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Simula UiB, N–5006 Bergen, Norway

Emails: asbjorn.orvedal@gmail.com, {lin, eirikrosnes}@simula.no

Abstract—We consider the problem of weakly-private infor-
mation retrieval (WPIR) when data is encoded by a maximum
distance separable code and stored across multiple servers. In
WPIR, a user wishes to retrieve a piece of data from a set of
servers without leaking too much information about which piece
of data she is interested in. We study and provide the first WPIR
protocols for this scenario and present results on their optimal
trade-off between download rate and information leakage using
the maximal leakage privacy metric.

I. INTRODUCTION

Private information retrieval (PIR), introduced in a seminal
paper by Chor et al. [1], [2], has been extensively studied
for more than two decades in both the computer science
and information theory communities, see, e.g., [3]–[8] and
references therein. In PIR, the objective is to download a
piece of data stored on a set of servers without leaking any
information about which piece of data is being requested to
the servers storing the data, while minimizing the overall
communication cost. As the upload cost is typically much
lower than the download cost, the download rate, defined as
the ratio between the amount of requested information and
the amount of downloaded information, is used as a measure
to compare different PIR protocols. When data is replicated
across several servers, the maximum achievable download rate,
referred to as the PIR capacity, was derived in [9], while the
capacity for the case where the data is encoded by a maximum
distance separable (MDS) code and stored across a set of
servers was settled in [10]. Arbitrary linear storage codes were
considered in [11], [12].

Weakly-private information retrieval (WPIR), introduced
independently by Lin et al. [13] and Samy et al. [14], is a
relaxed version of PIR that allows for reducing the download
cost at the expense of some information leakage on the identity
of the requested piece of data to the servers storing it. So
far, only the case of replicated data (across servers) and
the single server case have been considered in the literature
[15]–[21], while in this work we consider for the first time
the case where the data is encoded by an MDS code and
stored across multiple servers. WPIR protocols allow for a
trade-off between download rate and privacy leakage, and the
optimal trade-off curve for the case of multiple servers is
still an open problem. As in previous works, we consider the
maximal leakage (MaxL) privacy metric [22]–[24]. Our main
contributions are as follows.

• We adapt the PIR protocols in [25], [26] for MDS-coded
databases to allow for information leakage. The adapted
protocols from [25], [26], referred to as the ZYQT and
ZTSL MDS-WPIR schemes, respectively, yield a trade-
off between download rate and information leakage, and
we show that for the MaxL privacy metric the optimal
trade-off is the solution of a convex optimization problem
(see Theorem 1). The optimized ZYQT MDS-WPIR
scheme yields the best trade-off but also has the largest
query space.

• We propose a new WPIR protocol, referred to as the
OLR MDS-WPIR scheme, with a much smaller query
space than the ZYQT scheme while providing an equally
good or better trade-off between download rate and
information leakage. As for the ZYQT and ZTSL MDS-
WPIR schemes, the optimal trade-off is the solution of a
convex optimization problem (see Theorem 1).

II. PRELIMINARIES AND SYSTEM MODEL

A. Notation

We denote by N the set of all positive integers, and
[a : b] ≜ {a, a+ 1, . . . , b} for a, b ∈ {0} ∪ N, a ≤ b. Vectors
(normally row-wise) are denoted by bold letters, random
variables (RVs) (either scalar or vector) by uppercase letters,
and sets by calligraphic uppercase letters, e.g., x, X , and X ,
respectively. Matrices are denoted by sans serif letters, while
random matrices are represented by bold sans serif capital
letters, e.g., X, and x represents its realization. The all-one
(all-zero) row vector is denoted by 1 (0), and its length will
be clear from the context. When a set of indices S is given, XS
denotes {Xs : s ∈ S}. EX [·] denotes expectation with respect
to the RV X . X ∼ PX denotes an RV distributed according
to a probability mass function (PMF) PX(x), x ∈ X , and
X ∼ U(S) a uniformly-distributed RV over a set S. H(·)
denotes the entropy function, (·)T the transpose of a matrix, and
gcd(a, b) the greatest common divisor of two positive integers
a and b.

