
ETH Library

Optimal stopping via randomized
neural networks

Journal Article

Author(s):
Herrera, Calypso; Krach, Florian ; Ruyssen, Pierre; Teichmann, Josef

Publication date:
2024-03

Permanent link:
https://doi.org/10.3929/ethz-b-000666150

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Frontiers of Mathematical Finance 3(1), https://doi.org/10.3934/fmf.2023022

Funding acknowledgement:
179114 - Mathematical Finance in the light of machine learning (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-7478-8361
https://doi.org/10.3929/ethz-b-000666150
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.3934/fmf.2023022
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Frontiers of Mathematical Finance

Vol. 3, No. 1, March 2024, pp. 31-77
doi:10.3934/fmf.2023022

OPTIMAL STOPPING VIA RANDOMIZED

NEURAL NETWORKS

Calypso Herrera�1, Florian Krach�1,
Pierre Ruyssen�2 and Josef Teichmann�∗1

1Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

2Google Brain, Google Zurich, Brandschenkestrasse 110, 8002 Zürich, Switzerland

(Communicated by Xin Guo)

Abstract. This paper presents the benefits of using randomized neural net-

works instead of standard basis functions or deep neural networks to approxi-
mate the solutions of optimal stopping problems. The key idea is to use neural

networks, where the parameters of the hidden layers are generated randomly,

and only the last layer is trained, in order to approximate the continuation
value. Our approaches are applicable to high dimensional problems where the

existing approaches become increasingly impractical. In addition, since our

approaches can be optimized using simple linear regression, they are easy to
implement, and theoretical guarantees can be provided. We test our approaches

for American option pricing on Black–Scholes, Heston and rough Heston mod-
els and for optimally stopping fractional Brownian motion. In all cases, our

algorithms outperform the state-of-the-art and other relevant machine learning

approaches in terms of computation time while achieving comparable results.
Moreover, we show that they can also be used to efficiently compute Greeks of

American options.

1. Introduction. The optimal stopping problem consists of finding the optimal
time to stop in order to maximize an expected reward. This problem is found in
the areas of statistics, economics and financial mathematics. Despite significant
advances, it remains one of the most challenging problems in optimization, in par-
ticular when more than one factor affects the expected reward. A common provable
and widely used approach is based on Monte Carlo simulations, where the stopping
decision is estimated via backward induction [64, 51], which is an (approximate)
dynamic programming approach. Another provable approach is based on reinforce-
ment learning (RL) [63, 64, 66, 49, 18]. Both approaches are based on the ordinary
least squares approximation which involves choosing basis functions. There are
many different sets of basis functions available that are commonly used, but, it
can be difficult to choose a good set for the considered problem. Moreover, the
number of basis functions often increases polynomially or even exponentially [51,

2020 Mathematics Subject Classification. Primary: 60G40; Secondary: 68T07.
Key words and phrases. Optimal stopping, American option pricing, least squares Monte Carlo,

reinforcement learning, randomized neural networks, reservoir computing, Greeks of American
options.

∗Corresponding author: Josef Teichmann.

31

http://dx.doi.org/10.3934/fmf.2023022
mailto:calypso.herrera@math.ethz.ch
mailto:florian.krach@math.ethz.ch
mailto:pierrot@google.com
mailto:josef.teichmann@math.ethz.ch

32 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Section 2.2] in the dimension of the underlying process, making those algorithms
impractical for high dimensions.

A relatively new approach consists of replacing the basis functions with a neural
network and performing gradient descent instead of ordinary least squares [45, 47,
10, 11]. The big advantage is that the basis functions do not need to be chosen but
are learned instead. Compared to using a polynomial basis, neural networks have
the advantage of being dense in any space Lp(µ), for 1 ≤ p <∞ and finite measure
µ [41], while for polynomials this is only true under certain additional conditions on
the measure [3]. Moreover, in many cases the neural network overcomes the curse of
dimensionality, which means that it can easily scale to high dimensions. However,
as the neural network is a non-convex function with respect to its parameters, the
gradient descent does not necessarily converge to the global minimum, while this is
the case for the ordinary least squares minimization. Hence, the main disadvantage
of those methods is that there are no convergence guarantees without strong and
unrealistic assumptions.

In this paper, we propose two neural network based algorithms to solve the opti-
mal stopping problem for Markovian settings: a backward induction approach and
a reinforcement learning approach. The idea is inspired by randomized neural net-
works [16, 42]. Instead of learning the parameters of all layers of the neural network,
those of the hidden layers are randomly chosen and fixed, and only the parameters
of the last layer are learned. Hence, the non-convex optimization problem is reduced
to a convex problem that can be solved with linear regression. The hidden layers
form random feature maps, which can be interpreted as random basis functions. In
particular, in this paper we show that there is actually no need for complicated basis
functions or a large number of basis functions. Our algorithms are based on the
methods proposed by [51] (backward-induction approach) and [64] (reinforcement
learning approach). The difference is that we use a randomized neural network
instead of a linear combination of basis functions. However, a randomized neural
network can also be interpreted as a linear combination of random basis functions.
On the other hand, our algorithms can also be interpreted as the neural network
extensions of these methods, where not the entire neural network but only the last
layer is trained.

In addition, we provide a randomized recurrent neural network approach for non-
Markovian settings. We compare our algorithms to the most relevant baselines in
terms of accuracy and computational speed in different option pricing problems.
With only a fraction of trainable parameters compared to existing methods, we
achieve high quality results considerably faster.

In this work we mainly focus on the well known and important application of
optimal stopping strategies to compute lower bounds for American option prices1

(as was done, e.g., by [64, 51, 20, 67, 68, 69, 70, 47]). However, we also show in
Section 5 how our algorithms can be used to compute upper bounds of the American

1Since American option prices can be formulated as a supremum over stopping times (see
Section 2.2), this naturally leads to lower bounds of their prices when approximating an optimal

stopping strategy (and to the correct price when finding the optimal stopping strategy). Impor-
tantly, computing the lower bound of American option prices in this way, by actually solving the
optimal stopping problem (approximately), provides a control algorithm that allows its user to
make the decision whether to stop or not, to achieve (approximately) optimal outcomes. On the
contrary, the dual formulation of American option prices as an infimum over martingales [55],

which naturally leads to upper bounds for those prices, is not an optimal stopping problem, and
therefore their solution does not provide a strategy to achieve (nearly) optimal outcomes.

OPTIMAL STOPPING VIA RANDOMIZED NNS 33

option prices without additional costs via the dual approach introduced in [55] and
refined by [10]. Moreover, we show in Section 7.6 that our algorithms can be used
to efficiently compute the Greeks of American options.

Finally, we note that our approach is very generic in the sense that it can be
applied to any possible type of optimal stopping problem as long as one has access
to a sampling method for paths of the underlying process (which should be stopped
optimally). In particular, in the case of American option pricing, this means that our
approach can be applied to any type of underlying stock model, with or without
(discrete or continuous) dividends; with positive, negative or stochastic interest
rates; and with any type of payoff, no matter its complexity.

2. Optimal stopping via randomized neural networks. One of the most pop-
ular and most studied applications of optimal stopping is the pricing of American
options. Hence, we explain our approach in this context.

2.1. American and Bermudan options. An American option gives the holder
the right but not the obligation to exercise the option associated with a non-negative
payoff function g at any time up to the maturity. An American option can be
approximated by a Bermudan option, which can be exercised only at some specific
dates t0 < t1 < t2 < · · · < tN , transforming the continuous-time problem to a
discrete one. If the time grid is chosen small enough, the American option is well
approximated by the Bermudan option. In the case of a Rough Heston model, the
convergence rate of the Bermudan option price to the American option price was
shown in [19, Theorem 4.2]. For equidistant dates, we simply write 0, 1, 2, . . . , N
instead of t0 < t1 < t2 < · · · < tN .

2.2. Option price and optimal stopping. For d ∈ N, we assume having a d-
dimensional Markovian stochastic process (Xt)t≥0 describing the stock prices. With
respect to a fixed (pricing) probability measure Q, the (superhedging seller’s) price
of the discretized American option can be expressed through the Snell envelope
described by

UN := g(XN),

Un := max (g(Xn),E[αUn+1 |Xn]) , 0 ≤ n < N,
(1)

where α is the step-wise discounting factor, and g(Xn) is assumed to be square
integrable for all n. Then, the (superhedging seller’s) price of the option at time n
is given by Un and can equivalently be expressed as the optimal stopping problem

Un = supτ∈Tn
E[ατ−ng(Xτ) |Xn], (2)

where Tn is the set of all stopping times τ ≥ n. The smallest optimal stopping time
is given by

τN := N,

τn :=

{
n, if g(Xn) ≥ E[αUn+1 |Xn],

τn+1, otherwise.

(3)

In particular, at maturity N , the holder receives the final payoff, and the value of
the option UN is equal to the payoff g(XN). At each time prior to the maturity, the
holder decides whether to exercise or not, depending on whether the current payoff

34 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

g(Xn) is greater than the continuation value cn(Xn) := E[αUn+1 |Xn]. Combining
(1), (2) and (3), we can write the price at the initial time as

U0 = max (g(X0),E[ατ1g(Xτ1)]) .

In the following we approximate the price U0 and continuation values cn(Xn) which
are defined theoretically but cannot be computed directly.

2.3. Monte Carlo simulation and backward recursion. We assume having
access to a procedure to sample discrete paths of X under Q. A standard example
is thatX follows a certain stochastic differential equation (SDE) with known param-
eters. Therefore, we can sample m realizations of the stock price paths, where the
i-th realization is denoted by x0, x

i
1, x

i
2, . . . , x

i
N , with the fixed initial value x0. For

each realization, the cash flow realized by the holder when following the stopping
strategy (3) is given by the backward recursion

piN := g(xiN),

pin :=

g(x
i
n), if g(xin) ≥ cn(xin),

αpin+1, otherwise.

As pi1 are samples of ατ1−1g(Xτ1), we have by the strong law of large numbers that
almost surely

U0 = max

(
g(X0), lim

m→∞

1

m

m∑
i=1

αpi1

)
. (4)

2.4. Randomized neural network approximation of the continuation value.
For each path i in {1, 2, . . . ,m} and each date n in {1, 2, . . . , N−1}, the continuation
value is cn(x

i
n) = E[αUn+1|Xn = xin] , where cn : Rd → R describes the expected

value of the discounted price αUn+1 if we keep the option until the next exercising
date n + 1, knowing the current values of the stocks Xn. We approximate this
continuation value function by a neural network, where only the parameters of the
last layer are learned. We refer to such a network as a randomized neural network.
Even though the architecture of the neural network can be general, we present
our algorithm with a simple dense shallow neural network, where the extension to
deep networks is immediate. We call σ : R → R the activation function. A com-
mon choice is σ(x) = tanh(x), but there are many other suitable alternatives. For
K ∈ N, we define σ : RK−1 → RK−1, σ(x) = (σ(x1), . . . ,σ(xK−1))

⊤ for x ∈ RK−1.
Let ϑ := (A, b) ∈ R(K−1)×d×RK−1 be the parameters of the hidden layer which are
randomly and identically sampled and not optimized. In general, A and b can be
sampled from different distributions that are continuous and have support R. The
distributions and their parameters are hyperparameters of the randomized neural
network that can be tuned. For simplicity we use a standard Gaussian distribution.
Let us define

ϕ : Rd → RK , x 7→ ϕ(x) = (σ(Ax+ b)⊤, 1)⊤ .

Let θn := ((An)
⊤, bn)

⊤ ∈ RK−1 × R be the parameters that are optimized. Then,
for each n the continuation value is approximated by

cθn(x) := θ⊤n ϕ(x) = A⊤
n σ(Ax+ b) + bn .

OPTIMAL STOPPING VIA RANDOMIZED NNS 35

2.5. Least squares optimization of last layer’s parameters θn. While the
parameters ϑ of the hidden layer are set randomly, the parameters θn of the last
layer are found by minimizing the squared error of the difference between conditional
expectation of the discounted future price and the approximation function. This is
equivalent to finding θn which minimizes E[(cθn(xin, n)−αUn+1)

2|Xn = xin] for each
time n in {1, 2, . . . , N − 1}. The backward recursive Monte Carlo approximation of
this expectation at time n yields the loss function

ψn(θn) :=

m∑
i=1

(
cθn(x

i
n)− αpin+1

)2
. (5)

As the approximation function cθn is linear in the parameters θn, the minimizer
can be found by ordinary least squares. It is given by the following closed form
expression, which is well defined under the standard assumptions (see Theorems
A.4 and A.5)

θn = α

(
m∑
i=1

ϕ(xin)ϕ
⊤(xin)

)−1

·

(
m∑
i=1

ϕ(xin)p
i
n+1

)
.

2.6. Splitting the data set into training and evaluation set. The parameters
θn are determined using 50% of the sampled paths (training data). Given θn, the
remaining 50% of the sampled paths (evaluation data) are used to compute the
option price. By definition, the continuation value cn is a conditional expectation,
which is not allowed to depend on the future values Xn+k for 0 < k ≤ N − n.
On the training set, this might not be satisfied, since the loss function (5) uses the
future values Xn+k. In particular, the neural network can suffer from overfitting
to the training data, by memorizing the paths, instead of learning the continuation
value. This is related to the maximization bias discussed in [61, Section 6.7]. By
splitting the data into independent training and evaluation sets, we can however
ensure that cn evaluated on the evaluation set is independent of future values Xn+k

of the evaluation set.

2.7. Algorithm. We first sample 2m paths and then proceed backward as follows.
At maturity, the pathwise option price approximation is equal to the payoff, which
means that piN = g(xiN). For each time n in {N−1, N−2, . . . , 0}, we first determine
θn as described before using the paths {1, 2, . . . ,m}. For all paths i ∈ {1, 2, . . . , 2m}
we then compare the exercise value g(xin) to the continuation value cθn(x

i
n) and

determine the path-wise option price approximation at time n as

pin = g(xin)︸ ︷︷ ︸
payoff

1{g(xi
n)≥cθ(xi

n)}︸ ︷︷ ︸
exercise

+ αpin+1︸ ︷︷ ︸
discounted future price

1{g(xi
n)<cθ(xi

n)}︸ ︷︷ ︸
continue

.

Finally, the second half of the paths {m + 1, . . . , 2m} is used to compute the op-

tion price approximation p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1). We call this algorithm,

which is presented in Algorithm 1, randomized least squares Monte Carlo (RLSM).

2.8. Guarantees of convergence. We present results that guarantee convergence
of the price computed with our algorithm to the correct price of the discretized
American option. The formal results with precise definitions and proofs are given
in Appendix A. In contrast to comparable results for neural networks [47, 10, 11],
our results do not need the assumption that the optimal weights are found by some

36 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Algorithm 1 Optimal stopping via randomized least squares Monte Carlo (RLSM)

Input: discount factor α, initial value x0
Output: price p0
1: sample a random matrix A ∈ R(K−1)×d and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (xi1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: for each path i ∈ {1, . . . , 2m}, set piN = g(xiN)
4: for each time n ∈ {N − 1, . . . , 1}
a: for each path i ∈ {1, . . . , 2m}, set ϕ(xin) = (σ(Axin + b)⊤, 1)⊤ ∈ RK

b: set θn = α
(∑m

i=1 ϕ(x
i
n)ϕ

⊤(xin)
)−1 (∑m

i=1 ϕ(x
i
n)p

i
n+1

)
c: for each path i ∈ {1, . . . , 2m}

set pin = g(xin)1g(xi
n)≥θ⊤

n ϕ(xi
n)

+ αpin+11g(xi
n)<θ⊤

n ϕ(xi
n)

5: set p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1)

optimization scheme like stochastic gradient descent. Instead, our algorithms imply
that the optimal weights are found and used.

Theorem 2.1 (informal). As the number of sampled paths m and the number of
random basis functions K go to∞, the price p0 computed with Algorithm 1 converges
to the correct price of the Bermudan option.

2.9. Possible extensions. When the set of pricing measures Q has more than one
element (in case of an incomplete market), the option price is given by supQ∈Q U

Q
0 ,

where UQ is defined as in (1). Assuming that we can sample from a finite subset
Q1 ⊂ Q, this price can be approximated by first computing the price for each
measure in Q1 and then taking the maximum of them.

For simplicity we assume that the payoff function only takes the current price
as input. However, all our methods and results stay valid if g(Xn) is replaced by a
square integrable Fn-measurable random variable Zn, where Fn denotes the infor-
mation available up to time n. In the case that (Zn)1≤n≤N is Markov, Algorithm 1
and Algorithm 2 (Section 3) can be used; otherwise, Algorithm 3 (Section 4) has
to be used, to deal with the path dependence. In the following sections we stick to
the notation g(Xn) for the payoff, keeping in mind that the extension to a general
Zn is also valid there.

Similarly, a more general discounting can be incorporated, by assuming that Zn

is given in discounted terms and setting α = 1.

3. Optimal stopping via randomized reinforcement learning. In order to
avoid approximating the continuation value at each single date n ∈ {1, . . . , N −
1} with a different function, as is done in Section 2, we can directly learn the
continuation function which also takes the time as argument. Hence, instead of
having a different function cθn(x

i
n) for each date n, we learn one function which is

used for all dates n. As previously, we define the parameters of the hidden layer
ϑ := (A, b) ∈ R(K−1)×(d+2)×RK−1, which are randomly chosen and not optimized,
and ϕ : Rd+2 → RK , ϕ(n, x) = (σ(Ax̃n+ b)

⊤, 1)⊤, where x̃n = (n,N −n, x⊤n)⊤. Let
θ ∈ RK define the parameters that are optimized, and then the continuation value
is approximated by

cθ(n, x) := θ⊤ϕ(n, x) .

Instead of having a loop backward in time with N steps, we iteratively improve the
approximation cθ. More precisely, we start with some (random) initial weight θ0 and

OPTIMAL STOPPING VIA RANDOMIZED NNS 37

then iteratively improve it by minimizing the difference between the continuation
function cθℓ and the prices p computed with the previous weight θℓ−1. Moreover,
differently than in Section 2, we use the continuation value for the decision whether
to continue and for the approximation of the discounted future price, as in [64]. This
second algorithm can be interpreted as a randomized fitted Q-iteration (RFQI) and
is presented in Algorithm 2. It is a very simple type of reinforcement learning, where
the agent has only two possible actions, and the agent’s decision does not influence
the transitions of the state. In particular the agent’s decision does not influence the
evolution of the underlying stocks. As a reinforcement learning method, it is based
on the assumption that the optimization problem can be modeled by a Markov
decision process.

Algorithm 2 Optimal stopping via randomized fitted Q-Iteration (RFQI)

Input: discount factor α, initial value x0
Output: price p0
1: sample a random matrix A ∈ R(K−1)×(d+2) and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (xi1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: initialize weights θ0 = 0 ∈ RK and set ℓ = 0
4: until convergence of θℓ

a: for each path i ∈ {1, . . . , 2m}
i: set piN = g(xiN)
ii: for each date n ∈ {1, . . . , N − 1}

set ϕ(n, xin) = (σ(Ax̃in + b), 1) ∈ RK

set pin = max(g(xin), ϕ(n, x
i
n)

⊤θℓ)
b: set

θℓ+1 = α

(
N∑

n=1

m∑
i=1

ϕ(n, xin)ϕ
⊤(n, xin)

)−1(N∑
n=1

m∑
i=1

ϕ(n, xin)p
i
n+1

)
∈ RK

c: set ℓ← ℓ+ 1
5: set p0 = max(g(x0),

1
m

∑2m
i=m+1 αp

i
1)

3.1. Guarantees of convergence. We present results that guarantee convergence
of the price computed with our algorithm to the correct price of the discretized
American option. The formal results with precise definitions and proofs are given
in Appendix B.

Theorem 3.1 (informal). As the number of iterations L, the number of sampled
paths m and the number of random basis functions K go to∞, the price p0 computed
with Algorithm 2 converges to the correct price of the Bermudan option.

4. Optimal stopping via randomized recurrent neural networks for non-
Markovian processes. For non-Markovian processes, for each date n, the con-
tinuation function is no longer a function of the last stock price, cn(Xn), but a
function depending on the entire history cn(X0, X1, . . . , Xn−1, Xn). More precisely,
the continuation value is now defined by cn := E[αg(Xn+1) | Fn] where Fn denotes
the information available up to time n. Therefore, we replace the randomized feed-
forward neural network by a randomized recurrent neural network (randomized
RNN), which can utilize the entire information of the path up to the current time

38 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

(x0, x1, . . . , xn−1, xn). In particular, we define the parameters of the hidden layer
ϑ := (Ax, Ah, b) ∈ R(K−1)×d×R(K−1)×(K−1)×RK−1, which are randomly sampled
and not optimized. Their distributions and parameters, which do not have to be
the same for Ax and Ah, are hyperparameters that can be tuned. These tuning pa-
rameters are more important in this case, as they determine the interplay between
past and new information. Moreover, we define

ϕ :Rd × RK → RK+1, (x, h) 7→ ϕ(x, h) = (σ(Axx+Ahh+ b)⊤, 1)⊤

and θn := ((An)
⊤, bn)

⊤ ∈ RK−1 ×R, the parameters that are optimized. Then, for
each n, the continuation value is recursively approximated by{

hn := σ(Axxn +Ahhn−1 + b),

cθn(hn) := A⊤
n hn + bn = θ⊤n ϕ(xn, hn−1),

(6)

with h−1 := 0. We call this algorithm, which is presented in Algorithm 3, random-
ized recurrent least squares Monte Carlo (RRLSM).

