
ETH Library

PipeRAG: Fast Retrieval-
Augmented Generation via
Algorithm-System Co-design

Working Paper

Author(s):
Jiang, Wenqi; Zhang, Shuai ; Han, Boran; Wang, Jie; Wang, Bernie; Kraska, Tim

Publication date:
2024-03-08

Permanent link:
https://doi.org/10.3929/ethz-b-000663487

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-7866-4611
https://doi.org/10.3929/ethz-b-000663487
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


PipeRAG: Fast Retrieval-Augmented Generation via Algorithm-System Co-design

Wenqi Jiang 1 Shuai Zhang 2 Boran Han 2 Jie Wang 3 Bernie Wang 2 Tim Kraska 2 4

Abstract

Retrieval-augmented generation (RAG) can en-
hance the generation quality of large language
models (LLMs) by incorporating external to-
ken databases. However, retrievals from large
databases can constitute a substantial portion of
the overall generation time, particularly when re-
trievals are periodically performed to align the
retrieved content with the latest states of genera-
tion. In this paper, we introduce PipeRAG, a novel
algorithm-system co-design approach to reduce
generation latency and enhance generation quality.
PipeRAG integrates (1) pipeline parallelism to en-
able concurrent retrieval and generation processes,
(2) flexible retrieval intervals to maximize the ef-
ficiency of pipeline parallelism, and (3) a perfor-
mance model to automatically balance retrieval
quality and latency based on the generation states
and underlying hardware. Our evaluation shows
that, by combining the three aforementioned meth-
ods, PipeRAG achieves up to 2.6× speedup in
end-to-end generation latency while improving
generation quality. These promising results show-
case the effectiveness of co-designing algorithms
with underlying systems, paving the way for the
adoption of PipeRAG in future RAG systems.

1. Introduction
Retrieval-augmented generation (RAG) enhances auto-
regressive large language models (LLMs) by conditioning
on contextually relevant content retrieved from external
databases. While one retrieval prior to the generation pro-
cess can be enough when generating short sequences (Lewis
et al., 2020b; Izacard & Grave, 2020), a more general ap-
proach involves periodic retrievals throughout the gener-
ation (Borgeaud et al., 2022; Norlund et al., 2023; Ram
et al., 2023; Jiang et al., 2023c; Trivedi et al., 2022). This
necessity arises due to the potential shift in the generation
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context, such as changes in topics. Therefore, periodic re-
trievals ensure the retrieved content remains relevant to the
latest context of the generation (Appendix A showcases
a concrete example). A popular example of this category
is RETRO (Borgeaud et al., 2022), which tailors the trans-
former neural network architecture to support the integration
of retrieved content at regular intervals.

However, periodic retrievals on large databases, potentially
comprising trillions of tokens (Borgeaud et al., 2022), can
lead to a significant slowdown of the sequence generation.
We ask: can we optimize the system performance of RAG
while preserving or even improving generation quality?

We propose PipeRAG, a pioneering approach to improve
RAG efficiency via a collaborative algorithm-system co-
design — including a system-aware RAG algorithm and an
algorithm-aware retrieval system as overviewed in Figure 1.

The foundation of PipeRAG is established on three obser-
vations centered on performance. Firstly, the dependen-
cies between retrievals and LLM inferences lead to hard-
ware underutilization, with either the inference or retrieval
system being idle at any given time during the generation
process (O1). Secondly, the inference latency per token
increases with sequence lengths, due to the growing work-
loads of the attention mechanism in transformer neural net-
works (O2). Lastly, the retrieval process, particularly the
approximate nearest neighbor search, exhibits a trade-off
between search latency and search quality (O3).

The key idea of PipeRAG is to prefetch content from
databases to facilitate pipeline parallelism between the in-
ference and retrieval systems. This solution reduces end-
to-end generation latency by allowing simultaneous infer-
ence and retrievals, effectively addressing the hardware in-
efficiencies identified in O1 (S1). We then enhance this
key idea with two additional solutions. On the model side,
PipeRAG modifies RETRO’s attention mechanism to sup-
port flexible retrieval intervals, because the intervals must
be carefully tuned to capitalize the efficiency of pipeline
parallelism (S2). On the system side, the retrieval system
adopts a performance model informed by O2 and O3 to
dynamically adjust the retrieval search space according to
the latency expectation of the upcoming token inferences
in the pipeline, thereby optimizing search quality without
increasing end-to-end generation latency (S3).
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Figure 1. Based on three performance-centric observations (O1∼O3), PipeRAG combines a system-aware algorithm integrating pipeline
parallelism (S1) with flexible retrieval intervals (S2) and an algorithm-aware retrieval system guided by a performance model (S3).

Our evaluation of PipeRAG, involving various evaluation
datasets and using large databases based with up to 200
billion tokens, clearly illustrates its efficiency in both gen-
eration performance (latency) and generation quality (per-
plexity). Specifically, the quality-performance Pareto fron-
tier of PipeRAG significantly outperforms that of RETRO:
PipeRAG can achieve up to 2.6× speedup in latency with-
out compromising perplexity; alternatively, maintaining the
same latency allows PipeRAG to reduce perplexity by as
much as 0.93 compared to RETRO. These encouraging
results highlight the importance of algorithm-system co-
design in retrieval-augmented generation, paving the way
for deploying PipeRAG in future RAG systems.

Contributions: We propose PipeRAG, the first algorithm-
system co-design approach aimed at improving retrieval-
augmented generation efficiency. Specifically:

• We design a system-aware RAG algorithm that lever-
ages pipeline parallelism, whose efficiency is further
improved by supporting flexible retrieval intervals.

