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The Chow rings of moduli spaces

of elliptic surfaces over P1

Samir Canning and Bochao Kong

Abstract

Let EN denote the coarse moduli space of smooth elliptic surfaces over P1 with funda-
mental invariant N . We compute the Chow ring A∗(EN ) for N ⩾ 2. For each N ⩾ 2,
A∗(EN ) is Gorenstein with socle in codimension 16, which is surprising in light of the
fact that the dimension of EN is 10N − 2. As an application, we show that the maxi-
mal dimension of a complete subvariety of EN is 16. When N = 2, the corresponding
elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice U . We show that the
generators for A∗(E2) are tautological classes on the moduli space FU of U -polarized
K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on
the tautological rings of moduli spaces of lattice polarized K3 surfaces.

1. Introduction

Given a smooth stackX that is the solution to a moduli problem, there are often natural algebraic
cycles called tautological classes in A∗(X), the Chow ring of X with rational coefficients. For
example, when X = Mg, the moduli space of smooth curves of genus g, there is the tautological
subring R∗(Mg) ⊂ A∗(Mg) generated by the κ-classes. Faber [Fab99] gave a series of conjectures
on the structure of R∗(Mg), which assert that R∗(Mg) behaves like the algebraic cohomology
ring of a smooth projective variety of dimension g − 2, even though Mg is neither projective
nor of dimension g − 2. Looijenga [Loo95] proved that Ri(Mg) = 0 for i > g − 2 and that
Rg−2(Mg) ∼= Q, settling one of Faber’s conjectures. Looijenga’s theorem gives a new proof of
Diaz’s result [Dia84] that the maximal dimension of a complete subvariety of Mg is g− 2. Faber
further conjectured that R∗(Mg) should be a Gorenstein ring with socle in codimension g − 2,
meaning that the intersection product is a perfect pairing

Ri(Mg)×Rg−2−i(Mg) → Rg−2(Mg) ∼= Q .

Faber [Fab99] and Faber–Zagier proved this conjecture for g ⩽ 23 by producing relations
in the tautological ring and showing computationally that the resulting quotient is Goren-
stein.

Recently, there has been significant interest in the tautological rings R∗(FΛ) of the moduli
spaces FΛ of lattice polarized K3 surfaces [MP13, MOP17, PY20, BLMM17, BL19]. In [MOP17],
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S. Canning and B. Kong

the tautological rings are defined as the subrings of A∗(FΛ) generated by the fundamental classes
of Noether–Lefschetz loci together with pushforwards of κ-classes from all Noether–Lefschetz loci.
There are natural analogues of Faber’s conjectures for R∗(FΛ).

1

Conjecture 1.1 (Oprea–Pandharipande). Let d = dimFΛ.

(i) For i > d− 2, we have Ri(FΛ) = 0.

(ii) There is an isomorphism Rd−2(FΛ) ∼= Q.

The primary evidence for part (i) of this conjecture is a theorem of Petersen [Pet19, Theo-
rem 2.2], which says that the image RH2∗(FΛ) of R∗(FΛ) in cohomology under the cycle class
map vanishes above cohomology degree 2(d − 2). If Conjecture 1.1 holds, then one can further
ask for the analogue of Faber’s Gorenstein conjecture: is there a perfect pairing

Ri(FΛ)×Rd−2−i(FΛ) → Rd−2(FΛ) ∼= Q ?

In this paper, we study the Chow rings of moduli spaces EN of elliptic surfaces Y fibered
over P1 with section s : P1 → Y and fundamental invariant N (see Section 2 for definitions). The
main result is that natural analogues of Faber’s vanishing and Gorenstein conjectures hold for
the entire Chow ring A∗(EN ) for each N ⩾ 2.

Theorem 1.2. Let N ⩾ 2 be an integer.

(i) The Chow ring has the form

A∗(EN ) = Q[a1, c2]/IN ,

where a1 ∈ A1(EN ), c2 ∈ A2(EN ), and IN is the ideal generated by the two relations from
Proposition 3.4.

(ii) The Poincaré polynomial collecting dimensions of the Chow groups is given by

pN (t) =
∑

dimAi(EN )ti

= 1 + t+ 2t2 + 2t3 + 3t4 + 3t5 + 4t6 + 4t7 + 5t8

+ 4t9 + 4t10 + 3t11 + 3t12 + 2t13 + 2t14 + t15 + t16 .

(iii) The Chow ring A∗(EN ) is Gorenstein with socle in codimension 16.

We also have similar partial results for the Poincaré polynomial for the cohomology ring when
N = 2 that will appear in future work.

A notable property is that the dimensions of the Chow groups are independent of N . In
particular, the Chow groups Ai(EN ) are only nonzero in codimension 0 ⩽ i ⩽ 16, despite the fact
that the dimensions of the moduli spaces EN go to infinity with N . Moreover, the ring structure
depends in a simple and explicit way on N coming from the relations in Proposition 3.4. As
a consequence of Theorem 1.2, we obtain an analogue of Diaz’s theorem [Dia84] on the maximal
dimension of a complete subvariety of Mg. In our case, the bound is independent of N .

