medium ex vivo mitigates the true molecular 

complexity that is most likely also influenced by their microenvironment, such as shear 

stresses from blood and lymph flow, interaction with other cell types, nutrient and 

oxygen availability or the presence of tissue-specific signals. Further experiments with 

microfluidic devices to imitate blood and lymph flow or co-cultures for cell-cell 

interactions could add an additional, in vivo-like layer to the molecular description of 

various EC types37–39. Also, we assumed that the lack of DNA synthesis is a proxy of 

quiescence; however, we do not know exactly at which cell cycle state the cells 

stopped, it could be either G0, G1or even G2/M. One possibility to assess the exact 

cell cycle state in the future would be staining and measurement of DNA and RNA 

content because cells in G0 are assumed to have the same amount of DNA as in G1, 

but less RNA22. 
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Materials and Methods 

Cell culture  

Human umbilical vein endothelial cells were purchased from Lonza (cat. no. C2519A), 

human dermal blood endothelial cells (cat. no. C-12211) and human dermal lymphatic 

endothelial cells (cat. no. C-12216) from PromoCell. Intestinal lymphatic endothelial 

cells are a kind gift from Tatiana Petrova from the University of Lausanne. All 

endothelial cells were cultured in T-75 cell culture flasks (Thermo Fisher Scientific, cat. 

no. 156472) in Endothelial Cell Growth Medium-2 (EGM-2) (BulletKit, Lonza, cat. no. 

CC-3162). EGM2 was made from Endothelial Cell Basal Medium-2 (EBM2), with 

added endothelial supplements including 2% fetal bovine serum (FBS) (v/v), 

hydrocortisone, VEGF, human FGF, R3-IGF-1, ascorbic acid, human EGF, 

glutaraldehyde GA-1000, and heparin. Additionally, we added 10mg/ml ciprofloxacin 

(Sigma-Aldrich, cat. no. 17850). After the first passage, regular FBS in the culture 

medium was replaced by dialyzed FBS (dFBS, Sigma-Aldrich, cat. no. F0392). 

Experiments were performed until passage six. For metabolomics, proteomics and 

phenotype experiments, cells were seeded at a density of 20’000 cells/cm2 in a mixed 

medium (MM). MM consists of 50% EGM2 (with dFBS) and 50% Medium 199 (Gibco, 

cat. no. 22340020) supplemented with 20% dFBS, 1% penicillin/streptomycin (P/S, 

Gibco, cat. no. 15140122), 2mM glutamine (Gibco, cat. no. 25030081) and 0.4% (v/v) 

endothelial cell growth supplement (PromoCell, cat. no. C-39215).  

Quiescence induction and cell cycle analysis  

ECs were grown for 10 days to assess fractions of proliferating and quiescent cells at 

each day. The fraction was determined by EdU incorporation into DNA using the EdU 

Flow Cytometry Kit 488 from baseclick (Sigma-Aldrich, cat. no. BCK-FC488-100) 23. 

Briefly, EdU was added at a concentration of 10µM 24 hours prior to trypsinization and 

cell fixation with 4% PFA to label the cells. Using a click-it reaction, 6-FAM was attached 

to EdU and EdU incorporation analysed using a BD LSRFortessa Cell Analyzer with a 

488nm laser for excitation and a 530/30 emission filter. Flow cytometry data was 

analysed with Flowing Software 2.5.1 from Turku Bioscience. 

Intracellular metabolomics 
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Cells were grown in 1.5ml mixed medium in 6-well plates as described above. Every 

24 hours, the medium was removed from the wells and cells were washed with pre-

warmed wash buffer, made of freshly prepared 75 mM ammonium carbonate in 

nanopure water, adjusted to pH 7.4 using 10% acetic acid. After washing the cells, 

metabolites were extracted with ice-cold extraction buffer, containing 40% (v/v) 

methanol, 40% (v/v) acetonitrile and 20% (v/v) nanopure water for 1 hour at -20°C. 

Cells were detached from the wells using a cell lifter, transferred into tubes and 

centrifuged. Supernatants (metabolic extracts) were stored at -80°C until 

measurement.  Untargeted metabolomics of metabolic extracts was performed by flow 

injection analysis–time-of-flight mass spectrometry on an Agilent 6550 Q-TOF mass-

spectrometer as previously described 24. Measurements were performed in negative 

ionization mode, and spectra were recorded from a mass/charge ratio of 50 to 1000. 

Ions were annotated based on their measured mass using reference compounds from 

the Human Metabolome Database (HMDB 4.0), with a tolerance of 1 mDa. Data 

analysis was performed with an in-house developed pipeline based on Matlab (The 

MathWorks). Samples were normalized within each cell-type by normalization of the 

mean ion intensity to account for the cell number differences at sampling. Differential 

analysis was performed using a Student’s t test and significance was corrected for 

multiple hypothesis testing with the Benjamini-Hochberg method, and an adjusted p-

value < 0.05 was considered significant. Metabolic pathway enrichment was done 

using pathway definitions from HMDB, using a p-value cut-off of 0.05 and a log2(fold-

change (FC)) cut-off of 0.25.  Significance of enrichments was corrected for multiple 

hypothesis testing by the Benjamini-Hochberg method, and an adjusted p-value of < 

0.05 was considered significant.  

Extracellular metabolomics 

Cells were grown in 1.5ml mixed medium in 6-well plates as described above. Every 

24 hours, the medium was replaced with fresh medium. Supernatant samples were 

taken 0 hours, 2 hours, 22 hours and 24 hours after medium exchange. Supernatant 

samples were diluted 1:50 with nanopure water before metabolomics measurement. 

Untargeted metabolomics of supernatant samples was performed by flow injection 

analysis–time-of-flight mass spectrometry on an Agilent 6520 Q-TOF mass-

spectrometer as described above. Ions were annotated based on their measured mass 

using reference compounds from the Human Metabolome Database (HMDB 4.0), with 
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a tolerance of 3 mDa. Within each day, samples were normalized to the first time point 

and linear regression applied to determine the uptake or secretion rate in normalized 

ion intensity per hour.  

Proteomics 

Proteomics sample preparation protocol was adapted from 25 and 26. In brief, cells were 

grown in 1.5ml mixed medium in 6-well plates as described above. After removal of 

medium and washing of cells with PBS, cells were lysed in lysis buffer (8M urea buffer) 

and subsequently sonicated, centrifuged and supernatants transferred into fresh tubes 

for protein reduction with DTT and alkylation with iodoacetamide. Supernatants were 

incubated for 25min at 50°C with 5mM DTT and after cooling down to room 

temperature, iodoacetamide to 15mM final concentration was added and the mixture 

incubated for 30min at RT in the dark. An additional 5mM DTT was used to quench 

unreacted iodoacetamide for 15min at RT in the dark. Protein concentration was 

determined by BCA assay. Samples were then diluted 1:8 with 100mM HEPES, pH 

8.5, to reduce the concentration of urea to 1M. Trypsin was added to the diluted 

samples to reach a 100:1 sample:trypsin (w/w) ratio and the mix incubated at 37°C 

overnight on a thermomixer. To stop trypsin digestion, samples were acidified with TFA 

to 0.4% (vol/vol) to reach a pH around 3. Before MS measurements, samples were 

desalted using Pierce C18 spin columns (Thermo Scientific, cat. no. 89870).  

Peptides were analyzed online by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). Online reversed phase chromatography was performed using a 

Vanquish Neo UPLC system (Thermo Scientific, Sunnyvale) equipped with a heated 

column compartment set to 50 °C. Mobile Phase A consisted of 0.1% formic acid (FA) 

in water, while Mobile Phase B was 80% acetonitrile in water and 0.1% FA. Peptides 

(~1 µg) were loaded onto a C18 analytical column (500 mm, 75 µm inner diameter), 

packed in-house with 1.8 μm ReproSil-Pur C18 beads (Dr. Maisch, Ammerbuch, 

Germany) fritted with Kasil, keeping constant pressure of 600 bar or a maximum flow 

rate of 1 µl/min. After sample loading, the chromatographic gradient was run at 0.3 

µl/min and consisted of a ramp from 0 to 43% Mobile Phase B in 70 min, followed by 

a wash at 100% Solution B in 9 min total, and a final re-equilibration step of 3 column 

volumes (total run time 90 min). 
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Peptides from each sample were analysed on an Orbitrap HF-X mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) using an overlapping window data-

independent analysis (DIA) pattern described by Searle et al 27, consisting of a 

precursor scan followed by DIA windows. Briefly, precursor scans were recorded over 

a 390-1010 m/z window, using a resolution setting of 120,000, an automatic gain 

control (AGC) target of 1e6 and a maximum injection time of 60 ms. The RF of the ion 

funnel was set at 40% of maximum. A total of 150 DIA windows were quadrupole 

selected with a 8 m/z isolation window from 400.43 m/z to 1000.7 m/z and fragmented 

by higher-energy collisional dissociation, HCD, (NCE=30, AGC target of 1e6, 

maximum injection time 60 ms), with data recorded in centroid mode. Data was 

collected using a resolution setting of 15,000, a loop count of 75 and a default precursor 

charge state of +3. Peptides were introduced into the mass spectrometer through a 10 

µm tapered pulled tip emitter (Fossil Ion Tech) via a custom nano-electrospray 

ionization source, supplied with a spray voltage of 1.6 kV. The instrument transfer 

capillary temperature was held at 275 °C.  

All Thermo RAW files were converted to mzML format using the ProteoWizard package 
28 (version 3.0.2315). Vendor-specific peak picking was selected as the first filter and 

demultiplexing with a 10 ppm window was used for handling the overlapping data 

collection window scheme. Processed mzML files were then searched using DIA-NN 
29 (version 1.8) and the UniProt Homo sapiens proteome (UP000005640, June 15 

2021) as the FASTA file for a “library-free” deep neural network-based search 

approach. Data was searched using deep learning-based spectra and retention time 

as described by Demichev et al, with trypsin as the protease, and allowing for 2 missed 

cleavages, with N-terminal methionine cleavage, and cysteine carbamidomethylation. 

Peptide length was allowed to range from 7-30 amino acids with a precursor charge 

state range from +1 to +4, a precursor range of 300-1800 m/z and a fragment ion range 

of 200-1800 m/z. Data was processed to a 1% precursor-level false discovery rate 

(FDR) with mass accuracy, MS1 accuracy, and match between runs set to the software 

default settings. A single-pass mode neural network classifier was used with protein 

groups inferred from the input Homo sapiens FASTA file. Protein quantities were 

normalized by delayed normalization and maximal peptide ratio extraction (maxLFQ)21. 
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Supplementary Material 

Supplementary Figure 1. Morphology of quiescent ECs 
Microscopy pictures of the four ECs after 5 days in culture. Most cells are quiescent at that stage, but the arrows in 
the HUVEC and HDBEC pictures show that these cells can grow into 3D. 
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Supplementary Figure 2. Pathway enrichment analysis of iLECs in the normal setup (top panel) and 
reseeded setup (lower panel).  
In the normal setup, samples are compared to day 2, in the reseeded setup with the 2 hours post-reseeding 
timepoint. The colors depict the adj. p-value of the enrichments, calculated with a hypergeometric test. The signs 
of the enrichments are based on the direction of the enrichment. Hence, a negative sign means lower abundance 
of intermediates in the pathway, a positive sign higher abundance of intermediates. The color bars of the two panels 
are inversed. 
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Supplementary Figure 3. Random forest-based imputation of proteomics data. 
(A) Distribution of log10-transformed intensities before and after imputation.
(B) Intensities of LEC marker PROX1 before and after imputation.
(C) Intensities of BEC marker STAT6 before and after imputation.
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Abstract 

Endothelial cells (ECs), lining up the inner layer of the vascular system, are mostly 

quiescent but switch to a proliferative state to form new vessels. The formation and 

maintenance of EC identities and states are supported by various factors, including 

metabolic pathways. Using untargeted proteomics and metabolomics, we created a 

comprehensive description of the molecular patterns underlying the identities and 

states of two blood and two lymphatic EC types. We observed distinct and general 

metabolic patterns in quiescence and proliferation in each cell type, for example a 

HUVEC-specific decrease of porphyrin biosynthesis intermediates or upregulation of 

BCAA catabolism across all cell types in quiescence. Further functional studies exhibit 

diverse phenotypic alterations after enzyme inhibition of pathways such as heme 

biosynthesis, glutamate metabolism, fatty acid and nucleotide synthesis, indicating the 

diverging importance of certain metabolic pathways to maintain a specific state by 

different endothelial cell types. 

 

Introduction 

The cardiovascular and lymphatic systems are branched networks that run through the 

entire body and are found in every tissue and organ1,2. Both networks are lined by 

endothelial cells (ECs), and in the mature vasculature, ECs that have left mitotic cell 

division remain quiescent for most of their lifetime. However, to support wound healing 

or to provide tissues with nutrients and oxygen, ECs are stimulated and differentiate 

into migratory tip cells and proliferating stalk cells to form new vessels3,4. After the 

formation of new vessels, quiescence is re-established to maintain proper architecture 

and homeostatic function3,5. 

This process is critically important, as a number of cardiovascular and lymphatic 

system diseases originate from malfunctioning ECs, when the induction or exit from 

quiescence goes awry6,7. Indeed, primary lymphatic diseases, such as lymphedema, 

are induced by mutations in various genes responsible for lymphangiogenesis or 

maintenance of quiescence and lead to proliferation of normally quiescent cells and 

disruption of cell-cell junctions with subsequent flow of lymph into the interstitium8. 

However, outside of these primary, genetic causes of lymphedema, secondary 
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lymphedema is not fully characterized by genetic mutations8. Instead, of critical 

interest, recent studies have attributed an essential role to metabolism in establishing 

and maintaining a quiescent or proliferating state as well as for differentiation, migration 

and angiogenesis of blood as well as lymphatic ECs9–21. Alterations in metabolic 

activity of ECs might therefore induce or support the formation and progression of 

cardiovascular and lymphatic diseases at the cellular level. 

Recent transcriptomics studies of murine endothelial cells provided an overview 

of organ-specific mRNA expression in ECs, showing a heterogeneity in metabolic 

transcript levels between ECs from different tissues and between ECs from different 

vascular beds within a single tissue22–24. However, to date most studies on EC 

metabolism have focused on a handful of specific metabolic pathways using 

transcriptomics approaches, or only use human umbilical vein ECs (HUVECs) as a 

model for all ECs. Thus, extrapolating results to other EC niches from distinct tissues 

or different vascular beds may not be representative of endothelial cell biology in its 

true complexity.  

Therefore, here, we characterized the metabolism of four different EC types — 

two from the cardiovascular system and two from the lymphatic system — across 

proliferative and quiescent states by combining untargeted quantitative proteomics and 

metabolomics approaches. In support of previous studies performed at the transcript-

level, our multi-omics approach creates a further resource towards understanding EC 

biology. Furthermore, we found that the four EC types are phenotypically similar but 

metabolically distinct, and through functional studies, we observed that the cells 

reorganize metabolism in different phenotypes in a cell type-specific manner to support 

altered cellular demands. Indeed, specifically examining HUVECs and intestinal LECs 

(iLECs) through pharmacological perturbations to assess the physiological relevance 

of metabolic pathways identified that HUVECs but not iLECs rely on sufficient heme 

levels for NO production to promote migration and sprouting. On the other hand, iLECs 

are more sensitive to disturbances in the glutamate – α-ketoglutarate balance, resulting 

in migration defects.   
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Results 

Endothelial cell lines identities and states are defined by distinct 
proteomic signatures 

In the previous chapter, we developed an experimental workflow that allows us to study 

the molecular patterns that define identities and states in four endothelial cell types: 

human umbilical vein endothelial cells (HUVECs); human dermal blood endothelial 

cells (HDBECs); human dermal lymphatic endothelial cells (HDLECs); and intestinal 

lymphatic endothelial cells (iLECs) (Fig. 1A). All EC lines d a fraction of EdU-negative, 

quiescent cells two days after seeding with HUVECs being the lowest at 5% and 

HDBECs the highest at 20%. After 5 days in continuous culture, more than 80% of 

HUVECs, HDLECs and iLECs and more than 70% of HDBECs were EdU-negative, 

and therefore quiescent. 

To understand the molecular mechanisms that underlie EC identities and states, 

we performed label-free quantitative proteomics of all four cell lines from day 2 to day 

7 post-seeding. Overall, we identified 7,894 protein groups at a 1% protein group-level 

false discovery rate cut-off. First, we used this dataset for partial least squares 

discriminant analysis (PLS-DA) in order to determine the proteins whose expression 

levels are associated with either lymphatic (iLECs and HDLECs) or blood endothelial 

cells (HDBECs and HUVECs) (Fig. 1B, Suppl. Table 1). The grouping of individual cell 

types and inclusion of all states enabled us to study the general, state-independent 

proteomic patterns that underlie LEC and BEC identity. The weights of all proteins on 

the first component of the PLS-DA, discriminating BECs and LECs, were subject of a 

permutation approach to generate LEC- and BEC-associated protein lists. Using a 

10% cut-off, these two lists contained 424 and 1,873 proteins for LECs and BECs, 

respectively, including markers of LECs (PROX1, LYVE1) and BECs (STAT6, NRP1) 

(Fig. 1C, Suppl. Fig. 1A, B)25–27. We next conducted a pathway enrichment analysis 

with the proteins in the two lists using the Reactome pathway database28 to examine 

the cellular processes that underlie EC identities. We found enrichments of BEC-

associated proteins in 153 pathways and of LEC-associated proteins in 78 pathways 

(FDR < 0.05) (Suppl. Table 1). Interestingly, metabolic pathways were among the top 

enriched pathways in LECs but not in BECs. For example, fatty acid β-oxidation and 

TCA cycle and the respiratory electron transport chain were the two most enriched 
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pathways in LECs, reflecting their known, crucial role in lymphangiogenesis and LEC 

specification and maintenance (Fig. 1D)16,29. Furthermore, metabolism itself (FDR = 

0.004), glyoxylate metabolism and glycine degradation (FDR = 0.005) and lysine (FDR 

= 0.02) and BCAA catabolism (FDR = 0.02) were enriched in LECs, but not in BECs 

(Suppl. Table 1). 