Algorithm 3 Optimal stopping via randomized recurrent least squares Monte Carlo
(RRLSM)

Input: discount factor α, initial value x0, initial latent variable h−1 = 0
Output: price p0
1: sample random matrices Ax ∈ R(K−1)×d, Ah ∈ R(K−1)×(K−1) and a
random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (xi1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

3: for each path i ∈ {1, . . . , 2m}, set piN = g(xiN)
4: for each date n ∈ {0, . . . , N − 1}
a: for each path i ∈ {1, . . . , 2m}, set hin = σ(Axx

i
n +Ahh

i
n−1 + b)

5: for each date n ∈ {N − 1, . . . , 1}
a: for each path i ∈ {1, . . . , 2m}, set ϕin = ((hin)

⊤, 1)⊤ ∈ RK

b: set θn = α
(∑m

i=1 ϕ
i
n(ϕ

i
n)

⊤)−1 (∑m
i=1 ϕ

i
np

i
n+1

)
c: for each path i ∈ {1, . . . , 2m}

set pin = g(xin)1g(xi
n)≥θ⊤

n ϕi
n
+ αpin+11g(xi

n)<θ⊤
n ϕi

n

6: set p0 = max(g(x0),
1
m

∑2m
i=m+1 αp

i
1)

4.1. Guarantees of convergence. We present results that guarantee convergence
of the price computed with our algorithm to the correct price of the discretized
American option. The formal results with precise definitions and proofs are given
in Appendix C.

Theorem 4.1 (informal). As the number of sampled paths m and the number of
random basis functions K go to∞, the price p0 computed with Algorithm 3 converges
to the correct price of the Bermudan option.

5. Upper bounds for American option prices. So far we have approximated
the value of an American option by computing the optimal stopping time (3) with
which the value of the Snell envelope (2) can be determined. Since our algorithms
only approximate the optimal stopping time of this maximization problem, the
resulting price is a lower bound for the true value. The advantage of this method is

OPTIMAL STOPPING VIA RANDOMIZED NNS 39

that it not only provides an approximation for the price but also provides a decision
rule for when to stop.

An upper bound of the true value is naturally implied by the dual method intro-
duced by [55]. In particular, [55, Theorem 2.1] yields that the starting value of the
Snell envelope (2), which is the price of the American option, can equivalently be
written as the minimization problem

U0 = inf
M∈M0

E
[

sup
0≤n≤N

(Zn −Mn)

]
, (7)

where Zn denotes the discounted payoff process (see Section 2.9), andM0 is the set
of (Fn)-martingales starting at 0. As explained in [10, Section 3.2], the minimizer
of (7) is given by the martingale part of the Doob-Meyer decomposition of the Snell

envelope (Ũn)0≤n≤N for the discounted payoff process. This martingale is defined
through

MU
0 := 0,

MU
n −MU

n−1 := Ũn − E[Ũn|Fn−1] = max(Zn,E[Ũn+1|Fn])− E[Ũn|Fn−1],
(8)

where we used (the discounted version of) (1) for the last equality. Since our

algorithms compute the continuation values cn = E[Ũn+1|Fn] (written in the most
general form; see Section 4), we can compute an upper bound approximation of the
option price together with the lower bound nearly without additional costs2 via (7)
and (8) as

U0 = E
[

sup
0≤n≤N

(Zn −MU
n)

]
,

with

MU
0 = 0, MU

n −MU
n−1 = max(Zn, cn)− cn−1.

Moreover, given our methods to compute the lower and upper bound of an American
option price, confidence intervals can be computed exactly as described in [10,
Section 3.3].

Algorithm 4 is the extension of Algorithm 1, where the upper bound for the option
price is computed in addition to the lower bound. The extensions of Algorithms 2
and 3 work similarly.

6. Related work. We present the most relevant approaches for the optimal stop-
ping problem: backward induction either with basis functions or with neural net-
works and reinforcement learning. Moreover, we explain the connection of our
algorithms to randomized neural networks and reservoir computing techniques.

2We only need the additional computation and storage of the martingale differences MU
n −

MU
n−1, the computation of MU as its cumulative sum and finally the computation of the maximum

over Zn−MU
n . Since no additional loop or simulation is needed, the computational costs stay nearly

the same. In particular, this may be considered as an advantage over the algorithm presented by
[10], where the computations of the lower bound as well as additional time consuming computations
(approximately doubling the total computation time) are needed to get an approximation of the

upper bound.

40 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Algorithm 4 Upper and lower bounds for Bermudan option price via randomized
least squares Monte Carlo (RLSM)

Input: discount factor α, initial value x0
Output: lower price bound pl0, upper price bound pu0
1: sample a random matrix A ∈ R(K−1)×d and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process (xi1, . . . , x
i
N) for i ∈ {1, . . . , 2m}

and compute the discounted payoffs zin = g(xin) ∗ αn for 1 ≤ i ≤ 2m, 1 ≤ n ≤ N
3: for each path i ∈ {1, . . . , 2m}, set piN = ziN and ciN = 0
4: for each time n ∈ {N − 1, . . . , 0}
a: for each path i ∈ {1, . . . , 2m}, set ϕ(xin) = (σ(Axin + b)⊤, 1)⊤ ∈ RK

b: set θn =
(∑m

i=1 ϕ(x
i
n)ϕ

⊤(xin)
)−1 (∑m

i=1 ϕ(x
i
n)p

i
n+1

)
c: for each path i ∈ {1, . . . , 2m}
i: set cin = θ⊤n ϕ(x

i
n)

ii: set pin = zin1zi
n≥cin

+ pin+11zi
n<cin

iii: set ∆M i
n+1 = max(zin+1, c

i
n+1)− cin

5: set pl0 = max(g(x0),
1
m

∑2m
i=m+1 p

i
1)

6: set pu0 = 1
m

∑2m
i=m+1

(
max0≤n≤N (zin −

∑n
k=1 ∆M

i
k)
)

6.1. Optimal stopping. Numerous works studied the optimal stopping problem
via different approaches. A common approach consists of using a regression based
method to estimate the continuation value [62, 7, 17, 63, 64, 51, 59, 14, 15, 46, 24, 43],
or the optimal stopping boundary [54, 2, 31]. A different approach uses quantization
[4, 5]. A dual approach was developed and extended in [55, 38, 56]. [6] studied
Lenglart’s theory of Meyer-sigma-fields and El Karoui’s theory of optimal stopping
[28]. An in depth review of the different methods is given in [13, 53].

6.1.1. Optimal stopping via backward induction. Among the most popular
approaches are the backward induction methods introduced by [64] and [51]. [64]
uses the approximated continuation value to estimate the current price, by using
the backward recursion

pin = max(g(xin), cθn(x
i
n)) . (9)

Instead, [51] uses the continuation value only for the decision to stop or to continue,
yielding

pin =

{
g(xin), if g(xin) ≥ cθn(xin)

αpin+1, otherwise.
(10)

The second algorithm is more robust, as the approximation is only used for the
decision and not for the estimation of the price. Hence, the method proposed by
[51] is the most used method in the financial industry and can be considered state-
of-the-art. In both papers, the approximation cθ(x

i
n) = θ⊤ϕ(xin) is used, where

ϕ = (ϕ1, . . . , ϕK) is a set of K basis functions, and θ ∈ RK are the trainable
weights. Possible choices for the basis functions proposed in [51] are Laguerre,
Hermite, Legendre, Chebyshev, Gegenbauer and Jacobi polynomials. While they
have the advantage of having convergence guarantees, both algorithms do not easily
scale to high dimensional problems since the number of basis functions usually grows
polynomially or even exponentially [51, Section 2.2] in the number of stocks. One
direction of research to overcome this problem is to apply dimension reduction
techniques [8].

OPTIMAL STOPPING VIA RANDOMIZED NNS 41

6.1.2. Optimal stopping via backward induction using neural networks. Another
idea to overcome this issue was proposed by [45], which consists of approximat-
ing the continuation value by a neural network

fθ(x
i
n) ≈ cθ(xin).

That way, the features are learned contrary to the basis functions which must be
chosen. While [45] used the backward recursion (9) introduced by [64], both [47] and
[11] used the backward recursion (10) suggested by [51]. Instead of approximating
the continuation value, [10] suggested approximating the whole indicator function
present in (10) by a neural network fθn(x

i
n) ≈ 1{g(xi

n)≥c(xi
n)}. Then, the current

price is estimated by

pin = g(xin) fθn(x
i
n)︸ ︷︷ ︸

stop

+αpin+1

(
1− fθk(xin)

)︸ ︷︷ ︸
continue

.

Moreover, instead of minimizing the loss function (5) in order to find a good ap-
proximation of the continuation function, [10] optimized the parameters by directly
maximizing the option price ψn(θn) =

1
m

∑m
i=1 αp

i
n.

All those algorithms use stochastic gradient methods to determine the param-
eters of the neural networks. They have to find the parameters of N − 1 neural
networks (using a different neural network for each date). Since they use stochastic
gradient methods with a non-convex loss function they cannot provide theoretical
convergence guarantees, without the strong assumption that they actually find the
optimal parameters.

6.1.3. Optimal stopping via reinforcement learning. By its nature, reinforcement
learning is closely related to the dynamic programming principle as shown in [61,
12]. Moreover, the optimal stopping problem is well studied as an application of
reinforcement learning [63, 64, 66, 49]. In all those methods, a linear approximator
is used (linear combination of basis functions), similarly to the LSM method [51]. If
a standard set of basis functions that grows polynomially in the dimension is used,
then these methods suffer from the curse of dimensionality. In particular, they
cannot practically be scaled to high dimensions, as can be seen in our numerical
results. To the best of our knowledge, our approach constitutes the first time
that randomized neural networks are used to approximate the value function in
reinforcement learning.

6.2. Randomized neural networks and reservoir computing. In RLSM and
RFQI we use a neural network with randomly sampled and fixed hidden layers,
where only the last layer is reinitialized and trained at each time n ∈ {N−1, . . . , 1}.
The architecture used at each time can be interpreted as a neural network with
random weights (NNRW) studied and reviewed in [16], where a universality result
was provided in [42]. Randomized neural networks as approximation functions were
also studied by [36].

Randomized recurrent neural networks are an extension of randomized neural
networks. A recurrent neural network (RNN) where the parameters are randomly
generated and fixed and only the readout map is trained is known as a reservoir.
Reservoir computing not only reduces the computation time but also outperforms
classical, fully trained RNNs in many tasks [58, 65, 52, 30]. Similarly, as in reser-
voir computing, in our randomized recurrent neural network algorithm RRLSM,
the parameters of the hidden layers are randomly sampled and fixed thereafter.

42 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

However, while reservoir computing trains only one readout map which has the
same parameters for all times, we train a different readout map for each single time
n ∈ {N − 1, . . . , 1}, similarly to RLSM.

6.3. Backward induction versus reinforcement learning. Backward induc-
tion is an (approximate) dynamic programming (ADP) approach. While [61] re-
gards ADP as a class of RL algorithms, we distinguish these two approaches in this
work, because of their different algorithmic structure and their different ways of
using the training data. In particular, backward recursion computes the approxi-
mation of the continuation value for each date sequentially. More precisely, it starts
at the final date and goes backward in time. For the approximation at each date,
only the data of this date is used. In contrast to this, RL starts with an initial
approximation that is applied for all dates and iteratively improves this approxi-
mation. This way, the data of all dates is used to improve the approximation of all
dates. In comparison to backward recursion, this can be interpreted as a type of
transfer learning between the dates.

7. Experiments. There are numerous ways to empirically evaluate optimal stop-
ping approaches. We choose the most studied settings that were considered in the
American option pricing literature. In particular, we only consider synthetic data.
Applications to real data involve model calibration, which is an independent prob-
lem and finally results in applying the optimal stopping algorithm to synthetically
generated data again.

Besides our algorithms, we also implemented the baselines and provided all of
them at https://github.com/HeKrRuTe/OptStopRandNN.

7.1. Experimental setup. In our experiments, we mainly focus on the compu-
tation and comparison of lower bound approximations of American option prices.
However, in Section 7.5 we present experiments where also upper bound approxi-
mations are computed with RLSM based on the derivation in Section 5.

The evaluation of all the algorithms was done on the same computer, a dedicated
machine with 2×Intel Xeon CPU E5-2697 v2 (12 Cores) 2.70GHz and 256 GiB of
RAM.

7.1.1. Baselines (LSM, NLSM, DOS and FQI). We compare RLSM and RFQI to
three backward induction algorithms and one reinforcement learning approach: first,
the state-of-the-art least squares Monte Carlo (LSM) [51]; second, the algorithm
proposed by [47], where the basis functions are replaced by a deep neural network
(NLSM); third, deep optimal stopping (DOS) [10], where instead of the continuation
value, the whole indicator function of the stopping decision is approximated by a
neural network; and finally, the fitted Q-iteration (FQI) presented as the second
algorithm in [63]. [49] studied and compared two reinforcement learning based
methods (FQI and LSPI) to solve the optimal stopping problem. Since FQI always
worked better in our experiments, we only show comparisons to this algorithm. Our
aim is to compare the main concepts of all the different algorithms in a fair way, so
we leave away certain (more sophisticated) particularities unique to each of them.

7.1.2. Choice of basis functions for the baselines. There are many possible choices
for the set of basis functions. [51] proposed using the first three weighted Laguerre
polynomials for LSM, and [49] added three additional basis functions of the date for
FQI. While the size of this set of basis functions scales linearly with the dimension,

https://github.com/HeKrRuTe/OptStopRandNN

OPTIMAL STOPPING VIA RANDOMIZED NNS 43

it does not include any interaction terms. The classical polynomial basis functions
up to the second order are the easiest way to include coupling terms in the basis.
To deal with the time dependence of FQI, the relative date t/T and 1 − t/T are
added as additional coordinates to the d-dimensional stock vector. The size of
this basis grows quadratically in the dimension d, i.e., it has 1 + 2d + d(d − 1)/2
elements for LSM and for FQI d is replaced by d+2. The results obtained with the
classical polynomials up to degree two were better than with the weighted Laguerre
polynomials for LSM and FQI, so we only present these results in our tables. For
large d the computations of LSM and FQI did not terminate within a reasonable
amount of time (several hours) and therefore were aborted.

7.1.3. No regularization for LSM and FQI. While drastically increasing the number
of hidden nodes without increasing the number of paths or applying penalization
led to overfitting for RLSM and RFQI, this was not observed for LSM and FQI. In
particular, for LSM, Ridge regression (L2-penalisation) was tested without leading
to better results than standard linear regression. Moreover, comparing the results
of FQI, RFQI and DOS for growing dimensions shows that overfitting does not
become a problem when more basis functions are used. Therefore, also for FQI
standard linear regression was used as suggested by [63].

7.1.4. Architecture of neural networks. In order to have a fair comparison in terms
of accuracy and in terms of computation time, we use the same number of hidden
layers and nodes per layer for all the algorithms.

• We observed that one hidden layer was sufficient to have a good accuracy (an
increase of the number of the hidden layers did not lead to better accuracy).
Therefore, NLSM, DOS and all algorithms that we proposed have only one
hidden layer.

• We use 20 nodes for the hidden layer. Importantly, we do not claim that this
choice is optimal for any of the methods. For RFQI the number of nodes is set
to the minimum between 20 and the number of stocks, for stability reasons.

• Leaky ReLU is used for RLSM and RFQI, and tanh is used for the randomized
recurrent neural network RRLSM. For NLSM and DOS, we use the suggested
activation functions, Leaky ReLU for NLSM and ReLU and sigmoid for DOS.

• The parameters (A, b) of the random neural networks of RLSM and RFQI
are sampled using a standard normal distribution with mean 0 and standard
deviation 1. Different hyper-parameters were tested, but they did not have a
big influence on the results so we kept the standard choice.

• For the randomized recurrent neural network of RRLSM, we use a standard de-
viation of 0.0001 for Ax and 0.3 for Ah. Also here, different hyper-parameters
were tested, and the best performing were chosen and used to present the re-
sults. The same holds for tested path-dependent versions of RFQI; however,
none of the hyper-parameters performed very well as shown below.

• Some of the reference methods suggest to use the payoff as additional input,
while others do not or leave this open. Therefore, we tested using the payoff
as input and not using it for each method in each experiment. We came to
the conclusion that the backward induction algorithms (LSM, DOS, NLSM,
RLSM) usually work slightly better with, while the reinforcement learning al-
gorithms (FQI, RFQI) usually work slightly better without the payoff. Hence,
we show these results.

44 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

• As suggested by the authors, we used batch normalization for the implemen-
tation of DOS.

7.2. The Markovian case – Bermudan option pricing. First, we evaluate
RLSM and RFQI in the standard Markovian setting of Bermudan option pricing
with different stock price models and payoff functions.

7.2.1. Stock models (Black–Scholes and Heston). We test our algorithm on two mul-
tidimensional stochastic models, Black–Scholes and Heston with fixed parameters
and standard discounting factor α = e−rT/N . For each model we samplem = 20, 000
paths on the time interval [0, 1], i.e., with maturity T = 1, using the Euler-scheme
with N = 10 equidistant dates. As explained in Section 2.6, we use half of the paths
as the training set and the second half to compute the approximated price using
the trained continuation value function (or decision function in the case of DOS).

The Black–Scholes model for a max call option is a widely used example in the
literature [51, 47, 10]. The stochastic differential equation (SDE) describing this
model is

dXt = (r − δ)Xtdt+ σXtdWt,

with X0 = x0, where (Wt)t≥0 is a d-dimensional Brownian motion. If not stated
differently, we choose the rate r = 0%, the dividend rate δ = 0%, the volatility
σ = 20% and the initial stock price x0 ∈ {80, 100, 120}.

To increase the complexity, we also compare the algorithms on the Heston model
[40], which is also used in [47]. The SDE describing this model is

dXt = (r − δ)Xtdt+
√
vtXtdWt,

dvt = −κ(vt − v∞)dt+ σ
√
vtdBt,

(11)

with X0 = x0 and v0 = ν0, where (Wt)t≥0 and (Bt)t≥0 are two d-dimensional
Brownian motions correlated with coefficient ρ ∈ (−1, 1). Here, X is the stock
price, and v is the stochastic variance process. If not stated differently, we choose
the drift r = 0%, the dividend rate δ = 0%, the volatility of volatility σ = 20%,
the long term variance v∞ = 0.01, the mean reversion speed κ = 2, the correlation
ρ = −30%, the initial stock price x0 = 100 and the initial variance ν0 = 0.01 (in
particular, the Feller condition 2κv∞ > σ2 is not satisfied, so vt might touch the
value 0 but is reflected immediately). Since the Heston model is Markovian only
if the price and the variance (Xt, vt) are observed simultaneously, we give both
values as inputs to the algorithms here, and denote this below by “Heston (with
variance)”.

7.2.2. Payoffs (max call, geometric put, basket call and min put). We test our al-
gorithms on four different types of options. First, we consider the max call op-
tion as it is a classical example used in optimal stopping [47, 10]. The payoff
of a max call option is defined by g(x) = (max(x1, x2, . . . , xd) − K)+ for any
x = (x1, x2, . . . , xd) ∈ Rd. Moreover, we consider the geometric put option, used in

[47], with payoff g(x) = (K−(
∏d

i=1 xi)
1/d)+. We also test our approach on a basket

call option [37], where the payoff is given by g(x) = (1d
∑d

i=1 xi −K)+, and a min
put option with payoff g(x) = (K−min(x1, x2, . . . , xd))+. For all these payoffs, the
strike K is set to 100, unless stated differently.

OPTIMAL STOPPING VIA RANDOMIZED NNS 45

7.2.3. Reference prices. In some cases reference prices can be computed as addi-
tional baselines. All call options where the underlying stocks have a rate r ≥ 0
and dividend δ = 0 are optimally executed at maturity. Therefore, the price of
the American option and of the corresponding European option are the same under
these constraints [29]. For all examples where this is the case, we compute the
European option price (EOP) as an approximation of the correct American option
price.

Moreover, as explained in [47], geometric put options on d-dimensional stocks
following Black–Scholes are equivalent to one-dimensional put options on a 1-dimen-
sional stock following Black–Scholes with adjusted parameters. The 1-dimensional
problem can be priced efficiently with the CRR binomial-tree method (B) [21].

With the adjusted parameters σ̂ = σ√
d
and δ̂ = δ + σ2−σ̂2

2 the binomial-tree model

is defined with factors for the stock price going up and down γup = exp(σ̂
√
T/N),

γdown = 1
γup

, probabilities to go up and down p = exp((r−δ̂)T/N)−γdown

γup−γdown
, 1 − p and

step-wise discounting factor exp(−rT/N). The price computed with this method
converges to the correct price under the Black–Scholes model as N → ∞ [21].
Hence, this method yields good approximations of the correct option price for large
N . Whenever applied, we use N = 10, 000 for the binomial-tree method. While
in the first case of call options, the optimal stopping problem has an easy solution,
i.e., to wait until maturity, this is not the case here, where the optimal stopping
problem is more complex.

The remaining options, i.e., call options with δ > 0, put options with r > 0 and
geometric put option with underlying stocks following a Heston model, also consti-
tute more complex stopping problems, where no efficient methods to compute the
(approximately) correct price are available. Therefore, we evaluate the performance
of the algorithms by comparing the approximated prices directly. Since these prices
are computed on unseen paths for all algorithms, where at each time, the algorithm
can only decide whether to exercise or not, higher prices imply better performance
of the algorithms.

7.2.4. Results and discussion. All algorithms are run 10 times in parallel, and the
mean and standard deviation (in parenthesis) of the prices and the median of the
corresponding computation times are reported. In particular, the computation
times do not include the time for generating the stock paths, since the main in-
terest is in the actual time the algorithms need to compute prices, and paths can
be generated offline and stored. In the following discussion, we always compare
computation times for large d, since random machine influences have less impact
there.

In all cases RLSM and RFQI are the fastest algorithms while achieving at least
similar prices to the best performing baselines. Their biggest strengths are high
dimensional problems (d ≥ 500), where this speed-up becomes substantial.