Corollary 1.3. Let N ⩾ 2 be an integer. The maximal dimension of a complete subvariety
of EN is 16.

1We learned about these analogues from a lecture given by Rahul Pandharipande in the algebraic geometry seminar
at UCSD and from a course on K3 surfaces given by Dragos Oprea.
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Chow rings of moduli spaces of elliptic surfaces over P1

When N = 2, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic
lattice U with intersection matrix [

0 1
1 0

]
.

We show that the generators a1 and c2 of A∗(E2) have natural interpretations as tautological
classes in R∗(FU ), where FU is the moduli space of U -polarized K3 surfaces.

Theorem 1.4. Under the identification of A∗(E2) with A∗(FU ), the classes a1 and c2 lie in
R∗(FU ). Therefore, A

∗(FU ) = R∗(FU ) is a Gorenstein ring with socle in codimension 16. In
particular, Conjecture 1.1 is true for Λ = U , the hyperbolic lattice.

The paper is structured as follows. In Section 2, we collect the necessary background on
elliptic surfaces, the closely related notion of Weierstrass fibrations and their moduli. In Section 3,
we prove Theorem 1.2 and Corollary 1.3. In Section 4, we explore the case N = 2 and prove
Theorem 1.4. We also compute relations among the codimension 1 κ-classes.

Notation and conventions

(i) Schemes are over a fixed algebraically closed field k of characteristic not 2 or 3. All stacks
are fibered over the category of schemes over k.

(ii) We denote the Chow ring of a space X with rational coefficients by A∗(X).

(iii) We use the subspace (classical) convention for projective bundles.

2. Elliptic surfaces and Weierstrass fibrations

In this section, we collect the necessary background information on elliptic surfaces and Weier-
strass fibrations following Miranda [Mir81]. The main objects of interest in this paper will be
moduli spaces of minimal elliptic surfaces over P1 with section.

Definition 2.1. A minimal elliptic surface over P1 with section consists of the following data:

(i) a smooth projective surface Y ,

(ii) a proper morphism π : Y → P1 such that the general fiber is a smooth connected curve of
genus 1 and none of the fibers contain any (−1)-curves,

(iii) a section s : P1 → Y of π.

Remark 2.2. Note that the minimality condition is different from the usual one given in the
birational geometry of surfaces. There can be (−1)-curves on the surface Y , but they must not
lie in the fibers of p.

We will study moduli spaces of minimal elliptic surfaces by studying the closely related notion
of Weierstrass fibrations.

Definition 2.3. A Weierstrass fibration over P1 consists of the following data:

(i) a projective surface X,

(ii) a flat proper morphism p : X → P1 such that every fiber is an irreducible curve of arithmetic
genus 1 and the general fiber is smooth,

(iii) a section s : P1 → X of p whose image does not intersect the singular points of any fiber.
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Weierstrass fibrations X → P1 have a natural invariant associated with them that governs
aspects of the geometry of X and the associated moduli spaces.

Definition 2.4. Let p : X → P1 be a Weierstrass fibration.

(i) The fundamental line bundle associated with p : X → P1 is the line bundle L =
(
R1p∗OX

)∨
.

(ii) The fundamental invariant associated with p : X → P1 is the integer N = degL.

Because L is a line bundle on P1, it is of the form O(N), where N is the fundamental invariant.
By [Mir81, Corollary 2.4], the fundamental invariant is always nonnegative.

There is a one-to-one correspondence between minimal elliptic surfaces with section and
Weierstrass fibrations with at worst rational double points as singularities. Given a minimal
elliptic surface π : Y → P1, we obtain a Weierstrass fibration with at worst rational double
points p : X → P1 by contracting any rational components in the fibers that do not meet the
section. Conversely, given a Weierstrass fibration p : X → P1 with at worst rational double
points as singularities, resolving the singularities and blowing down (−1)-curves in the fibers
yields a minimal elliptic surface π : Y → P1. We say that Y contracts to X and X resolves
to Y . Weierstrass fibrations have a representation as divisors on a P2-bundle over P1, which
Miranda [Mir81] used to construct coarse moduli spaces for Weierstrass fibrations, and hence
elliptic surfaces, using geometric invariant theory.

Lemma 2.5 ([Mir81, Corollary 2.5]). Let π : Y → P1 be a minimal elliptic surface with section
contracting to a Weierstrass fibration p : X → P1 with fundamental invariant N . Then X is
isomorphic to the closed subscheme of P(O ⊕O(2N)⊕O(3N)) defined by

y2z = x3 +Axz2 +Bz3 ,

where A ∈ H0
(
P1,O(4N)

)
and B ∈ H0

(
P1,O(6N)

)
. Moreover, the following hold:

(i) The form 4A3 + 27B2 is not identically zero. If it vanishes at q ∈ P1, the fiber of X over q
is singular.

(ii) For every q ∈ P1, we have vq(A) ⩽ 3 or vq(B) ⩽ 5, where vq is the order of vanishing at q.

Set V4N := H0
(
P1,O(4N)

)
and V6N := H0

(
P1,O(6N)

)
. Let TN ⊂ V4N ⊕ V6N denote the

open subspace satisfying conditions (i) and (ii) from Lemma 2.5.