Figure 1. Endothelial cell lines identities and states are defined by distinct proteomic signatures. 
(A) Experimental setup. n = 3 replicates per day and cell line for each measurement.
(B) Partial least squares discriminant analysis (PLS-DA) of day 2 to day 7 proteomics samples showing the

discrimination between LECs and BECs among component 1.
(C) Weights of the first component of the PLS-DA. Each protein has a weight that corresponds to its cell type-

related information. A permutation approach was applied to determine the 10% and 90% percentile,
associated with BEC and LEC identity, respectively.

(D) Pathway enrichment analysis of LEC- and BEC-associated proteins, showing the top 10 enriched
pathways for both cell types.



Chapter 3 

66 
 

To further explore proteomic patterns underlying cellular identity and quiescence 

induction across the EC types, we moved forward with day 2 and day 5 post-seeding 

time points given the similar growth kinetics that were observed across cell lines. These 

time points represent the most distinct states of proliferation and quiescence, 

respectively, across all time points. Differential analysis between day 5 (quiescent) and 

day 2 (proliferating) samples identified an expected, core proteomic signature related 

to cell cycle in quiescent ECs. For example, proteins involved in DNA replication, 

translation or cell cycle, such as CDK1, MCM2, MCM3, MCM7, LARP4 were 

downregulated in quiescent cells (Suppl. Fig. 1B)30–34. We also identified significant 

differential expression of proteins known to participate in vessel formation, 

maintenance and cellular quiescence35–44. Indeed, proteins related to extracellular 

matrix organisation and adhesion (CCN1, NID1), platelet activation and coagulation 

(VWF, MMRN1, TFPI), autophagy (ACP2, LIPA, GAA, TPP1) or inflammation and 

senescence inhibition (NTN4) were all upregulated above 2-fold during quiescence 

(Suppl. Fig. 1B).  

 Beyond core differences in protein expression, principal component analysis 

and Spearman’s correlation also identified different proteomic patterns dependent on 

cell types and proliferative states (Suppl. Fig. 1C, 1D). While proliferating ECs exhibited 

diverse proteomic patterns, in quiescence, ECs from the same vascular beds had 

similar proteomic patterns. We hypothesized that proteomic distinctions might reflect 

the distinct physiological roles of quiescent lymphatic and blood ECs in maintaining 

tissue homeostasis. To determine which pathways govern these distinct physiological 

roles, we performed pathway enrichment analysis using the Reactome pathway 

database28 with proteins that had an abs(log2(FC)) > 0.5 between day 5 and day 2 

samples and a q-value of less than 0.05. In total, 105 pathways had positive 

enrichments and 186 had negative enrichments (FDR < 0.05) in at least one cell line 

(Suppl. Table 2). Among the top negative enriched pathways in quiescence were, not 

surprisingly, pathways involved in cell cycle or metabolism of nucleotides, but also 

pathways involved in rRNA processing, translation, seleno-amino acid metabolism or 

metabolism of amino acids and derivatives, which includes all pathways responsible 

for biosynthesis and degradation of amino acids (Suppl. Table 2). Positive enrichments 

in quiescence are more diverse in the different ECs. For example, the strongest 

enriched pathways in HDBECs are involved in membrane trafficking, vesicle-mediated 

transport or asparagine N-linked glycosylation (Suppl. Table 2). On the other hand, the 
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top five positively enriched pathways in HDLECs are associated to TCA cycle, electron 

transport chain and Complex I biogenesis (Suppl. Table 2). Interestingly, metabolism 

is positively enriched in all four cell lines in quiescence, showing the important role of 

metabolic pathways in the induction and maintenance of quiescence (Suppl. Fig. 1E). 

To further understand which parts of the metabolic network are important for 

quiescence, we focused on the 36 metabolic pathways that were enriched in at least 

one cell line (FDR < 0.05) (Suppl. Fig. 1E). In total, 8 out of the 36 metabolic pathways 

had a negative enrichment, including nucleotide biosynthesis, metabolism of amino 

acids and derivatives and seleno-amino acid metabolism (Suppl. Fig. 1E). Positive 

enrichments include TCA cycle, the electron transport chain, branched-chain amino 

acid (BCAA) catabolism, glycosphingolipid and sphingolipid metabolism, carbohydrate 

metabolism and β-oxidation of fatty acids (Suppl. Fig. 1E). These pathway-level 

findings are supported by previous work, although done at the transcript-level. Indeed, 

mitochondrial fatty acid β-oxidation has been shown to be upregulated in quiescent 

HUVECs for vasculoprotection via redox homeostasis15. We observed a similar 

magnitude of positive enrichments in quiescent iLECs, HDLECs and HUVECs but not 

in HDBECs. Quiescent HDBECs generally have weaker enrichments of metabolic 

pathways, and, besides metabolism (FDR = 0.003), only metabolism of carbohydrates 

(FDR = 0.035), glucose (FDR = 0.035) and fatty acids (FDR = 0.038) are significantly 

enriched. However, in all quiescent ECs, there is an enrichment of proteins in 

branched-chain amino acid catabolism (FDR < 0.01 in HUVECs, HDLECs and iLECs, 

FDR = 0.052 in HDBECs). It was previously shown that promoting BCAA catabolism 

by the PPM1K phosphatase maintains glycolysis and quiescence in hematopoietic 

stem cells45. Increase of BCAA catabolism in all quiescent ECs might hint at an 

important role of BCAA catabolism to maintain quiescence in endothelial cells, similar 

to hematopoietic stem cells. In line with the previous pathway enrichments of LEC-

associated proteins results, iLECs and HDLECs have a stronger enrichment in TCA 

cycle and electron transport chain-associated pathways (FDR < 10-6 in iLECs and 

HDLECs compared to FDR of 0.028 in HUVECs and 0.16 in HDBECs), suggesting that 

these two pathways are specifically critical for lymphatic ECs to maintain a quiescent 

state. Taken together, ECs exhibit cell type and state-dependent expression patterns 

of proteins in metabolic pathways, particularly in fatty acid β-oxidation, TCA cycle, 

electron transport chain and BCAA catabolism. 
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Distinct metabolic programs underlie quiescence induction and 
maintenance processes across different cell lines 

While our analysis of protein expression patterns identified distinctions in metabolic 

pathways between EC types, it remained unclear what these patterns mean for 

metabolite levels and the metabolic activity of the four endothelial cell types. Thus, we 

examined the general metabolic activity of the four cell lines by determining the uptake 

and secretion rates of extracellular metabolites. Specifically, we exchanged the growth 

medium every 24 hours, sampled cellular supernatants between each medium 

exchange and measured the supernatants in an untargeted manner using time-of-flight 

mass spectrometry (Suppl. Fig. 2A, Suppl. Table 3)46. In total, we annotated 521 

extracellular metabolite and quantified uptake and secretion rates by linear regression 

of ion intensities between two medium exchanges.  

For all cell types, uptake of ascorbate and pyruvate from the medium, and 

secretion of lactate remain a core metabolic feature (Fig. 2A). However, in contrast to 

the similar patterns of cell proliferation and quiescence across cell lines, generally, the 

metabolite uptake and secretion patterns vary in the different ECs, likely reflecting 

diverse metabolic activities across cell types and states (Fig. 2A, 2B, Suppl. Fig. 2B, 

2C and 2D). Proliferating HUVECs take up 50% of glucose in the supernatant over 24h 

and have the highest glucose uptake among the cell lines tested. They also have a 2-

fold increased lactate secretion in proliferation compared to quiescence, indicating a 

highly glycolytic proliferative stage. Additionally, proliferating and quiescent HUVECs 

consume amino acids at higher levels than the other cell types, especially cysteine (-

30% in 24h) and methionine (-20% in 24h) during proliferation and glutamine (-10% in 

24h) in quiescence. On the other hand, levels of amino acids and lactate in the 

supernatant increase by 10-20% and 72%, respectively, in quiescent and proliferating 

HDBECs over 24h. Surprisingly, in contrast to the previously described glycolysis-

driven proliferative state of BECs, they only start to consume glucose when they 

become quiescent, decreasing glucose levels by 22% in 24h (Fig. 2A, 2B)47. The two 

lymphatic endothelial cell types (iLECs and HDLECs) show more similar uptake and 

secretion patterns compared to HDBECs and HUVECs (Suppl. Fig. 2B), but they vary 

in the amplitude of glucose and glutamine uptake and lactate secretion. HDLECs have 

a 35% increased uptake of glucose and secretion of lactate when they are quiescent, 

whereas glucose consumption and lactate secretion decrease in quiescent iLECs by 
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85% and 17%, respectively. Interestingly, iLECs and HDLECs start to secrete certain 

amino acids (alanine, proline and aspartate) as they transition into quiescence. 

Figure 2. Distinct metabolic programs underlie quiescence induction and maintenance processes across 
different cell lines. 

(A) Left: normalized ion intensity change per hour for detected amino acids and growth media components.
Negative rate corresponds to uptake, positive rates to secretion of metabolites. Right: z-scored
uptake/secretion rates. z-scoring was performed over metabolites to illustrate relative changes between
cell lines.

(B) Normalized ion intensity change per hour for hexose, lactate, glutamine and pyruvate in proliferating (2D)
and quiescent (5D) cells. Negative rate corresponds to taken up metabolites, positive rates to secreted
metabolites.

(C) PCA of intracellular metabolites of each cell line in proliferation and quiescence.
(D) Metabolite PEA of quiescence vs proliferation samples, hierarchically clustered. Negative values

correspond to increased enrichments in proliferation, positive values to increased enrichments in
quiescence.
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In short, phenotypes of ECs are similar in terms of the increased fraction of 

quiescent cells upon contact inhibition and the metabolic programs underlying 

proliferation and quiescence seem to be even more diverse than what would be 

expected from the proteomics data. Moreover, these data do not support the case for 

a general decrease of metabolic activity in quiescent ECs, but in contrast, a 

reorganization of metabolism to meet and support cell type-specific demands, similar 

to previous results in fibroblasts and epithelial cells48,49. Indeed, the distinct high 

metabolic activity of EC cell lines is clearly reflected in the magnitude of uptake and 

secretion rates between the cell types. 

To deepen our understanding of how metabolism supports the transition into 

and maintenance of EC quiescence, we also performed untargeted metabolomics on 

intracellular metabolite pools46. In total, we identified 1,413 metabolites across all cell 

lines (Suppl. Table 4). In accordance with the uptake and secretion patterns, 

intracellular metabolomes vary depending on cell type and state (Fig. 2C, Suppl. Fig. 

3A). Clustering by principal component analysis and Spearman’s correlation show that 

the metabolomes of HDBECs and HDLECs are more similar in proliferation compared 

to quiescence, in which the metabolome of HDLECs rather resembles the metabolome 

of iLECs (Fig. 2C, Suppl. Fig. 3A). Next, we performed a differential analysis between 

samples collected at day 2 (proliferation) and day 5 (quiescence). A total of 63 

metabolites changed significantly at our statistical cut-offs (absolute of the log2-

transformed fold-change of day 5 vs day 2 samples (abs(log2(FC))) > 0.5, adj. p-value 

< 0.05) in at least one of the cell types (Suppl. Fig. 3B, Suppl. Table 4). 75% of these 

metabolites have larger pool sizes in quiescence, such as ascorbate, that is taken up 

from the medium, and some fatty acids or building blocks of phospholipids (e.g. CDP-

ethanolamine), likely reflecting the decreased need of quiescent cells to build new 

plasma membrane elements. Glutamine levels are significantly decreased only in 

quiescent HUVECs by 35%, even though quiescent HUVECs have the highest uptake 

rate of glutamine, potentially pointing towards increased glutamine dependence of 

quiescent HUVECs compared to the other cell types. Proline levels are decreased in 

quiescent HUVECs by 39% and are slightly but significantly increased in quiescent 

HDBECs (log2(FC) = 0.28, adj. p-value = 0.0003) and HDLECs (log2(FC) = 0.2, adj. 

p-value = 0.003), although these cell lines secrete proline in quiescence.  
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Given the small, yet significant changes in metabolite abundances, we next 

conducted a pathway enrichment analysis with all metabolites that had an 

abs(log2(FC)) > 0.25 and a p-value of less than 0.05. The abundances of intermediates 

in 51 metabolic pathways changed significantly in at least one cell line (Fig. 2D, Suppl. 

Table 4). 29 pathways are positively enriched in quiescent HDBECs and HDLECs, 

exhibiting a high degree of metabolic similarity between HDBECs and HDLECs. As 

opposed to this, quiescent HUVECs show negative enrichment in 12 amino acid and 

related metabolic pathways, such as glycine and serine metabolism, arginine and 

proline metabolism, glutamate metabolism, valine, leucine and isoleucine degradation, 

amino sugar metabolism and glutathione metabolism. Some of these negative 

enrichments are also observed in quiescent iLECs (e.g. glutamate metabolism, glycine 

and serine metabolism). In short, intracellular metabolomics results, on a metabolite 

and pathway level, show that different endothelial cell types have distinct metabolic 

patterns in proliferation and quiescence. Additionally, intracellular metabolic patterns 

can only be explained to some extent by altered expression of proteins involved in 

these pathways, indicating that these patterns are regulated not only by changing 

protein expression levels, but also through allosteric regulation, post-translational 

modifications or other mechanisms. 

Pharmacological inhibitors identify HUVEC- and iLEC-specific 
metabolic program susceptibilities underlying different cellular 
states and functions 

From our previous multi-omics results, we hypothesized that distinct endothelial cell 

types may rely on different metabolic pathways to support cellular programs related to 

quiescence. To validate the multi-omics results and to assess how metabolism may 

define or differentiate cellular responses, we examined the effect of 14 metabolic drugs 

on growth, migration, and sprouting capacity of iLECs and HUVECs, specifically, as 

representatives from lymphatic and blood ECs, respectively (Table 1, Suppl. Fig. 4A). 

We chose inhibitory drugs targeting pathways that are differentially or similarly 

enriched on the proteome or metabolome level across the four cell lines. These include 

compounds to target enzymes in central carbon metabolism (oxidative phosphorylation 

(OXPHOS), TCA cycle, pentose phosphate pathway (PPP)) as well as amino acid 

(glutamate, serine), nucleotide, heme, glutathione, biopterine and fatty acid 

biosynthesis metabolism (Table 1). Based on our metabolomics and proteomics 
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analysis, we expected to see various phenotypic consequences upon pharmacological 

inhibition, such as an iLEC-dependent sensitivity to perturbations in OXPHOS and TCA 

cycle or a higher sensitivity of HUVECs to perturbations in heme biosynthesis. 

Table 1. Compounds and concentrations used for pharmacological perturbation in validation experiments. 

Compound name Concentration Target gene Pathway 
UK5099 40µM MPC TCA cycle 
G6PDi-1 0.07µM G6PD Pentose phosphate pathway 
Rotenone 0.5µM Complex I Electron transport chain 
CB-839 23nM GLS Glutamate metabolism 
R162 23µM GLUD1 Glutamate metabolism 
Succinyl acetone 18µM ALAD Heme biosynthesis 
Dihydroxypyrimidine 300µM GCH1 Biopterine biosynthesis 
Buthionine sulfoximine 2µM GCLC Glutathione biosynthesis 
ABH hydrochloride 0.14µM ARG Urea cycle 
Methotrexate 100µM DHFR Nucleotide biosynthesis 
C75 35µM FASN Fatty acid synthesis 
Dimethyl fumarate 25µM PHGDH Serine biosynthesis 
Pemetrexed 200nM DHFR/GARFT/TS Nucleotide biosynthesis 
Fluorouracil 10µM TS Nucleotide biosynthesis 

Overall, HUVECs and iLECs exhibit a wide range of growth and migration rate 

changes upon treatment with the 14 drugs (Fig. 3A). 5-Fluorouracil (5-FU), 

Pemetrexed and Methotrexate inhibit growth by targeting key enzymes in nucleotide 

biosynthesis and folate metabolism: 5-FU and Pemetrexed target thymidylate synthase 

(TYMS), Methotrexate and Pemetrexed target dihydrofolate reductase (DHFR). We 

expected these drugs to have similar growth and migration effects on HUVECs and 

iLECs. We find that Methotrexate and 5-FU, but not Pemetrexed, inhibit growth in 

HUVECs by 98% and 61%, respectively. Surprisingly, we further observe a decreased 

growth of 55% and 72% of Methotrexate- and Pemetrexed-treated iLECs, respectively, 

but no effect of 5-FU on growth of iLECs (Fig. 3B). Migration, a normal cellular function 

of ECs, is determined by a scratch assay that measures the time it takes cells to close 

the scratch50. Cells were either treated with drugs 5 days prior to and after the scratch 

assay to study the long-term effects of metabolic perturbations or only after the scratch 

assay to study the short-term effects. 5-FU reduces migration rate of HUVECs by 23% 

and of iLECs by 75%, Pemetrexed the migration rate of HUVECs and iLECs by 48% 

and 100%, respectively, and Methotrexate the migration rate of HUVECs by 48% and 

of iLECs by 100% after 5 days of treatment prior to the scratch assay (Fig. 3C). 
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Pemetrexed also reduces migration by 68% of iLECs that were treated after the scratch 

was made (Fig. 3C). We hypothesize that some of these results could be explained by 

the differential expression of the target enzymes TYMS and DHFR. For example, 

expression levels of TYMS is around 6 times higher in proliferating HUVECs than 

iLECs, possibly reflecting a higher dependence of proliferating HUVECs to TYMS and 

a higher susceptibility upon inhibition with 5-FU (Fig. 3D). In contrast, expression of 

DHFR is 50% higher in proliferating HUVECs compared to iLECs, implying that higher 

sensitivity of iLECs to DHFR inhibition is linked to lower levels of DHFR (Fig. 3D). 

