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Abstract
In 1964, Erdős proposed the problem of estimating the Turán number of the d-dimensional hypercube 𝑄𝑑 .
Since 𝑄𝑑 is a bipartite graph with maximum degree d, it follows from results of Füredi and Alon, Krivelevich,
Sudakov that ex(𝑛, 𝑄𝑑) = 𝑂𝑑 (𝑛

2−1/𝑑). A recent general result of Sudakov and Tomon implies the slightly
stronger bound ex(𝑛, 𝑄𝑑) = 𝑜(𝑛2−1/𝑑). We obtain the first power-improvement for this old problem by showing

that ex(𝑛, 𝑄𝑑) = 𝑂𝑑

(
𝑛

2− 1
𝑑−1+

1
(𝑑−1)2𝑑−1

)
. This answers a question of Liu. Moreover, our techniques give a power

improvement for a larger class of graphs than cubes.
We use a similar method to prove that any n-vertex, properly edge-coloured graph without a rainbow cycle has at

most 𝑂 (𝑛(log 𝑛)2) edges, improving the previous best bound of 𝑛(log 𝑛)2+𝑜 (1) by Tomon. Furthermore, we show
that any properly edge-coloured n-vertex graph with 𝜔(𝑛 log 𝑛) edges contains a cycle which is almost rainbow:
that is, almost all edges in it have a unique colour. This latter result is tight.
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1. Introduction

For a graph H and positive integer n, the Turán number (or extremal number) ex(𝑛, 𝐻) is the maximum
possible number of edges in an n-vertex graph which does not contain H as a subgraph. By a result of
Turán [29], the exact value of this function is known when H is a complete graph. More generally, the
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2 O. Janzer and B. Sudakov

function is well understood for graphs with chromatic number at least 3 by the celebrated Erdős–Stone–
Simonovits theorem [15, 13] which states that

ex(𝑛, 𝐻) =

(
1 −

1
𝜒(𝐻) − 1

+ 𝑜(1)
) (

𝑛

2

)
.

However, for bipartite graphs H, the known bounds are much less accurate. It is known that for any
bipartite graph H there is some 𝜀 = 𝜀(𝐻) > 0 such that ex(𝑛, 𝐻) = 𝑂 (𝑛2−𝜀) and it is conjectured that in
fact there is some 𝛼 = 𝛼(𝐻) such that ex(𝑛, 𝐻) = Θ(𝑛𝛼). However, this is not known even for some very
simple graphs such as the complete bipartite graph 𝐾4,4, the even cycle 𝐶8 and the three-dimensional
cube 𝑄3. In 1964, Erdős [10] wrote that Turán had proposed the study of the extremal number of the five
platonic solids (to be more precise, that of the graph of these polyhedra). The graph of the tetrahedron
is 𝐾4, so its extremal number is known by Turán’s theorem. Erdős and Simonovits determined the Turán
number of the octahedron [12], and Simonovits determined the extremal number of the dodecahedron
[25] and the icosahedron [24]. However, the case of the cube is much more difficult as, unlike the other
solids, its graph is bipartite.

In the same paper from 1964, Erdős [10] also mentions the problem of determining the Turán number
of higher-dimensional cubes. The d-dimensional cube 𝑄𝑑 is the graph whose vertex set is {0, 1}𝑑 and
in which two vertices are joined by an edge if they differ in exactly one coordinate. In 1969, Erdős and
Simonovits [11] proved that ex(𝑛, 𝑄3) = 𝑂 (𝑛8/5) which is still the best known upper bound for this
problem. The best known lower bound is ex(𝑛, 𝑄3) = Ω(𝑛3/2) and follows from the observation that
𝑄3 contains a 4-cycle. Any improvement on these long-standing bounds would be considered a major
breakthrough.

The high-dimensional case seems to be even more challenging. It can be derived from a result
of Füredi [16] that if H is a bipartite graph with maximum degree at most d on one side, then
ex(𝑛, 𝐻) = 𝑂 (𝑛2−1/𝑑). Alon, Krivelevich and Sudakov [2] gave another proof of this estimate as one
of the first applications of the celebrated dependent random choice method. Clearly, this implies in
particular that ex(𝑛, 𝑄𝑑) = 𝑂 (𝑛2−1/𝑑). A few years ago, Conlon and Lee made the following beautiful
conjecture.
Conjecture 1.1 (Conlon–Lee [7]). Let H be a 𝐾𝑑,𝑑-free bipartite graph with maximum degree at most
d on one side. Then

ex(𝑛, 𝐻) = 𝑂 (𝑛2−1/𝑑−𝜀)

holds for some 𝜀 = 𝜀(𝐻) > 0.

While Conjecture 1.1 is wide open, there are a few partial results towards it. Conlon and Lee [7]
proved the conjecture in the special case 𝑑 = 2. Conlon, Janzer and Lee [5] showed that if H is a 𝐾2,2-
free bipartite graph with maximum degree d on one side, then ex(𝑛, 𝐻) = 𝑜(𝑛2−1/𝑑). This was improved
by Sudakov and Tomon who proved the following.

Theorem 1.2 (Sudakov–Tomon [26]). Let H be a 𝐾𝑑,𝑑-free bipartite graph with maximum degree at
most d on one side. Then

ex(𝑛, 𝐻) = 𝑜(𝑛2−1/𝑑).

Since for 𝑑 ≥ 3, 𝑄𝑑 does not contain 𝐾𝑑,𝑑 as a subgraph, Theorem 1.2 implies that ex(𝑛, 𝑄𝑑) =
𝑜(𝑛2−1/𝑑). Liu asked the following question.
Question 1.3 (Liu [23]). Let 𝑑 ≥ 3 be an integer. Is it true that there exists some 𝜀 = 𝜀(𝑑) > 0 such that

ex(𝑛, 𝑄𝑑) = 𝑂 (𝑛2−1/𝑑−𝜀)?

We answer this question affirmatively by proving the first power-improvement over the dependent
random choice bound.
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Theorem 1.4. For any integer 𝑑 ≥ 3,

ex(𝑛, 𝑄𝑑) = 𝑂𝑑

(
𝑛

2− 1
𝑑−1+

1
(𝑑−1)2𝑑−1

)
.

As a side note, we remark that an improvement for the Ramsey number of the hypercube was
obtained very recently by Tikhomirov [27]. He showed that there is a positive constant c such that
𝑟 (𝑄𝑛) = 𝑂 (22𝑛−𝑐𝑛). This improved the previous best bound, 𝑟 (𝑄𝑛) = 𝑂 (22𝑛), proved by Conlon, Fox
and Sudakov [4] which had been established using the dependent random choice method. In fact, in
both of these results, the proofs show that the denser of the two colours contains 𝑄𝑛. Our result can be
viewed as an analogue of Tikhomirov’s result for the related Turán problem (the difference being that
our forbidden hypercube has constant size, but the host graph is much sparser). However, we point out
that our methods are completely different from Tikhomirov’s.

In 1984, about 15 years after their proof of the bound ex(𝑛, 𝑄3) = 𝑂 (𝑛8/5), Erdős and Simonovits [14]
showed that in fact any n-vertex graph with more than 𝐶𝑛8/5 edges has not just one, but at least as many
copies (up to a constant factor) of 𝑄3 as a random graph with the same edge density. This phenomenon
is called supersaturation. We are able to get an analogous result for higher dimensions. We note that the
previous proofs using dependent random choice or Theorem 1.2 did not give a supersaturation result
even at those higher densities.
Theorem 1.5. For any integer 𝑑 ≥ 3, there are positive constants 𝑐 = 𝑐(𝑑) and 𝐶 = 𝐶 (𝑑) such that any
n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛

− 1
𝑑−1+

1
(𝑑−1)2𝑑−1 has at least 𝑐𝑛2𝑑 𝑝𝑑2𝑑−1 copies of 𝑄𝑑 .

Here and below, we say that an n-vertex graph G has edge density p if it has 𝑝𝑛2/2 edges.
Our methods can also be applied to prove Conjecture 1.1 for a larger class of graphs. We will discuss

the precise description of all graphs for which the technique is applicable in the next section. For now,
we just highlight another family of graphs (known as the bipartite Kneser graphs) for which we can
verify Conjecture 1.1.
Definition 1.6. For 1 ≤ ℓ < 𝑘/2, the bipartite Kneser graph 𝐻ℓ,𝑘 is the bipartite graph whose parts are
[𝑘] (ℓ) and [𝑘] (𝑘−ℓ) and in which 𝑆 ∈ [𝑘] (ℓ) and 𝑇 ∈ [𝑘] (𝑘−ℓ) are joined by an edge if 𝑆 ⊂ 𝑇 . Note that
𝐻ℓ,𝑘 is a regular graph.

In the above definition and in what follows, [𝑘] (ℓ) stands for the family of subsets of size ℓ in [𝑘].
Theorem 1.7. Let d be the degree of the vertices in 𝐻ℓ,𝑘 . Then there is some 𝜀 = 𝜀(ℓ, 𝑘) > 0 such that
ex(𝑛, 𝐻ℓ,𝑘 ) = 𝑂 (𝑛2−1/𝑑−𝜀).

We remark that with the same argument we could also prove a supersaturation result for 𝐻ℓ,𝑘 .

1.1. Rainbow cycles

We will also use our methods to improve the best known upper bound for finding rainbow cycles. The
study of rainbow Turán problems was initiated by Keevash, Mubayi, Sudakov and Verstraëte [20]. They
asked how many edges one can have in a properly edge-coloured n-vertex graph without containing a
rainbow cycle (i.e., a cycle in which all edges have a different colour). Let us write 𝑓 (𝑛) for this number.
They observed that if the edges of a hypercube are coloured according to the ‘direction’ of the edge, then
the resulting properly edge-coloured graph does not have a rainbow cycle (and in fact every colour that
appears in a given cycle must appear at least twice in it). Hence, 𝑓 (𝑛) = Ω(𝑛 log 𝑛). The first nontrivial
upper bound was obtained by Das, Lee and Sudakov [9], who showed that for any 𝛾 > 0 and sufficiently
large n, we have 𝑓 (𝑛) ≤ 𝑛 exp((log 𝑛)1/2+𝛾). Janzer [18] proved that 𝑓 (𝑛) = 𝑂 (𝑛(log 𝑛)4). The current
best bound is due to Tomon [28] who showed that 𝑓 (𝑛) ≤ 𝑛(log 𝑛)2+𝑜 (1) . We improve this further as
follows.
Theorem 1.8. If n is sufficiently large, then any properly edge-coloured n-vertex graph with at least
8𝑛(log 𝑛)2 edges contains a rainbow cycle.
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Keevash, Mubayi, Sudakov and Verstraëte [20] also proved that if G is a properly edge-coloured
n-vertex graph with at least 𝑛 log2(𝑛 + 3) − 2𝑛 edges, then for some k it contains a cycle of length k
which has more than 𝑘/2 different colours. Because of the hypercube construction, this is tight up to a
constant factor. We significantly strengthen this result by finding a cycle which is almost rainbow.