• We propose an algorithm-aware retrieval system that
uses performance models to dynamically balance
search quality and performance.

• We showcase the impressive performance of PipeRAG
in various datasets, demonstrating the importance of
algorithm-system co-design in optimizing RAG.

2. Background and Motivation
Sequence generation quality of LLMs can be im-
proved through periodically retrieving from large token

databases (Borgeaud et al., 2022; Norlund et al., 2023; Ram
et al., 2023). Here, periodic retrievals, instead of retrieving
only once, are essential in handling potential contextual
shifts during generation, such as topic changes, ensuring
alignments between the retrieved content and the evolving
generation context (a concrete example can be found in
Appendix A). RETRO is a representative model in this cat-
egory (Borgeaud et al., 2022). As illustrated in Figure 2,
RETRO integrates a retrieval system with an inference sys-
tem for token generation. It employs an encoder for incorpo-
rating retrieved tokens and a decoder for token generation.

Database construction. A RETRO database comprises a
large collection of documents segmented into n chunks of
tokens S = (S1, . . . , Sn), where each chunk Si spans m
tokens. These token chunks are each converted into vector
representations R(S). The database is then structured as
a key-value store, with keys being the vector representa-
tions R(S) and values corresponding to the original token
chunks S, along with F , in which Fi representing the im-
mediately following token chunks of each chunk Si. Given
a query vector q, the database performs an approximate
nearest neighbor (ANN) search to retrieve k closest token
chunks and their immediately following chunks.

Retrieval process. RETRO performs retrievals at regular in-
tervals during the generation phase. Specifically, when gen-
erating a sequence of t tokens X = (x1, . . . , xt), RETRO
partitions X into l chunks (C1, . . . , Cl), each consisting of
m tokens. Consequently, token xi belongs to chunk C⌈ i

m ⌉.
For the generation of chunk Ci, RETRO employs the preced-
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Figure 2. Retrieval-augmented generation with RETRO.

ing chunk Ci−1 as the query to retrieve k nearest neighbors
RET(Ci−1) from the database.

Attention mechanisms. RETRO involves both decoder-
to-encoder and encoder-to-decoder attention mechanisms.
The decoder within RETRO utilizes chunked cross-attention
to integrate the retrieved information encoded by the en-
coder. To preserve causality, the generation of a chunk Ci

incorporates the retrieved tokens RET(Ci−1) by integrating
the encoder states ENC(RET(Ci−1)). On the other hand,
the RETRO encoder states ENC(RET(Ci−1)) integrates the
decoder’s states of the DEC(Ci−1) via a standard cross-
attention (CA) mechanism, such that the encoder can blend
the retrieved information with the generation context. Be-
cause both decoder-to-encoder and encoder-to-decoder at-
tention mechanisms operate on a chunk-wise basis, RETRO
avoids the excessive computational demands of attending to
all previous retrieval and generation states.

Motivation: improving RAG efficiency. Although periodi-
cally retrieving tokens from a large database can effectively
improve the generation quality of LLMs, frequent retrievals
can account for a considerable portion of the total genera-
tion time, thereby significantly slowing down the end-to-end
generation process.

In this paper, we ask the following question: is it possible
to further enhance the efficiency of retrieval augmented
generation? Here, we conceptualize RAG efficiency as a
Pareto frontier considering two objectives: generation qual-
ity and system performance. Specifically, given a quality
requirement (achieving certain perplexity), can we optimize
RAG’s system performance (reducing generation latency)?
On the other hand, given a system performance requirement,
can we improve the quality of generation?

3. Our Approach: PipeRAG
We propose PipeRAG, a novel retrieval augmented gener-
ation approach to improve the performance-quality Pareto
frontier through an in-depth algorithm-system co-design.

The development of PipeRAG stems from performance-
centric observations revealing (1) the fundamental system
inefficiencies in existing RAG algorithms and (2) the distinct
performance characteristics of LLM inference and retrieval
systems. Based on these observations, PipeRAG includes
(1) a system-aware RAG algorithm to address the system
inefficiencies and (2) an algorithm-aware retrieval system
to dynamically balance retrieval quality and latency.

3.1. Performance-Centric Observations in RAG

O1: Hardware inefficiency due to RAG dependencies.
A conventional RAG process introduces dependencies be-
tween retrievals and inferences: the current generation con-
text is used as a query to retrieve relevant token chunks
stored in the database; the inference process must wait for
the retrieval to finish before it can continue generating a few
more tokens, until the next retrieval is triggered.

A RAG system typically comprises two sub-systems: the
retrieval system and the inference system, each hosted on
separate hardware platforms. AI accelerators such as GPUs
and TPUs are the ideal hardware platforms for LLM infer-
ence due to the high demands for computation and memory
bandwidth during inference. On the other hand, the retrieval
systems consisting of large databases are usually not based
on GPUs. This is because (1) the limited memory capacity
of individual GPUs (GPUs adopt high-bandwidth memory
that is fast but limited in capacity) makes the hosting of large
databases cost-prohibitive, necessitating the setup compris-
ing many GPUs, and (2) the communication bandwidth
between the CPU and GPU is significantly lower compared
to GPU’s device memory bandwidth, thus the CPU-GPU
solution, in which database vectors are stored in CPU-side
memory and then transferred to GPUs at query time, could
be exceedingly slow. Given the capacity requirements, the
retrieval system is typically CPU-based (Borgeaud et al.,
2022; Lewis et al., 2020b), with the database either held
in substantial main memory (DRAM), or, in more budget-
friendly setups, stored on disks.

