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ABSTRACT
Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisec-
ond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving
rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descrip-
tions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational
methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of
applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a
test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between
experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition
of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different
combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Further-
more, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics
by state-of-the-art biomolecular force fields.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188416

I. INTRODUCTION

Biopolymers such as proteins and nucleic acids exist in an
ensemble of conformations. They are dynamical entities with bio-
logical functions determined by the continuous inter-conversion
between states.1,2 Understanding those dynamics is paramount to
elucidate complex biological phenomena, such as enzymatic catal-
ysis, cell signaling, and metabolism, or to engineer proteins for

optimized properties or novel functionalities.3 A wide range of
experimental4 and computational5,6 methods, often used in con-
junction7 with one another, have been developed over the years to
probe various facets of protein dynamics.

Nuclear magnetic resonance (NMR) based methods stand out
given their ability to decipher dynamics of physical motions rang-
ing from bond vibrations, side chain rotations, and loop motion
to larger conformational changes.8 The different types of motion
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in proteins occur on timescales ranging from picoseconds (ps)
to hours, and various experimental methods may be applied to
shine light on specific timescales.9 In particular, extending the
domain of applicability of standard relaxation experiments to the
nanoseconds–microseconds (ns–�s) regime has remained an open
challenge, recently addressed by fast field cycling,10 high-resolution
relaxometry,11 and other methods.12–14 While kinetic information is
obtained from those experiments, it generally cannot be interpreted
directly with mechanistic models at atomic resolution. Given the
accessibility of these timescales using all-atom molecular dynamics
(MD) simulations,15 the latter have been combined to complement
NMR relaxation experiments.

The simplest combination of relaxation experiments and MD
consists in back-calculating relaxation rates from an MD simulation
and interpreting the dynamics from the simulation if the agreement
is good.16–18 However, it is customary to compare properties derived
from the relaxation rates instead (e.g., order parameter S2 and cor-
relation time τ), as the latter are more easily interpretable.19–23 In
case the agreement between experiment and simulation is imper-
fect, Salvi et al.24 have proposed to reweight the MD trajectories
to best match the experimental data. We note that this reweigh-
ing procedure relies on the correspondence of at least a fraction
of the simulation data and the experiments and may be prone to
over-fitting. To reduce over-fitting, Kümmerer et al.25 introduced
an additional entropy term to the reweighting procedure. Alter-
natively, it is possible to generate conformational ensembles in
accordance with specific NMR observables by biasing the simu-
lation itself, although these procedures bias the resulting dynam-
ics and have, therefore, not been applied in the context of NMR
relaxation.26–28

The accuracy of the properties predicted from a simulation
heavily depends on the quality of the underlying classical force
field as well as sufficient sampling. Traditionally, force fields for
biomolecular simulations have been parameterized from quantum-
mechanical (QM) and/or a wide range of experimental properties
(see Refs. 29–31 for recent reviews). In particular, the choice of
the backbone and side chain torsion parameters is paramount to
producing correct structural ensembles.32 Torsion parameters are
derived from either ab initio data,33,34 experimental data,35,36 or a
mixture of both.37 In addition to serving as training data, NMR
observables such as chemical shifts, J couplings, residual dipolar
couplings, and relaxation data have been used to validate force fields
a posteriori.38–40 Thereby, both the ability of the force field to repro-
duce structural properties and the kinetics of inter-conversion can
be probed.41 NMR observables are thus expected to play a growing
role in force-field parameterization and validation in coming years.12

Such validation studies may also expose specific parts of a force field
in need of revision. For example, Hoffmann et al.18,42 have recently
improved the kinetics of methyl-group rotation in aliphatic side
chains by comparison of simulation results with NMR relaxation.
Their refitting procedure was based on high-level CCSD(T) torsion
profiles and was subsequently refined by Kümmerer et al.43 based on
a grid search around the QM derived parameters. The circumstance
that refitting was beneficial suggests that ab initio data alone are not
sufficient to reproduce experimental kinetic rates. However, as the
force-field terms are interdependent, the identification of the par-
ticular term leading to a discrepancy with experiment is not always
straightforward.

In addition to dihedral angles, pairwise non-bonded inter-
actions play a significant role in modeling accurate kinetics and
secondary structure propensities of peptides and proteins.32,44,45

Similarly, interactions at the protein–water interface strongly impact
the compactness of the structures produced, in particular for intrin-
sically disordered proteins.46 In this light, the choice of water model
in a force field is crucial to generate ensembles conforming to
experiment. For example, recent adjustments to the Lennard-Jones
parameters of water have improved secondary structure propensities
(shown independently for both CHARMM36m/TIP3P and AMBER
ff99SB-disp/TIP4P-D combinations).37,47 In the context of compar-
ison with NMR relaxation, the water model was shown to strongly
influence the tumbling rate of globular proteins in solution.18,48,49 To
investigate the effect that the choice of force field and water model
may have on the simulated motion, we perform our analyses in this
work for a set of force fields and water models using the motion of
ubiquitin on the ps to ns timescale as a test system.