Theorem 1.9. If n is sufficiently large, 0 < 𝜀 < 1/2 and G is a properly edge-coloured n-vertex graph
with at least 4

𝜀 𝑛 log 𝑛 edges, then for some k it contains a cycle of length k with more than (1 − 𝜀)𝑘
different colours.

The rest of this paper is organized as follows. In the next section, we prove our results on ordinary
Turán numbers and supersaturation. In Section 3, we prove our results on rainbow and almost rainbow
cycles. We finish the paper with some concluding remarks in Section 4.

2. Ordinary Turán numbers

2.1. Illustration of our method and some preliminaries

In this subsection, we illustrate our method on the example of the three-dimensional cube and prove the
following result (which is of course slightly weaker than the result of Erdős and Simonovits [14] that
obtains the same conclusion for graphs with edge density 𝑝 ≥ 𝐶𝑛−2/5).

Proposition 2.1. There are positive constants c and C such that any n-vertex graph with edge density
𝑝 ≥ 𝐶𝑛−3/8 contains at least 𝑐𝑛8𝑝12 copies of 𝑄3.

Given graphs H and G, a homomorphism from H to G is a map 𝑉 (𝐻) → 𝑉 (𝐺) which sends edges to
edges. Often we call such a map a homomorphic copy of H in G. We write hom(𝐻,𝐺) for the number
of homomorphisms from H to G.

The proof of Proposition 2.1 is via an inequality between the number of certain homomorphic copies
of 𝑄3 in G. More precisely, we show that if a positive proportion of the homomorphic copies of 𝑄3 in
G are not injective, then a positive proportion of the homomorphisms are actually very far from being
injective: Namely, all four vertices in one part of the bipartition of 𝑄3 are mapped to the same vertex.
However, the latter is the same as a homomorphic copy of a star with four edges in G, and we can easily
bound the number of such copies from above by 𝑛Δ (𝐺)4. Hence, as long as the number of homomorphic
copies of 𝑄3 in G is much bigger than 𝑛Δ (𝐺)4, it follows that most homomorphisms from 𝑄3 to G are
injective (i.e., genuine labelled copies of 𝑄3). It is well known that 𝑄3 satisfies Sidorenko’s conjecture;
therefore, if G has edge density p, then it contains Ω(𝑛8𝑝12) homomorphic copies of 𝑄3. Now, if G
has maximum degree 𝑂 (𝑝𝑛) (which can be assumed by standard reduction results), then we require
𝑛8𝑝12 � 𝑛(𝑝𝑛)4, which is 𝑝 � 𝑛−3/8. This means that an n-vertex graph with edge density � 𝑛−3/8

contains the desired number of copies of 𝑄3.
Let us prove the promised inequalities between the number of various homomorphisms 𝑄3 → 𝐺. For

graphs H, G and a set 𝑅 ⊂ 𝑉 (𝐻), let us write hom(𝐻,𝐺; 𝑅) for the number of graph homomorphisms
𝑉 (𝐻) → 𝑉 (𝐺) with the property that all vertices in R are mapped to the same vertex in G. Identify
𝑉 (𝑄3) with {0, 1}3 = {000, 001, . . . , 111} (and see Figure 1). The key inequalities are as follows.

Lemma 2.2. For any graph G, we have

hom(𝑄3, 𝐺; {000, 011})2 ≤ hom(𝑄3, 𝐺; {000, 011, 101}) hom(𝑄3, 𝐺).

Furthermore,

hom(𝑄3, 𝐺; {000, 011, 101})2 ≤ hom(𝑄3, 𝐺; {000, 011, 101, 110}) hom(𝑄3, 𝐺).

Proof. Let us start with the first inequality. Let 𝑓 : 𝑄3 [{000, 001, 110, 111}] → 𝐺 be a homomorphism.
Let 𝛼 𝑓 be the number of maps 𝑔 : {010, 011} → 𝑉 (𝐺) such that f and g together induce a homomor-
phism from 𝑄3 [{000, 001, 110, 111, 010, 011}] to G. Note that by the symmetry of 𝑄3 this is the same
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000 001

010 011

110 111

100 101

Figure 1. The cube.

as the number of maps ℎ : {100, 101} → 𝑉 (𝐺) such that f and h together induce a homomorphism
from 𝑄3 [{000, 001, 110, 111, 100, 101}] to G.

Let 𝛽 𝑓 be the number of maps 𝑔 : {010, 011} → 𝑉 (𝐺) such that f and g together induce a
homomorphism from 𝑄3 [{000, 001, 110, 111, 010, 011}] to G, and in addition 𝑔(011) = 𝑓 (000). Note
that by the symmetry of 𝑄3 this is the same as the number of maps ℎ : {100, 101} → 𝑉 (𝐺) such that f
and h together induce a homomorphism from 𝑄3 [{000, 001, 110, 111, 100, 101}] to G, and in addition
ℎ(101) = 𝑓 (000).

Now, note that

hom(𝑄3, 𝐺; {000, 011}) =
∑
𝑓

𝛼 𝑓 𝛽 𝑓 ,

where the summation is over all homomorphisms 𝑓 : 𝑄3 [{000, 001, 110, 111}] → 𝐺. Indeed, 𝛼 𝑓 𝛽 𝑓

is the number of suitable homomorphisms 𝜃 extending f since there are 𝛼 𝑓 ways to choose 𝜃 |{100,101},
there are 𝛽 𝑓 ways to choose 𝜃 |{010,011}, and any such pair is suitable because there are no edges between
{100, 101} and {010, 011}. Similarly,

hom(𝑄3, 𝐺; {000, 011, 101}) =
∑
𝑓

𝛽2
𝑓

and

hom(𝑄3, 𝐺) =
∑
𝑓

𝛼2
𝑓 .

The required inequality follows from the Cauchy–Schwarz inequality.
Let us now prove the second inequality. Let 𝑓 : 𝑄3 [{010, 011, 100, 101}] → 𝐺 be a homomorphism

such that 𝑓 (101) = 𝑓 (011). Let 𝛼 𝑓 be the number of maps 𝑔 : {000, 001} → 𝑉 (𝐺) such that f and
g together induce a homomorphism from 𝑄3 [{010, 011, 100, 101, 000, 001}] to G. Note that by the
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symmetry of 𝑄3 this is the same as the number of maps ℎ : {110, 111} → 𝑉 (𝐺) such that f and h
together induce a homomorphism from 𝑄3 [{010, 011, 100, 101, 110, 111}] to G.

Let 𝛽 𝑓 be the number of maps 𝑔 : {000, 001} → 𝑉 (𝐺) such that f and g together induce a
homomorphism from 𝑄3 [{010, 011, 100, 101, 000, 001}] to G, and in addition 𝑔(000) = 𝑓 (011) =
𝑓 (101). Note that by the symmetry of 𝑄3 this is the same as the number of maps ℎ : {110, 111} → 𝑉 (𝐺)

such that f and h together induce a homomorphism from 𝑄3 [{010, 011, 100, 101, 110, 111}] to G, and
in addition ℎ(110) = 𝑓 (011) = 𝑓 (101).

Now, note that

hom(𝑄3, 𝐺; {000, 011, 101}) =
∑
𝑓

𝛼 𝑓 𝛽 𝑓 ,

where the summation is over all homomorphisms 𝑓 : 𝑄3 [{010, 011, 100, 101}] → 𝐺 such that 𝑓 (101) =
𝑓 (011). Indeed, 𝛼 𝑓 𝛽 𝑓 is the number of suitable homomorphisms extending f. Similarly,

hom(𝑄3, 𝐺; {000, 011, 101, 110}) =
∑
𝑓

𝛽2
𝑓

and

hom(𝑄3, 𝐺) ≥
∑
𝑓

𝛼2
𝑓 .

The required inequality follows from the Cauchy–Schwarz inequality. �

It is straightforward to combine the two inequalities in Lemma 2.2 to conclude the following.

Corollary 2.3. For any graph G, we have

hom(𝑄3, 𝐺; {000, 011, 101, 110}) ≥
hom(𝑄3, 𝐺; {000, 011})4

hom(𝑄3, 𝐺)3 .

We say that a graph G is K-almost regular if Δ (𝐺) ≤ 𝐾𝛿(𝐺). We are now in a position to prove
Proposition 2.1 for the special case of bipartite almost regular graphs.

Proposition 2.4. For any 𝐾 > 0, there are positive constants 𝑐 = 𝑐(𝐾) and 𝐶 = 𝐶 (𝐾) such that any
bipartite K-almost regular n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛−3/8 contains at least 𝑐𝑛8𝑝12 copies
of 𝑄3.

As we have mentioned, the proof uses the fact that 𝑄3 satisfies Sidorenko’s conjecture. Sidorenko’s
conjecture states that for every bipartite graph H and n-vertex graph G with edge density p, we have
hom(𝐻,𝐺) ≥ 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) . We say that a graph H satisfies Sidorenko’s conjecture if this inequality
holds for every G. Hatami proved that 𝑄𝑑 satisfies Sidorenko’s conjecture for every d.

Lemma 2.5 (Hatami [17]). Let d be a positive integer. Then any n-vertex graph G with edge density p
satisfies hom(𝑄𝑑 , 𝐺) ≥ 𝑛2𝑑 𝑝𝑑2𝑑−1 .

Proof of Proposition 2.4. Let C be sufficiently large, and let G be a bipartite K-almost regular n-vertex
graph with edge density 𝑝 ≥ 𝐶𝑛−3/8.

