
ETH Library

MATSA: An MRAM-Based Energy-
Efficient Accelerator for Time
Series Analysis

Journal Article

Author(s):
Fernandez, Ivan; Giannoula, Christina; Manglik, Aditya; Quislant, Ricardo; Mansouri Ghiasi, Nika; Gómez Luna, Juan ; Gutierrez,
Eladio; Plata, Oscar; Mutlu, Onur

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000665722

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
IEEE Access 12, https://doi.org/10.1109/ACCESS.2024.3373311

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6514-1571
https://orcid.org/0000-0002-0075-2312
https://doi.org/10.3929/ethz-b-000665722
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2024.3373311
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Received 24 January 2024, accepted 18 February 2024, date of publication 7 March 2024, date of current version 14 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3373311

MATSA: An MRAM-Based Energy-Efficient
Accelerator for Time Series Analysis
IVAN FERNANDEZ 1,2, CHRISTINA GIANNOULA 2,3, ADITYA MANGLIK 2,
RICARDO QUISLANT 1, NIKA MANSOURI GHIASI 2, JUAN GÓMEZ-LUNA 2, (Member, IEEE),
ELADIO GUTIERREZ 1, OSCAR PLATA 1, AND ONUR MUTLU 2, (Fellow, IEEE)
1Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain
2Department of Information Technology and Electrical Engineering (D-ITET), ETH Zürich, 8092 Zürich, Switzerland
3School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 157 80 Athens, Greece

Corresponding author: Nika Mansouri Ghiasi (mnika@ethz.ch)

This work was supported in part by TIN2016-80920-R and UMA18-FEDERJA-197 Spanish Projects; in part by the High Performance, Edge
And Cloud computing (HiPEAC) Collaboration Grants; in part by SAFARI Group’s Industrial Partners, especially Advanced Semiconductor
Materials Lithography (ASML), Facebook, Google, Huawei, Intel, Microsoft, and VMware; and in part by Semiconductor Research
Corporation.

ABSTRACT Time Series Analysis (TSA) is a critical workload to extract valuable information from collections
of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping
(sDTW) is the state-of-the-art algorithm for high-accuracy TSA. We find that the performance and energy
efficiency of sDTW on conventional CPU and GPU platforms are heavily burdened by the latency and
energy overheads of data movement between the compute and the memory units. sDTW exhibits low
arithmetic intensity and low data reuse on conventional platforms, stemming from poor amortization of
the data movement overheads. To improve the performance and energy efficiency of the sDTW algorithm,
we proposeMATSA, the firstMagnetoresistive RAM (MRAM)-based Accelerator for TSA.MATSA leverages
Processing-Using-Memory (PUM) based on MRAM crossbars to minimize data movement overheads and
exploit parallelism in sDTW. MATSA improves performance by 7.35×/6.15×/6.31× and energy efficiency
by 11.29×/4.21×/2.65× over server-class CPU, GPU, and Processing-Near-Memory platforms, respectively.

INDEX TERMS Time series analysis, processing-using-memory, memory-bound, emerging technologies.

I. INTRODUCTION
In the era of Internet-Of-Things and Big Data, emerging
applications operate on petabyte-scale datasets that are
increasingly difficult to store and analyze. Small sensors and
edge devices continuously generate data sampled over time,
resulting in time-ordered observations (e.g., temperature or
voltage). Such a collection of data values is referred to as
a time series (TS) [1]. TS is a common data representation
in many real-world scientific applications, including sensing,
genomics, neuroscience, financial markets, epidemiology, and
environmental sciences [2].
Time series analysis (TSA) splits the time series into

subsequences of consecutive data points to extract valuable
information from large datasets. This information can help

The associate editor coordinating the review of this manuscript and

approving it for publication was Harikrishnan Ramiah .

filter relevant subsequences to minimize the cost of applying
complex and expensive domain-specific analysis algorithms.
A real-life example is the detection of anomalies in an
electrocardiogram and the elimination of subsequences that
indicate normal behavior [3]. TSA determines subsequences
of interest using different similarity approaches, such as
the Euclidean Distance (ED) or the subsequence Dynamic
Time Warping (sDTW). Prior work demonstrates that sDTW
provides a higher precision than ED in most scenarios [4];
as such, we focus on optimizing sDTW algorithm for TSA
analysis.

sDTW is an embarrassingly parallel workload, because each
query can be executed without data dependencies from other
queries by multiple concurrent processing units. However,
sDTW builds a 2D dynamic programming matrix that incurs
quadratic runtime and memory complexity. To understand the
bottlenecks of sDTW in state-of-the-art conventional CPU

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 36727

https://orcid.org/0000-0001-6133-5670
https://orcid.org/0000-0003-0162-4547
https://orcid.org/0000-0003-4189-8761
https://orcid.org/0000-0002-4705-7042
https://orcid.org/0000-0002-0833-0042
https://orcid.org/0000-0002-6514-1571
https://orcid.org/0000-0001-9748-9161
https://orcid.org/0000-0003-2233-0011
https://orcid.org/0000-0002-0075-2312
https://orcid.org/0000-0003-3505-6525

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

and GPU architectures, we comprehensively characterize
the kernel’s performance on these platforms (section II-D).
We observe significant performance and energy efficiency
overheads in sDTWdue to: 1) underutilization of the execution
units, and 2) a large number of expensive main memory
accesses. The first problem stems from the low number of
operations that the sDTW kernel executes per byte brought
from memory, which keeps the arithmetic units idle for
the largest part of the execution time. The second problem
stems from the large memory footprint of the dynamic
programming matrix, causing poor spatial and temporal
locality. Consequently, sDTW exhibits poor performance on
CPU and GPU platforms.

To overcome the memory access challenge, prior works [5],
[6], [7] have considered memory-centric platforms that
integrate processing and storage elements on the same chip
to reduce data movement across the constrained data bus
that connects a CPU to main memory [8], [9]. Based on that,
we implement and characterize sDTW in a real Processing-
Near-Memory (PNM) platform, UPMEM [10], and observe
that this new platform does not provide performance benefits
compared to CPU and GPU executions, due to the large
latency of simple operations such as addition and comparison
operators. Overall, we conclude that the sDTW kernel exhibits
memory-bound behavior on CPU and GPU platforms and
compute-bound behavior on the PNM platform (section II-D).

In contrast to PNM, Processing-Using-Memory (PUM) [7],
[11], [12], [13], [14], [15] executes operations using the
memory cells and sense amplifiers, completely eliminating the
memory and compute dichotomy. PUM enables 1) performing
computation in the memory array, since the memory units that
store the data also execute the computation, and 2) exploiting
a much larger amount of parallelism available in the memory
microarchitectures (as high as the number of crossbar columns
available, i.e., thousands) compared to conventional CPU and
GPU systems. From the technology perspective, non-volatile
memories (NVM) offer a promising substrate to implement
PUM [16]. However, different NVM substrates exhibit
varying latency, energy, and endurance characteristics, a key
design constraint for different accelerators. Magnetoresistive
RAM (MRAM)-based PUM substrates offer low read/write
latencies, low energy per operation, and high endurance [17].
Considering these characteristics, in this paper, we explore
MRAM as a potential NVM substrate to accelerate the sDTW
kernel.
To this end, our goal in this work is to leverage MRAM-

based PUM to enable high-performance and energy-efficient
sDTW execution for a wide range of applications. We propose
MATSA, the first MRAM-based Accelerator for TSA.MATSA
derives its performance benefits from three key mechanisms.
First, MATSA decomposes sDTW’s computational kernel into
simple bitwise boolean computations and executes them in the
MRAM crossbar. This key idea significantly minimizes data
movement overheads as it is performed where data resides.
Second, we implement a novel data mapping that reduces
the runtime memory footprint of sDTW from quadratic to

linear based on four vectors. This key idea enables computing
the complete 2D dynamic programming matrix on-the-fly
without storing it. Third, MATSA integrates an effective
computation scheme that overcomes the inter-cell computation
dependencies of the matrix by 1) following an anti-diagonal
approach and 2) exploiting pipelining to increase parallelism.
We evaluate MATSA’s performance based on state-of-the-

art latency and energy characteristics of MRAM devices [18],
[19]. To do so, we implement an in-house simulator for
MATSA and select 64 synthetic datasets to understand its
design tradeoffs. Then, we use six real-world datasets (Human,
Song, Penguin, Seismology, Power and ECG) to compare three
different versions of MATSA against other state-of-the-art
platforms, showcasing its applicability to a wide range of real
case scenarios. Our evaluation shows that MATSA improves
performance by 7.35×/6.15×/6.31× and energy efficiency by
11.29×/4.21×/2.65× over server-class CPU, GPU, and PNM
platforms, respectively.

In summary, we make the following novel contributions:
• We thoroughly characterize the state-of-the-art sDTW
time series analysis (TSA) algorithm’s performance and
energy efficiency on conventional CPU, GPU, and PNM
(UPMEM) platforms. Our characterization leads to new
observations about the characteristics of sDTW that limit
its acceleration in current conventional hardware.

• We propose MATSA, the first MRAM-based Accelerator
for TSA. MATSA 1) exploits a novel data mapping
tailored for MRAM substrates that reduce memory
footprint in sDTW, 2) efficiently performs computation
in-memory to avoid off-chip data movement, and 3)
provides an effective computation scheme to increase
parallelism.

• We conduct a comprehensive evaluation of MATSA
across a diverse set of synthetic and real-world datasets.
Our results showcase 6.60× average improvement in
overall performance and a average 6.05× boost in
energy efficiency over state-of-the-art compute-centric
and memory-centric platforms.

II. BACKGROUND AND MOTIVATION
A. TIME SERIES ANALYSIS
A time series T is a sequence of n data points ti, where 1 ≤
i ≤ n, collected over time. A subsequence of T , also known as
a window, is denoted by Ti,m, where i is the index of the first
data point, and m is the number of samples in the subsequence,
with 1 ≤ i, and m ≤ n− i.