Given that the two systems are based on separate hardware,
the dependencies between retrievals and inferences in RAG
result in significant underutilization of hardware resources.
Figure 1 illustrates this inefficiency using RETRO as a rep-
resentative example: due to the dependencies, either the
inference or retrieval system is idle at any given time during
the generation process, leading to hardware inefficiencies.

O2: Increasing inference time with sequence length. In a
standard transformer neural network (Vaswani et al., 2017),
the cost of generating each new token correlates with the
sequence length, rather than remaining a constant. This is
due to the attention mechanism in transformers: although
the workload of the fully-connected layers remains constant
throughout the generation process, the cost of attention
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layers increases with the sequence length (Beltagy et al.,
2020). Specifically, for each new token generated, the query
states (Q) of the most recent token are compared against the
key states (K) of all preceding tokens to calculate relevance
scores. These scores are then utilized for a weighted sum
over the value states (V) (note that the queries, keys, and
values mentioned here under the context of transformers are
distinct from those terms in RAG systems). Consequently,
the inference cost per token can be approximated as a linear
function to sequence length.

O3: Trade-offs between retrieval quality and latency.
Large-scale vector search in RAG employs approximate
nearest neighbor (ANN) search instead of exact nearest
neighbor search due to the latter’s prohibitive cost on large
databases. In ANN search, database vectors are indexed,
with popular choices including clustering-based inverted-
file (IVF) indexes (Sivic & Zisserman, 2003) and graph-
based indexes (Malkov et al., 2014; Malkov & Yashunin,
2018). Optionally, database vectors may also be compressed
via product quantization (PQ) (Jegou et al., 2010) to shrink
database sizes and reduce memory bandwidth usage at query
time at the expense of search accuracy. During a search, a
query vector is only compared against a subset of database
vectors selected by the index.

Regardless of the index types, there exists a fundamental
trade-off between search quality and latency in ANN search.
Typically, the index first directs the search towards those
database vectors that are most likely to be the nearest neigh-
bors of the query vector, and then gradually expands the
search space. The number of database vectors scanned
per query can be directly or indirectly controlled by ANN
search hyper-parameters. Expanding the search space would
enhance the probability of finding the query vector’s true
nearest neighbors in the database (improved search quality),
but also would also lead to higher latency (lower search
performance) due to the greater number of comparisons
between query vectors and database vectors.

Figure 1 visualizes the relationship between search quality
and latency (Jegou et al., 2010). As the search space expands
(number of scanned database vectors), the search quality
(recall of the retrieval) gradually improves until reaching
a plateau where the nearest neighbors are likely found. Si-
multaneously, the search cost (latency) grows linearly with
the search space, with an initial cost of scanning the index
(which could be zero in some graph-based indexes).

3.2. Algorithm-System Co-deisgn in PipeRAG

Given the aforementioned performance-centric observations,
we propose PipeRAG, an algorithm-system co-design ap-
proach aimed at enhancing RAG’s performance-quality
Pareto frontier. PipeRAG addresses the fundamental issue
of hardware inefficiency (O1) by employing pipeline par-

allelism (S1) and allowing flexible retrieval intervals (S2).
Leveraging the distinct performance characteristics of the
inference and retrieval sub-systems (O2, O3), PipeRAG fur-
ther offers an option to enable automatic search space selec-
tion within the retrieval system, facilitating high-quality gen-
eration without introducing additional generation latency.

S1: Pipeline parallelism across RAG sub-systems. Be-
cause the hardware under-utilization issue in RAG is caused
by dependencies between retrievals and inferences, our
first solution is about revisiting RAG algorithms to enable
pipeline parallelism: the retrievals and inferences should
be executed concurrently, thus overlapping their execution
latency and improving hardware utilization.

To facilitate pipeline parallelism, we relax the RAG depen-
dencies as illustrated in Figure 1: instead of depending on
the content retrieved using the query representing the most
recent generation context (the latest generated tokens), the
inference process can utilize a slightly older, or stale, query
window to prefetch content from the database. The intuition
here is that if the stale query window closely aligns with
the latest generation context, it is likely to retrieve content
similar to that obtained using the most recent query tokens.
Once the dependency constraint is relaxed, retrievals can be
proactively initiated to prefetch content from the database,
thus enabling pipeline parallelism as shown in Figure 1.

Formally, when generating token chunk Cj+1, PipeRAG
does not use the immediately preceding chunk as the
query Q = Cj = (xjm, . . . , xjm+m−1) to retrieve
RET(Q). Instead, it opts for a stale token window Q̂ =
(xjm−s, . . . , xjm+m−1−s) as an approximate query, offset
by s tokens from the latest query window. Subsequently,

ˆRET(Q) = SHIFT(RET(Q̂), s) serves as the approximation
of RET(Q). Given that the stale query is s tokens behind the
most recent generation context, the retrieved results RET(Q̂)
are correspondingly left-shifted by s tokens. This shift en-
sures that the first s retrieved tokens, which are likely less
relevant for the upcoming generation due to staleness, are
excluded while maintaining the overall length of retrieval
tokens. Note that the concept of stale query windows does
not apply for the initial retrieval, which is conducted using
the first chunk C1, as illustrated in Figure 1.