Ubiquitin is a small (76 residues) and relatively rigid protein.50

Its main biological function is to serve as a biological marker when
attached to other substrate proteins to regulate cellular processes,
such as protein degradation or activation.51,52 We chose ubiquitin as
a test system in this study because high-quality experimental relax-
ation data are available in the literature for this protein,11,13,14,53–56

and different analyses have already been reported.11,57,58 The aim
behind our work is to use this well understood system to com-
pare various state-of-the-art analysis methods and assess their ability
to interpret NMR and MD data in tandem. We will focus thereby
mostly on the motion of methyl-bearing side chains given the
rigidity of the backbone.

II. THEORY
In order to characterize the nature of the motion of a bond-

vector � (e.g., N–H of the protein backbone), NMR relaxation
experiments probe the spectral density function J(ω) at specific Lar-
mor frequencies ω of the spins associated with the interaction.59 This
spectral density function is the Fourier transform of the time auto-
correlation function (or simply “correlation function”) and can be
extracted from an MD simulation using

C(t) = �P2(�(τ) ⋅ �(t + τ))�τ , (1)

where P2(x) = (3x2 − 1)�2 is the second Legendre polynomial and
� is the normalized bond vector of interest. Different meth-
ods have been proposed in the literature to compare the cal-
culated and experimental correlation functions (for reviews, see
Refs. 12, 60).

A. Model-free approach
The model-free approach pioneered by Lipari and Szabo61 in

1982 describes the overall motion as a product of correlation func-
tions for overall tumbling and internal motion. Both are assumed to
be independent of one another and are fitted with decaying expo-
nential functions. The correlation function for internal motion is
written as

Cint(t) = S2 + (1 − S2) exp (−t�τ), (2)
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where S2 is the generalized order parameter describing the
extent of motion present and τ is the effective correlation time. To
treat cases in which the relaxation behavior cannot be reproduced
with the model-free approach, Clore et al.62 extended the model of
internal motion to a bi-exponential function, separating the motion
on the fast timescale (subscript f , often ps) and the slow timescale
(subscript s, often ns),

Cint(t) = S2
f S2

s + �1 − S2
f � exp�−t

τ f
� + S2

f �1 − S2
s � exp�−t

τs
�. (3)

For MD data, the overall tumbling of the protein can be
removed by aligning the protein conformation of each frame to
the first frame of the trajectory (typically considering only back-
bone atoms for the alignment). The correlation time is then obtained
using Eq. (1) and fitted to a function such as Eq. (3). The resulting
parameters of the correlation functions can be compared to those
obtained from the fit of the experimental relaxation data.

B. Isotropic reorientational eigenmode
dynamics (iRED)

Assessing internal dynamics may also be performed without
alignment of the trajectory by using a method such as isotropic reori-
entational eigenmode dynamics (iRED).21,63 In iRED, order para-
meters are calculated from an eigenvalue decomposition [Eq. (4)] of
the covariance matrix Mij (with eigenvalues λ and eigenvectors m),

S2
i = 1 − N�

m=6
λm��m�i�2, (4)

obtained from averaging over simulation blocks of chosen length
TiRED,

Mij = �P2(�i ⋅ �j)�TiRED , (5)

where �i and �j are two different bond vectors originating from the
same frame of the trajectory.

An advantage of iRED is that it makes no assumption of the
existence of a possible molecular reference frame in which exter-
nal and internal motion may be separable. However, the method
only provides a characterization of the extent of motion through
an order parameter S2

i and does not inform precisely on the asso-
ciated timescales, i.e., one can only infer that the motion occurs on a
timescale smaller than the block size TiRED. Performing the analysis
multiple times with different block sizes to obtain the evolution of
the order parameters as a function of TiRED may provide an estimate
of the timescales involved.14

C. Dynamic detector approach
The model-free approach and iRED assume a separation into

two or more distinct motions, each of which can be explained
with a single exponential decay. To avoid such assumptions, Smith
et al.23,64,65 developed the dynamic detector approach, in which the

experimental measurements are fitted with multiple detector win-
dows that are optimized to capture most of the motion observed
in the NMR experiment. The correlation function of a detector
is the integral of the detector’s sensitivity θ over all correlation
times,

C(t) = S2 + (1 − S2)� ∞
0

θ(τc) exp (−t�τc)dτc. (6)

D. Re-orientational dynamics in MD analyzed for NMR
correlation function disentanglement (ROMANCE)

All previously introduced methods suffer from assumptions of
the underlying motions being averaged into a certain number of
fitting parameters, for example an order parameter and a correla-
tion time, which can be an average over many different motions.
An alternative to the previous methods is to use MD simula-
tions to decompose the different motions. In the approach called
re-orientational dynamics in MD analyzed for NMR correlation
function disentanglement (ROMANCE),66 the overall, lab-frame
recorded motion is separated into system-specific motions in frames
aligned to parts of the protein. For example, the methyl rotation of
an isoleucine residue is described in a frame aligned to the Cγ − Cδ
bond of this residue. To retrieve the total correlation time of the
system (CTotal, measured in the lab frame), the total rotation of the
tensor has to be broken into several steps, defined by the series of
reference frames. At each step, a correlation function for that rota-
tion is calculated such that the product of the correlation functions
for the individual rotations returns the total correlation function to
good approximation,

CTotal(t) = CMethyl(t) × Cχ2(t) × Cχ1(t) × CBackbone(t). (7)

In practice, the correlation function in each frame is treated
with different motion models to avoid artifacts such as librational
motion. The retrieved correlation functions can also be analyzed
separately, providing deeper insights into the composition of the
average correlation times.

