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Error exponents for source coding
under logarithmic loss

Hamdi Joudeh and Han Wu
ICT Lab, Eindhoven University of Technology, The Netherlands

Abstract—In source coding under the logarithmic loss distor-
tion measure, a source is compressed into a message, which is then
decompressed into a soft reconstruction (i.e. probability distribu-
tion). The distortion is measured by the remaining uncertainty
about the source given the message. Shkel and Verdú showed that
this lossy source coding setting is intimately related to almost
lossless source coding with list decoding, and used this insight
to characterize the single-shot excess distortion error probability.
In this work, we build upon this connection to list decoding
and derive error exponents for source coding under logarithmic
loss, without and with side information. The error exponents are
closely related to their almost lossless counterparts.

I. INTRODUCTION

In this paper we study the problem of fixed-length lossy
source coding of a discrete memoryless source (DMS) under
the logarithmic loss (log-loss) distortion measure. While the
log-loss is most commonly used in prediction and learning
theory, its adoption as a distortion measure in lossy source cod-
ing is also natural, specifically in settings where the decoder
produces a soft reconstruction (i.e. probability distribution) of
the source instead of a point estimate [1]–[3].

The log-loss distortion measure enjoys some mathematical
properties that enable elegant characterizations in a number of
settings. For instance, under an average distortion criterion, the
rate-distortion function is given by [1, Example 2]

R(∆) = H(X)−∆ (1)
where H(X) is the source entropy and ∆ is the average log-
loss distortion (assume 0 ≤ ∆ ≤ H(X)). The converse for
the corresponding coding theorem is obtained by bounding the
average log-loss distortion using the conditional entropy of the
source given its reconstruction. By building upon this property,
Courtade and Weissman [2] derived tight outer bounds in
various multi-terminal source coding settings under average
log-loss distortion (see also Courtade and Wesel [1]).

More recently, Shkel and Verdú [3] derived single-shot
bounds under both excess and average log-loss distortion
criteria, without and with decoder side information (see [4],
[5] for universal extensions). Key to their approach is a close
connection between the log-loss setting and the almost lossless
setting with list decoding. As we shall see, this connection to
list decoding also plays a central role in our current work.

In this paper, instead of single-shot bounds, we are interested
in error exponents under an excess log-loss distortion criterion.
We derive error exponents without and with side information,
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while mainly focusing on universal schemes. We also demon-
strate close connections to results in almost lossless settings.

Notation: We use standard notation, briefly explained here.
P(X ) denotes the probability simplex on a finite alphabet
X . For a probability mass function (pmf) PX ∈ P(X ), we
denote its support by S(PX) and its entropy by H(PX). The
relative entropy between two pmfs QX and PX is denoted by
D(QX∥PX). For (X,Y ) with joint pmf PXY = PX|Y PY , the
conditional entropy of X given Y is denoted by H(PX|Y |PY ).
The type of a sequence x ∈ Xn is denoted by Px, and Pn(X )
is the set of all types of sequences in Xn. For Q ∈ Pn(X ), the
corresponding type class is denoted by Tn(Q). Given a second
sequence y ∈ Yn, Pxy and Px|y are the joint and conditional
types. Pn(X × Y) and Pn(X|Y) are the sets of all joint and
conditional types. Tn(QX|Y |y) is the conditional type class of
QX|Y ∈ Pn(X|Y) given y. We will make use of types and
type classes and their basic properties, such as cardinality and
probability bounds (see, e.g., [6, Ch.2]).

II. SOURCE CODING UNDER LOG-LOSS

Consider a DMS with finite alphabet X that randomly
generates i.i.d. source sequences X ≜ (X1, X2, . . . , Xn)
according to a pmf PX ∈ P(X ). We use x ≜ (x1, x2, . . . , xn)
to denote a realization of X . A soft reconstruction of x is a
member of P(Xn), i.e. a distribution on Xn, denoted by P̂n.
The log-loss distortion between x and P̂n is defined as

d(x, P̂n) ≜ log
1

P̂n(x)
. (2)

