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ABSTRACT: As part of the ongoing quest to find or construct
large data sets for use in validating new machine learning (ML)
approaches for bioactivity prediction, it has become distressingly
common for researchers to combine literature IC50 data generated
using different assays into a single data set. It is well-known that
there are many situations where this is a scientifically risky thing to
do, even when the assays are against exactly the same target, but
the risks of assays being incompatible are even higher when pulling
data from large collections of literature data like ChEMBL. Here,
we estimate the amount of noise present in combined data sets
using cases where measurements for the same compound are
reported in multiple assays against the same target. This approach
shows that IC50 assays selected using minimal curation settings have poor agreement with each other: almost 65% of the points differ
by more than 0.3 log units, 27% differ by more than one log unit, and the correlation between the assays, as measured by Kendall’s τ,
is only 0.51. Requiring that most of the assay metadata in ChEMBL matches (“maximal curation”) in order to combine two assays
improves the situation (48% of the points differ by more than 0.3 log units, 13% by more than one log unit, and Kendall’s τ is 0.71)
at the expense of having smaller data sets. Surprisingly, our analysis shows similar amounts of noise when combining data from
different literature Ki assays. We suggest that good scientific practice requires careful curation when combining data sets from
different assays and hope that our maximal curation strategy will help to improve the quality of the data that are being used to build
and validate ML models for bioactivity prediction. To help achieve this, the code and ChEMBL queries that we used for the maximal
curation approach are available as open-source software in our GitHub repository, https://github.com/rinikerlab/overlapping_
assays.

■ INTRODUCTION
Most artificial intelligence/machine learning (AI/ML) methods
are very data hungry: they require a large amount of training data
in order to build useful predictive models. Additionally, noise in
the training data for the models sets an upper limit on the
accuracy that can be expected. At the same time, there are not
many large open data sets available that are applicable to
computational drug discovery. Large, consistently measured
data sets are typically only available inside companies and, due
primarily to IP concerns, are difficult/impossible to publish in
the open scientific literature. There are notable exceptions to
this,1,2 but they are definitely rare. This has consequences for
researchers who have access to only public data sources. For
example, when extracting data fromChEMBL,3,4 the only way to
be mostly certain that a data set was consistently measured is to
only take data from a single assay. Unfortunately, more than
60,000 of the >85,000 IC50 assays in ChEMBL32 have data for
less than 10 distinct compounds, only 650 assays have data for
more than 100 distinct compounds, and there are only 54 assays
with data for more than 500 distinct compounds (Figure 1).
This dearth of large, consistent data sets has led to the common
practice of combining results from different assays (measured

against the same target) to create data sets for AI/ML
applications.

Compatibility Issues. Experimental data inevitably con-
tains some noise; this is true even in the best case situation,
where we are looking at data taken from the same assay
measured in the same lab. The noise level rises when we
compare experimental results from different laboratories due to
small (or large) differences in assay protocols, reagents, etc.
Variability is higher with some assay types than others, for
example, Caco-2 permeability assays are well-known to have
problems with interlab variability due to differences in the cells
used in the assay as well as the impossibility of exactly
reproducing experimental conditions when working with living
systems.5,6 Looking beyond laboratory-to-laboratory variability
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of assays that are nominally the same, there are numerous
reasons why literature results for different assays measured
against the same “target” may not be comparable. These include
the following:

1. Different assay conditions: these can include different
buffers, experimental pH, temperature, and duration.

2. Substrate identity and concentration: these are partic-
ularly relevant for IC50 values from competition assays,
where the identity and concentration of the substrate
being competed with play an important role in
determining the results. Ki measures the binding affinity
of a ligand to an enzyme and so its values are, in principle,
not sensitive to the identity or concentration of the
substrate.