B. System Model

We consider an MDS-coded distributed storage system
(DSS) with N noncolluding servers that store M independent
files W(1), . . . ,W(M), where each file is represented as a
random matrix W(m) =

(
W

(m)
i,j

)
of size λ × K, λ,K ∈ N.

Each file W(m) is encoded row-wise using an [N,K] MDS
code C over some finite field Fq of size q ≥ N resulting in
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the codewords
(
X

(m)
i,1 , . . . , X

(m)
i,N

)
= (W

(m)
i,1 , . . . ,W

(m)
i,K )GC ,

i ∈ [0 : λ − 1], where GC denotes a generator matrix for C.
Denote by X

(m)
j ≜

(
X

(m)
0,j , . . . , X

(m)
λ−1,j

)T
a vector consisting

of λ code symbols generated by the code C. Then, the j-th
server stores Xj ≜

(
(X

(1)
j )T| · · · |(X(M)

j )T
)T

, j ∈ [1 : N].
To retrieve a file W(M), from the MDS-coded DSS, the

user sends a query Qj to the j-th server for all j ∈ [1 : N].
Here, M ∼ U([1 : M]) is an RV representing the desired file
index. In response to the received query, server j returns the
answer Aj , which is a function of Qj and the code symbols
Xj stored in the server, back to the user. We formally describe
an MDS-coded (M,N,K) WPIR scheme as follows.

Definition 1 (MDS-WPIR Scheme). An (M,N,K) MDS-
WPIR scheme for an [N,K] MDS-coded DSS with N non-
colluding servers consists of:

• M independent files W(m) of size λ×K, for some λ ∈ N,
m ∈ [1 : M].

• A global random strategy S, whose alphabet is S. In
general, the realization of S is a matrix.

• An (N,K) MDS storage code C that encodes the file
W(m) into the matrix X(m) =

(
X

(m)
1 | · · · |X(m)

N

)
as

described above, m ∈ [1 : M].
• N queries Qj = ϕj(M,S) with alphabet Qj , j ∈ [1 : N],

that are generated by the query-encoding functions ϕj .
Query Qj is sent to the j-th server.

• N answers Aj = ψj(Qj ,Xj) with alphabet A = Fq ,
j ∈ [1 : N], that are constructed by the answer functions
ψj . All answers Aj are sent back to the user.

• N answer lengths ℓj(Qj) ∈ {0} ∪ N, j ∈ [1 : N], each
being a function of the corresponding query Qj .

In addition, the scheme should satisfy the following condi-
tion of perfect retrievability:

H
(
W(M)

∣∣A[1:N],Q[1:N],M
)
= 0.

C. Maximal Leakage Metric

From Definition 1, one can notice that at the j-th server,
the requested file index M can be inferred by observing
the query distribution PQj

, which results in an informa-
tion leakage on M to the servers. In this work, we adopt
a meaningful information-theoretic privacy metric from the
computer science literature, the MaxL metric, to measure
information leakage. Formally, given the query distributions
PM,Qj

, j ∈ [1 : N], of a given (M,N,K) WPIR scheme C ,
the overall MaxL about M of C is defined as

ρ(MaxL)(C ) ≜ max
j∈[1:N]

MaxL(M ;Qj),

where

MaxL(M ;Q) ≜ log2

(∑

q∈Q
max

m∈[M]
PQ|M (q|m)

)
.

Note that an [N,K] MDS-coded PIR scheme is an
(M,N,K) WPIR scheme C that satisfies ρ(MaxL)(C ) = 0,
such a condition is refereed to as the perfect privacy constraint.

D. WPIR Download Cost and Rate

The overall download cost (in number of symbols over Fq)
and rate of a WPIR scheme C , denoted by D(C ) and R(C ),
respectively, are given by

D(C ) =
N∑

j=1

EQj
[ℓj(Qj)] and R(C ) ≜ λK

D(C )
.