E. Markov state modeling (MSM)
Markov state models (MSMs) have emerged as a powerful tech-

nique to describe the dynamics of molecular systems seen in MD
simulations.67–74 In short, MSMs involve the discretization of an MD
trajectory (or a set of trajectories) into n microstates, and construct-
ing from it a transition matrix [Tij in Eq. (8)], which describes the
evolution of these microstates over time. This is performed by sum-
ming all transitions between every pair of states i and j into a counts
matrix cij. The frames in the input trajectory are separated by a lag
time τlag ,

Tij(τlag) = cij(τlag)
n∑

k=1
cik(τlag) . (8)

The microstates are then grouped into metastable sets such that
the slowest processes in the system occur between the metastable
sets. One significant advantage of MSMs is that the slowest kinetic
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information may be recovered as long as a local equilibrium between
all states is reached. Kinetic information is typically extracted
through implied timescales [ITS, Eq. (9)], which depend on the
eigenvalues λi of the transition matrix and may not be easily
interpretable,

ti = − τlag

ln (λi) . (9)

Alternatively, it is possible to extract kinetic information related
to two specific metastable sets i and j through mean first-passage
times [MFPTs, Eq. (10)], which describe the average time to visit
state j for the first time if we are currently in state i [by going
directly to that state or passing through any other intermediate
state(s) k],

Ei[Tj] =
�������

0, i = j,
1 +�k≠j Ti,kEk[Tj], i ≠ j.

(10)

This recursive formula is solved simultaneously for all MFPTs of the
model.

III. METHODS
A. Simulation details

To evaluate the effect of the force field (in particular the torsion
parameters) on the comparison with the experimental NMR data,
force fields from the AMBER and CHARMM family were selected.
In both cases, force-field variants have been published, which
were optimized against NMR-derived data: AMBER ff99SB-NMR1-
ILDN36 and CHARMM36m.37 We also tested other force fields,
such as AMBER ff99SB∗-ILDN35 and AMBER ff99SB∗-ILDN-q,45

for which the results are provided in the supplementary material.
For comparison, the baseline AMBER force field ff99SB-ILDN34 was
also included. In general, the default water model TIP3P75 was used,
with the exception of C36m-stn-3P where a slightly adjusted TIP3P
model was employed.37 For AMBER ff99SB-NMR1-ILDN, we tested
two additional water models (TIP4P75 and TIP5P76) to study solvent
effects. Furthermore, AMBER ff99SB-NMR1-ILDN was also simu-
lated with and without the methyl refitting proposed by Hoffmann
et al.18,42 The force-field combinations are listed in Table I, in which
the short names are used.

The simulations of ubiquitin in water were performed using the
GROMACS package,77,78 version 2021 − rc1, compiled with CUDA
support and run on NVIDIA GeForce RTX 2080 Ti graphic cards.
The system was prepared with GROMACS tools from the crystal
structure 1UBQ79 in the PDB database. The system was parameter-
ized with the given force field and solvated with the chosen water
model in a ∼6 nm ⋅ 6 nm ⋅ 6 nm cubic box, followed by an energy
minimization. After a short 100 ps NVT equilibration and 100 ps
NPT equilibration, the production runs were carried out. The sim-
ulations were performed under periodic boundary conditions for
4 �s with a time step of 2 fs, and the output was written every 5000
steps. The bonds involving hydrogen atoms were constrained with
the LINCS algorithm80 with lincs_iter = 1 and lincs_order = 4. The
cutoff scheme for the nonbonded interactions was Verlet with a
cutoff of 1.0 nm (for all AMBER force fields) and 1.2 nm (for C36m-
stn-3P). The Coulomb interactions were calculated using the particle
mesh Ewald (PME)81 algorithm with a Fourier spacing of 0.12 nm.
The temperature was controlled using the V-rescale thermostat82

with a coupling time of 0.1 ps and a reference temperature of 300 K.
The pressure was controlled using the Parrinello–Rahman barostat83

with a coupling time of 2.0 ps, a reference pressure of 1.0 bar, and
an isothermal compressibility of 4.5 10−5 bar−1. The center of mass
motion was removed with the default GROMACS procedure every
100th step.

B. Analysis
For analysis, the protein was centered in each trajectory with

the GROMACS command gmx trjconv -pbc mol -center and
aligned to the first frame with gmx trjconv -fit rot+trans.

1. Experimental data
Ubiquitin backbone relaxation data56 were analyzed using

MINOTAUR.58 For each residue, longitudinal and transverse 15N
auto-relaxation rates and 15N–1H dipole–dipole cross-relaxation
rates recorded at 14.1, 18.8, and 22.3 T were analyzed together
with the high-resolution relaxometry intensities from decays at
seven low magnetic fields ranging from 5 to 0.5 T. We used the
extended model-free62 form of the spectral density function as it
better reproduced the experimental data compared to the model-free
approach.19 To account for the significant exchange contribution to

TABLE I. Investigated force-field combinations (force field, methyl refitting, and water model) with short names for the
simulation of ubiquitin.