There are two main approaches to perform time series
analysis: 1) the self-join, and 2) the query-filtering. In self-join,
all sequences of a given time series are compared against the
remaining subsequences of the same time series. In contrast,
query filtering compares a set of queries against a reference.
Time series analysis algorithms usually define a distance

metric to measure the similarity between two subsequences.
Based on such distance metric, the literature classifies the
subsequences with low distance as motifs [20] (similarities)
and high distance as discords [21] (anomalies). The state-of-

36728 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

FIGURE 1. Example of similarity calculation between two subsequences
(blue and green). The one-to-one approach in a) provides a low similarity
as it only compares each i th point of blue with each i th point of green.
In contrast, DTW in b) successfully matches the points of the subsequences.

the-art set of tools to perform time series analysis is Matrix
Profile [22] (MP). Due to lower computation requirements,
prior MP algorithms utilize one-to-one Euclidean Distance
as the similarity metric. Recent proposals [4] have started
to utilize Dynamic Time Warping (DTW)-based solutions
because of higher precision [23]. DTW enables the detection
of events of interest in out-of-sync subsequences, e.g.,
in subsequences that have different sampling rates.
Figure 1 shows the key difference between the one-to-one

and the DTW approaches, in which we compare two similar-
shape subsequences that differ in their offset and scale.
We observe that the DTW algorithm offers better results

as it compares a given point with respect to several potential
candidates (i.e., determines the best alignment). In contrast,
one-to-one executes point-to-point alignment that cannot
determine the best alignment in the presence of an offset. One-
to-one can be considered as a special case of DTW where the
warping window is set to ‘1’. Therefore, we aim to optimize
DTW, a more generic and high-precision algorithm, to provide
a TSA accelerator for a wide range of applications.

B. TIME SERIES ANALYSIS APPLICATIONS
Time series analysis constitutes one of the most important and
general data mining primitives for a wide range of real-world
applications [24]: epidemiology, genomics, neuroscience,
medicine, environmental sciences, economics, and many more.
Table 1 presents a few examples for applications of TSA.

TABLE 1. Time series analysis main applications.

In statistics, econometrics, meteorology, and geophysics,
the primary goal of time series analysis is prediction and
forecasting. At the same time, in signal processing, control
engineering, and communication engineering, it is used for

FIGURE 2. Example TSA application, where TSA acts as a filter to avoid
most of the computation. TSA selects the relevant queries (anomalies) and
discards the irrelevant ones.

signal detection and estimation. In data mining, pattern
recognition, and machine learning, time series motif and
discord discovery are used for clustering, classification,
anomaly detection, and forecasting. Finally, the most impor-
tant application of time series motif and discord discovery
is clustering seismic data and discovering earthquake pattern
clusters from the continuous seismic recording. Consequently,
seismic clustering can be applied to earthquake relocation and
volcano monitoring to help improve earthquake and volcanic
hazard assessments.

Within this field, the subsequence Dynamic Time Warping
(sDTW) algorithm is a fundamental kernel due to its superior
accuracy and generality when compared to other TSA
methods [4]. Examples of real-life use cases that can benefit
from high-performance and energy-efficient sDTW are:
• Circulatory Failure Detection in Intensive Care
Units. TSA consumes 90% of the end-to-end execution
time [49]. Figure 2 describes the aforementioned process
based on an example processing flow.

• Electroencephalography (ECG). TSA is deployed
to monitor and filter ECG readings when monitoring
patients [50].

• Earthquake Detection. TSA is critical to process
seismograph data and detect anomalies for further
analysis [43].

C. DYNAMIC TIME WARPING (DTW)
DTW algorithm was first introduced by [51]. The first step
of DTW is to compute the distance between a particular
point from a subsequence and a set of points from another
subsequence, only keeping the minimum of them. This process
is repeated for all the points of the first subsequence. Then,
DTW computes the addition of all distances, providing a
similarity measure between the subsequences (the lower the
distance, the higher the similarity).

Assuming that we have two subsequences, Q (query) and R
(reference), of length n and m, respectively, where:

Q = q1, q2, . . . , qi, . . . , qn R = r1, r2, . . . , rj, . . . , rm (1)

VOLUME 12, 2024 36729

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

DTW constructs an n-by-m scoring matrix (S) to determine
the similarity between the two subsequences. Each (ith, jth)
cell of the matrix (si,j) is filled in two steps. First, the algorithm
calculates the distance d(qi, rj) between the two corresponding
points of the subsequences. There are several approaches to
calculate such distance, while d(qi, cj) = abs(qi − cj) and
d(qi, cj) = (qi − cj)2 are the most common ones. Second,
the distance value is added to the minimum of the three
neighboring cells as follows:

si,j = d(qi, cj)+ min(si−1,j−1, si−1,j, si,j−1) (2)

The algorithm fills the entire matrix using dynamic pro-
gramming. Then, the goal is to find the best alignment (i.e.,
minimum accumulated cost), known as the warping path (W).
W is a contiguous set of matrix cells that defines the best
mapping between Q and R.
Subsequence Dynamic Time Warping (sDTW): sDTW is

a more general DTW algorithm that allows the query to be
aligned with part of the reference. Algorithm 1 presents the
pseudocode of sDTW.

Algorithm 1 Subsequence DTW (sDTW)
1: procedure sDTW(Q,R)
2: S ← zeros(N ,M);
3: S[0, 0] = dist(Q[0],R[0]);
4: for i← 1 to N do
5: S[i, 0]← S[i− 1, 0]+ dist(Q[i],R[0]);
6: for i← 1 to N do
7: for j← 1 to M do
8: S[i, j]← dist(Q[i],R[j]) +
9: min(S[i− 1, j− 1], S[i, j− 1], S[i− 1, j]);

return min(S[N , :])

First, sDTW initializes the matrix S with zeros. Second,
it calculates the distance value of the top-left corner and then
the remaining elements of the first row, taking into account
the previous values. Third, it fills the remaining elements of
the matrix using dynamic programming row by row. Finally,
it returns the minimum element of the last row of the S matrix,
which indicates the similarity between the query and the best
alignment with (part of) the reference. The nested for loops
(lines 6 and 7 in Algorithm 1) are responsible for the quadratic
runtime and memory complexities.

D. BOTTLENECKS OF SDTW IN CONVENTIONAL AND PNM
PLATFORMS
sDTW’s quadratic computational complexity is challenging to
overcome, especially when accurate results are required and
algorithmic optimizations are insufficient. To determine the
bottlenecks in conventional platforms, we perform a detailed
characterization of parallelized and optimized sDTW kernels
on CPU, GPU, FPGA, and PNM platforms.

1) CPU
We profile the performance of sDTW on an Intel Xeon
Phi 7210 CPU using the Intel Advisor tool. We build

FIGURE 3. Roofline plots for sDTW on a many-core CPU platform (left) and
a server-class GPU (right).

the roofline plot and present the result in Figure 3-
left. First, we observe that sDTW-CPU can utilize only
41% of the system’s integer peak performance, i.e., 59
GINTOPS out of 145 GINTOPS, and exhibits low arithmetic
intensity (0.55 INTOP/Byte). Second, the total memory
traffic generated during runtime is 267 GB. In contrast, the
memory footprint of the sDTW kernel is only 570 MB. This
demonstrates that sDTW is a memory-bound kernel for CPU
targets.

2) GPU
Several prior works propose accelerating sDTW using GPUs
(e.g., [52]). However, these implementations are tailored
and optimized for specific workload sizes. They rely on
high-latency global memory when working with arbitrary-
sized datasets, which results in large performance penalties
compared to the optimal input size. To quantify the bottlenecks,
we develop an optimized CUDA-based implementation that
supports arbitrary subsequence sizes and characterize it on the
NVIDIA Tesla V100 GPU.We analyze the sDTWkernel using
NVIDIA Visual Profiler [53] and generate the roofline plot in
Figure 3-right. We observe that sDTW-GPU’s performance
improves with respect to sDTW-CPU but utilizes merely
1% of the GPU’s available peak performance. We explain
this observation by 1) the low arithmetic intensity of sDTW
and 2) the limited per-thread available local memory. Even
increasing the available local memory does not improve
performance and the algorithm hits the memory roof due to
1), thus greatly underutilizing the platform. Based on this
analysis, we conclude that GPU is not a good target for sDTW
kernels executing on arbitrary subsequence sizes, which is the
common case in many applications.

3) FPGA
sDTW acceleration using FPGAs requires large onboard
memory to achieve high performance. As most of the prior
work based on FPGAs does not provide high on-chip memory
capacity, data is distributed over the chip. We develop an
optimized FPGA implementation targeting a Xilinx Alveo
U50 and build the roofline model in Figure 4-left. We observe
that the eight compute units that fit in the FPGA achieve less

36730 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

FIGURE 4. Roofline plots for sDTW on FPGA (left) and UPMEM (right)
platforms.

than 7% of the available peak throughput and are insufficient
to exploit the inherent parallelism in the sDTW kernel.

Key Observation 1: Conventional architectures fail
to provide a high performance and energy efficient
acceleration solution because execution time and energy
are wasted on the data movement between memory and
processing units.

4) PROCESSING-NEAR-MEMORY (PNM)
PNM platforms place processing units in the same die as
memory units. The idea behind this paradigm is to exploit
the lower latency and higher bandwidth available in memory
and mitigate the data movement overheads between the
processing units and memory. To evaluate the performance
and energy efficiency of sDTW on PNM, we implement
an optimized version of the algorithm on UPMEM [54],
the first commercially available server-class PNM platform.
We build the roofline model in Figure 4-right and observe
that sDTW is compute-bound in UPMEM. This observation
can be attributed to the low-power general-purpose cores
in UPMEM that offer poor throughput (146 GINTOPS in
contrast to 15700 GINTOPS for the GPU). As arithmetic
operations are at the core of sDTW, PNM cannot provide high
performance for it. We also observe that UPMEM reduces
the energy consumption by 37% with respect to the GPU
by reducing the data movement overheads (section IV-C).
However, poor performance in contrast to the GPU inhibits
the effective usability of the platform for the sDTW kernel.