Fatty acid synthase (FASN) has previously been reported to be critical for 

angiogenesis of HUVECs51. FASN expression is 1.5 and 2.5-fold increased in 

proliferating HUVECs and iLECs, respectively, relative to quiescent cells (Fig. 3D). 

FASN inhibitor C75 stops growth of HUVECs and reduces their migration rate by 52% 

after long-term and 94% after short-term treatment. C75 also stops growth of iLECs 

and diminishes migration rate by 100% after long-term and 54% after short-term 

treatment (Fig. 3E, 3F). FASN inhibition was shown to increase levels of malonyl-CoA 

in HUVECs, which leads to mTOR malonylation, decreased mTORC1 kinase activity 

and subsequent decreased proliferation51. According to our data, this mechanism may 

be conserved among different EC types. 

Proteomics identified the upregulation of TCA cycle enzymes in quiescent 

HUVECs (FDR = 0.05) and iLECs (FDR = 0.001) (Suppl. Fig. 2E). Therefore, we 

hypothesized that MPC inhibition would likely impair cellular functions of ECs. Indeed, 

growth of HUVECs, but not iLECs, was slightly but significantly decreased by 15% 

upon treatment with UK5099, an inhibitor of mitochondrial pyruvate carrier (Fig. 3A, 

3E). Additionally, UK5099 reduces migration rate in long- and short-term treated 

HUVECs by 27% and 31%, respectively, and strongly, but with weak statistical 

significance in long-term treated iLECs (-68%, p-value = 0.08) (Fig. 3F). This indicates 

that HUVECs but not iLECs rely more on TCA cycle to potentially provide building 

blocks for proliferation and that reduction of pyruvate flux into TCA cycle impairs a 

normal quiescent state of HUVECs and iLECs and eventually the ability to migrate52. 

A recent study showed that upregulation of the mitochondrial pyruvate carrier (MPC) 

in adult neural stem cells is necessary to maintain quiescence by sustaining TCA cycle 

and OXPHOS, a mechanism that is potentially also crucial for HUVECs and iLECs53. 
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Expression levels of TCA cycle proteins are linked to and generally higher in LECs and 

might lead to a higher tolerance of LECs to perturbations in TCA cycle (Fig. 1E). 

Figure 3. HUVEC- and iLEC-specific metabolic programs are susceptibilities during quiescence induction. 
(A) Overview of the phenotypic consequences after treatment with the 14 drugs. Migration 5D refers to the

migration rate after 5 days of drug treatment and migration 12h to the migration rate without prior drug
treatment. n = 3 replicates for each perturbation and cell line in all measurements. p-values were
determined using a two-tailed Student’s t-test. * = p-value < 0.05.

(B) Growth curves of HUVECs and iLECs treated with anti-proliferative drugs.
(C) Migration rates of HUVECs and iLECs treated with anti-proliferative drugs, normalized to the respective

control. 5 days corresponds to samples that were already treated with drugs 5 days prior to the scratch
assay, 12 hours to samples that were treated with drugs only right after scratch generation. Error bars
denote standard deviation. n = 3 replicates. p-values were determined using a two-tailed Student’s t-test.
* = p-value < 0.05.

(D) Expression levels of TYMS, DHFR and FASN.
(E) Growth curves of HUVECs and iLECs treated with C75 and UK5099.
(F) Migration rates of HUVECs and iLECs treated with C75 and UK5099, normalized to the respective control.

5 days corresponds to samples that were already treated with drugs 5 days prior to the scratch assay, 12
hours to samples that were treated with drugs only right after scratch generation. Error bars denote
standard deviation. n = 3 replicates. p-values were determined using a two-tailed Student’s t-test. * = p-
value < 0.05.
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HUVECs and iLECs have divergent dependencies to nitric oxide and 
ROS metabolic pathways for migration and sprouting 

Five drugs in our screen directly or indirectly interfere with reactive oxygen species 

(ROS) and nitric oxide metabolism as part of their mechanism of action (Fig. 4A)54–58. 

The key cardiovascular signalling molecule nitric oxide (NO) plays an important role in 

promoting migration and angiogenesis of blood endothelial cells and is produced by 

endothelial nitric oxide synthases (eNOS)59,60. Soluble ROS emerge as products of 

oxidative metabolism in cells and one of its members, superoxide (O2-), reacts with 

NO, leading to decreased intracellular NO levels 61–63. Long-term exposure to ROS 

leads to cardiovascular dysfunction, however, lower ROS levels are crucial for 

migration and angiogenesis of HUVECs, through increasing expression of vascular 

endothelial growth factors61,64–66. 

Dimethyl fumarate (DF) is an inhibitor of phosphoglycerate dehydrogenase 

(PHGDH), the enzyme involved in the committing step for de novo serine 

biosynthesis54,67. Serine is required for the biosynthesis of heme, a co-factor of ROS-

clearing catalases and eNOS. Succinylacetone (SA) depletes heme levels as well, but 

through inhibition of aminolevulinic acid dehydratase (ALAD), an enzyme involved in 

heme/porphyrin biosynthesis55. Butathione sulfoximine (BS) inhibits de novo 

biosynthesis of the antioxidant glutathione by blocking glutamate cysteine ligase 

(GCL)56. Rotenone blocks Complex I (NADH Coenzyme Q oxidoreductase) of the 

mitochondrial electron transport chain, leading to elevated ROS levels57. G6PDi-1 

depletes NADPH levels by decreasing flux into PPP, a major source of NADPH 

production crucial for detoxification of ROS68. 

Interestingly, we found that none of these five drugs affects the growth of HUVECs 

(Fig. 4B). On the other hand, growth of iLECs is decreased by 18% through DF, by 

26% through Rotenone and by 57% through BS, indicating that proliferating iLECs are 

more sensitive than HUVECs to disturbances in ROS metabolism (Fig. 4B). Even 

though the five drugs do not affect proliferating HUVECs, Rotenone and SA decrease 

migration rate of HUVECs by around 20% and 80%, respectively, after long- and short-

term treatment (Fig. 4C). Rotenone decreases migration of iLECs by 65% only when 

the drug is added right after the scratch assay (Fig. 4C). SA has no effect on iLEC 

migration, while DF decreases migration of iLECs up to 90% after long-term treatment 
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(Fig. 4C). BS and G6PDi do not affect migration of HUVECs (Fig. 4C). G6PDi does not 

influence migration of iLECs and migration of BS-treated iLECs could not be measured 

due to premature cell death (Fig. 4C). 

Figure 4. HUVECs and iLECs have divergent dependencies to nitric oxide and ROS metabolic pathways for 
migration and sprouting. 

(A) Schematic overview of the targets of the 5 drugs targeting ROS and NO metabolism. SA = succinyl
acetone, DF = dimethyl fumarate, G6PDi = G6PD inhibitor, BS = buthionine sulfoximine.

(B) Growth curves of HUVECs and iLECs treated with ROS and NO metabolism targeting drugs.
(C) Migration rates of HUVECs and iLECs treated with ROS and NO metabolism targeting drugs, normalized

to the respective control. 5 days corresponds to samples that were already treated with drugs 5 days prior
to the scratch assay, 12 hours to samples that were treated with drugs only right after scratch generation.
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Error bars denote standard deviation. n = 3 replicates. p-values were determined using a two-tailed 
Student’s t-test. * = p-value < 0.05. 

(D) Representative pictures of vessel sprouting assay and total sprout length normalized to the respective
control of HUVECs and iLECs treated with SA and rotenone. Error bars denote standard deviation. n = 3
replicates. p-values were determined using a two-tailed Student’s t-test. * = p-value < 0.05.

(E) Migration rates of SA- and rotenone-treated HUVECs and iLECs supplemented with NONOate.
(F) Migration rates of SA- and rotenone-treated HUVECs and iLECs supplemented with DMTU.
(G) Migration rates of HUVECs and iLECs treated with NONOate or DMTU.
(H) Representative pictures of vessel sprouting assay and total sprout length normalized to the respective

control of HUVECs and iLECs treated with rotenone and supplemented with either NONOate or DMTU.
Error bars denote standard deviation. n = 3 replicates. p-values were determined using a two-tailed
Student’s t-test. * = p-value < 0.05.

The sensitivity of HUVECs and iLECs to the five drugs does not correlate with 

protein expression patterns. For example, expression of ALAD, the target of SA, and 

GCLC, the target of BS, is higher in quiescent HUVECs, but only SA leads to 

decreased migration (Suppl. Fig. 5). Compared to HUVECs, iLECs have an increased 

expression of Complex I proteins (NDUFS1, NDUFV2), but migration is not affected in 

iLECs treated with rotenone for 5 days (Suppl. Fig. 5). G6PD expression is similar in 

proliferating and quiescent HUVECs and around 20% decreased in quiescent iLECs; 

however, G6PDi does not impair migration in either cell line (Suppl. Fig. 5). 

Further, we assessed whether the differential migratory responses of HUVECs 

and iLECs to SA and Rotenone treatments are also reflected in angiogenesis. To this 

end, we performed a sprouting assay, treating the spheroids for 6 days with SA and 

Rotenone before measuring the total sprout length69. SA decreases the total sprout 

length of HUVECs by 75%, Rotenone by almost 85% (Fig. 4D). SA does not 

significantly reduce the total sprout length of iLECs, while Rotenone completely 

diminishes sprouting of iLECs (Fig. 4D). 

Proliferating HUVECs are more robust than iLECs to perturbations in redox and 

NO pathways, but rather rely on balanced ROS levels and heme availability for 

migration and sprouting. We wondered if balanced ROS levels or heme availability are 

the necessary factors for HUVECs and iLECs to migrate and sprout. To shed light upon 

this, we supplemented SA- and Rotenone-treated HUVECs and iLECs with 

diethylamine NONOate, a NO donor, or separately with dimethylthiourea (DMTU), a 

hydroxyl radical scavenger. NONOate and DMTU rescue SA-induced migratory 

defects in HUVECs and promote migration of SA-treated iLECs in the short- and long-

term (Fig. 4E and 4F). NONOate does not rescue Rotenone-induced migratory effects 

in HUVECs but boosts migration rate of short-term Rotenone-treated iLECs by around 
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60% (Fig. 4E). DMTU slightly increases migration rate of HUVECs treated with 

Rotenone for 12 hours after the scratch was made (Fig. 4F). Additionally, when DMTU 

and Rotenone are added to iLECs after the scratch was made, there is a 2-fold 

increase in migration rate, and a non-significant 40% increase when DMTU is added 

to iLECs treated for 5 days with Rotenone (Fig. 4F). Interestingly, NONOate alone 

significantly increases migration rate of HUVECs (+20%) and iLECs (+40%) when 

treated for 5 days before the scratch assay, but not when treated right after the scratch 

was made (Fig. 4G), potentially through activation of cGMP-Rho GTPase signalling 

that exerts its effect on migration only in the long-term70. DMTU, on the other hand, 

increases migration rate of iLECs significantly only when the cells are treated right after 

scratching (Fig. 4G). We further tested whether DMTU or NONOate supplementation 

could rescue sprouting defects caused by Rotenone. We find that neither DMTU nor 

NONOate are able to rescue sprouting defects in Rotenone-treated iLECs (Fig. 4H). 

DMTU even further reduces total sprout length in Rotenone-treated HUVECs (Fig. 4H). 

NONOate, however, increases the total sprout length of Rotenone-treated HUVECs by 

around 2-fold (Fig. 4H). 

Taken together, migrating and sprouting HUVECs are more dependent than 

iLECs on adequate heme availability for NO production. In contrast, iLECs are more 

sensitive to elevated ROS levels when migrating and proper Complex I activity seems 

to be crucial for sprouting beyond elevated ROS levels. These results confirm and back 

up the proteomics and metabolomics results, in which increased intermediates levels 

in heme biosynthesis only in HUVECs and a stronger enrichment of the electron 

transport chain in iLECs proposed a cell type-specific dependence on these two 

pathways.  

Correct balance of glutamate and α-ketoglutarate levels is crucial 
for migration and sprouting of iLECs and sprouting of HUVECs 

Recent studies showed that glutamine-dependent asparagine synthesis and 

anaplerosis is critical for proliferation and, partly, also for migration of HUVECs20,71. In 

our metabolomics analysis, we observed a much stronger decrease of glutamate 

metabolism intermediates in quiescent vs proliferating HUVECs (FDR = 1.3*10-5) 

compared to quiescent vs proliferating iLECs (FDR = 0.04) (Fig. 2D). To assess 

whether normal cell functions of HUVECs and iLECs are similarly dependent on 
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glutamate and glutamine metabolism, we included the two drugs CB-839, a 

glutaminase (GLS1) inhibitor, and R162, a glutamate dehydrogenase (GLUD1) 

inhibitor, in our inhibition screen (Fig. 5A). Due to higher glutamine uptake and stronger 

reduction of glutamate metabolism intermediates in quiescent HUVECs, we expected 

higher susceptibility of HUVECs to perturbations with these drugs, especially in 

migration, since the cells start migration from a quiescent state. CB-839 and R162 do 

not affect proliferation of HUVECs and iLECs (Fig. 5B). Migration of HUVECs and 

iLECs is not impaired by CB-839, in fact migration is slightly increased (Fig. 5C). To 

our surprise, we observed a 60% decrease in migration of long-term R162-treated 

iLECs, and only a non-significant 16% decrease of migration in HUVECs (Fig. 5C).  

Addition of cell-permeable dimethyl-α-ketoglutarate (DMaKG) to replenish the 

TCA cycle increases migration of R162-treated iLECs by 2-fold but decreases 

migration of HUVECs by another 10%; however, in both cases the changes are not 

significant (Fig. 5D). Surprisingly, DMaKG alone decreases migration of iLECs by 

around 80%, but only by 30% in short-term treated HUVECs (Fig. 5D). In accordance 

with the migration results, CB-839 slightly increases total sprout length of HUVECs and 

iLECs (Fig. 5E). Interestingly, R162 reduces total sprout length of HUVECs and iLECs 

by around 30%, even though there was no effect of R162 on migration of HUVECs 

(Fig. 5E). Furthermore, DMaKG supplementation does not rescue R162-induced 

sprouting defects but even leads to a 70% decrease of total sprout length in HUVECs 

and iLECs (Fig. 5E). These results suggest that iLECs have either a lower capacity to 

metabolize excess glutamate than HUVECs or they are more dependent on fully 

functioning GLUD1 and hence glutamate-derived carbon flow into TCA cycle for 

migration (Fig. 6). Moreover, the sprouting assay results indicate a role of glutamate 

metabolism on angiogenesis beyond its isolated effect on EC migration. 
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Figure 5. Correct balance of glutamate and α-ketoglutarate levels is crucial for migration and sprouting of 
iLECs and sprouting of HUVECs. 

(A) Schematic overview of the targets of CB-839 and R162.
(B) Growth curves of HUVECs and iLECs treated with CB-839 and R162.
(C) Migration rates of CB839- and R162-treated HUVECs and iLECs, normalized to the respective control. 5

days corresponds to samples that were already treated with drugs 5 days prior to the scratch assay, 12
hours to samples that were treated with drugs only right after scratch generation. Error bars denote
standard deviation. n = 3 replicates. p-values were determined using a two-tailed Student’s t-test. * = p-
value < 0.05.

(D) Migration rates of HUVECs and iLECs treated with R162 and dimethyl α-ketoglutarate (DMaKG).
(E) Representative pictures of vessel sprouting assay and total sprout length normalized to the respective

control of HUVECs and iLECs treated with CB839, R162, R162 + DMaKG and DMaKG. Error bars denote
standard deviation. n = 3 replicates. p-values were determined using a two-tailed Student’s t-test. * = p-
value < 0.05.

Discussion 

Here, taking a multi-omics approach, we characterized the molecular patterns 

underlying the identities and quiescence induction dynamics of four different EC types 
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to create a resource to better study and understand EC biology. Using a data-driven 

analysis approach, we found that FAO and TCA cycle/mitochondrial respiration are the 

two top enriched pathways associated with LEC identities, even before other signalling 

pathways like VEGF signalling. Both metabolic pathways have known roles in 

lymphangiogenesis but it still underscores the crucial role of metabolism in 

maintenance of LEC identities16,29. Such a strong enrichment of metabolic pathways 

on the proteome level was not observed in BECs. Moreover, we clearly show that 

metabolic pathways are formative for LEC and BEC identities and states. While all cell 

lines had similar growth and quiescence induction rates and phenotypes, the 

underlying metabolic patterns are diverse and reflected in cell type-specific uptake and 

secretion of metabolites and an intracellular metabolic and proteomic reorganization. 