Assume, for the sake of contradiction, that hom(𝑄3, 𝐺; {000, 011}) ≥ 1
24 hom(𝑄3, 𝐺). Then

Corollary 2.3 implies that

hom(𝑄3, 𝐺; {000, 011, 101, 110}) ≥
1

244 hom(𝑄3, 𝐺).
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On the other hand, observe that

hom(𝑄3, 𝐺; {000, 011, 101, 110}) ≤ 𝑛(Δ (𝐺))4 ≤ 𝑛(𝐾𝑝𝑛)4,

so, using Lemma 2.5, we have

1
244 𝑛

8𝑝12 ≤
1

244 hom(𝑄3, 𝐺) ≤ 𝑛(𝐾𝑝𝑛)4.

It follows that 𝑝 ≤ (244𝐾4)1/8𝑛−3/8, which contradicts 𝑝 ≥ 𝐶𝑛−3/8 provided that C is sufficiently large.
Hence, we have hom(𝑄3, 𝐺; {000, 011}) < 1

24 hom(𝑄3, 𝐺). It follows by symmetry that for any
𝑢, 𝑣 ∈ 𝑉 (𝑄3) of distance two, hom(𝑄3, 𝐺; {𝑢, 𝑣}) < 1

24 hom(𝑄3, 𝐺). Since G is bipartite, the total
number of noninjective homomorphic copies of 𝑄3 in G is at most

∑
hom(𝑄3, 𝐺; {𝑢, 𝑣}), where the

summation is over all u and v of distance two in 𝑄3. By the above inequality, this sum is less than
12 · 1

24 hom(𝑄3, 𝐺) = hom(𝑄3, 𝐺)/2. Hence, there are at least hom(𝑄3, 𝐺)/2 injective homomorphic
copies of 𝑄3 in G. Proposition 2.4 now follows by another application of Lemma 2.5. �

In order to deduce Proposition 2.1 from Proposition 2.4, we can use a regularization lemma of Jiang
and Yepremyan. We remark that the first result of this kind was established by Erdős and Simonovits [11]
in order to bound the Turán number of the (three-dimensional) cube. Roughly speaking, they showed
that in bipartite Turán problems, it suffices to consider almost regular host graphs. Jiang and Yepremyan
extended this to supersaturation problems. While their result applies for general linear hypergraphs, we
will only need it in the special case of graphs.
Lemma 2.6 (Jiang–Yepremyan [19, Theorem 3.3]). Let 0 < 𝛼 < 1 be a real number. Let H be a graph
with 𝑒(𝐻) ≥ 𝑣(𝐻). There exists a real number 𝐾 = 𝐾 (𝛼, 𝐻) ≥ 1 such that the following holds. Suppose
that there are positive constants c and C (possibly depending on H) such that for each n, every n-vertex,
K-almost regular bipartite graph G with edge density 𝑝 ≥ 𝐶𝑛−𝛼 has at least 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of
H. Then there exist positive constants 𝑐′ and 𝐶 ′ (possibly depending on H) such that for each n, every
n-vertex bipartite graph G with edge density 𝑝 ≥ 𝐶 ′𝑛−𝛼 has at least 𝑐′𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H.

It is straightforward to deduce Proposition 2.1 from Proposition 2.4 using this lemma. We will give
the details in the next subsection (in a more general setting).

2.2. Our main general result

In this subsection, we present our main technical results. We remark that our method resembles that of
Conlon and Lee from [6] where they prove Sidorenko’s conjecture for a certain class of graphs.

Given a graph automorphism 𝜙 : 𝑉 (𝐻) → 𝑉 (𝐻), we write 𝐹𝜙 = {𝑣 ∈ 𝑉 (𝐻) : 𝜙(𝑣) = 𝑣}.
Definition 2.7. Let H be a connected bipartite graph. We say that vertex sets 𝐴, 𝐵 ⊂ 𝑉 (𝐻) and a graph
automorphism 𝜙 : 𝑉 (𝐻) → 𝑉 (𝐻) form a symmetric triple if 𝜙 = 𝜙−1; A, B and 𝐹𝜙 partition 𝑉 (𝐻); 𝐹𝜙

separates A and B and 𝜙(𝐴) = 𝐵.
Given a further subset 𝑅 ⊂ 𝑉 (𝐻), we say that R is intersecting for a symmetric triple (𝐴, 𝐵, 𝜙) if all

vertices of R are in the same part of the bipartition of H, and R intersects both 𝐴 ∪ 𝐹𝜙 and 𝐵 ∪ 𝐹𝜙 .
Example 2.8. Let H be the three-dimensional cube, as depicted on Figure 2. Let 𝜙 be the automorphism
which swaps the first digit with the second digit, that is, which maps 𝑎𝑏𝑐 to 𝑏𝑎𝑐. Let 𝐴 = {100, 101},
and let 𝐵 = {010, 011}. Then (𝐴, 𝐵, 𝜙) is a symmetric triple. Moreover, if 𝑅 = {000, 011}, then R is
intersecting for (𝐴, 𝐵, 𝜙).
Definition 2.9. Let H be a connected bipartite graph, let (𝐴, 𝐵, 𝜙) be a symmetric triple and let
𝑅 ⊂ 𝑉 (𝐻). Then

𝜓𝐴,𝐵,𝜙 (𝑅) = (𝑅 ∩ (𝐴 ∪ 𝐹𝜙)) ∪ 𝜙(𝑅 ∩ 𝐴).

Informally, we keep all members of R that are in 𝐴 ∪ 𝐹𝜙 but replace 𝑅 ∩ 𝐵 by 𝜙(𝑅 ∩ 𝐴).
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000 001

010 011

110 111

100 101

𝐴

𝐵

𝐹𝜙

Figure 2. A symmetric triple (𝐴, 𝐵, 𝜙).

Remark 2.10. If (𝐴, 𝐵, 𝜙) is a symmetric triple, then so is (𝐵, 𝐴, 𝜙), and if R is intersecting for (𝐴, 𝐵, 𝜙),
then it is intersecting also for (𝐵, 𝐴, 𝜙). Moreover, in this case 𝜓𝐴,𝐵,𝜙 (𝑅) ≠ ∅. Also, note that all vertices
in 𝜓𝐴,𝐵,𝜙 (𝑅) are in the same part of the bipartition of H as R.

We can now state the main technical lemma, which generalizes the inequalities from Lemma 2.2.

Lemma 2.11. Let H be a connected bipartite graph, let (𝐴, 𝐵, 𝜙) be a symmetric triple and let R be an
intersecting set for (𝐴, 𝐵, 𝜙). Then, for any graph G, we have

hom(𝐻,𝐺; 𝑅)2 ≤ hom(𝐻,𝐺;𝜓𝐴,𝐵,𝜙 (𝑅)) hom(𝐻,𝐺;𝜓𝐵,𝐴,𝜙 (𝑅)).

In particular, for any graph G,

hom(𝐻,𝐺; 𝑅)2 ≤ hom(𝐻,𝐺;𝜓𝐴,𝐵,𝜙 (𝑅)) hom(𝐻,𝐺).

Proof. Let 𝑣 ∈ 𝑉 (𝐺) and let 𝑓 : 𝐻 [𝐹𝜙] → 𝐺 be a homomorphism which maps each vertex in 𝑅 ∩ 𝐹𝜙

to v. Let 𝛼𝑣, 𝑓 be the number of maps 𝑔 : 𝐴 → 𝑉 (𝐺) such that f and g together induce a homomorphism
from 𝐻 [𝐴 ∪ 𝐹𝜙] to G and which maps each vertex in 𝑅 ∩ 𝐴 to v. Finally, let 𝛽𝑣, 𝑓 be the number of
maps ℎ : 𝐵 → 𝑉 (𝐺) such that f and h together induce a homomorphism from 𝐻 [𝐵 ∪ 𝐹𝜙] to G and
which map each vertex in 𝑅 ∩ 𝐵 to v.

Note that the number of homomorphisms 𝜃 : 𝐻 → 𝐺 which extend f and which map R to v is
precisely 𝛼𝑣, 𝑓 𝛽𝑣, 𝑓 . Indeed, there are 𝛼𝑣, 𝑓 ways to chose 𝜃 |𝐴, there are 𝛽𝑣, 𝑓 ways to choose 𝜃 |𝐵 and
since there are no edges in H between A and B, any pair gives a suitable choice. Hence,

hom(𝐻,𝐺; 𝑅) =
∑
𝑣, 𝑓

𝛼𝑣, 𝑓 𝛽𝑣, 𝑓 ,

where the summation is over all v and f as above. Observe that, by the properties of a symmetric triple,
ℎ ↦→ 𝑔 � ℎ ◦ 𝜙 is a bijection (with inverse 𝑔 ↦→ ℎ � 𝑔 ◦ 𝜙) between
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◦ maps ℎ : 𝐵 → 𝑉 (𝐺) with the property that f and h together induce a homomorphism from 𝐻 [𝐵∪𝐹𝜙]

to G and which map 𝜙(𝑅 ∩ 𝐴) to v and
◦ maps 𝑔 : 𝐴 → 𝑉 (𝐺) with the property that f and g together induce a homomorphism from 𝐻 [𝐴∪𝐹𝜙]

to G and which map 𝑅 ∩ 𝐴 to v.

(Indeed, if f and h together induce a homomorphism from 𝐻 [𝐵∪𝐹𝜙] to G, then 𝑓 ◦𝜙 and ℎ ◦𝜙 together
induce a homomorphism from 𝐻 [𝜙−1(𝐵 ∪ 𝐹𝜙)] = 𝐻 [𝐴 ∪ 𝐹𝜙] to G, but 𝑓 ◦ 𝜙 = 𝑓 on 𝐹𝜙 .)

Therefore, the number of maps ℎ : 𝐵 → 𝑉 (𝐺) with the property that f and h together induce a
homomorphism from 𝐻 [𝐵 ∪ 𝐹𝜙] to G and which map 𝜙(𝑅 ∩ 𝐴) to v is precisely 𝛼𝑣, 𝑓 . Hence, using
that 𝜓𝐴,𝐵,𝜙 (𝑅) ≠ ∅, we have

hom(𝐻,𝐺;𝜓𝐴,𝐵,𝜙 (𝑅)) =
∑
𝑣, 𝑓

𝛼2
𝑣, 𝑓 ,

where the summation is over all pairs 𝑣, 𝑓 as above. Similarly, we obtain

hom(𝐻,𝐺;𝜓𝐵,𝐴,𝜙 (𝑅)) =
∑
𝑣, 𝑓

𝛽2
𝑣, 𝑓

and we are done by the Cauchy–Schwarz inequality. �

We can now describe the main condition that a graph H needs to satisfy in order for our method to
apply.