III. GENERAL MDS-WPIR SCHEMES

In this section, we give a general description of the
(M,N,K) MDS-WPIR schemes we consider in this work. We
start by reviewing two MDS-PIR capacity-achieving schemes
for small file sizes, namely the ZYQT scheme [25] and the
ZTSL scheme [26].1

A. The ZYQT Scheme and the ZTSL Scheme

1) Storage Data Structure: The following effective code
parameters are universally defined for an MDS-coded DSS:

n ≜ N

gcd(N,K)
, k ≜ K

gcd(N,K)
, r ≜ n− k.

Moreover, the subpacketization size for each file is given by
λ = n−k. For ease of exposition, we further append k dummy
variables X(m)

i,j ≡ 0 for i ∈ [n− k : n− 1], j ∈ [1 : N], such
that for all m ∈ [1 : M],

X(m) =




X
(m)
0,1 X

(m)
0,2 X

(m)
0,N

X
(m)
n−k−1,1X

(m)
n−k−1,2 X

(m)
n−k−1,N

0 0 0
. . .

0 0 0








k rows

. (1)

2) Query Generation: The query generation is the main
difference among the (M,N,K) MDS-WPIR schemes. In our
context, we will make use of the set

Pn
k ≜

{
sT = (s1, . . . , sk)

T : si, si′ ∈ [0 : n− 1],

si ̸= si′ , ∀ i, i′ ∈ [1 : k], i ̸= i′
}

of column vectors. The global random strategy alphabet for
the ZYQT and ZTSL schemes are, respectively, given by

SZYQT ≜ {s = (sT
1, . . . , s

T
M) : sT

m′ ∈ Pn
k , m

′ ∈ [1 : M]},

SZTSL ≜
{
s ∈ [0 : n− 1]M :

(
M∑

m′=1

sm′

)
mod n = 0

}
.

Note that |SZYQT| =
((

n
k

)
k!
)M

and |SZTSL| = nM−1. Since
the cost of uploading the queries for an MDS-PIR scheme
depends on the cardinality of the global random strategy al-
phabet, it is apparent that the ZTSL scheme has a lower upload
cost than the ZYQT scheme. It is also worth mentioning that
MDS-PIR schemes are generally constructed using an S that
is uniformly distributed over the set S.

1Precisely, the ZTSL scheme we consider here is the so-called Construction-
A MDS-PIR code that is referred in [26, Sec. III].
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We next present the original query generation for the ZYQT
and ZTSL MDS-PIR schemes for retrieving the m-th file
X(m), m ∈ [1 : M]. Notice that we do not adopt the uniformly-
distributed S here. Thus, the leakage ρ(MaxL) is not necessarily
equal to 0. We refer to the corresponding proposed schemes as
the ZYQT MDS-WPIR and ZTSL MDS-WPIR schemes and
denote them by CZYQT and CZTSL, respectively.
CZYQT : The query qj ∈ Qj , j ∈ [1 : N], generated from the

query-encoding function ϕj is defined as

qj = (sT
1, . . . , s

T
m−1,

(
sT
m + (j − 1)1T

)
mod n,

sT
m+1, . . . , s

T
M), sT

m ∈ Pn
k , m ∈ [1 : M].