The log-loss, also referred to as the self-information loss,
can be understood as the remaining uncertainty about x given
its reconstruction P̂n [1]–[3]. For instance, d(x, P̂n) is zero if
and only if P̂n has a single mass point at x, i.e. an exact hard
reconstruction; and infinite whenever x has zero probability
under P̂n. For convenience, we work with the normalized (per-
symbol) log-loss defined as dn(x, P̂n) ≜ 1

nd(x, P̂n).
In the lossy source coding setting considered in this work,

the sequence X is encoded into a message index from the finite
setMn, which is then decoded into a soft reconstruction from
P(Xn). A lossy source code of block-length n is thus a pair of
mappings ϕn : Xn →Mn and φn :Mn → P(Xn), referred
to as the encoder and decoder respectively.

For a lossy source code (ϕn, φn), the code rate is given
by 1

n log |Mn|, while P
[
dn
(
X, φn (ϕn(X))

)
> ∆

]
is the

excess distortion error probability for some distortion level
∆ ≥ 0. We say that (ϕn, φn) is an (n,R,∆, ϵ)-code if
1

n
log |Mn| ≤ R and P

[
dn
(
X, φn (ϕn(X))

)
> ∆

]
≤ ϵ.
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The minimal error probability for fixed (n,R,∆) is defined as

ε(n,R,∆) ≜ inf {ϵ : there exists an (n,R,∆, ϵ)-code} .
We are interested in characterizing the asymptotic behaviour
of ε(n,R,∆), captured through the error exponent defined as

E(R,∆) ≜ lim
n→∞

1

n
log

1

ε(n,R,∆)
. (3)

Remark 1. The above problem does not fall under the um-
brella of standard lossy source coding in discrete memoryless
settings [6], [7]. In the standard paradigm, the reconstruction
is a sequence drawn from a discrete product alphabet; and
the distortion is additive, i.e. a normalized sum of single-letter
distortions. In the setting considered here, the reconstruction
alphabet P(Xn) is not a product alphabet and is not discrete;
and the distortion measure is not additive. For dn(x, P̂n) to
be additive, the soft reconstruction P̂n must be a product
distribution, as in earlier works on log-loss source coding [1],
[2]. This need not be the case in general, and as we shall see,
the codes we propose employ non-product soft reconstructions.

A. Connection to list decoding

In [3], Shkel and Verdú established a fundamental connec-
tion between lossy source coding under log-loss and almost
lossless source coding with list decoding, leading to an exact
characterization of ε(n,R,∆). This connection is central to
the approach we take here, therefore, we review it in some
detail. We start with a key lemma linking the log-loss of a
soft reconstruction to the list size in list decoding.

To this end, fix a soft reconstruction P̂n ∈ P(Xn) and a
distortion level ∆ ≥ 0. We say that a sequence x ∈ Xn is
∆-covered by P̂n if dn(x, P̂n) ≤ ∆. If P̂n ∆-covers every
element of a set (or list) Ln ⊆ Xn, then the set Ln is also
said to be ∆-covered by the soft reconstruction P̂n.

Lemma 1. Let Ln ⊆ Xn. There exists a soft-reconstruction
P̂n ∈ P(Xn) that ∆-covers Ln if and only if

|Ln| ≤ ⌊exp(n∆)⌋. (4)

Proof. The direct part holds by taking P̂n to be uniform on
Ln and zero elsewhere. The converse part follows from [3,
Lemma 1], reproduced here for completeness. Let Bn(∆, P̂n)
be the set of all source sequences ∆-covered by P̂n, i.e.

Bn(∆, P̂n) ≜
{
x ∈ Xn : dn(x, P̂n) ≤ ∆

}
. (5)

It is sufficient to show |Bn(∆, P̂n)| ≤ ⌊exp(n∆)⌋. Note that
x ∈ Bn(∆, P̂n) implies P̂n(x) ≥ exp(−n∆), and therefore

1=
∑

x∈Xn

P̂n(x) ≥
∑

x∈Bn(∆,P̂n)

P̂n(x) ≥
∣∣Bn(∆, P̂n)

∣∣ exp(−n∆).

The bound is tightened by including the floor function.