Corollary 2.6 ([Mir81, Corollary 2.8]). The set of isomorphism classes of minimal elliptic
surfaces π : Y → P1 with degR1p∗OX = −N and with fixed section (equivalently, Weierstrass
fibrations with only rational double points) is in one-to-one correspondence with the set of orbits
of SL2×Gm on TN .

In order to give the set of orbits a geometric structure, Miranda analyzes the stability of the
action of SL2×Gm on TN .

Proposition 2.7. Let (A,B) ∈ V4N ⊕ V6N be a pair of forms.

(i) The point corresponding to (A,B) is not semistable if and only if there is a point q ∈ P1

such that

vq(A) > 2N and vq(B) > 3N .

(ii) The point corresponding to (A,B) is not stable if and only if there is a point q ∈ P1 such
that

vq(A) ⩾ 2N and vq(B) ⩾ 3N .

492



Chow rings of moduli spaces of elliptic surfaces over P1

From Lemma 2.5 and Proposition 2.7, we see that as long as N ⩾ 2, points in TN are
stable, and thus EN := TN//SL2×Gm is a coarse moduli space for Weierstrass fibrations with
fundamental invariant N . In particular, the natural morphism

EN := [TN/ SL2×Gm] → EN

from the quotient stack to the GIT quotient is a coarse moduli space morphism.

In Section 4, it will be useful for us to work on a stack WN of Weierstrass fibrations with
fundamental invariant N , not just the coarse moduli space constructed by Miranda. This stack
is not the stack EN defined above, but it is closely related, as we will now explain. The stack WN

was recently defined in a work of Park–Schmitt [PS21], and we will briefly recall their construc-
tion.

Definition 2.8. Let S be a scheme. A family of Weierstrass fibrations over S is given by the
data

X p−→ P γ−→ S , P s−→ X ,

where

(i) γ is a smooth, proper morphism locally of finite type, with geometric fibers isomorphic
to P1,

(ii) p is a proper map with section s,

(iii) the fibers (Xt → Pt,Pt → Xt) on geometric points t ∈ S are Weierstrass fibrations.

Park–Schmitt [PS21] define W to be the moduli stack whose objects over S are families of
Weierstrass fibrations over S with morphisms over T → S given by fiber diagrams. The stack WN

is the open and closed substack parametrizing Weierstrass fibrations with fundamental invari-
ant N . Finally, we consider the open substacks Wmin,N ⊂ WN of Weierstrass fibrations satisfying
the two conditions from Lemma 2.5. These stacks parametrize the Weierstrass fibrations with
fundamental invariant N that resolve to minimal elliptic surfaces. By [PS21, Theorem 1.2], the
stacks Wmin,N are smooth, separated Deligne–Mumford stacks for N ⩾ 2, and by [PS21, Theo-
rem 1.4], the space EN is a coarse moduli space for Wmin,N .

We now have three spaces of interest: EN , Wmin,N and EN . We want to compare their Chow
rings.

Proposition 2.9. The Chow rings of EN , Wmin,N and EN are isomorphic.

Proof. The space EN is a coarse moduli space for both stacks EN and Wmin,n. Therefore, since
we are using rational coefficients, all three Chow rings are isomorphic by a result of Vistoli [Vis89,
Proposition 6.1].

Remark 2.10. The difference between the stacks Wmin,N and EN is that EN is a µ2-banded gerbe
over Wmin,N . The gerbe structure arises from the map BSL2 → BPGL2.

3. Computing the Chow ring

By Proposition 2.9, it suffices to compute A∗(EN ) in order to prove Theorem 1.2. Let ∆N ⊂
V4N ⊕ V6N denote the complement of TN . We have the excision exact sequence

A∗([∆N/ SL2×Gm]) → A∗([V4N ⊕ V6N/ SL2×Gm]) → A∗(EN ) → 0 . (3.1)

We want to study the image of A∗([∆N/ SL2×Gm]) in A∗([V4N ⊕ V6N/SL2×Gm]).
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We begin with background information on the stack [V4N ⊕V6N/SL2×Gm]. The stack BSL2

is the classifying stack for rank 2 vector bundles with trivial first Chern class. Let V denote the
universal rank 2 vector bundle with trivial first Chern class over BSL2. Set c2 := c2(V). Similarly,
the stack BGm is the classifying stack for line bundles. Let M denote the universal line bundle
over BGm. Set a1 := c1(M). By abuse of notation, we will not distinguish between V, M, c2
and a1 and their pullbacks to the product BSL2×BGm under the natural projection maps.
We will interpret the stack BSL2×BGm as the stack of line bundles of relative degree N on
P1-bundles as in [Lar21] as follows. Consider the universal P1-bundle

γ : P(V) → BSL2×BGm .

Fix N ⩾ 0, and set L := γ∗M(N), the universal relative degree N line bundle on P(V).

Lemma 3.1. (i) The stack [V4N⊕V6N/SL2×Gm] is the total space of the vector bundle γ∗
(
L⊗4⊕

L⊗6
)
on BSL2×BGm.