Definition 2.12. Let H be a connected bipartite graph with parts 𝑋1 and 𝑋2. We say that H is reflective
if the following holds. Let 𝑅 ⊂ 𝑋𝑖 be a set of size two for some 𝑖 ∈ {1, 2}. Then there exists a sequence
of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, 1, . . . , 𝑚 − 1 and intersecting sets 𝑅 𝑗 for (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such
that 𝑅0 = 𝑅, 𝑅𝑚 = 𝑋𝑖 and 𝑅 𝑗+1 = 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚 − 1.

Remark 2.13. Observe that if R is intersecting for a symmetric triple (𝐴, 𝐵, 𝜙) and 𝑆 ⊃ 𝑅, then S is also
intersecting for (𝐴, 𝐵, 𝜙) and 𝜓𝐴,𝐵,𝜙 (𝑆) ⊃ 𝜓𝐴,𝐵,𝜙 (𝑅). Hence, H is reflective if for each 𝑅 ⊂ 𝑋𝑖 of size
two for some 𝑖 ∈ {1, 2}, there exists a sequence of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, 1, . . . , 𝑚−1
and intersecting sets 𝑅 𝑗 for (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅, 𝑅𝑚 = 𝑋𝑖 and 𝑅 𝑗+1 ⊂ 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all
0 ≤ 𝑗 ≤ 𝑚 − 1.

The following lemma generalizes Corollary 2.3.

Lemma 2.14. Let H be a reflective connected bipartite graph, and let 𝑅 ⊂ 𝑋 be a set of size two, where
X is one of the parts of H. Then there is a positive integer s such that for every graph G, we have

hom(𝐻,𝐺; 𝑋) ≥
hom(𝐻,𝐺; 𝑅)𝑠

hom(𝐻,𝐺)𝑠−1 .

Proof. Since H is reflective, we can choose a sequence of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0,
1, . . . , 𝑚 − 1 and intersecting sets 𝑅 𝑗 for (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅, 𝑅𝑚 = 𝑋 and 𝑅 𝑗+1 =
𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚 − 1. By Lemma 2.11, we have

hom(𝐻,𝐺; 𝑅 𝑗 )
2 ≤ hom(𝐻,𝐺; 𝑅 𝑗+1) hom(𝐻,𝐺)

for each 0 ≤ 𝑗 ≤ 𝑚 − 1. It is easy to see that this implies that

hom(𝐻,𝐺; 𝑋) = hom(𝐻,𝐺; 𝑅𝑚) ≥
hom(𝐻,𝐺; 𝑅0)

2𝑚

hom(𝐻,𝐺)2𝑚−1 =
hom(𝐻,𝐺; 𝑅)2𝑚

hom(𝐻,𝐺)2𝑚−1 ,

so we may take 𝑠 = 2𝑚. �

The next proposition is our main result restricted to almost regular bipartite host graphs.
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Proposition 2.15. Let H be a reflective connected bipartite graph which satisfies Sidorenko’s conjecture.
Let 𝐾 ≥ 1 be a real number. Then there are positive constants 𝑐 = 𝑐(𝐻) and 𝐶 = 𝐶 (𝐻, 𝐾) such that if
G is a K-almost regular bipartite n-vertex graph with edge density p satisfying 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) ≥ 𝐶𝑛(𝑝𝑛)𝑡 ,
where t is the size of the larger part in the bipartition of H, then G contains at least 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies
of H.

Proof. Let 𝑐 = 𝑐(𝐻) be a sufficiently small positive real, and let 𝐶 = 𝐶 (𝐻, 𝐾) be sufficiently large. Let
G be a K-almost regular bipartite n-vertex graph with edge density p satisfying 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) ≥ 𝐶𝑛(𝑝𝑛)𝑡 ,
where t is the size of the larger part in the bipartition of H. Since H satisfies Sidorenko’s conjecture, we
have hom(𝐻,𝐺) ≥ 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) .

Claim. For every 𝑅 ⊂ 𝑉 (𝐻) of size two, we have

hom(𝐻,𝐺; 𝑅) ≤
hom(𝐻,𝐺)

𝑣(𝐻)2 .

Proof of Claim. Suppose, for the sake of contradiction, that

hom(𝐻,𝐺; 𝑅) >
hom(𝐻,𝐺)

𝑣(𝐻)2 .

In particular, there is a homomorphism 𝐻 → 𝐺 which maps the two elements of R to the same vertex.
Hence, as G is bipartite, the two elements of R are in the same part of the bipartition of H. Let X be this
part. By Lemma 2.14, we have

hom(𝐻,𝐺; 𝑋) ≥ 𝑣(𝐻)−2𝑠 hom(𝐻,𝐺) (2.1)

for some positive integer s that only depends on H. Since hom(𝐻,𝐺; 𝑋) ≤ 𝑛Δ (𝐺)𝑣 (𝐻 )−|𝑋 | ≤

𝑛(𝐾𝑝𝑛)𝑣 (𝐻 )−|𝑋 | ≤ 𝑛(𝐾𝑝𝑛)𝑡 and hom(𝐻,𝐺) ≥ 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) , Equation (2.1) implies that

𝑛(𝐾𝑝𝑛)𝑡 ≥ 𝑣(𝐻)−2𝑠𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) .

However, this contradicts the assumption that 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) ≥ 𝐶𝑛(𝑝𝑛)𝑡 and that C is sufficiently large.
This completes the proof of the claim.

Now, note that the number of noninjective homomorphisms 𝐻 → 𝐺 is at most
∑

𝑅 hom(𝐻,𝐺; 𝑅),
where the summation is over all 𝑅 ⊂ 𝑉 (𝐻) of size two. By the claim, this sum is at most

(𝑣 (𝐻 )
2

)
·

hom(𝐻,𝐺)

𝑣 (𝐻 )2 ≤ 1
2 hom(𝐻,𝐺). Hence, there are at least 1

2 hom(𝐻,𝐺) injective homomorphisms 𝐻 → 𝐺,
which implies that there are at least 𝑐 hom(𝐻,𝐺) ≥ 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H in G, provided that c is
sufficiently small. �

We are now in a position to state and prove our main result, which follows easily from Proposition 2.15
and Lemma 2.6.

Theorem 2.16. Let H be a reflective connected bipartite graph which satisfies Sidorenko’s conjecture
and which is not a tree. Then there are positive constants 𝑐 = 𝑐(𝐻) and 𝐶 = 𝐶 (𝐻) such that if G is an
n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛−

𝑣 (𝐻 )−𝑡−1
𝑒 (𝐻 )−𝑡 , where t is the size of the larger part in the bipartition

of H, then G contains at least 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H.

Proof. Let𝛼 = 𝑣 (𝐻 )−𝑡−1
𝑒 (𝐻 )−𝑡 . Let𝐾 = 𝐾 (𝛼, 𝐻) be the constant provided by Lemma 2.6. By Proposition 2.15,

there are positive constants 𝑐′ = 𝑐′(𝐻) and 𝐶 ′′ = 𝐶 ′′(𝐻) such that if G is a K-almost regular bipartite
n-vertex graph with edge density p satisfying 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) ≥ 𝐶 ′′𝑛(𝑝𝑛)𝑡 , then G has at least 𝑐′𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 )

copies of H. Now, note that there is some 𝐶 ′ = 𝐶 ′(𝐻) such that if 𝑝 ≥ 𝐶 ′𝑛−𝛼, then 𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) ≥

𝐶 ′′𝑛(𝑝𝑛)𝑡 holds. Hence, any K-almost regular bipartite n-vertex graph G with edge density 𝑝 ≥ 𝐶 ′𝑛−𝛼

contains at least 𝑐′𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H. It follows by Lemma 2.6 that there are positive constants
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𝑐 = 𝑐(𝐻) and 𝐶 = 𝐶 (𝐻) such that if G is a bipartite n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛−𝛼, then
G contains at least 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H. This proves the theorem for all bipartite host graphs G.
The general case follows easily by noting that any graph G has a bipartite subgraph with at least half of
the edges of G. �

We also state a simple corollary of our main result.

Theorem 2.17. Let H be a d-regular, reflective, connected bipartite graph which satisfies Sidorenko’s
conjecture and which is not 𝐾𝑑,𝑑 . Then there is some 𝜀 = 𝜀(𝐻) > 0 such that ex(𝑛, 𝐻) = 𝑂 (𝑛2−1/𝑑−𝜀).

Proof. By Theorem 2.16, there are positive constants 𝑐 = 𝑐(𝐻) and 𝐶 = 𝐶 (𝐻) such that if G is an
n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛−

𝑣 (𝐻 )−𝑡−1
𝑒 (𝐻 )−𝑡 , where t is the size of the larger part in the bipartition

of H, then G contains at least 𝑐𝑛𝑣 (𝐻 ) 𝑝𝑒 (𝐻 ) copies of H. This implies that

ex(𝑛, 𝐻) = 𝑂 (𝑛2− 𝑣 (𝐻 )−𝑡−1
𝑒 (𝐻 )−𝑡 ).

Since H is d-regular, we have 𝑡 = 𝑣(𝐻)/2 and 𝑒(𝐻) = 𝑑𝑣(𝐻)/2, so

2 −
𝑣(𝐻) − 𝑡 − 1
𝑒(𝐻) − 𝑡

= 2 −
𝑣(𝐻)/2 − 1

𝑑𝑣(𝐻)/2 − 𝑣(𝐻)/2
< 2 − 1/𝑑,

where the last inequality follows from 𝑣(𝐻)/2 > 𝑑 (which is true since H is d-regular and 𝐻 ≠ 𝐾𝑑,𝑑).
This completes the proof. �

2.3. Hypercubes

In this subsection, we show that any hypercube is reflective and use this to deduce Theorem 1.5.

Lemma 2.18. For any 𝑑 ≥ 3, the hypercube 𝑄𝑑 is reflective.