CZTSL : The query qj ∈ Qj , j ∈ [1 : N], is generated by

qj =






s1 sm−1 (sm + (j − 1))sm+1 sM

s1 sm−1 (sm + (j − 1))sm+1 sM


 k rows

+




0 0 0
1 1 1

. . .

k − 1k − 1 k − 1




︸ ︷︷ ︸
M columns


 mod n,

where s ∈ SZTSL.
3) Answer Construction: Upon receiving a query (matrix)

qj =



q1,1 q1,2 q1,M

qk,1 qk,2 qk,M


,

the j-th server uses the answer function ψj to construct the
answer

Aj = ψj(qj ,Xj) =

(
M∑

m′=1

X
(m′)
q1,m′ ,j , · · · ,

M∑

m′=1

X
(m′)
qk,m′ ,j

)T

consisting of k sub-responses. With the storage data defined
in (1), the length of the answer is given by the number of
nonzero components in Aj , which is equal to

ℓj(qj) =
k∑

i=1

1

{
min

m′∈[1:M]
qi,m′ ≤ n− k − 1

}
,

where 1{statement} is the indicator function whose value is
1 if the statement is true and 0 otherwise.

Finally, we remark that according to the query constructions
for both the ZYQT and ZTSL MDS-WPIR schemes, the file
W(m) can always be reconstructed by the MDS property of
the storage code C (the so-called K-out-of-N property).

B. Time-Sharing MDS-WPIR Scheme

Clearly, selecting a different global random strategy S leads
to a different WPIR rate and privacy leakage of an MDS-WPIR
scheme. This work aims to achieve the best trade-off between
download rate and privacy leakage by using the best S for
an MDS-WPIR scheme. However, the minimization problem

of the information leakage for a given WPIR rate over the
global random strategy for an MDS-WPIR scheme is generally
not convex. Hence, in order to easily tackle the optimization
problem, we make use of a time-sharing principle to convexify
the optimization problem for determining the best rate-leakage
trade-off [16, Sec. VII].

Definition 2 (Time-Sharing MDS-WPIR Scheme). Consider
an MDS-WPIR scheme C̊ with query-encoding functions ϕ̊j ,
answer functions ψ̊j , and a global random strategy S̊. The
time-sharing MDS-WPIR scheme of C̊ is made by the query-
encoding functions ϕj = ϕ̊σT−1(j)(M,S) and the answer
functions ψj = ψ̊σT−1(j)

(
ϕ̊σT−1(j)(M,S),Xj

)
, j ∈ [1 : N],

for a given requested file index M , where T ∼ U([1 : N]),
and σ(·) denotes a left circular shift, while l left circular
shifts are obtained through function composition and denoted
by σl(·). Such an MDS-WPIR scheme C is called the time-
sharing scheme of C̊ .

Remark 1.
• A time-sharing MDS-WPIR scheme always has equal

information leakage at each server [16, Th. 1].
• In the following, unless specified otherwise, all the MDS-

WPIR schemes we discuss are assumed to be already
post-processed by applying the time-sharing principle,
and the minimization of MaxL is also done for the time-
sharing scheme of an MDS-WPIR scheme.

C. Minimization of MaxL for MDS-WPIR Schemes

Denote by zs ≜ PS(s) the PMF of the random strategy S. It
can be shown that both the MaxL ρ(MaxL)(C ) and the WPIR
download cost D(C ) of a given MDS-WPIR scheme C can
be expressed in terms of zs, s ∈ S. Thus, the minimization
of ρ(MaxL)(C ) under a download cost constraint D(C ) ≤ D
can be re-written in terms of the variables {zs}s∈S as the
optimization problem

minimize ρ(MaxL)({zs}s∈S) (2a)
subject to D({zs}s∈S) ≤ D, (2b)

∑

s∈S
zs = 1. (2c)

The following theorem can be proved using a similar
argument as in [16, Sec. VII].

Theorem 1. The optimization problem (2) is convex.

All the rate-leakage trade-off curves of the MDS-WPIR
schemes we study in this work are based on solving the convex
optimization problem above.