Now consider an almost lossless list source code: here a
source sequence is encoded into one of ⌊exp(nR)⌋ message in-
dices, and a message index is decoded into a list of ⌊exp(n∆)⌋
source sequences. A decoding error occurs if the generated

source sequence is not in the decoded list. From Lemma 1, we
see that such a code with error probability ϵ can be converted
into a (n,R,∆, ϵ) log-loss source code. Conversely, a log-loss
source code can be converted into an almost lossless list source
code. This connection leads to the following result.

Theorem. (Shkel-Verdú [3, Theorem 5-6]). Let G : Xn →
{1, 2, . . . , |Xn|} be a a probability rank function that ranks
source sequences in decreasing order of their probability. Then

ε(n,R,∆) = P
[
G(X) > ⌊exp(nR)⌋ ⌊exp(n∆)⌋

]
. (6)

III. ERROR EXPONENT

We now present the first result of this paper. To this end,
we first define the function F (R) on 0 ≤ R < log |S(PX)| as

F (R) ≜ min
QX :H(QX)≥R

D(QX∥PX). (7)

Note that F (R) = E(R, 0), which is the error exponent in the
almost lossless case [6], [8], [9]. F (R) is continuous, convex
and increasing on its domain, with F (R) = 0 on 0 ≤ R ≤
H(PX). The expression in (7) is known as a primal form.
F (R) admits an equivalent dual form given as [6, Prob.2.15]

F (R) = sup
ρ≥0

ρ
(
R−H 1

1+ρ
(X)

)
(8)

where H 1
1+ρ

(X) is the Rényi entropy of order 1/(1 + ρ).
Recall that the log-loss rate-distortion function is given by

R(∆) = H(PX) −∆, and to ensure that ε(n,R,∆) goes to
zero, we must have R > H(PX)−∆. On the other hand, for
rates satisfying R ≥ log |S(PX)| − ∆, the whole support of
Pn
X can be covered by lists of size en∆. Therefore, the relevant

range is H(PX) < R+∆ < log |S(PX)|.
Theorem 1. Let (R,∆) be a rate-distortion pair such that
H(PX) < R+∆ < log |S(PX)|. Then

E(R,∆) = F (R+∆). (9)

We observe that E(R,∆) = E(R +∆, 0), i.e. the log-loss
error exponent as a function of R is merely a translation of
the almost lossless error exponent by ∆ bits to the left. This
can be understood in light of the optimal source code that
achieves (6) as follows. For a log-loss source code of rate
R and distortion ∆, an excess distortion error occurs when
the source generates a sequence with probability rank greater
than

⌊
enR

⌋ ⌊
en∆

⌋
, that is the number of sequences covered by⌊

enR
⌋

lists of size
⌊
en∆

⌋
each. On the other hand, an almost

lossless source code of rate R +∆ makes an error when the
source generates a sequence with probability rank greater than⌊
en(R+∆)

⌋
. Asymptotically, the two error events have almost

the same probability, yielding in the same error exponent.
The above argument is sufficient for proving Theorem 1,

yet it employs a code that depends on the source pmf (or
probability rank function). Further on we present an alternative
proof using the method of types, extending the Longo-Sgarro
approach [9] (see also Csiszár-Körner [6]) from the almost
lossless case to the log-loss case. As is often the case with
types-based proofs, a universal scheme emerges.
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It is worthwhile mentioning that the log-loss error exponent
expression in (9) can be obtained from Marton’s error exponent
[7] by replacing the general rate-distortion function with its
log-loss counterpart. While this is perhaps expected, the result
in Theorem 1 does not follow directly from Marton’s proof, at
least not without modification, as the log-loss setting consid-
ered here is not a special case of the classical rate-distortion
setting (see Remark 1). We shall see next that Theorem 1 is
proved directly using the connection to list decoding.