Proof. Identify 𝑄𝑑 with {0, 1}𝑑 . Let 𝑄𝑑 (0) = {x ∈ 𝑄𝑑 :
∑

𝑖 𝑥𝑖 ≡ 0mod 2}. By the symmetry of the
cube, it suffices to prove that for any 𝑅 ⊂ 𝑄𝑑 (0) of size two, there exists a sequence of symmetric
triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, . . . , 𝑚 − 1 and intersecting sets 𝑅 𝑗 for (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅,
𝑅𝑚 = 𝑄𝑑 (0) and 𝑅 𝑗+1 = 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚 − 1.

First, we prove this in the special case where the two vertices of R has distance two in 𝑄𝑑 . By the
symmetry of the cube, we may assume that 𝑅 = {(0, 0, 0, . . . , 0), (1, 1, 0, . . . , 0)}.

For every 0 ≤ 𝑘 ≤ 𝑑, let

𝑆𝑘 = {x ∈ 𝑄𝑑 (0) : 𝑥𝑖 = 0 for all 𝑖 > 𝑘}.

Also, for 1 ≤ 𝑘 ≤ 𝑑 − 1, let

𝑇𝑘 = {x ∈ 𝑄𝑑 (0) : 𝑥𝑖 = 0 for all 𝑖 > 𝑘 + 1 and (𝑥𝑘 , 𝑥𝑘+1) ≠ (1, 1)}.

Observe that 𝑅 = 𝑆2 and that 𝑄𝑑 (0) = 𝑆𝑑 .
Claim. For every 2 ≤ 𝑘 ≤ 𝑑 − 1, there is a symmetric triple (𝐴, 𝐵, 𝜙) such that 𝑆𝑘 is intersecting for

(𝐴, 𝐵, 𝜙) and 𝑇𝑘 = 𝜓𝐴,𝐵,𝜙 (𝑆𝑘 ). Also, there is a symmetric triple (𝐴′, 𝐵′, 𝜙′) such that 𝑇𝑘 is intersecting
for (𝐴′, 𝐵′, 𝜙′) and 𝑆𝑘+1 = 𝜓𝐴′,𝐵′,𝜙′ (𝑇𝑘 ).

Proof of Claim. We start with the first assertion. Let 𝜙 be the automorphism of 𝑄𝑑 which swaps the
kth and the (𝑘 + 1)th coordinate of each element in 𝑄𝑑 . Let 𝐴 = {x ∈ 𝑄𝑑 : 𝑥𝑘 = 1, 𝑥𝑘+1 = 0} and let
𝐵 = {x ∈ 𝑄𝑑 : 𝑥𝑘 = 0, 𝑥𝑘+1 = 1}. Clearly, 𝜙−1 = 𝜙; A, B and 𝐹𝜙 partition 𝑄𝑑; 𝐹𝜙 separates A and
B and 𝜙(𝐴) = 𝐵. Moreover, 𝑆𝑘 is intersecting for (𝐴, 𝐵, 𝜙) since (0, 0, . . . , 0) ∈ 𝑆𝑘 ∩ 𝐹𝜙 . Recall that
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𝜓𝐴,𝐵,𝜙 (𝑆𝑘 ) = (𝑆𝑘 ∩ (𝐴 ∪ 𝐹𝜙)) ∪ 𝜙(𝑆𝑘 ∩ 𝐴). Hence,

𝜓𝐴,𝐵,𝜙 (𝑆𝑘 ) = (𝑆𝑘 ∩ {x ∈ 𝑄𝑑 : (𝑥𝑘 , 𝑥𝑘+1) ≠ (0, 1)}) ∪ 𝜙(𝑆𝑘 ∩ {x ∈ 𝑄𝑑 : (𝑥𝑘 , 𝑥𝑘+1) = (1, 0)})
= 𝑆𝑘 ∪ 𝜙(𝑆𝑘 ∩ {x ∈ 𝑄𝑑 : 𝑥𝑘 = 1})
= 𝑇𝑘 .

For the second assertion, let 𝜙′ be the automorphism of 𝑄𝑑 defined by

𝜙′((𝑥1, 𝑥2, . . . , 𝑥𝑑)) = (𝑥1, . . . , 𝑥𝑘−1, 1 − 𝑥𝑘+1, 1 − 𝑥𝑘 , 𝑥𝑘+2, . . . , 𝑥𝑑).

Let 𝐴′ = {x ∈ 𝑄𝑑 : 𝑥𝑘 = 0, 𝑥𝑘+1 = 0}, and let 𝐵′ = {x ∈ 𝑄𝑑 : 𝑥𝑘 = 1, 𝑥𝑘+1 = 1}. Clearly, (𝜙′)−1 = 𝜙′;
𝐴′, 𝐵′ and 𝐹𝜙′ partition 𝑄𝑑; 𝐹𝜙′ separates 𝐴′ and 𝐵′ and 𝜙′(𝐴′) = 𝐵′. Moreover, 𝑇𝑘 is intersecting for
(𝐴′, 𝐵′, 𝜙′) since 𝑇𝑘 ∩ 𝐹𝜙′ contains the vector whose only nonzero coordinates are the first and the kth
coordinate. Finally,

𝜓𝐴′,𝐵′,𝜙′ (𝑇𝑘 ) = (𝑇𝑘 ∩ {x ∈ 𝑄𝑑 : (𝑥𝑘 , 𝑥𝑘+1) ≠ (1, 1)}) ∪ 𝜙′(𝑇𝑘 ∩ {x ∈ 𝑄𝑑 : (𝑥𝑘 , 𝑥𝑘+1) = (0, 0)})
= 𝑇𝑘 ∪ 𝜙′(𝑇𝑘 ∩ {x ∈ 𝑄𝑑 : (𝑥𝑘 , 𝑥𝑘+1) = (0, 0)})
= 𝑆𝑘+1,

which completes the proof of the claim.
The claim implies that whenever 𝑅 ⊂ 𝑄𝑑 (0) consists of two elements of distance two in 𝑄𝑑 , there

exists a sequence of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, . . . , 𝑚 − 1 and intersecting sets 𝑅 𝑗 for
(𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅, 𝑅𝑚 = 𝑄𝑑 (0) and 𝑅 𝑗+1 = 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚 − 1. It is
therefore sufficient (by Remark 2.13) to prove that if 𝑃 ⊂ 𝑄𝑑 (0) has size two, then there is a symmetric
triple (𝐴, 𝐵, 𝜙) such that P is intersecting for (𝐴, 𝐵, 𝜙) and 𝜓𝐴,𝐵,𝜙 (𝑃) contains two elements of distance
two. Let 𝑃 = {𝑢, 𝑣}. We consider two cases.

Case 1. u and v are not antipodal points of 𝑄𝑑 . Without loss of generality, we may assume that
𝑢 = (0, 0, . . . , 0) (so 𝑣 ≠ (1, 1, . . . , 1) by assumption). In particular, there exist some 1 ≤ 𝑖 < 𝑗 ≤ 𝑑
such that 𝑣𝑖 ≠ 𝑣 𝑗 . Let 𝜙 be the automorphism of 𝑄𝑑 which swaps the ith and the jth coordinate. Let
𝐴 = {x ∈ 𝑄𝑑 : 𝑥𝑖 = 𝑣𝑖 , 𝑥 𝑗 = 𝑣 𝑗 }, and let 𝐵 = {x ∈ 𝑄𝑑 : 𝑥𝑖 = 1 − 𝑣𝑖 , 𝑥 𝑗 = 1 − 𝑣 𝑗 }. Note that (𝐴, 𝐵, 𝜙) is
a symmetric triple and 𝑢 ∈ 𝐹𝜙 , so P is intersecting for (𝐴, 𝐵, 𝜙). Now, 𝜓𝐴,𝐵,𝜙 (𝑃) contains both v and
𝜙(𝑣), so it contains two elements of distance two in 𝑄𝑑 .

Case 2. u and v are antipodal in 𝑄𝑑 . Without loss of generality, 𝑢 = (0, 0, . . . , 0) and 𝑣 = (1, 1, . . . , 1).
Let 𝜙 be the automorphism of 𝑄𝑑 which maps (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑑) to (1 − 𝑥2, 1 − 𝑥1, 𝑥3, . . . , 𝑥𝑑). Let
𝐴 = {x ∈ 𝑄𝑑 : 𝑥1 = 0, 𝑥2 = 0}, and let 𝐵 = {x ∈ 𝑄𝑑 : 𝑥1 = 1, 𝑥2 = 1}. Then (𝐴, 𝐵, 𝜙) is a symmetric
triple and 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵, so P is intersecting for (𝐴, 𝐵, 𝜙). Now, 𝜓𝐴,𝐵,𝜙 (𝑃) contains both u and 𝜙(𝑢), so
it contains two elements of distance two in 𝑄𝑑 . �

We can now easily deduce Theorem 1.5.

Proof of Theorem 1.5. Let 𝑑 ≥ 3 be an integer. By Lemma 2.18, 𝑄𝑑 is reflective. By Lemma 2.5, it
satisfies Sidorenko’s conjecture. Hence, by Theorem 2.16, there are positive constants 𝑐 = 𝑐(𝑑) and

𝐶 = 𝐶 (𝑑) such that if G is an n-vertex graph with edge density 𝑝 ≥ 𝐶𝑛
−

𝑣 (𝑄𝑑 )−𝑡−1
𝑒 (𝑄𝑑 )−𝑡 , where t is the size of

a part of the bipartition of 𝑄𝑑 , then G contains at least 𝑐𝑛𝑣 (𝑄𝑑) 𝑝𝑒 (𝑄𝑑) copies of 𝑄𝑑 . The result follows
by noting that 𝑣(𝑄𝑑) = 2𝑑 , 𝑒(𝑄𝑑) = 𝑑2𝑑−1 and 𝑡 = 2𝑑−1. �

2.4. Bipartite Kneser graphs

In this subsection, we prove that bipartite Kneser graphs (see Definition 1.6) are reflective and use this
to deduce Theorem 1.7.
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Lemma 2.19. For any 1 ≤ ℓ < 𝑘/2, the graph 𝐻ℓ,𝑘 from Definition 1.6 is reflective.
Proof. By the symmetry of the two parts of 𝐻ℓ,𝑘 , it suffices to prove that if 𝑅 ⊂ [𝑘] (ℓ) is a set of size two,
then there exists a sequence of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, 1, . . . , 𝑚 − 1 and intersecting
sets 𝑅 𝑗 for (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅, 𝑅𝑚 = [𝑘] (ℓ) and 𝑅 𝑗+1 = 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚−1.