3. Different assay technologies: since typical biochemical
assays do not directly measure ligand−protein binding,
the idiosyncrasies of different assay technologies can lead
to different results for the same ligand−protein pair.7

4. Mode of action for receptors: EC50 values can correspond
to agonism, antagonism, inverse agonism, etc.

The situation is further complicated when working with
databases like ChEMBL, which curate literature data sets:

1. Different targets: different variants of the same parent
protein are assigned the same target ID in ChEMBL

2. Different assay organism or cell types: the target protein
may be recombinantly expressed in different cell types
(the target ID in ChEMBL is assigned based on the
original source of the target), or the assays may be run
using different cell types.

3. Any data source can contain human errors like tran-
scription errors or reporting incorrect units. These may be
present in the original publication�when the authors
report the wrong units or include results from other
publications with the wrong units�or introduced during
the data extraction process.

All of these sources of variability in the measurements of
activity values against the “same” target in different assays,
incompatible assays, interlaboratory differences, experimental
errors, etc., contribute noise to a combined data set that is
intended to be used for bioactivity modeling. This noise
inevitably decreases the quality and accuracy of models trained
on the data.
In this work, we focus primarily on two of the largest classes of

publicly available dose−response bioactivity data: IC50 and Ki.
IC50 measures the concentration of a compound required to

inhibit a particular biological response, e.g., an enzymatic
reaction or signaling by a receptor, by half (50%). Ki, on the
other hand, measures the equilibrium dissociation constant of a
compound bound to a protein.7 The conventional wisdom is
that it is generally not scientifically valid to combine values from
different IC50 assays without knowledge of the assay conditions
but that Ki values are more comparable across assays. Reference
8 provides a good explanation of the relationship between IC50
and Ki.

Assessing Assay Compatibility. The best way to
determine whether the results from two different IC50 or Ki
assays measured on the “same” target are compatible with each
other is to read the original publications and directly assess
whether all important parameters are the same. However, given
the number of available IC50 assays for many targets (in
ChEMBL32, human CDK2 has 343 assays, human BRD4 has
454 assays, and a common target like hERG has 2020 assays)
this is not feasible at any sort of scale, so we need other
compatibility metrics. One approach that lends itself to both
automation and large-scale analysis is to identify pairs of assays
in which the same compound (or multiple compounds) has
been tested. Comparing the measured IC50 or Ki values for the
compound(s) shared between the assays gives good sense as to
whether or not the rest of the results can be compared. Results
differing by less than an expected window for experimental
error�for example ΔpIC50 < 0.3,9−11 approximately a factor of
two�support the hypothesis that the assays are compatible.
In this work, we start by estimating the compatibility of the

IC50 and Ki assays for the same target drawn from ChEMBL32.
We then develop a curation methodology that takes advantage
of the assay metadata available in ChEMBL to avoid combining
results from assays that are clearly incompatible. The impact of
this “max curation” scheme on data set quality and size is
estimated and discussed.

■ METHODS
Extracting Data from ChEMBL32. Data was extracted

from a local copy of ChEMBL324 running in a PostgreSQL
database12 using standard SQL queries within the Jupyter
computational notebook environment. The database was
constructed directly, without modification, from the Post-
greSQL dump provided by the ChEMBL team.13 All queries
used can be found in the Jupyter notebooks in the project
GitHub repository: https://github.com/rinikerlab/
overlapping_assays.

Figure 1. Histograms of the number of compounds per assay in ChEMBL32: IC50 assays (left) and Ki assays (right). Only measurements with a non-
null pchembl value were included. Assays with 100 or less points are not included in these histograms.
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Quantifying Assay Compatibility. The compatibility
between the two assays was measured by comparing pchembl
values of overlapping compounds. In addition to plotting the
values, a number of metrics were used to quantify the degree of
compatibility between assay pairs:

• R2: the coefficient of determination provides a direct
measure of how well the “duplicate” values in the two
assays agree with each other. Values range from −1.0 to
1.0 with larger values corresponding to higher compati-
bility.

• Kendall τ: nonparametric measure of how equivalent the
rankings of the measurements in the two assays are.
Values range from −1.0 to 1.0 with larger values
corresponding to higher compatibility.

• f > 0.3: fraction of the pairs where the difference is above
the estimated experimental error. Smaller values corre-
spond to higher compatibility.