We found that all EC types secrete lactate and take up ascorbate in proliferation and 

quiescence, but uptake of glucose and amino acids varies between cell types and 

states, strongly suggesting distinct metabolic patterns that support specific functions 

of the EC types. Intracellular metabolomics analysis further identified 63 metabolites 

and 51 metabolic pathways that changed between quiescence and proliferation in at 

least one of the cell lines, supporting the case of EC-specific metabolic adaptations. 

These results are in line with proteomics data; although, altered protein expression 

only partly explains changes in metabolite abundances. Nevertheless, we identify a 

core metabolic signature at the protein-level for quiescence in all EC types, which 

includes downregulation of nucleotide metabolism and upregulation of FAO and BCAA 

catabolism. These findings support reports about the relevant role of FAO for 

quiescence maintenance in HUVECs and propose that FAO is a universal metabolic 

driver of EC quiescence maintenance. In addition, the observed, increased expression 

of BCAA catabolism proteins suggests that BCAA catabolism might have a relevant 

role in quiescence maintenance in ECs as described previously for hematopoietic stem 

cells 15,45,72. 

Our data provides further evidence that ECs from different tissues and vascular 

beds are metabolically distinct and that metabolic rewiring in quiescence is driven by 

the needs of each individual EC type to meet and support their specific functions 22–24. 

Indeed, HUVECs and iLECs exhibit a range of phenotypic alterations in response to 

targeted inhibition of metabolism. In our inhibitor screen, we observed differential 

sensitivity to inhibition of nucleotide and folate metabolism, fatty acid synthesis, TCA 

cycle, ROS and NO metabolism and glutamate metabolism. Some anti-proliferative 
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drugs targeting nucleotide and folate metabolism have an inhibitory effect on 

proliferation and migration of iLECs and HUVECs, but with various magnitudes. FASN 

was previously reported to be crucial for proliferation and vessel sprouting of HUVECs 

by preventing accumulation of malonyl-CoA19. Proliferation and migration of HUVECs 

and iLECs are impaired by FASN inhibition, indicating a conserved role of a fully 

functioning FASN in angiogenesis of blood and lymphatic vessels. MPC blockage 

reduces proliferation of HUVECs but not iLECs, and thus suggests that glycolysis-

derived pyruvate, besides acetate from FAO, functions as an additional source fuelling 

TCA cycle and subsequent nucleotide precursors biosynthesis17. Decreased 

proliferation could also explain why short-term UK5099 treatment reduces migration of 

HUVECs but not iLECs. Interestingly, MPC inhibition over 5 days prior to the scratch 

assay impairs migration of HUVECs and iLECs, possibly by perturbing transition into 

or maintenance of quiescence, suggesting that ECs need to establish a fully functional 

quiescent state to be prepared for migration. 

Figure 6. Schematic overview of HUVEC- and iLEC-specific dependencies on metabolic pathways/reactions 
for migration 



Chapter 3 

83 

One of the most striking differences between HUVECs and iLECs is HUVECs 

dependence on heme. Our inhibition screen confirmed the findings of the 

metabolomics screen that HUVECs, but not iLECs, rely on heme biosynthesis 

metabolism; possibly, to ensure sufficient levels of heme as co-factor for NOS to 

produce NO that is crucial for migration of HUVECs. Yet, NONOate supplementation 

alone promotes migration of iLECs, which underlines the general important role of NO 

on migration59,60. The effect of NO levels on vessel sprouting is a bit less clear. 

NONOate fails to rescue migratory effects caused by Rotenone, but sprouting defects 

of Rotenone-treated HUVECs are partly rescued by NONOate. This could have 

multiple reasons. First, sprouting is a more complex mechanism than migration, 

considerably more factors play a role in mediating sprouting (e.g. extracellular cues73) 

and thus, the increased levels of NO might influence factors that boost sprouting but 

not migration. Second, elevated superoxide levels through Rotenone treatment may 

have a stronger detrimental effect on sprouting than migration and NONOate addition 

might attenuate these effects by lowering superoxide levels.   

We observed a similar increase of complexity from migration to sprouting in 

R162- and DMaKG-treated iLECs and HUVECs. Treatment with the GLUD1 inhibitor 

R162 diminishes migration significantly in iLECs, but only after long-term treatment. 

Surprisingly, DMaKG supplementation also reduces migration of iLECs. R162, through 

GLUD1 inhibition, and DMaKG, through negative feedback regulation of GLUD1, 

potentially lead to toxic intracellular glutamate accumulation or iLECs are specifically 

sensitive to inhibition of GLUD1 through subsequent impaired malate-aspartate shuttle 

activity74–76. Metabolic flux analysis could be employed in future experiments to assess 

how metabolic fluxes are rewired when GLUD1 is inhibited in both cell types. 

Furthermore, both R162 and DMaKG impair sprouting of HUVECs and iLECs. This 

suggests an effect of glutamate metabolism on (lymph)angiogenesis beyond its 

isolated effect on EC migration. Previous reports propose that overactivation of 

ionotropic glutamate receptors, such as NMDA, results in decreased tube network 

formation and increased vascular permeability in brain BECs and HUVECs77,78. 

Possibly, increased glutamate levels are cleared by increased secretion of glutamate, 

which leads to higher auto- and paracrine activation of glutamate receptors, resulting 

in impaired sprout formation.  

With the presented work, we contribute to the understanding of how metabolism 

governs various cellular states and functions of EC types from different tissues and 
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vascular beds. Furthermore, we provide evidence that certain metabolic pathways play 

distinct roles in establishing and maintaining a cellular state or function of HUVECs 

and iLECs, possibly because nutrient and oxygen availability varies greatly in the 

microenvironments of different ECs and have a direct influence on their metabolic 

lifestyle. The fact that we captured the metabolic peculiarities of ECs and that we were 

able to reproduce some in vivo findings in our in vitro screen shows how important 

further in vitro studies are to expand the understanding of the role of metabolism in 

mediating and maintaining EC specialization and function. 

 

Materials and Methods 

Cell culture  

Human umbilical vein endothelial cells were purchased from Lonza (cat. no. C2519A), 

human dermal blood endothelial cells (cat. no. C-12211) and human dermal lymphatic 

endothelial cells (cat. no. C-12216) from PromoCell. Intestinal lymphatic endothelial 

cells are a kind gift from Tatiana Petrova from the University of Lausanne. All 

endothelial cells were cultured in T-75 cell culture flasks (Thermo Fisher Scientific, cat. 

no. 156472) in Endothelial Cell Growth Medium-2 (EGM-2) (BulletKit, Lonza, cat. no. 

CC-3162). EGM2 was made from Endothelial Cell Basal Medium-2 (EBM2), with 

added endothelial supplements including 2% fetal bovine serum (FBS) (v/v), 

hydrocortisone, VEGF, human FGF, R3-IGF-1, ascorbic acid, human EGF, 

glutaraldehyde GA-1000, and heparin. Additionally, we added 10mg/ml ciprofloxacin 

(Sigma-Aldrich, cat. no. 17850). After the first passage, regular FBS in the culture 

medium was replaced by dialyzed FBS (dFBS, Sigma-Aldrich, cat. no. F0392). 

Experiments were performed until passage six. For metabolomics, proteomics and 

phenotype experiments, cells were seeded at a density of 20’000 cells/cm2 in a mixed 

medium (MM). MM consists of 50% EGM2 (with dFBS) and 50% Medium 199 (Gibco, 

cat. no. 22340020) supplemented with 20% dFBS, 1% penicillin/streptomycin (P/S, 

Gibco, cat. no. 15140122), 2mM glutamine (Gibco, cat. no. 25030081) and 0.4% (v/v) 

endothelial cell growth supplement (PromoCell, cat. no. C-39215).  

Quiescence induction and cell cycle analysis  
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ECs were grown for 10 days to assess fractions of proliferating and quiescent cells at 

each day. The fraction was determined by EdU incorporation into DNA using the EdU 

Flow Cytometry Kit 488 from baseclick (Sigma-Aldrich, cat. no. BCK-FC488-100)79. 

Briefly, EdU was added at a concentration of 10µM 24 hours prior to trypsinization and 

cell fixation with 4% PFA to label the cells. Using a click-it reaction, 6-FAM was attached 

to EdU and EdU incorporation analysed using a BD LSRFortessa Cell Analyzer with a 

488nm laser for excitation and a 530/30 emission filter. Flow cytometry data was 

analysed with Flowing Software 2.5.1 from Turku Bioscience. 

Proteomics 

Proteomics sample preparation protocol was adapted from 80 and 81. In brief, cells were 

grown in 1.5ml mixed medium in 6-well plates as described above. After removal of 

medium and washing of cells with PBS, cells were lysed in lysis buffer (8M urea buffer) 

and subsequently sonicated, centrifuged and supernatants transferred into fresh tubes 

for protein reduction with DTT and alkylation with iodoacetamide. Supernatants were 

incubated for 25min at 50°C with 5mM DTT and after cooling down to room 

temperature, iodoacetamide to 15mM final concentration was added and the mixture 

incubated for 30min at RT in the dark. An additional 5mM DTT was used to quench 

unreacted iodoacetamide for 15min at RT in the dark. Protein concentration was 

determined by BCA assay. Samples were then diluted 1:8 with 100mM HEPES, pH 

8.5, to reduce the concentration of urea to 1M. Trypsin was added to the diluted 

samples to reach a 100:1 sample:trypsin (w/w) ratio and the mix incubated at 37°C 

overnight on a thermomixer. To stop trypsin digestion, samples were acidified with TFA 

to 0.4% (vol/vol) to reach a pH around 3. Before MS measurements, samples were 

desalted using Pierce C18 spin columns (Thermo Scientific, cat. no. 89870). 

Peptides were analyzed online by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Online reversed phase chromatography was performed 

using a Vanquish Neo UPLC system (Thermo Scientific, Sunnyvale) equipped with a 

heated column compartment set to 50 °C. Mobile Phase A consisted of 0.1% formic 

acid (FA) in water, while Mobile Phase B was 80% acetonitrile in water and 0.1% FA. 

Peptides (~1 µg) were loaded onto a C18 analytical column (500 mm, 75 µm inner 

diameter), packed in-house with 1.8 μm ReproSil-Pur C18 beads (Dr. Maisch, 

Ammerbuch, Germany) fritted with Kasil, keeping constant pressure of 600 bar or a 
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maximum flow rate of 1 µl/min. After sample loading, the chromatographic gradient 

was run at 0.3 µl/min and consisted of a ramp from 0 to 43% Mobile Phase B in 70 

min, followed by a wash at 100% Solution B in 9 min total, and a final re-equilibration 

step of 3 column volumes (total run time 90 min). 

Peptides from each sample were analysed on an Orbitrap HF-X mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) using an overlapping window 

data-independent analysis (DIA) pattern described by Searle et al82, consisting of a 

precursor scan followed by DIA windows. Briefly, precursor scans were recorded over 

a 390-1010 m/z window, using a resolution setting of 120,000, an automatic gain 

control (AGC) target of 1e6 and a maximum injection time of 60 ms. The RF of the ion 

funnel was set at 40% of maximum. A total of 150 DIA windows were quadrupole 

selected with an 8 m/z isolation window from 400.43 m/z to 1000.7 m/z and fragmented 

by higher-energy collisional dissociation, HCD, (NCE=30, AGC target of 1e6, 

maximum injection time 60 ms), with data recorded in centroid mode. Data was 

collected using a resolution setting of 15,000, a loop count of 75 and a default precursor 

charge state of +3. Peptides were introduced into the mass spectrometer through a 10 

µm tapered pulled tip emitter (Fossil Ion Tech) via a custom nano-electrospray 

ionization source, supplied with a spray voltage of 1.6 kV. The instrument transfer 

capillary temperature was held at 275 °C. 

All Thermo RAW files were converted to mzML format using the ProteoWizard 

package83 (version 3.0.2315). Vendor-specific peak picking was selected as the first 

filter and demultiplexing with a 10ppm window was used for handling the overlapping 

data collection window scheme. Processed mzML files were then searched using DIA-

NN84 (version 1.8) and the UniProt Homo sapiens proteome (UP000005640, June 15 

2021) as the FASTA file for a “library-free” deep neural network-based search 

approach. Data was searched using deep learning-based spectra and retention time 

as described by Demichev et al, with trypsin as the protease, and allowing for 2 missed 

cleavages, with N-terminal methionine cleavage, and cysteine carbamidomethylation. 

Peptide length was allowed to range from 7-30 amino acids with a precursor charge 

state range from +1 to +4, a precursor range of 300-1800 m/z and a fragment ion range 

of 200-1800 m/z. Data was processed to a 1% precursor-level false discovery rate 

(FDR) with mass accuracy, MS1 accuracy, and match between runs set to the software 

default settings. A single-pass mode neural network classifier was used with protein 
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groups inferred from the input Homo sapiens FASTA file. Protein quantities were 

normalized by delayed normalization and maximal peptide ratio extraction (maxLFQ)85. 

Intracellular metabolomics 

Cells were grown in 1.5ml mixed medium in 6-well plates as described above. Every 

24 hours, the medium was removed from the wells and cells were washed with pre-

warmed wash buffer, made of freshly prepared 75 mM ammonium carbonate in 

nanopure water, adjusted to pH 7.4 using 10% acetic acid. After washing the cells, 

metabolites were extracted with ice-cold extraction buffer, containing 40% (v/v) 

methanol, 40% (v/v) acetonitrile and 20% (v/v) nanopure water for 1 hour at -20°C. 

Cells were detached from the wells using a cell lifter, transferred into tubes and 

centrifuged. Supernatants (metabolic extracts) were stored at -80°C until 

measurement.  Untargeted metabolomics of metabolic extracts was performed by flow 

injection analysis–time-of-flight mass spectrometry on an Agilent 6550 Q-TOF mass-

spectrometer as previously described46. Measurements were performed in negative 

ionization mode, and spectra were recorded from a mass/charge ratio of 50 to 1000. 

Ions were annotated based on their measured mass using reference compounds from 

the Human Metabolome Database (HMDB 4.0), with a tolerance of 1 mDa. Data 

analysis was performed with an in-house developed pipeline based on Matlab (The 

MathWorks). Samples were normalized within each cell-type by normalization of the 

mean ion intensity to account for the cell number differences at sampling. Differential 

analysis was performed using a Student’s t test and significance was corrected for 

multiple hypothesis testing with the Benjamini-Hochberg method, and an adjusted p-

value < 0.05 was considered significant. Metabolic pathway enrichment was done 

using pathway definitions from HMDB, using a p-value cut-off of 0.05 and a log2(fold-

change (FC)) cut-off of 0.25.  Significance of enrichments was corrected for multiple 

hypothesis testing by the Benjamini-Hochberg method, and an adjusted p-value of < 

0.05 was considered significant. 

Extracellular metabolomics 

Cells were grown in 1.5ml mixed medium in 6-well plates as described above. Every 

24 hours, the medium was replaced with fresh medium. Supernatant samples were 

taken 0 hours, 2 hours, 22 hours and 24 hours after medium exchange. Supernatant 

samples were diluted 1:50 with nanopure water before metabolomics measurement. 
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Untargeted metabolomics of supernatant samples was performed by flow injection 

analysis–time-of-flight mass spectrometry on an Agilent 6520 Q-TOF mass-

spectrometer as described above. Ions were annotated based on their measured mass 

using reference compounds from the Human Metabolome Database (HMDB 4.0), with 

a tolerance of 3 mDa. Within each day, samples were normalized to the first time point 

and linear regression applied to determine the uptake or secretion rate in normalized 

ion intensity per hour.  

Validation experiments 

For conditions with pharmacological perturbations, we used IC50 concentrations of 

inhibitors previously noted for HUVECs or other mammalian cell lines (Table 

2)54,56,58,86–94. The drugs or supplements listed below were added to mixed medium at 

the indicated concentration, and the medium was sterile filtered through a filter with 

0.2µm pore size. Medium with drugs was refreshed after 2 days and prepared freshly 

for each experiment. For drugs desolved in DMSO, a control condition medium with 

equal concentration of DMSO was prepared.  

Phenotypic characterizations  

Phenotype was assessed using three characteristics: response of cells to drug 

treatment in proliferation, migration, and quiescence:  

Proliferation  

To determine the effect of drug compounds on EC proliferation, iLECs and HUVECs 

were seeded in 96-well plates at 20’000 cells/cm2 in mixed medium on day zero. Cells 

were left to attach for four to six hours, after which the medium was exchanged with 

drug-containing medium. Cell growth was determined using an Incucyte S3 Live-Cell 

Analysis instrument.  
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Migration assays 

iLECs and HUVECs were seeded in 96-well plates at 20’000 cells/cm2 and grown for 

five days with or without drugs, in order to reach contact-inhibited quiescence. On day 

five, a scratch wound was inflicted on the confluent cell layer in each well using the tip 

of a 20µl pipette. Medium with drugs was then immediately added to cells which had 

been grown to contact-inhibition with drugs, respectively newly added to cells which 

had been grown to quiescence without drugs to capture the effects of chronic and acute 

drug exposure on migration. The scratch in each well was imaged for 48 hours using 

an Incucyte S3 Live-Cell Analysis instrument. Migration rate was determined by 

measuring the width of the scratch at 0 and 12 hours using Fiji ImageJ and calculating 

the distance that was closed by cells in 12 hours. 