IV. NEW PROPOSED MDS-WPIR SCHEME

This section presents a new MDS-WPIR scheme, referred to
as the OLR MDS-WPIR scheme. We first present an example
illustrating the motivation for studying the new MDS-WPIR
scheme in Section IV-A. In particular, we will show that the
ZTSL MDS-WPIR scheme is naturally not a good scheme as it
is not functional in the high-rate region when there is leakage.
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A. Motivating Example: (M,N,K) = (2, 3, 2)

For (N,K) = (3, 2), we have the effective code parameters

n =
N

gcd(N,K)
= 3, k =

K

gcd(N,K)
= 2, r = n− k = 1,

and the subpacketization size for each file is λ = n− k = 1.
For the (2, 3, 2) ZTSL MDS-WPIR scheme, we have
SZTSL = {(0, 0), (1, 2), (2, 1)}, and the corresponding condi-
tional query PMF PQj |M (qj | m) and answer lengths are as
follows:




PQj |M (qj | m)
(
0 0
1 1

)(
1 2
2 0

)(
2 1
0 2

)(
1 0
2 1

)(
2 2
0 0

)(
0 1
1 2

)(
2 0
0 1

)(
0 2
1 0

)(
1 1
2 2

)

1 z1
3

z2
3

z3
3

z1
3

z2
3

z3
3

z1
3

z2
3

z3
3

2 z1
3

z2
3

z3
3

z2
3

z3
3

z1
3

z3
3

z1
3

z2
3

PQj
(qj)

z1
3

z2
3

z3
3

z1+z2
6

z2+z3
6

z1+z3
6

z1+z3
6

z1+z2
6

z2+z3
6

ℓj(qj) 1 1 1 1 1 1 2 2 0




{
m

,

(3)

where zj ≜ Pr(sj) for sj = (j − 1, (n − j + 1) mod n) ∈
SZTSL, j ∈ [1 : n]. A simple calculation gives

D(CZTSL) = 3 + z1, 0 ≤ z1 ≤ 1,

which indicates that D(CZTSL) can only range between 3 and
4, and never reaches R = λK/D = 2/D = 1. Thus, the ZTSL
MDS-WPIR scheme can not operate in the high-rate region.

B. New (M,N,K) MDS-WPIR Scheme

We now describe the new proposed (M,N,K) MDS-WPIR
scheme, referred to as the OLR MDS-WPIR scheme and
denoted by COLR. Here, only the query generation is presented,
as its answer construction is the same as Section III-A3.

1) Query Generation: The strategy set for our new MDS-
WPIR scheme is defined as

SOLR ≜
{
s = (sT

1, . . . , s
T
M−1) : s

T
m′ ∈ Pn

k , m
′ ∈ [1 : M],

(
M∑

m′=1

sT
m′

)
mod n = 0T

}
.

By definition, |SOLR| ≤
((

n
k

)
k!
)M−1

< |SZYQT| =
((

n
k

)
k!
)M

,
as we do not include all the possible vectors sT

m′ ∈ Pn
k .

The query qj ∈ Qj , j ∈ [1 : N], for retrieving the m-th
file, m ∈ [1 : M], is defined as

qj = (sT
1, . . . , s

T
m−1, q

T
m, s

T
m, . . . , s

T
M−1), (4)

where (sT
1, . . . , s

T
M−1) = s ∈ SOLR and

qT
m ≜

(
(j − 1)1T −

∑

m′∈[1:M−1]

sT
m′

)
mod n.

Example 1. Consider the same code parameters (M,N,K) =
(2, 3, 2) as in Section IV-A. We consider the strategy set

SOLR =
{(

0
1

)
︸︷︷︸
z1

,
(
0
2

)
︸︷︷︸
z2

,
(
1
0

)
︸︷︷︸
z3

,
(
1
2

)
︸︷︷︸
z4

,
(
2
0

)
︸︷︷︸
z5

,
(
2
1

)
︸︷︷︸
z6

}
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ(MaxL) (normalized)
R

CZYQT,M = 2

CZTSL,M = 2

COLR,M = 2

CZYQT,M = 3

CZTSL,M = 3

COLR,M = 3

CZYQT,M = 4

CZTSL,M = 4

COLR,M = 4

CZTSL,M = 5

COLR,M = 5

Fig. 1. Rate-leakage trade-off curve for the proposed MDS-WPIR protocols
from (3, 2) MDS-coded storage with M = 2 (circle markers), M = 3 (square
markers), M = 4 (diamond markers), and M = 5 (pentagon markers).