(ii) There is an isomorphism of graded rings

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= Q[a1, c2] ,

with a1 in degree 1 and c2 in degree 2.

Proof. Part (i) follows from cohomology and base change. Indeed, the fibers of γ∗
(
L⊗4 ⊕ L⊗6

)
are canonically identified with V4N ⊕ V6N , and the higher cohomology vanishes. For part (ii),
we note that by part (i) and the homotopy property for Chow rings, there is an isomor-
phism

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= A∗(BSL2×BGm) .

A standard calculation in equivariant intersection theory [Tot99, Section 15] shows that

A∗(BSL2×BGm) ∼= Q[a1, c2]

as graded rings.

3.1 Computing the ideal of relations

By Lemma 3.1, the exact sequence (3.1) can be rewritten as

A∗([∆N/ SL2×Gm]) → Q[a1, c2] → A∗(EN ) → 0 . (3.2)

It follows that A∗(EN ), and hence A∗(EN ), is a quotient of Q[a1, c2] by the ideal IN generated
by the image of A∗([∆N/ SL2×Gm]).

Lemma 2.5 tells us exactly when a pair (A,B) ∈ V4N ⊕ V6N is contained in ∆N . We write
∆N = ∆1

N ∪ ∆2
N , where ∆1

N parametrizes the pairs of forms (A,B) such that 4A3 + 27B2 is
identically zero (corresponding to Lemma 2.5(i)) and ∆2

N parametrizing pairs of forms (A,B)
such that vq(A) ⩾ 4 or vq(B) ⩾ 6 for some point p ∈ P1 (corresponding to Lemma 2.5(ii)). First,
we will determine the relations obtained from excising the pairs (A,B) ∈ ∆2

N . To do so, we need
to introduce bundles of principal parts. We will follow the treatment in [EH16].

Let b : Y → Z be a smooth proper morphism. Let ∆Y/Z ⊂ Y ×Z Y be the relative diagonal.
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With p1 and p2 the projection maps, we obtain the following commutative diagram:

∆Y/Z

Y ×Z Y Y

Y Z .

p2

p1

b

b

Definition 3.2. Let F be a vector bundle on Y , and let I∆Y/Z
denote the ideal sheaf of the

diagonal in Y ×Z Y . The bundle of relative mth order principal parts Pm
b (V) is defined as

Pm
b (F) = p2∗

(
p∗1F ⊗OY×ZY /Im+1

∆Y/Z

)
.

The following explains all the basic properties of bundles of principal parts that we need.

Proposition 3.3 ([EH16, Theorem 11.2]). Keep the notation as above.

(i) There is an isomorphism b∗b∗F ∼−→ p2∗p
∗
1F .

(ii) The quotient map p∗1F → p∗1F ⊗OY×ZY /Im+1
∆Y/Z

pushes forward to a map

b∗b∗F ∼= p2∗p
∗
1F → Pm

b (F) ,

which, fiber-by-fiber, associates with a global section δ of F a section δ′ whose value at
z ∈ Z is the restriction of δ to an mth order neighborhood of z in the fiber b−1b(z).

(iii) We have P 0
b (F) = F . For m > 1, the filtration of the fibers Pm

b (F)y by order of vanishing
at y gives a filtration of Pm

b (F) by subbundles that are kernels of the natural surjections
Pm
b (F) → P k

b (F) for k < m. The graded pieces of the filtration are identified by the exact
sequences

0 → F ⊗ Symm(ΩY/Z) → Pm
b (F) → Pm−1

b (F) → 0 .

By part (ii) of Proposition 3.3, there is a morphism

ψ : γ∗γ∗
(
L⊗4 ⊕ L⊗6

)
→ P 3

γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

)
,

which, along points in the P1 fibers, sends A (respectively, B) to a third-order (respectively,
fifth-order) neighborhood. The kernel of this map therefore parametrizes the triples (A,B, q)
such that vq(A) ⩾ 4 and vq(B) ⩾ 6. Looking fiber-by-fiber, one sees that the map ψ is surjective.
Therefore, the kernel K of ψ is a vector bundle. We obtain the following commutative diagram,
where ϕ, ϕ′ and ϕ′′ are vector bundle morphisms:

K γ∗γ∗
(
L⊗4 ⊕ L⊗6

)
γ∗
(
L⊗4 ⊕ L⊗6

)
P(V) BSL2×BGm .

i

ϕ′′

γ′

ϕ′ ϕ

γ

(3.3)

By construction, K maps properly and surjectively onto
[
∆2

N/SL2×Gm

]
under the identification

of γ∗
(
L⊗4⊕L⊗6

)
with [V4N ⊕V6N/SL2×Gm] from Lemma 3.1. Consequently, the images of the

pushforward maps

γ′∗i∗ : A∗(K) → A∗(γ∗(L⊗4 ⊕ L⊗6
))

= A∗([V4N ⊕ V6N/BSL2×BGm])
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and

A∗
([
∆2

N/ SL2×Gm

])
→ A∗([V4N ⊕ V6N/ SL2×Gm])

are the same.