Vessel sprouting assays 

Compound name Source and cat. no. Concentration
UK5099 Sigma-Aldrich, PZ0160 40µM
G6PDi-1 Sigma-Aldrich, SML2980 0.07µM
Rotenone Sigma-Aldrich, R8875 0.5µM
CB-839 Lucerna-Chem, 10-4556 23nM
R162 Sigma-Aldrich, 5380980001 23µM
Succinyl acetone (SA) Sigma-Aldrich, D1415 18µM
Diaminohydroxypyrimidine Fisher Scientific, 11474757 300µM
Buthionin sulfoximin Sigma-Aldrich, B2515 2µM
ABH hydrochloride Sigma-Aldrich, SML1466 0.14µM
Methotrexate Sigma-Aldrich, PHR1396 100µM
C75 MedChemExpress, HY-12364 35µM
Dimethyl fumarate Sigma-Aldrich, 242926 25µM
Pemetrexed Sigma-Aldrich, PHR1596 200nM
5-Fluorouracil Sigma-Aldrich F8423 10µM
Paclitaxel Selleckchem, S1150 0.1pM
Nω-Nitro-L-Arginin (L-NNA) Sigma-Aldrich, N5501 1mM
DEA-NONOate (NONOate) Sigma-Aldrich, D184 100 µM
N,N′-Dimethylthiourea (DMTU) Sigma-Aldrich, D188700 10mM
Dimethyl-a-ketoglutarate Sigma-Aldrich, 349631 1mM

Table 2. Drugs used in the validation experiments. 
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Vessel sprouting assays were performed as previously described69. Methocel solution 

was prepared by dissolving 1.2% methyl cellulose (Sigma-Aldrich, cat. no. M0512) in 

basal medium 199 and stirring the solution at 4% overnight, followed by centrifugation 

at 3500 × g for 3h at 4°C. Collagen solution was prepared at the time of the experiment 

from 3.75mg/ml PureCol collagen (Sigma-Aldrich, cat. no. 5006) in 0.1% acetic acid. 

The collagen solution was mixed 8:1 with mixed medium, after which pH was adjusted 

with 0.2M NaOH and 1M HEPES. Spheroids were generated according to the same 

published protocol by suspending HUVECs or iLECs in mixed medium with 20% 

Methocel solution to 16’000 cells/ml. From the cell suspension, droplets of 25µl were 

pipetted onto the lid of a petri dish. The droplets were incubated hanging upside-down 

for 24h at 37°C to allow for the formation of spheroids. After 24h, spheroids were 

collected by gently washing them off the petri dish lid with medium. Spheroids were 

then centrifuged for 5min at 100 x g and carefully resuspended in Methocel solution 

with 20% FBS and 0.2% Penicillin/Streptomycin. The cell suspension was then gently 

mixed 1:1 with the collagen solution and distributed over wells of a 48-well plate. The 

plate was incubated for 30min to allow gelation, after which spheroids were stimulated 

with mixed medium containing 350ng/ml human VEGF-165 recombinant protein 

(ThermoFisher, cat. no. PHC9391), for a final concentration of 50ng/ml in the gel. 

Depending on the condition, drug compounds were added to the medium at 7x of the 

desired final concentration in the gel. Spheroids gels were imaged by brightfield 

microscopy after 72 hours at 40x magnification. Sprouts were defined by visual 

inspection and measured in length using Fiji ImageJ. 



Chapter 3 

91 

Supplementary Material 

Gene names Protein description
CDK1 Cyclin-dependent kinase 1
MCM2 DNA replication licensing factor MCM2
MCM7 DNA replication licensing factor MCM7
MCM3 DNA replication licensing factor MCM3
KPNA2 Importin subunit alpha-1
LARP4 La-related protein 4
ACP2 Lysosomal acid phosphatase
LIPA Lysosomal acid lipase/cholesteryl ester hydrolase
GIMAP1 GTPase IMAP family member 1
GAA Lysosomal alpha-glucosidase
TPP1 Tripeptidyl-peptidase 1
PLSCR4 Phospholipid scramblase 4
CCN1 CCN family member 1
NID1 Nidogen-1
VWF von Willebrand factor
MMRN1 Multimerin-1
NTN4 Netrin-4
TFPI Tissue factor pathway inhibitor

DNA replication/translation/cell cycle
Autophagy
Platelets/coagulation
Inflammation/senescence inhibition
ECM/Adhesion
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Supplementary Figure 1. Proteomic patterns underlying EC identities and states. 
(A) Permutation test to check whether the number of proteins passing the LV1 threshold is random. The 

curves depict the distributions of the top 10%, bottom 10% and combined numbers. The vertical lines 
depict the actual values. p-values were determined using a permutation test. * = p-value < 0.05.

(B) Expression levels of LEC markers PROX1 and LYVE1 and BEC markers STAT6 and NRP1.
(C) Core protein expression changes. Proteins that pass a threshold of abs(log2(quiescence/proliferation)) 

> 1 and q-value < 0.01 in all cell lines. The colors indicate the process the proteins are involved in.
(D) Principle component analysis of day 2 (proliferating) and day 5 (quiescent) proteomics samples.
(E) Spearman correlation of z-scored proteomics data.
(F) Pathway enrichment analysis of proteomics data of quiescence (day 5) vs proliferation (day 2) samples, 

hierarchically clustered. Negative values correspond to decreased enrichments in quiescence, positive 
values to increased enrichments in quiescence.
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Supplementary Figure 2. Overview of analysis and results of extracellular metabolomics data. 
(A) Overview of the experimental workflow.
(B) PCA of z-scored uptake and secretion rate of each cell line in proliferation (D2) and quiescence (D5).
(C) Overview of uptake and secretion rates of all 521 extracellular metabolites measured. Each dot 

represents a metabolite. Negative rate corresponds to uptake, positive rates to secretion of metabolites. 
(D) Hierarchical clustered metabolite uptake and secretion rates of all 521 extracellular metabolites 

measured.
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Supplementary Figure 3. Intracellular metabolomics patterns. 
(A) Hierarchically clustered Spearman’s correlations of z-scored intracellular metabolomics data.
(B) Overview of metabolites that are changed between quiescence vs proliferation in at least one cell line, 

passing a threshold of abs(log2(qsc vs prolif)) > 0.5 and adj. p-value < 0.05.
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Supplementary Figure 4. Overview of the functional validation experiments. 

Supplementary Figure 5. Expression levels of aminolevulinic acid dehydratase (ALAD, target of SA), 
glutamate cysteine ligase (GCLC, target of BS), NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1, 
Complex I, target of rotenone), NADH dehydrogenase [ubiquinone] flavoprotein 2 (NDUFV2, complex I, target of 
rotenone), D-3-phosphoglycerate dehydrogenase (PHGDH, target of DF) and glucose-6-phosphate 1-
dehydrogenase (G6PD, target of G6PDi).
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Supplementary Table 1: Untargeted proteomics dataset, normalized intensities & 

results of PLS-DA 

Supplementary Table 2: Differential analysis of D5 vs D2 samples & pathway 

enrichment analysis 

Supplementary Table 3: Extracellular metabolomics dataset, normalized intensities 

Supplementary Table 4: Intracellular metabolomics dataset, normalized intensities & 

differential analysis of D5 vs D2 samples & pathway enrichment analysis 

All Supplementary Tables can be requested from Stephan Durot, 

durot@imsb.biol.ethz.ch. 
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Abstract 

Development and maintenance of endothelial cell (EC) identities and states is tightly 

controlled by transcription factors (TFs) that regulate the expression of defined sets of 

genes driving these processes. Furthermore, TFs coordinate metabolic activities of 

ECs to drive differentiation and growth states. Vascular-related diseases are direct 

consequences of disturbances in the transcriptional regulation system in ECs and 

demonstrate the need to comprehensively understand the TF activity patterns that 

underlie EC identities and states. To address this need, we performed TF activity 

inference with a dataset of 7894 quantified proteins in four different EC types, two from 

the blood (BECs) and two from the lymphatic system (LECs), over a period of 6 days, 

for which we previously showed that the cells are first proliferating and then transition 

into quiescence. The resulted TF activity patterns show cell type- and state specific 

behaviour, indicating the effect of the origin and needs of each cell type. However, we 

were also able to extract TFs whose activities are fundamentally different between 

BECs and LECs, including well-known markers of LEC and BEC identities. In addition, 

we correlated TF activities with expression patterns of 14 enzymes that were targets 

of pharmacological inhibition and propose two new TFs that potentially regulate 

expression of enzymes necessary for functioning migration in HUVECs and iLECs.   

 

Introduction 

Cellular homeostasis and functions require tightly controlled gene expression patterns 

in order to be established and maintained correctly1–3. Gene expression patterns are 

regulated through transcription factors (TFs), which enhance or suppress transcription 

of defined sets of genes1–4. Activities of specific TFs are influenced by multiple extra- 

and intracellular factors, such as growth signals or the bioenergetic and metabolic state 

of the cell, and they often work in concert, organised in gene regulatory networks1–4. 

TFs are key players in development and maintenance of cellular identities and tissues, 

including endothelial cell differentiation and vascular development5,6. Numerous TFs 

have been described to orchestrate the formation and maintenance of blood 

endothelial cell (BEC) and lymphatic endothelial cell (LEC) identities and consequently 

blood and lymphatic vessel development and integrity5–7. Development of BECs is 

mainly controlled by GATA2, ETV2 and members of the HESR (Hey1, Hey2), FOX 
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(FOXC1, FOXC2) and SOX (SOX7, SOX18) family of transcription factors5. LECs 

develop from venous BECs through an interplay of SOX18, NR2F2 and the master 

regulator of LEC identity, PROX18.  

Transcriptional regulation is also essential to maintain metabolic homeostasis, 

to adapt to changing environments or forming cellular identities9–11. For example, 

PROX1 rewires cellular metabolism to increase acetyl-CoA production, which is then 

used to acetylate histones of target genes through PROX1-p300 interaction, leading to 

expression of lymphangiogenesis-promoting genes11. Moreover, in ECs, it has been 

shown that the forkhead box O transcription factor FOXO1 controls growth states in 

ECs by regulating metabolic activity and production of signalling metabolites that 

mediate quiescence12,13. Conversely, a study by Ma et al. demonstrated that 

mitochondrial respiration controls PROX1 expression, proposing that not only TFs 

regulate metabolism but that metabolic cues can modulate TF expression and 

subsequent downstream consequences 14. Disturbances in these fine-tuned regulatory 

processes lead to various vasculature-related diseases5,7. For instance, mutations in 

TFs relevant for LEC maturation and maintenance cause lymphatic malformations or 

primary lymphedema and mutations in mechanosensitive TFs in BECs support 

atherosclerosis formation 7,15,16.  

 In chapter 2, we applied untargeted proteomics and metabolomics to 

comprehensively characterize the molecular patterns that define identities and states 

of two blood and two lymphatic EC types (human dermal blood endothelial cells 

(HDBECs), human umbilical vein endothelial cells (HUVECs), human dermal lymphatic 

endothelial cells (HDLECs) and intestinal lymphatic endothelial cells (iLECs)). The 

studied ECs exhibited distinct and general proteomic and metabolic patterns in 

quiescence and proliferation. In further functional studies we showed that migrating 

HUVECs rely on heme biosynthesis for NO production and that unbalanced glutamate 

and α-ketoglutarate levels lead to migratory defects in iLECs. To deepen our 

knowledge of transcriptional regulation of EC identities and to examine the TF patterns 

that drive the different metabolic peculiarities in ECs, we used the untargeted 

proteomics dataset to infer transcription factor activities. TFs are generally present in 

low numbers in cells, which hinders their identification in untargeted proteomics 

measurements17. However, statistical methods can be applied to infer transcription 

factor activities based on the expression patterns of their targets. Here, we created a 

TF activities dataset using Dorothea, a curation of human TF regulons and decoupler, 
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an collection of computational methods to infer TF activities18,19. We extracted 

fundamental differences in TF activities patterns between LECs and BECs, which 

contained well-known markers of LEC and BEC identities. Furthermore, we observed 

that some TFs are more active in one specific cell type and propose two TFs that might 

regulate expression of two enzymes in HUVECs and iLECs, respectively, that are 

needed for migration.  

 

Results 

Transcription factor activity inference exhibits cell type- and state-
specific patterns  

In chapter 3, we observed diverse proteomic and metabolic patterns underlying 

different endothelial identities and states. We could show that these patterns support 

normal cellular functions, like migration, of HUVECs and iLECs, such as heme 

biosynthesis for appropriate nitric oxide (NO) levels in HUVECs and α-ketoglutarate-

glutamate balance in iLECs. Expression of enzymes, as well as cellular identities and 

states, are tightly controlled by gene regulatory networks and signalling pathways. 

Thus, to better understand how these patterns emerge, we set out to use 

computational methods to infer transcription factor (TF) activities using the proteomics 

dataset generated in the previous chapters.  

Gene regulatory networks are networks that contain information about TF-target 

gene interactions. Dorothea is a repository of TF-target interactions containing 

information about 1541 human TFs and their targets18. TF-target interactions in 

Dorothea are assigned a confidence level, depending on the level of evidence for the 

respective TF-target interactions. The confidence levels reach from manually curated 

repositories (A), ChIP-seq binding data (B) to in silico prediction of TF binding on gene 

promoters (C) and reverse-engineered regulons from large gene expression data sets 

(D), with decreasing level of confidence from A to D. We used the TF-target interaction 

network with confidence levels A, B and C to infer TF activities in the four endothelial 

cell types HUVEC, HDLEC, HDBEC and iLEC using decoupler (Fig. 1A)19. The used 

TF-target network consisted of 32’275 TF-target pairs, with increasing number of TF-

target pairs from confidence level A to C (Suppl. Fig. 1A). To infer TF activities, we 
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applied the consensus method in decoupler, which was shown to be the top performing 

method in the original publication19. The resulting dataset contained the Z-scored 

activities of 263 TFs across all samples (Fig. 1A, Suppl. Fig. 1B, Suppl. Table 1). 

 

 

 

Principal component analysis and Spearman’s correlation revealed that TF 

activity patterns are different between lymphatic ECs, HUVECs and HDBECs (Fig. 1B, 

1C). We checked whether we could observe expected activity patterns of certain TFs 

to ensure the validity of the dataset. Indeed, MYC, a TF controlling proliferation of 

mammalian cells, and E2F3, controlling proliferation in endothelial cells, become less 

active over time, when cells undergo transition from proliferation to quiescence (Fig. 

1D)20,21. Additionally, the master regulator of LEC identity, PROX1, is active in HDLECs 

and iLECs but not in HDBECs and HUVECs (Fig. 1D)22. PROX1 activity is in line with 

the expression pattern of PROX1, namely being expressed in HDLECs and iLECs but 

not in HDBECs and HUVECs (Suppl. Fig. 1C). We wondered how similar inferred TF 

activity patterns and expression patterns of TFs are overall in our dataset. From the 

263 inferred TF activities, 71 were detected in the proteomics measurements (Suppl. 
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Figure 1. Transcription factor activity inference exhibits cell type- and state-specific patterns. 
(A) Overview of TF activities inference workflow.
(B) Principal component analysis of inferred TF activities.
(C) Spearman’s correlation between all samples using the mean activities of the three replicates for each 

sample.
(D) Temporal TF activity patterns of the proliferation-associated TFs MYC and E2F3 and the master regulator 

of LEC identity, PROX1.
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Fig. 1D). TF activities and intensities correlate poorly, most TFs have Spearman’s 

correlation coefficients between -0.5 and 0.5 (Suppl. Fig. 1E). The LEC marker PROX1 

is the exception with a correlation coefficient of 0.8. This suggests that the activity of 

TFs is not only dependent on their expression levels but also on other factors, like 

activation through extra- and intracellular signals, post-translational and -

transcriptional regulation or the interaction of TFs with other TFs or co-activators23.  

Transcription factor networks fundamentally differentiate blood and 
lymphatic endothelial cells  

HDLECs and iLECs have similar TF activity patterns and can be discriminated against 

HUVECs and HDBECs among a combination of the first and second principal 

component from the principal component analysis (Fig. 1B). To further distil 

fundamental TF activity differences between blood and lymphatic endothelial cells, we 

performed a partial least squares discriminant analysis (PLS-DA) (Fig. 2A). By 

categorizing distinct cell types and encompassing all their states, we can investigate 

the overarching TF activity patterns that define BECs and LECs independently of their 

specific states. There was a clear distinction between BECs and LECs among the first 

component of the PLS-DA. To identify TFs contributing significantly to the first 

component of the PLS-DA, we employed a permutation method. This approach 

allowed us to generate lists of active TFs associated with BECs and LECs. 38 and 28 

TFs were associated with LECs and BECs, respectively, with a 10% cutoff (Fig. 2B). 

We wondered whether the lists we generated were not just random or biased by the 

previous computational analyses that depended on expression patterns and the 

assigned TF-target pairs. To that end, we conducted a permutation test to determine 

the distribution of randomly assigned TFs in the top and bottom 10%, and in the total 

number of TFs passing the 10% thresholds (Suppl. Fig. 2A). The numbers of TFs in 

our lists were significantly higher than in the lists from the permutation assay and thus 

not random. Additionally, we checked whether having a specific weight in the first 

component is influenced by the number of targets, which was also not the case (Suppl. 