We first prove this for sets of the form 𝑅 = {𝑆, 𝑇}, where |𝑆Δ𝑇 | = 1. Without loss of generality, we
may assume that 𝑆 = [ℓ] and 𝑇 = [ℓ − 1] ∪ {ℓ + 1}.

For each 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , let

𝐶𝑖, 𝑗 = {𝑃 ∈ 𝑉 (𝐻ℓ,𝑘 ) : 𝑖 ∈ 𝑃, 𝑗 ∉ 𝑃}

and let

𝐷𝑖, 𝑗 = {𝑃 ∈ 𝑉 (𝐻ℓ,𝑘 ) : 𝑖 ∉ 𝑃, 𝑗 ∈ 𝑃}.

Let 𝜑𝑖, 𝑗 be the automorphism of 𝐻ℓ,𝑘 that swaps i and j, that is, which is defined as

𝜑𝑖, 𝑗 (𝑃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑃 ∪ { 𝑗}) \ {𝑖} if 𝑃 ∈ 𝐶𝑖, 𝑗

(𝑃 ∪ {𝑖}) \ { 𝑗} if 𝑃 ∈ 𝐷𝑖, 𝑗

𝑃 otherwise.

Note that (𝐶𝑖, 𝑗 , 𝐷𝑖, 𝑗 , 𝜑𝑖, 𝑗 ) is a symmetric triple. Define the following sequence: 𝜙0 = 𝜑ℓ,ℓ+1, 𝜙1 = 𝜑ℓ,ℓ+2,
. . . , 𝜙𝑘−ℓ−1 = 𝜑ℓ,𝑘 , 𝜙𝑘−ℓ = 𝜑ℓ−1,ℓ , 𝜙𝑘−ℓ+1 = 𝜑ℓ−1,ℓ+1, . . . , 𝜙2𝑘−2ℓ = 𝜑ℓ−1,𝑘 , 𝜙2𝑘−2ℓ+1 = 𝜑ℓ−2,ℓ−1,
𝜙2𝑘−2ℓ+2 = 𝜑ℓ−2,ℓ , . . . , 𝜙(𝑘2)−(𝑘−ℓ2 )−2 = 𝜑1,𝑘−1, 𝜙(𝑘2)−(𝑘−ℓ2 )−1 = 𝜑1,𝑘 . Similarly, for 0 ≤ 𝑡 ≤

(𝑘
2
)
−
(𝑘−ℓ

2
)
−1,

let 𝐴𝑡 = 𝐶𝑖, 𝑗 and 𝐵𝑡 = 𝐷𝑖, 𝑗 for those 𝑖, 𝑗 with 𝜙𝑡 = 𝜑𝑖, 𝑗 .
Now, for all 0 ≤ 𝑡 ≤

(𝑘
2
)
−
(𝑘−ℓ

2
)
− 1, let 𝑅𝑡+1 = 𝜓𝐴𝑡 ,𝐵𝑡 ,𝜙𝑡 (𝑅𝑡 ).

Claim. Let 0 ≤ 𝑡 ≤
(𝑘
2
)
−
(𝑘−ℓ

2
)
− 1. Assume that 𝜙𝑡 = 𝜑𝑖, 𝑗 . Then

𝑅𝑡+1 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [𝑖 − 1] and 𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗} ≠ ∅}.

Proof of Claim. We use induction on t. For 𝑡 = 0, note that (𝑖, 𝑗) = (ℓ, ℓ + 1) and

𝑅1 = 𝜓𝐴0 ,𝐵0 ,𝜙0 (𝑅) = {𝑆, 𝑇} = {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [𝑖 − 1] and 𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗} ≠ ∅}.

Assume now that we have already proved that for some t with 𝜙𝑡 = 𝜑𝑖, 𝑗 , we have

𝑅𝑡+1 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [𝑖 − 1] and 𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗} ≠ ∅}.

There are two cases. The first case is where 𝑗 = 𝑘 . Then 𝜙𝑡+1 = 𝜑𝑖−1,𝑖 . Let 𝑃 ∈ [𝑘] (ℓ) satisfy 𝑃 ⊃ [𝑖−2]
and 𝑃 ∩ {𝑖 − 1, 𝑖} ≠ ∅.

If 𝑃 ∈ 𝐷𝑖−1,𝑖 = 𝐵𝑡+1, then 𝜑𝑖−1,𝑖 (𝑃) ⊃ [𝑖 − 1], so 𝜑𝑖−1,𝑖 (𝑃) ∈ 𝑅𝑡+1. Also, 𝜑𝑖−1,𝑖 (𝑃) ∈ 𝐶𝑖−1,𝑖 = 𝐴𝑡+1,
so 𝜑𝑖−1,𝑖 (𝑃) ∈ 𝑅𝑡+1 ∩ 𝐴𝑡+1, which implies that 𝑃 ∈ 𝜑𝑖−1,𝑖 (𝑅𝑡+1 ∩ 𝐴𝑡+1) as 𝜑𝑖−1,𝑖 is an involution.

Else (i.e., if 𝑃 ∉ 𝐷𝑖−1,𝑖) 𝑃 ⊃ [𝑖 − 1], so 𝑃 ∈ 𝑅𝑡+1 ∩ (𝐴𝑡+1 ∪ 𝐹𝜙𝑡+1 ). Hence, in both cases,
𝑃 ∈ 𝜓𝐴𝑡+1 ,𝐵𝑡+1 ,𝜙𝑡+1 (𝑅𝑡+1) = 𝑅𝑡+2. Thus,

𝑅𝑡+2 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [𝑖 − 2] and 𝑃 ∩ {𝑖 − 1, 𝑖} ≠ ∅},

completing the induction step.
The second case is where 𝑗 ≠ 𝑘 . Then 𝜙𝑡+1 = 𝜑𝑖, 𝑗+1. Let 𝑃 ∈ [𝑘] (ℓ) satisfy 𝑃 ⊃ [𝑖 − 1] and

𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗 + 1} ≠ ∅. If 𝑃 ∈ 𝐷𝑖, 𝑗+1 = 𝐵𝑡+1, then 𝜑𝑖, 𝑗+1(𝑃) ⊃ [𝑖], so 𝜑𝑖, 𝑗+1 (𝑃) ∈ 𝑅𝑡+1. Else,
𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗} ≠ ∅, so 𝑃 ∈ 𝑅𝑡+1. Hence, in both cases, 𝑃 ∈ 𝜓𝐴𝑡+1 ,𝐵𝑡+1 ,𝜙𝑡+1 (𝑅𝑡+1) = 𝑅𝑡+2. Thus,

𝑅𝑡+2 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [𝑖 − 1] and 𝑃 ∩ {𝑖, 𝑖 + 1, . . . , 𝑗 + 1} ≠ ∅},

completing the induction step and the proof of the claim.
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By the claim, for 𝑚 =
(𝑘
2
)
−
(𝑘−ℓ

2
)
, we have 𝑅𝑚 = [𝑘] (ℓ) , so it remains to show that for each t, 𝑅𝑡 is

intersecting for (𝐴𝑡 , 𝐵𝑡 , 𝜙𝑡 ). This is clear for 𝑡 = 0, so let 𝑡 > 0. Let 𝜙𝑡 = 𝜑𝑖, 𝑗 . Again, we consider two
cases. If 𝑖 = ℓ, then 𝑗 ≥ ℓ + 2 and 𝜙𝑡−1 = 𝜑ℓ, 𝑗−1, so by the claim we have

𝑅𝑡 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [ℓ − 1] and 𝑃 ∩ {ℓ, ℓ + 1, . . . , 𝑗 − 1} ≠ ∅}.

Hence, [ℓ − 1] ∪ {ℓ + 1} ∈ 𝑅𝑡 , so 𝑅𝑡 ∩ 𝐹𝜙𝑡 ≠ ∅. In particular, 𝑅𝑡 is intersecting for (𝐴𝑡 , 𝐵𝑡 , 𝜙𝑡 ). The
other case is 𝑖 < ℓ. In this case, either 𝜙𝑡−1 = 𝜑𝑖′, 𝑗′ for some 𝑖′ < ℓ, or 𝜙𝑡−1 = 𝜑ℓ,𝑘 . Either way, the claim
implies that

𝑅𝑡 ⊃ {𝑃 ∈ [𝑘] (ℓ) : 𝑃 ⊃ [ℓ − 1]}.

Hence, 𝑅𝑡 has an element which contains both i and j, so 𝑅𝑡 ∩ 𝐹𝜙𝑡 ≠ ∅. In particular, 𝑅𝑡 is intersecting
for (𝐴𝑡 , 𝐵𝑡 , 𝜙𝑡 ).

We have proved that if 𝑅 ⊂ [𝑘] (ℓ) consists of two sets differing by one element, then there exists
a sequence of symmetric triples (𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) for 𝑗 = 0, 1, . . . , 𝑚 − 1 and intersecting sets 𝑅 𝑗 for
(𝐴 𝑗 , 𝐵 𝑗 , 𝜙 𝑗 ) such that 𝑅0 = 𝑅, 𝑅𝑚 = [𝑘] (ℓ) and 𝑅 𝑗+1 = 𝜓𝐴 𝑗 ,𝐵 𝑗 ,𝜙 𝑗 (𝑅 𝑗 ) for all 0 ≤ 𝑗 ≤ 𝑚 − 1. To
complete the proof, it suffices to prove that for any 𝑅 ⊂ [𝑘] (ℓ) of size two, there is a symmetric triple
(𝐴, 𝐵, 𝜙) such that R is intersecting for (𝐴, 𝐵, 𝜙) and 𝜓𝐴,𝐵,𝜙 (𝑅) contains two sets which differ by one
element. Let 𝑅 = {𝑆, 𝑇}. Let 𝑖 ∈ 𝑆 \ 𝑇 , and let 𝑗 ∈ [𝑘] \ (𝑆 ∪ 𝑇) (which exists since |𝑆 ∪ 𝑇 | ≤ 2ℓ < 𝑘).
Without loss of generality, let us assume that 𝑖 < 𝑗 . Now, let 𝜙 = 𝜑𝑖, 𝑗 , 𝐴 = 𝐶𝑖, 𝑗 and 𝐵 = 𝐷𝑖, 𝑗 . Then
𝑇 ∈ 𝐹𝜙 , so R is intersecting for (𝐴, 𝐵, 𝜙). Moreover, 𝜓𝐴,𝐵,𝜙 (𝑅) contains both S and 𝜑𝑖, 𝑗 (𝑆), so it
contains two sets which differ by one element. This completes the proof. �

The other condition that we need to check for our Theorem 2.17 to apply is that 𝐻ℓ,𝑘 satisfies
Sidorenko’s conjecture. This was proved by Conlon and Lee [6, Theorem 1.1].