Key Observation 2: General-purpose PNM sub-
strates provide higher energy efficiency compared to
CPU/GPU/FPGA platforms. However, they fail to offer
a high performance solution because of the limited
arithmetic computation throughput supported by the
hardware.

E. OVERCOMING BOTTLENECKS IN TSA
1) NEED FOR PROCESSING-USING-MEMORY (PUM)
We observe that when executing the sDTW kernel, 1) CPU,
GPU, and FPGA platforms are memory-bound, and 2) PNM

platforms are compute-bound. In contrast to these platforms,
PUM accelerators execute operations directly using the
memory cells where data resides [15]. PUM enables 1)
exploiting large internal memory bandwidth for memory-
bound kernels, and 2) exploiting massive computation
parallelism (as high as each bitline) for compute-bound
kernels, overcoming key restrictions of CPU, GPU, FPGA and
PNM architectures. Based on these observations, we argue
that an accelerator based on PUM is needed to improve
TSA’s performance and energy efficiency providing a balanced
solution.

2) CELL TECHNOLOGY CHOICE
A PUM-based accelerator’s performance, energy efficiency,
and endurance depend on the underlying substrate’s cell
technology; thus, it is a critical design choice. Non-Volatile-
Memories (NVM) offer a low-energy substrate for PUM as
they do not require periodic refresh operations in contrast to
DRAM-based PUM [55]. However, it is challenging to support
frequent write operations as NVM-based PUM architectures
due to significant write latency and low endurance [56].
Table 2 presents the characteristics of NVM technologies
we considered for accelerating the sDTW kernel. We discard
NAND Flash, ReRAM, and PCM in the first step due to their
low endurance and high write latency. Next, we consider
FRAM due to its high endurance but discard it due to the
high read latency. We then consider MRAM technologies
(section II-F) and discard STT-MRAM due to a high write
latency. In contrast to STT-MRAM, SOT-MRAM offers 1)
high endurance, 2) low read and write latencies, and 3) CMOS
compatibility that eases manufacturability. Considering these
characteristics, we argue that SOT-MRAM is a promising
substrate for implementing PUM accelerators for kernels
with frequent write operations, and evaluate its feasibility
for accelerating the sDTW kernel.

TABLE 2. Characteristics of different NVM technologies [57].

We conclude that the MRAM-PUM acceleration approach
has the potential to overcome TSA’s bottlenecks and provide
a faster and more efficient solution than the state-of-the-art.

F. MRAM-BASED PUM COMPUTATION
Many prior works demonstrate significant performance
and energy efficiency improvements for machine learning
workloads via PUM in resistive crossbars [58] by exploiting
matrix-vector multiplication. Other approaches can exploit
bitwise operations with high performance and energy
savings [59], [60], [61]. Figure 5-a shows a typical crossbar

VOLUME 12, 2024 36731

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

FIGURE 5. a) Crossbar organization. b) Magneto-resistive cell. c)
Reconfigurable SA that performs in-memory operations based on the
voltage variations across the bitline.

organization with memory cells connected using bitlines and
wordlines.

Figure 5-b shows the basic structure of a Spin-Orbit Torque
(SOT)-MRAM cell composed of a stack of Magnetic Tunnel
Junctions (MTJs) (cyan and red blocks in the figure) and a
Heavy Metal Layer (grey block in the figure).
• Magnetic Tunnel Junction (MTJ). Consists of a fixed
layer with a pinned magnetization direction, a free layer
whose magnetization can be changed, and an insulating
tunnel barrier between them.

• HeavyMetal Layer. This layer is placed next to the MJT
to facilitate the spin-orbit torque effect. Common heavy
metals used include tantalum (Ta) and tungsten (W).

The change of orientation of one of the layers of the stack
results in a variation in the device’s electrical resistance.
However, compared to Spin-Transfer-Torque MTJ (STT-
MTJ) [57], SOT-MJT features separated read and write paths,
enhancing endurance and widening the read/write margin.
Then, sense amplifiers interpret the resulting voltage as
boolean:
• Read Operation. During a read operation, the resistance
of the MTJ is measured. The resistance is sensitive to
the relative alignment of the magnetization in the fixed
and free layers, allowing the stored data (Boolean values
representing 0 or 1) to be read.

• Write Operation. During a write operation, an electric
current is applied through the heavy metal layer, inducing
a spin current. This spin current exerts torque on the free
layer, causing its magnetization direction to switch and
changing the stored Boolean data.

Unlike STT-MTJ, which faces read disturbance issues
limiting the read circuit frequency, SOT-MTJ allows for
flexible adjustment of current magnitude in the read
circuit without concerns about read disturbance effects.
As a consequence, it enables more accurate sensing
which is crucial to implement in-memory operations. This
suggests SOT-MRAM as a better candidate for PUM
applications.
Bitwise PUM Mechanism: The matrix-vector PUM map-

ping proposed in prior works cannot be applied to dynamic
programming (DP) algorithms (e.g., sDTW) since they
perform matrix-vector multiplication. DP requires computing
a 2D scoring matrix by traversing it row-by-row. Moreover,
prior crossbar substrates offer limited support for other
operations (e.g., minimum calculation). To overcome this
challenge, MAGIC [62] proposes decomposing complex

operations into simple Boolean functions (e.g., AND, NOR,
XOR) to support them in the substrate. The key idea is
to vertically map the operands (e.g., 32-bit integers) to
the crossbars’ columns using (typically) one bit per cell
(e.g., each operand value takes 32 bits of a given column).
Then, the desired operation (e.g., addition) is decomposed
to simple bitwise operations (e.g., NOR) and performed bit-
by-bit via sequentially activating two cells for each operand
simultaneously. This approach creates a difference in the
voltage over the bitline depending on the content of the
activated cells, which depends on the resistance they hold.
Then, a modified sense amplifier calculates the result based
on that voltage difference and thresholds, storing it in a cell of
the same column. While this process is inherently sequential
and the latency per operation is higher than a CMOS-based
approach, the 1) independence across columns and 2) the lack
of data movement enables immense parallelism and, thus,
an overall higher throughput than CMOS-based solutions.
Figure 5-c shows a sense amplifier (SA) slightly modified
with respect to commodity ones, including different voltage
thresholds for the operations.

III. MATSA ARCHITECTURE
A. OVERVIEW
MATSA is an MRAM-based Accelerator for Time Series
Analysis. Figure 6 presents an overview of our proposed
architecture. MATSA is composed of several chips divided
into multiple banks. Banks belonging to the same chip share
buffers and I/O interfaces and work in a lock-step approach.
Each bank is composed of several Multiple Memory Matrices
(MATs). The MATs share a Global Row Buffer (GRB) and
are connected to a Global Row Decoder (GRD). We place a
Local Row Buffer (LRB) for every pair of subarrays to improve
performance. Each subarray is composed of magnetoresistive
devices that are connected to theWrite Word Lines (WWL),
Write Bit Lines (WBL), Read Word Lines (RWL), Read
Bit Lines (RBL), and Source Lines (SL). The compute-
enabled subarrays perform the sDTW computation using
Reconfigurable Sense Amplifiers (RSAs).

The execution flow is orchestrated by a hierarchy of small
controllers implemented as finite state machines (FSMs).
MATSA comprises of 1) a global controller that orchestrates
inter-bank flow, 2) inter-mat controllers that take care of the
inter-mat flow, and 3) subarray controllers that activate the
memory rows and drive the RSAs to run sDTW’s algorithm.

B. MATSA SUBARRAYS
MATSA subarrays are comprised of MRAM cells following a
crossbar organization and can work either in regular memory
or compute mode. This is a desirable feature since our design
consists of 1) subarrays that temporarily buffer the data until
they are being processed and 2) subarrays that perform the
actual computation. Adjacent subarrays are connected using
pass gates and aux columns (purple one in Figure 6) to enable
the data flow through the hierarchy.

36732 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

FIGURE 6. MATSA’s high-level architecture and data mapping flow.

1) MEMORY SUBARRAYS
MATSA subarrays in regular memory mode support both
read and write data operations and work in the same way
as conventional non-PUM-enabled memory.

2) COMPUTE SUBARRAYS
MATSA subarrays working in compute mode perform bit-
wise operations on input data located in cells of the same
column. This enables the parallel execution ofmany operations
since all columns in the subarray work in parallel. The key
idea is to select two or three input values simultaneously
using the Memory Row Decoder (MRD). This produces
an equivalent resistance that depends on the content of
the selected cells and modifies the sensing voltage across
the column accordingly. MATSA’s Ctrl can select different
operations from the Reconfigurable Sense Amplifiers (RSAs)
that are placed per column. We modify the RSAs to execute
operations by equipping them with different resistances to
model the voltage thresholds, logic gates (i.e., NOR, XOR,
INV), a register, and a multiplexer (see Figure 6). The RSAs
in Compute subarrays support the same operations as memory
subarray RSAs, enabling switching between operating in
compute and memory modes.

C. PUM OPERATIONS
MATSA implements the following PUM operations to support
the execution of sDTW (detailed in Algorithm 1):
• Vertical Row Copy. MATSA executes consecutive mem-
ory read andwrite operations in the same cycle to improve
performance by activating two rows simultaneously.
In the first half cycle, the subarray’s MRD activates the
source row read by the LRB. Next, the destination row
is activated to store the data in the second half cycle.
This mechanism works at MAT and bank levels using
the Global Row Buffer (GRB) to accelerate the copies
across the hierarchy.

• Diagonal Row Copy. The Ctrl executes a diagonal
copy shift data between adjacent columns. The Ctrl
leverages the available registers in the RSA and the
interconnections between the RSAs. The operation is

executed in two steps. First, the RSA reads the value in
the source column. Second, the destination RSA (in an
adjacent column) reads the value from the source RSA
and writes it to its column.