In these high dimensional problems, RLSM performs as good as or outperforms
the baselines in terms of prices, even tough RLSM has much less trainable param-
eters than DOS and NLSM. Moreover, RFQI achieves the highest prices there and
therefore works best, while having considerably less trainable parameters, since only
one neural network (with a random hidden layer) of the respective size is used for
all exercise dates. In particular, RFQI has only 21 trainable parameters, compared
to more than 20dN for DOS and NLSM.

46 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Table 1. Max call option on Black–Scholes for different numbers
of stocks d and varying initial stock price x0.

price duration

d x0 LSM DOS NLSM RLSM FQI RFQI EOP LSM DOS NLSM RLSM FQI RFQI EOP

5

80 5.23 (0.07) 5.12 (0.12) 5.19 (0.09) 5.28 (0.12) 5.26 (0.10) 5.20 (0.06) 5.31 (0.05) 11s 9s 0s 0s 2s 0s 0s

100 24.95 (0.14) 24.64 (0.21) 24.72 (0.15) 24.91 (0.16) 24.96 (0.17) 25.00 (0.19) 24.97 (0.15) 11s 8s 2s 0s 2s 0s 0s

120 49.73 (0.21) 49.45 (0.18) 49.47 (0.22) 49.62 (0.25) 49.68 (0.22) 49.75 (0.17) 49.77 (0.15) 11s 7s 2s 0s 2s 0s 0s

10

80 9.20 (0.07) 9.19 (0.14) 8.82 (0.15) 9.24 (0.11) 9.25 (0.12) 9.25 (0.10) 9.27 (0.09) 28s 7s 1s 0s 6s 0s 0s

100 34.33 (0.15) 34.03 (0.17) 33.69 (0.20) 34.28 (0.11) 34.25 (0.19) 34.17 (0.11) 34.26 (0.09) 29s 7s 2s 0s 7s 0s 0s

120 60.94 (0.24) 60.90 (0.20) 60.33 (0.25) 61.08 (0.23) 61.10 (0.19) 61.07 (0.21) 61.20 (0.13) 29s 7s 2s 0s 6s 0s 0s

50

80 22.45 (0.11) 23.17 (0.10) 21.78 (0.34) 22.03 (0.16) 23.51 (0.13) 23.42 (0.11) 23.52 (0.09) 8m39s 8s 2s 0s 6m28s 1s 0s

100 53.49 (0.10) 53.93 (0.12) 52.15 (0.60) 52.44 (0.21) 54.24 (0.09) 54.23 (0.08) 54.37 (0.09) 8m42s 8s 3s 0s 6m57s 1s 0s

120 84.31 (0.12) 84.72 (0.12) 82.48 (0.79) 82.98 (0.16) 85.03 (0.18) 85.00 (0.20) 85.28 (0.07) 8m46s 9s 3s 0s 7m 4s 1s 0s

100

80 24.02 (0.21) 29.56 (0.13) 27.08 (0.47) 28.50 (0.06) 29.59 (0.15) 29.88 (0.08) 29.95 (0.08) 39m44s 13s 3s 0s 1h23m39s 1s 0s

100 56.83 (0.18) 61.84 (0.26) 58.99 (0.62) 60.58 (0.10) 62.07 (0.15) 62.32 (0.16) 62.43 (0.08) 40m42s 13s 4s 0s 1h23m28s 1s 0s

120 88.05 (0.31) 94.26 (0.16) 90.48 (0.89) 92.71 (0.08) 94.41 (0.17) 94.65 (0.14) 94.99 (0.14) 40m25s 13s 4s 0s 1h22m15s 1s 0s

500

80 - 42.54 (0.16) 39.45 (0.61) 43.00 (0.07) - 44.15 (0.09) 44.34 (0.08) - 53s 11s 1s - 1s 0s

100 - 78.27 (0.16) 74.23 (1.03) 78.80 (0.10) - 80.21 (0.13) 80.45 (0.08) - 53s 12s 1s - 1s 0s

120 - 113.83 (0.18) 108.60 (1.01) 114.54 (0.09) - 116.26 (0.19) 116.48 (0.11) - 53s 12s 1s - 1s 0s

1000

80 - 47.91 (0.08) 45.37 (0.91) 49.13 (0.11) - 50.14 (0.10) 50.32 (0.07) - 1m34s 20s 2s - 1s 0s

100 - 84.99 (0.19) 81.06 (0.56) 86.40 (0.08) - 87.70 (0.09) 87.93 (0.08) - 1m35s 20s 3s - 1s 0s

120 - 121.98 (0.11) 118.61 (1.31) 123.68 (0.08) - 125.19 (0.14) 125.48 (0.09) - 1m36s 19s 2s - 1s 0s

2000

80 - 53.14 (0.13) 51.45 (0.82) 55.13 (0.09) - 56.03 (0.04) 56.27 (0.07) - 2m57s 34s 5s - 2s 0s

100 - 91.43 (0.13) 89.84 (0.67) 93.87 (0.12) - 95.00 (0.14) 95.31 (0.06) - 3m 2s 39s 5s - 2s 0s

120 - 129.77 (0.15) 127.14 (1.30) 132.69 (0.15) - 134.09 (0.08) 134.34 (0.10) - 2m57s 37s 4s - 2s 0s

Table 2. Max call option on Heston (with variance) for different
numbers of stocks d.

price duration

d LSM DOS NLSM RLSM FQI RFQI EOP LSM DOS NLSM RLSM FQI RFQI EOP

5 8.34 (0.08) 8.36 (0.07) 8.22 (0.09) 8.37 (0.07) 8.25 (0.03) 8.33 (0.07) 8.23 (0.04) 31s 6s 3s 0s 8s 0s 0s

10 11.81 (0.06) 11.83 (0.07) 11.51 (0.12) 11.83 (0.02) 11.79 (0.06) 11.83 (0.05) 11.79 (0.07) 1m30s 6s 3s 0s 28s 0s 0s

50 16.85 (0.07) 20.01 (0.06) 18.60 (0.32) 19.31 (0.05) 20.05 (0.06) 20.09 (0.05) 20.04 (0.04) 39m37s 8s 4s 0s 1h22m45s 1s 0s

100 - 23.49 (0.06) 21.75 (0.41) 22.90 (0.02) - 23.69 (0.06) 23.66 (0.04) - 14s 6s 0s - 1s 0s

500 - 31.31 (0.06) 29.93 (0.32) 31.35 (0.06) - 32.14 (0.06) 32.13 (0.07) - 1m19s 24s 3s - 2s 0s

1000 - 34.23 (0.08) 33.79 (0.29) 35.09 (0.06) - 35.82 (0.06) 35.86 (0.04) - 2m59s 41s 6s - 4s 0s

2000 - 35.18 (0.14) 37.76 (0.23) 38.84 (0.05) - 39.63 (0.08) 39.60 (0.05) - 13m11s 1m28s 13s - 7s 0s

Table 3. Basket call options on Black–Scholes for different num-
bers of stocks d.

price duration

d LSM DOS NLSM RLSM FQI RFQI EOP LSM DOS NLSM RLSM FQI RFQI EOP

5 3.60 (0.05) 3.57 (0.05) 3.49 (0.06) 3.58 (0.03) 3.61 (0.03) 3.62 (0.06) 3.59 (0.02) 13s 6s 2s 0s 2s 0s 0s

10 2.54 (0.04) 2.52 (0.03) 2.45 (0.06) 2.54 (0.04) 2.53 (0.03) 2.53 (0.03) 2.54 (0.01) 30s 6s 1s 0s 7s 0s 0s

50 0.94 (0.01) 1.12 (0.01) 0.83 (0.03) 1.06 (0.01) 1.13 (0.01) 1.15 (0.01) 1.14 (0.01) 8m51s 8s 1s 0s 7m 3s 1s 0s

100 0.51 (0.01) 0.78 (0.01) 0.55 (0.01) 0.75 (0.01) 0.80 (0.01) 0.81 (0.01) 0.81 (0.01) 38m59s 13s 2s 0s 1h21m59s 1s 0s

500 - 0.33 (0.01) 0.24 (0.00) 0.34 (0.00) - 0.36 (0.00) 0.36 (0.00) - 1m 7s 7s 1s - 1s 0s

1000 - 0.22 (0.00) 0.17 (0.00) 0.24 (0.00) - 0.25 (0.00) 0.26 (0.00) - 2m24s 14s 2s - 2s 0s

2000 - 0.13 (0.00) 0.12 (0.01) 0.17 (0.00) - 0.18 (0.00) 0.18 (0.00) - 5m35s 25s 7s - 3s 0s

Comparing the achieved prices of LSM and FQI, we can confirm the claim of [49],
that reinforcement learning techniques usually outperform the backward induction
in the Markovian setting. RFQI, achieving similar prices as FQI, therefore naturally
outperforms RLSM, which achieves similar prices as LSM. A possible explanation
for the outperformance of the reinforcement learning algorithm is the following.
The backward induction algorithms have approximately N times the number of
trainable parameters used in the reinforcement learning algorithms, since a differ-
ent network is trained for each discretization date. Moreover, for the backward

OPTIMAL STOPPING VIA RANDOMIZED NNS 47

Table 4. Geometric put options on Black–Scholes and Heston
(with variance) for different numbers of stocks d. Here, r = 2%
is used as interest rate.

price duration

model d LSM DOS NLSM RLSM FQI RFQI B LSM DOS NLSM RLSM FQI RFQI B

BlackScholes

5 3.34 (0.04) 3.31 (0.03) 3.29 (0.06) 3.33 (0.04) 3.31 (0.05) 3.35 (0.04) 3.35 (nan) 11s 6s 1s 0s 2s 0s 3m12s

10 2.37 (0.04) 2.42 (0.02) 2.33 (0.02) 2.40 (0.04) 2.39 (0.03) 2.40 (0.03) 2.40 (nan) 28s 6s 1s 0s 7s 0s 3m12s

20 1.65 (0.02) 1.71 (0.04) 1.57 (0.04) 1.65 (0.03) 1.73 (0.04) 1.72 (0.02) 1.71 (nan) 1m31s 6s 1s 0s 32s 1s 3m12s

50 0.91 (0.01) 1.07 (0.02) 0.80 (0.02) 1.03 (0.01) 1.09 (0.02) 1.09 (0.02) 1.09 (nan) 8m26s 10s 2s 0s 7m24s 1s 3m31s

100 0.50 (0.01) 0.76 (0.01) 0.54 (0.01) 0.73 (0.01) 0.77 (0.01) 0.77 (0.01) 0.78 (nan) 38m37s 16s 2s 0s 1h23m50s 1s 3m31s

Heston

5 2.45 (0.03) 2.44 (0.03) 2.30 (0.06) 2.44 (0.02) 2.44 (0.04) 2.43 (0.03) - 11s 6s 1s 0s 2s 0s -

10 2.00 (0.02) 2.00 (0.02) 1.75 (0.04) 2.00 (0.03) 2.00 (0.02) 2.01 (0.02) - 29s 6s 2s 0s 7s 0s -

20 1.68 (0.02) 1.69 (0.02) 1.21 (0.05) 1.62 (0.05) 1.72 (0.02) 1.71 (0.01) - 1m31s 7s 2s 0s 32s 1s -

50 1.33 (0.02) 1.47 (0.01) 0.83 (0.03) 1.24 (0.01) 1.49 (0.01) 1.48 (0.01) - 8m31s 7s 3s 0s 7m13s 1s -

100 0.88 (0.01) 1.39 (0.01) 0.71 (0.02) 1.18 (0.01) 1.41 (0.01) 1.40 (0.01) - 41m34s 15s 4s 0s 1h24m11s 1s -

Table 5. Min put option on Black–Scholes for different numbers
of stocks d and varying initial stock price x0. Here, r = 2% is used
as interest rate.

price duration

d x0 LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5

80 35.49 (0.07) 35.48 (0.06) 35.21 (0.12) 35.46 (0.07) 35.53 (0.08) 35.54 (0.05) 11s 10s 3s 0s 3s 0s

100 19.98 (0.09) 19.96 (0.09) 19.68 (0.07) 19.96 (0.14) 19.97 (0.10) 19.95 (0.09) 11s 9s 3s 0s 3s 0s

120 7.46 (0.10) 7.36 (0.08) 7.25 (0.07) 7.39 (0.10) 7.45 (0.11) 7.38 (0.10) 11s 6s 1s 0s 2s 0s

10

80 40.22 (0.05) 40.17 (0.05) 39.91 (0.10) 40.21 (0.07) 40.31 (0.07) 40.30 (0.04) 28s 6s 2s 0s 9s 0s

100 25.74 (0.09) 25.74 (0.10) 25.36 (0.12) 25.76 (0.09) 25.79 (0.10) 25.83 (0.13) 28s 6s 3s 0s 6s 0s

120 11.98 (0.07) 11.92 (0.09) 11.62 (0.14) 11.94 (0.13) 11.96 (0.10) 12.03 (0.07) 28s 5s 1s 0s 6s 0s

50

80 48.08 (0.05) 48.27 (0.04) 47.03 (0.19) 47.72 (0.03) 48.36 (0.05) 48.34 (0.04) 8m25s 8s 3s 0s 5m20s 1s

100 35.57 (0.07) 35.80 (0.08) 34.27 (0.40) 35.11 (0.04) 35.91 (0.07) 35.87 (0.08) 8m35s 8s 3s 0s 6m57s 1s

120 22.93 (0.08) 23.33 (0.07) 21.40 (0.41) 22.50 (0.05) 23.41 (0.06) 23.42 (0.10) 8m28s 8s 2s 0s 6m52s 1s

100

80 49.71 (0.06) 50.93 (0.04) 48.78 (0.26) 50.48 (0.04) 50.93 (0.04) 50.99 (0.03) 39m57s 13s 3s 0s 1h22m58s 1s

100 37.63 (0.07) 39.11 (0.05) 36.42 (0.80) 38.55 (0.05) 39.11 (0.06) 39.22 (0.04) 40m12s 12s 3s 0s 1h23m26s 1s

120 25.52 (0.08) 27.31 (0.05) 24.13 (0.52) 26.64 (0.03) 27.28 (0.07) 27.42 (0.05) 40m40s 12s 3s 0s 1h22m53s 1s

500

80 - 55.71 (0.03) 51.51 (0.46) 55.66 (0.03) - 56.04 (0.03) - 54s 13s 1s - 1s

100 - 45.14 (0.05) 40.06 (1.04) 45.05 (0.02) - 45.51 (0.03) - 53s 13s 1s - 1s

120 - 34.53 (0.05) 28.39 (0.75) 34.45 (0.05) - 34.99 (0.02) - 54s 12s 1s - 1s

1000

80 - 57.40 (0.03) 53.50 (0.64) 57.52 (0.03) - 57.84 (0.02) - 1m36s 21s 3s - 2s

100 - 47.24 (0.05) 42.35 (0.63) 47.40 (0.05) - 47.76 (0.03) - 1m37s 21s 3s - 2s

120 - 37.04 (0.03) 31.10 (0.87) 37.25 (0.04) - 37.68 (0.03) - 1m34s 20s 3s - 2s

2000

80 - 58.59 (0.04) 55.21 (0.67) 59.21 (0.02) - 59.50 (0.02) - 3m 1s 30s 6s - 3s

100 - 48.72 (0.04) 44.37 (0.61) 49.49 (0.04) - 49.83 (0.03) - 2m56s 31s 6s - 3s

120 - 38.84 (0.06) 33.31 (0.73) 39.79 (0.04) - 40.18 (0.04) - 3m 0s 31s 6s - 3s

induction algorithms, a different continuation value function is approximated for
each date; hence, only the data of this date is used to learn the parameters. In
contrast, the reinforcement learning methods train their parameters using the data
of all dates. Hence, the reinforcement learning methods use N times the number of
data to train 1/N times the number of parameters, which seems to lead to better
approximations.

We first give a detailed discussion of results for the easy optimal stopping prob-
lems, where it is optimal to exercise the option at maturity. Although these optimal
stopping problems are less complex, they are still interesting, because a minimal

3Due to memory overflow issues, FQI could only be run with 5 instead of 10 parallel runs for
larger N ; so the computation times are smaller then they would otherwise be, due to more CPU

power per run.

48 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Table 6. Max call option on Black–Scholes for different numbers
of stocks d. Here, r = 5% is used as interest rate, and δ = 10% is
used as dividend rate.

price duration

d LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5 18.83 (0.17) 18.66 (0.11) 18.62 (0.18) 18.83 (0.12) 18.43 (0.10) 18.83 (0.16) 22s 7s 3s 0s 2s 0s

10 26.67 (0.14) 26.72 (0.17) 26.35 (0.14) 26.60 (0.12) 26.56 (0.13) 26.77 (0.09) 46s 7s 3s 0s 8s 0s

50 43.86 (0.10) 44.52 (0.13) 43.27 (0.33) 43.37 (0.11) 44.66 (0.14) 44.78 (0.12) 10m 5s 10s 4s 0s 7m23s 1s

100 46.62 (0.19) 51.71 (0.09) 49.31 (0.56) 50.61 (0.10) 51.79 (0.17) 52.16 (0.09) 49m27s 15s 5s 0s 1h21m26s 1s

500 - 67.12 (0.09) 62.82 (0.72) 67.02 (0.08) - 68.48 (0.13) - 59s 14s 2s - 2s

1000 - 73.37 (0.12) 69.25 (0.83) 73.85 (0.10) - 75.31 (0.08) - 1m52s 26s 4s - 2s

2000 - 78.17 (0.11) 76.57 (0.83) 80.54 (0.07) - 81.96 (0.16) - 5m26s 47s 8s - 3s

Table 7. Min put option on Heston (with variance) for different
numbers of stocks d. Here, r = 2% is used as interest rate.

price duration

d LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5 12.34 (0.05) 12.31 (0.05) 12.16 (0.11) 12.29 (0.06) 12.35 (0.09) 12.37 (0.09) 30s 6s 3s 0s 8s 0s

10 16.48 (0.07) 16.52 (0.08) 16.09 (0.13) 16.55 (0.06) 16.64 (0.07) 16.61 (0.08) 1m31s 6s 3s 0s 28s 0s

50 22.86 (0.05) 25.56 (0.04) 24.03 (0.42) 24.85 (0.08) 25.72 (0.03) 25.71 (0.07) 39m57s 9s 4s 0s 1h21m59s 1s

100 - 29.13 (0.04) 27.30 (0.46) 28.50 (0.06) - 29.33 (0.07) - 16s 6s 0s - 1s

500 - 36.26 (0.05) 34.74 (0.31) 36.28 (0.04) - 36.95 (0.05) - 1m21s 24s 3s - 2s

1000 - 38.62 (0.08) 38.19 (0.20) 39.32 (0.03) - 39.93 (0.05) - 3m18s 45s 6s - 4s

2000 - 39.22 (0.13) 41.05 (0.21) 42.22 (0.04) - 42.81 (0.04) - 12m51s 1m37s 13s - 8s

Table 8. Max call option on Heston (with variance) for different
numbers of stocks d. Here, r = 5% is used as interest rate, and
δ = 10% is used as dividend rate.

price duration

d LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5 4.88 (0.03) 4.89 (0.03) 4.69 (0.05) 4.83 (0.04) 4.37 (0.06) 4.59 (0.08) 31s 5s 3s 0s 8s 0s

10 7.19 (0.06) 7.20 (0.04) 6.90 (0.07) 7.17 (0.04) 6.63 (0.07) 6.84 (0.06) 1m33s 5s 2s 0s 27s 0s

50 11.68 (0.05) 13.99 (0.07) 12.93 (0.28) 13.70 (0.05) 13.72 (0.09) 13.71 (0.04) 41m 6s 8s 3s 0s 1h22m14s 1s

100 - 17.04 (0.07) 15.94 (0.29) 16.80 (0.03) - 16.97 (0.05) - 11s 5s 0s - 1s

500 - 24.05 (0.05) 22.95 (0.40) 24.35 (0.05) - 24.70 (0.05) - 1m19s 23s 3s - 2s

1000 - 26.86 (0.05) 26.47 (0.39) 27.71 (0.04) - 28.08 (0.05) - 2m48s 41s 6s - 4s

2000 - 28.01 (0.11) 30.12 (0.18) 31.13 (0.05) - 31.55 (0.07) - 12m56s 1m30s 14s - 7s

requirement for the algorithms should be that they perform well in these basic ex-
amples. Moreover, a comparison to the reference price is possible. In Table 1 we
show results of a max call option on Black–Scholes. For high dimensions (d ≥ 500),
RLSM is about 8 times faster than the fastest baseline NLSM and about 30 times
faster than DOS. Moreover, RFQI is about twice as fast as RLSM. For d = 100
we also see the large difference in computation time between LSM (respectively,
FQI), where the number of basis functions grows quadratically in d, and RLSM
(respectively, RFQI), where the number of basis functions does not grow in d. The
computed prices of RLSM are at most 2% smaller than those of LSM, and the prices
of RFQI are at most 1.2% smaller than those of FQI. For d ≤ 100 the maximal rel-
ative errors compared to the reference prices are 19.7% for LSM, 3.5% for DOS,
9.5% for NLSM, 6.4% for RLSM, 1.2% for FQI and 2.2% for RFQI. For d ≥ 500

OPTIMAL STOPPING VIA RANDOMIZED NNS 49

Table 9. Max call option on Black–Scholes for different numbers
of stocks d and higher numbers of exercise dates N .

price duration

d N LSM DOS NLSM RLSM FQI RFQI EOP LSM DOS NLSM RLSM FQI RFQI EOP

10

10 34.33 (0.15) 34.03 (0.17) 33.69 (0.20) 34.28 (0.11) 34.25 (0.19) 34.17 (0.11) 34.26 (0.09) 29s 7s 2s 0s 7s 0s 0s