Short name Force field Methyl refitting18,42 Water model

Anmr-stn-3P AMBER ff99SB-NMR1-ILDN36 No TIP3P
Anmr-met-3P AMBER ff99SB-NMR1-ILDN36 Yes TIP3P
Anmr-stn-4P AMBER ff99SB-NMR1-ILDN36 No TIP4P
Anmr-met-4P AMBER ff99SB-NMR1-ILDN36 Yes TIP4P
Anmr-stn-5P AMBER ff99SB-NMR1-ILDN36 No TIP5P
Anmr-met-5P AMBER ff99SB-NMR1-ILDN36 Yes TIP5P
Adef-stn-3P AMBER ff99SB-ILDN34 No TIP3P
C36m-stn-3P CHARMM36m37 No TIP3P
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the transverse relaxation rates of residues 23 and 25, an additional
free parameter α was included in the Markov chain Monte Carlo
(MCMC) approach and is defined as R′2(B0) = αB2

0 + R2(B0), where
B0 is the static magnetic field, R2(B0) is the exchange free expression
of the 15N transverse relaxation rate, and R′2 is the expression used
to analyze the transverse relaxation rates of residues 23 and 25. The
nitrogen chemical shift anisotropy (CSA) was assumed to be axially
symmetric with a value of −164 ppm and forming an 18○ angle with
the N–H bond.84 The proton CSA was considered fully anisotropic,
with σxx = 14.6 ppm, σyy = 8.2 ppm, and σzz = 2.1 ppm, with the
x-axis of the CSA tensor being orthogonal to the N–H bond and
the y-axis forming a 99○ angle with the N–H bond. The N–H bond
distance was set to 0.102 nm. The contribution of neighboring
protons was considered in the form of two additional protons in
the spin system, 0.21 nm away from the amide proton. Only their
contribution to the 1H was included. Their CSA was assumed to be
axially symmetric, in the alignment with the amide proton and with
the value 1

2(σxx + σyy − 2σzz).85

2. iRED
The iRED21 method was used to extract order parameters

describing the backbone motion (N–H) in ubiquitin using the
Python package pyDR.86 We followed recommendations from Gu
et al.63 and divided the full trajectory into four blocks of 1 �s
each for analysis with iRED. The order parameters reported cor-
respond to the average over the four blocks. The simulations
were compared to experimental data acquired by Charlier et al.56

(relaxometry) and fitted with MINOTAUR as described above, as
well as Wardenfelt et al.13 [nanoparticle assisted spin relaxation
(NASR)].

3. Model-free approach
Motion in the side chains of ubiquitin was probed with the

model-free approach. Correlation functions of the internal motion
[Eq. (1)] were extracted and fitted to an extended model-free

FIG. 1. Comparison of the backbone N–H motion of ubiquitin in MD simulations (colored lines, see Table I) using iRED with two experimental methods: relaxometry56 (black
squares) and NASR13 (white diamonds). Note that the relaxometry data have been re-analyzed with MINOTAUR.92 (a) All residues. (b) Isoleucine residues. The results with
other force-field combinations are shown in Fig. S2 of the supplementary material.
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TABLE II. Average absolute deviations of the order parameters (�S2) between MD simulations and experiment for the
backbone N–H motion of ubiquitin.

Force field

�S2 All residues �S2 All except β1–β2 turn �S2β1–β2 Turn

Relaxometry NASR Relaxometry NASR Relaxometry NASR

Anmr-stn-3P 0.07 0.05 0.07 0.05 0.06 0.14
Anmr-stn-4P 0.07 0.05 0.07 0.05 0.07 0.15
Anmr-stn-5P 0.07 0.05 0.07 0.04 0.06 0.12
C36m-stn-3P 0.09 0.07 0.07 0.05 0.26 0.34

bi-exponential function [Eq. (3)] employing the Python libraries
emcee87 and scipy.88 We followed the same procedure as in Ref. 11,
with the exception that we did not remove the contributions stem-
ming from fast rotation around the methyl symmetry axis. The fits
were performed on each of the four 1 �s blocks, from which we cal-
culated the average value and standard deviation. Order parameters
and correlation times for the isoleucine side chains were compared
to the experimental relaxometry data from Cousin et al.11 In addi-
tion, the same workflow was applied to all other methyl-bearing side
chains in ubiquitin (alanine, leucine, valine, and threonine), allow-
ing us to compare them with those acquired experimentally (NASR)
and fitted using iRED by Xiang et al.14

4. Dynamic detector approach
The dynamic detector analysis was performed with six detector

windows based on the experimental relaxation data from Char-
lier et al.,1,56,57 which was pre-processed in Smith et al.57 using the
Python package pyDR.86 The values of both analysis windows were
compared to the other methods.

5. ROMANCE approach
The ROMANCE analysis was performed with the Python pack-

age pyDR86 on the full 4 �s trajectory for all isoleucine residues of
ubiquitin. The separated motions were each fitted to a single expo-
nential decay, and the correlation times were compared to the other
methods.

6. MSM construction
MSMs70 were constructed in the rotamer space (χ1 and χ2

dihedral angles) of each isoleucine residue of ubiquitin using
the Python library pyEmma.89 Dihedral angles were extracted
with the MDAnalysis90 package and served as an input for
the structural clustering to discretize the trajectory, which was
performed with the energy-based clustering (EBC)91 algorithm.
In this study, the MSMs were constructed from a single long
simulation (4 �s) rather than multiple short simulations. A
detailed description of the analysis parameters (e.g., lag times)
is provided in Table S1 of the supplementary material. Exam-
ple Jupyter notebooks containing Python code used to gener-
ate and plot the data discussed in this study can be found at
https://github.com/rinikerlab/MD_and_NMR_Relaxometry.

