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Pointwise Redundancy in One-Shot Lossy
Compression via Poisson Functional Representation

Cheuk Ting Li
The Chinese University of Hong Kong

Hong Kong SAR, China
email: ctli@ie.cuhk.edu.hk

Abstract—We present a construction of one-shot variable-
length lossy source coding schemes using the Poisson functional
representation, and give bounds on its pointwise redundancy. This
allows us to describe the distribution of the encoding length in a
precise manner.

I. INTRODUCTION

Variable-length lossy source coding has been considered,
for example, in D-semifaithful codes [1], [2] where the dis-
tortion must be bounded almost surely. The redundancy of D-
semifaithful codes, i.e., the difference between the encoding
length and the rate distortion function, has been studied in
[3]–[6].

For one-shot variable-length lossy source coding with the
expected distortion constraint E[d(X,Y )] ≤ D,1 it was proved
in [7] that there is a prefix-free code with expected length
≤ R(D) + log(R(D) + 1) + 6, showing that the optimal
one-shot expected length is always within a logarithmic gap
from the rate-distortion function R(D). The proof utilizes the
Poisson functional representation [7], [8], where the codebook
is constructed as a Poisson process. Also see [9]–[11] for
related results.

In this work, we utilize the Poisson functional representa-
tion to construct one-shot variable-length lossy source coding
schemes, and give bounds on their pointwise redundancy. This
allows us to describe the distribution of the encoding length
in a more precise manner, compared to only bounding its
expectation. The proofs and details of the results mentioned in
this abstract, and the generalization to the lossy Gray-Wyner
system [12], can be found in the preprint [13].

II. MAIN RESULTS

A one-shot variable-length lossy compression scheme for
the source X ∈ X , X ∼ PX with reconstruction space Y
is a pair (PM |X , g), where PM |X is a stochastic encoder (a
conditional distribution from X to {0, 1}∗, where {0, 1}∗ is
the set of bit sequences of any length), and g : {0, 1}∗ → Y
is a decoding function. The encoder observes X ∼ PX and
outputs the description M |X ∼ PM |X . The decoder observes
M and outputs the reconstruction Ỹ = g(M). We can choose

This work was partially supported by an ECS grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China
[Project No.: CUHK 24205621].

1Note that the probability of excess distortion P(d(X,Y ) > D) =
E[1{d(X,Y ) > D}] can also be written as an expected distortion.

whether to impose the prefix-free condition on M or not. We
may impose an expected distortion constraint E[d(X, Ỹ )] ≤
D, where d : X × Y → [0,∞) is a distortion function.

We can also replace the variable-length description M by
a positive integer K, and assume that the encoder produces
a positive integer description. Note that we can convert K
into a variable-length description with blogKc bits without the
prefix-free condition [14], or ≤ logK + 2 log(logK + 1) + 1
bits with the prefix-free condition using the Elias delta code
[15].

The following theorem can be proved using the Poisson
functional representation construction similar to [7, Theorem
2], with an analysis using techniques in [8]. Refer to [13] for
the proof.

Theorem 1: Fix any PX , PY |X and QY satisfying
PY |X(·|x) � QY for PX -almost all x’s. Fix any collection
of functions ψi : X × Y × Z>0 → R that are nondecreasing
in the third argument for i = 1, . . . , `. Then there exists a
lossy compression scheme with description K ∈ Z>0 and
reconstruction Ỹ such that

E
[
ψi(X, Ỹ ,K)

]
≤ E

[
ψi(X,Y, `J)

]

for i = 1, . . . , `, where (X,Y ) ∼ PXPY |X , and J ∈ Z>0 is
distributed as

J |(X,Y ) ∼ Geom

((
dPY |X(·|X)

dQY
(Y ) + 1

)−1)
.