• Addition/Subtraction. MATSA executes Bit-serial
addition/subtraction across columns. The Ctrl executes
operations starting from the least significant bit of the
two operands until the most significant bit. Every bit
operation requires two memory cycles, further divided
into four half cycles. In the first half-cycle, the RSAs read
voltage difference across all cells activated in the same
bit lines as input operands and calculate the Sum. The
RSA updates the Sum based on the stored Carry value
in the register. In the second half-cycle, the RSAs write
the Sum value to the destination cell. In the third half-
cycle, the RSAs calculate the new Carry value based on
a majority function of the operand rows and an auxiliary
row reserved for the Carry bit. In the fourth half-cycle,
RSAs write the new Carry value in the auxiliary row for
the next Carry calculation.

• Absolute Calculation. To calculate the absolute value,
MATSA first checks the sign bit, leading to two possible
scenarios: 1) if the number is positive, no change is
needed; otherwise, 2) if the number is negative, MATSA
inverts the bits of the number and adds ’1’ to the result
(similar to 2’s complement).

• Minimum Value. To calculate the minimum value
between three elements, MATSA performs two com-
parisons based on the subtraction operation. First,
it calculates the difference between the two numbers.
Second, it checks the resulting sign from the previous
step and selects one of the two numbers for comparison
against the third. The final comparison sign determines
the minimum between three values. The logic can be
similarly extended for comparing more than three values.

D. DATA MAPPING
Section II-D demonstrates that sDTW is an embarrassingly
parallel algorithm. We design MATSA’s data mapping
to leverage MRAM’s parallel column-wise computation

VOLUME 12, 2024 36733

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

capability. Three data structures are involved in the sDTW
computation: 1) reference sequence (of length O(M)), 2)
query sequence (of length O(N)), and 3) the warping matrix
(dynamic programming matric with size O(NM)). The data
structures are mapped to the subarray as follows:
• Reference Elements (R[j]). We vertically map each
reference element to 32 cells of a column. If 1) the
number of available columns is larger than the number
of elements in reference, we replicate the reference to
multiple columns to increase parallelism (distributing the
queries between them). If 2) the number of available
columns is lower than the number of elements in
reference, we divide the query and complete the process
in sequential batches. No action is needed if 3) available
columns are equal to the number of elements in reference.

• Query Elements (Q[i]). We vertically map each query
element to 32 cells of a column. New query elements are
introduced on the left side of the crossbar, and they are
right-shifted in each successive step (see section III-E).

• Current S_vector (S[i, j]). We define the current
vector of the warping matrix as the S_vector. We verti-
cally map each element of the S_vector to 32 cells of
a column, being aligned with the query and reference
elements (i and j indexes, respectively).

• Temporal S_vectors (S[i-1, j-1], S[i-1,
j], S[i, j-1]). We vertically map the three
temporal vectors along the reference and query elements.
Mapping the temporal vectors in the same subarray
leverages parallelism in the subarray as each column
can compute lines 8-9 of Algorithm 1 completely in
parallel. Then, those vectors are efficiently updated also
in parallel for the next iteration of the loop thanks to the
vertical and diagonal row copies.

• Aux Cells. Each column has a slice of 64 cells used to
hold the partial results during the execution flow.

We calculate the distance between each data point in the
reference and the query by iterating over the current S_vector
of the warping matrix (see Algorithm 1). Each element in the
S_vector (mapped across different crossbar columns) requires
accessing previous S_vector values that are mapped to the
same column (i.e., S[i − 1, j]) and adjacent columns (i.e.,
S[i, j − 1], S[i − 1, j − 1]). To break this data dependency,
we add three temporal S_vectors in the crossbar array that
are updated in each step of the computation: S[i− 1, j− 1],
S[i−1, j] and S[i, j−i] (see Figure 6). Overall, our optimization
reduces the memory footprint from O(NM) (whole matrix) to
O(4M) (S_vector plus three aux ones).

E. EXECUTION FLOW
MATSA’s execution flow follows a wavefront approach,
which reflects the computation pattern in dynamic program-
ming applications. The motivation is that sDTW’s matrix has
to be computed in the wavefront manner due to inter-cell
dependencies. Figure 7 shows an example of how we tackle
this restriction by assuming one reference time series (red one)
and two queries (green and ocher).

FIGURE 7. Wavefront-based sDTW computation in MATSA.

The key idea is to make computation flow diagonally by
assigning one element in the wavefront to each processing
element (PE), and using the diagonal row copy operation
(section III-C) to shift data between columns on the wavefront.
This is needed since each cell requires taking values from
its left column, thus their data values need to be available
prior to computation. Because of that, each PE advances
computation in the vertical direction with one cell delay with
its left PE, ensuring that the data needed to calculate the next
value is available. Figure 7-a shows an initial state where the
computation just started. In this example, only PEs where
their column contain black rectangles are are performing
computation. Note that in every step the wavefront introduces
a new PE to the active set, achieving maximum performance
after number_of_PEs steps. When reaching point, all PEs are
able to perform useful work in a given execution step. Figure 7-
b shows how this initialization phase can be amortized by
pipelining. By introducing a new query to compare against the
reference before the prior one finishes, MATSA ensures that
all PEs have work to do even during the transitions between
queries. Overall, this execution flow enables 1) leveraging the
subarray columns in parallel for the query, and 2) creation
of an inter-subarray pipeline to leverage parallelism across
queries, i.e., by processing queries in parallel. The execution
flow of each cell goes through the following steps:

1) Distance Calculation. Calculation of dist(Q[i],R[j]),
which provides the first partial result P1. This process
implies several substeps depending on the selected
distance metric, (e.g., subtraction→ absolute value).

2) Minimum. Calculation without storing the result of
min(S[i−1, j−1], S[i−1, j], S[i, j−1]), which produces
the value for the next step S1.

3) Addition. Calculation of the addition between the
minimum value selected in the previous step (S1) and
the partial result P1.

4) Diagonal Copy. Copying the S[i, j] vector into the
S[i, j− 1] vector shifted by one to the right.

5) Diagonal Copy. Copying the S[i− 1, j] vector into the
S[i− 1, j− 1] vector shifted by one to the right.

6) Vertical Copy. Copying the S[i, j] vector into the S[i−
1, j] vector.

36734 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

LISTING 1. MATSA’s host interface function.

7) Diagonal Copy. Copying the Q[i] vector into the same
Q[i] vector but shifted one position to the right.

F. PROGRAMMING INTERFACE AND SYSTEM INTEGRATION
1) PROGRAMMING INTERFACE
We expose an API (Listing 1) that allows to invoke MATSA
from the host processing unit.
MATSA expects input data to be in a supported type-

/precision DTYPE (integer: int8, int16, int32 or
int64; fixed-point: fp32 or fp64), the selected mode
(either query_filtering, where queries are compared against
the reference or self_join, where slices of the reference
are compared against themselves) and the distance metric
(abs_diff or square_diff). MATSA can also take an anomaly
threshold, which returns an array with the detected ones.

2) SYSTEM INTEGRATION
MATSA is designed to work synergistically with the CPU to
accelerate TSA. We propose three MATSA versions to meet
the requirements of different environments, as we describe
next.
a) MATSA-HPC. A high-performance PCIe-based acceler-

ator intended to be integrated into servers.
b) MATSA-Embedded. A small chip intended to be

integrated with edge devices (e.g., sensors).
c) MATSA-Portable. A USB-based accelerator intended

for use in desktops and laptop computers.

IV. EVALUATION
A. METHODOLOGY
To comprehensively quantify the performance and energy
efficiency improvements of MATSA, we compare it with the
following systems.
• CPU-ARM (cpuarm): 4-core ARM CPU @ 2.5GHz,
32KB L1 and 8GB LPDDR4.

• CPU-i7 (cpui7): 6-core (12 threads) Intel i7× 86 CPU
@ 3.2GHz, 64KB L1, 256KB L2, 12MB L3 and 64GB
DDR4.

• CPU-Xeon (cpuxeon): Two 18-core (36 threads) Intel
Xeon Gold 6154 × 86 CPUs @ 3GHz, 32KB L1, 1MB
L2, 24.75 MB L3 and 768GB DDR4.

• GPU (gpu): NVIDIA Tesla V100 with 32GB of HBM.
• FPGA (fpga): Xilinx Alveo U50 with 8GB HBM
memory.

• UPMEM (upmem): Server-class Processing-Near-
Memory DIMMs with 2560 DPUs running at
425MHz [10].

• MATSA-Embedded (matsa-embedded): consist-
ing of 128 compute-enabled crossbars (1MB) and
896 regular-memory crossbars (7MB).

FIGURE 8. Overview of MATSA simulator.

• MATSA-Portable (matsa-portable): consisting
of 1024 compute-enabled crossbars (8MB) and
7168 regular-memory crossbars (56MB).

• MATSA-HPC (matsa-hpc): consisting of 4096
compute-enabled crossbars (32MB) and 28672 regular-
memory crossbars (224MB).

1) BASELINES
We use ZSim+Ramulator [63] and McPAT for the cpuarm
platform. For the cpui7 and cpuxeon platforms, we have
access to the target hardware and measure performance
and energy consumption values by averaging five repeated
executions. The energy consumption is determined using
Intel RAPL tools. To evaluate the performance of the upmem
platform, we implement and optimize the sDTW algorithm
as shown in Algorithm 1. To evaluate the performance on
the fgpa platform, we implement the sDTW algorithm
using High-Level Synthesis vendor tools from Xilinx and
optimize the implementation to utilize eight compute units
and maximize the utilization of the available HBM bandwidth.
We evaluate the performance of the gpu platform by
optimizing a CUDA-based implementation of sDTW to
maximize the HBM bandwidth utilization via memory
coalescing. We measure the GPU’s energy consumption using
the NVIDIA-smi tool.