• f > 1.0: fraction of the pairs where the difference is more
than one log unit. This is an arbitrary limit for a truly
meaningful activity difference. Smaller values correspond
to higher compatibility.

• κbin: Cohen’s κ calculated between the assays after binning
their results into active and inactive using bin as the
activity threshold. Values range from −1.0 to 1.0 with
larger values corresponding to higher compatibility.

• MCCbin: Matthew’s correlation coefficient calculated
between the assays after binning their results into active
and inactive using bin as the activity threshold. Values
range from−1.0 to 1.0 with larger values corresponding to
higher compatibility.

All metrics were calculated using either scikit-learn14 version
1.2.2 or SciPy15 version 1.10.1.

Curation Approaches. Given the obvious scientific
problems and amount of noise introduced by combining all
IC50 data (see the Results and Discussion section below), we
explored a number of different strategies for more carefully
curating the combined IC50 data sets based purely on the
information available in the ChEMBL database.
The curation operations we applied were as follows:
• Activity curation: Pairs of measurements where the

pchembl values in the two assays were either exactly the
same or differed by 3.0 were removed. Given the very low
probability of two separate experiments producing exactly
the same results, the exact matches are most likely cases
where values from a previous paper are copied into a new
one; this was discussed in the earlier work by Kramer et
al.10 and spot-checked with a number of assay pairs here.
The pairs differing by exactly three log units correspond to
the same copy action with the twist that a unit error was
made in either one of the publications or during the
ingestion into ChEMBL.

• Duplicate papers: Pairs of measurements where both
assays were published in the same document were
removed. Having two (or more) IC50 assays against the
same target in the same paper usually only occurs when
there is a difference between the two assays: either they
have been run under different conditions or using
different variants of the same protein (ChEMBL’s
curation does not always distinguish between variants),
etc.

• Remove mutants: because the ChEMBL target metadata
does not provide information about variant proteins (still

often called “mutants”), different variants of a target
protein will share the same target ID as the wild type.
However, the assay description field in ChEMBL will
often contain some information about which variant was
used. Before the release of ChEMBL22, this information
was not captured systematically or using a controlled
vocabulary. More recent versions of ChEMBL include the
variant_id field in the assay metadata, so it is theoretically
possible to detect similar variants for more recent assays.
We adopt a conservative approach in this curation step
and remove any assay that has the text “mutant”,
“mutation”, or “variant” in its description or that has a
variant ID specified.

• Assay type: one of the more important pieces of metadata
that ChEMBL provides about assays is the assay type.
This can take on values like “Binding”, “Functional”,
“Physicochemical”, etc. This curation step removes pairs
of assays with different assay types.

• Assay metadata: this curation step removes pairs of assays
where any of the following assay metadata fields do not
match: assay_type, assay_organism, assay_category, as-
say_tax_id, assay_strain, assay_tissue, assay_cell_type,
assay_subcellular_f raction, and bao_format. This list
covers almost all of the assay metadata fields available in
ChEMBL32 and not already mentioned above.

• Sources other than documents: this curation step removes
any assay that is from a source that does not have an
associated document date. The goal here is to only include
data sets from the medicinal chemistry literature and
patents, excluding screening data sets or other con-
tributed data sets.

• Assay size: by default, any assays that include >100
compounds are removed. The goal of this step is to try and
focus attention on the primary literature and ignore
sources like review articles. Because the upper limit is a
very heuristic threshold, we have also explored (and
included the data from) an upper limit of 1000
compounds.

• Curation confidence: when this curation step is enabled,
any assay that does not have a confidence score value of 9
(indicating that the assay is assigned to a direct single
target) is removed.

The impacts of each of these steps individually on the number
of IC50 assay- and compound-pairs from ChEMBL32 are shown
in Table S1 in the Supporting Information.