S2: Flexible retrieval intervals. RETRO utilizes a fixed
retrieval interval of m = 64, aligning with the generation
chunk size, database token chunk size, and query window
size. However, the effectiveness of pipeline parallelism (S1)
is maximized when the retrieval and inference subsystems
have similar latencies — generating m = 64 tokens does
not always consume similar time as one retrieval.

In order to improve the effectiveness of pipeline parallelism,
PipeRAG supports alternative retrieval intervals m′ and
modifies RETRO’s attention mechanism accordingly. Here,
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Figure 3. Attention mechanisms and query windows in PipeRAG.

m′ remains constant during a single generation process but
can vary from the default value of 64. When using shorter
intervals, such as m′ = 32, the staleness of queries is also
reduced (s = 32, thereby improving the quality of the re-
trieved content to more closely resemble that obtained from
a non-stale query. Figure 3 illustrates the differences in
retrievals and attention mechanisms between RETRO and
PipeRAG, taking m′ = 32 as an example. As shown in the
figure, while a query Qi still has a window size of m = 64
tokens, the retrieval interval is halved. This necessitates
adjustments in the attention regions to align with these mod-
ified intervals. For encoder-to-decoder attention, the atten-
tion is directed from the retrieved chunk to the query window
whose position is different from that of RETRO. For decoder-
to-encoder attention, the generation of chunk Cj+1 of length
m′ applies chunked cross-attention on RET(Qj−1).

S3: Performance-model-driven retrievals. PipeRAG has
the potential to match the generation latency of LLMs that
do not introduce retrievals, especially when the retrievals
and inferences are completely overlapped in the pipeline.
However, achieving this ideal overlap is challenging because
of the distinct performance characteristics of the retrieval
and inference systems as introduced in O2 and O3.

To address this, we propose a performance-model-driven re-
trieval system to automatically enable perfectly overlapped
pipeline windows. In this context, a performance model
refers to any model (not limited to neural networks) de-
signed to predict the performance characteristics of a sys-
tem. Specifically, the retrieval system takes the generation
states as inputs and automatically adjusts the search space
using performance models, ensuring that the retrieval la-
tency can be hidden by the generation latency of the next
token chunk. By maximizing the search space under the
latency constraint, the retrieval quality is also maximized
without incurring extra generation latency.

The inference performance can be modeled as follows. The
time required to generate a token chunk is TC = TENC +

TDEC. The latency of encoder inference is related to the
number of retrieved neighbors and the number of tokens per
neighbor, while the decoder inference latency depends on
the current sequence length and the chunk size (O2).

On the other hand, the retrieval latency can be represented
modeled as TRET = TNetwork+TEncQuery+TScanIndex+
TScanV ec, encompassing the time spent on network commu-
nications, encoding the query tokens as vectors, scanning
the vector index, and scanning a subset of database vec-
tors. In this paper, we apply the widely-adopted IVF-PQ
vector search algorithm (Jegou et al., 2010) that combines
a clustering-based inverted-file (IVF) index with product
quantization (PQ). The IVF index clusters the database to
nlist IVF lists. At query time, nprobe out of the nlist
IVF lists are selected to scan (database vectors within the
selected lists are compared to the query vectors).

Given that the performance of both retrievals and inferences
are related to hardware, we measure and model their per-
formance on the deployment hardware. We record the time
consumption of both encoder and decoder inferences with
various input sequence lengths. For retrieval, we model the
relationship between nprobe and search latency using linear
regression, given that nprobe is approximately proportional
to the number of scanned database vectors.

The retrieval system then leverages these performance mod-
els to predict the maximal search space, indicated by nlist,
given the latency constraint for generating the next token
chunk, ensuring that TRET ≤ T (C). Since the T (C) can
be easily obtained from the recorded performance numbers,
we can then derive the maximal nprobe during the search
based on the retrieval performance model.

While an alternative approach to achieve a perfectly over-
lapped pipeline is adjusting the retrieval intervals in the
inference system, we rule out this option due to generaliz-
ability concerns. In future deployment scenarios, a retrieval
system may serve multiple inference systems. Thus, the re-
trieval performance is impacted by the number of concurrent
queries being processed. In this case, it could be challenging
for the inference system to accurately predict the retrieval
latency, as it lacks the information about the retrieval sys-
tem’s workload at the moment. Therefore, it is the retrieval
system, instead of the inference system, that should be re-
sponsible for constructing a perfectly overlapped pipeline
via performance modeling.

4. Evaluation
4.1. Experimental Setup

We briefly introduce our experimental setup below and leave
more details in Appendix B.

Database. Our token database was constructed from the C4

5



PipeRAG: Fast Retrieval-Augmented Generation via Algorithm-System Co-design

Figure 4. The effect of database sizes and retrieval strategies on language modeling perplexity (lower perplexity means higher quality).

Figure 5. Perplexity of retrieval-augmented generation when applying various retrieval intervals and search space configurations (nprobe).

corpus containing deduplicated English documents. Adher-
ing to Borgeaud et al. (2022), we segmented the documents
into chunks of m = 64 tokens, yielding a total of three
billion chunks, and set the number of nearest neighbors
per retrieval as k = 2. Following Norlund et al. (2023),
we transformed each token chunk into a 384-dimensional
vector using a sentence transformer(Reimers & Gurevych,
2019).

Model. We developed PipeRAG based on the RETRO check-
point with 582M parameters provided by Norlund et al.
(2023), the only available pre-trained RETRO model when
we conducted the experiments.