50 34.13 (0.12) 34.14 (0.20) 33.96 (0.11) 33.98 (0.08) 34.25 (0.21) 34.15 (0.13) 34.23 (0.11) 2m44s 32s 20s 0s 46s 6s 0s

100 34.15 (0.14) 34.14 (0.26) 33.98 (0.24) 34.05 (0.15) 34.29 (0.16) 33.97 (0.11) 34.28 (0.10) 5m18s 1m 6s 32s 1s 1m27s 7s 0s

50

10 53.49 (0.10) 53.93 (0.12) 52.15 (0.60) 52.44 (0.21) 54.24 (0.09) 54.23 (0.08) 54.37 (0.09) 8m42s 8s 3s 0s 6m57s 1s 0s

50 52.82 (0.13) 53.94 (0.18) 53.24 (0.26) 50.85 (0.18) 54.31 (0.14) 53.74 (0.08) 54.46 (0.11) 48m36s 41s 18s 1s 21m15s 7s 0s

100 52.74 (0.11) 54.09 (0.15) 53.61 (0.18) 50.42 (0.17) 54.15 (0.10) 53.77 (0.12) 54.33 (0.14) 1h37m48s 1m36s 37s 2s 41m 8s 16s 0s

100

10 56.83 (0.18) 61.84 (0.26) 58.99 (0.62) 60.58 (0.10) 62.07 (0.15) 62.32 (0.16) 62.43 (0.08) 40m42s 13s 4s 0s 1h23m28s 1s 0s

50 - 61.88 (0.06) 60.72 (0.24) 58.68 (0.13) - 61.66 (0.14) 62.48 (0.07) - 1m15s 22s 1s - 8s 0s

100 - 62.07 (0.11) 61.19 (0.15) 58.26 (0.16) - 61.79 (0.11) 62.46 (0.04) - 2m23s 44s 3s - 15s 0s

500

10 - 78.27 (0.16) 74.23 (1.03) 78.80 (0.10) - 80.21 (0.13) 80.45 (0.08) - 53s 12s 1s - 1s 0s

50 - 79.14 (0.08) 75.63 (1.07) 76.68 (0.05) - 79.23 (0.07) 80.44 (0.09) - 4m59s 1m 4s 8s - 9s 0s

100 - 79.44 (0.09) 76.46 (0.41) 76.33 (0.05) - 79.34 (0.08) 80.47 (0.10) - 10m12s 2m13s 18s - 19s 0s

Table 10. Max call option on Black–Scholes for different numbers
of stocks d and higher numbers of exercise dates N . Here, r = 5%
is used as interest rate, and δ = 10% is used as dividend rate.

price duration

d N LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI3 RFQI

10

10 26.67 (0.14) 26.72 (0.17) 26.35 (0.14) 26.60 (0.12) 26.56 (0.13) 26.77 (0.09) 46s 7s 3s 0s 8s 0s

50 26.65 (0.12) 26.56 (0.20) 26.42 (0.17) 26.61 (0.13) 26.51 (0.07) 26.69 (0.18) 2m21s 44s 53s 2s 44s 4s

100 26.68 (0.19) 26.44 (0.14) 26.42 (0.19) 26.59 (0.13) 26.55 (0.14) 26.65 (0.16) 4m46s 2m46s 1m45s 1s 1m25s 8s

50

10 43.86 (0.10) 44.52 (0.13) 43.27 (0.33) 43.37 (0.11) 44.66 (0.14) 44.78 (0.12) 10m 5s 10s 4s 0s 7m23s 1s

50 43.42 (0.09) 44.50 (0.08) 44.13 (0.19) 42.26 (0.10) 44.68 (0.15) 44.72 (0.12) 43m 5s 1m14s 52s 3s 16m46s 9s

100 43.21 (0.14) 44.45 (0.15) 44.30 (0.13) 41.89 (0.31) 44.64 (0.17) 44.60 (0.14) 1h25m 4s 2m 0s 1m45s 2s 36m10s 17s

100

10 46.62 (0.19) 51.71 (0.09) 49.31 (0.56) 50.61 (0.10) 51.79 (0.17) 52.16 (0.09) 49m27s 15s 5s 0s 1h21m26s 1s

50 - 51.73 (0.10) 50.89 (0.21) 49.36 (0.09) - 51.91 (0.12) - 52s 33s 1s - 8s

100 - 51.72 (0.15) 51.27 (0.12) 48.90 (0.08) - 51.84 (0.11) - 1m48s 46s 3s - 19s

500

10 - 67.12 (0.09) 62.82 (0.72) 67.02 (0.08) - 68.48 (0.13) - 59s 14s 2s - 2s

50 - 67.48 (0.11) 64.75 (0.50) 65.70 (0.07) - 68.03 (0.12) - 2m56s 1m 4s 7s - 10s

100 - 67.50 (0.15) 65.55 (0.34) 65.22 (0.07) - 67.91 (0.10) - 5m48s 1m52s 16s - 20s

these errors are 5.6% for DOS, 11% for NLSM, 3% for RLSM and 0.4% for RFQI.
The results of Table 2 (max call on Heston with variance) and Table 3 (basket call
on Black–Scholes) are similar, except that relative errors become larger in Table 3
for growing d, since the prices become very small. In Figure 1 we plot the price
and computation time for at-the-money max call options without dividend on the
Heston model when increasing the number of stocks. It is well visible that the com-
putation time of RLSM and RFQI hardly increases, while the prices are similar to
the other algorithms.

In the remaining examples, it is in general not optimal to exercise the options at
maturity, making the stopping decisions harder and therefore more challenging for
the algorithms.

For the geometric put options (Table 4), we do not present dimensions larger
than 100, because prices cannot be computed numerically any more. In the Black–
Scholes case, the maximal relative errors compared to the reference price are 35.7%
for LSM, 2.1% for DOS, 29.9% for NLSM, 6% for RLSM, 1.1% for FQI and 0.5% for
RFQI. Again, the prices computed with RLSM (respectively RFQI) are never much
smaller than those of LSM (FQI); 0.3% (0.1%) for Black–Scholes and 6% (0.6%) for
Heston (with variance). On the Heston model, RFQI, FQI and DOS achieve the
highest prices that never deviate more than 1.5% from each other.

50 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

0 250 500 750 1000 1250 1500 1750 2000

10

20

30

40

pr
ice

0 250 500 750 1000 1250 1500 1750 2000
number of stocks d

0

50

100

tim
e

(s
)

DOS
FQI
LSM
NLSM
RFQI
RLSM
EOP

Figure 1. At-the-money max call option without dividend on He-
ston.

0 250 500 750 1000 1250 1500 1750 2000
20

40

60

80

pr
ice

0 250 500 750 1000 1250 1500 1750 2000
number of stocks d

0

100

200

300

tim
e

(s
)

DOS
FQI
LSM
NLSM
RFQI
RLSM

Figure 2. At-the-money max call option with dividend on Black–
Scholes.

For the min put option on Black–Scholes (Table 5), RLSM is about 7 times
faster than NLSM and more than 30 times faster than DOS for high dimensions.
Furthermore, RFQI is again about twice as fast as RLSM. For d ≤ 50 all algorithms
yield very similar prices and for larger d the highest prices are always achieved

OPTIMAL STOPPING VIA RANDOMIZED NNS 51

by RFQI, whereby the prices computed with RFQI never deviate more than 1%
from those computed with FQI. Moreover, the prices computed with RLSM are
never more than 1.9% smaller than those computed with LSM. In addition, RLSM
achieves the second highest prices for high dimensions. For the max call option
with dividends on Black–Scholes (Table 6 and Figure 2), the situation is similar.
However, the highest prices are always achieved by RFQI and the prices computed
with RLSM are at most 1.1% smaller than those of LSM. For the min put option
on Heston (with variance) (Table 7) we have similar results as on Black–Scholes,
but the prices computed with RLSM (RFQI) are at most 0.5% (0.2%) smaller than
those computed with LSM (FQI).

For the max call option with dividend on Heston (with variance) (Table 8), RLSM
is about 7 times faster than NLSM and more than 26 times faster then DOS for
high dimensions. RFQI is again about twice as fast as RLSM. For d ∈ {5, 10} DOS
yields the highest prices, RLSM deviates at most 1.2% from them and RFQI at
most 6%. FQI yields lower prices than RFQI. For d ∈ {50, 100}, DOS, RLSM and
RFQI yield very similar prices, deviating at most 2% from each other. For higher
dimensions of d ≥ 500, RFQI yields the highest prices, and RLSM yields the second
highest prices.

When increasing the number of exercise dates for the max call option on Black–
Scholes from N = 10 to N ∈ {50, 100} (Table 9), the Bermudan option price should
become closer to the American option price. The highest prices are achieved either
by RFQI, FQI or DOS, with a maximum deviation of less than 1.4% between their
results and a maximum deviation from the reference prices of 2.7% for DOS and
1.5% for RFQI. RFQI is more than 30 times faster than DOS for high dimensions.
Increasing the number of dates further, the computation time can become a limiting
factor for DOS, while this is not the case for RFQI. We see similar results for the
more complex max call option on Black–Scholes with dividends (Table 10), where
RFQI always achieves the highest price.

7.2.5. Empirical convergence study. We confirm the theoretical results of Theorem
2.1 (Figure 3 left) and Theorem 3.1 (Figure 3 right) by an empirical convergence
study for a growing number of paths m. For RLSM we also increase the number
of hidden nodes K, while they are fixed for RFQI since d = 5 is used. For each
combination of the number of paths m and the hidden size K, the algorithms are
run 20 times and their mean prices with standard deviations are shown. For small
m, we see that smaller hidden sizes achieve better prices. This is due to overfitting
to the training paths when using larger networks. Regularization techniques like L1-
or L2-penalization could be used to reduce overfitting for larger networks. However,
our results suggest that restricting the hidden size is actually the simplest and best
regularization technique, since it additionally leads to lower training times.

7.3. The non-Markovian case – optimally stopping fractional Brown-
ian motions. In order to compare our algorithms on a problem where the un-
derlying process is non-Markovian, we take the example of the fractional Brow-
nian motion (WH

t)t≥0 as in [10]. Unlike classical Brownian motion, the incre-
ments of fractional Brownian motion need not be independent. Fractional Brow-
nian motion is a continuous centered Gaussian process with covariation function
E
(
WH

t WH
s

)
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
where H ∈ (0, 1] is called the Hurst

parameter. When the Hurst parameter H = 0.5, WH is a standard Brownian
motion; when H ̸= 0.5, the increments of (WH

t)t≥0 are correlated (positively if

52 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

103 104

number of paths

5

6

7

8

9
pr

ice

hidden size=10
hidden size=50
hidden size=100

103 104

number of paths

8.00

8.25

8.50

8.75

9.00

9.25

9.50

9.75

10.00

pr
ice

hidden size=5

Figure 3. Mean ± standard deviation (bars) of the price for a
max call on 5 stocks following the Black–Scholes model for RLSM
(left) and RFQI (right) for varying the number of paths m and
varying for RLSM the number of neurons in the hidden layer K.

H > 0.5, and negatively if H < 0.5) which means that for H ̸= 0.5, (WH
t)t≥0 is not

Markovian [9, 50, 32, 25, 1].

7.3.1. Stock model, payoffs and baselines. In this section we use a d-dimensional
fractional Brownian motion, with independent coordinates all starting at X0 = 0,
as the underlying process Xt = WH

t . In contrast to the price processes we used
before, this process can become negative. In the one-dimensional case, we use
the identity as “payoff” function g = id as in [10], which can lead to negative
“payoff” values. Moreover, we use the maximum g(x) = max(x1, x2, . . . , xd) for

any x = (x1, x2, . . . , xd) ∈ Rd and the mean g(x) = 1/d
∑d

i=1 xi as “payoffs” for
higher dimensions, which can also yield negative values. In particular, this setting
leads to an optimal stopping problem outside of the standard discretized American
option pricing setting. We compare RLSM and RRLSM to DOS and the path
version of DOS (denoted pathDOS for our implementation of it and pathDOS-
paper for results reported from [10]), where the entire path until the current date
is used as input [10]. Moreover, we test RFQI and its recurrent and path versions
in this setting.

For two values of the Hurst parameter, the optimal value can be computed ex-
plicitly. In particular, for H = 0.5 we have a Brownian motion, and therefore the
optimal value is 0 . For H = 1 we have a fully correlated process (i.e., all informa-
tion is known after the first step), where the optimal value is approximately 0.39495
[10].

7.3.2. Results and discussion. For d = 1, we clearly see the outperformance of the
algorithms processing information of the path compared to the ones using only the
current value as input (Figure 4 top left). Moreover, this application highlights
the limitation of reinforcement learning techniques when applied in non-Markovian
settings as discussed in [44]. In particular, RFQI, the randomized RNN version of
it (RRFQI) and its path- version do not work well in this example (Figure 4 top
right). This poor performance was consistent under varying hyper-parameters.

RRLSM achieves very similar results to those reported for pathDOS in [10] with
an MSE of 0.0005 between their reported values and ours, while using only 20K
instead of 4M paths (Figure 4 bottom). RRLSM needs only 1s to be trained, in
contrast to 430s reported in [10]. The longer training times can partly be explained

OPTIMAL STOPPING VIA RANDOMIZED NNS 53

0.0 0.2 0.4 0.6 0.8 1.0
Hurst

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ice

pathDOS-paper
pathDOS
DOS
RLSM
RRLSM

0.0 0.2 0.4 0.6 0.8 1.0
Hurst

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ice

pathDOS-paper
FQI
RFQI
pathRFQI
RRFQI

0.0 0.2 0.4 0.6 0.8 1.0
Hurst

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ice

pathDOS-paper
RRLSM

Figure 4. Top left: algorithms processing path information out-
perform. Top right: reinforcement learning algorithms do not work
well in non-Markovian cases. Bottom: RRLSM achieves similar re-
sults as reported in [10], while using only 20K paths instead of 4M
for training, which took only 1s instead of the reported 430s.

by the larger amount of paths used. However, our implementation of pathDOS using
the same number of 20 hidden nodes as RRLSM and also being trained on 20K paths
(hence completely comparable to the training of RRLSM) takes approximately 175s
and achieves slightly worse results than RRLSM (Figure 4 top left) with an MSE
of 0.0018. The exact prices displayed in Figure 4 are provided in Appendix C.1.

For higher dimensions, we use the small Hurst parameter H = 0.05 for which
a big difference between the standard and the path dependent algorithms was vis-
ible in the one-dimensional case. RLSM yields very similar prices as DOS, and
RRLSM yields very similar prices as pathDOS. However, RLSM and RRLSM are
considerably faster than DOS and pathDOS (Table 11).

7.4. Non-Markovian stock models. In Section 7.3 we saw that the RL based
algorithms do not perform well on problems which are highly path dependent. In
this section, we consider “intermediate” problems of typical non-Markovian stock
models, where a path dependence exists but where this path dependence is not very
strong.

7.4.1. Heston without variance as input. First, we revisit the Heston model (11),
but this time without feeding the algorithms the variance, which makes it a non-
Markovian problem. For the max call (Table 17), min put (Table 18) and max call
with dividend (Table 19) options on Heston without variance, all the algorithms
yield very similar prices as on Heston with variance (Tables 2, 7 and 8), so we only

54 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Table 11. Identity, maximum and mean on the fractional Brow-
nian motion with H = 0.05 and different numbers of stocks d.

price duration

payoff d DOS pathDOS RLSM RRLSM DOS pathDOS RLSM RRLSM

Identity 1 0.67 (0.02) 1.24 (0.01) 0.65 (0.01) 1.24 (0.01) 1 m 15 s 3 m 1 s 0s 1s

Max
5 1.96 (0.01) 2.15 (0.01) 2.00 (0.01) 2.16 (0.01) 3 m 8 s 21 m 46 s 4s 1s

10 2.34 (0.01) 2.43 (0.01) 2.40 (0.01) 2.43 (0.02) 3 m 49 s 37 m 46 s 4s 2s

Mean
5 0.29 (0.01) 0.53 (0.00) 0.28 (0.01) 0.52 (0.01) 3 m 40 s 21 m 8 s 3s 1s

10 0.20 (0.01) 0.36 (0.00) 0.21 (0.01) 0.33 (0.01) 3 m 39 s 36 m 1 s 5s 1s

show the tables in Appendix C.2. In particular, this suggests that even though the
Heston model is not Markovian without providing the current variance, this does
not make a difference for option pricing.

7.4.2. Rough Heston. Moreover, we test on the rough Heston model, where the
variance itself is path-dependent. This model recently became a very popular choice
for modeling financial markets [27, 26, 33]. The rough Heston model [27] is defined
as

dXt = (r − δ)Xtdt+
√
vtXtdWt,

vt = v0 +

∫ t

0

(t− s)H−1/2

Γ(H + 1/2)
κ(v∞ − vs)ds+

∫ t

0

(t− s)H−1/2

Γ(H + 1/2)
σ
√
vsdBs,

where X0 = x0, and the Hurst parameter H ∈ (0, 1/2) and (Wt)t≥0 and (Bt)t≥0

are two d-dimensional Brownian motions correlated with coefficient ρ ∈ (−1, 1).
We choose the drift r = 5%, the dividend rate δ = 10%, the volatility of volatility
σ = 20%, the long term variance v∞ = 0.01, the mean reversion speed κ = 2,
the correlation ρ = −30%, the initial stock price x0 = 100 and the initial variance
v0 = 0.01 and consider a max call option on the stock price X.

As for the Heston model, also for the rough Heston model there is no significant
difference between the computed prices with and without providing the current
variance, so we only show prices where the current variance was also fed to the
algorithms, which is still a non-Markovian setting. For the max call option on
the rough Heston model (with variance) (Table 12), we see that the reinforcement
learning based algorithms FQI and RFQI do not work well for d ∈ {5, 10} but
perform better for d ∈ {50, 100}. Overall, DOS, pathDOS, RLSM and RRLSM
achieve very similar prices, never deviating more than 2.2% from each other. In
particular, we do not see a better performance of the path dependent algorithms
pathDOS and RRLSM compared to DOS and RLSM.

7.5. Computation of upper bounds. While this work’s focus lies on the lower
bound approximations, we conduct a small experiment to show that also the upper
bound computation works efficiently with our method. In Table 13 we show mean
and standard deviation (over 10 independent runs) of the upper bound approxima-
tions for the price of an American option computed with RLSM. Additionally, we
show the lower bound and the midpoint (computed as the average of the lower and
upper bound). As expected, the upper bound approximations are a bit larger than
the lower bound approximations. The same method can also be used to computed

OPTIMAL STOPPING VIA RANDOMIZED NNS 55

Table 12. Max call option on Rough–Heston for different numbers
of stocks d. The interest rate is r = 5%, and the dividend rate is
δ = 10%.

price duration

d LSM DOS pathDOS NLSM RLSM RRLSM FQI RFQI LSM DOS pathDOS NLSM RLSM RRLSM FQI RFQI

5 6.58 (0.05) 6.56 (0.05) 6.46 (0.06) 6.39 (0.06) 6.50 (0.04) 6.46 (0.04) 6.10 (0.08) 6.33 (0.16) 0s 7s 11s 3s 0s 0s 15s 0s

10 9.41 (0.04) 9.46 (0.04) 9.28 (0.05) 9.27 (0.11) 9.48 (0.04) 9.37 (0.05) 9.19 (0.09) 9.02 (1.18) 1s 7s 13s 3s 0s 0s 37s 0s

50 13.90 (0.07) 16.69 (0.06) 16.47 (0.06) 15.68 (0.32) 16.35 (0.04) 16.37 (0.03) 16.72 (0.07) 16.75 (0.04) 18m51s 9s 39s 4s 0s 0s 1h24m22s 1s

100 - 19.79 (0.05) 19.51 (0.05) 18.39 (0.35) 19.50 (0.04) 19.49 (0.04) - 19.99 (0.05) - 13s 1m16s 6s 0s 0s - 1s

Table 13. Lower, midpoint and upper approximations with
RLSM of the price of a max call option on Black–Scholes for dif-
ferent numbers of stocks d and varying initial stock price x0. The
parameters for the stock model are r = 5%, δ = 10%, N = 9, T = 3
and K = 100. We use m = 100, 000 paths and 100 neurons for the
hidden layer.

d x0 price lower price midpoint price upper

2 90 7.9772 (0.0512) 8.0077 (0.0362) 8.0382 (0.0619)

2 100 13.7902 (0.0664) 13.8627 (0.0552) 13.9353 (0.0566)

2 110 21.2070 (0.0757) 21.2735 (0.0420) 21.3399 (0.1001)

3 90 11.1869 (0.0373) 11.1937 (0.0466) 11.2005 (0.0603)

3 100 18.5698 (0.0803) 18.6061 (0.0401) 18.6425 (0.0515)

3 110 27.3981 (0.1359) 27.4284 (0.0757) 27.4588 (0.0706)

5 90 16.4518 (0.0645) 16.4995 (0.0410) 16.5473 (0.0479)

5 100 25.9604 (0.0856) 25.9868 (0.0569) 26.0133 (0.0893)

5 110 36.5271 (0.1066) 36.6024 (0.0610) 36.6777 (0.1023)

10 90 25.9808 (0.0923) 26.0235 (0.0568) 26.0662 (0.0805)

10 100 38.0031 (0.0759) 38.0750 (0.0592) 38.1469 (0.0952)

10 110 50.5117 (0.0689) 50.5668 (0.0567) 50.6219 (0.0962)

20 90 37.4659 (0.0944) 37.5135 (0.0737) 37.5611 (0.1440)

20 100 51.3532 (0.1073) 51.3900 (0.0929) 51.4269 (0.1043)

20 110 65.2114 (0.0820) 65.2774 (0.0451) 65.3434 (0.0680)

upper bound approximations for RFQI. However, their quality is relatively sensitive
to the number of training iterations and other hyper-parameters; hence, they are
not shown here.