FIG. 2. Visualization of the structure of ubiquitin (PDB code: 1UBQ). All isoleucines are shown as stick representation. The zoom-in on Ile 44 shows the different side chain
rotations observed. Note the highly flexible tail of ubiquitin (shown in red) and the flexible loop between residues 7 and 12 (shown in dark blue).
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FIG. 3. Comparison of the motion of the seven isoleucine side chains (Ile 3, 13, 23, 30, 36, 44, and 61) of ubiquitin. Data points from the MD simulations (colored points, see
Table I) as well as relaxometry data11 (black squares) of Ile 13, 36, and 44 correspond to the product of S2

f and S2
s order parameters to describe the full extent of motion.

Meanwhile, relaxometry data11 (black squares) of Ile 3, 23, 30, and 61 as well as the NASR data14 (white diamonds) correspond to a single overall order parameter Si
obtained via a mono-exponential model-free analysis.

IV. RESULTS AND DISCUSSION
We performed 4 �s simulations of ubiquitin with different

force-field combinations (Table I). The protein fold remained sta-
ble over the course of the simulation for all setups (Fig. S1 of
the supplementary material). In the following, the motions in the
simulations on the ps and ns timescales were analyzed with dif-
ferent methods, comparing the results with each other and with
experimental NMR relaxation data.

A. Backbone motion
First, we analyzed the backbone motion of ubiquitin by extract-

ing order parameters for the backbone N–H bonds and comparing
the computed values with those from two different experimental
sources (Fig. 1).

FIG. 4. Comparison of the motion of the methyl-bearing side chains [isoleucine (I),
leucine (L), valine (V), threonine (T), and alanine (A)] of ubiquitin with experimental
NASR data.14 The reported values correspond to the average absolute deviations
in order parameters (�S2) for each force-field combination (colored bars, see
Table I) grouped by amino acid type. The number of data points per amino acid
type is given in the label.

The relaxometry and NASR results show similar trends, but
interestingly, the order parameters from relaxometry are consis-
tently lower (i.e., more mobile) than those from NASR. The original
relaxometry decays were reanalyzed with MINOTAUR, a software
application we have recently developed.92 We cannot exclude exper-
imental artifacts in nitrogen-15 relaxometry experiments possibly
due to transient dimerization (the sample concentration was 3 mM).
We do not observe significant differences between the AMBER
force fields and the different water models. Note that this does
not imply that there are generally no differences among the force
fields but that the properties of ubiquitin analyzed in this section
are not sensitive to them (e.g., other properties may differ, such
as the tumbling time, which is known to be sensitive to the water
model48).

The simulation with the C36m-stn-3P force field (purple line in
Fig. 1) displays overall a similar behavior compared to the AMBER
force fields, except for a more flexible β1–β2 turn between residues
7 and 12. The higher flexibility in the loop region may be because
CHARMM36m was purposely fitted to describe intrinsically dis-
ordered proteins (as well as folded proteins),37 whereas AMBER
force fields have been found in the past to over-stabilize certain
secondary structure elements.45 The latter issue was addressed in
newer versions of this force field.47 When comparing the com-
puted values to both sources of experimental data, it is not evident
which force field is more accurate. For the secondary structures
of ubiquitin (α-helices and β-strands), the order parameters from
AMBER and CHARMM are similarly high and consistently closer
to the NASR measurements (see also Table II). However, for the
β1–β2 turn (residues 7–12), CHARMM36m is too flexible, while the
AMBER simulations reproduce the relaxometry values more closely.
These observations highlight how force-field refinement from exper-
imental NMR relaxation data may prove challenging when different
experimental sources do not fully agree with one another. To obtain
more concrete conclusions about the ability of the available force
fields to reproduce such data, a similar comparison on a larger set of
diverse (and more flexible) proteins will be needed.
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B. Side chain motion
The methyl-bearing side chains of ubiquitin display a wider

range of flexibility than the backbone. Our analysis was focused
mainly on the isoleucine residues (Fig. 2), which we compared to
two independent sets of experimental relaxation data found in the
literature (relaxometry11 and NASR14). In this case, the order para-
meters measured with both experimental methods agree well with
one another (Fig. 3).

Overall, we find good agreement between the experimental
order parameters and those extracted from the MD simulations, in
particular for the residues Ile 13, 36, and 44, for which the ns motion
is well defined in the relaxation experiments of Cousin et al.11 We
note that error bars around the simulated values can be quite large,
indicating that the magnitude of motion varies in the four 1 �s blocks
of simulation. This is in line with the findings of Bowman,93 sug-
gesting that several �s of simulation are required to describe motion

FIG. 5. Rotamer space for Ile 13 (a), 36 (b), and 44 (c). (Left): free energy of the rotamer space shown with a color gradient. (Right): metastable sets (clusters) of the MSM
represented in different colors.
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on the ns timescale in a converged manner. Rotamer jumps of the
isoleucine side chains are rare events on the ns time scale and can be
hindered by the protein surroundings. We do not observe any signif-
icant effect from the water model. In particular, the solvent exposed
residue Ile 44 shows similar dynamics with all three water models
studied. For Ile 61, a higher flexibility is seen with TIP5P, but as
this residue is buried in the protein interior, the difference is likely
incidental due to finite sampling.