Proposition 3.4. Let z denote the hyperplane class of P(V). The image of the pushforward
map γ′∗i∗ : A

∗(K) → A∗(γ∗(L⊗4 ⊕ L⊗6
))

is the ideal generated by the two classes

(i) ϕ∗γ∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

)))
and

(ii) ϕ∗γ∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

))
· z

)
.

Proof. Let α ∈ A∗(K). Then because K is a vector bundle over P(V), we see that α = ϕ′′∗(β)
for some class β ∈ A∗(P(V)), so we have α = ϕ′′∗(β) = i∗ϕ′∗(β). Pushing forward, we obtain

γ′∗i∗α = γ′∗i∗i
∗ϕ′∗(β) = γ′∗([K] · ϕ′∗β) .

Because K is the kernel of the vector bundle morphism

ψ : γ∗γ∗
(
L⊗4 ⊕ L⊗6

)
→ P 3

γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

)
,

the fundamental class [K] is given by ϕ′∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕P 5

γ

(
L⊗6

)))
. Because the square in the

commutative diagram (3.3) is Cartesian, γ′∗ϕ
′∗ = ϕ∗γ∗, so

γ′∗i∗α = ϕ∗γ∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

))
· β

)
.

Because P(V) is a projective bundle, β can be written as β = γ∗β1 + γ∗β2z, where β1 and β2 are
classes in A∗(BSL2×BGm). The statement of the proposition follows.

Remark 3.5. The relations from Proposition 3.4 can be computed explicitly as polynomials
of a1, c2 and N using the splitting principle and Proposition 3.3. We carried out this computation
in Macaulay2 [GS22] using the package Schubert2 [GSS+22]. The computation in Macaulay2
starts by defining a base variety whose Chow ring is given by Q[a1, c2]. This base variety plays
the role of BSL2×BGm. Next, we define the bundle V by its total Chern class 1 + c2 and form
the projectivization P(V) over the base variety. On P(V), we can then form the line bundle L by
its total Chern class 1 + a1 +Nz1. To form the bundles of principal parts, we use the filtration
in Proposition 3.3(iii) to define a bundle built out of direct sums and tensor products of L and
ΩP(V)/BSL2 ×BGm

with the same Chern classes as the bundles of principal parts. Having set up
all the bundles, the software can then compute the two classes in Proposition 3.4:

ϕ∗γ∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

)))
=

119439360N9c42a1 − 859963392N8c42a1 − 1433272320N7c32a
3
1

+ 2598469632N7c42a1 + 8026324992N6c32a
3
1 + 3009871872N5c22a

5
1 − 4277919744N6c42a1

− 18189287424N5c32a
3
1 − 12039487488N4c22a

5
1 − 1433272320N3c2a

7
1 + 4164009984N5c42a1

+ 21389598720N4c32a
3
1 + 18189287424N3c22a

5
1 + 3439853568N2c2a

7
1 + 119439360Na91

− 2427125760N4c42a1 − 13880033280N3c32a
3
1 − 12833759232N2c22a

5
1 − 2598469632Nc2a

7
1

− 95551488a91 + 813809664N3c42a1 + 4854251520N2c32a
3
1 + 4164009984Nc22a

5
1

+ 611131392c2a
7
1 − 139567104N2c42a1 − 813809664Nc32a

3
1 − 485425152c22a

5
1

+ 8847360Nc42a1 + 46522368c32a
3
1 ,
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ϕ∗γ∗
(
ctop

(
P 3
γ

(
L⊗4

)
⊕ P 5

γ

(
L⊗6

))
· z

)
=

− 11943936N10c52 + 95551488N9c52 + 537477120N8c42a
2
1

− 324808704N8c52 − 3439853568N7c42a
2
1 − 2508226560N6c32a

4
1 + 611131392N7c52

+ 9094643712N6c42a
2
1 + 12039487488N5c32a

4
1 + 2508226560N4c22a

6
1 − 694001664N6c52

− 12833759232N5c42a
2
1 − 22736609280N4c32a

4
1 − 8026324992N3c22a

6
1 − 537477120N2c2a

8
1

+ 485425152N5c52 + 10410024960N4c42a
2
1 + 21389598720N3c32a

4
1 + 9094643712N2c22a

6
1

+ 859963392Nc2a
8
1 + 11943936a101 − 203452416N4c52 − 4854251520N3c42a

2
1

− 10410024960N2c32a
4
1 − 4277919744Nc22a

6
1 − 324808704c2a

8
1 + 46522368N3c52

+ 1220714496N2c42a
2
1 + 2427125760Nc32a

4
1 + 694001664c22a

6
1 − 4423680N2c52

− 139567104Nc42a
2
1 − 203452416c32a

4
1 + 4423680c42a

2
1 .