Fig. 2B). Moreover, the TF list associated with LECs included the LEC marker PROX1, 

demonstrating that we capture cell type-specific markers. 
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The expression of TFs is also regulated by TFs24. Out of the 32’275 TF-target 

pairs in the network we used, 1760 were TF-TF pairs. We extracted TF-TF pairs that 

contain TFs that are present in the TFs lists associated with either LECs or BECs to 

create LEC- and BEC-specific TF interaction networks. The TF interaction networks 

consisted of 35 and 12 TF-TF pairs for LECs and BECs, respectively (Fig. 2C, 2D). 

The networks contained known TFs and interactions that play a role in LEC and BEC 

development and maintenance and could therefore be used as sources to find novel 

TF-TF interactions important in these processes. For example, the four TFs GATA2, 

LYL1, HHEX and NR2F2 were all associated with LEC identity and were connected in 

the TF-TF interaction network. Interestingly, all four TFs are involved in development 

or maintenance of LECs through modulating VEGFC/FLT4/PROX1 signalling and 
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Figure 2. Transcription factor networks fundamentally differentiate blood and lymphatic endothelial cells. 
(A) Partial least squares discriminant analysis (PLS-DA) of the TF activities dataset showing the discrimination 

between LECs and BECs among component 1.
(B) Weights of the first component of the PLS-DA. Each TF has a weight that corresponds to its cell type-

related information. A permutation approach was applied to determine the 10% and 90% percentile, 
associated with BEC and LEC identity, respectively.

(C) TF-interaction network of TFs associated with LEC identity. Dark green edges correspond to confidence 
level A, positive interactions (activation), red edges to confidence level A, negative interactions 
(repression), light green to confidence level B, positive interactions (activation) and grey to confidence 
level C interactions.

(D) TF-interaction network of TFs associated with BEC identity. Same meaning of colors of the edges as in 
(C).
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expression (HHEX, GATA2, NR2F2) or the expression of Angiopoietin-2 (LYL1, 

GATA2)25–28. On the other hand, the BEC-associated TFs WT1, ETS1 and EPAS1, 

connected in the TF-TF interaction network, are involved in proliferation, migration and 

angiogenesis of BECs by regulating VEGFA, VEGFR1 and Angiopoietin-1 expression 

and signalling29–31. Furthermore, the LEC- and BEC-associated TF lists cannot only be 

used to find new regulators or interactions supporting EC development and 

maintenance but also how metabolic pathways defining EC identities are regulated. In 

the previous chapter, we found that mitochondrial fatty acid beta-oxidation and TCA 

cycle/OXPHOS discriminate LEC from BEC identities. Hepatic nuclear factor 1β 

(HNF1B), controlling mitochondrial respiration in renal tubular cells, and hepatic 

nuclear factor 4γ (HNF4G), regulating fatty acid beta-oxidation in intestinal stem cells 

of mice, were connected and associated with LECs, suggesting that these two factors 

might also play a role in regulating metabolic processes that are tightly connected with 

LEC identity maintenance, or to support the previously described feedback loop 

between mitochondrial respiration and PROX1-VEGFR3 that controls LEC 

identity14,32,33. Furthermore, we observed HUVEC-specific vulnerability to decreased 

NO levels in the last chapter, and interestingly, several TFs that are involved in 

regulation of NO metabolism or that are regulated by NO are associated with BEC 

identities, such as ATF2, TCF7L2 and ETS1 (Suppl. Fig. 3)34–36. This underscores the 

crucial role of NO in BEC but not LEC homeostasis, either through regulation of eNOS 

(endothelial nitric oxide synthase) expression or the signalling properties of NO that 

leads to expression or activation of certain TFs. In summary, the LEC- and BEC-

associated lists of TF activities we extracted from our inferred TF activity dataset 

contain TFs and their interactions known to regulate LEC and BEC development and 

maintenance and can serve as resources for the discovery of novel TFs or TF 

interactions involved in these processes. 

Cell type-specific active TFs correlate well with enzymes essential 
for normal cellular functions 

We next wondered whether there are cell type- and state-specific TF activity patterns 

that are dependent on the role of the respective cell type in its hosting tissue. 

Hierarchically clustering of TF activities indicated diverse TF activities in the different 

cell types and states (Fig. 3A). We first employed a 2-way-ANOVA to determine which 

TFs explain the temporal or cell type-dependent variance in the dataset (Suppl. Fig. 
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4A). Instead of combining LECs and BECs in the analysis, as in the PLS-DA, all the 

four cell types were assigned individually to the samples so that we could get TF 

patterns that are specific for one cell type. The TF with the strongest impact on 

temporal variance was E2F4 (Suppl. Fig. 4A, 3B). In all four cell types, there was a 

steady decrease of E2F4 activity from proliferation at day 2 to quiescence at days 5 to 

7. E2F4 has previously been reported to be required for cardiomyocyte proliferation 

and it also regulates expression of thymidylate synthase (TYMS), an enzyme involved 

in nucleotide biosynthesis37,38. Not surprisingly, we observed a similar decrease of 

TYMS when cells enter quiescence (Suppl. Fig. 4B). On the other hand, the TF defining 

cell lines variance the strongest was HHEX (Suppl. Fig. 4A, 3B). HHEX had also the 

second highest weight in the PLS-DA. One of HHEX’s targets, TLE1, is a 

transcriptional corepressor with unknown function in LECs. Its expression was 

constantly higher in LECs compared to BECs and might hint towards a role in LEC 

development or maintenance (Suppl. Fig. 4B). We also captured cell type-specific 

patterns, such as increased activity of SREBF1 (also known as SREBP1) and 

expression of its target acetyl-CoA carboxylase 1 (ACACA) in HDBECs (Suppl. Fig. 

4A, 3B).  

 Even though the 2-way-ANOVA helped us to understand the extend of cell type- 

and state-specific TF activity patterns, we additionally applied a model selection-like 

approach to receive lists with cell type-specific active or inactive TFs. For each TF in 

all four cell types, we calculated different parameters like mean activity, peak activity 

at specific days and the slope. Arbitrary labels were then assigned to each TF in every 

cell type and the list of labels compared between the cell types to find unique and 

overlapping active TFs (Fig. 3B). With this approach, we were able to create lists that 

contain 14, 15, 16 and 23 active TFs for HUVECs, HDLECs, iLECs and HDBECs, 

respectively. The only overlap between cell types were 4 TFs that were generally active 

in iLECs and HDLECs, namely CTCFL, HHEX, POU2F2 and ZEB2, and were also in 

the LEC-associated TF list from the PLS-DA. 

 In the previous chapter, we observed cell type-specific metabolic vulnerabilities 

of HUVECs and iLECs when treated with enzyme inhibitory drugs. For example, 

inhibition of GLUD1 decreased migration in iLECs but not HUVECs, and ALAD 

inhibition led to migratory defects in HUVECs only. GLUD1 expression is 1.5- to 2-fold 
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higher in iLECs compared to HUVECs at each time point and might hint towards higher 

dependence of iLECs on sufficient GLUD1 availability and activity (Suppl. Fig. 5A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same could hold true for ALAD and HUVECs since we observed 50% higher 

expression in quiescent HUVECs compared to iLECs (Suppl. Fig. 5A). To find potential 

novel transcriptional regulators of the enzymes that were targeted in the validation 
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Figure 3. Cell type-specific active TFs correlate with enzymes essential for normal cellular functions. 
(A) Hierarchical clustering among the 263 TF activities illustrates diverse activity patterns between the EC 

types.  
(B) Number of active TFs in each or multiple cell types.  
(C) Spearman’s correlation between all TFs with the 14 enzyme targets from the validation experiments in 

the previous chapter.  
(D) Spearman’s correlation between cell type-specific active TFs with the 14 enzyme targets from the 

validation experiments in the previous chapter.  
(E) Temporal TF activity patterns of USF2 and KMT2A, that are specifically highly active in iLECs and 

HUVECs, respectively. 
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screen in chapter 2, we correlated the expression levels of 7894 proteins from the 

proteomics dataset with the activity of all 263 TFs (Suppl. Fig. 5B). From all 

correlations, we selected the correlations that include the 14 enzymes we targeted in 

the validation screen of chapter 2 (Fig. 3C, Suppl. Table 2). A strong negative 

correlation coefficient means a repressing relationship between TF and enzyme, a 

positive correlation coefficient an activating relationship. The direction of the 

relationship, TF-enzyme or enzyme-TF, is, however, not possible to determine. 

Nevertheless, this approach helped us to confine the space of potential novel 

regulators. 

First, we wanted to assess if the TF-target pairs with confidence level A in the 

Dorothea network positively correlate. Surprisingly, this was not the case for many of 

the 16 TFs that are supposed to upregulate expression of their targets (Suppl. Fig. 5C). 

Some TF-target pairs were even highly anti-correlating, for example ESR1-TYMS in 

HDBECs (ρ = -0.96) and HDLECs (ρ = -0.88). On the other hand, a TF-target pair that 

was in the top 25% in each cell type is SREBF1-FASN (fatty acid synthase) (Suppl. 

Fig. 5D). SREBF1 has been shown to upregulate FASN expression in different cancer 

cell lines, but not in endothelial cells so far39. Only one TF-target pair (ATF3-GCLC) 

had a negative confidence level A, meaning that either the TF suppresses expression 

of the enzyme or vice versa. But the lowest correlation coefficient had TP53-TYMS in 

all four cell types, reaching from -0.85 in HUVECs to -0.54 in iLECs. Interestingly, this 

is a case in which the enzyme regulates TF expression, namely TYMS downregulating 

P53 expression, and the result suggests that this mechanism may also be present in 

ECs (Suppl. Fig. 4B, 5E)40. 

Next, we selected TF-enzyme pairs for each cell type that included TFs which 

were active in one cell type specifically (Fig. 3D). The TF-enzyme pairs with confidence 

levels A or B that correlated the strongest were SREBF1-FASN in HDBECs (ρ = 0.82), 

E2F1-TYMS in HUVECs (ρ = 0.87), NFE2-GCLC (glutamate-cysteine ligase catalytic 

subunit) in HDLECs (ρ = 0.74) and HNF4A-GCLC in iLECs (ρ = 0.55). The top 

correlating TF-enzyme pairs over all confidence levels were SMAD3-G6PD (glucose-

6-phosphate 1-dehydrogenase) in HDBECs (ρ = 0.89), KMT2A-ALAD in HUVECs (ρ =

0.88), PRDM14-GLUD1 in HDLECs (ρ = 0.90) and USF2-GLUD1 in iLECs (ρ = 0.90).

These four top correlating TF-enzyme pairs were also amongst the top 0.5% of all TF-

protein correlations. From these top correlating TF-enzyme pairs, only SMAD3-G6PD
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is mentioned in literature, with SMAD3 being involved in downregulation of PFKFB3 

and subsequent shunting of glucose into the pentose phosphate pathway, reflected by 

increased expression of G6PD in CD4+ T cells41. However, the upregulation of G6PD 

could only be an indirect effect and not mediated by SMAD3. ALAD and GLUD1, the 

targets of the top correlating TF-enzyme pairs in HUVECs, HDLECs and iLECs, were 

subject of pharmacological inhibition in the previous chapter and upon inhibition of 

ALAD and GLUD1, HUVECs and iLECs exhibited impaired migration capacity. Thus, 

KMT2A and USF2 are potential novel cell type-specific TFs regulating key enzymes 

that are essential for migration in HUVECs and iLECs, respectively (Fig. 3E). To 

summarize, we extracted cell type-specific active TFs and correlated them with protein 

intensities, resulting in a comprehensive dataset of potentially novel TF-target 

interactions that are involved in the formation or maintenance of specific EC identities 

and states. For example, the dataset contains highly correlating TF-target pairs that 

were known to be formative for a distinct phenotype in other cell types, or cell type-

specific active TFs that highly correlate with enzymes that were shown to be necessary 

for migration of HUVECs and iLECs. 

Discussion 

We observed diverse molecular patterns underlying EC identities and states in the 

previous chapters. In this chapter, we aimed to infer activities of transcription factors 

across the various EC types and states and to examine the transcription factor (TF) 

activity patterns that underlie and potentially define the EC identities and states. To that 

end, we used the untargeted proteomics dataset, which includes the quantities of 7894 

proteins in four endothelial cell types over 6 days from proliferation to quiescence, and 

inferred TF activities with a previously published computational method, decoupler, that 

uses human TF regulons derived from Dorothea18,19. We found that HDBECs, HUVECs 

and LECs are clearly separated by the inferred activity patterns of 263 TFs. Unlike 

HDBECs and HUVECs, HDLECs and iLECs have very similar patterns, which likely 

arise from the similar proteomic patterns observed in chapter 2, hence biasing the 

inference of TF activities. Even though HDBECs and HUVECs are both blood-derived 

endothelial cells, their origin seems to have a profound effect on transcriptional 

activities and thus protein expression patterns. For example, KMT2A, which is 
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especially active in HUVECs but not in HDBECs, plays an important role in embryonic 

development42.  HUVECs form the umbilical vein and are thus a vital part of embryonic 

development as well43. KMT2A might be therefore one of the transcriptional regulators 

ensuring normal HUVEC function, which consequently forms a functioning umbilical 

vein. On the other hand, we see clear patterns when it comes to some TFs involved in 

proliferation or markers of LECs. MYC and E2F3 both decrease clearly over time in all 

four EC types due to a reorganization of transcriptional regulation that underlies the 

transition from proliferation to quiescence. Furthermore, the LEC marker PROX1 is 

active in HDLECs and iLECs but not BECs. Both results show that TF activity inference 

is a useful tool to uncover and investigate novel cellular identity- and state-shaping TF 

activity patterns.  

  Using PLS-DA and permutation tests, we were able to unveil fundamental TF 

activities differences between LECs and BECs, which enabled us to create a resource 

of potential transcriptional regulators and their interactions shaping EC identities. 

Besides PROX1, there are 37 more TFs, whose activities are associated with LEC 

identity and 28 TFs that are associated with BEC identity. Some of these TFs were 

described previously to be involved in LEC and BEC development and maintenance25–

27,29. It is important to note that this list is not final, and more TFs or TF-TF interactions 

are most likely involved in these processes. Furthermore, the activity of some TFs 

might even be ambiguous in vivo, depending on the  developmental stage of ECs or 

where they reside, not only on a global level, i.e. lymphatic or blood vessels, but also 

on a more local level, such as capillaries, collecting vessels or around valves23. For 

example, ETV4 is associated with iLECs in our screen but was shown previously to 

regulate Angiopoietin-1 signalling in HUVECs29. Moreover, GATA2 was predicted to be 

highly active in iLECs and HDLECs, especially in quiescence, and the expression of 

LYVE1 was high in both, iLECs and HDLECs, in our screen. In contrast, González-

Loyola et al. measured increased LYVE1 transcript levels in capillary LECs and of 

GATA2 in valve LECs44. This suggests that the LECs in our experimental setup may 

represent a combination of LECs from various vascular locations, including capillaries, 

collecting vessels, and valves. Alternatively, it is possible that they have undergone a 

loss of vessel-specific molecular patterns while retaining tissue-specific patterns when 

cultured in vitro. In addition to the TFs differentiating LECs and BECs, we observed 

cell type-specific active TFs, supporting the case of tissue-dependent activities. This 

could also explain the discrepancy between the list of TFs associated to LECs and 
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BECs and the cell type-specific active TFs. In the PLS-DA, the samples were only 

assigned to be either BECs or LECs, which can lead to slightly different results 

between the PLS-DA and the model selection approach. For example, USF2 is one of 

the 38 TFs defining LECs in the PLS-DA, but its activity is constantly higher in iLECs 

compared to HDLECs. Nevertheless, the applied workflow helps to understand 

fundamental differences between LECs and BECs and to find cell type-specific TF 

activity patterns. 

TFs play a pivotal role in the regulation of mammalian cellular metabolism9. The 

most prominent example in ECs is the control of the differentiation into and 

maintenance of LECs by PROX111. Other TFs, such as FOXO1, regulate metabolic 

activity in response to growth states12,13. Conversely, it was shown that mitochondrial 

respiration controls PROX1 expression, proposing that not only TFs regulate 

metabolism but that metabolic cues can modulate TF expression and subsequent 

downstream consequences14. We therefore performed Spearman’s correlation 

analysis to find potential novel TF-metabolism connections. Interestingly, the top 

correlating TF-enzyme pairs of cell type-specific active TFs in HUVECs and iLECs 

include enzymes that were shown in chapter 3 to be important for migration. The 

correlation analysis does not tell us something about cause and consequence, namely 

the direction of regulation. That’s why it is important to functionally validate these 

findings. A possible validation experiment would be knock-downs of TFs, followed by 

growth and migration rate measurements and qPCR to determine the transcript levels 

of the potential TF targets. If we observe a similar phenotype as in the drug perturbation 

experiments and lower mRNA levels of the target, the TF indeed regulates the 

expression levels of the target enzyme. If the mRNA levels of the target enzymes are 

unaltered and the phenotype is like the perturbation experiments, then the inversed 

case could be the case, in which the enzyme regulates TF expression.  

 In this study, we generated lists of TFs defining LEC and BEC identity and 

potentially novel TF-enzyme interactions. We concentrated our efforts on the 

fundamental differences between LECs and BECs and to find TF activity patterns that 

underlie the metabolic peculiarities observed in chapter 3. However, the proteomics 

and TF activities datasets could additionally be used in the future to examine the 

correlation between TF activities and all proteins. For example, USF2, which is highly 

active in quiescent LECs, and the serine protease HTRA2 have the third highest 
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correlation between TFs and proteins in iLECs of all the 2’076’122 TF-protein pairs. 