A. Proof of Theorem 1

1) Achievability: Fix R > 0 and n ∈ N, and let Jn =
|Pn(X )| and Mn =

⌊
(1 + n)−|X|enR

⌋
. For every type Q ∈

Pn(X ), partition Tn(Q) into Mn lists all roughly of the same
size. Ln(x) denotes the list containing x. By construction,

|Ln(x)| ≤
⌈ |Tn(Px)|

Mn

⌉
(10)

for every x ∈ Xn. An emitted source sequence x is encoded
into ϕn(x) =

(
tn(x), ln(x)

)
, where tn(x) ∈ {1, 2, . . . , Jn}

is the type index and ln(x) ∈ {1, 2, . . . ,Mn} is the list
index. Upon receiving ϕn(x), the decoder reproduces the list
Ln(x) containing x. The corresponding soft reconstruction
φn(ϕn(x)) = P̂n

(
· |ϕn(x)

)
is set as

P̂n

(
x̂|ϕn(x)

)
=

{
1

|Ln(x)| , x̂ ∈ Ln(x)

0, otherwise.

The rate of this code satisfies 1
n log (JnMn) ≤ R. For any

sequence x ∈ Xn, the log-loss incurred by the corresponding
reconstruction φn(ϕn(x)) is bounded above as

dn
(
x, φn(ϕn(x))

)
=

1

n
log |Ln(x)|

≤ 1

n
log

⌈
enH(Px)

⌊
enR−|X| log(1+n)

⌋
⌉

(11)

≤ H(Px)−R+ δn (12)

where δn ≥ 0 goes to zero as n grows large.
We now analyze the error probability. To this end, fix ∆ ≥ 0

such that H(PX) < R +∆ < log |S(PX)|. We can see from
(12) that all source sequences in the set Bn, defined as

Bn =
⋃

Q∈Pn(X ):H(Q)≤R+∆−δn

Tn(Q), (13)

are reconstructed with a log-loss not exceeding ∆, and thus
the excess distortion error event is included in Xn \ Bn. The
error probability under source pmf PX is bounded above as

Pn
X(Xn \ Bn) =

∑

Q∈Pn(X ):H(Q)>R+∆−δn

Pn
X

(
Tn(Q)

)

≤
∑

Q∈Pn(X ):H(Q)>R+∆−δn

e−nD(Q∥PX) (14)

≤ (n+ 1)|X | max
Q∈Pn(X ):H(Q)>R+∆−δn

e−nD(Q∥PX) (15)

≤ (n+ 1)|X |e−nF (R+∆−δn). (16)

The above steps are standard and use the properties of types
and type classes. Achievability follows from (16) and the
continuity of F (R′) on H(PX) < R′ < log |S(PX)|.
Remark 2. As mentioned earlier, the above source code is
universal and does not depend on PX . The code is also
universal with respect to the distortion level ∆, and only
depends on the rate R (and block-length n). For fixed R,
the same sequence of codes achieves a positive exponent for
every PX and ∆ satisfying R < H(PX)−∆. The key to the
universality with respect to ∆ is the variable list partitioning of
type classes, where list sizes depend on the type and code rate
but not on the distortion level (see (10)). The same partitioning
is used by Bunte and Lapidoth in [10] in the context of strictly
lossless list source coding (also known as task encoding),
where the focus is on analyzing list size moments.

Remark 3. In the achievability proof of Marton’s error expo-
nent [7], a key ingredient is the type covering lemma which
states that for any type Q ∈ Pn(X ) with a rate-distortion
function satisfying R(Q,∆) ≤ R − δ, the corresponding
type class Tn(Q) can be ∆-covered by enR reconstruction
sequences. The type covering lemma is often proved using
random selection (i.e. random coding). In the log-loss setting
considered here, type covering is accomplished through simple
partitioning, and the proof does not rely on random coding.

2) Converse: Fix a pair (R,∆) and a source pmf PX such
that H(PX) < R +∆ < log |S(PX)|. For every block-length
n, let (ϕ⋆n, φ

⋆
n) be an optimal code achieving the minimal error

probability ε(n,R,∆). Moreover, define the set B⋆n ≜
{
x ∈

Xn : dn (x, φ
⋆
n (ϕ

⋆
n(x))) ≤ ∆

}
. An error occurs whenever the

source produces a sequence in Xn \ B⋆n.
Let M(∆,B⋆n) be the minimum number of soft reconstruc-

tion required to ∆-cover B⋆n. From Lemma 1, we know that
any soft reconstruction can ∆-cover at most ⌊en∆⌋ source
sequence. Therefore, we must have