Evaluation Set. To evaluate language modeling quality, we
used the Wikipedia dataset (wik), the RealNews subset of
the C4 dataset, and C4’s English document subset (Dodge
et al., 2021; Raffel et al., 2020).

Software. For model inference, we adopted the ONNX
runtime, which, according to our experiments, achieves 2
to 3 times speedup in latency over PyTorch. For retrieval,
we used the Faiss library (Johnson et al., 2019) and the IVF-
PQ vector search algorithm. Communication between the
inference and retrieval systems was managed via gRPC.

Hardware. For model inference, we used an NVIDIA
A100 GPU (40 GB), while the retrievals were conducted on
a server equipped with Intel(R) Xeon(R) Platinum 8259CL
CPUs @2.50GHz (48 cores) and 384 GB memory.

4.2. Perplexity Evaluation

Figure 4 shows the impact of various retrieval strategies
across different database sizes. This comparison includes
PipeRAG, RETRO, retrieval-augmented generation with
only one retrieval at the beginning of generation, and genera-
tion without retrieval. For the last two strategies, RETRO still
serves as the base model. As indicated in the figure, retrieval,

especially on large databases, plays a crucial role in improv-
ing generation quality (lower perplexity is better). Across
all evaluated datasets, generation without retrieval performs
the worst, followed by only retrieving once, showing the
effectiveness of periodic retrieval in RETRO. Additionally,
perplexity decreases as the dataset size increases, highlight-
ing the importance of comprehensive content coverage in the
databases. Notably, when pairing with the largest database,
PipeRAG outperforms RETRO in generation quality, as we
will analyze in greater detail later on.

From now on, we report results in generation quality and
performance based on the full (largest) database, as using
subsets significantly compromises generation quality.

Figure 5 compares the perplexity between PipeRAG and
RETRO across various retrieval configurations. We assess
PipeRAG with different retrieval intervals, setting the search
space through nprobe, which represents the number of
scanned vector lists per query in the IVF index. As shown
in Figure 5, both PipeRAG and RETRO show reduced per-
plexity with an expanded search space, which leads to better
search quality (O3).

Takeaway 1: The quality of retrieval-augmented gen-
eration benefits from higher retrieval quality achieved
by expanding the search space during vector search.

Furthermore, PipeRAG demonstrates superior generation
quality over RETRO, particularly when using shorter re-
trieval intervals of no more than 32 (Figure 5). This advan-
tage is attributed to PipeRAG’s revised attention mechanism.
Shorter intervals not only reduce query staleness (equiva-
lent to the interval) but improve the content integration
frequency, in contrast to RETRO with a fixed interval of
64. The increased retrieval frequency in PipeRAG does not
necessarily add to generation latency thanks to the pipeline
parallelism, a point we will further elaborate on.
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Figure 6. PipeRAG significantly outperforms RETRO on the latency-perplexity Pareto frontier (lower latency and perplexity are better).

Table 1. Performance-driven retrieval (S3) facilitates latency comparable to non-retrieval models while significantly reducing perplexity.
Values in parentheses indicate the difference compared to the baseline model without retrieval (lower latency and perplexity are better).

Eval Set Latency (s) Perplexity

No retrieval RETRO Performance-driven retrieval (S3) No retrieval RETRO Performance-driven retrieval (S3)

Wikipedia 9.35 14.59 (+5.23) 10.34 (+0.99) 16.74 13.49 (-3.25) 13.47 (-3.28)
RealNews 9.35 12.36 (+3.00) 10.58 (+1.22) 17.37 14.94 (-2.43) 14.87 (-2.50)
C4 9.35 11.13 (+1.78) 10.58 (+1.22) 24.18 19.48 (-4.70) 19.36 (-4.82)

Takeaway 2: PipeRAG can surpass RETRO in gen-
eration quality when using shorter retrieval intervals
backed by PipeRAG’s attention mechanism.

4.3. RAG Efficiency: Performance-Quality Trade-offs

In this section, we assess the efficiency of PipeRAG. Our
primary performance metric is the end-to-end latency to gen-
erate a 1024-token sequence, which we reported by taking
the median latency of five individual runs.

Figure 6 compares the Pareto frontiers of the performance-
quality (latency-perplexity) trade-offs between PipeRAG
and RETRO. For RETRO, we manipulate the search space
by tuning nprobe. For PipeRAG, we explore a range of
retrieval intervals in conjunction with either a fixed search
space or the performance-model-driven search space se-
lection (S3). Across all datasets, the Pareto frontier of
PipeRAG demonstrates significant advantages over RETRO,
as shown in Figure 6. For example, PipeRAG can attain up
to a 2.6× reduction in latency while maintaining or reduc-
ing perplexity relative to RETRO; alternatively, under the
same latency constraint, PipeRAG can lower perplexity by
as much as 0.93 points compared to RETRO.

Takeaway 3: PipeRAG shows impressive efficiency,
achieving up to 2.6× speedup in latency over RETRO
without compromising generation quality.

Table 1 demonstrates the effectiveness of the proposed
performance-model-driven retrieval system. The objec-
tive of the performance model is to dynamically maximize
search quality while minimizing additional performance
costs. To evaluate this, we compare the generation la-
tency and quality of PipeRAG applying performance-model-
driven retrievals to that of RETRO as well as the same base
RETRO model without invoking retrievals. As shown in

Figure 7. Trends in PipeRAG efficiency when deployed on future
hardware that enables faster retrieval or inference.