HTRA2 is known for its role in maintaining mitochondrial integrity and quality control 

and therefore USF2-mediated regulation of HTRA2 might be an important piece of 

maintaining a healthy quiescent state in LECs45,46. Another way to use the datasets is 

to focus on the proteins that are not part of the TF-target network from Dorothea. These 

proteins do not contribute in any way to the outcome of the computational analysis. 

Hence, the correlation of TF activities with these proteins is completely unbiased and 

could be used to find new TF-protein interactions.  

Materials and Methods 

Proteomics dataset 

We used the proteomics dataset generated in chapter 1. In brief, we seeded the four 

EC types at 20’000 cells/cm2 in triplicates and extracted proteins each 24 hours from 

day 2 until day 7 post-seeding, reduced, alkylated and trypsinized the proteins using a 

protocol adapted from 47 and 48. After C18 desalting, the peptides were analysed by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a Vanquish Neo 

UPLC system (Thermo Scientific, Sunnyvale) coupled to an Orbitrap HF-X mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA). The LC gradient had a total 

run time of 90min, ramping from 100% mobile phase A (0.1% formic acid (FA) in water) 

and 0% mobile phase B (80% acetonitrile in water with 0.1% FA) to 43% mobile phase 

B in 70min, followed by a wash at 100% mobile phase B for 9min and final re-

equilibration. Peptide spectra were generated using an overlapping window data-

independent analysis (DIA) pattern49. Thermo RAW files were converted to mzML 

format using the ProteoWizard package (version 3.0.2315)50. Processed mzML files 

were searched using DIA-NN (version 1.8) and peptide intensities selected at a 1% 

precursor-level false discovery rate51. The resulting protein quantities were normalized 

by delayed normalization and maximal peptide ratio extraction (maxLFQ)52. 

TF activity inference and data analysis 

The TF network to infer TF activities was created using Dorothea18. We used all human 

TF-target pairs with confidence levels A (manually curated repositories), B (ChIP-seq 
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binding data) and C (in silico prediction of TF binding on gene protomers). The TF 

network was subjected to decoupler in order to infer TF activities using the consensus 

method19. TF activities inference and all subsequent statistical analyses were 

performed using Python 3.11.3. TF interaction networks plots were created in 

Cytoscape (Version 3.10). The workflow scheme was created using BioRender. 
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 Supplementary Figure 1. Transcription factor activity inference exhibits cell type- and state- specific  
patterns. 

(A) Number of TF-target pairs with confidence levels A, B or C in the TF-target network derived from Dorothea. 
(B) Hierarchical clustering of inferred TF activities.
(C) Measured protein intensity of PROX1.
(D) Intensities of 71 TFs that are found in the proteomics dataset.
(E) Distribution of Spearman’s correlation coefficients between intensities and activities of the 71 TFs.
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 Supplementary Figure 2. LEC- and BEC-associated TF lists are not random or biased by number of TF 
targets. 

(A) Permutation test with the weights defining the first component of the PLS-DA. The threshold for the 10 
and 90 percentiles were used in a permutation test, in which cell type labels were randomly assigned to 
the samples and calculated how many TFs would pass the thresholds. The distributions depict the number 
of TFs passing the thresholds in the permutation test (total = the sum of top and bottom 10%), the vertical 
lines are the true numbers of TFs passing the 10 and 90 percentile and the sum of both. The p-values of 
the difference of each true number compared to the mean of the distribution were all below 5% (calculated 
with a permutation test), indicating that the number of TFs in the LEC- and BEC-associated lists are not 
random.

(B) Number of targets for each TFs, sorted by the weight on the first component of the PLS-DA.

Supplementary Figure 3. Activities of BEC-associated TFs that either regulate NO metabolism (ATF2, 
TCF7L2) or are regulated by NO signaling (ETS1). 
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Supplementary Figure 4. 2-way-ANOVA of all TFs to find TFs that have cell type- or state-specific 
patterns. 

(A) Overview of the TFs that drive the variance between cell types or over time. The higher the neg. 
log10(adj. p-value), the stronger the effect of the TF on the variance.

(B) Activities of three TFs that explain temporal variance (E2F4), cell line variance (HHEX) or both 
(SREBF1), and one of their targets with confidence level A (E2F4-TYMS and SREBF1-ACACA) or B 
(HHEX-TLE1).
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Supplementary Figure 5. Cell type-specific active TFs correlate with enzymes essential for normal cellular 
functions. 

(A) Intensities of GLUD1 and ALAD, two enzymes needed for proper migration of iLECs and HUVECs,
respectively.

(B) Spearman’s correlation between all TFs and all 7894 proteins.
(C) Spearman’s correlation of TF-target pairs, with targets from the validation experiment in chapter 2 and 

TF-target pairs with a positive confidence level A (activating) in the Dorothea network.
(D) Temporal activity patterns of SREBF1 and intensity patterns of its target FASN.
(E) Temporal activity pattern of TP53.
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Generation of a multi-omics dataset to study molecular 
patterns in different EC types and growth states  

The objective of this work was to generate a systematic description of the dynamic 

molecular patterns that underlie or even underpin EC identities and states. To that end, 

we first aimed to develop an experimental workflow that would allow us to 

systematically analyse the molecular patterns underlying proliferative and quiescent 

states in four endothelial cell types. We were inspired by previous studies that showed 

strong induction of quiescence through contact inhibition and mitogen reduction, which 

proved to be superior to activation of Notch1,2. In this setup, ECs were seeded at the 

same density and grown for 10 days in the same vessel with a medium that had 

reduced amount of growth factors. This approach led to a strong induction of 

quiescence in all four EC types tested, but especially in LECs with up to 98% quiescent 

cells after 5 days. The strong induction of quiescence is underpinned by the reduced 

expression of the proliferation markers MKI67 and PCNA3,4. In vivo, quiescent ECs 

start to migrate and proliferate upon external stimulation to form novel vessels. We 

wondered whether quiescent ECs in our in vitro assay were able to proliferate after the 

strong quiescence induction. We therefore reseeded iLECs, which have the highest 

fraction of quiescent cells after 10 days and monitored growth and the fraction of 

quiescent cells after reseeding. Indeed, reseeded quiescent iLECs immediately 

resumed growth and the fraction of quiescent cells 48h post-reseeding was almost at 

the same level as in the proliferation-to-quiescence setup. Although the growth and 

quiescence induction dynamics were similar for all EC types, we observed that BECs 

partly grew into 3D in vitro. This goes in line with the slightly higher expression of MKI67 

and PCNA after day 5 in HDBECs and HUVECs, potentially indicating that BECs have 

stronger intrinsic proliferation signals than LECs.  

Next, we used the experimental setup to collect extracellular metabolome and 

intracellular metabolome and proteome samples every 24 hours. Uptake and secretion 

of certain metabolites by a cell usually correlate with the metabolic activity of the cell 

and thus analysis of the extracellular metabolome is a first indicator of the extent of 

metabolic variability between EC types. The mass spectrometry-based measurements 

of extracellular metabolites from each cell type were performed at different days, which 

led to temporal batch effects. We consequently corrected with a moving median-based 

temporal drift normalization. This is a simple and gentle, yet effective method to correct 
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for temporal drifts without reducing the biological variance. The same temporal batch 

effects were observed in the intracellular metabolomics dataset. On top of the moving 

median-based normalization, we applied a mean normalization to account for biomass 

differences that arise from the varying number of cells the intracellular metabolomes 

were extracted from. Our chosen normalization approach for extra- and intracellular 

metabolomics data indeed reduced the temporal drift between the cell types and still 

conserved the biological variability between the samples. On the phenotype level, we 

observed that reseeded quiescent iLECs immediately resumed growth and most cells 

are proliferating again 48 hours post-reseeding. In line with that, the dynamic metabolic 

patterns observed in the transition from proliferation to quiescence are inversed when 

quiescent iLECs were reseeded, which confirms that either approach, proliferation to 

quiescence or quiescence to proliferation, is suitable to study the temporal dynamics 

of metabolism in the transition from one state to another.  

Lastly, we performed untargeted proteomics, which resulted in a dataset that 

contains 7894 protein groups. For proteomics we used maxLFQ normalization, a 

previously published normalization method, that results in comparable quantities of 

proteins across cell types and days5. A big advantage of untargeted proteomics 

datasets is the ability to assess the presence of marker proteins, which confirms that 

cells have an expected identity or phenotype. For example, we clearly observe the 

presence of the LEC marker proteins LYVE1 and PROX1 in HDLECs and iLECs and 

the presence of STAT6, a BEC marker, in HDBECs and HUVECs. Furthermore, the 

proliferation markers PCNA and MKI67, which is frequently used in fluorescence-

assisted cell analysis assays to determine proliferation, have the highest expression 

after 2 to 3 days in all cell types, confirming the results of the cell cycle state analysis 

we performed to determine the fractions of quiescent and proliferating cells. The cell 

type-specific markers also proved useful when we were assessing whether we should 

impute missing values in our dataset. Data imputation is a standard procedure in 

transcriptomics and sequencing, but using marker proteins as examples, we showed 

that random forest-based data imputation in our proteomics dataset leads to intensities 

that are biologically incorrect, for example imputed intensities of PROX1 in BECs. 

Thus, we sticked to our original dataset for further analysis.  

In summary, we developed an experimental workflow in which the four EC types 

tested are first proliferating and then transition into quiescence. Untargeted 

metabolomics and proteomics measurements done with samples taken every 24 hours 
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allow us to study the dynamic molecular patterns that define EC types and states. The 

advantage of applying the same experimental procedure to the four EC types is the 

possibility for unbiased extraction of distinct and general molecular features and thus 

assess the molecular diversity amongst different EC types.  

Endothelial cell lines identities and states are defined by 
distinct proteomic signatures 

In the second part, we analysed in detail the molecular patterns that underlie EC 

identities and states. There are two main strategies to analyse multi-omics datasets 

that contain metabolomics and proteomics data: knowledge-based methods that map 

metabolic and proteomic patterns onto a predefined network to generate mechanistic 

hypotheses and data-driven methods that require less prior knowledge and use 

statistical analyses or neural nets for predictions and hypothesis generation6. 

Knowledge-based methods often require absolute quantities to generate mechanistic 

insights and are therefore not well suited for our semi-quantitative datasets.  

We therefore chose a data-driven approach and used in a first step partial least 

squares discriminant analysis (PLS-DA) on the proteomics dataset to decipher the 

general differences between LECs and BECs on a proteome level (Figure 1). 

Surprisingly, we found that FAO and TCA cycle/mitochondrial respiration are the two 

top enriched pathways using the list of proteins that are associated with LEC identities, 

even before other signalling pathways like VEGF or Rho GTPase signalling. Both 

metabolic pathways have known roles in lymphangiogenesis but it still underscores the 

crucial role of metabolism in maintenance of LEC identities. Such a strong enrichment 

of metabolic pathways was not observed in BECs.  

All time points from each cell type were included in the PLS-DA, thus neglecting 

the temporal protein expression patterns. Consequently, in a second step, we moved 

forward with day 2 and day 5 post-seeding time points to further explore the proteomic 

patterns that underlie different growth states. These two time points represent the 

samples that contain the highest fraction of proliferating and quiescent cells, 

respectively. Besides core proteomic changes in processes well-known to be involved 

in cellular quiescence or vessel formation, such as downregulated DNA replication and 

upregulated extracellular matrix organisation, we found enrichments in a total of 291 

very diverse pathways, which indicates extensive molecular adaptations that follow or 
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drive quiescence induction (Figure 1). The enrichments dataset is a vast resource for 

further investigations on their role in quiescence formation and maintenance, but this 

is beyond the scope of this thesis. However, we also found enrichments of proteins in 

36 metabolic pathways across all cell types, and we moved forward with in-depth 

analysis of the altered metabolic pathways.  

HDBECs have generally the weakest enrichments of specific metabolic 

pathways compared to the other three EC types. Yet, there is a strong enrichment of 

metabolism itself, which includes proteins in all metabolic pathways, and intra- and 

extracellular metabolomics show that quiescent and proliferating HDBECs have 

different metabolic patterns. This suggests that HDBECs have weaker, but still 

widespread metabolic adaptations. In line with the results from the PLS-DA, quiescent 

iLECs and HDLECs have the strongest enrichment in TCA cycle and mitochondrial 

respiration, once more confirming the crucial role of these two pathways in LEC 

homeostasis. Enrichment of FAO in quiescence across all cell types, to a lesser extend 

in HDBECs though, suggests that the previously described, essential role of FAO for 

redox homeostasis in HUVECs is a general feature of endothelial quiescence2. 

However, whether FAO is more important for redox homeostasis or for keeping up a 

lymphatic identity in LECs needs further investigation. We also observed enrichment 

of branched-chain amino acid (BCAA) catabolism, sphingolipid metabolism and 

glyoxylate metabolism and glycine degradation. BCAA catabolism and sphingolipid 

metabolism have previously been described to be involved in regulation of quiescence 

and self-renewal of hematopoietic stem cells, suggesting that they act in the same way 

in quiescent ECs7,8. Glyoxylate metabolism involves the degradation of hydroxyproline 

from collagen, a major extracellular matrix constituent, and glyoxylate metabolism is 

potentially upregulated in quiescent ECs in order to dynamically build and modify 

collagen for vessel homeostasis9. These three metabolic pathways are promising 

targets for future investigations of their role in EC quiescence formation and 

maintenance.  

Distinct metabolic programs underlie quiescence induction 
and maintenance processes across different EC types 

Although our assessment of protein expression patterns revealed variances in 

metabolic pathways among different EC types, the implications of these patterns for 

metabolite levels and the metabolic activity of these four EC types remained uncertain. 
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Consequently, as a first step, we investigated the overall metabolic activity of these 

four cell lines by assessing the uptake and secretion rates of extracellular metabolites. 

Overall, the uptake and secretion rates do not support the case for a general decrease 

of metabolic activity in quiescent ECs. In fact, we found that all EC types secrete lactate 

and take up ascorbate in proliferation and quiescence, but uptake of glucose and 

amino acids varies between cell types and states, strongly suggesting distinct 

metabolic patterns that support specific functions of the EC types, as it was observed 

previously in fibroblasts and epithelial cells (Figure 1)1,10. One striking difference is the 

uptake of glucose and secretion of lactate across cell types and states, which is an 

indicator for the glycolytic activity. Proliferating HUVECs have the highest uptake rate 

of glucose and second highest secretion rate of lactate, suggesting that the glycolytic 

activity is the highest in proliferating HUVECs amongst all ECs. In line with previous 

research, the glycolytic activity of quiescent HUVECs is lower11,12. This reduction of 

glycolytic flux from proliferation to quiescence is also observed in iLECs, but not in 

HDLECs and HDBECs. HDLECs seem to have a stable glycolytic flux in proliferation 

and quiescence, while HDBECs do not take up glucose in proliferation at all. This is 

surprising and it is not completely clear why they do not take up glucose and what they 

use to generate energy from. In the proteomics data, we observed upregulation of 

glucose metabolism in quiescent HDBECs, which suggests that HDBECs indeed 

increase glycolysis in quiescence. Even more surprising is that, additionally to the 

lacking glucose uptake, HDBECs secret many amino acids in proliferation and 

quiescence, including glutamine. One possible carbon source could be lipids or fatty 

acids from the medium. However, this needs further investigation, for example by 

employing tracer studies to follow the route of carbons through the metabolic network.  

Intracellular metabolomics exhibits a similar picture of distinct metabolic 

patterns in the tested EC types. We identified 63 metabolites and 51 metabolic 

pathways that are significantly changed between quiescence and proliferation in at 

least one cell type. On the metabolite level, in combination with the extracellular 

metabolomics results, some of these findings could point towards cell type-specific or 

tissue-specific demands and roles of individual ECs. For example, quiescent HUVECs 

have the highest uptake rate of glutamine but still a significant decrease of intracellular 

glutamine pools, suggesting a HUVEC-specific high demand for glutamine in 

quiescence. Furthermore, quiescent HDLECs and HDBECs have elevated intracellular 

proline pools even though they have increased secretion rates of proline in quiescence, 
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possibly indicating a supporting role in collagen homeostasis in the skin that is formed 

by the surrounding tissue rather than cellular identity13,14.  

On the pathway level, the patterns are very diverse and more difficult to 

interpret. Increased levels of intermediates in a pathway could mean that the flux 

through the pathway is reduced and thus the pools of the intermediates increased, 

however, this holds only true if the flux into the pathway stays constant. On the other 

hand, decreased levels of intermediates could arise from higher flux through a 

pathway, assuming that there is a constant flux into the pathway. For example, there 

are increased levels of intermediates in glycolysis in quiescent HUVECs, even though 

we assumed decreased glycolytic flux from the extracellular metabolomics data. Also, 

there is increased expression of TCA cycle enzymes in quiescent cells, but we 

observed generally increased pools of TCA cycle intermediates. Moreover, intracellular 

metabolic patterns can only be partially attributed to changes in the expression of 

proteins involved in these pathways. This suggests that these patterns are not solely 

influenced by variations in protein expression levels. Additional regulators of metabolic 

fluxes, such as allosteric regulation, post-translational modifications, or other 

mechanisms likely play a significant role in formation of metabolic patterns. 