M(∆,B⋆n) ≥
⌈ |B⋆n|
⌊en∆⌋

⌉
. (17)

It immediately follows that the rate R of (ϕ⋆n, φ
⋆
n) must satisfy

enR ≥M(∆,B⋆n) ≥ |B⋆n|e−n∆. (18)

Now let δn = |X |
n log(1+n)+ 1

n log 2 and let Q ∈ Pn(X ) be
a type such that H(Q) ≥ R+∆+ δn. The cardinality of the
corresponding type class Tn(Q) is bounded below as

|Tn(Q)| ≥ (1 + n)−|X|enH(Q) ≥ 2en(R+∆) ≥ 2|B⋆n|
from which we conclude that at least half of the sequences in
Tn(Q) are not contained in B⋆n. Therefore

ε(n,R,∆) = Pn
X (Xn \ B⋆n) ≥

1

2
Pn
X (Tn(Q))

≥ 1

2
(n+ 1)−|X|e−nD(Q∥PX) = e−nD(Q∥PX)−nδn (19)

obtained from the standard type class probability lower bound.
This holds for all types satisfying H(Q) ≥ R+∆+δn, hence

− 1

n
log ε(n,R,∆) ≤ δn + min

Q∈Pn(X ):H(Q)≥R+∆+δn
D(Q∥PX)
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= δn + Fn(R+∆+ δn) (20)

where Fn(R
′) is defined as F (R′) in (7) except that the

minimization is over types in Pn(X ) instead of all pmfs in
P(X ). By definition, we know that F (R′) ≤ Fn(R

′). In
addition, it can be shown that Fn(R

′) ≤ F (R′)+ δ′n for some
δ′n > 0 that goes to zero as n grows large.1 By combining this
with (20) and taking the limit, the converse result follows.

IV. SIDE INFORMATION

In this section we consider settings with side information.
Here we have a pair of DMSs with finite alphabets X and
Y . The sources randomly generate an i.i.d. sequence of pairs
(X,Y ) ≜

(
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

)
according to a

joint pmf PXY ∈ P(X×Y). The goal remains to compress the
sequence X and then decompress it into a soft reconstruction
in P(Xn), but now Y is available either at both the encoder
and decoder sides, or at the decoder side only.

A. Encoder-decoder side information

For the case where the side information sequence is avail-
able at both the encoder and decoder sides, a lossy source
code of block-length n is given by the pair of mappings
ϕn : Xn × Yn → Mn and φn : Mn × Yn → P(Xn). A
(n,R,∆, ϵ)-code, minimal error probability and error exponent
are defined in a standard manner. The latter two are denoted
by εX|Y (n,R,∆) and EX|Y (R,∆) respectively.

This problem is very similar to its counterpart with no
side information, i.e. given Y = y, the problem reduces to
encoding and decoding a memoryless source (not necessarily
i.i.d.) with distribution PX|Y (x|y) =

∏n
i=1 PX|Y (xi|yi).

Nevertheless, it is still useful to characterize the error exponent
in this case, as it provides an upper bound for the more
interesting case with decoder side information only. To this
end, we define FX|Y (R) on 0 ≤ R < log |S(PX)| as

FX|Y (R) ≜ min
QXY :H(QX|Y |QY )≥R

D(QXY ∥PXY ). (21)

FX|Y (R) is continuous, convex and increasing on its domain;
and is zero for 0 ≤ R ≤ H(PX|Y |PY ). Moreover, we have
FX|Y (R) = EX|Y (R, 0), that is the error exponent in the
almost lossless case. FX|Y (R) also admits the following dual
form in terms of Arimoto’s conditional Rényi entropy [11]

FX|Y (R) = sup
ρ≥0

ρ
(
R−H 1

1+ρ
(X|Y )

)
(22)

obtained using Lagrangian duality techniques (see, e.g., the
proof of [10, Equation (32)] by Bunte and Lapidoth).

Theorem 2. Let (R,∆) be a rate-distortion pair such that
H(PX|Y |PY ) < R+∆ < log |S(PX)|. Then

EX|Y (R,∆) = FX|Y (R+∆). (23)

The proof of Theorem 2 (omitted for brevity) is very similar
to that of Theorem 1, but relies on conditional types.