The modification of the rotation barriers of the terminal methyl
groups (i.e., methyl refitting18,42) appears to have little impact on the
order parameters (compare lighter and darker versions of each pair
of colored points). This suggests that differences in order parameters
are driven mainly by differences in the χ1 and χ2 dihedral-angle para-
meters, as seen between C36m-stn-3P and Anmr-stn-(3P/4P/5P) for
residues Ile 3 and 30 [and to a lesser degree between Anmr-stn-
(3P/4P/5P) and Adef-stn-3P for Ile 23], in agreement with previous
work.58 However, the good agreement observed among all tested
force fields for the other residues Ile 13, 36, and 44 indicates that
sterics also play a significant role in the observed dynamics (i.e.,
protein surrounding may hinder rotamer jumps). Altogether, the
findings highlight how challenging it is to trace back disagreement
with experimental relaxation data to specific force-field terms and
parameters.

Finally, we also compared the differences in the overall order
parameter �S2 for all methyl-bearing residues between simulation
and experimental NASR data (Fig. 4). We find that, on average, the
amplitude of reorientational motion of terminal methyl groups is
equally well represented by all force fields tested. Only for threonine
side chains, there is a substantially larger deviation for the AMBER
force fields compared to C36m-stn-3P, suggesting that the χ1
dihedral-angle parameters of AMBER ff99SB-ILDN may benefit
from a refitting, e.g., by following similar procedures as those
described by Hoffmann et al.18,42 or Kümmerer et al.43

The (extended) model-free approach and iRED provide valu-
able metrics to determine how well the MD simulations match
the experimental data. However, these methods do not provide an
explanation of the motion at atomic resolution (e.g., rearrangement
of a loop and rotation around a specific bond). By constructing
MSMs in the χ1/χ2 rotamer space of each isoleucine residue, we
obtain a more interpretable view of the motion among the different
rotameric states. The MSMs of Ile 13, 36, and 44 with the C36m-
stn-3P force field are shown in Fig. 5. The corresponding mean
first passage times (MFPTs) and implied timescales (ITSs) from the
MSMs are compared with the experimental data (using the model-
free approach) and ROMANCE in Fig. 6. While implied timescales
may be better suited for a comparison with correlation times (given
that they describe an exponentially decaying process, see Sec. S2
of the supplementary material), their corresponding eigenvectors
may not be easily mapped onto a specific motion (e.g., rotamer
jump between two distinct conformers). Therefore, we prefer to
present our comparison with MFPTs, which provide a more clearly
resolved picture of the dynamics that occur. The MSMs and MFPTs
of the other isoleucine residues are provided in Figs. S3–S52 of
the supplementary material. Overall, we find remarkable agreement
between the MFPTs connecting the most populated macrostates
to the experimental model-free correlation times (Fig. 6). Values

FIG. 6. Comparison of the experimental and computed side chain timescales of
motion for Ile 13, 36, and 44 in ubiquitin. For these three residues, the ns motion
was well characterized by relaxometry experiments.11 The mean first passage
times (MFPTs) for the transitions connecting the most populated states and cor-
relation times obtained with ROMANCE are shown for the MD simulations with
Anmr-stn-3P (blue diamonds) and C36m-stn-3P (purple diamonds). The implied
timescales whose amplitude was greater than 0.05 are shown in circles (empty
circles if the motion is below the lag time, indicating that the value should be inter-
preted with caution). The lag times used to construct the MSMs were 0.1, 0.25,
and 0.25 ns with AMBER and 0.1, 0.25, and 0.05 ns with CHARMM for Ile 13, 36,
and 44, respectively. Experimental correlation times were obtained from mono-
exponential (MF1, green squares) or bi-exponential (MF2, gray/black squares)
model-free fits.11

extracted from the simulations with the C36m-stn-3P force field lie
closer to the experimental values and are consistently faster than
those with the Anmr-stn-3P force field. Interpretation is, however,
complicated by the fact that MFPTs do not describe an exponentially
decaying process, and the corresponding implied timescales are typ-
ically lower than the MFPTs (by a factor of roughly half). Overall, we
find that MFPTs are useful to obtain an idea of the general timescale
at which specific rotamer jumps occur, without necessarily provid-
ing a precise quantitative value. We also note that the MFPTs for the
fastest motion can be overestimated as they cannot be lower than
the lag time used to construct the MSM [e.g., Ile 44 where the low-
est MFPTs are close to the lag time (0.05 ns for CHARMM and
0.25 ns for AMBER) in Fig. 6]. MSMs are typically used to inform
on the slowest motion of the system, which can be determined more
accurately with a larger lag time, at the cost of describing the faster
motion of the system.
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For Ile 44, the faster correlation time can be attributed to tran-
sitions between the gauche+ rotamer (metastable set S5) and the
trans rotamer (S7), whereas the slower correlation time corresponds
to the transitions between the gauche− (S6) and the trans (S7)
rotamers [Fig. 5(c)]. Since both of these transitions correspond to
a χ2 rotation, the ROMANCE approach does not separate them and,
instead, returns a correlation time closer to the mono-exponential
fit (Fig. 6).