Similar to (3), we illustrate 9 out of the 18 query matrices
based on (4) and the corresponding query distributions and
answer lengths of the OLR MDS-WPIR scheme below:




PQj |M (qj | m)
(
0 0
2 1

)(
0 0
1 2

)(
2 1
0 0

)(
2 1
1 2

)(
1 2
0 0

)(
1 2
2 1

)(
1 0
0 1

)(
1 0
2 2

)(
0 1
1 0

)

1 z1
3

z2
3

z3
3

z4
3

z5
3

z6
3

z1
3

z2
3

z3
3

2 z2
3

z1
3

z5
3

z6
3

z3
3

z4
3

z3
3

z4
3

z1
3

PQj
(qj)

z1+z2
3

z1+z2
6

z3+z5
3

z4+z6
6

z3+z5
6

z4+z6
6

z1+z3
6

z2+z4
6

z1+z3
6

ℓj(qj) 1 1 1 0 1 0 2 1 2




{
m

.

As a result, one can compute the download cost D(COLR)
and obtain

D(COLR) = 2 + 2(z1 + z2 + z3 + z5) ≥ 2,

which shows that R(COLR) can reach (n−k)K/2 = 1, demon-
strating a complete rate-leakage trade-off for the new MDS-
WPIR scheme.

V. NUMERICAL RESULTS

Here, we compare the optimal rate-leakage trade-off curves
for our three proposed MDS-WPIR schemes CZYQT, CZTSL,
and COLR. The optimal trade-off curve is obtained by solving
the corresponding convex optimization problems as outlined
in (2). For the sake of presentation, the leakage is normalized
by log2 M bits so that its range is from 0 to 1.

In Fig. 1, we consider the case of N = 3 servers and K = 2,
and with different number of files M. As can be seen from
the figure by comparing the green and the blue curves, CZYQT
gives a better rate-leakage trade-off curve than CZTSL for all
considered values of M. Moreover, the ZTSL scheme cannot
be extended to a high information leakage. On the other, the
OLR scheme performs equally well as the ZYQT scheme
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ(MaxL) (normalized)

R

CZYQT,M = 2

CZTSL,M = 2

COLR,M = 2

CZTSL,M = 3

COLR,M = 3

Fig. 2. Rate-leakage trade-off curve for the proposed MDS-WPIR protocols
from (5, 3) MDS-coded storage with M = 2 (circle markers) and M = 3
(square markers).

for M = 2 files and slightly better for a certain range of
information leakage for M = 3 and M = 4 files, while at the
same time allowing for a much smaller query space.

The corresponding rate-leakage trade-off curves for N = 5
servers with K = 3 are provided in Fig. 2. The same
observations as in Fig. 1 can be made, i.e., the ZYQT scheme
outperforms the ZTSL scheme, while the proposed OLR
scheme yields an equal trade-off curve as the ZYQT scheme
for M = 2 files. As the query space is significant for the
ZYQT scheme for M = 3 files, we were not able to solve the
corresponding convex optimization problem as outlined in (2)
and therefore no curve for M > 2 is presented. However, as
mentioned previously, a nice feature of the OLR scheme is its
smaller query space, and hence the corresponding optimization
problem in (2) can be readily solved even for M = 3. In
particular, we have |SZYQT| = 216000 > |SOLR| = 1500 for
M = 3.

VI. CONCLUSION

This work is the first to consider WPIR for coded storage. In
particular, we proposed and compared three WPIR protocols
for the case where the data is encoded by an MDS code and
stored across multiple servers. Allowing for some leakage on
the identity of the requested file index allows for a higher
download rate, and we showed that the optimal trade-off
of download rate and information leakage using the MaxL
privacy metric is the solution to a convex optimization problem
for all three proposed protocols.
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