1By continuity and since
⋃

n∈N Pn(X ) is dense in P(X ) [9, Rem. 2].

B. Decoder side information: Wyner-Ziv

We now turn our attention to the case where the side
information sequence Y is only available at the decoder. This
is the Wyner-Ziv setting, specialized to the log-loss distortion
measure. A lossy source code of block-length n here is given
by the pair ϕn : Xn →Mn and φn :Mn × Yn → P(Xn).
The minimal error probability and error exponent are denoted
by εWZ

X|Y (n,R,∆) and EWZ
X|Y (R,∆) respectively.

Next, we observe that the encoder-decoder side information
result in Theorem 2 provides the following converse bound

EWZ
X|Y (R,∆) ≤ Esp

X|Y (R,∆) ≜ FX|Y (R+∆). (24)

For ∆ = 0, the setting reduces to the Slepian-Wolf problem,
and we denote the error exponent by ESW

X|Y (R). The bound
ESW

X|Y (R) ≤ FX|Y (R), a special case of (24), was obtained by
Gallager in [12] (see also Csiszár and Körner [13, Theorem 3]).
This bound on the Slepian-Wolf error exponent is sometimes
referred to as the sphere-packing exponent [14], due to close
resemblance to the sphere-packing exponent in channel coding.
Similarly, the bound in (24) can be thought of as a sphere-
packing exponent for the log-loss Wyner-Ziv setting.

Next, we derive a lower bound for EWZ
X|Y (R,∆). Define the

function F̃X|Y (R) on 0 ≤ R < log |S(PX)| as

F̃X|Y (R)≜min
QXY

{
D(QXY ∥PXY )+

∣∣R−H(QX|Y |QY )
∣∣+
}

where |a|+ ≜ max{0, a}. Note that F̃X|Y (R) ≤ FX|Y (R).
Moreover, F̃X|Y (R) admits a dual form

F̃X|Y (R) = max
ρ∈[0,1]

ρ
(
R−H 1

1+ρ
(X|Y )

)
. (25)

F̃X|Y (R) is an achievable error exponent in the Slepian-Wolf
setting [12], [13], referred to as the random-coding error expo-
nent, as it is achieved through random coding (or binning) in
close resemblance to the random-coding exponent in channel
coding. A corresponding random-coding error exponent for the
log-loss Wyner-Ziv problem is presented next.

Theorem 3. Let (R,∆) be a rate-distortion pair such that
H(PX|Y |PY ) < R+∆ < log |S(PX)|. Then

EWZ
X|Y (R,∆) ≥ Er

X|Y (R,∆) ≜ F̃X|Y (R+∆).

For fixed ∆, the exponents Er
X|Y (R,∆) and Esp

X|Y (R,∆)

coincide on H(PX|Y |PY ) − ∆ < R ≤ Rcr, where Rcr is
the largest rate at which the convex curve Esp

X|Y (R,∆), as a
function of R, meets it supporting line of slope 1. Note that
Rcr is reminiscent of the critical rate in channel coding. Above
this rate, the two exponents differ in general.

C. Proof of Theorem 3

The proof is based on random binning and a list decoding
variant of the universal minimum entropy decoding rule [13],
[15]. In the analysis of this scheme, we use H(x|y) as a
shorthand notation for the conditional entropy H(Px|y|Py)
calculated from the joint type Pxy = Px|yPy .
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Let Jn = |Pn(X )| and Mn =
⌊
(1 + n)−|X|enR

⌋
for fixed

R and n. A binning function bn : Xn → {1, 2, . . . ,Mn} is
a mapping that assigns an index bn(x) ∈ {1, 2, . . . ,Mn} to
every source sequence x ∈ Xn. For a fixed bin assignment,
determined by a given binning function bn, the set of all source
sequences with the same bin index as x is denoted by

Bn(x|bn) ≜ {x̂ ∈ Xn : bn(x̂) = bn(x)}.
Further on, we will analyze the error probability averaged over
an ensemble of binning functions. To that end, we denote a
random binning function by Bn, where bn is a realization of
Bn. We use Gallager’s ensemble [12]: every source sequence is
assigned a bin index uniformly at random; and bin assignments
are pairwise independent across sequences.