Table 1, PipeRAG achieves a notable reduction in perplexity
(2.50∼4.82) with a minor increase in performance over-
head (merely 10.6%∼13.2% in latency overhead), outper-
formance RETRO in both latency and perplexity. This slight
increase in latency is attributed to the extra computational
workload of the cross-attention mechanism when integrating
the retrieved content from the encoder.

Takeaway 4: Leveraging the performance-model-
driven retrieval system, PipeRAG can achieve com-
parable latency to models without retrievals while
significantly improving generation quality.

Figure 7 illustrates the projected performance trends of
PipeRAG across a range of system and hardware configura-
tions. Considering the rapid advancements in hardware ac-
celerators, we expect shifts in performance of both retrieval
and inference systems over years. To analyze PipeRAG’s ef-
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fectiveness on future hardware, we model the latency of
PipeRAG and RETRO when using faster retrieval or in-
ference systems, with the methodology described in Ap-
pendix C. The first row of Figure 7 demonstrates the gener-
ation latency when the inference system becomes 4× and
16× faster, while the second row examines the effects of ac-
celerated retrieval. Across all scenarios, PipeRAG achieves
superior efficiency compared to RETRO. When either sys-
tem experiences an order of magnitude speedup (e.g., 16×),
however, the benefits of applying PipeRAG become less
significant. This trend aligns with our expectations, as the
effectiveness of pipeline parallelism peaks when both sys-
tem components have comparable latencies and diminishes
when one component significantly outpaces the other.

Takeaway 5: PipeRAG outperforms RETRO in effi-
ciency across different hardware, though the extent of
improvements depends on sub-system performance.

4.4. Ablation Study

Since PipeRAG not only introduces pipeline parallelism but
also modifies RETRO’s attention mechanism to maximize
the effectiveness of pipelining, it is natural to ask how a
baseline model would perform if it integrates the same atten-
tion mechanism. To illustrate the effectiveness of pipeline
parallelism itself, we compare PipeRAG with an enhanced
variant of RETRO, named RETRO+, which also supports
flexible retrieval intervals by integrating PipeRAG’s atten-
tion mechanism.

Figure 8 compares the performance-quality Pareto-frontier
between PipeRAG and RETRO+. Both models use retrieval
intervals ranging from 8 to 64. While RETRO+, benefit-
ing from flexible intervals, matches PipeRAG in perplex-
ity, PipeRAG consistently achieves lower latency given the
same perplexity. This is attributed to the proposed pipeline
parallelism: PipeRAG effectively hides the retrieval laten-
cies by overlapping them with generation latencies, whereas
for RETRO+, more frequent retrievals lead to increased total
generation latency. More detailed comparisons between
PipeRAG and RETRO+ under identical retrieval intervals
(corresponding to the same number of database requests)
can be found in Appendix D.

Takeaway 6: Pipeline parallelism is essential to
achieve superior RAG efficiency, as PipeRAG out-
performs RETRO+ that supports flexible retrieval in-
tervals using PipeRAG’s attention mechanism.

5. Related Work
To the best of our knowledge, PipeRAG represents the first
endeavor to enhance RAG efficiency through an in-depth

Figure 8. Even if the baseline model supports flexible retrieval
intervals (RETRO+), PipeRAG still significantly outperforms it in
efficiency thanks to the proposed pipeline parallelism.

algorithm-system co-design, diverging from existing RAG
research that mainly focuses on improving generation qual-
ity. We now briefly introduce these related works.

Since knowledge is primarily retrieved rather than encoded
in the LLM’s parameters, RALMs, even with LLMs of one
to two orders of magnitude fewer parameters, can achieve
superior or comparable performance to conventional LLMs
on various natural language processing (NLP) tasks (Lewis
et al., 2020a; Izacard et al., 2022; Komeili et al., 2021; Guu
et al., 2020). While the generation may only involve a sin-
gle passage retrieval at the beginning (Lewis et al., 2020b;
Izacard & Grave, 2020; Sachan et al., 2021), the generated
sequence may gradually diverge from the initially retrieved
contents as the sequence grows longer. Thus, a more gener-
aral RAG approach involves multiple retrievals during text
generation to improve token generation quality (Ram et al.,
2023; Borgeaud et al., 2022).

Another line of RAG research emphasizes token-level re-
trievals, exemplified by kNN-LM (Khandelwal et al., 2019)
and subsequent works (Khandelwal et al., 2020; Meng et al.,
2021; Xu et al., 2023). In these models, during each token
generation step, the hidden state of the last layer is used
as a query to retrieve contextually similar passages as well
as their subsequent tokens (with a retrieval interval of one).
The next token of the current context is then predicted by
interpolating the model’s next-token probability distribution
with that of the retrieved contents. There are also arguments
suggesting that token-level content integration may not be as
effective as integrating longer passages (Wang et al., 2023).

6. Conclusion
Retrieval-augmented generation presents both opportuni-
ties and efficiency challenges, due to the significant over-
heads when retrieving from large databases. We propose
PipeRAG, a novel RAG approach that improves generation
efficiency by adopting pipeline parallelism, allowing flexi-
ble retrieval intervals, and dynamically adjusting retrieval
quality via performance modeling. PipeRAG achieves up to
2.6× speedup over RETRO without compromising genera-
tion quality. This not only establishes a solid foundation for
integrating pipeline parallelism in future RAG systems but
also showcasing future research opportunities in optimizing
RAG through algorithm-system co-design.
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Impact Statements
This paper focuses on enhancing the system efficiency of
retrieval-augmented generation, aiming to reduce both en-
ergy consumption and carbon emissions during large-scale
LLM inference. As our work does not involve training new
models, we anticipate minimal ethical concerns or adverse
societal impacts.
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A. A Motivating Example of Periodic Retrievals
In this section, we present a concrete example demonstrating the effectiveness of periodic retrievals during sequence
generation, a strategy that has been proven to significantly enhance the quality of language modeling (Borgeaud et al., 2022;
Ram et al., 2023; Norlund et al., 2023).