2) MATSA
Due to the lack of a cycle-accurate simulator forMRAM-based
accelerators, we implement an in-house simulator for MRAM-
based PUM. Figure 8 shows an overview this simulator.
We provide the workload characteristics and the MRAM
device characteristics under study, and the simulator computes
the performance and energy efficiency in return. We plan to
release this simulator for public use of the community after
acceptance of this work.
We perform a sensitivity analysis by sweeping MRAM

devices’ latency and energy from conservative to optimistic
values based on MRAM device trends [64] listed in Table 3.
Based on that, we conservatively select an operating point
(highlighted in bold) for the evaluations taking into account
realistic MRAM device progress projections. We input the
workload parameters and MRAM characteristics obtained
from the parameter sweep to the simulator to get the
workload’s execution time and energy consumption.

VOLUME 12, 2024 36735

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

TABLE 3. MATSA design space exploration parameters.

3) DATASETS
We perform MATSA’s design exploration using the datasets
in Table 4, which ease understanding of the tradeoffs. Then,
we compare MATSA against baselines in real scenarios using
the real datasets in Table 5. The data type for these evaluations
is int32, which covers the data ranges of all the evaluated
the workloads.

TABLE 4. Workloads used in MATSA characterization.

TABLE 5. Real-world workloads used in our evaluation.

B. MATSA CHARACTERIZATION
We perform a design space exploration of MATSA taking
into consideration performance parameters of the cells (i.e.,
read/write latencies and energies).

1) READ/WRITE LATENCIES
We evaluate how changing the read/write latencies affects the
execution time and present the results in Figure 9. We observe
that, increasing read latency by 10× incurs a 4.7× execution
time penalty, while increasing the write latency incurs a 6.5×
penalty.

Key Observation 3: using a low write latency memory
technology is crucial for MATSA’s design.

2) READ/WRITE ENERGIES
We evaluate how the total execution energy varies with the
per word write/read energy, and show the results in Figure 10.
We observe here that the contributions of read energy and

FIGURE 9. Execution time when varying cell read and write latencies
(ref_size = 128K, query_size = 8K, num_queries = 8K, matsa_cols = 128K).

FIGURE 10. Execution energy when varying cell read and write energies
(ref_size = 128K, query_size = 8K, num_queries = 8K, matsa_cols = 128K).

FIGURE 11. Execution time when varying dataset sizes (num_queries = 8K,
matsa_cols = 128K).

write energy are similar, thus both of them have to be carefully
taken into consideration.

Key Observation 4: read energy contributes 45%
and write energy contributes 55% to the total energy
consumption of a given execution.

3) DATASET SIZES
First, we evaluate how the execution time varies with different
dataset sizes (i.e., ref_size and query_size) and present the
results in Figure 11. Second, we evaluate how the execution
energy varies with different dataset sizes and present the
results in Figure 12. We observe that both reference size
and query size contribute equally to the execution time and
energy. This happens because the total number of operations
needed is directly proportional to ref_size×query_size. Our
observation corroborates our earlier analysis stating that
query-specific sDTW implementations do not fairly represent
GPU performance, and there is a need for a more general
solution.

Key Observation 5: Total execution time and energy
consumption are proportional to both ref_size and the
query_size.

36736 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

FIGURE 12. Execution energy when varying dataset sizes (num_queries =

8K, matsa_cols = 128K).

FIGURE 13. Execution time when varying MATSA sizes.

4) MATSA SIZES
We evaluate how the execution time varies when changing the
number of MATSA’s compute-enabled columns in Figure 13.
MATSA provides almost-ideal scaling.

Key Observation 6: Bit-serial computation across
columns enables almost-ideal scaling when increasing
the size of the workload.

5) ENDURANCE
Assuming that MATSA is built using 5/10ns rd/wr cells and
runs 24/7 for ten years, we estimate that each cell will be
written≈ 4× 109 times. Based on Table 2, limited-endurance
cells (e.g., ReRAM) would fail within one day. In contrast,
high-endurance cells (1015 writes for SOT-MRAM) can
provide a very large usable lifetime.

6) HARDWARE OVERHEADS
MATSA introduces hardware overheads in two components:
1) Reconfigurable SAs and 2) MATSA controllers. Recon-
figurable SAs add 13 transistors to a traditional SA, thus
taking into consideration typical SA and cell areas [65], [66],
our design increases the overall crossbar area by less than
1%. MATSA controllers are implemented as small finite-state
machines whose area is negligible compared to the memory
arrays.

C. SYSTEM EVALUATION
1) MATSA-EMBEDDED AND MATSA-PORTABLE
We compare the performance of MATSA-Embedded (32K
compute-enabled columns) and MATSA-Portable (256K
compute-enabled columns) with cpuarm, cpui7, and fpga
baselines in Figure 14a. The smallest version, MATSA-
Embedded, provides 30.20×/1.30×/8.14× lower execution
times than cpuarm, cpui7, and fpga, respectively.

FIGURE 14. Latency and energy consumption of MATSA-Embedded
(num_cols = 32K) and MATSA-Portable (num_cols = 256K) versus
baselines (rd_lat = 5ns, wr_lat = 10ns, rd_en = 50nJ, wr_en = 70nJ).

FIGURE 15. Execution times and energy consumption of MATSA-HPC
(num_cols = 1M) versus baselines (rd_lat = 5ns, wr_lat = 10ns, rd_en =

50nJ, wr_en = 70nJ).

MATSA-Portable is further able to improve the performance
by 241.66×/10.40×/65.28× with respect to the same
baselines, respectively. These performance improvements
stem from the higher available parallelism in PUM, where all
compute-enable columns can compute independently. Next,
we compare the energy consumption of MATSA-Embedded
and MATSA-Portable with the same baselines in Figure 14b.
MATSA-Embedded reduces the energy consumption by
45.67×/10.64×/24.58× with respect to cpuarm, cpui7
and fpga baselines, respectively. We observe that 1) the
energy reduction comes from eliminating the expensive off-
chip data movement and 2) MATSA-Portable reduces the
energy consumption by roughly the same factor as MATSA-
Embedded. We deduce from these results that scaling MATSA
improves the performance but does not penalize the energy
efficiency.

2) MATSA-HPC
We first perform a performance comparison of MATSA-HPC
and present the results in Figure 15a. We observe that MATSA-
HPC achieves 7.3×/6.15×/6.3× lower execution times than
cpuxeon, gpu and upmem, respectively, owing to enormous
available parallelism (one million compute columns). Second,
we compare the energy consumption of MATSA-HPC in
Figure 15b and observe that it provides 11.29×/4.21×/2.65×
lower energy consumption than cpuxeon, gpu and upmem,
respectively. The energy efficiency benefits of MATSA-HPC

VOLUME 12, 2024 36737

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

stem from the elimination of the off-chip data movements.
We note that cpuxeon is bottlenecked by 1) the limited
parallelism (number of cores) and 2) the high data movement
costs through the memory hierarchy. The gpu baseline
provides high parallelism but is limited by data movement
from and to memory. The PNM-based upmem baseline
provides high parallelism and lowers data access costs
compared to CPU and GPUs. However, the sDTW kernel
is compute-bound in upmem due to small general-purpose
cores, in contrast to MATSA, a dedicated accelerator design
for the sDTW kernel.

3) MATSA BENEFITS
Table 6 summarizes MATSA’s benefits.

TABLE 6. MATSA’s speedup and energy over baselines.

V. RELATED WORK
To our knowledge, MATSA is the first sDTW accelerator
via MRAM-based PUM. We compare extensively to CPU,
GPU, FPGA, and state-of-the-art PNM platforms in section IV.
In this section, we describe related works focusing on
accelerating sDTW and prior PUM-based accelerators.

A. ACCELERATING DYNAMIC TIME WARPING (DTW)
Several works attempt to accelerate the sDTW kernel using
GPUs [52], [67] and FPGAs [68]. section IV demonstrates that
MATSA improves upon the performance of GPUs and FPGAs
by 6.15× and 65.28× respectively, and supports arbitrary-
sized datasets, a key drawback of prior work.

B. PROCESSING NEAR/USING MEMORY
There has been a significant interest in Processing-
[Near/Using]-Memory-based solutions for overcoming the
vonNeumann bottleneck inmodern computation platforms [5],
[8], [15], [69], [70], [71], [72], [73], [74], [75], [76], [77],
[78], [79], [80], [81], [82], [83], [84], [85], [86], [87],
[88], [89], [90] for various applications using accelerators
or general-purpose cores. In [91], ARM cores are used as
NDP compute units to improve data analytics operators (e.g.,
group, join, sort). IMPICA [92] is an NDP pointer chasing
accelerator. Tesseract [93] is a scalable NDP accelerator
for parallel graph processing. TETRIS [94] is an NDP
neural network accelerator. Lee et al. [95] propose an NDP
accelerator for similarity search. GRIM-Filter [77] is an NDP
accelerator for pre-alignment filtering in genome analysis.
Boroumand et al. [9] analyze the energy and performance

impact of data movement for several widely-used Google
consumer workloads, providing NDP accelerators for them.
CoNDA [70] provides efficient cache coherence support
for NDP accelerators. SparseP [96] provides efficient
data partitioning/maping techniques of the SpMV kernel
tailored for near-bank NDP architectures. NDC is an NDP
architecture [97] that has been proposed for MapReduce-
style applications. Xu et al. [98] propose a memristor-based
accelerator for accelerating the sDTW kernel. Despite
promising performance, they do not discuss endurance
challenges associated with memristors that restrict the
lifetime of the accelerator. In contrast, MATSA considers
this challenge and offers a usable lifetime of several decades.
Chen and Gu [99] propose an sDTW accelerator that exploits
DTW pipelining using a specially designed time flip-flop.
Although this work uses memristors for computation, they do
not leverage PUM. The data must be moved from/to memory
(i.e., memristors do not store the data). In contrast, MATSA
eliminates off-chip data movement to obtain high performance
and energy efficiency.