Lemma 2.20 (Conlon–Lee [6]). For any 1 ≤ ℓ < 𝑘/2, the graph 𝐻ℓ,𝑘 from Definition 1.6 satisfies
Sidorenko’s conjecture.

Notice that Theorem 1.7 follows from Theorem 2.17, Lemma 2.19 and Lemma 2.20.

3. Rainbow Turán number of cycles

In this section, we prove Theorems 1.8 and 1.9. As before, we establish certain inequalities between
various homomorphism counts. However, we can no longer assume freely that the host graph is almost
regular because it is too sparse for the regularization method to work. Instead, we introduce weights for
our cycles and count these weighted homomorphic cycles.

Definition 3.1. Let k be a positive integer and let G be a graph. The weight of an edge 𝑢𝑣 is defined to be

𝑤(𝑢𝑣) =
1

𝑑𝐺 (𝑢)1/2𝑑𝐺 (𝑣)1/2 .

Now, the weight of a walk 𝑃 = (𝑢0, 𝑢1, . . . , 𝑢𝑘 ) is defined to be the product of the weights of the edges
in it, that is,

𝑤(𝑃) =
1

𝑑𝐺 (𝑢0)1/2𝑑𝐺 (𝑢𝑘 )1/2 ∏𝑘−1
𝑖=1 𝑑𝐺 (𝑢𝑖)

.

Similarly, the weight of a homomorphic cycle 𝐶 = (𝑢0, 𝑢1, . . . , 𝑢2𝑘−1) is

𝑤(𝐶) =
1∏2𝑘−1

𝑖=0 𝑑𝐺 (𝑢𝑖)
.
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Finally, let ℎ2𝑘 be the sum of the weights of all homomorphic cycles of length 2𝑘 in G (here, a
homomorphic cycle of length 2 is just an edge with labelled endpoints).

The next lemma can be viewed as a weighted variant of Sidorenko’s conjecture for even cycles.

Lemma 3.2. For any graph G and any positive integer k, we have ℎ2𝑘 ≥ 1.

Proof. Let A be the matrix whose rows and columns are labelled by 𝑉 (𝐺) and which has entries

𝐴𝑢,𝑣 =

{
𝑤(𝑢𝑣) = 1

𝑑𝐺 (𝑢)1/2𝑑𝐺 (𝑣)1/2 if 𝑢𝑣 ∈ 𝐸 (𝐺)

0 otherwise.

Observe that ℎ2𝑘 = tr(𝐴2𝑘 ). Let x ∈ R𝑉 (𝐺) be the vector with x𝑢 = 𝑑𝐺 (𝑢)1/2. Then

(𝐴x)𝑢 =
∑

𝑣 ∈𝑉 (𝐺)

𝐴𝑢𝑣x𝑣 =
∑

𝑣 ∈𝑁𝐺 (𝑢)

1
𝑑𝐺 (𝑢)1/2𝑑𝐺 (𝑣)1/2 𝑑𝐺 (𝑣)1/2 = 𝑑𝐺 (𝑢)1/2.

Hence, 𝐴x = x, so 1 is an eigenvalue of A. Writing 𝜆1, . . . , 𝜆𝑛 for the eigenvalues of A (which are real
numbers since A is a symmetric matrix), we obtain tr(𝐴2𝑘 ) =

∑𝑛
𝑖=1 𝜆

2𝑘
𝑖 ≥ 1, completing the proof. �

An interpretation of Lemma 3.2 is that if we choose a vertex uniformly at random in an n-vertex graph
and start a random walk (choosing each neighbour with the same probability), then the probability of
ending up at the starting vertex after 2𝑘 steps is at least 1/𝑛. Results from which this follows already exist
in the literature on random walks (see, e.g., Proposition 10.25 in [22]), but since our proof is very short,
we included it for the sake of completeness. There is another related result in [3] (see the “Probabilistic
lens: Random walks”). There it is shown, using the Cauchy–Schwarz inequality, that under the extra
assumption that the graph is vertex-transitive, for any two vertices u and v, the probability that a random
walk of length 2𝑘 starting from u ends at u is at least as large as the probability that it ends at v.

In what follows, indices are considered modulo 2𝑘 , for example, 𝑢2𝑘 = 𝑢0.

Definition 3.3. Given a graph G with an edge-colouring 𝑐 : 𝐸 (𝐺) → C and positive integers 𝑖, 𝑗 , 𝑘 ,
let ℎ2𝑘 (𝑖, 𝑗) be the sum of the weights of homomorphic 2𝑘-cycles (𝑢0, 𝑢1, . . . , 𝑢2𝑘−1) with 𝑐(𝑢𝑖−1𝑢𝑖) =
𝑐(𝑢 𝑗−1𝑢 𝑗 ).

The key lemma is as follows.

Lemma 3.4. For any 1 ≤ ℓ ≤ 𝑘 , we have ℎ2𝑘 (ℓ, 2𝑘)2 ≤ ℎ2𝑘 (1, 2𝑘)ℎ2𝑘 (ℓ, 2𝑘 + 1 − ℓ).

Proof. For any 𝑢0, 𝑢𝑘 ∈ 𝑉 (𝐺) and 𝑅 ∈ C, let 𝛼(𝑢0, 𝑢𝑘 , 𝑅) be the sum of the weights of all walks
(𝑢0, 𝑢1, . . . , 𝑢𝑘 ) in G with 𝑐(𝑢ℓ−1, 𝑢ℓ) = 𝑅. Moreover, let 𝛽(𝑢0, 𝑢𝑘 , 𝑅) be the sum of the weights of all
walks (𝑢0, 𝑢1, . . . , 𝑢𝑘 ) in G with 𝑐(𝑢0, 𝑢1) = 𝑅. Note that

ℎ2𝑘 (ℓ, 2𝑘) =
∑

𝑢0 ,𝑢𝑘 ∈𝑉 (𝐺) ,𝑅∈C
𝛼(𝑢0, 𝑢𝑘 , 𝑅)𝛽(𝑢0, 𝑢𝑘 , 𝑅),

ℎ2𝑘 (1, 2𝑘) =
∑

𝑢0 ,𝑢𝑘 ∈𝑉 (𝐺) ,𝑅∈C
𝛽(𝑢0, 𝑢𝑘 , 𝑅)

2

and

ℎ2𝑘 (ℓ, 2𝑘 + 1 − ℓ) =
∑

𝑢0 ,𝑢𝑘 ∈𝑉 (𝐺) ,𝑅∈C
𝛼(𝑢0, 𝑢𝑘 , 𝑅)

2.

Hence, the statement of the lemma follows from the Cauchy–Schwarz inequality. �

Lemma 3.5. We have ℎ2𝑘 (1, 2𝑘) = max1≤𝑖< 𝑗≤2𝑘 ℎ2𝑘 (𝑖, 𝑗).
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Proof. Choose 1 ≤ 𝑖′ < 𝑗 ′ ≤ 2𝑘 such that ℎ2𝑘 (𝑖
′, 𝑗 ′) = max1≤𝑖< 𝑗≤2𝑘 ℎ2𝑘 (𝑖, 𝑗). Trivially, we have

ℎ2𝑘 (𝑖
′, 𝑗 ′) = ℎ2𝑘 (𝑖

′ + 𝑡, 𝑗 ′ + 𝑡) for every positive integer t (here, as before, indices are considered modulo
2𝑘). Hence, there is some 1 ≤ ℓ ≤ 𝑘 such that ℎ2𝑘 (ℓ, 2𝑘) = ℎ2𝑘 (𝑖

′, 𝑗 ′) = max1≤𝑖< 𝑗≤2𝑘 ℎ2𝑘 (𝑖, 𝑗).
Now, by Lemma 3.4, we have

ℎ2𝑘 (ℓ, 2𝑘)2 ≤ ℎ2𝑘 (1, 2𝑘)ℎ2𝑘 (ℓ, 2𝑘 + 1 − ℓ) ≤ ℎ2𝑘 (1, 2𝑘) max
1≤𝑖< 𝑗≤2𝑘

ℎ2𝑘 (𝑖, 𝑗) = ℎ2𝑘 (1, 2𝑘)ℎ2𝑘 (ℓ, 2𝑘).

Hence,

ℎ2𝑘 (1, 2𝑘) ≥ ℎ2𝑘 (ℓ, 2𝑘) = max
1≤𝑖< 𝑗≤2𝑘

ℎ2𝑘 (𝑖, 𝑗),

as desired. �

Lemma 3.6. For any properly edge-coloured graph G with 𝛿(𝐺) > 0 and integer 𝑘 ≥ 2, we have

ℎ2𝑘 (1, 2𝑘) ≤
ℎ2𝑘−2
𝛿(𝐺)

.

Proof. Let 𝐶 = (𝑢0, 𝑢1, . . . , 𝑢2𝑘−1) be a homomorphic 2𝑘-cycle in G with the property that 𝑐(𝑢0𝑢1) =
𝑐(𝑢2𝑘−1𝑢0). Since c is a proper colouring, we have 𝑢1 = 𝑢2𝑘−1. This means that 𝐶 ′ = (𝑢1, 𝑢2, . . . , 𝑢2𝑘−2)

is a homomorphic (2𝑘 − 2)-cycle. Note that 𝑤(𝐶) = 𝑤 (𝐶′)
𝑑𝐺 (𝑢0)𝑑𝐺 (𝑢1)

≤
𝑤 (𝐶′)

𝛿 (𝐺)𝑑𝐺 (𝑢1)
. Furthermore, any

homomorphic (2𝑘−2)-cycle (𝑢1, . . . , 𝑢2𝑘−1) arises as 𝐶 ′ for precisely 𝑑𝐺 (𝑢1) choices of C. The desired
inequality follows. �

Lemma 3.7. Let G be a properly edge-coloured graph with 𝛿(𝐺) > 0, and let 𝑘 ≥ 2 be an integer. If G
has no rainbow cycle, then ℎ2𝑘 ≤ 2𝑘2

𝛿 (𝐺)
ℎ2𝑘−2.