Figure 9 illustrates the example, wherein the model is asked to describe a high-impact machine learning paper. In crafting
its response, the model uses the Transformer neural network (Vaswani et al., 2017) as the target paper, covering several
aspects related to the paper. The narrative evolves from a brief introduction of the model, through its impacts on various
natural language processing tasks, to its influence on subsequent research, its cross-disciplinary applications, and ultimately,
to emerging trends in research. Given these shifts in topic, the content initially retrieved about the Transformer architecture
might lose relevance in the context of discussing future research trends. Therefore, periodic retrievals, in this instance, are
vital to ensure that the retrieved content remains pertinent to the current context of generation.

Figure 9. A motivating example of utilizing periodic retrievals during sequence generation.

B. Detailed Evaluation Setup
Datasets. We constructed the token database from the C4 dataset, using deduplicated English documents. We did not
choose the Pile dataset used in previous works (Borgeaud et al., 2022) due to its current copyright issues. By segmenting
these documents into chunks of m = 64 tokens, we generated a total of three billion chunks. Subsequently, each chunk
was converted into a 384-dimensional vector using a sentence transformer (Reimers & Gurevych, 2019) checkpoint
all-MiniLM-L6-v2.

Software. Our implementation of the PipeRAG model is based on a RETRO baseline obtained from (Norlund et al., 2023),
which is built on top of PyTorch. To enhance inference performance, we supported the caching of key-value states in the
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transformer and converted the model to ONNX format, enabling model inference by ONNX runtime. With the above
optimizations, the inference latency on GPU is improved by around 3× over the original Pytorch implementation. We
maintained the fp32 (32-bit floating point) precision of the model.

For the retrieval system, we used the Faiss library (Johnson et al., 2019), which is known for its efficient product-quantization-
based vector search implementation. We adopted the IVF-PQ vector search algorithm, setting the number of IVF list
centroids to nlist = 16384 and quantizing each 384-dimensional vector into 64 bytes of PQ code. During retrievals, we set
the number of nearest neighbors as k = 2.

The communication between the inference and retrieval systems was managed via the gRPC library.

Hardware. We used two separate platforms for inference and retrievals. For model inference, we utilized an NVIDIA A100
GPU (40 GB). The retrieval process was handled by a server with substantial memory capacity to accommodate the large
encoded dataset. The server was equipped with dual-socket Intel(R) Xeon(R) Platinum 8259CL CPUs @2.50GHz (48 cores
and 96 threads) and 384 GB memory. The retrieval and inference servers were interconnected through a network, with a
round-trip time (RTT) of around 1 ms.

C. Performance Trends on Evolving Hardware
In this section, we begin by enumerating the factors that influence retrieval and inference performance. We then introduce
the performance modeling methodology employed in Section 4, which projects PipeRAG’s efficiency on future hardware
configurations.

C.1. Factors Influencing Retrieval and Inference Performance

Retrieval performance depends on the following factors:

• Hardware. The memory bandwidth and computational capacity of the hardware used for retrieval are key factors
influencing performance. It is worth noticing that there are emerging hardware accelerators that are specialized for
retrievals (Jiang et al., 2023a) and integrated into RAG systems (Jiang et al., 2023b), offering impressive retrieval
performance as well as cost efficiency.

• Document numbers. The total number of documents, along with encoding granularity as introduced below, determines
the vector count in the database.

• Encoding granularity. Documents can be encoded in various granularities by LLMs, ranging from one vector per
document (Huang et al., 2013; Karpukhin et al., 2020) to one vector per passage (Dai & Callan, 2019; Reimers &
Gurevych, 2019) or even per token (Khattab & Zaharia, 2020; Santhanam et al., 2021).

• Dimensionality. The dimensionality of the database vectors, as well as the compression ratio when employing product
quantization, are critical to retrieval performance.

• Indexes. The selection of indexes, such as IVF or graph-based ones, and their parameter configurations are crucial for
retrieval efficiency.

• Reranking. Optionally, the retrieved content can be reranked using LLMs, which often yields better ranking quality
than relying solely on vector similarity (Nogueira & Cho, 2019).

LLM inference performance is influenced by the following factors:

• Hardware. The performance of inference is heavily dependent on the hardware, particularly its memory bandwidth
and computational capacity. LLM accelerators such as GPUs are evolving rapidly in these metrics.

• Software. The choice of software for inference also plays a significant role. For instance, PyTorch’s eager execution
mode might not fully exploit hardware accelerators due to the slow execution speed of Python programs. In such cases,
software overhead could exceed the GPU kernel execution time.
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• Quantization. Quantizing models to lower precisions can markedly reduce inference time, thanks to reduced memory
footprint and bandwidth usage. For instance, converting models to 3-bit precision can lead to a 3∼5× speedup
compared to 16-bit floating point formats (Frantar et al., 2022).

• Sparsity. Techniques like mixture-of-experts allow for scaling LLMs without proportionate increases in computational
costs (Fedus et al., 2022; Du et al., 2022), because only a small subset of neurons are activated during inference.