Applying Maximal Curation to Extract Data Sets. The
main goal of this work is to identify curation settings for
extracting reliable (i.e., less noisy) data fromChEMBL. Once we
have identified the appropriate settings, the data sets themselves
need to be extracted. This task is easy when doing minimum
curation: we simply retrieve all of the IC50 (or Ki) data sets for a
given target and combine them into a single data set labeled with
the target ID. When doing maximal curation, we are more
restrictive about which assays are considered: once we have
identified the assays to be considered for a target, we create a
“conditions hash” for each one. This is the md5 hash of the
available assay metadata: assay_type, assay_organism, assay_ca-
tegory, assay_tax_id, assay_strain, assay_tissue, assay_cell_type,
assay_subcellular_f raction, bao_format, and variant_id. The
combination of target ID and condition hash defines a set of
assays that are equivalent as far as we can tell from the
information available in ChEMBL32. The final step is to
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combine these assays and label them with the target ID and
conditions hash.

• Only assays associated with documents are considered.
• Only assays with a curation confidence score of 9 are

considered.
• Assays with the text “mutant”, “mutation”, or “variant” in

their descriptions are removed unless they have a non-null
variant_id.

• If a document contains multiple assays against the same
target, only the one with results for the largest number of
compounds is retained.

For both curation settings, only unqualified activity values
with nM standard values, non-null pchembl values, and no
data_validity_comment are used.

■ RESULTS AND DISCUSSION
Noise Introduced by Combining Assays. We first looked

at the variation in the data sets when IC50 assays are combined
using “only activity” curation (top panels in Figure 2). The noise
level in this case is very high: 64% of the Δpchembl values are
greater than 0.3, and 27% are greater than 1.0. The analogous
plot for the Ki data sets is shown in Figure S1 in the Supporting
Information. The noise level for Ki is comparable: 67% of the
Δpchembl values are greater than 0.3, and 30% are greater than
1.0. In Figure 2 and all similar plots in this study, the points are
plotted such that the assay on the x-axis has a higher assay_id

(this is the assay key in the SQL database, not the assay
ChEMBL ID that is more familiar to users of the ChEMBL web
interface) in ChEMBL32 than the assay on the y-axis. Given that
assay_ids are assigned sequentially in the ChEMBL database,
this means that the x-value of each point is most likely from a
more recent publication than the y-value. We do not believe that
this fact introduces any significant bias into our analysis.
The situation for IC50 improves markedly when using the

maximal curation scheme, at the expense of discarding almost
99% of the data (bottom panels in Figure 2). τ increases from
0.51 to 0.71, and theMAE decreases from 0.50 to 0.27. Note that
even with the maximal curation settings, 48% of the Δpchembl
values differ by more than 0.3 log units, and 13% differ by more
than 1.0.
The top panels of Figure 3 show a plot similar to Figure 2 for

theKi data sets with themaximal curation scheme. Here, we have
only lost 70% of the data and have not improved the quality of
the results over activity-only curation: 69% of the Δpchembl
values are greater than 0.3, and 32% are greater than 1.0.
Surprisingly, when it comes to the regression parameters
presented in Table 1, the maximal curation results are actually
worse than those from activity-only curation. What is happening
here?
The top left panel of Figure 3 has two dense clusters of points

that are highlighted in red boxes. These points arise from a set of
32 assays reporting Ki values for human carbonic anhydrase I
(ChEMBL target ID CHEMBL261). These assays share a

Figure 2. Agreement between duplicate measurements in IC50 assays on the same target with “only activity” curation (top) and maximal curation
(bottom). (Left): correlation plot between pchembl values from the two assays. The solid black line corresponds to x = y, the dot-dashed lines mark a
difference of 0.3, and the dashed line marks a difference of 1.0. (Right): histogram of Δpchembl, the differences in pchembl values.
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corresponding author and include a significant number of
overlapping compounds, with results that are sometimes
inconsistent. The original papers do not provide sufficient
information about the sources of the data to understand the
causes of this variability.16,17 Because this is almost certainly
artificial variability and not just experimental noise, we removed
all data from assays that have more than ten compounds in
common with one of these assays (CHEMBL378290918) from
consideration and repeated the statistical analysis. The complete
list of 239 assays removed from consideration is reported in the
Supporting Information. The bottom panels of Figure 3 show