7.6. Computation of Greeks. The Greeks are the sensitivities of the option price
to a small change in a given underlying parameter. More precisely, they are partial
derivatives of the option prices with respect to different parameters, such as the
spot price, time, rate and volatility. We provide experiments (and the code), where

we compute the most popular Greeks: delta (∂p0

∂x0
), gamma (∂

2p0

∂x2
0
), theta (∂p0

∂t),

rho (∂p0

∂r) and vega (∂p0

∂σ). The straightforward method to compute them is via
the finite difference (FD) method. For theta, rho and vega, the standard forward
finite difference method can be used with our algorithms, but they turn out to be
unstable for NLSM and DOS. Therefore, we use the central finite difference method,
where the exercise boundary is frozen to be the one of the central point, and report

56 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Table 14. Prices and Greeks computed for different strikes K of
a 1-dimensional put option on Black–Scholes. For the binomial (B)
algorithm, the spacing of the FD method is set to ε = 10−9, which
is also used for the other algorithms for delta, theta, rho and vega.
For the regression method, ϵ = 5 and a polynomial basis up to
degree 9 are used.

price delta gamma theta rho vega

K algo FD regr. FD regr. PDE regr.

36 B 0.9192 (–) -0.1982 (–) 0.0389 (–) -0.7152 (–) -6.7085 (–) 10.9100 (–)

36 LSM 0.9024 (0.0086) 0.9006 (0.0094) -0.1919 (0.0019) -0.1888 (0.0027) 0.0368 (0.0004) 0.0381 (0.0009) -0.6615 (0.0068) -6.8267 (0.0497) 10.7107 (0.0918)

36 RLSM 0.9020 (0.0069) 0.9073 (0.0110) -0.1940 (0.0019) -0.1947 (0.0026) 0.0371 (0.0003) 0.0379 (0.0010) -0.6665 (0.0063) -6.8241 (0.0639) 10.7590 (0.0629)

36 FQI 0.8504 (0.0067) 0.8642 (0.0116) -0.1777 (0.0016) -0.1770 (0.0015) 0.0329 (0.0003) 0.0329 (0.0011) -0.5753 (0.0047) -7.7168 (0.0676) 10.3836 (0.0841)

36 RFQI 0.9005 (0.0087) 0.8766 (0.0138) -0.1924 (0.0029) -0.1847 (0.0041) 0.0368 (0.0005) 0.0369 (0.0009) -0.6612 (0.0105) -6.8282 (0.0891) 10.7093 (0.0880)

36 NLSM 0.8948 (0.0238) 0.8817 (0.0151) -0.2010 (0.0174) -0.1905 (0.0038) 0.0368 (0.0013) 0.0380 (0.0006) -0.6427 (0.0124) -6.9383 (0.0625) 10.6464 (0.1207)

36 DOS 0.9068 (0.0093) 0.9081 (0.0106) -0.1957 (0.0024) -0.1940 (0.0033) 0.0359 (0.0013) 0.0378 (0.0012) -0.6251 (0.0393) -7.0119 (0.3001) 10.7249 (0.1419)

40 B 2.3196 (–) -0.4047 (–) 0.0611 (–) -0.8446 (–) -11.2405 (–) 14.7517 (–)

40 LSM 2.2916 (0.0107) 2.2715 (0.0116) -0.3930 (0.0022) -0.4049 (0.0053) 0.0579 (0.0003) 0.0637 (0.0009) -0.7711 (0.0051) -11.6289 (0.0573) 14.6886 (0.0548)

40 RLSM 2.2897 (0.0095) 2.2970 (0.0135) -0.3984 (0.0052) -0.4076 (0.0039) 0.0583 (0.0006) 0.0610 (0.0012) -0.7721 (0.0067) -11.6357 (0.1092) 14.7026 (0.0467)

40 FQI 2.2593 (0.0121) 2.2078 (0.0161) -0.3661 (0.0017) -0.3934 (0.0038) 0.0541 (0.0003) 0.0655 (0.0013) -0.7179 (0.0057) -12.6145 (0.0856) 14.7479 (0.0670)

40 RFQI 2.2239 (0.0407) 2.1252 (0.0374) -0.3623 (0.0140) -0.3654 (0.0123) 0.0529 (0.0024) 0.0570 (0.0024) -0.6897 (0.0415) -12.9713 (0.6541) 14.6794 (0.0831)

40 NLSM 2.2586 (0.0149) 2.2599 (0.0236) -0.3830 (0.0136) -0.4034 (0.0035) 0.0565 (0.0013) 0.0620 (0.0012) -0.7529 (0.0166) -11.7895 (0.2469) 14.6545 (0.0970)

40 DOS 2.2884 (0.0102) 2.2963 (0.0099) -0.4031 (0.0037) -0.4071 (0.0039) 0.0587 (0.0004) 0.0611 (0.0006) -0.7727 (0.0055) -11.5870 (0.1041) 14.7045 (0.0579)

44 B 4.6629 (–) -0.6654 (–) 0.0779 (–) -0.6169 (–) -11.8974 (–) 12.8541 (–)

44 LSM 4.6141 (0.0175) 4.6177 (0.0120) -0.6476 (0.0037) -0.6693 (0.0051) 0.0743 (0.0003) 0.0676 (0.0012) -0.5468 (0.0055) -12.8537 (0.1337) 13.1799 (0.1129)

44 RLSM 4.6167 (0.0205) 4.6407 (0.0178) -0.6541 (0.0067) -0.6699 (0.0036) 0.0746 (0.0005) 0.0641 (0.0022) -0.5400 (0.0034) -12.7787 (0.2212) 13.0670 (0.1566)

44 FQI 4.5366 (0.0221) 4.5476 (0.0137) -0.5962 (0.0039) -0.6766 (0.0054) 0.0695 (0.0005) 0.0710 (0.0013) -0.5216 (0.0066) -15.2857 (0.1248) 14.3877 (0.0471)

44 RFQI 4.3469 (0.0708) 4.1557 (0.0415) -0.5463 (0.0073) -0.5791 (0.0059) 0.0607 (0.0023) 0.0687 (0.0019) -0.3688 (0.0534) -19.9917 (1.0327) 15.6835 (0.1199)

44 NLSM 4.5820 (0.0211) 4.5996 (0.0531) -0.6553 (0.0150) -0.6713 (0.0048) 0.0742 (0.0008) 0.0658 (0.0029) -0.5268 (0.0182) -13.1123 (0.9381) 12.9567 (0.5430)

44 DOS 4.6206 (0.0126) 4.6536 (0.0113) -0.6580 (0.0046) -0.6695 (0.0042) 0.0747 (0.0003) 0.0641 (0.0016) -0.5350 (0.0050) -12.8331 (0.2236) 13.0304 (0.1295)

results only with this method. For computing delta we use the same method, since
the others are unstable for all algorithms. Moreover, the computation of gamma,
as a second derivative, turns out to be unstable when computed with the second
order finite difference method, even when using the same technique as for delta.
Therefore, we use two alternative ways to circumvent this instability. The first one
(PDE method) is specific to the case of an underlying Black–Scholes model, where
the Black–Scholes PDE

∂p0
∂t

+
1

2
σ2x20

∂2p0
∂x20

+ rx0
∂p0
∂x0
− rp0 = 0

can be used to express gamma in terms of the price, delta and theta. The second
one (regression method) is the “naive method” suggested in [48, Section 3.1]. It fits
a polynomial regression to option prices achieved when distorting the initial price
x0 by a noise term ξ ∼ N(0, ϵ2). Then, the price, delta and gamma can easily
be computed by evaluating the fitted regression and its first and second derivative
(which are easily computed, since polynomial regression is used) at the initial price
x0. The parameter ϵ controls the variance-bias trade-off and has to be chosen by
hand. However, the authors also suggested a 2-step method that reduces variance
and bias, where this parameter is chosen automatically.

For comparability, we compute the Greeks for the same example as in [48]. In
particular, we consider a put option on d = 1 stock following a Black–Scholes
model with initial price x0 = 40, strike K ∈ {36, 40, 44}, rate r = 6%, volatility
σ = 20%, N = 10 equidistant dates, maturity T = 1 and m = 100, 000 paths.
The models are run 10 times, and means and standard deviations are reported in
Table 14. The price, delta and gamma are computed with both the finite difference

OPTIMAL STOPPING VIA RANDOMIZED NNS 57

(and PDE) and the regression method. As reference we use the binomial model
with N = 50, 000 equidistant dates, for which only the finite difference (and PDE)
method is used. The hidden size was set to 10 to account for the smaller input
dimension, and the payoff was not used as input except for DOS, where it improved
the results considerably. For RLSM the activation function was changed to Softplus,
since this worked best, although all other tested activation functions did also yield
good results. Overall, RLSM and DOS with the regression method achieve the best
results. Furthermore, we highlight, that the time advantage of RLSM and RFQI
also comes into play for the computation of Greeks, when increasing the dimension
d.

For RLSM (with Softplus activation) we additionally show stability plots of the
Greeks with respect to the spot price. In particular we use the same setting as before
of a put option on d = 1 stock following a Black–Scholes model with rate r = 6%,
N = 10 dates and m = 100, 000 paths. However, we fix the strike K = 40 and
vary the spot price x0 ∈ [20, 60]. Moreover, we vary the volatility σ ∈ {0.1, 0.2, 0.3}
and the maturity T ∈ {0.5, 1, 2}. For each combination, we run the algorithm
5 times and plot the median of the results in Figure 5. Up to small numerical
instabilities, the resulting curves are smooth, as known from theory. We observe
the same qualitative behavior of the Greeks as was shown in [22, Section 5.2 - 5.6].

20 30 40 50 60
0

5

10

15

20
price

20 30 40 50 60
1.0

0.8

0.6

0.4

0.2

0.0
delta

20 30 40 50 60
0.00

0.02

0.04

0.06

gamma

20 30 40 50 60
2.5

2.0

1.5

1.0

0.5

0.0

theta

20 30 40 50 60
25

20

15

10

5

0
rho

20 30 40 50 60
0

5

10

15

20
vega

= 0.1 T = 0.5
= 0.1 T = 1.0
= 0.1 T = 2.0
= 0.2 T = 0.5
= 0.2 T = 1.0
= 0.2 T = 2.0
= 0.3 T = 0.5
= 0.3 T = 1.0
= 0.3 T = 2.0

Figure 5. Median of the price and Greeks computed with RLSM
plotted against the spot price x0 for different volatilities σ and
maturities T . The price, delta and gamma are computed with the
regression method with ϵ = 5 and a polynomial basis up to degree
2.

7.7. Discussion of the sensitivity to the randomness in the hidden layers.
We perform a test specifically designed to study the model’s sensitivity to the ran-
domness of the weights in the hidden layers. In our previous tests in this paper, we
performed 10 runs, where a different set of paths and different weights of the hidden
layer were chosen for each run. In order to test the sensitivity to the randomness of

58 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

the weights, we perform an experiment with 10 runs, where only the set of hidden
weights are different for each run, while the paths are the same.

We compare RLSM and NLSM in the setting of a 1-dimensional Black-Scholes
call option with spot x0 = 100 and strike K = 100, where we use 100, 000 paths and
10 exercises dates with 20 hidden nodes and either 10, 30 or 50 epochs of training
for NLSM.

In order to have a fair comparison, we do not fix the initial weights of NLSM,
as it would be equivalent to reusing the same random weights for RLSM in each
run, with the possibility of having a good or bad initialization. Hence, similar to
RLSM’s sensitivity to the randomness of the weights in the hidden layer, NLSM
is sensitive to the randomness in the initialization of the weights (of the hidden
layer). In order to reduce this sensitivity in the algorithms, one should always take
the average of several runs with different sets of weights (and paths). This can be
easily done in parallel in order to reduce the computation time. The results of this
sensitivity analysis are given in Table 15. We see that the sensitivity of NLSM to the
randomness of the initialization depends on the number of epochs of the training,
becoming smaller with longer training.

In order to further reduce the sensitivity of RLSM to the randomness of the
hidden layer weights, we propose a variant of it, which we call RLMSreinit. Instead
of using the same random weights for each date, we use different ones, which has
an averaging effect and therefore reduces the variance in multiple runs.

algo #epochs price delta gamma theta rho vega duration

NLSM 10 8.8961 (0.0356) 0.5845 (0.0018) 0.0194 (0.0001) -4.8682 (0.0142) 46.0934 (1.2538) 39.4202 (0.0613) 7.86s

NLSM 30 8.9175 (0.0171) 0.5836 (0.0008) 0.0194 (0.0001) -4.8723 (0.0206) 47.2922 (1.2718) 39.3781 (0.0640) 19.53s

NLSM 50 8.9178 (0.0160) 0.5835 (0.0006) 0.0194 (0.0001) -4.8780 (0.0166) 46.6717 (1.6730) 39.3755 (0.1004) 35.03s

RLSM 8.9439 (0.0179) 0.5828 (0.0004) 0.0195 (0.0001) -4.8952 (0.0153) 48.0459 (0.7537) 39.3425 (0.0951) 1.37s

RLSMreinit 8.9425 (0.0081) 0.5828 (0.0002) 0.0195 (0.0000) -4.8887 (0.0078) 47.7329 (0.3765) 39.3477 (0.0573) 1.52s

Table 15. Prices and Greeks for NLSM (with different number of
training epochs), RLSM and RLSMreinit with standard deviations
computed over 10 runs with different initializations on the same
set of paths.

8. Conclusion. Based on a broad study of machine learning based approaches to
approximate the solution of optimal stopping problems, we introduced two simple
and powerful approaches, RLSM and RFQI. As state-of-the-art algorithms, they are
very simple to implement and have convergence guarantees. Moreover, similarly to
the neural network methods, they are easily scalable to high dimensions and there
is no need to choose basis functions by hand. Furthermore, in our empirical study
we saw that RLSM and RFQI are considerably faster than existing algorithms for
high dimensional problems: in particular, up to 2400 and 4800 times faster than
LSM and FQI, respectively, with basis functions of order 2, 5 to 16 times faster
than NLSM and 20 to 66 times faster than DOS.

In our Markovian experiments, RFQI often achieves the best results or, if not,
usually is very close to the best performing baseline method under consideration, re-
confirming that reinforcement learning methods surpass backward induction meth-
ods.

OPTIMAL STOPPING VIA RANDOMIZED NNS 59

In our non-Markovian experiments on fractional Brownian motion, our random-
ized recurrent neural network algorithm RRLSM achieves similar results as the path
version of DOS, while requiring less training data and being much faster. However,
this example also brought up the limitations of reinforcement learning based ap-
proaches, in particular of RFQI, which do not work well in those non-Markovian
experiments.

In our non-Markovian experiments on rough Heston, we concluded that there
is no need of using a recurrent neural network, since RLSM has similar results as
RRLSM. This is also the case with DOS and pathDOS.

Overall, the speed of our algorithms is very promising for applications in high di-
mensions and with many discretization times, where existing methods might become
impractical and where our methods show very reliable performance. To summarize,
we suggest to use RFQI for Markovian problems, especially in high-dimensional
settings; RLSM for low-dimensional settings or when computing Greeks and upper
bounds; RLSM for non-Markovian processes which do not have a strong path-
dependence, such as the stock price of rough Heston; and finally, RRLSM for non-
Markovian processes which have a strong path-dependence like fractional Brownian
motion.

Appendix A. Convergence of the randomized least squares Monte Carlo
(RLSM). We first introduce some technical notation that will be helpful for the
proofs. Then, we describe the steps from the theoretical idea of RLSM to its im-
plementable version that was presented in Section 2.7. These descriptions and
proofs are based on [64, 20], and in particular, our theoretical results are a di-
rect consequence of these works and the universal approximation theorem of [71].
Nevertheless, we give a detailed description here for completeness.

A.1. Definitions. We assume having a sequence of infinitely many random basis
functions ϕ = (ϕk)k≥1, where each ϕk is of the form

ϕk : Rd → R, x 7→ ϕk(x) := σ(α⊤
k x+ βk),

with σ a bounded activation function, αk ∈ Rd and βk ∈ R. The parameters αk

and βk have independent and identically distributed (i.i.d.) entries with a standard

Gaussian distribution, hence the name random basis functions. With (Ω̃, F̃ , P̃) we
denote the probability space on which the random weights are defined. For each
K ∈ N we define the operator ΦK acting on θ = (θ1, . . . , θK) ∈ RK by

(ΦKθ)(x) := θ⊤ϕ(x) :=

K∑
k=1

θkϕk(x).

In particular, ΦK is the operator producing a linear combination of the first K
random basis functions. We assume having a Markovian, discrete time stochastic
processX = (X0, . . . , XN) defined on a filtered probability space (Ω,F , (Fn)

N
n=0,P).

In particular, each Xn is an Fn-measurable random variable. We assume that there
exists an absolutely continuous measure Q≪ P, the pricing measure, and that the
distribution of Xn under Q is πn. For expectations with respect to these random
variables under Q, we write E[·]. For 0 ≤ n ≤ N we use the norm

∥f∥2πn
:= E[|f(Xn)|22] =

∫
R
|f(x)|22dπn(x),

60 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

where | · |2 is the Euclidean norm, and f is a measurable function. We introduce
the operators En and ΠK

n defined by

(EnJ)(x) := E[J(Xn+1)|Xn = x],

(ΠK
n J) := argmin

ΦKθ
∥J − ΦKθ∥πn ,

for J ∈ L2(πn). With Ên we denote the one-sample approximation of En, i.e.,

(ÊnJ)(Xn) = J(Xn+1), which is better understood in terms of a realization of

x = (x0, . . . , xN) of X as (ÊnJ)(xn) = J(xn+1). Moreover, Π̂K
n is the Monte Carlo

approximation of ΠK
n , i.e., if x1n, . . . , x

m
n are i.i.d. samples of πn, then (Π̂K

n J) :=

argminΦKθ
1
m

∑m
i=1

(
J(xin)− (ΦKθ)(x

i
n)
)2
. In the following, we write Πn and Π̂n

whenever K is fixed.
The payoff at any exercise time n is given by g(Xn), and we assume that they

are square integrable, i.e., ∥g(Xn)∥πn <∞.

A.2. Theoretical description of RLSM. We first introduce the exact algorithm
to compute the continuation value and then give definitions of the 2-step approx-
imation of this exact algorithm. The first step is to introduce projections on the
subspace of functions spanned by ΦK , while assuming that (conditional) expecta-
tions can be computed exactly. We call this the idealized algorithm. We remark that
also the projection itself is based on minimizing an expectation. The second step
is to introduce Monte Carlo and one-sample approximations of the projections and
(conditional) expectations using m sample paths. This we call the implementable
algorithm, since it can actually be implemented. Our goal is then to show that the
price computed with those two approximation steps converges to the true price,
when K and m increase to infinity.

A.2.1. Exact algorithm. The continuation value is the expected discounted payoff
at the current time conditioned on a decision not to exercise the option now. The
exact algorithmic definition of the continuation value is defined backward step-wise
as in [64] as QN−1 := αEN−1g,

Qn := αEn max(g,Qn+1).
(12)

A.2.2. Idealized algorithm. Our idealized algorithm to compute the continuation
value, written similar as in [64], is defined for fixed K asQ̃

K
N−1 := αEN−1P

K
N ,

Q̃K
n := αEnP

K
n+1,

(13)

where P
K
N := g,

PK
n := g1g≥αΠK

n EnPK
n+1

+ αEnP
K
n+11g<αΠK

n EnPK
n+1

.

In particular, PK
n can be interpreted as the choice of the algorithm, at time step n,

to either execute and take the payoff or to continue with the expected discounted
future payoff. We drop the superscript K whenever it is clear from the context
which K is meant. We see from this equation, that the difference from the idealized
algorithm in [64, described in (1) and before Theorem 1] is that we use the Q̃n+1

OPTIMAL STOPPING VIA RANDOMIZED NNS 61

instead of its linear approximation with the random basis functions ΠnQ̃n+1, if we
decide to continue. However, the decision to continue or to stop is still based on the
approximation ΠnQ̃n+1, as it is also the case in the idealized algorithm [64]. If the
linear approximation is exact, both algorithms produce the same output, but if it
is not exact, our algorithm uses a better approximation of the continuation value.

A.2.3. Implementable algorithm. Finally, we define our implementable algorithm to
compute the continuation value, which is an approximation of the idealized algo-
rithm using the approximations Ên and Π̂K

n as
ˆ̃QK
N−1 := αÊN−1P̂

K
N ,

ˆ̃QK
n := αÊnP̂

K
n+1,

(14)

where P̂
K
N := g,

P̂K
n := g1g≥αΠ̂K

n ÊnP̂K
n+1

+ αÊnP̂
K
n+11g<αΠ̂K

n ÊnP̂K
n+1

.

Also here, we drop the superscript K whenever it is clear from the context which
K is meant.

A.3. Preliminary results. The following result is similar to [71, Theorem 3] and
states, that the error of the approximation of any integrable function by randomized
neural networks converges P̃-a.s. to 0 as the number of hidden nodes goes to infinity,
where P̃ is the probability measure associated with the random weights. While [71,
Theorem 3] shows universal approximation in Lp-norm with respect to the Lebesgue
integral on a compact subset, we show it with respect to a probability measure on
the entire space. We note that our result also holds when replacing the probability
measure with a finite measure. In particular, our result implies the result of [71], by
using the finite measure that coincides with the Lebesgue measure on the respective
compact set and vanishes outside. For completeness, we give an independent proof
of our result here.

Theorem A.1. Let 0 ≤ n ≤ N − 1 and J be a square integrable function, i.e.
∥J∥πn

<∞. Then,

∥ΠK
n J − J∥πn

P̃-a.s.−−−−→
K→∞

0.