C.2. Performance Modeling for Future Hardware

To estimate PipeRAG’s efficiency on future hardware, we model its performance using hypothetical hardware with enhanced
inference and/or retrieval performance. We included the modeled performance in Section 4, with a detailed explanation of
our performance modeling approach provided here.

For RETRO, the end-to-end generation latency is the sum of inference and retrieval time. In PipeRAG, due to the parallelism,
the latency for generating a chunk of tokens is determined by the maximum value of the inference and retrieval latency of
that chunk, except for the first chunk where the pipeline is not yet active (see Figure 1).

We then input the measured performance of inference and retrievals into the performance model. This allows us to simulate
performance scaling, such as a 4× improvement in retrieval or a 16× enhancement in inference. The result generation
latency as well as the respective conclusions are included in Section 4. The model’s accuracy is then verified by comparing
these projected results against actual experimental data, with deviations found to be within a reasonable range (the median
difference is only 5.7%).

D. Additional Experimental Results
In this section, we include additional experimental results to further illustrate the effectiveness of PipeRAG. First, we
demonstrate the fundamental applicability of pipeline parallelism by illustrating the effectiveness of prefetching content
with stale queries. Second, we show the advantages of PipeRAG over a modified version of RETRO, which, similar to
PipeRAG, supports flexible retrieval intervals, highlighting the benefits of pipeline parallelism.

D.1. The Effectiveness of Retrievals using Stale Queries

We investigate the fundamental applicability of prefetching content using stale queries. For this purpose, we compare the
k = 1 nearest neighbors retrieved by non-stale queries in our evaluation set with their staleness versions. Same as Section 4,
we use the largest C4 database, which consists of three billion token chunks, and set nprobe = 64 to ensure high retrieval
quality. We then employ the msmarco-bert-base-dot-v5 checkpoint from sentence transformers (Reimers & Gurevych, 2019)
to evaluate the cosine similarity between contents retrieved by stale and non-stale queries.

Table 2 presents the retrieval quality using stale queries. Here, we use different degrees of staleness, ranging from 1 token
to 64 tokens, while maintaining a consistent retrieval interval of m = 64. The results indicate that, despite the staleness,
the retrieved content closely resembles that obtained through non-stale queries, with around 90% cosine similarity across
datasets. As expected, this similarity shows a gradual decline as the staleness increases.

Table 2. Cosine similarity between content retrieved by stale and non-stale queries. The results indicate that stale queries are still highly
effective in identifying relevant token chunks from the database.

No staleness Staleness (number of stale tokens in the query)

1 2 4 8 16 32 64

Wikipedia 1.0000 0.9262 0.9204 0.9138 0.9062 0.8990 0.8921 0.8875
RealNews 1.0000 0.9219 0.9147 0.9073 0.8996 0.8925 0.8850 0.8794
C4 1.0000 0.9323 0.9263 0.9193 0.9127 0.9052 0.8980 0.8929

D.2. PipeRAG versus Baseline Model that Supports Flexible Retrieval Intervals

To further show the efficiency gains of pipeline parallelism, we also compare PipeRAG with a modified version of RETRO,
termed RETRO+, which also supports flexible retrieval intervals as PipeRAG. Here, we extend the results in Figure 8
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presented in Section 4.

Figure 10 presents a performance-quality comparison between PipeRAG and RETRO+ under identical retrieval intervals
(corresponding to the same number of database requests). For most retrieval intervals, ranging from 8 to 32, PipeRAG
demonstrates superior efficiency compared to RETRO+. When the staleness is high (at a retrieval interval of 64), RETRO+
has the potential to outperform PipeRAG in scenarios of low perplexity, attributable to the effects of high query staleness.

Figure 10. The latency-perplexity comparison between PipeRAG versus RETRO given the same retrieval intervals.

E. Broader Applicability of PipeRAG
The idea of improving RAG efficiency through pipeline parallelism is broadly applicable across various RAG configurations,
as long as they include periodic retrievals. In this paper, we have focused on improving RAG efficiency based on the RETRO
model and evaluated generation performance using specific hardware and software setups described in Section 4. In the
future, RAG can evolve in several ways: models may adopt a decoder-only transformer architecture (Radford et al., 2018;
Brown et al., 2020) although the high cost of periodically appending the retrieved content has to be addressed (Ram et al.,
2023; Jiang et al., 2023c); retrieval engines could incorporate LLM-based or BM25-based result reranking (Nogueira &
Cho, 2019; MacAvaney et al., 2019; Doostmohammadi et al., 2023), instead of solely relying on vector-level similarity;
and hardware may evolve to include dedicated retrieval accelerators (Jiang et al., 2023a;b). However, regardless of these
potential advancements in algorithms and hardware (detailed in Appendix C), the dependencies between retrievals and
inferences in RAG systems — especially when retrievals are periodic — remains a fundamental obstacle to fully leveraging
hardware resources and achieving maximal inference efficiency. Thus, whenever the time consumption of one retrieval and
multiple steps of inferences are on a similar scale, pipeline parallelism by prefetching content from databases should be a
great option to improve generation efficiency.

Prefetching content from databases using stale queries is applicable regardless of the specific models used for generation.
To demonstrate this, we show that using a stale query window can retrieve content very similar to that obtained via a regular
query window, with detailed results included in Appendix D. These findings address a potential limitation in our evaluation,
as our experimentation with PipeRAG was conducted using the RETRO checkpoint provided by (Norlund et al., 2023),
which was the only available RETRO checkpoint at the time of our research.
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