the comparison with these assays removed. Most of the outliers
are no longer present, and the agreement is significantly better
(Table 1). Note that we were only able to be certain that there
was a problem with these data by going back to the original
publications. Resolving situations like this is a nontrivial curation
exercise, which is difficult to automate. We mention it here as an
illustration of the kinds of things that can go wrong even after
doing maximal curation for “best case” experimental readouts,
such asKi data. Although we could reasonably expectKi values to
be at least somewhat comparable across laboratories, we were

Figure 3. Agreement between duplicate measurements in Ki assays on the same target with maximal curation (top) and with 239 problematic assays
(see text) removed (bottom). (Left): correlation plot between pchembl values from the two assays. The solid black line corresponds to x = y, the dot−
dashed lines mark a difference of 0.3, and the dashed line marks a difference of 1.0. The regions outlined with red boxes are discussed in the text.
(Right): histogram of Δpchembl, the differences in pchembl values.

Table 1. Impact of Curation Level on Regression Quality Metricsa

readout curation level #assays #Cmpds R2 τ MAE f > 0.3 f > 1.0

IC50 only activity 1358 38,022 0.31 0.51 0.50 0.64 0.27
IC50 maximal 26 340 0.63 0.71 0.27 0.48 0.13
IC50 large only activity 1599 50,385 0.32 0.51 0.51 0.65 0.28
IC50 large maximal 44 742 0.60 0.61 0.30 0.51 0.15
Ki only activity 587 7734 0.13 0.43 0.52 0.67 0.30
Ki maximal 282 2434 −0.33 0.27 0.47 0.69 0.32
Ki maximal + pruning 9 115 0.65 0.67 0.45 0.58 0.25
Ki large only activity 750 9650 0.21 0.46 0.46 0.64 0.27
Ki large maximal 290 2574 −0.10 0.32 0.47 0.67 0.32
Ki large maximal + pruning 17 255 0.68 0.71 0.12 0.38 0.21

aSee the Methods section for a description of the metrics themselves. “Large” indicates when assays with up to 1000 compounds were included.
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limited in this case by the quality of the data in the primary
scientific literature.
The similarity in noise levels between the IC50 and Ki data

sets, though still surprising, has been previously reported.11 In
ref 11, and its predecessor study focusing on Ki data,

10 an
extensive amount of curation was carried out to identify pairs of
points measured in different laboratories against the same target.
The authors explicitly point out the noise introduced by blindly
combining data from different IC50 assays. Note that limiting
comparisons to assays performed in different laboratories
automatically prevents the comparison of assays drawn from

the same paper, one of the important pieces of our maximal
curation procedure.

Regression versus Classification. The previous results
demonstrated the amount of noise that activity-only curation
introduces to the IC50 values that would be used to build a
regression model. What is the impact of this noise when we bin
the activity data as we do when we build classification models?
Table 2 shows κ andMCC values for three activity binning levels
commonly used in the literature: pchembl = 5 (10 μM), pchembl
= 6 (1 μM), and pchembl = 7 (100 nM). With the activity-only
curation setting, the MCC values for all three thresholds are
<0.6. Maximal curation improves the situation somewhat with

Table 2. Impact of the Curation Level on Classification Quality Metricsa

readout curation level κ5 MCC5 κ6 MCC6 κ7 MCC7

IC50 only activity 0.50 0.50 0.56 0.57 0.55 0.56
IC50 max 0.83 0.83 0.87 0.87 0.91 0.91
IC50 large only activity 0.50 0.51 0.56 0.56 0.51 0.52
IC50 large max 0.73 0.73 0.84 0.84 0.78 0.78
Ki only activity 0.40 0.40 0.47 0.47 0.42 0.42
Ki max 0.15 0.15 0.27 0.27 0.20 0.20
Ki max + pruning 0.65 0.64 0.69 0.69 0.59 0.61
Ki large only activity 0.48 0.48 0.52 0.52 0.46 0.46
Ki large max 0.16 0.16 0.28 0.28 0.23 0.23
Ki large max + pruning 0.66 0.66 0.73 0.73 0.64 0.64

aSee the Methods section for a description of the metrics themselves. Three activity binning levels were considered: pchembl = 5 (10 μM), pchembl
= 6 (1 μM), and pchembl = 7 (100 nM). “Large” indicates when assays with up to 1000 compounds were included.