Lemma A.2. Let X ,Y be normed spaces and µ be a probability measure on X
with its Borel σ-Algebra. Let J : X × Y → R be a bounded function such that for
each C > 0 and each x ∈ X with ∥x∥ < C the function y 7→ J(x, y) is Lipschitz
continuous with Lipschitz constant LC (depending only on C but not on x). Then,
for any ϵ > 0 and y ∈ Y, there exists an open neighborhood O(y, ϵ) ⊂ Y such that
y ∈ O(y, ϵ), and for every ỹ ∈ O(y, ϵ) we have∫

X
|J(x, y)− J(x, ỹ)|2dµ(x) < ϵ.

Proof. Since J is bounded, there exists M such that |J | < M . Since µ is finite,
there exists some C such that µ({x ∈ X |∥x∥ ≥ C}) < ϵ

8M2 . Hence, for any ỹ ∈ Y∫
X
|J(x, y)− J(x, ỹ)|21∥x∥≥C dµ(x) <

∫
X
(2M)21∥x∥≥C dµ(x) < ϵ/2.

62 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

Let us choose O(y, ϵ) := B

(
y,
√

ϵ
2L2

C

)
, the open ball with radius

√
ϵ

2L2
C
and center

y. Then, for any x with ∥x∥ < C and ỹ ∈ O(y, ϵ), we have |J(x, y) − J(x, ỹ)| <
LC∥y − ỹ∥ <

√
ϵ/2. Therefore,

∫
X
|J(x, y)− J(x, ỹ)|21∥x∥<C dµ(x) <

∫
X
ϵ/2 dµ(x) < ϵ/2.

Together, this yields the result.

We first prove the following weaker version of the statement of Theorem A.1.

Lemma A.3. Let 1 ≤ n ≤ M and J be an integrable function, i.e., ∥J∥πn
< ∞.

Then,

∥ΠK
n J − J∥πn

P̃−−−−→
K→∞

0.

Proof. We fix ε > 0. We have to show that

lim
K→∞

P̃
[
∥ΠK

n J − J∥πn > ε
]
= 0.

By the universal approximation theorem [41, Theorem 1], there exists a 1-hidden

layer neural network Ĵ with n1 hidden neurons such that ∥Ĵ−J∥πn
< ε/2. Without

loss of generality, we assume that the bias of the last layer is 0, which can be
established by introducing another hidden neuron which is constant as a function
of its input. We notice that also ΦKθ is a 1-layer neural network with K hidden
nodes (and the same activation function as Ĵ), where the weights of the input layer
are i.i.d. sampled of a normal distribution and then fixed, and the weights of the
output layer are θ. Let θ⋆ ∈ Rn1 be the weights of the output layer of Ĵ . For each
of the hidden nodes 1 ≤ ν ≤ n1 of Ĵ , we denote the mapping from the input to
this hidden node by Ĵh

ν . Let Wν be the weights defining Ĵh
ν , and denote by Ψ the

operator mapping the weights to the corresponding neural network layer, such that
ΨWν = Ĵh

ν . We know from [39] that Ĵh
ν is Lipschitz continuous w.r.t. the weights

for a bounded input ∥x∥ ≤ N . Moreover, since the activation function is bounded,

so is Ĵh
ν . Therefore, by Lemma A.2 there exists an open neighbourhood Wν of Wν

such that for all W ∈ Wν we have

∥ΨW −ΨWν∥πn
< ε

2
√
n1|θ⋆|2 .

For any non-empty open set, the probability that a standard Gaussian random vari-
able lies in this open set is positive. Let Vk be the weights of the k-th random map
ϕk, i.e., ϕk = ΨVk, and note that Vk is a vector of i.i.d. standard Gaussian random
variables. Since Wν is open, we therefore have that P̃[Vk ∈ Wν] > 0. By indepen-

dence of the weights, we have that with probability 1 each Ĵh
ν is approximated well

OPTIMAL STOPPING VIA RANDOMIZED NNS 63

by some ϕk when K →∞. Indeed, let K = n1K̃, and then we have

P̃ [∀1 ≤ ν ≤ n1 ∃1 ≤ k ≤ K : Vk ∈ Wν]

≥ P̃
[
∀1 ≤ ν ≤ n1 ∃(ν − 1)K̃ < k ≤ νK̃ : Vk ∈ Wν

]
=

n1∏
ν=1

P̃
[
∃(ν − 1)K̃ < k ≤ νK̃ : Vk ∈ Wν

]

=

n1∏
ν=1

(
1− P̃

[
∀(ν − 1)K̃ < k ≤ νK̃ : Vk /∈ Wν

])

=

n1∏
ν=1

(
1− P̃ [V1 /∈ Wν]

K̃
)

K̃→∞−−−−→ 1,

where we used in lines 3 and 5 independence of the weights and for the limit that
P̃ [V1 /∈ Wν] < 1. We define θ̃⋆ ∈ RK to have the k-th coordinate equal to θ⋆ν if

k = k(ν) := argminj∥ϕj − Ĵh
ν ∥πn or 0 otherwise. Here we assume without loss of

generality that all k(ν) are different (if they are not, the weights are summed up).
Then, we have

∥ΠK
n J − J∥πn ≤ ∥ΦK θ̃

⋆ − J∥πn ≤ ∥ΦK θ̃
⋆ − Ĵ∥πn + ∥Ĵ − J∥πn

≤ ∥ΦK θ̃
⋆ − Ĵ∥πn + ε/2,

and therefore

P̃
[
∥ΠK

n J − J∥πn > ε
]
≤ P̃

[
∥ΦK θ̃

⋆ − Ĵ∥πn
> ε/2

]
= P̃

[
∥(ΨVk)Kk=1θ̃

⋆ − (ΨWν)
n1
ν=1θ

⋆∥πn
> ε/2

]
.

Now, we notice that θ̃⋆k is 0 unless k = k(ν) for some 1 ≤ ν ≤ n1. Hence,

P̃
[
∥ΠK

n J − J∥πn
> ε
]
≤ P̃

[
∥(ΨVk(ν))n1

ν=1θ
⋆ − (ΨWν)

n1
ν=1θ

⋆∥πn
> ε/2

]
≤ P̃

[
∥(ΨVk(ν))n1

ν=1 − (ΨWν)
n1
ν=1∥πn

> ε
2|θ⋆|2

]
≤ P̃

[
∃1 ≤ ν ≤ n1 : ∥ΨVk(ν) −ΨWν∥πn

> ε
2
√
n1∥θ⋆∥

]
= 1− P̃ [∀1 ≤ ν ≤ n1∃1 ≤ k ≤ K : Vk ∈ Wν]

K→∞−−−−→ 0.

For the second inequality we used the Cauchy-Schwarz inequality and that ∥θ⋆∥πn
=

|θ⋆|2. In the last equality we used that k(ν) is chosen such that the distance between
ΨVk(ν) and ΨWν is minimized.

Proof of Theorem A.1. By Lemma A.3 we know that ∥ΠK
n J−J∥πn

P̃−−−−→
K→∞

0, which

implies that there exists a subsequence (Km)m≥1 s.t. ∥ΠKm
n J − J∥πn

P̃-a.s.−−−−→
m→∞

0.

Let Ω̂ ⊂ Ω̃ with P̃(Ω̂) = 1 be the set on which this convergence holds and let

ω ∈ Ω̂. Hence, for each ϵ > 0 there exists mϵ such that for m ≥ mϵ we have
∥ΠKm

n J − J∥πn(ω) ≤ ϵ. Now, it is enough to remark that the projection can only

64 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

get better when more random basis functions are used, since the space on which it
is projected gets larger, implying that for K ≤ K̃,

∥ΠK
n J − J∥πn

(ω) ≥ ∥ΠK̃
n J − J∥πn

(ω).

Therefore, also the original sequence converges at this ω, since given ϵ > 0 for all
K ≥ Kmϵ , we have

∥ΠK
n J − J∥πn

(ω) ≤ ∥ΠKmϵ
n J − J∥πn

(ω) ≤ ϵ.

Theorem A.1 holds equivalently if neural networks with more than 1 hidden layer
are used. The proof is a straightforward extension of the proof given above.

A.4. Convergence results. The price of the Bermudan approximation of the
American option can be expressed with the exact algorithm as

U0 := max (g(X0), Q0(X0)) ,

and the price computed with the idealized algorithm is

UK
0 := max

(
g(X0), Q̃

K
0 (X0)

)
while the price computed with the implementable algorithm is

UK,m
0 := max

(
g(X0),

1

m

m∑
i=1

ˆ̃QK
0 (x0, x

i
1, . . . , x

i
N)

)
.

We provide two different convergence results with two different assumptions.
The first result is based on [20] and needs a technical assumption that might not be
satisfied in general. The second result is based on [70] and replaces this assumption
by a stronger integrability assumption on the payoff.

A.4.1. Convergence results based on [20]. Combining the following two results, con-

vergence of UK,mK

0 to U0 as K → ∞ can be established by choosing a suitable
sequence (mK)K≥1, under the assumption that g(Xn) is square integrable for all
0 ≤ n ≤ N .

Theorem A.4. The idealized price UK
0 converges to the correct price U0 P̃-a.s. as

K →∞.

Theorem A.5. We assume that Q[αΠK
n EnP

K
n+1(Xn) = g(Xn)] = 0 for all 0 ≤

n ≤ N − 1. Then, the implementable price UK,m
0 converges almost surely to the

idealized price UK
0 as m→∞.

The proofs are a direct consequence of [20].

Proof of Theorems A.4 and A.5. The proofs are implied by the results presented in
[20, Section 3]. We only need to establish that their assumption A1 is satisfied. The
assumption A2 is actually not needed, as explained below.

Assumption A1 is that (ϕk(Xn))k≥1 is total in L2(σ(Xn)) for every 1 ≤ n ≤
N − 1, which is used to show that ∥ΠK

n Qn−Qn∥πn
converges to 0. We replace this

assumption by our Theorem A.1, which therefore yields P̃-almost sure convergence
in the result.

Assumption A2 is that for every 1 ≤ n ≤ N and every K > 0, if
∑K

k=0 λkϕk(Xn)
= 0 almost surely, then all λk = 0. This assumption is actually only needed for
the projection weights to be uniquely defined, such that they can be expressed by

OPTIMAL STOPPING VIA RANDOMIZED NNS 65

the closed-form ordinary least squares formula. Otherwise, if this assumption is not
satisfied, there exist several weight vectors θ, which all define the same projection
ΦKθ minimizing the projection objective. By Gram–Schmidt, we can generate an
orthonormal basis (ϕ̃k)1≤k≤K̃(K) of the linear subspace of L2 that is spanned by

(ϕk)1≤k≤K , with K̃(K) ≤ K. By its definition, (ϕ̃k)1≤k≤K̃(K) satisfies assumption

A2; therefore, the results of [20, Section 3] can be applied. Finally, we note that

the projections are the same, no matter whether (ϕ̃k)1≤k≤K̃ or (ϕk)1≤k≤K are used
to describe the space that is spanned. We are interested in the convergence of the
price. Considering the definition (14), we see that the price depends only on the
projection but not on the used weights. Therefore, we can conclude that the same
statements hold with our originally defined random basis functions (ϕk)1≤k≤K .

The technical assumption that Q[αΠK
n EnP

K
n+1(Xn) = g(Xn)] = 0 for all 0 ≤ n ≤

N − 1 of the result of [20] that shows up in Theorem A.5 is not always satisfied. In
particular, it is easy to construct examples of finite probability spaces, where this is
not the case. Indeed, consider the easiest possible case of probability space which
is a singleton, with a (deterministic) constant stock price without discounting, and
then Q[ΠK

n EnP
K
n+1(Xn) = g(Xn)] = 1. Therefore, in the next section, we provide

a different proof based on the work of [70], which replaces this assumption with a
slightly stronger integrability assumption on the payoff process.

A.4.2. Convergence results based on [70]. After the work of [20], improved theoreti-
cal guarantees to the original least squares Monte Carlo algorithm (LSM) have been
proposed, such as [60, 23, 34]. An important improvement of the convergence results
is done in [67, 68, 69, 70]. In particular, [67] raised the issue that [20] has additional
restrictions on the law of the underlying Markov process such as the assumption
in Theorem A.5 mentioned above. [67] proposed a generalized LSM algorithm and
provides a proof of convergence in probability [67, Theorem 5.1]. In this theorem,
the condition of [20] is not needed, but instead the payoff needs to be bounded al-
most surely [67, Definition 5.1 and 5.2]. [68] provides error estimates (convergence
rates), even when the underlying process and payoff process are not necessarily in
L∞. Later, [69] provides a convergence result [69, Corollary 5.5] without the as-
sumption in Theorem A.5 of [20], but with a bounded payoff process. However,
this time, almost sure convergence is shown instead of convergence in probability.
Finally, in the last paper [70], the assumption of having a bounded payoff process is
replaced by a condition on its moments [70, Corollary 1]. We use this last result to
prove our second convergence theorem. To state this result we define the truncation
operator Tλ for truncation level λ > 0 acting on any real-valued function f by

Tλf(x) =

f(x), if |f(x)| ≤ λ,

λ sign(f(x)), otherwise.

Theorem A.6. Assume that there exists some 2 < p ≤ ∞ such that

Mp := max
1≤n≤N

∥g(Xn)∥pLp <∞

and that all payoffs are non-negative. Moreover, assume that we use the truncated
versions of the payoffs g(Xn) in Algorithm 1 as well as the truncated versions of
the randomized neural networks, with truncation level 1 ≤ λ <∞. Then,

E
[∣∣∣UK,m

0 − U0

∣∣∣] P̃−a.s.−−−−−−→
K,m→∞

0,

66 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

when choosing λ = m1/8.

The proof is a direct consequence of [70, Corollary 1].

Proof. Let us fix the number of paths m and the number of random basis functions
K. Then, [70, Corollary 1] implies that

E
[∣∣∣UK,m

0 − U0

∣∣∣]

≤ 6N

Cλ2
(√

νc0 log
1
2 (m) + log

1
2 (C0)

)
√
m

+ 4
√
ε+ max

n=1,...,N−1

(
inf

f∈BK,λ
n

∥f −Qn∥πn

)
+

(
8Mpλ

(2−p)

p− 2

)1/2
)
,

where C0 = C(c0ν+1)4(Cλ4)2ν(1+c0), c0 = 2(N+1) log2(e(N+1)), C is a numerical
constant with 1 ≤ C <∞, and ε ≥ 0 is defined in [70, Equation 13]. Here, ν is the
Vapnik–Chervonenkis (VC) dimension of the set of randomized neural networks,
which is finite according to [70, Remark 8]. For each exercise time 1 ≤ n ≤ N − 1
the set BK,λ

n is defined to be the set of all λ-truncated randomized neural networks
using the first K random basis functions (i.e., any truncated version of a linear
combination of the basis functions (ϕk)1≤k≤K). In particular,

BK,λ
n = {Tλf |f ∈ span{ϕ1, . . . , ϕK}},

where Tλ is the operator truncating a function at λ. Note that for any function f ,
we have that

∥(Tλf −Qn)1{|Qn|<λ}∥πn ≤ ∥(f −Qn)1{|Qn|<λ}∥πn .

Therefore,

inf
f∈BK,λ

n

∥(f −Qn)1{|Qn|<λ}∥πn

≤ inf
f∈span{ϕ1,...,ϕK}

∥(f −Qn)1{|Qn|<λ}∥πn

≤ inf
f∈span{ϕ1,...,ϕK}

∥f −Qn∥πn = ∥ΠK
n Qn −Qn∥πn .

Hence, we can now bound the approximation error with truncated randomized
neural networks by

inf
f∈BK,λ

n

∥f −Qn∥πn

≤ inf
f∈BK,λ

n

(
∥(f −Qn)1{|Qn|<λ}∥πn

+ ∥(f −Qn)1{|Qn|≥λ}∥πn

)
≤ inf

f∈BK,λ
n

∥(f −Qn)1{|Qn|<λ}∥πn
+ sup

f∈BK,λ
n

∥(f −Qn)1{|Qn|≥λ}∥πn

≤ ∥ΠK
n Qn −Qn∥πn

+ 2∥Qn1{|Qn|≥λ}∥πn
,

where in the last inequality we used that functions in BK,λ
n are truncated at λ,

implying that they are bounded by |Qn| on the set {|Qn| ≥ λ}. Moreover, we

OPTIMAL STOPPING VIA RANDOMIZED NNS 67

can choose ε = 1/m, replace λ = m1/8 and simplify all expressions by using one

common constant C̃ to rewrite

E
[∣∣∣UK,m

0 − U0

∣∣∣]
≤ C̃

(
log

1
2 (m)

m1/4
+

1√
m

+ max
n=1,...,N−1

(
∥ΠK

n Qn −Qn∥πn
+ 2∥Qn1{|Qn|≥m1/8}∥πn

)
+m

2−p
16

)
.

Now, it suffices to note that the terms ∥ΠK
n Qn−Qn∥πn converge to 0 as K →∞ by

Theorem A.1, the terms ∥Qn1{|Qn|≥m1/8}∥πn
converge to 0 asm→∞ by dominated

convergence, and the remaining terms trivially converge to 0 as m→∞.

Appendix B. Convergence of the randomized fitted Q-iteration (RFQI).
Similarly as in Appendix A, we first introduce some additional technical notation
needed for the proofs. Then, we describe the steps from the theoretical idea of
RFQI to its implementable version that was presented in Section 3. In contrast to
Appendix A, the algorithms described here are applied simultaneously for all times.
Again, the proof is a direct consequence of [64] and Theorem A.1, but it is given in
detail for completeness.

B.1. Definitions. In Section 6, [64] introduced a reinforcement learning version
of their optimal stopping algorithm, where a stopping function is learned that gen-
eralizes over time. In particular, instead of learning a different function for each
time step, a single function that gets the time as input is learned with an iterative
scheme. In accordance with this, the random basis functions are redefined such that
they also take time as input.

ϕk : Rd × {0, . . . , N − 1} → R,

(x, n) 7→ ϕk(x, n) := σ(α⊤
k (x, n)

⊤ + βk),

with αk ∈ Rd+1 and βk ∈ R. For 0 ≤ n ≤ N − 1 let ΦK,n be defined similarly to
before as

(ΦK,nθ)(x) := θ⊤ϕ(x, n) :=

K∑
k=1

θkϕk(x, n),

for θ ∈ RK and x ∈ Rd. Moreover, let Φk := (ΦK,0, . . . ,ΦK,N−1), such that

Φkθ := (ΦK,0θ, . . . ,ΦK,N−1θ).

In the following, we consider the product space (L2)N := L2(π0)× · · · × L2(πN−1),
which is the space on which the functions for all time steps can be defined concur-
rently. For J = (J0, . . . , JN−1) ∈ (L2)N we define the norm

∥J∥π :=
1

N

N−1∑
n=0

∥Jn∥πn
,

where ∥·∥πn is as defined in Appendix A. Let us define the projection operator ΠK

as

(ΠKJ) := argmin
ΦKθ
∥ΦKθ − J∥π,

68 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

for J = (J0, . . . , JN−1) ∈ (L2)N . Finally, we define the operator

H : (L2)N → (L2)N ,

J0

...

JN−2

JN−1

 7→

αE0 max(g, J1)

...

αEN−2 max(g, JN−1)

αEN−1g

 , (15)

where En and g are as defined previously.

B.2. Theoretical description of the algorithm. Based on the definitions in
Appendix A.2, we first introduce the exact algorithm and then give the two-step
approximation with the idealized and implementable algorithm.

B.2.1. Exact algorithm. LetQn be as defined in (12), and thenQ := (Q0, . . . , QN−1)
satisfies Q = HQ by definition. In particular, Q is a fixed point of H. It was
shown in [64, Section 6] that H is a contraction with respect to the norm ∥·∥π with
contraction factor α. Hence, the Banach fixed point theorem implies that there
exists a unique fixed point, which therefore has to be Q, and that for any starting
element J0 ∈ (L2)N , J i converges to Q in (L2)N as i → ∞, where J i+1 := HJ i.
This yields a way to find the exact algorithm Q iteratively.

B.2.2. Idealized algorithm. The combined operator ΠKH is a contraction on the
space ΠK(L2)N , since the projection operator is a non-expansion as outlined in
[64, Section 6]. The idealized algorithm is then defined as the unique fixed point

Q̃K of ΠKH, which can again be found by iteratively applying this operator to
an arbitrary starting point. Since any element in ΠK(L2)N is given as ΦKθ for
some weight vector θ ∈ RK , this iteration can equivalently be given as iteration
on the weight vectors. To do this, let us assume without loss of generality that
(ϕk)1≤k≤K are linearly independent (if not, see the strategy in Proof of Theorem
A.4 and A.5). Then, given some starting weight vector θ0K , the iterative application
of ΠKH defines the weight vectors

θi+1
K :=α

(
E

[
N−1∑
n=0

ϕ⊤1:K(Xn, n)ϕ1:K(Xn, n)

])−1

× E

[
N−1∑
n=0

ϕ⊤1:K(Xn, n) ·max
(
g(Xn+1), (ΦK,n+1θ

i
K)(Xn+1)

)]
,

where ϕ1:K = (ϕ1, . . . , ϕK). This closed-form solution is exactly the ordinary least
squares (OLS) formula, and this result was shown in [64, Section 6].

B.2.3. Implementable algorithm. An implementable version of this iteration is de-
fined by the Monte Carlo approximation of the weight vectors. In particular, we
assume that m realizations (xj0, . . . , x

j
N)1≤j≤m of X are sampled and fixed for all

iterations. Then, for θ̂0K,m = θ0K we iteratively define

θ̂i+1
K,m :=α

 m∑
j=1

N−1∑
n=0

ϕ⊤1:K(xjn, n)ϕ1:K(xjn, n)

−1

OPTIMAL STOPPING VIA RANDOMIZED NNS 69

×
m∑
j=1

N−1∑
n=0

ϕ⊤1:K(xjn, n) ·max
(
g(xjn+1), (ΦK,n+1θ̂

i
K,m)(xjn+1)

)
,

which in turn defines Q̂K,m,i := ΦK θ̂
i
K,m. As explained in [64, Section 6], this imple-

mentable iteration can equivalently be described as iteratively applying the operator

Π̂KH. Here Π̂KH is identical to ΠKH, but with the measures πn replaced by the
empirical measures π̂n arising from the sampled trajectories (xj0, . . . , x

j
N)1≤j≤m.