Nevertheless, we hypothesize that different EC types may rely on distinct metabolic 

pathways to support cellular programs and the most straightforward way to examine 

this hypothesis is through experimental validation.  

Pharmacological inhibitors identify HUVEC- and iLEC-
specific metabolic program susceptibilities  

To do so, we chose a panel of 14 metabolic drugs and assessed their effect on growth, 

migration and sprouting capacity of iLECs and HUVECs, as representatives from 

lymphatic and blood ECs, respectively. Overall, HUVECs and iLECs exhibit a range of 

phenotypic alterations in response to targeted inhibition of metabolism, for example in 

nucleotide and folate metabolism, fatty acid synthesis, TCA cycle, ROS and NO 

metabolism and glutamate metabolism (Figure 1). While interpretation of impaired 

proliferation upon pharmacological inhibition is rather straightforward, interpretation of 

impaired migration and sprouting is more complex. The results, particularly those drugs 

targeting ROS and NO metabolism, suggest that some cellular processes, be it 

balanced ROS generation, NAD+ regeneration, adequate NO pools, or another 

process, do not necessarily play similarly important roles in the regulation of migration 
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and sprouting. This might be due to the complex interplay of different states needed to 

perform migration and sprouting. In migration assays, the cells are first quiescent, and 

then start to migrate and proliferate after applying a scratch. And in sprouting, there is 

a complex interplay between migrating tip cells, proliferating stalk cells and quiescent 

phalanx cells. Perturbations of any of these states can lead to impaired phenotypes 

and elucidating which state (quiescent, migrating, proliferating) or cell type (tip, stalk 

or phalanx) contributes to the impaired phenotypes is difficult. One possibility is to 

account for the effect of the drug on proliferation alone. For example, Rotenone impairs 

proliferation of iLECs but not HUVECs, and decreases migration rate of long- and 

short-term treated HUVECs and only short-term treated iLECs. Short-term treated 

iLECs do not have time to adjust to elevated ROS levels and the impaired proliferation 

upon Rotenone treatment might therefore impact the outcome of the migration assay. 

This suggests that Rotenone, hence increased ROS levels, has an adverse effect on 

proliferation of iLECs and on migration of HUVECs.  

More conclusive is the adverse effect of Succinylacetone on migration and 

sprouting of HUVECs. Succinylacetone inhibits heme biosynthesis and we could show 

that the lack of NO production by eNOS, in which heme acts as co-factor, is detrimental 

for HUVEC migration and sprouting, but not for iLECs. This recapitulates previous 

findings of the essential role of NO as signalling molecule regulating angiogenesis and 

the vascular tone15–18. It also suggests that NO plays a minor role in 

lymphangiogenesis. Another intriguing observation is impaired migration of iLECs but 

not HUVECs upon inhibition of glutamate dehydrogenase (GLUD1) by R162 and upon 

α-ketoglutarate supplementation. We hypothesize that GLUD1 inhibition, either 

through R162 or a negative feedback regulation by elevated α-ketoglutarate levels, 

leads to toxic intracellular accumulation of glutamate in iLECs and that HUVECs have 

higher capacity to metabolize excess glutamate, potentially through increased export 

of glutamate or the upregulation of transamination enzymes19,20. Surprisingly, both 

R162 and α-ketoglutarate supplementation impair sprouting of iLECs and HUVECs. 

This suggests an effect of glutamate metabolism on (lymph)angiogenesis beyond its 

isolated effect on EC migration. Previous reports propose that overactivation of 

ionotropic glutamate receptors, such as NMDA, results in decreased tube network 

formation and increased vascular permeability in brain BECs and HUVECs21,22. 

Possibly, increased glutamate levels are cleared by increased secretion of glutamate, 

which leads to higher auto- and paracrine activation of glutamate receptors, resulting 
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in impaired sprout formation. However, the exact cause of the toxic effect of GLUD1 

inhibition and α-ketoglutarate supplementation in migration of iLECs and sprouting of 

iLECs and HUVECs needs further investigation.  

Taken together, even though the interpretation of the validation experiments is 

sometimes difficult, they are useful tools to assess the differential metabolic 

susceptibilities of HUVECs and iLECs. And the results clearly show that HUVECs and 

iLECs have divergent dependencies to metabolic pathways for proliferation, migration 

and sprouting. Moreover, the validation experiments confirm the findings of the 

metabolomics and proteomics measurements to some extent. Generally, the 

metabolomics dataset proved to be a more valuable resource to choose drugs used to 

study the effect of perturbations in metabolism on phenotype formation and 

maintenance. For example, HUVEC’s dependence on heme for NO production was 

based on the negative enrichment of heme biosynthesis intermediates in quiescent 

HUVECs found in the metabolomics dataset. No enrichment of proteins in the heme 

biosynthesis pathway was observed in the proteomics dataset, although ALAD, the 

target of Succinylacetone was indeed higher expressed in quiescent HUVECs. This 

demonstrates that different omics measurements go hand in hand and provide useful 

insights into a particular molecular level or process in cells. Finally, we argue that the 

generated proteomics and metabolomics datasets are valid and valuable resources to 

investigate the role of more metabolic and different molecular, non-metabolic pathways 

in the formation and maintenance of EC identities and states.  

Diverse transcription factor activity patterns underlie 
endothelial cell identities and states 

In the last part, we aimed to systematically explore the diversity of TF activity patterns 

and whether distinct TFs are potential cell type-specific regulators of enzymes needed 

for a specific phenotype.  To that end, we took advantage of the untargeted proteomics 

dataset and inferred TF activities with a previously published computational method23. 

The applied method uses abundances of TFs targets to infer the activities of TFs. 

There are two major advantages using this method: first, TFs are usually low abundant 

and thus often below or right at the limit of detection of untargeted proteomics 

approaches. Second, the abundance of a TF does not necessarily correlate with its 

activity. The applied method has the advantage of being independent of the actual 

abundances of the TFs by using the abundances of the TFs targets in the inference.  
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Overall, we were able to infer the activities of 263 TFs. Because of the diversity 

observed in the proteomics and metabolomics data, we expected similar diversity of 

TF activity patterns. Indeed, we observed cell type- and state specific TF activities but 

also general activity patterns that fundamentally differentiate BECs and LECs, 

including well-known markers of LEC and BEC identities (Figure 1). These general and 

distinct patterns are likely driven by the identities of the EC types, such as high activity 

of PROX1 in LECs, but also by the individual needs and roles of the cell types in their 

residing tissues. TF activities might also help to pinpoint the exact identity of LECs 

used in the screen. Previous studies displayed differential transcript levels in LECs, 

including TFs, that are dependent on the locations of the LECs in the lymphatic 

vasculature, such as in the lymphatic capillaries, collecting vessels or valves24. For 

example, González-Loyola et al. measured increased LYVE1 transcript levels in 

capillary LECs and GATA2 transcript levels in valve LECs. In our screen, LYVE1 levels 

are generally high in LECs, especially in quiescent LECs, but also GATA2 activity was 

predicted to be generally high in the tested LECs. This suggests that the LECs in our 

setup are either a mix of LECs from capillaries, collecting vessels and valves, or that 

they lose the vessel-specific molecular patterns, yet without losing the tissue and 

vascular bed-specific patterns when grown in vitro. Not all expected patterns of 

previously reported markers of endothelial identities or states were observed here. For 

example, we did not observe increased activity of FOXO1 in quiescent ECs, even 

though FOXO1 is known to be a gatekeeper of endothelial quiescence25,26. This is 

probably due to incomplete data or the predefined networks that were used to infer TF 

activities and highlights the weakness of computational methods to be dependent on 

well-defined networks and complete data.     

Furthermore, we used the dataset to identify potentially novel interactions 

between TFs and metabolism through correlation analysis, focusing on enzymes that 

were shown in the previous chapter to be necessary for certain phenotypes. Notably, 

the strongest correlating pairs of TFs and enzymes among cell type-specific active TFs 

in HUVECs and iLECs consist of enzymes, which were demonstrated to be crucial for 

migration in the previous chapter. It is worth emphasizing that the correlation analysis 

does not provide insights into causality, specifically the direction of regulation. 

Therefore, it is necessary to conduct functional validation to confirm these discoveries. 

In summary, we were able to generate a comprehensive dataset of TF activities across 

EC types and states, extracted general and distinct patterns and proposed novel TF-
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enzyme interactions. However, since we only focused on 14 enzymes in the correlation 

analysis, there is still a lot to discover in this dataset, as we demonstrated with the 

USF2-HTRA2 example in iLECs.   

Limitations and outlook 

To our knowledge, the presented experimental workflow is one of the most 

adequate approaches to study different growth states of primary ECs in single culture. 

Since this setup is only an in vitro experiment, the molecular patterns in vivo might 

differ to some extend due to extracellular cues that are not present in vitro, i.e. 

paracrine or cell-cell signalling with surrounding cells like pericytes or shear stress 

arising from blood and lymph flow27–29. One possibility to address the interactions with 

other cell types in the future would be co-cultures. There are two ways to do so: one is 

a transwell approach, in which endothelial cells would be grown as a monolayer on 

and another cell type, like pericytes, below a permeable membrane, and subsequently 

the metabolome and proteome extracted from the endothelial cells that grow on the 

membrane for in-depth analysis30,31. Another approach could be co-cultures with GFP-

tagged ECs, which enables fluorescent-assisted sorting afterwards to extract only the 

metabolome and proteome from ECs32. This approach is more suitable for experiments 

in which proteins or RNA is extracted, but less for metabolomics since the sorting 

process can have a profound effect on metabolite levels33. In order to study the 

consequences of blood and lymph flow on phenotypes and molecular patterns, 

microfluidic systems could be employed34–36. In brief, ECs are subjected to different 

types of flow in microfluidic chambers, which imitate normal or disturbed blood and 

lymph flow. For example, a study by Sabine et al. showed that oscillatory shear stress, 

as it occurs around the valves in lymphatic vessels, triggers widespread up- and 

downregulation of gene expression as well as FOXC2-regulated growth and motility 

arrest, which protects vessel integrity36. Accordingly, we propose that employing co-

cultures or microfluidics devices on different EC types in future experiments would add 

an additional layer of information, thereby integrating the effect of extracellular cues on 

the cell type-specific and general molecular patterns.  

In this work, we validated the findings of the untargeted proteomics and 

metabolomics measurements in a functional screen using pharmacological inhibitors. 

Nevertheless, if we want to deepen our understanding of intracellular metabolic fluxes 

and their regulation in ECs, further measurements that would result in absolute 
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concentrations or metabolic flux analysis would be necessary. The determined semi-

quantitative levels of metabolites only allow us to make relative comparisons between 

cell types and states but do not inform us about the absolute concentrations of 

metabolites in the respective cell types and states. This sometimes impairs the 

comparison with previous studies, in which the absolute concentrations of intracellular 

or taken up/secreted metabolites were measured. Additionally, knowledge-based 

modelling methods depend on absolute metabolite concentrations, which means that 

quantitative measurements would be necessary for the development of models that 

generate mechanistic insights. Furthermore, the observed relative changes in 

metabolite levels are not fully informative about the intracellular fluxes. Metabolic flux 

analysis is an approach to experimentally quantify the integrated responses of 

metabolic networks and would therefore shed further light on the extend and strength 

of intracellular fluxes between EC types and states37.  

We performed data-driven analysis only on one dataset (proteomics and 

metabolomics) at a time. Nowadays, more sophisticated algorithms for data integration 

are available and promise to be valuable tools for hypothesis generation from multi-

omics data. We tried out many available algorithms and methods to integrate and/or 

visualize proteomics and metabolomics data, such as GAM, metabolic network 

segmentation (MNS), cosmos or joint pathway enrichment analysis in 

MetaboAnalyst38–41. Often, these methods work as a starting point in providing an 

overview of the data (GAM) but did not lead to conclusive results due to different 

reasons. For example, GAM generates subgraphs of the metabolic network that are 

the most changing subnetworks between two conditions. Depending on the chosen 

thresholds, these subnetworks are quite messy and difficult to interpret. Cosmos uses 

prior knowledge to extract co-regulated metabolites and proteins, but only results in 

few subnetworks in our case, which does not reflect the diversity we observed in the 

data. And joint pathway enrichment analysis relies on lists of proteins and metabolites 

that are up- or downregulated, which is not reasonable to do because as we discussed 

earlier, we cannot assume whether upregulated protein levels lead to lower metabolite 

levels or vice versa. Because of these limitations, we performed the data analysis 

separately on the two datasets. However, in the future, more tools might be published 

that could be used to integrate proteomics and metabolomics data and help to generate 

further hypotheses. 
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The applied validation screen with pharmacological inhibition is a 

straightforward and useful approach to determine cell type-specific metabolic 

vulnerabilities. Nevertheless, there are some limitations and improvements that could 

be made. First, we compare iLECs with HUVECs and it is not too surprising that we 

observe cell type-specific metabolic dependencies. In a next step, a similar screen with 

iLECs and HDLECs could be done to show how different two cell types from the same 

vascular bed but different tissues are when it comes to formation of a phenotype upon 

pharmacological inhibition, especially since we observe quite similar proteomic and 

metabolic patterns in iLECs and HDLECs. Furthermore, we only used one drug 

concentration. A range of drug concentrations could tell us how much more sensitive 

or resistant one cell type is than the other through the determination of GR50 for 

proliferation or a similar value for the migration rate and total sprout length. Even 

though we selected drugs that have only one described target, there might be some 

off-targets that have not been described yet. Knock-down or knock-out experiments of 

the targeted enzymes would provide further confirmation that the resulting metabolic 

pathways are indeed necessary for the formation of a specific phenotype. Also, the 

findings only suggest that a metabolic pathway is necessary for the formation of a 

phenotype, but it does not fully imply if it is a driver or a passenger. To address this, 

supplementation experiments or overexpression of enzymes could be performed. For 

example, if increased concentrations of a metabolite in the medium or enzyme 

overexpression enhances migration rate and this effect can be reversed through 

enzyme inhibition, then this would strongly indicate that the targeted enzyme or the 

pathway it lies in is a driver of a phenotype. However, driving a phenotype is usually 

not solely driven by one factor but by an interplay of multiple different molecular 

features. Nevertheless, our experiments with NONOate suggest for example that NO 

is indeed a partial driver of migration in iLECs and HUVECs. Furthermore, for some 

experiments, like the investigation of the role of NO and ROS metabolism, additional 

measurements could be done in the future, such as quantitative ROS assays or 

seahorse assays, to determine if intracellular ROS accumulation and mitochondrial 

respiration rate are altered after drug interventions and thus play a role in formation of 

impaired phenotypes.  
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Figure 1. Overview of metabolites, proteins, metabolic and signaling pathways and TFs that were formative of, 
active in or associated with either quiescence, proliferation, identity formation and maintenance, identity and growth 
state or migration/sprouting in the four EC types tested.  

 

Implications on further EC research 

Our work provides further evidence that ECs from different tissues and vascular beds 

have distinct molecular patterns that are formative and supportive for certain 

phenotypes and hence directly impact local tissue homeostasis. For example, 

secretion of proline in quiescent HDBECs and HDLECs and upregulation of glyoxylate 

metabolism in quiescent HDLECs suggests an important role of these two EC types in 

collagen maintenance and modification and thus for skin homeostasis. Additionally, 
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the validation experiments show that iLECs and HUVECs depend differently on certain 

metabolites and metabolic pathways to form a specific phenotype. It implies that 

findings on the molecular level of a specific EC type cannot simply be extrapolated to 

other EC types, making EC research more complex and tedious. But it also suggests 

that dysfunctional ECs from specific vascular beds and tissues could be subjected to 

targeted interventions that do not affect other ECs, as it was shown before with BECs 

in glioblastoma or LECs in a murine lymphedema model although the systematic 

effects of the interventions are missing in these publications42,43. Moreover, we 

discussed in the introduction how metabolism could be causative or supportive of 

vascular diseases, for example of secondary lymphedema. Based on our research, we 

argue that if the metabolic patterns of ECs from healthy and diseased lymphatic 

vasculature are studied in-depth, potentially novel interventions that alleviate 

lymphedema symptoms by only affecting the diseased but not healthy lymphatic 

vasculature could be developed.  

 Our validation experiments focused completely on metabolism, 

pharmacologically inhibiting the activities of 14 enzymes in different metabolic 

pathways and assessing the effect on phenotype formation and maintenance. The 

targeted pathways are only a tiny fraction of all molecular pathways or proteins and 

TFs found to define LEC and BEC identities, proliferation and quiescence or a specific 

EC type. We therefore think that our proteomics, metabolomics and TF activities 

datasets have the potential to contribute to the discovery of more molecular factors 

that are involved in EC homeostasis and might even be future targets in fields such as 

regenerative medicine by improving vascularization in organoids, or to optimize cell 

culture media for in vitro experiments, as well as the development of therapeutics. For 

example, there is an enrichment of Ras signaling proteins in LECs, indicating an 

important role of this signaling pathway in lymphatic identity formation and 

maintenance specifically. Indeed, it has been shown that Ras signaling regulates 

lymphatic vessel growth through VEGFR3 expression44. On the other hand, PTEN 

signaling is enriched in BECs and it has been shown before that the PTEN/PI3K 

pathway governs normal vascular development but also tumor angiogenesis45. 

Signaling pathways that are specific for (lymph)angiogenesis therefore hold the 

potential to be future targets for clinical interventions aimed at reducing or activating 

(lymph)angiogenesis, depending on clinical needs46.  
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