Using the trim command in Macaulay2, we can simplify the presentation of the ideal that these
two classes generate. The ideal is generated by the following two polynomials p1 and p2:

p1 = (1620N − 1296)a91 +
(
−19440N3 + 46656N2 − 35244N + 8289

)
a71c2

+
(
40824N5 − 163296N4 + 246708N3 − 174069N2 + 56478N − 6584

)
a51c

2
2

+
(
−19440N7 + 108864N6 − 246708N5 + 290115N4 − 188260N3 + 65840N2 − 11038N

+ 631
)
a31c

3
2 +

(
1620N9 − 11664N8 + 35244N7 − 58023N6 + 56478N5 − 32920N4

+ 11038N3 − 1893N2 + 120N
)
a1c

4
2 ,

p2 = 324a101 +
(
−14580N2 + 23328N − 8811

)
a81c2

+
(
68040N4 − 217728N3 + 246708N2 − 116046N + 18826

)
a61c

2
2

+
(
−68040N6 + 326592N5 − 616770N4 + 580230N3 − 282390N2 + 65840N − 5519

)
a41c

3
2

+
(
14580N8 − 93312N7 + 246708N6 − 348138N5 + 282390N4 − 131680N3 + 33114N2

− 3786N + 120
)
a21c

4
2 +

(
−324N10 + 2592N9 − 8811N8 + 16578N7 − 18826N6 + 13168N5

− 5519N4 + 1262N3 − 120N2
)
c52 .

Lemma 3.6. The codimension of ∆1
N in V4N ⊕ V6N is 8N + 1.

Proof. Let t be an affine coordinate on P1. Then we can factor A(t) and B(t) into linear factors
as

A(t) = a
4N∏
i=1

(t− ci) and B(t) = b
6N∏
i=1

(t− di) .

Because 4A3 + 27B2 is identically zero, we have the equation

4a3
4N∏
i=1

(t− ci)
3 = −27b2

6N∏
i=1

(t− di)
2 .

By comparing the orders of vanishing of each side, we see that A(t) = aG(t)2 and B(t) = bG(t)3,
where G is a polynomial of degree 2N and 4a3+27b2 = 0. It follows that the codimension of ∆1

N

is given by

dim(V4N ⊕ V6N )− dimV2N = 10N + 2− 2N − 1 = 8N + 1 .
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We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By a calculation in Macaulay2 [GS22], the graded ring Q[a1, c2]/IN van-
ishes in degree 17 and higher, where IN is the ideal generated by the relations from Proposi-
tion 3.4. We have the excision exact sequence

A∗
([
∆1

N/ SL2×Gm

])
→ Q[a1, c2]/IN → A∗(EN ) → 0 .

By Lemma 3.6, the image of

A∗
([
∆1

N/ SL2×Gm

])
→ Q[a1, c2]/IN

lies in codimension 17 or higher, so it is identically zero. Therefore, Q[a1, c2]/IN ∼= A∗(EN ). This
completes the proof of Theorem 1.2(i). Parts (ii) and (iii) are consequences of part (i) together
with a computation in Macaulay2 [GS22] that computes the Hilbert series of the ring Q[a1, c2]/IN
and verifies that the intersection pairing is perfect.

Proof of Corollary 1.3. Miranda’s construction of EN by geometric invariant theory [Mir81]
shows that EN is a quasi-projective variety. It thus admits an ample line bundle L. If S is
a complete subvariety of dimension d, then, because L is ample, c1(L)

d · S > 0. Hence, c1(L)
d is

numerically nonzero. By Theorem 1.2, it follows that d ⩽ 16.

4. The tautological ring

4.1 Stacks of lattice polarized K3 surfaces

Let Λ ⊂ U⊕3 ⊕E8(−1)⊕2 be a fixed rank r primitive sublattice with signature (1, r− 1), and let
v1, . . . , vr be an integral basis of Λ. A Λ-polarization on a K3 surface X is a primitive embedding

j : Λ ↪→ Pic(X)

such that

(i) the lattices H2(X,Z) and U⊕3⊕E8(−1)⊕2 are isomorphic via an isometry restricting to the
identity on Λ, where we view Λ as sitting inside H2(X,Z) via Λ ↪→ Pic(X) ↪→ H2(X,Z);

(ii) the image of j contains the class of a quasi-polarization.

Beauville [Bea04] constructed moduli stacks FΛ of Λ-polarized K3 surfaces and showed that they
are smooth Deligne–Mumford stacks of dimension 20 − r. Using the surjectivity of the period
map, one can construct coarse moduli spaces FΛ for FΛ; see [Dol96].

We think of the stacks FΛ as parametrizing families of K3 surfaces π : X → S together
with r line bundles H1, . . . ,Hr on X corresponding to the basis v1, . . . , vr of Λ, well defined up
to pullbacks from Pic(S). Technically, these bundles exist only étale locally, as they are defined
as sections of the sheaf PicX/S , which is the étale sheafification of the presheaf on the category
of schemes over S

T 7→ Pic(XT )/Pic(T ) .

We will generally suppress this detail, but we will remark when it is important. There are forgetful
morphisms

FΛ′ ↪→ FΛ

for any lattice Λ ⊂ Λ′. We call the subvarieties FΛ′ Noether–Lefschetz loci of FΛ.
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4.2 The tautological ring of FΛ

The stack FΛ comes equipped with a universal K3 surface

πΛ : XΛ → FΛ

and universal bundles H1, . . .Hr, well defined up to pullbacks from FΛ. Let TπΛ denote the
relative tangent bundle. Following [MOP17], we define the κ-classes

κΛa1,...,ar,b := πΛ∗
(
c1(H1)

a1 · · · c1(Hr)
ar · c2(TπΛ)

b
)
.