Hence, Π̂KH is also a contraction, and Banach’s fixed point theorem implies con-
vergence to the unique fixed point

Q̂K,m,i i→∞−−−→ Q̂K,m =: ΦK θ̂
⋆
K,m.

We note that this also implies that θ̂iK,m
i→∞−−−→ θ̂⋆K,m.

B.3. Convergence result. In the following, we show that prices of Bermudan op-
tions computed with the two approximation steps of the exact algorithm converge
to the correct price, as K,m → ∞. The prices are defined similarly as in Appen-
dix A.4. Hence, it is enough to show that Q̂K,mi,i converges to Q̃K as i → ∞ and
that Q̃K converges to Q as K →∞.

Theorem B.1. Q̃K converges P̃-a.s. to Q as K →∞, i.e.,

∥Q̃K −Q∥π
P̃−a.s.−−−−→
K→∞

0.

Proof. First, let us recall [64, Theorem 3], which states that for 0 < κ < 1, the
contraction factor of ΠKH, we have

∥Q̃K −Q∥π ≤
1√

1− κ2
∥ΠKQ−Q∥π.

Now, since ΠK is a non-expansion, and H a is contraction with factor α, we have
κ ≤ α < 1. Therefore, for every K we have

∥Q̃K −Q∥π ≤
1√

1− α2
∥ΠKQ−Q∥π. (16)

Finally, we remark that Theorem A.1 holds equivalently for the norm ∥·∥π, since
the universal approximation theorem can equivalently be applied to the functions
with the combined input (x, n). Hence, the right hand side of (16) converges to 0

P̃-a.s. as K →∞.

We recall that the weight vectors θ̂iK,m are random variables since they depend
on the m sampled trajectories of X.

Lemma B.2. For any fixed i ∈ N we have that θ̂iK,m converges to θiK Q-a.s. as
m→∞.

Proof. The proof follows the proof of [64, Theorem 2]. We introduce the interme-
diate weight as

θ̃iK,m :=α

 m∑
j=1

N−1∑
n=0

ϕ⊤1:K(xjn, n)ϕ1:K(xjn, n)

−1

70 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

×
m∑
j=1

N−1∑
n=0

ϕ⊤1:K(xjn, n) ·max
(
g(xjn+1), (ΦK,n+1θ

i−1
K)(xjn+1)

)
.

Then, it is clear that θ̃iK,m converges to θiK Q-a.s. as m→∞, by the strong law of

large numbers. Hence, δi(m) := |θ̃iK,m − θiK |2 converges to 0 Q-a.s. Moreover, for

suitably chosen random variables Ai(m) that remain bounded as m→∞, we have

θ̂iK,m − θ̃iK,m = Ai(m)|θ̂i−1
K,m − θ

i−1
K |2.

Therefore, we have by the triangle inequality

|θ̂iK,m − θiK |2 ≤ δi(m) +Ai(m)|θ̂i−1
K,m − θ

i−1
K |2.

Since (by our choice) we start with the same weight vector θ̂0K,m = θ0K , we can
conclude by induction that

|θ̂iK,m − θiK |2
Q−a.s.−−−−→
m→∞

0.

However, we remark that this proof works only as long as i is fixed, but not in the
limit i→∞, because the inductive steps would lead to an infinite sum.

Theorem B.3. Let K ∈ N be fixed. Then, there exists a random sequence (mi)i≥0

such that Q̂K,mi,i converges Q-a.s. to Q̃K as i→∞, i.e.,

∥Q̂K,mi,i − Q̃K∥π
Q−a.s.−−−−→
i→∞

0.

Proof. Let us define θ⋆K ∈ RK to be the weight vector of the unique fixed point

Q̃K of ΠKH, i.e., Q̃K = ΦKθ
⋆
K . From Banach’s fixed point theorem we know that

|θiK − θ⋆K |2 → 0 as i→∞.
With Lemma B.2 we know that for every i ∈ N there exists Ωi ⊂ Ω with Q(Ωi) =

1 such that θ̂iK,m(ω) converges to θiK for all ω ∈ Ωi. Let Ω∞ := ∩∞i=1Ωi be the

set on which this convergence holds for all i ∈ N, and then Q(Ω∞) = 1. Fix
ω ∈ Ω∞. Now, let us choose m0 = 0; and for every i > 0, mi > mi−1 such that

|θ̂iK,mi
(ω)− θiK |2 ≤ 1/i. Therefore, we obtain that

|θ̂iK,mi
(ω)− θ⋆K |2 ≤ |θ̂iK,mi

(ω)− θiK |2 + |θiK − θ⋆K |2 ≤
1

i
+ |θiK − θ⋆K |2,

which converges to 0 when i tends to infinity.

Appendix C. Convergence of the randomized recurrent least squares
Monte Carlo (RRLSM). In this section, we extend the results of Appendix A
to the non-Markovian setting, where we assume that the path up to the current
time is a Markov process. In particular, given a discrete time stochastic process
X = (X0, . . . , XN) as before, we assume that its extension Z = (Z0, . . . , ZN) with
Zn = (Xn, Xn−1, . . . , X0, 0, . . . , 0) taking values in RN+1×d for all 0 ≤ n ≤ N is a
Markov process. Hence, all results of Appendix A hold similarly up to replacing
X by Z, and they also hold for payoff functions that depend on the entire path of
X up to the current time. In particular, this immediately implies that RLSM with
the path input Z approximates the correct price of the Bermudan option arbitrarily
well as K → ∞. Therefore, it is only left to show that an equivalent result to
Theorem A.1 holds for our randomized recurrent neural network (6), which takes
X as input instead of Z but makes use of a latent variable in which information
about the past is stored.

OPTIMAL STOPPING VIA RANDOMIZED NNS 71

Fix some 1 ≤ n ≤ N − 1 and let πn now be the distribution of Zn under
Q. Moreover, let the basis functions ϕn = (ϕnk)k≥1 be now given by the n-th
latent variable hn of (6). In particular, we define ϕnk as the function mapping
zn = (xn, xn−1, . . . , x0, 0, . . . , 0) to the k-th coordinate of the recursively defined
vector

hn = σ(Axxn +Ahhn−1 + b), (17)

where h−1 = 0. By abuse of notation, for growing k we let the matrices grow
by adding new rows of random elements to b, Ax and Ah and filling up the new
columns of previous rows of Ah with zeros. Like this, ϕnk is well defined for all
k ≥ 1. The operator ΠK

n is defined similarly as before, but with this new set of
basis functions, defined on the set of πn-integrable functions J . Then, we have to
show that the following result is true, so that the assumptions for Theorem A.4 and
A.5 are satisfied. The remainder of their proof works as before.

Proposition C.1. If the activation function σ is invertible, then for all 0 ≤ n ≤
N − 1,

∥ΠK
n Qn −Qn∥πn

P̃-a.s.−−−−→
K→∞

0. (18)

Before we start with the proof, we remark that standard results for the approxi-
mation of dynamical systems with RNNs [57] and reservoir computing systems [35]
do not apply here, since the dynamical system to approximate Q = (Q0, . . . , QN−1)
is not time-invariant (in the language of [35]).

Proof. First, we note that it is enough to show that for any ϵ > 0 there exists
some size K ∈ N and weight matrices b, Ax, Ah such that the corresponding neural
network approximation Π̃n

KQn satisfies ∥Π̃K
n Qn−Qn∥πn

< ϵ for all 0 ≤ n ≤ N − 1.
Indeed, if this is true, the convergence (18) follows by the same arguments as in
Lemma A.3 and Theorem A.1.

Second, we note that it is enough to show the statement above for any fixed n
separately, i.e., that for each 0 ≤ n ≤ N − 1 and ϵ > 0 there exist Kn ∈ N and
weight matrices bn, An

x , A
n
h such that the corresponding neural network approxi-

mation Π̃n
KQn satisfies ∥Π̃K

n Qn − Qn∥πn < ϵ. Indeed, if this is true, the stronger
statement follows immediately by setting

Ax =

A0

x

...

AN−1
x

 , Ah =

A0

h

. . .

AN−1
h

 and b =

b0

...

bN−1

 .

Hence, let us fix some ϵ > 0 and 0 ≤ n ≤ N − 1 and let us assume that d = 1 for
simplicity of notation, while the extension to d > 1 is immediate. We know from
the universal approximation theorem [41, Theorem 1] that there exists some neural
network f such that ∥f − Qn∥πn

< ϵ. The difference between the approximation

Π̃n
K and f is that Π̃n

K gets a recurrent input, while f gets the entire path as in-
put. However, since n is fixed and finite, we can simply accumulate the same path

72 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

information in hn by setting b̂ = 0, Âx = (1, 0, . . . , 0)⊤ ∈ Rn and

Âh =

0 . . . 0

1 0 . . . 0

0
. . .

...

...

0 . . . 0 1 0

∈ Rn×n.

Indeed, with this choice we have ĥn−1 = (σ(xn−1), σ(σ(xn−2)), . . . , σ
(n)(x0))

⊤ ac-
cording to (17). It remains to show that the input zn to f can be replaced by

(xn, ĥn−1). For this, let us define the function

φ : (xn, . . . , x0, 0, . . . , 0) 7→ (xn, σ(xn−1), . . . , σ
(n)(x0)).

Under the assumption that σ is invertible, φ also is, and there exists a function
Q̃n such that Q̃n ◦ φ = Qn. Since Qn is integrable with respect to πn, the change
of variables formula implies that Q̃n is integrable with respect to φ−1 ◦ πn and

E(φ−1◦πn)[Q̃n] = Eπn [Q̃n ◦ φ] = Eπn [Qn]. Therefore, there exists a neural network

f̃ = β̃⊤ σ(Ã ·+b̃) such that

∥f̃ ◦ φ−Qn∥πn = ∥(f̃ − Q̃n) ◦ φ∥πn = ∥f̃ − Q̃n∥φ−1◦πn
< ϵ.

By extending b̂, Âx, Âh to

b =

(
b̂

b̃

)
, Ax =

(
Âx

Ã1

)
, Ah =

(
Âh 0

Ã2:n+1 0

)
,

where Ã = (Ã1, Ã2:n+1), we get

hn =

(
ĥn

h̃n

)
=

(
σ(Âxxn + Âhĥn−1 + b̂)

σ(Ãφ(zn) + b̃)

)
,

where β̃⊤h̃n = f̃(φ(zn)). Therefore, we can conclude the proof, since the corre-

sponding approximation Π̃n
K satisfies ∥Π̃n

KQn −Qn∥πn
≤ ∥f̃ ◦ φ−Qn∥πn

≤ ϵ.

Remark C.2. The idea of the proof is to use the recurrent structure only to
recover the path-wise input zn for which the standard feed-forward neural network
approximation results can be used. This is clearly less efficient than using the path-
wise input directly. However, in practice, the recurrent neural network approach
is usually more efficient than the path-wise approach, finding better ways to store
and process the past information than the one given in the proof. This is in line
with our empirical findings.

C.1. Stopping of a fractional Brownian motion – table. The results shown
in the plots of Section 7.3 are given in Table 16.

OPTIMAL STOPPING VIA RANDOMIZED NNS 73

T
a
b
l
e
1
6
.
R
es
u
lt
s
of

st
o
p
p
in
g
a
fr
a
ct
io
n
a
l
B
ro
w
n
ia
n
M
o
ti
o
n
fo
r
d
iff
er
en
t
H
u
rs
t
p
a
ra
m
et
er
s.

p
ri
ce

d
u
ra
ti
on

H
D
O
S

p
at
h
D
O
S

R
L
S
M

R
R
L
S
M

F
Q
I

R
F
Q
I

R
R
F
Q
I

p
a
th
R
F
Q
I

D
O
S

p
at
h
D
O
S

R
L
S
M

R
R
L
S
M

F
Q
I

R
F
Q
I

R
R
F
Q
I

p
at
h
R
F
Q
I

0.
01

0.
85

(0
.0
2)

1.
48

(0
.0
1)

0.
84

(0
.0
1)

1.
45

(0
.0
1)

0.
7
9
(0
.0
1
)

0
.7
8
(0
.0
2
)

0
.8
5
(0
.0
7)

1.
0
9
(0
.0
8
)

1
m
1
5
s

2
m
59
s

0
s

1
s

9s
5s

1
8
s

1
8
s

0.
05

0.
67

(0
.0
2)

1.
24

(0
.0
1)

0.
65

(0
.0
1)

1.
24

(0
.0
1)

0.
6
8
(0
.0
1
)

0
.6
7
(0
.0
2
)

0
.7
1
(0
.0
4)

0.
9
9
(0
.0
7
)

1
m
1
5
s

3
m

1
s

0
s

1
s

9s
4s

1
9
s

1
9
s

0.
1

0.
50

(0
.0
2)

0.
99

(0
.0
1)

0.
49

(0
.0
1)

1.
02

(0
.0
1)

0.
5
7
(0
.0
1
)

0
.5
5
(0
.0
1
)

0
.5
6
(0
.0
5)

0.
8
3
(0
.0
3
)

1
m
1
2
s

2
m
58
s

0
s

1
s

1
0s

4s
1
9
s

2
0
s

0.
15

0.
37

(0
.0
2)

0.
77

(0
.0
1)

0.
38

(0
.0
1)

0.
82

(0
.0
1)

0.
4
7
(0
.0
2
)

0
.4
5
(0
.0
2
)

0
.4
7
(0
.0
5)

0.
6
5
(0
.0
3
)

1
m
1
3
s

2
m
59
s

0
s

1
s

9s
4s

1
9
s

1
8
s

0.
2

0.
28

(0
.0
1)

0.
60

(0
.0
1)

0.
31

(0
.0
1)

0.
64

(0
.0
1)

0.
3
8
(0
.0
1
)

0
.3
5
(0
.0
9
)

0
.3
1
(0
.0
2)

0.
5
3
(0
.0
2
)

1
m
1
5
s

2
m
58
s

1
s

1
s

9s
4s

1
9
s

1
7
s

0.
25

0.
23

(0
.0
1)

0.
44

(0
.0
1)

0.
25

(0
.0
1)

0.
49

(0
.0
1)

0.
2
9
(0
.0
1
)

0
.2
6
(0
.0
5
)

0
.2
6
(0
.0
4)

0.
3
9
(0
.0
2
)

1
m
1
4
s

2
m
58
s

1
s

1
s

9s
4s

1
8
s

1
9
s

0.
3

0.
18

(0
.0
1)

0.
30

(0
.0
1)

0.
20

(0
.0
1)

0.
36

(0
.0
1)

0.
2
1
(0
.0
1
)

0
.1
7
(0
.0
1
)

0
.1
5
(0
.0
1)

0.
2
7
(0
.0
1
)

1
m
1
3
s

2
m
57
s

1
s

1
s

9s
4s

1
8
s

1
8
s

0.
35

0.
13

(0
.0
1)

0.
19

(0
.0
1)

0.
15

(0
.0
1)

0.
25

(0
.0
1)

0.
1
4
(0
.0
1
)

0
.1
3
(0
.0
2
)

0
.1
2
(0
.0
3)

0.
1
7
(0
.0
1
)

1
m
1
5
s

2
m
57
s

1
s

1
s

9s
4s

1
8
s

1
9
s

0.
4

0.
08

(0
.0
1)

0.
10

(0
.0
1)

0.
10

(0
.0
1)

0.
14

(0
.0
1)

0.
0
9
(0
.0
1
)

0
.0
6
(0
.0
1
)

0
.0
6
(0
.0
1)

0.
1
0
(0
.0
2
)

1
m
1
5
s

2
m
59
s

1
s

1
s

9s
4s

1
8
s

1
9
s

0.
45

0.
04

(0
.0
1)

0.
03

(0
.0
1)

0.
05

(0
.0
1)

0.
06

(0
.0
1)

0.
0
4
(0
.0
1
)

0
.0
2
(0
.0
1
)

0
.0
3
(0
.0
1)

0.
0
5
(0
.0
1
)

1
m
1
4
s

2
m
58
s

0
s

1
s

9s
4s

1
8
s

1
8
s

0.
5

0.
00

(0
.0
0)

0.
01

(0
.0
1)

0.
00

(0
.0
0)

0.
00

(0
.0
0)

0.
0
0
(0
.0
0
)

0
.0
0
(0
.0
1
)

0
.0
1
(0
.0
1)

0.
0
0
(0
.0
1
)

1
m
1
4
s

2
m
57
s

0
s

1
s

9s
4s

1
8
s

1
8
s

0.
55

0.
03

(0
.0
1)

0.
02

(0
.0
1)

0.
03

(0
.0
1)

0.
05

(0
.0
1)

0.
0
0
(0
.0
0
)

0
.0
0
(0
.0
0
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
6
s

3
m

0
s

1
s

1
s

9s
4s

1
7
s

1
8
s

0.
6

0.
07

(0
.0
0)

0.
09

(0
.0
1)

0.
08

(0
.0
1)

0.
10

(0
.0
1)

0.
0
0
(0
.0
1
)

0
.0
0
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
2
s

2
m
56
s

1
s

1
s

9s
4s

1
7
s

1
8
s

0.
65

0.
10

(0
.0
1)

0.
14

(0
.0
1)

0.
12

(0
.0
1)

0.
16

(0
.0
1)

0.
0
0
(0
.0
0
)

0
.0
1
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
3
s

2
m
59
s

1
s

1
s

9s
4s

1
7
s

1
8
s

0.
7

0.
14

(0
.0
1)

0.
19

(0
.0
1)

0.
16

(0
.0
1)

0.
20

(0
.0
1)

0.
0
0
(0
.0
0
)

0
.0
0
(0
.0
0
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
3
s

2
m
57
s

1
s

1
s

9s
4s

1
8
s

1
8
s

0.
75

0.
18

(0
.0
1)

0.
23

(0
.0
1)

0.
19

(0
.0
0)

0.
23

(0
.0
1)

0.
0
0
(0
.0
0
)

0
.0
0
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
5
s

2
m
55
s

1
s

1
s

9s
4s

1
8
s

1
8
s

0.
8

0.
22

(0
.0
1)

0.
26

(0
.0
1)

0.
23

(0
.0
1)

0.
26

(0
.0
1)

0.
0
0
(0
.0
1
)

0
.0
0
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
5
s

2
m
58
s

1
s

1
s

9s
4s

1
7
s

1
8
s

0.
85

0.
26

(0
.0
0)

0.
29

(0
.0
1)

0.
27

(0
.0
1)

0.
29

(0
.0
1)

0.
0
0
(0
.0
1
)

0
.0
0
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
6
s

2
m
55
s

1
s

1
s

9s
4s

1
8
s

1
8
s

0.
9

0.
30

(0
.0
1)

0.
33

(0
.0
1)

0.
30

(0
.0
0)

0.
32

(0
.0
0)

0.
0
0
(0
.0
1
)

0
.0
0
(0
.0
0
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
4
s

2
m
55
s

1
s

1
s

9s
4s

1
8
s

1
8
s

0.
95

0.
34

(0
.0
1)

0.
35

(0
.0
0)

0.
34

(0
.0
1)

0.
35

(0
.0
0)

0.
0
0
(0
.0
0
)

0
.0
0
(0
.0
0
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m

9
s

2
m
5
5
s

1
s

1
s

9
s

4
s

1
8s

1
8
s

0.
99
9

0.
38

(0
.0
1)

0.
39

(0
.0
1)

0.
38

(0
.0
1)

0.
38

(0
.0
0)

0.
0
0
(0
.0
0
)

0
.0
1
(0
.0
1
)

0
.0
0
(0
.0
0)

0.
0
0
(0
.0
0
)

1
m
1
8
s

2
m
45
s

1
s

1
s

9s
4s

1
8
s

1
8
s

74 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

C.2. Non-Markovian stock models – additional tables. Additional results
for the non-Markovian setting of a Heston model without the variance as input are
given in Tables 17-19.