Figure 4. Number of compounds per combined data set (top) and number of assays per combined data set (bottom) for activity-only curation (left)
and maximal curation (right). In each plot, the data sets are sorted by decreasing size. The right panel is truncated at 100 data sets to aid visibility.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00049
J. Chem. Inf. Model. 2024, 64, 1560−1567

1565

https://pubs.acs.org/doi/10.1021/acs.jcim.4c00049?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00049?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00049?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00049?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


MCC values ranging from 0.83 to 0.91. Similar improvements
are observed for the Ki data when maximal curation is used
together with pruning of the suspect assays.
The MCC and Cohen’s κ in Table 2 have very similar values

because the confusion matrices are generally quite symmetric.19

This makes sense, given that the ordering of the assays by
ChEMBL ID should not introduce any systematic differences in
the two pchembl values.

Impact of Curation on Data Set Size. As the maximal
curation scheme seems to improve data quality (although it does
not remove the noise in the data), we next investigated its impact
on the size and composition of combined data sets from
ChEMBL32. We started by using the activity-only curation
settings to construct combined data sets for all targets that
contained at least 20 assays and activity values for at least 1000
compounds. This yields 80 targets for IC50 and 38 targets for Ki.
The top panels of Figure 4 show the numbers of compounds in
combined data sets using the activity-only and maximal curation
settings, whereas the bottom panels show the number of assays
combined into each data set.
Although the maximal curation strategy does reduce the

number of larger data sets available to work with, there are still
34 IC50 data sets and 26 Ki data sets containing at least 500
compounds. These are composed of data from at least 14 (IC50)
or 16 (Ki) assays. As seen in the previous sections, these data sets
definitely still contain some noise, but they are considerably less
likely to contain wildly inconsistent results than those produced
by more minimal curation schemes and are better suited to serve
as a basis for further analysis or building and validating ML
approaches.

■ CONCLUSIONS
We have shown that combining literature data from different
assays that measure IC50 values against what is nominally the
same target can result in very large amounts of noise. More
careful automated curation of the data sets using metadata
available in ChEMBL (maximal curation scheme) can
substantially reduce the overall noise level in combined data
sets with either IC50 or Ki as the readout, at the expense of
including substantially fewer data points. It is worth pointing out
that even with the maximal curation settings, a significant
amount of noise remains in the combined data sets.
While doing this work, we were surprised by the lack of

consistency in the Ki data sets. We came to the project with the
expectation to observe more interassay variability in the IC50
data than in the Ki data. However, the results did not meet this
expectation (particularly before we manually pruned a large set
of the data due to issues with the primary data source). It seems
that although there are scientific reasons (such as different
substrate concentrations) that render the combination of IC50
assays problematic, these are perhaps overwhelmed by practical
problems when working with large collections of data drawn
from patents and publications.
Good scientific practice requires some level of curation when

combining data from different assays into a single data set for
analysis (or training ofMLmodels).We have demonstrated here
that simplistic exports of data from resources such as ChEMBL
can result in data sets that combine assays measured against
different variants of the same protein or under different
conditions. Without the necessary curation, we are left analyzing
or buildingMLmodels on data sets that, in the best case, contain
overwhelming amounts of noise. In the worst case, they do not
make scientific sense. Although some level of irreducible noise

remains given the experimental variability, the inevitable
variation between laboratories, errors in the scientific literature,
and the limits of what is possible when data sets are manually
curated from the literature, we consider the maximal curation
settings an important step forward toward high-quality public
bioactivity data sets for training or validating ML models.
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