Definition 4.1. The tautological ring R∗(FΛ) is the subring of A∗(FΛ) generated by pushfor-
wards from the Noether–Lefschetz loci of all κ-classes.

By [Bor99] or [FR20], the Hodge class λ := c1(πΛ∗ωπΛ) lies in the tautological ring R∗(FΛ)
for all Λ, as it is supported on Noether–Lefschetz divisors.

4.3 Moduli of elliptic K3 surfaces and Weierstrass fibrations

Let p : X → P1 be a minimal elliptic surface over P1 with fundamental invariant 2. Then X is
a K3 surface, and the classes of the fiber f and section σ form a primitively embedded lattice
U ⊂ Pic(X) equivalent to a hyperbolic lattice, whose image contains a quasi-polarization σ+2f .
Conversely, given a K3 surface X, a primitive embedding of a hyperbolic lattice U ↪→ Pic(X)
whose image contains a quasi-polarization allows one to define a morphism p : X → P1 with
section s : P1 → X with fundamental invariant 2; see [CD07, Theorem 2.3]. Because of this, we call
the stack FU the stack parametrizing elliptic K3 surfaces with section. By [OO21, Theorem 7.9],
the coarse moduli space FU is isomorphic to E2. By the discussion in Section 4.1, the stack FU

comes equipped with a universal K3 surface and two universal line bundles

πU : XU → FU , O(f) → XU , O(σ) → XU .

The intersection matrix of O(σ) and O(f) is[
O(σ)2 O(σ) · O(f)

O(σ) · O(f) O(f)2

]
=

[
−2 1
1 0

]
,

which can be obtained by a change of basis from the usual intersection matrix for a hyperbolic
lattice U , [

0 1
1 0

]
.

We prefer to take O(f) and O(σ) as our basis because of their geometric meaning. Recall that the
stack Wmin,2 parametrizes families of Weierstrass fibrations resolving to minimal elliptic surfaces.
We will construct a morphism

G : FU → Wmin,2

which is a relative version of the morphism sending an elliptic K3 surface to its associated
Weierstrass fibration. Let π : X → S be a family of U -polarized K3 surfaces, equipped with
bundles O(f) and O(σ) on X, up to an étale cover of S. The surjection π∗π∗O(f) → O(f)
defines a morphism

p : X → P
(
π∗O(f)∨

)
over S. The relative effective Cartier divisor associated with O(σ) allows us to define a section s
of p. The surjection p∗p∗O(3σ) → O(3σ) defines a morphism i : X → P

(
p∗O(3σ)∨

)
. Let Y denote
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the image of X under i. Then Y is a family of Weierstrass fibrations over S. This construction
defines the morphism

G : FU → Wmin,2 .

Remark 4.2. We note that in constructing Y , we chose line bundles O(f) and O(σ). Technically,
we could only do so étale locally. The projective bundle P

(
π∗O(f)∨

)
→ S will only descend to

a smooth proper morphism, locally of finite type, with geometric fibers isomorphic to P1: it will
not necessarily be the projectivization of a vector bundle on S. Second, even once we pass to an
étale cover, O(f) and O(σ) are only defined up to pullbacks from Pic(S). If we made different
choices for O(f) and O(σ), the resulting Weierstrass fibration would be canonically isomorphic
to the original one because for any vector bundle E and line bundle L, the space P(E ⊗ L) is
canonically isomorphic to P(E).

Consider the following Cartesian diagram, which defines the stack F̃U :

F̃U E2

FU Wmin,2 .

G′

G

The vertical morphisms are µ2-banded gerbes. In fact, we can explicitly describe the functor of
points for F̃U . A morphism from a scheme S to F̃U is a family

(π : X → S,O(f),O(σ),N ) ,

where (π : X → S,O(f),O(σ)) is a family of U -polarized K3 surfaces and N is a line bundle
on S such that

N⊗2 ∼= detπ∗O(f) .

Recall that E2 has a universal rank 2 vector bundle with trivial first Chern class V and a universal
line bundle M. By the construction of the map G and its base change G′, we have that

G′∗V = π∗O(f)∨ ⊗N ,

where N is the universal square root of detπ∗O(f). We will abuse notation and denote the
universal K3 surfaces on FU and F̃U both by π.

Lemma 4.3. The class c2
(
π∗O(f)∨ ⊗N

)
on F̃U is the pullback of a tautological class on FU .

Proof. Note that

c2
(
π∗O(f)∨ ⊗N

)
= c1(N )2 + c1

(
π∗O(f)∨

)
c1(N ) + c2

(
π∗O(f)∨

)
= 1

4c1(detπ∗O(f))2 − 1
2c1(π∗O(f))c1(detπ∗O(f)) + c2(π∗O(f))

= −1
4c1(π∗O(f))2 + c2(π∗O(f)) .

It thus suffices to show that the Chern classes of π∗O(f) are tautological. By the Grothendieck–
Riemann–Roch theorem, we have

ch(π!O(f)) = π∗(ch(O(f)) · td(Tπ)) .