Table 17. Max call option on Heston for different numbers of
stocks d.

price duration

d LSM DOS NLSM RLSM FQI RFQI EOP LSM DOS NLSM RLSM FQI RFQI EOP

5 8.34 (0.07) 8.29 (0.09) 8.17 (0.06) 8.31 (0.07) 8.23 (0.04) 8.34 (0.08) 8.23 (0.04) 11s 7s 3s 0s 3s 0s 0s

10 11.83 (0.07) 11.81 (0.09) 11.39 (0.16) 11.83 (0.07) 11.77 (0.04) 11.82 (0.05) 11.79 (0.05) 29s 6s 3s 0s 6s 0s 0s

50 19.60 (0.07) 20.04 (0.04) 18.14 (0.37) 19.32 (0.05) 20.05 (0.06) 20.08 (0.06) 20.06 (0.03) 8m50s 7s 3s 0s 6m36s 1s 0s

100 20.51 (0.09) 23.57 (0.07) 21.29 (0.46) 22.87 (0.04) 23.56 (0.07) 23.67 (0.05) 23.67 (0.05) 40m44s 9s 3s 0s 1h21m35s 1s 0s

500 - 31.62 (0.06) 28.38 (0.55) 31.33 (0.04) - 32.09 (0.06) 32.14 (0.02) - 44s 8s 1s - 1s 0s

1000 - 34.99 (0.08) 33.03 (0.50) 35.06 (0.04) - 35.83 (0.05) 35.84 (0.03) - 1m16s 15s 2s - 1s 0s

2000 - 37.77 (0.07) 36.77 (0.32) 38.83 (0.06) - 39.64 (0.07) 39.61 (0.04) - 2m17s 25s 4s - 2s 0s

Table 18. Min put option on Heston for different numbers of
stocks d and varying initial stock price x0. Here, r = 2% is used as
interest rate.

price duration

d LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5 12.29 (0.07) 12.26 (0.06) 12.12 (0.08) 12.25 (0.07) 12.38 (0.08) 12.34 (0.07) 12s 6s 3s 0s 2s 0s

10 16.55 (0.06) 16.54 (0.10) 16.03 (0.19) 16.50 (0.06) 16.63 (0.09) 16.64 (0.06) 30s 6s 3s 0s 10s 0s

50 25.24 (0.07) 25.66 (0.07) 23.67 (0.35) 24.87 (0.04) 25.71 (0.07) 25.68 (0.04) 8m42s 8s 3s 0s 7m34s 1s

100 26.84 (0.09) 29.22 (0.07) 26.47 (0.62) 28.45 (0.03) 29.26 (0.06) 29.32 (0.07) 42m26s 12s 4s 0s 1h24m 4s 1s

500 - 36.47 (0.05) 33.80 (0.65) 36.26 (0.05) - 36.93 (0.04) - 56s 13s 1s - 1s

1000 - 39.25 (0.04) 37.01 (0.34) 39.33 (0.02) - 39.93 (0.04) - 1m49s 23s 2s - 2s

2000 - 41.45 (0.03) 39.92 (0.26) 42.25 (0.05) - 42.78 (0.04) - 3m58s 43s 5s - 2s

Table 19. Max call option on Heston for different numbers of
stocks d. Here, r = 5% is used as interest rate, and δ = 10% is
used as dividend rate.

price duration

d LSM DOS NLSM RLSM FQI RFQI LSM DOS NLSM RLSM FQI RFQI

5 4.82 (0.03) 4.78 (0.04) 4.68 (0.04) 4.75 (0.04) 4.29 (0.12) 4.57 (0.06) 12s 5s 3s 0s 2s 0s

10 7.20 (0.06) 7.16 (0.04) 6.92 (0.06) 7.13 (0.05) 6.60 (0.14) 6.76 (0.16) 29s 6s 3s 0s 8s 0s

50 13.48 (0.05) 13.98 (0.03) 12.44 (0.18) 13.69 (0.04) 13.79 (0.03) 13.72 (0.07) 8m34s 8s 3s 0s 7m 7s 1s

100 14.63 (0.07) 17.13 (0.06) 15.19 (0.32) 16.83 (0.04) 16.97 (0.07) 16.99 (0.04) 39m49s 12s 6s 0s 1h23m 4s 1s

500 - 24.31 (0.08) 21.83 (0.63) 24.37 (0.04) - 24.69 (0.05) - 54s 12s 1s - 1s

1000 - 27.42 (0.07) 25.64 (0.55) 27.73 (0.03) - 28.08 (0.06) - 1m39s 23s 2s - 2s

2000 - 30.10 (0.08) 29.27 (0.36) 31.09 (0.04) - 31.50 (0.06) - 3m47s 43s 5s - 2s

Acknowledgments. The authors would like to thank Sebastian Becker, Patrick
Cheredito, Blanka Horvath, Arnulf Jentzen, Hartmut Maennel and Louis Paulot
for helpful feedback and discussions. In addition, the authors would like to warmly
thank the quant team of Crédit Agricole CIB, and in particular Arthur Semin,
Ryan Kurniawan and Wail El Allali for the great collaboration, which considerably
improved the paper. Thanks to this collaboration, we provide the computation of
the Greeks, we improved the sensitivity to the randomness of the hidden layers of

OPTIMAL STOPPING VIA RANDOMIZED NNS 75

RLSM, and we improved the proof of convergence of RLSM. The authors would also
like to thank the anonymous reviewers for their feedback leading to significant im-
provements of the paper. Moreover, the authors would like to acknowledge support
for this project from the Swiss National Science Foundation (SNF grant 179114).

REFERENCES

[1] E. Abi Jaber and O. El Euch, Multifactor approximation of rough volatility models, SIAM

Journal on Financial Mathematics, 10 (2019), 309-349.
[2] L. Andersen, A simple approach to the pricing of Bermudan swaptions in the multi-factor

Libor Market model, Mathematical Finance, 3 (1999), 5-32.

[3] A. Bakan, Representation of measures with polynomial denseness in Lp(R, dµ), 0 < p < ∞,
and its application to determinate moment problems, Proceedings of the American Mathe-

matical Society, 136 (2008), 3579-3589.

[4] V. Bally and G. Pagès, A quantization algorithm for solving multi-dimensional discrete-time
optimal stopping problems, Bernoulli , 9 (2003), 1003-1049.

[5] V. Bally, G. Pagès and J. Printems, A quantization tree method for pricing and hedging

multidimensional American options, Mathematical Finance, 15 (2005), 119-168.
[6] P. Bank and D. Besslich, On Lenglart’s theory of Meyer-sigma-fields and El Karoui’s theory

of optimal stopping, arXiv:1810.08485, Preprint, 2019.
[7] J. Barraquand and D. Martineau, Numerical valuation of high dimensional multivariate Amer-

ican securities, The Journal of Financial and Quantitative Analysis, 30 (1995), 383-405.

[8] C. Bayer, M. Eigel, L. Sallandt and P. Trunschke, Pricing high-dimensional Bermudan options
with hierarchical tensor formats, SIAM Journal on Financial Mathematics, 14 (2023), 383-

406.

[9] C. Bayer, P. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16
(2016), 887-904.

[10] S. Becker, P. Cheridito and A. Jentzen, Deep optimal stopping, Journal of Machine Learning

Research, 20 (2019), Paper No. 74, 25 pp.
[11] S. Becker, P. Cheridito and A. Jentzen, Pricing and hedging American-style options with deep

learning, Journal of Risk and Financial Management , 13 (2020), 158.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.
[13] B. Bouchard and X. Warin, Monte-Carlo valuation of American options: Facts and new

algorithms to improve existing methods, in Proceedings of the Numerical Methods in Finance:

Bordeaux, June 2010 , Springer, 2012, 215-255.
[14] P. P. Boyle, A. W. Kolkiewicz and K. S. Tan, An improved simulation method for pricing high-

dimensional American derivatives, Mathematics and Computers in Simulation, 62 (2003),
315-322.

[15] M. Broadie and P. Glasserman, A stochastic mesh method for pricing high-dimensional Amer-

ican options, Journal of Computational Finance, 7 (2004), 35-72.
[16] W. Cao, X. Wang, Z. Ming and J. Gao, A review on neural networks with random weights,

Neurocomputing, 275 (2018), 278-287.
[17] J. F. Carriere, Valuation of the early-exercise price for options using simulations and non-

parametric regression, Insurance: Mathematics and Economics, 19 (1996), 19-30.

[18] S. Chen, A. M. Devraj, A. Bušić and S. Meyn, Zap Q-learning for optimal stopping, in

Proceedings of the 2020 American Control Conference (ACC), IEEE, 2020, 3920-3925.
[19] E. Chevalier, S. Pulido and E. Zúñiga, American options in the Volterra Heston model, SIAM

Journal on Financial Mathematics, 13 (2022), 426-458.
[20] E. Clément, D. Lamberton and P. Protter, An Analysis of the Longstaff-Schwartz Algorithm

for American Option Pricing, Technical report, Cornell University Operations Research and

Industrial Engineering, 2001.
[21] J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach, Journal of

Financial Economics, 7 (1979), 229-263.

[22] M. de Bellefroid, The Derivatives Academy, 2022. https://bookdown.org/maxime_

debellefroid/MyBook/.

[23] D. Egloff, Monte Carlo algorithms for optimal stopping and statistical learning, The Annals

of Applied Probability, 15 (2005), 1396-1432.
[24] D. Egloff, M. Kohler and N. Todorovic, A dynamic look-ahead Monte Carlo algorithm for

pricing Bermudan options, The Annals of Applied Probability, 17 (2007), 1138-1171.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3934104&return=pdf
http://dx.doi.org/10.1137/18M1170236
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2415042&return=pdf
http://dx.doi.org/10.1090/S0002-9939-08-09418-5
http://dx.doi.org/10.1090/S0002-9939-08-09418-5
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2046816&return=pdf
http://dx.doi.org/10.3150/bj/1072215199
http://dx.doi.org/10.3150/bj/1072215199
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2116799&return=pdf
http://dx.doi.org/10.1111/j.0960-1627.2005.00213.x
http://dx.doi.org/10.1111/j.0960-1627.2005.00213.x
http://arxiv.org/pdf/1810.08485
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4578545&return=pdf
http://dx.doi.org/10.1137/21M1402170
http://dx.doi.org/10.1137/21M1402170
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3494612&return=pdf
http://dx.doi.org/10.1080/14697688.2015.1099717
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3960928&return=pdf
http://dx.doi.org/10.3390/jrfm13070158
http://dx.doi.org/10.3390/jrfm13070158
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3287773&return=pdf
http://dx.doi.org/10.1007/978-3-642-25746-9_7
http://dx.doi.org/10.1007/978-3-642-25746-9_7
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1988378&return=pdf
http://dx.doi.org/10.1016/S0378-4754(02)00248-3
http://dx.doi.org/10.1016/S0378-4754(02)00248-3
http://dx.doi.org/10.21314/JCF.2004.117
http://dx.doi.org/10.21314/JCF.2004.117
http://dx.doi.org/10.1016/j.neucom.2017.08.040
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1439613&return=pdf
http://dx.doi.org/10.1016/S0167-6687(96)00004-2
http://dx.doi.org/10.1016/S0167-6687(96)00004-2
http://dx.doi.org/10.23919/ACC45564.2020.9147481
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4412586&return=pdf
http://dx.doi.org/10.1137/21M140674X
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3821653&return=pdf
http://dx.doi.org/10.1016/0304-405X(79)90015-1
https://bookdown.org/maxime_debellefroid/MyBook/
https://bookdown.org/maxime_debellefroid/MyBook/
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2134108&return=pdf
http://dx.doi.org/10.1214/105051605000000043
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2344302&return=pdf
http://dx.doi.org/10.1214/105051607000000249
http://dx.doi.org/10.1214/105051607000000249

76 C. HERRERA, F. KRACH, P. RUYSSEN AND J. TEICHMANN

[25] O. El Euch, M. Fukasawa and M. Rosenbaum, The microstructural foundations of leverage
effect and rough volatility, Finance and Stochastics, 22 (2018), 241-280.

[26] O. El Euch, J. Gatheral and M. Rosenbaum, Roughening Heston, Risk , (2019), 84-89.

[27] O. El Euch and M. Rosenbaum, Perfect hedging in rough Heston models, The Annals of
Applied Probability, 28 (2018), 3813-3856.

[28] N. El Karoui, Les aspects probabilistes du controle stochastique, in Proceedings of the École

d’été de Probabilités de Saint-Flour IX-1979, Springer, 1981, 73-238.

[29] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, De Gruyter,
2016.

[30] C. Gallicchio, A. Micheli and L. Pedrelli, Deep reservoir computing: A critical experimental

analysis, Neurocomputing, 268 (2017), 87-99.
[31] D. Garćıa, Convergence and biases of Monte Carlo estimates of American option prices using a

parametric exercise rule, Journal of Economic Dynamics and Control , 27 (2003), 1855-1879.

[32] J. Gatheral, T. Jaisson and M. Rosenbaum, Volatility is rough, Quantitative Finance, 18
(2018), 933-949.

[33] J. Gatheral, P. Jusselin and M. Rosenbaum, The quadratic rough heston model and the joint

S&P 500/VIX smile calibration problem, arXiv:2001.01789, Preprint, 2020.
[34] E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve back-

ward stochastic differential equations, The Annals of Applied Probability, 15 (2005), 2172-
2202.

[35] L. Gonon and J.-P. Ortega, Reservoir computing universality with stochastic inputs, IEEE

Transactions on Neural Networks and Learning Systems, 31 (2020), 100-112.
[36] A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov and K. I. Sofeikov, Approximation with random

bases: Pro et contra, Information Sciences, 364 (2016), 129-145.

[37] H. Hanbali and D. Linders, American-type basket option pricing: A simple two-dimensional
partial differential equation, Quantitative Finance, 19 (2019), 1689-1704.

[38] M. B. Haugh and L. Kogan, Pricing American options: A duality approach, Operations

Research, 52 (2004), 258-270.
[39] C. Herrera, F. Krach and J. Teichmann, Estimating full Lipschitz constants of deep neural

networks, arXiv:2004.13135, Preprint, 2020.

[40] S. L. Heston, A closed-form solution for options with stochastic volatility with applications
to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.

[41] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks,
4 (1991), 251-257.

[42] G.-B. Huang, L. Chen, C. K. Siew, et al., Universal approximation using incremental con-

structive feedforward networks with random Hidden nodes, IEEE Transactions on Neural
Networks, 17 (2006), 879-892.

[43] S. Jain and C. W. Oosterlee, The stochastic grid bundling method: Efficient pricing of Bermu-

dan options and their Greeks, Applied Mathematics and Computation, 269 (2015), 412-431.
[44] L. P. Kaelbling, M. L. Littman and A. W. Moore, Reinforcement learning: A survey, Journal

of Artificial Intelligence Research, 4 (1996), 237-285.
[45] M. Kohler, A. Krzyżak and N. Todorovic, Pricing of high-dimensional American options by

neural networks, Mathematical Finance, 20 (2010), 383-410.
[46] A. Kolodko and J. Schoenmakers, Iterative construction of the optimal Bermudan stopping

time, Finance and Stochastic, 10 (2006), 27-49.
[47] B. Lapeyre and J. Lelong, Neural network regression for Bermudan option pricing, Monte

Carlo Methods and Applications, 27 (2021), 227-247.
[48] P. Letourneau and L. Stentoft, Simulated Greeks for American options, Quantitative Finance,

23 (2023), 653-676.
[49] Y. Li, C. Szepesvari and D. Schuurmans, Learning exercise policies for American options, in

Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics,

PMLR, 2009, 352-359.

[50] G. Livieri, S. Mouti, A. Pallavicini and M. Rosenbaum, Rough volatility: Evidence from
option prices, IISE Transactions, 50 (2018), 767-776.

[51] F. A. Longstaff and E. S. Schwartz, Valuing American options by simulation: A simple least-
squares approach, The Review of Financial Studies, 14 (2001), 113-147.

[52] M. Lukoševičius and H. Jaeger, Reservoir computing approaches to recurrent neural network

training, Computer Science Review, 3 (2009), 127-149.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3778355&return=pdf
http://dx.doi.org/10.1007/s00780-018-0360-z
http://dx.doi.org/10.1007/s00780-018-0360-z
http://dx.doi.org/10.2139/ssrn.3116887
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3861827&return=pdf
http://dx.doi.org/10.1214/18-AAP1408
http://mathscinet.ams.org/mathscinet-getitem?mr=MR637471&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3859905&return=pdf
http://dx.doi.org/10.1515/9783110463453
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1981732&return=pdf
http://dx.doi.org/10.1016/S0165-1889(02)00086-6
http://dx.doi.org/10.1016/S0165-1889(02)00086-6
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3805308&return=pdf
http://dx.doi.org/10.1080/14697688.2017.1393551
http://arxiv.org/pdf/2001.01789
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2152657&return=pdf
http://dx.doi.org/10.1214/105051605000000412
http://dx.doi.org/10.1214/105051605000000412
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4056386&return=pdf
http://dx.doi.org/10.1109/TNNLS.2019.2899649
http://dx.doi.org/10.1016/j.ins.2015.09.021
http://dx.doi.org/10.1016/j.ins.2015.09.021
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4000857&return=pdf
http://dx.doi.org/10.1080/14697688.2019.1588987
http://dx.doi.org/10.1080/14697688.2019.1588987
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2066400&return=pdf
http://dx.doi.org/10.1287/opre.1030.0070
http://arxiv.org/pdf/2004.13135
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3929676&return=pdf
http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3396788&return=pdf
http://dx.doi.org/10.1016/j.amc.2015.07.085
http://dx.doi.org/10.1016/j.amc.2015.07.085
http://dx.doi.org/10.1613/jair.301
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2667896&return=pdf
http://dx.doi.org/10.1111/j.1467-9965.2010.00404.x
http://dx.doi.org/10.1111/j.1467-9965.2010.00404.x
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2212566&return=pdf
http://dx.doi.org/10.1007/s00780-005-0168-5
http://dx.doi.org/10.1007/s00780-005-0168-5
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4308650&return=pdf
http://dx.doi.org/10.1515/mcma-2021-2091
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4574023&return=pdf
http://dx.doi.org/10.1080/14697688.2022.2159869
http://dx.doi.org/10.1093/rfs/14.1.113
http://dx.doi.org/10.1093/rfs/14.1.113

OPTIMAL STOPPING VIA RANDOMIZED NNS 77

[53] G. Pagès, Numerical Probability: An Introduction with Applications to Finance, 1st edition,
Springer, 2018.

[54] H. Pham, Optimal stopping, free boundary, and American option in a jump-diffusion model,

Applied Mathematics and Optimization, 35 (1997), 145-164.
[55] L. C. G. Rogers, Monte Carlo valuation of American options, Mathematical Finance, 12

(2002), 271-286.
[56] L. C. G. Rogers, Dual valuation and hedging of Bermudan options, SIAM Journal on Finan-

cial Mathematics, 1 (2010), 604-608.

[57] A. M. Schäfer and H. G. Zimmermann, Recurrent neural networks are universal approxi-
mators, in Proceedings of the 16th International Conference on Artificial Neural Networks–

ICANN 2006: Athens, Greece, Springer, 2006, 632-640.

[58] B. Schrauwen, D. Verstraeten and J. V. Campenhout, An overview of reservoir computing:
Theory, applications and implementations, in Proceedings of the 15th European Symposium

on Artificial Neural Networks, 2007, 471-482.

[59] M. Schweizer, On Bermudan options, in Advances in Finance and Stochastics: Essays in
Honour of Dieter Sondermann, Springer, Berlin, Heidelberg, 2002, 257-270.

[60] L. Stentoft, Convergence of the least squares Monte Carlo approach to American option

valuation, Management Science, 50 (2004), 1193-1203.
[61] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018.

[62] J. A. Tilley, Valuing American options in a path simulation model, Insurance Mathematics
and Economics, 2 (1995), 169.

[63] J. N. Tsitsiklis and B. Van Roy, Optimal stopping of Markov processes: Hilbert space theory,

approximation algorithms, and an application to pricing high-dimensional financial deriva-
tives, IEEE Transactions on Automatic Control , 44 (1999), 1840-1851.

[64] J. N. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American-style

options, IEEE Transactions on Neural Networks, 12 (2001), 694-703.
[65] D. Verstraeten, B. Schrauwen, M. D’Haene and D. Stroobandt, An experimental unification

of reservoir computing methods, Neural Networks, 20 (2007), 391-403.

[66] H. Yu and D. P. Bertsekas, Q-learning algorithms for optimal stopping based on least squares,
in Proceedings of the 2007 European Control Conference (ECC), IEEE, 2007, 2368-2375.

[67] D. Z. Zanger, Convergence of a least-squares Monte Carlo algorithm for bounded approxi-

mating sets, Applied Mathematical Finance, 16 (2009), 123-150.
[68] D. Z. Zanger, Quantitative error estimates for a least-squares Monte Carlo algorithm for

American option pricing, Finance and Stochastics, 17 (2013), 503-534.
[69] D. Z. Zanger, Convergence of a least-squares Monte Carlo algorithm for American option

pricing with dependent sample data, Mathematical Finance, 28 (2018), 447-479.

[70] D. Z. Zanger, General error estimates for the Longstaff-Schwartz least-squares Monte Carlo
algorithm, Mathematics of Operations Research, 45 (2020), 923-946.

[71] R. Zhang, Y. Lan, G.-B. Huang and Z.-B. Xu, Universal approximation of extreme learning
machine with adaptive growth of Hidden nodes, IEEE Transactions on Neural Networks and
Learning Systems, 23 (2012), 365-371.

Received April 2022; revised August 2023; early access December 2023.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3823785&return=pdf
http://dx.doi.org/10.1007/978-3-319-90276-0
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1424787&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1910596&return=pdf
http://dx.doi.org/10.1111/1467-9965.02010
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2669406&return=pdf
http://dx.doi.org/10.1137/090772198
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1929381&return=pdf
http://dx.doi.org/10.1287/mnsc.1030.0155
http://dx.doi.org/10.1287/mnsc.1030.0155
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3889951&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1716061&return=pdf
http://dx.doi.org/10.1109/9.793723
http://dx.doi.org/10.1109/9.793723
http://dx.doi.org/10.1109/9.793723
http://dx.doi.org/10.1109/72.935083
http://dx.doi.org/10.1109/72.935083
http://dx.doi.org/10.1016/j.neunet.2007.04.003
http://dx.doi.org/10.1016/j.neunet.2007.04.003
http://dx.doi.org/10.23919/ECC.2007.7068523
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2554301&return=pdf
http://dx.doi.org/10.1080/13504860802516881
http://dx.doi.org/10.1080/13504860802516881
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3066986&return=pdf
http://dx.doi.org/10.1007/s00780-013-0204-9
http://dx.doi.org/10.1007/s00780-013-0204-9
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3758929&return=pdf
http://dx.doi.org/10.1111/mafi.12125
http://dx.doi.org/10.1111/mafi.12125
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4135837&return=pdf
http://dx.doi.org/10.1287/moor.2019.1017
http://dx.doi.org/10.1287/moor.2019.1017
http://dx.doi.org/10.1109/TNNLS.2011.2178124
http://dx.doi.org/10.1109/TNNLS.2011.2178124