VI. CONCLUSION
This paper presents MATSA, the first MRAM-based Accel-
erator for Time Series Analysis. The key idea is to exploit
magnetoresistive crossbars to enable energy-efficient and fast
time series computation in memory. MATSA provides the
following key benefits: 1) significantly higher parallelism
exploiting column-level bitwise operations, and 2) reduction
in data movement overheads by leveraging PUM. MATSA
improves performance and energy consumption over CPU,
GPU, FPGA, and PNM platforms.

ACKNOWLEDGMENT
(Christina Giannoula and Aditya Manglik contributed equally
to this work.)

REFERENCES
[1] P. Esling and C. Agon, ‘‘Time-series data mining,’’ ACM Comput. Surv.

(CSUR), vol. 45, no. 1, pp. 1–34, 2012.
[2] A. Mueen and E. Keogh, ‘‘Extracting optimal performance from dynamic

time warping,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 2129–2130.

[3] X. Yao and H.-L. Wei, ‘‘A modified dynamic time warping (MDTW) and
innovative average non-self match distance (ANSD) method for anomaly
detection in ECG recordings,’’ in Recent Advances in AI-enabled Automated
Medical Diagnosis. Boca Raton, FL, USA: CRC Press, 2022.

[4] S. Alaee, R. Mercer, K. Kamgar, and E. Keogh, ‘‘Time series motifs
discovery under DTW allowsmore robust discovery of conserved structure,’’
Data Mining Knowl. Discovery, vol. 35, no. 3, pp. 863–910, May 2021.

[5] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and
O. Mutlu, ‘‘Benchmarking a new paradigm: Experimental analysis and
characterization of a real processing-in-memory system,’’ IEEE Access,
vol. 10, pp. 52565–52608, 2022.

[6] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas, and
O. Mutlu, ‘‘SparseP: Towards efficient sparse matrix vector multiplication
on real processing-in-memory architectures,’’ Proc. ACM Meas. Anal.
Comput. Syst., vol. 6, no. 1, pp. 1–49, 2022.

[7] O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun, ‘‘A modern
primer on processing in memory,’’ in Emerging Computing: From Devices
to Systems. Berlin, Germany: Springer, 2022, pp. 171–243.

36738 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

[8] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, ‘‘Processing
data where it makes sense: Enabling in-memory computation,’’Micropro-
cess. Microsyst., vol. 67, pp. 28–41, Jun. 2019.

[9] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur,
D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, ‘‘Google
workloads for consumer devices: Mitigating data movement bottlenecks,’’
in Proc. ASPLOS, 2018, pp. 316–331.

[10] F. Devaux, ‘‘The true processing in memory accelerator,’’ in Proc. IEEE
Hot Chips 31 Symp. (HCS), Aug. 2019, pp. 1–24.

[11] S. Angizi, J. Sun, W. Zhang, and D. Fan, ‘‘AlignS: A processing-in-memory
accelerator for DNA short read alignment leveraging SOT-MRAM,’’ in
Proc. DAC, 2019, pp. 1–6.

[12] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, ‘‘DRISA:
A DRAM-based reconfigurable in-situ accelerator,’’ in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2017, pp. 288–301.

[13] S. Angizi, Z. He, A. Awad, and D. Fan, ‘‘MRIMA: An MRAM-based in-
memory accelerator,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 5, pp. 1123–1136, May 2020.

[14] S. Angizi, Z. He, A. S. Rakin, and D. Fan, ‘‘CMP-PIM: An energy-efficient
comparator-based processing-in-memory neural network accelerator,’’ in
Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018,
pp. 1–6.

[15] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, ‘‘Ambit: In-
memory accelerator for bulk bitwise operations using commodity DRAM
technology,’’ in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2017, pp. 273–287.

[16] K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal, ‘‘In-memory
computing in emerging memory technologies for machine learning: An
overview,’’ in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020,
pp. 1–6.

[17] H. Lin, X. Luo, L. Liu, D. Wang, X. Zhao, Z. Wang, X. Xue, F. Zhang, and
G. Xing, ‘‘All-electrical control of compact SOT-MRAM: Toward highly
efficient and reliable non-volatile in-memory computing,’’ Micromachines,
vol. 13, no. 2, p. 319, Feb. 2022.

[18] S. Yu and P.-Y. Chen, ‘‘Emerging memory technologies: Recent trends
and prospects,’’ IEEE Solid StateCircuits Mag., vol. 8, no. 2, pp. 43–56,
Spring 2016.

[19] W. J. Gallagher, E. Chien, T.-W. Chiang, J.-C. Huang, M.-C. Shih,
C. Y. Wang, C. Bair, G. Lee, Y.-C. Shih, C.-F. Lee, R. Wang, K.-H. Shen,
J. J. Wu,W.Wang, and H. Chuang, ‘‘Recent progress and next directions for
embedded MRAM technology,’’ in Proc. Symp. VLSI Technol., Jun. 2019,
pp. 190–191.

[20] P. Patel, E. Keogh, J. Lin, and S. Lonardi, ‘‘Mining motifs in massive time
series databases,’’ in Proc. ICDM, 2002, pp. 370–377.

[21] E. Keogh, J. Lin, S.-H. Lee, and H. V. Herle, ‘‘Finding the most unusual
time series subsequence: Algorithms and applications,’’ Knowl. Inf. Syst.,
vol. 11, no. 1, pp. 1–27, Dec. 2006.

[22] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
D. F. Silva, A. Mueen, and E. Keogh, ‘‘Matrix profile I: All pairs similarity
joins for time series: A unifying view that includes motifs, discords and
shapelets,’’ in Proc. ICDM, 2016, pp. 1317–1322.

[23] C. A. Ratanamahatana and E. Keogh, ‘‘Making time-series classification
more accurate using learned constraints,’’ in Proc. SIAM Int. Conf. Data
Mining, Apr. 2004, pp. 11–22.

[24] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications:
With R Examples. New York, NY, USA: Springer, 2017.

[25] A. E. X. Brown, E. I. Yemini, L. J. Grundy, T. Jucikas, and W. R. Schafer,
‘‘A dictionary of behavioral motifs reveals clusters of genes affecting
caenorhabditis elegans locomotion,’’ Proc. Nat. Acad. Sci. USA, vol. 110,
no. 2, pp. 791–796, Jan. 2013.

[26] A. Balasubramanian, J. Wang, and B. Prabhakaran, ‘‘Discovering multidi-
mensional motifs in physiological signals for personalized healthcare,’’
IEEE J. Sel. Topics Signal Process., vol. 10, no. 5, pp. 832–841,
Aug. 2016.

[27] Y. Tanaka, K. Iwamoto, and K. Uehara, ‘‘Discovery of time-series motif
from multi-dimensional data based on MDL principle,’’ Mach. Learn.,
vol. 58, nos. 2–3, pp. 269–300, Feb. 2005.

[28] A. McGovern, D. H. Rosendahl, R. A. Brown, and K. K. Droegemeier,
‘‘Identifying predictive multi-dimensional time series motifs: An application
to severe weather prediction,’’ Data Mining Knowl. Discovery, vol. 22,
nos. 1–2, pp. 232–258, Jan. 2011.

[29] B. Szigeti, A. Deogade, and B.Webb, ‘‘Searching for motifs in the behaviour
of larval Drosophila melanogaster and caenorhabditis elegans reveals
continuity between behavioural states,’’ J. Roy. Soc. Interface, vol. 12,
no. 113, Dec. 2015, Art. no. 20150899.

[30] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, ‘‘Time-series
clustering—A decade review,’’ Inf. Syst., vol. 53, pp. 16–38, Oct. 2015.

[31] C. McKee, I. Itikarai, and H. Davies, ‘‘Instrumental volcano surveillance
and community awareness in the lead-up to the 1994 eruptions at Rabaul,
Papua New Guinea,’’ in Observing the Volcano World. Berlin, Germany:
Springer, 2018, pp. 205–233.

[32] E. Philip Howrey, ‘‘The role of time series analysis in econometric model
evaluation,’’ in Evaluation of Econometric Models. Cambridge, MA, USA:
Academic, 1980, pp. 275–307.

[33] R. H. Shumway, Applied Statistical Time Series Analysis. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1988.

[34] K. Nakagawa, M. Imamura, and K. Yoshida, ‘‘Stock price prediction using
k-medoids clustering with indexing dynamic time warping,’’ Electron.
Commun. Jpn., vol. 102, no. 2, pp. 3–8, Feb. 2019.

[35] D. Barber, A. T. Cemgil, and S. Chiappa, Bayesian Time Series Models.
Cambridge, U.K.: Cambridge Univ. Press, 2011.

[36] S. A. P. Kumar and P. K. Bora, ‘‘Time series analysis and signal processing,’’
in Proc. 2nd Nat. Conf. Comput. Intell. Signal Process. (CISP), Mar. 2012,
p. 24.

[37] B. Wu, ‘‘Pattern recognition and classification in time series analysis,’’ Appl.
Math. Comput., vol. 62, no. 1, pp. 29–45, Apr. 1994.

[38] A. Lakhina, M. Crovella, and C. Diot, ‘‘Characterization of network-wide
anomalies in traffic flows,’’ in Proc. 4th ACM SIGCOMM Conf. Internet
Meas., Oct. 2004, pp. 201–206.

[39] T. Dunn, H. Sadasivan, J. Wadden, K. Goliya, K.-Y. Chen, D. Blaauw,
R. Das, and S. Narayanasamy, ‘‘SquiggleFilter: An accelerator for
portable virus detection,’’ in Proc. 54th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2021, pp. 535–549.

[40] R. Vio, N. R. Kristensen, H. Madsen, and W. Wamsteker, ‘‘Time series
analysis in astronomy: Limits and potentialities,’’ Astron. Astrophys.,
vol. 435, no. 2, pp. 773–780, May 2005.

[41] K. Nusratullah, S. A. Khan, A. Shah, and W. H. Butt, ‘‘Detecting changes
in context using time series analysis of social network,’’ in Proc. SAI Intell.
Syst. Conf. (IntelliSys), Nov. 2015, pp. 996–1001.