By definition, the classes on the right-hand side are tautological. We note that π!O(f) = π∗O(f)
because π is a relative K3 surface. By comparing degree 1 parts of both sides, we see that
c1(π∗O(f)) is tautological. By comparing degree 2 parts, we see that c2(π∗O(f)) is tautologi-
cal.
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Proof of Theorem 1.4. Each of the stacks E2, Wmin,2, FU and F̃U has the same coarse moduli
space E2. They thus all have isomorphic Chow rings, and the proper pushforward A∗(Z) →
A∗(E2) is an isomorphism of Chow groups, where Z is any of the four stacks above [Vis89,
Proposition 6.1]. By Theorem 1.2, the Chow group A1(E2) is generated by the pushforward
of a1. By [Pet19, Theorem 2.1] or the proof of [vdGK05, Corollary 4.2], the tautological class
λ is nonvanishing on FU . It follows that A1(FU ) is generated by λ, so A1(FU ) = R1(FU ).
By Theorem 1.2, the Chow group A2(E2) is generated by the pushforwards of a21 and c2. By

Lemma 4.3, the class c2 pulls back to a class in A2
(
F̃U

)
that is the pullback of a tautological class

from A2(FU ). It follows that A
2(FU ) = R2(FU ), as the images of a21 and c2 in A

2(E2) can both be
obtained by pushing forward tautological classes from FU . Therefore, A

∗(FU ) = R∗(FU ). The fact
that A∗(FU ) = R∗(FU ) is Gorenstein with socle in codimension 16 follows from Theorem 1.2.

4.4 Codimension 1 classes

By Theorems 1.2 and 1.4, the Chow group A1(FU ) is of rank 1, and the Hodge class λ is a
generator. It is natural to ask how to represent κ-classes explicitly in terms of the Hodge class λ.

Proposition 4.4. The following four linear combinations of κ-classes are independent of the
choice of universal line bundles. Moreover, they are all multiples of the Hodge class λ:

κ3,0,0 +
1
4κ1,0,1 =

7
2λ , 3κ2,1,0 − 1

4κ1,0,1 +
1
4κ0,1,1 =

1
2λ ,

3κ1,2,0 − 1
4κ0,1,1 = −3λ , κ0,3,0 = 0 ,

where κi,j,k := π∗
(
c1(O(σ))i · c1(O(f))j · c2(Tπ)k

)
.

Proof. A direct computation shows the above four κ combinations are invariant under f 7→
f + π∗(l) and σ 7→ σ + π∗(l′) for any l, l′ ∈ A1(FU ).

By Theorem 1.2, we know A1(FU ) is of rank 1, so it is sufficient to check the identities by
computing their intersection numbers with a suitable test curve ι : C → FU . To construct the
curve, we use the resolved version of the STU model in [KMPS10]. The STU model is a smooth
Calabi–Yau 3-fold, endowed with a map

πSTU : XSTU → P1 .

It arises as an anti-canonical section of a toric 4-fold Y . The fan datum for Y can be found in
[KMPS10, Section 1.3]. We use their notation. There are ten primitive rays {ρi; 1 ⩽ i ⩽ 10}, and
the corresponding divisors are denoted by Di ∈ Pic(Y ). The anti-canonical class is

−KY =

10∑
i=1

Di .

The general fiber of πSTU is a smooth elliptic K3 surface, but there are 528 singular fibers
[KMPS10, Proposition 1], each of which has exactly one ordinary double point singularity. Let
ϵ : C → P1 be a double cover branched along the 528 points corresponding to the singular fibers.
The pullback of XSTU by ϵ has double point singularities, and by resolving them, we obtain the
resolved STU model,

π̃STU : X̃STU → C .

All fibers of π̃STU are smooth elliptic K3 surfaces. Moreover, the toric divisors D5, D3 ∈ Pic(Y )
restrict to the universal section and fiber for π̃STU. The family π̃STU defines a curve in the moduli
space FU , which we denote by

ι : C → FU .
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The intersection number ι∗(λ) is computed in [KMPS10, Proposition 2]:

ι∗(λ) = 4E4(q)E6(q)[0] = 4 ,

where E4 and E6 are Eisenstein series, and we take the coefficient of q0.

For the κ-classes, it suffices to perform the computation over the nonresolved STU model.
Since the tautological classes we consider are all invariant, we may assume that the universal
line bundles on FU pull back to the toric divisors D5 and D3. For κ3,0,0, we have

ι∗(κ3,0,0) = 2 · πSTU
∗

(
D3

5 ·
10∑
i=1

Di

)
,

where the factor of 2 comes from the double cover ϵ. Using toric geometry, all monomials of the
form Di ·Dj ·Dk ·Dl can be explicitly determined. We obtain ι∗(κ3,0,0) = 16. Other intersection
numbers can be computed analogously. We record the final answers:

ι∗(κ3,0,0) = 16 , ι∗(κ1,0,1) = −8 , ι∗(κ2,1,0) = −4

ι∗(κ0,1,1) = 48 , ι∗(κ1,2,0) = 0 , ι∗(κ0,3,0) = 0 .

The four identities in the proposition then follow immediately.
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