In addition, we note that experimental correlation times
(e.g., τs for Ile 13 and 36) do not necessarily correspond to a sin-
gle motion and could arise from averaging of multiple transitions
occurring on the same timescale. The larger experimental error for
τs of Ile 13 could thus be attributed to the fact that nearly all the nine
rotamer states are populated, leading to many types of motion on

the ns timescale. The flexibility of the nearby loop (residues 7–12)
may also potentially impact the dynamics, although both the iRED
and ROMANCE analyses [Figs. 1(b) and 7] do not suggest more
backbone motion for Ile 13 compared to the other isoleucines.

For Ile 23, the presence of a single dominant rotamer (gauche−)
with rare transitions (slower than the tumbling time) to other
rotameric states (Figs. S11 and S36 of the supplementary material)
may explain why motion in the low ns timescale was not observed
experimentally. However, one has to keep in mind that the simulated
order parameters of Ile 23 (Fig. 3) were overestimated (i.e., more
rigid) compared to experiment, which suggests that the transitions
may be underestimated in the simulations.

While the MSMs provide a distinct separation of the motion
in the χ1/χ2 rotamer space, a clear advantage of ROMANCE lies

FIG. 7. Time evolution of the correlation functions extracted with ROMANCE for Ile 13, 36, and 44, separated into four different motions (methyl rotation, χ2-rotation,
χ1-rotation, and backbone motion) for the force fields Anmr-stn-3P, Anmr-met-3P, Adef-stn-3P, and C36m-stn-3P.
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in its ability to separate the internal side chain motion from more
global secondary-structure rearrangements. For isoleucines, the side
chain motion is separated into four different rotation frames: back-
bone motion, χ1-rotation, χ2-rotation, and methyl rotation. The
results for the three residues Ile 13, 36, and 44 are shown in Fig. 7
for four selected set-ups. The results for the other force fields are
provided in Fig. S53 of the supplementary material. For the back-
bone motion, similar trends can be observed as in other methods,
such as iRED [Fig. 1(b)], where Ile 13 shows slightly more motion
since it is close to the flexible loop (residues 7–12), although overall
backbone motions are similar to each other. Again, the force-field
differences are quite small, with the exception of C36m-stn-3P,
which shows less backbone motion for Ile 13 and a faster correlation
time. Also for the χ1 and χ2 motions on the ns timescale, faster
correlation times are observed with C36m-stn-3P, which is in agree-
ment with the MSM analysis shown in Fig. 6. The fitted correlation
times and S2 order parameters from the ROMANCE approach can
be found in Tables 26–28 of the supplementary material. How-
ever, since there is only a mono-exponential fit for each χ motion
and no separation of the different rotamer states, the extracted
correlation times give an averaged representation of the χ motion
compared to the MSM method and do not exactly match the MFPTs.
ROMANCE also includes small amplitude motions around the
individual angles χ1 and χ2, which are removed in the MSM through
the assignment to individual states. These faster motions also bias
the mono-exponential fit toward shorter correlation times. Similarly,
the differences in the S2 order parameter of the backbone motion
might arise from the different decomposition of the motion between
ROMANCE and iRED.

The ROMANCE approach is the only method tested in this
study that provides insights into the methyl rotation of the isoleucine
residues. For the methyl rotation, we clearly see a difference from
the methyl refitting proposed by Hoffmann et al.18,42 As expected,
the refitted methyl rotation leads to a faster decay of the correlation
function due to the lower energy barrier.

Next, all methods were compared to the dynamic detector
approach. The results of an analysis with six detector windows are
shown in Fig. 8. The sensitivity of the detectors can be seen in
the top panel, while the individual responses to each detector for
each isoleucine residue are shown in the bar plots at the bottom.
The bar plots show some difference in the correlation-time distri-
butions and intensity of the motions of the isoleucines, but most
detectors have a rather small overall response. The main observa-
tion is that the force fields have similar responses but, especially for
slower motions, diverge from the experimental responses. However,
the correlation times analyzed with the other methods (ROMANCE
and MFPTs of the MSMs) lie in the same dominant detector window
and only minor shifts can be observed between the three isoleucines
of interest (Ile 13, 36, and 44).

Finally, we have compared the populations of the different
isoleucine rotamers to those predicted based on experimental chem-
ical shifts in Ref. 94 and from explicit models of motion in Ref.
58 (Fig. 9). In general, we find good agreement for Ile 3, 13, 36,
and 61 (two most populated rotamers are the same, and differences
stem mainly from the minor rotamers). Our results are also in line
(identical primary rotamer in χ1 dimension) with previous reports

FIG. 8. Dynamic detector approach with six detector windows for all isoleucine
residues of ubiquitin for three different force fields in comparison with experimental
data. (Top): distribution of the four detector windows. (Bottom): response of the dif-
ferent isoleucine residues to the corresponding detector extracted from experiment
(colored bars) and response obtained from the MD simulations (colored lines).

based on J-couplings and residual dipolar couplings, although these
experiments did not provide any resolution in the χ2 dimension.95,96