[42] E. Keogh and S. Kasetty, ‘‘On the need for time series data mining
benchmarks: A survey and empirical demonstration,’’ Data Mining Knowl.
Discovery, vol. 7, no. 4, pp. 349–371, Oct. 2003.

[43] A. Christophersen, N. I. Deligne, A. M. Hanea, L. Chardot, N. Fournier,
and W. P. Aspinall, ‘‘Bayesian network modeling and expert elicitation for
probabilistic eruption forecasting: Pilot study for Whakaari/White Island,
New Zealand,’’ Frontiers Earth Sci., vol. 6, p. 211, Nov. 2018.

[44] A. Klos, M. S. Bos, and J. Bogusz, ‘‘Detecting time-varying seasonal signal
in GPS position time series with different noise levels,’’ GPS Solutions,
vol. 22, no. 1, pp. 1–11, Jan. 2018.

[45] R. Stoermer, R. Mager, A. Roessler, F. Mueller-Spahn, and A. H. Bullinger,
‘‘Monitoring human-virtual reality interaction: A time series analysis
approach,’’ CyberPsychology Behav., vol. 3, no. 3, pp. 401–406, Jun. 2000.

[46] A. D. Calin, ‘‘Gesture recognition on Kinect time series data using dynamic
timewarping and hiddenMarkovmodels,’’ inProc. 18th Int. Symp. Symbolic
Numeric Algorithms Scientific Comput. (SYNASC), Sep. 2016, pp. 264–271.

[47] S. Ayhan and H. Samet, ‘‘Time series clustering of weather observations
in predicting climb phase of aircraft trajectories,’’ in Proc. 9th ACM
SIGSPATIAL Int. Workshop Comput. Transp. Sci., Oct. 2016, pp. 25–30.

[48] L. Li, X. Su, Y. Zhang, Y. Lin, and Z. Li, ‘‘Trend modeling for traffic time
series analysis: An integrated study,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 6, pp. 3430–3439, Dec. 2015.

[49] S. L. Hyland, M. Faltys, M. Hüser, X. Lyu, T. Gumbsch, C. Esteban,
C. Bock, M. Horn, M. Moor, B. Rieck, M. Zimmermann, D. Bodenham,
K. Borgwardt, G. Rätsch, and T. M. Merz, ‘‘Early prediction of circulatory
failure in the intensive care unit using machine learning,’’ Nature Med.,
vol. 26, no. 3, pp. 364–373, Mar. 2020.

[50] G. Chen, G. Lu, Z. Xie, and W. Shang, ‘‘Anomaly detection in EEG signals:
A case study on similarity measure,’’ Comput. Intell. Neurosci., vol. 2020,
pp. 1–16, Jan. 2020.

[51] D. J. Berndt and J. Clifford, ‘‘Using dynamic time warping to find patterns
in time series,’’ in Proc. KDDWorkshop, 1994, vol. 10, no. 16, pp. 359–370.

[52] B. Schmidt and C. Hundt, ‘‘cuDTW++: Ultra-fast dynamic time warping
on CUDA-enabled GPUs,’’ in Euro-Par 2020: Parallel Processing. Berlin,
Germany: Springer, 2020, pp. 597–612.

VOLUME 12, 2024 36739

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

[53] NVIDIA Visual Profiler. Accessed: Nov. 16, 2023. [Online]. Available:
https://developer.nvidia.com/nvidia-visual-profiler

[54] Introduction to UPMEM PIM. Processing-in-Memory (PIM) on DRAM
Accelerator, UPMEM, Grenoble, France, 2018.

[55] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi,
M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, ‘‘SIMDRAM:
A framework for bit-serial SIMD processing using DRAM,’’ in Proc. 26th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2021, pp. 329–345.

[56] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, ‘‘Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,’’ in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2018, pp. 442–454.

[57] T. Daulby, A. Savanth, A. S. Weddell, and G. V. Merrett, ‘‘Comparing NVM
technologies through the lens of intermittent computation,’’ in Proc. 8th
Int. Workshop Energy Harvesting Energy-Neutral Sens. Syst., Nov. 2020,
pp. 77–78.

[58] S. Mittal, ‘‘A survey of ReRAM-based architectures for processing-in-
memory and neural networks,’’ Mach. Learn. Knowl. Extraction, vol. 1,
no. 1, pp. 75–114, Apr. 2018.

[59] Y. Zhang, J. Wang, C. Lian, Y. Bai, G. Wang, Z. Zhang, Z. Zheng, L.
Chen, K. Zhang, G. Sirakoulis, and Y. Zhang, ‘‘Time-domain computing
in memory using spintronics for energy-efficient convolutional neural
network,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 3,
pp. 1193–1205, Mar. 2021.

[60] X. Jin, W. Chen, X. Li, N. Yin, C. Wan, M. Zhao, X. Han, and Z. Yu,
‘‘High-reliability, reconfigurable, and fully non-volatile full-adder based on
SOT-MTJ for image processing applications,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 70, no. 2, pp. 781–785, Feb. 2023.

[61] J. Wang, Y. Bai, H. Wang, Z. Hao, G. Wang, K. Zhang, Y. Zhang,
W. Lv, and Y. Zhang, ‘‘Reconfigurable bit-serial operation using toggle
SOT-MRAM for high-performance computing in memory architecture,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 11, pp. 4535–4545,
Nov. 2022.

[62] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, ‘‘MAGIC—Memristor-aided logic,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[63] (2022). ZSim+Ramulator. [Online]. Available: github.com/CMU-
SAFARI/ramulator-pim

[64] R. Saha, Y. P. Pundir, and P. Kumar Pal, ‘‘Comparative analysis of STT and
SOT based MRAMs for last level caches,’’ J. Magn. Magn. Mater., vol. 551,
Jun. 2022, Art. no. 169161.

[65] M. Uddin and G. S. Rose, ‘‘A practical sense amplifier design for memristive
crossbar circuits (PUF),’’ in Proc. 31st IEEE Int. Syst.-Chip Conf. (SOCC),
Sep. 2018, pp. 209–214.

[66] Y. Seo, K.-W. Kwon, and K. Roy, ‘‘Area-efficient SOT-MRAM with a
Schottky diode,’’ IEEE Electron Device Lett., vol. 37, no. 8, pp. 982–985,
Aug. 2016.

[67] H. Sadasivan, D. Stiffler, A. Tirumala, J. Israeli, and S. Narayanasamy,
‘‘Accelerated dynamic time warping on GPU for selective nanopore
sequencing,’’ BioRxiv, Mar. 2023.

[68] Z. Wang, S. Huang, L. Wang, H. Li, Y. Wang, and H. Yang, ‘‘Accelerating
subsequence similarity search based on dynamic time warping distance
with FPGA,’’ in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Array,
2013, pp. 53–62.

[69] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,
‘‘Processing-in-memory: A workload-driven perspective,’’ IBM J. Res.
Develop., vol. 63, no. 6, pp. 1–19, Nov. 2019.

[70] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarung-
nirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu,
‘‘CoNDA: Efficient cache coherence support for near-data accelerators,’’ in
Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2019,
pp. 629–642.

[71] G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gomez-Luna,
S. Stuijk, O. Mutlu, and H. Corporaal, ‘‘NERO: A near high-bandwidth
memory stencil accelerator for weather prediction modeling,’’ in Proc.
30th Int. Conf. Field-Programmable Log. Appl. (FPL), Aug. 2020,
pp. 9–17.

[72] D. Fujiki, S. Mahlke, and R. Das, ‘‘Duality cache for data parallel
acceleration,’’ in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2019, pp. 1–14.

[73] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas,
I. Fernandez, J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and
O. Mutlu, ‘‘SynCron: Efficient synchronization support for near-data-
processing architectures,’’ in Proc. IEEE Int. Symp. High-Performance
Comput. Archit. (HPCA), Feb. 2021, pp. 263–276.

[74] H. S. Stone, ‘‘A logic-in-memory computer,’’ IEEE Trans. Comput.,
vol. C-19, no. 1, pp. 73–78, Jan. 1970.

[75] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, ‘‘Neural cache: Bit-serial in-cache acceleration of
deep neural networks,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 383–396.

[76] I. Fernandez, R. Quislant, E. Gutiérrez, O. Plata, C. Giannoula, M.
Alser, J. Gómez-Luna, and O. Mutlu, ‘‘NATSA: A near-data processing
accelerator for time series analysis,’’ in Proc. IEEE 38th Int. Conf. Comput.
Design (ICCD), Oct. 2020, pp. 120–129.

[77] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, ‘‘GRIM-filter: Fast seed location filtering
in DNA read mapping using processing-in-memory technologies,’’ BMC
Genomics, vol. 19, no. 2, pp. 23–40, May 2018.

[78] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, ‘‘PIM-enabled instructions: A
low-overhead, locality-aware processing-in-memory architecture,’’ in Proc.
ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015,
pp. 336–348.

[79] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
‘‘Chameleon: Versatile and practical near-DRAM acceleration architecture
for large memory systems,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[80] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon,
C. Yoon, S. Cho, J. Jeong, and D. Chang, ‘‘Biscuit: A framework for near-
data processing of big data workloads,’’ in Proc. ISCA, 2016, pp. 153–165.

[81] M. Hashemi, O. Mutlu, and Y. N. Patt, ‘‘Continuous runahead: Transparent
hardware acceleration for memory intensive workloads,’’ in Proc. 49th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1–12.

[82] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, ‘‘Transparent offloading and mapping (TOM):
Enabling programmer-transparent near-data processing in GPU systems,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 204–216.

[83] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
‘‘Neurocube: A programmable digital neuromorphic architecture with high-
density 3D memory,’’ in Proc. ISCA, 2016, pp. 380–392.

[84] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, ‘‘Toward standardized
near-data processing with unrestricted data placement for GPUs,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2017,
pp. 1–12.