This theorem is quite general. For example, to bound the
expected distortion, take ψi(x, y, k) = d(x, y). To bound the
excess distortion probability, take ψi(x, y, k) = 1{d(x, y) >
D}. To bound the probability that K cannot be encoded into
n bits (for a fixed-length code), take ψi(x, y, k) = 1{k >
2n}. To bound the expected length with (resp. without) the
prefix-free condition, we may take ψi(x, y, k) = log k (resp.
ψi(x, y, k) = log k + 2 log(log k + 1) + 1).

We can also use Theorem 1 to bound the pointwise re-
dundancy. We consider three different notions of pointwise
redundancy: Pointwise rate redundancy (PRR), studied in
[5], [16], is given by

|M | −R(D),

i.e., the difference between the length |M | of the description M
and the rate-distortion function R(D) where D = E[d(X, Ỹ )].
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Pointwise source-wise redundancy (PSR), studied in [5], is
given by

|M | − (X,D),

where (x,D) is the d-tilted information [5], [17], [18]
(x,D) := − logE[2−λ∗(d(x,Y ∗)−D)], where Y ∗ ∼ PY fol-
lows the Y -marginal of PXPY |X where PY |X is the condi-
tional distribution that attains the minimum in R(D) (assume
unique minimizer), and λ∗ := −R′(D). Pointwise source-
distortion-wise redundancy (PSDR) is defined as

|M | − (X,D, d(X, Ỹ )),

where we write (x,D, δ) := − logE[2−λ∗(d(x,Y ∗)−δ)] =
(x,D)− λ∗(δ −D), which can be interpreted as the amount
of information needed to convey x within a distortion δ when
the overall expected distortion is D. The expectations of these
three redundancies must be nonnegative for prefix-free codes,
but might be negative if we do not impose the prefix-free
condition. We first state a corollary of Theorem 1 that can
bound any of the three pointwise redundancies for the case
without the prefix-free condition.

Corollary 2: Fix any PX , PY |X , distortion function d : X ×
Y → [0,∞), function η : X × Y → R and γ ∈ R. Then
there exists a lossy compression scheme without prefix-free
condition such that E[d(X, Ỹ )] ≤ E[d(X,Y )], and

P
(
|M | − η(X, Ỹ ) ≥ γ

)

≤ E
[
min

{
2−η(X,Y )−γ+1(2ιX;Y (X;Y ) + 1), 1

}]
,

where (X,Y ) ∼ PXPY |X .
The result for PSDR is especially simple.
Corollary 3: For D > 0, under the regularity conditions

in [18],2 there exists a lossy compression scheme without
prefix-free condition, with E[d(X, Ỹ )] ≤ D, and with PSDR
satisfying

P
(
|M | − (X,D, d(X, Ỹ )) ≥ γ

)
≤ 2−γ+2

for every γ ∈ R.
The results for prefix-free codes are slightly more compli-

cated.
Corollary 4: Fix any PX , PY |X , distortion function d : X ×

Y → [0,∞), function η : X × Y → R, and γ ∈ R. Then
there exists a prefix-free lossy compression scheme such that
E[d(X, Ỹ )] ≤ E[d(X,Y )], and

P
(
|M | − η(X, Ỹ ) ≥ γ

)

≤ E
[
min

{
2−η(X,Y )−γ+2([η(X,Y ) + γ]+ + 1)2

· (2ιX;Y (X;Y ) + 1), 1
}]
,

where (X,Y ) ∼ PXPY |X .

2The regularity conditions in [18] are: R(δ) is finite for some δ, there exists
a finite set E ⊆ Y such that E[miny∈E d(X, y)] <∞, and the minimum in
R(D) is achieved by a unique PY |X .

Corollary 5: For D > 0, γ ∈ R, under the regularity
conditions in [18] (see Corollary 3), there exists a prefix-free
lossy compression scheme with E[d(X, Ỹ )] ≤ D, and with
PSDR satisfying

P
(
|M | − (X,D, d(X, Ỹ )) ≥ γ

)

≤ 2−γ+3E
[
([ιX;Y (X;Y ) + γ]+ + 1)2

]
.
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