For Ile 23, 30, and 44, we observed that the chemical-shifts method
predicts rotamer {gp, t} to be significantly populated, in contrast to
our simulations and the explicit model58 (which was constructed
based on rotamers sampled in a 1 �s MD simulation with an
AMBER force field). It is not readily determinable which experimen-
tal method is correct, as only four rotameric states were allowed to
be populated in the chemical-shifts model ({gp, t}, {gm, t}, {gm, gm},
and {t, t}), which seems inappropriate for the solvent exposed, more
freely rotatable Ile 44 for which all three rotamers along the χ2 axis
({gm, t}, {gm, gm}, and {gm, gp}) were populated in our simulations.
Insufficient sampling of the Ile 23 side chain rotations also pre-
vents us from conclusively determining which of the two rotamers
({gm, gp} or {gp, t}) is the second most populated after {gm, gm}. Once
again, this comparison highlights the challenges when validating
MD simulations with NMR experiments. In addition to populations,
explicit models of motion also report on the kinetics of transitions.
However, the rotamer jumps included in the explicit model some-
times differ from the MSMs described above. For example, the third
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FIG. 9. Populations of the nine isoleucine rotameric states extracted from the MD simulations with two different force fields (blue and purple), experimental chemical shifts
(green, Ref. 94), and explicit models of motion of NMR relaxation (black, Ref. 58). Each rotamer corresponds to a set of {χ1, χ2} dihedral angles, labeled gauche+ (gp),
trans (t), and gauche− (gm), corresponding to dihedral angles of 60, 180, and 300○, respectively.

most populated rotamer of Ile 13 ({gm, gm}) is absent from the
explicit model, although it corresponds to the slower ns motion in
the MSM. For this reason, the comparison of rates of transitions
between MSMs and explicit models is not straightforward (see
Fig. S54 of the supplementary material).

V. CONCLUSIONS
In this study, we have compared eight sets of 4 �s MD simu-

lations of ubiquitin (different force fields and water models) with
the results from backbone and side chain NMR relaxation exper-
iments. The analysis was performed with multiple methods, i.e.,
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model-free approach, iRED, MSMs, ROMANCE, and the dynamic
detector approach, to determine their relative strengths, differences,
and the areas of applicability when relating data extracted from
MD simulations to NMR relaxation experiments. Despite few recent
examples,58,97 MSMs have not yet been extensively applied to inter-
pret NMR relaxation data. Based on our work and recent trends
in the literature, we envision that MSMs derived from MD simu-
lations will become a relevant tool to provide mechanistic insights
into NMR relaxation.

Given the rigidity of the backbone of ubiquitin, we focused
our analysis mainly on the methyl-bearing side chains, in particular
the isoleucine residues. While we found an overall good agreement
between the simulations and experiments, the use of MSMs and
ROMANCE enhanced the interpretation of relaxation data by allow-
ing us to precisely assign specific rotamer transitions, leading to the
NMR relaxation data. The ROMANCE correlation times extracted
were, in general, shorter (resulting from motions not captured by
the MSMs) than the MFPTs extracted from the MSMs and could
not distinguish when two motions occurred within the same degree
of freedom (e.g. for Ile 44). Interestingly, for Ile 44, we found that the
ROMANCE correlation times matched the mono-exponential fit to
experimental data, whereas MSMs could decouple the two individ-
ual transitions and matched the bi-exponential fit of experimental
relaxation rates well. We found remarkable agreement between the
MFPTs corresponding to the most frequent rotamer transitions of
Ile 13, 36, and 44, for which ps and ns motion had been unam-
biguously determined experimentally,11 although the comparison
remains qualitative because MFPTs do not describe an exponentially
decaying process. To further distinguish the advantages and disad-
vantages of the different analysis methods, a similar comparison is
needed in the future with more flexible proteins than ubiquitin. For
example, the dynamic detector approach may be better suited to ana-
lyze a protein system in which motion occurs on more separated
timescales.

Overall, we found the AMBER force fields tested to perform
very similarly. Most surprisingly, the choice of the water model
did not seem to significantly influence the motion of the backbone
or side chains of ubiquitin. Meanwhile, faster or more extensive
dynamics were observed in the simulations with CHARMM36m, in
terms of both backbone motion (loop involving residues 7–12) and
side chain motion. As the two experimental techniques (relaxometry
and NASR) showed significant differences in the backbone motion,
it was not possible to ascertain whether one force field reproduced
experiment better than the other. Only one clear difference could
be seen for threonine residues, where CHARMM36m gave a much
lower error (�S2) when compared to experiment, indicating poten-
tial issues with the threonine χ1 dihedral-angle parameters in the
AMBER force fields. We note that it is generally non-trivial to deter-
mine which force-field parameters lead to particular differences in
the dynamics. Using NMR relaxation data as a fitting target to
parameterize or refine force fields for biomolecular simulations may
thus be challenging. Nevertheless, the comparison with NMR data is
excellent for validation. Finally, we note that the convergence of the
dynamics in the low ns timescale requires multiple �s of simulation
(as previously discussed in Ref. 93), pointing to the extent of sim-
ulation data that will be needed when validating the ability of force
fields to describe the dynamics of even slower timescales (e.g., �s).

SUPPLEMENTARY MATERIAL

The supplementary material contains additional details, tables,
and figures for the analysis of backbone motion, Markov state
models, ROMANCE analysis, and comparison with explicit
models.
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