Proof. Since G has no rainbow cycle, we have

ℎ2𝑘 ≤
∑

1≤𝑖< 𝑗≤2𝑘
ℎ2𝑘 (𝑖, 𝑗).

Using Lemmas 3.5 and 3.6, we have

∑
1≤𝑖< 𝑗≤2𝑘

ℎ2𝑘 (𝑖, 𝑗) ≤

(
2𝑘
2

)
ℎ2𝑘 (1, 2𝑘) ≤

(
2𝑘
2

)
ℎ2𝑘−2
𝛿(𝐺)

,

which implies that the desired inequality. �

Corollary 3.8. Let G be an n-vertex properly edge-coloured graph with 𝛿(𝐺) > 0, and let 𝑘 ≥ 2 be an
integer. If G has no rainbow cycle, then ℎ2𝑘 ≤ ( 2𝑘2

𝛿 (𝐺)
)𝑘𝑛.

Proof. By repeated applications of Lemma 3.7, we obtain ℎ2𝑘 ≤
2𝑘−1 (𝑘!)2

𝛿 (𝐺)𝑘−1 ℎ2. Furthermore,

ℎ2 =
∑

𝑢,𝑣 ∈𝑉 (𝐺):𝑢𝑣 ∈𝐸 (𝐺)

1
𝑑𝐺 (𝑢)𝑑𝐺 (𝑣)

≤
1

𝛿(𝐺)

∑
𝑢,𝑣 ∈𝑉 (𝐺):𝑢𝑣 ∈𝐸 (𝐺)

1
𝑑𝐺 (𝑢)

=
1

𝛿(𝐺)

∑
𝑢∈𝑉 (𝐺)

1 =
𝑛

𝛿(𝐺)
,

which implies the result. �

Proof of Theorem 1.8. Let n be sufficiently large, and let G be a properly edge-coloured n-vertex graph
with at least 8𝑛(log 𝑛)2 edges. Then G has a nonempty subgraph 𝐺 ′ with 𝛿(𝐺 ′) ≥ 8(log 𝑛)2.
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Assume, for contradiction that 𝐺 ′ has no rainbow cycle. Let 𝑘 = �log 𝑛�. Writing ℎ2𝑘 for the total
weight of the homomorphic 2𝑘-cycles in 𝐺 ′ (rather than G), Lemma 3.2 and Corollary 3.8 imply that

1 ≤ ℎ2𝑘 ≤

(
2𝑘2

𝛿(𝐺 ′)

) 𝑘
|𝑉 (𝐺 ′) | ≤

(
2𝑘2

𝛿(𝐺 ′)

) 𝑘
𝑛 ≤ 3−𝑘𝑛 < 1,

which is a contradiction. �

It remains to prove Theorem 1.9. The proof uses suitable variants of Lemma 3.7 and Corollary 3.8.
For these variants, we will need the following simple lemma.

Lemma 3.9. Let 0 < 𝜀 < 1/2 and let G be an edge-coloured graph in which for every k, every cycle
of length k has at most (1 − 𝜀)𝑘 different colours. Then for every k, every homomorphic k-cycle has at
most (1 − 𝜀)𝑘 different colours.

Proof. We prove by induction on k that every homomorphic k-cycle has at most (1 − 𝜀)𝑘 different
colours. The statement is clear for 𝑘 = 2 since a homomorphic 2-cycle has only one colour. Now, let
𝑘 > 2 and let C be a homomorphic cycle of length k in G. If C is a genuine cycle, then it follows from
the assumptions that it has at most (1− 𝜀)𝑘 different colours. Else, we can write C as the concatenation
of nontrivial homomorphic cycles 𝐶1 and 𝐶2. Writing ℓ and 𝑘 − ℓ for the length of these homomorphic
cycles, the induction hypothesis implies that 𝐶1 has at most (1−𝜀)ℓ different colours and 𝐶2 has at most
(1 − 𝜀) (𝑘 − ℓ) different colours. It follows that C has at most (1 − 𝜀)𝑘 different colours, completing the
induction step. �

We can now state and prove the variant of Lemma 3.7.

Lemma 3.10. Let G be a properly edge-coloured graph with 𝛿(𝐺) > 0, let 0 < 𝜀 < 1/2 and let 𝑘 ≥ 2
be an integer. If for every ℓ, G has no cycle of length ℓ with more than (1 − 𝜀)ℓ different colours, then
ℎ2𝑘 ≤ 𝑘

𝜀𝛿 (𝐺)
ℎ2𝑘−2.

Proof. By Lemma 3.9, every homomorphic cycle of length 2𝑘 has at most (1 − 𝜀)2𝑘 different colours.
Hence, any such cycle ‘contributes’ to ℎ2𝑘 (𝑖, 𝑗) for at least 𝜀 · 2𝑘 pairs (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 2𝑘 . Thus,

2𝜀𝑘ℎ2𝑘 ≤
∑

1≤𝑖< 𝑗≤2𝑘
ℎ2𝑘 (𝑖, 𝑗).

By Lemmas 3.5 and 3.6, this implies the desired inequality. �

The variant of Corollary 3.8 is as follows.

Corollary 3.11. Let G be an n-vertex properly edge-coloured graph with 𝛿(𝐺) > 0, let 0 < 𝜀 < 1/2
and let 𝑘 ≥ 2 be an integer. If for every ℓ, G has no cycle of length ℓ with more than (1 − 𝜀)ℓ different
colours, then ℎ2𝑘 ≤ ( 𝑘

𝜀𝛿 (𝐺)
)𝑘𝑛.

Proof. By repeated applications of Lemma 3.10, we obtain ℎ2𝑘 ≤ 𝑘!
(𝜀𝛿 (𝐺))𝑘−1 ℎ2. As we have seen in the

proof of Corollary 3.8, ℎ2 ≤ 𝑛
𝛿 (𝐺)

, which implies the result. �

Proof of Theorem 1.9. Let n be sufficiently large, let 0 < 𝜀 < 1/2 and let G be a properly edge-coloured
n-vertex graph with at least 4

𝜀 𝑛 log 𝑛 edges. Then G has a nonempty subgraph 𝐺 ′ with 𝛿(𝐺 ′) ≥ 4
𝜀 log 𝑛.

Assume, for contradiction, that for every ℓ, 𝐺 ′ has no cycle of length ℓ with more than (1 − 𝜀)ℓ
different colours. Let 𝑘 = �log 𝑛�. Writing ℎ2𝑘 for the total weight of the homomorphic 2𝑘-cycles in 𝐺 ′

(rather than G), Lemma 3.2 and Corollary 3.11 imply that

1 ≤ ℎ2𝑘 ≤

(
𝑘

𝜀𝛿(𝐺 ′)

) 𝑘
|𝑉 (𝐺 ′) | ≤

(
𝑘

𝜀𝛿(𝐺 ′)

) 𝑘
𝑛 ≤ 3−𝑘𝑛 < 1,

which is a contradiction. �
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4. Concluding remarks

In this paper, we proved the first power improvement over the dependent random choice bound for
ex(𝑛, 𝑄𝑑). When d is a power of two, such an improvement can be deduced from known results. Conlon
and Lee [7, Theorem 6.2] showed that their Conjecture 1.1 holds for subdivisions of d-partite d-uniform
hypergraphs. Here, for a hypergraph H, the subdivision of H is the bipartite graph whose parts are
𝑉 (H) and 𝐸 (H) and in which 𝑣 ∈ 𝑉 (H) is adjacent to 𝑒 ∈ 𝐸 (H) if 𝑣 ∈ 𝑒. It is not hard to see that
𝑄𝑑 is a subdivision of a d-partite d-uniform hypergraph if and only if d is a power of two. However,
even for these values of d, the 𝜀 in ex(𝑛, 𝑄𝑑) = 𝑂 (𝑛2−1/𝑑−𝜀) coming from their result is smaller than
exponential in −𝑑, so much smaller than the one obtained in this paper. We remark that for a general

value of d, the best known lower bound is ex(𝑛, 𝑄𝑑) = Ω
(
𝑛

2− 2𝑑−2
𝑑2𝑑−1−1

)
≥ Ω(𝑛2−2/𝑑), coming from the

probabilistic deletion method.
We have already mentioned that our method resembles that of another paper of Conlon and Lee

[6] in which they prove Sidorenko’s conjecture for a certain class of graphs. The class of graphs their
method applies to is similar to our ‘reflective’ graphs (see our Definition 2.12): Their graphs are also
required to have many symmetric triples (see our Definition 2.7), and it is needed that a certain reflection
sequence, similar to the one in our Definition 2.12, on the set of edges eventually covers the entire edge
set. However, the two sequences are slightly different (theirs runs on edges and ours runs on vertices)
and it is not true that every graph for which their proof verifies Sidorenko’s conjecture is reflective: For
example, the 2-blowup of an even cycle of length at least six is not reflective, but their proof applies to
it. Nevertheless, the similarity is close enough for it to make sense to look for further reflective graphs
in their class of examples; indeed, this is how we chose the graphs from Definition 1.6. In this paper,
we have decided not to pursue this direction further.

It is worth mentioning that, building on Conlon and Lee’s work [6], Coregliano [8] proved Sidorenko’s
conjecture for a family of graphs extending the family considered by Conlon and Lee, by studying
a sequence of reflections on vertices, similarly to our paper. However, the crucial condition in our
Definition 2.7 that R intersects both 𝐴 ∪ 𝐹𝜙 and 𝐵 ∪ 𝐹𝜙 means that the family of graphs for which his
result applies to and the family of our reflective graphs are not identical.

Note added.

After this paper was written, we learnt that Kim, Lee, Liu and Tran [21] independently showed that
an n-vertex properly edge-coloured graph with at least 𝐶𝑛(log 𝑛)2 edges has a rainbow cycle (i.e., our
Theorem 1.8). For regular graphs their proof is similar to ours, but they use a different approach to deal
with degree irregularities.

Ten months after posting our paper, Alon, Bucić, Sauermann, Zakharov and Zamir [1] obtained an
improved bound 𝑂 (𝑛 log 𝑛 · log log 𝑛) for this problem.
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