[85] J. H. Lee, J. Sim, and H. Kim, ‘‘BSSync: Processing near memory for
machine learning workloads with bounded staleness consistency models,’’
in Proc. Int. Conf. Parallel Archit. Compilation (PACT), Oct. 2015,
pp. 241–252.

[86] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, ‘‘Concurrent data structures for
near-memory computing,’’ inProc. 29th ACM Symp. Parallelism Algorithms
Architectures, Jul. 2017, pp. 235–245.

[87] O. Mutlu and L. Subramanian, ‘‘Research problems and opportunities
in memory systems,’’ Supercomputing Frontiers Innov., vol. 1, no. 3,
pp. 19–55, 2014.

[88] S. Jain, S. Sapatnekar, J.-P. Wang, K. Roy, and A. Raghunathan,
‘‘Computing-in-memory with spintronics,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1640–1645.

[89] N. M. Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Gollwitzer,
D. S. Cali, C. Firtina, H. Mao, and N. A. Alserr, ‘‘GenStore: A high-
performance and energy-efficient in-storage computing system for genome
sequence analysis,’’ in Proc. ASPLOS, 2022, pp. 1–20.

[90] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar,
I. Fernandez, M. Sadrosadati, and O. Mutlu, ‘‘DAMOV: A new methodol-
ogy and benchmark suite for evaluating data movement bottlenecks,’’ IEEE
Access, vol. 9, pp. 134457–134502, 2021.

[91] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,
B. Grot, and D. Pnevmatikatos, ‘‘The Mondrian data engine,’’ in Proc.
ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 639–651.

36740 VOLUME 12, 2024

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

[92] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose,
and O. Mutlu, ‘‘Accelerating pointer chasing in 3D-stacked memory:
Challenges, mechanisms, evaluation,’’ inProc. IEEE 34th Int. Conf. Comput.
Design (ICCD), Oct. 2016, pp. 25–32.

[93] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, ‘‘A scalable processing-
in-memory accelerator for parallel graph processing,’’ in Proc. ACM/IEEE
42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015, pp. 105–117.

[94] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, ‘‘TETRIS: Scalable
and efficient neural network acceleration with 3D memory,’’ in Proc.
ASPLOS, 2017, pp. 751–764.

[95] V. T. Lee, A. Mazumdar, C. C. del Mundo, A. Alaghi, L. Ceze, and M.
Oskin, ‘‘Application codesign of near-data processing for similarity search,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2018,
pp. 896–907.

[96] C. Giannoula, I. Fernandez, J. Gomez-Luna, N. Koziris, G. Goumas, and
O. Mutlu, ‘‘SparseP: Efficient sparse matrix vector multiplication on real
processing-in-memory architectures,’’ in Proc. IEEE Comput. Soc. Annu.
Symp. VLSI (ISVLSI), Jul. 2022, pp. 288–291.

[97] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, ‘‘NDC: Analyzing the impact
of 3D-stacked memory+logic devices on MapReduce workloads,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2014,
pp. 190–200.

[98] X. Xu, F. Lin, A. Wang, X. Yao, Q. Lu, W. Xu, Y. Shi, and Y. Hu,
‘‘Accelerating dynamic time warping with memristor-based customized
fabrics,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 4, pp. 729–741, Apr. 2018.

[99] Z. Chen and J. Gu, ‘‘High-throughput dynamic time warping accelerator
for time-series classification with pipelined mixed-signal time-domain
computing,’’ IEEE J. Solid-State Circuits, vol. 56, no. 2, pp. 624–635,
Feb. 2021.

IVAN FERNANDEZ received the B.S. degree
in computer engineering, the M.S. degree in
mechatronics engineering, and the Ph.D. degree
from the University of Málaga, in 2017, 2018,
and 2023, respectively. During the Ph.D. degree,
he stayed for ten months with SAFARI Research
Group led by Onur Mutlu (ETH Zürich) as
an affiliated Researcher. In 2022, he joined
Universitat Politècnica de Catalunya and Barcelona
Supercomputing Center as a Visiting Researcher,

where he is currently involved in several international projects, such
as European Processor Initiative. His current research interests include
processing in memory, near-data processing, stacked memory architectures,
high-performance computing and transprecision computing applied to time
series analysis, and bioinformatics.

CHRISTINA GIANNOULA received the Ph.D.
degree from the School of Electrical and Computer
Engineering, National Technical University of
Athens, advised by Prof. Georgios Goumas, Prof.
Nectarios Koziris, and Prof. OnurMutlu, in October
2022. She is currently a Postdoctoral Researcher
with the University of Toronto working with Prof.
Gennady Pekhimenko and his research group. She
is also with the SAFARI Research Group and
Prof. Onur Mutlu. She has several publications

and awards for her research on the aforementioned topics. Her research
interests include the intersection of computer architecture, computer systems,
and high-performance computing. Specifically, her research focuses on
the hardware/software co-design of emerging applications, including graph
processing, pointer-chasing data structures, machine learning workloads,
and sparse linear algebra, with modern computing paradigms, such as
large-scale multicore systems, disaggregated memory systems, and near-
data processing architectures. She is a member of ACM, ACM-W, and the
Technical Chamber of Greece. For more information, please see her webpage
at https://cgiannoula.github.io/.

ADITYA MANGLIK received the bachelor’s degree
in electrical engineering from BITS Pilani, in 2018,
and the master’s degree in electrical engineering
from ETH Zürich, Switzerland, in 2024. He is
currently a Graduate Student with the SAFARI
Research Group, ETH Zürich, advised by Prof.
Onur Mutlu. His research interests include sus-
tainable software, energy-efficient systems, secure
system design, and processing-in-memory. For
more information, please see his webpage at

https://adityamanglik.github.io/.

RICARDO QUISLANT received the M.Sc. degree
in computer engineering from the University of
Granada, in 2006, and the Ph.D. degree from the
University of Málaga, Spain, in 2012. Currently,
he is an Assistant Professor with the Department of
Computer Architecture, University of Málaga. His
main research interests include computer memory
systems and high-performance computing, with
special regard to transactional memory.

NIKA MANSOURI GHIASI received the B.S.
degree in electrical engineering from the University
of Tehran and the M.S. degree in electrical
engineering from ETH Zürich, where she is
currently pursuing the Ph.D. degree. She is
with ETH Zürich advised by Onur Mutlu. Her
research interests include emerging memory and
processing technologies, near-data processing,
storage systems, and bioinformatics.

JUAN GÓMEZ-LUNA (Member, IEEE) received
the B.S. and M.S. degrees in telecommunication
engineering from the University of Seville, Spain,
in 2001, and the Ph.D. degree in computer
science from the University of Córdoba, Spain,
in 2012. From 2005 to 2017, he was a Faculty
Member with the University of Córdoba. He is
currently a Senior Researcher and a Lecturer with
the SAFARI Research Group, ETH Zürich. His
research interests include processing-in-memory,

memory systems, heterogeneous computing and hardware and software
acceleration of medical imaging, and bioinformatics. He is the Lead
Author of PrIM (https://github.com/CMU-SAFARI/prim-benchmarks), the
first publicly-available benchmark suite for a real-world processing-in-
memory architecture; and Chai (https://github.com/chai-benchmarks/chai),
a benchmark suite for heterogeneous systems with CPU/GPU/FPGA.

VOLUME 12, 2024 36741

I. Fernandez et al.: MATSA: An MRAM-Based Energy-Efficient Accelerator for TSA

ELADIO GUTIERREZ received the M.Sc. and
Ph.D. degrees in telecommunication engineering
from the University of Málaga, Spain, in 1995 and
2001, respectively. Since 2003, he has been
an Associate Professor with the Department of
Computer Architecture, University of Málaga. His
research interests include parallel architectures
and algorithms, graphics processing units, and
automatic parallelization.

OSCAR PLATA received the M.S. and Ph.D.
degrees in physics from University of Santiago de
Compostela, Spain, in 1985 and 1989, respectively.
He started as an Assistant Professor with University
of Santiago de Compostela, where he became an
Associated Professor, in 1990. He moved to the
University of Málaga, in 1995, where he became
a Full Professor with the Computer Architecture
Department, in 2002. His research interests include
related to high-performance computing and parallel
architectures.

ONUR MUTLU (Fellow, IEEE) received the B.S.
degree in computer engineering and psychology
from the University of Michigan, Ann Arbor, MI,
USA, and the M.S. and Ph.D. degrees in ECE from
The University of Texas at Austin. He started the
Computer Architecture Group, Microsoft Research,
from 2006 to 2009, and held various product
and research positions with Intel Corporation,
Advanced Micro Devices, VMware, and Google.
He is currently a Professor of computer sciencewith

ETH Zürich. He is also a Faculty Member with Carnegie Mellon University,
where he previously held the Strecker Early Career Professorship. His current
broader research interests include computer architecture, systems, hardware
security, and bioinformatics. A variety of techniques, he along with his group
and collaborators, has invented over the years have influenced industry and
have been employed in commercial microprocessors and memory/storage
systems. He received the IEEE High Performance Computer Architecture
Test of Time Award, the IEEE Computer Society Edward J. McCluskey
Technical Achievement Award, the ACM SIGARCH Maurice Wilkes Award,
the Inaugural IEEE Computer Society Young Computer Architect Award, the
Inaugural Intel Early Career Faculty Award, U.S. National Science Foundation
CAREER Award, the Carnegie Mellon University Ladd Research Award, the
faculty partnership awards from various companies, and a healthy number of
best paper or ‘‘Top Pick’’ paper recognitions at various computer systems,
architecture, and security venues. He is an ACM Fellow and an Elected
Member of the Academy of Europe (Academia Europaea). His computer
architecture and digital logic design course lectures and materials are freely
available on YouTube (https://www.youtube.com/OnurMutluLectures). His
research group makes a wide variety of software and hardware artifacts freely
available online (https://safari.ethz.ch/). For more information, please see his
webpage at https://people.inf.ethz.ch/omutlu/.

36742 VOLUME 12, 2024