Encoding: The generated source sequence x is encoded into
ϕn(x) =

(
tn(x), bn(x)

)
, where tn(x) is the type index and

bn(x) is the bin index. The rate satisfies 1
n log (JnMn) ≤ R.

Decoding: Upon receiving ϕn(x), the decoder knows that
x is in the set Tn(Px) ∩ Bn(x|bn). Now suppose that the
side information sequence is equal to y. For every sequence
x̂ ∈ Tn(Px)∩Bn(x|bn), the decoder computes the conditional
entropy H(x̂|y) and produces a list Ln(ϕn(x),y) of size

|Ln(ϕn(x),y)| = min
{ ⌊

en∆
⌋
, |Tn(Px) ∩ Bn(x|bn)|

}

comprising source sequences with the lowest conditional en-
tropy. The soft reconstruction is taken to be uniformly sup-
ported on Ln(ϕn(x),y). It is clear that an excess distortion
error occurs if Ln(ϕn(x),y) does not include the encoded
source sequence x. Moreover, by setting ∆ = 0, we recover
the classical minimum entropy decoder.

Error probability: Let En(x|y, bn) denote the set of all
source sequences other than x, but with the same type and
bin as x, and a conditional entropy smaller than or equal to
that of x given y. For an excess distortion error to occur, we
must have |E(x|y, bn)| ≥

⌊
en∆

⌋
= en(∆−δn), where δn ≥ 0

goes to zero as n grows large. The excess distortion error
probability, averaged over Bn, is hence bounded above by

P

[
|En(X|Y , Bn)| ≥ en(∆−δn)

]
≤

∑

x,y

Pn
XY (x,y)min

{
1, e−n(∆−δn)E

[
|En(x|y, Bn)|

]}
(26)

which follows from Markov’s inequality combined with the
trivial upper bound of 1. We now take a small detour to
bound E [|En(x|y, Bn)|]. To this end, define the set E ′n(x|y) ≜{
x̂ ∈ Tn(Px) : x̂ ̸= x, H

(
x̂|y
)
≤ H

(
x|y
)}

, and observe that

E [|En(x|y, Bn)|] =
∑

x̂∈E′
n(x|y)
P [Bn(x̂) = Bn(x)] =

|E ′(x|y)|
Mn

which follows from uniform pairwise independent bin assign-
ment. Next, we note that

|E ′n(x|y)| ≤
∑

QX|Y ∈Pn(X|Y):H(QX|Y |Py)≤H(x|y)
|Tn(QX|Y |y)|

≤ (n+ 1)|X |·|Y|enH(x|y). (27)

From the above and Mn =
⌊
(1 + n)−|X|enR

⌋
, we obtain

E [|En(x|y, Bn)|] ≤ enH(x|y)−nR+nδ′n (28)

from some δ′n ≥ 0 which goes to zero as n grows large.
Defining δ′′n ≜ δn + δ′n, and using (28), it follows that

min
{
1, e−n(∆−δn)E

[
|En(x|y, Bn)|

]}
≤e−n|R+∆−H(x|y)|++nδ′′n .

Plugging this back into (26), and invoking the usual random
coding argument of the existence of a code, we obtain

εWZ
X|Y (n,R,∆)≤

∑

y∈Yn

∑

x∈Xn

Pn
XY (x,y)e

−n|R+∆−H(x|y)|++nδ′′n

≤
∑

QXY ∈Pn(X×Y)

e−nD(QXY ∥PXY )e−n|R+∆−H(QX|Y |QY )|++nδ′′n

≤ (n+ 1)|X |·|Y|e−nF̃X|Y (R+∆)+nδ′′n . (29)

The result in Theorem 3 follows.

V. CONCLUDING REMARKS

In the high rate regime where Er
X|Y (R,∆) and Esp

X|Y (R,∆)
diverge, it is possible to derive a tighter achievable exponent,
which is a log-loss counterpart of the expurgated exponent in
source coding [15]. We skip this due to lack of space. As
an extension, it is of interest to derive error exponents and
universal schemes for the multi-terminal settings in [1], [2].
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